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ABSTRACT

Some Sharp Estimates Involving Hilbert Transform
By

Stefanie Petermichl

We construct the Hilbert transform on R as an average of dyadic operators, al-
lowing us to translate norm estimates to estimates of dyadic type. We are going to
apply this representation to give the sharp dimensional growth of the commutator of
the Hilbert transform with matrix multiplication by a BMO matrix of size n x n.
The bound is a multiple of logn times the BMO-norm of the matrix. Furthermore
we will apply this representation to give an elegant proof of the fact that H, as an
operator in scalar but weighted L2, is bounded by the cube of the classical A;-norm
of the weight. By the different method of Bellman functions, we show the quadratic

bound for H in terms of invariant A, and this estimate is sharp.
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CHAPTER 1

Introduction

It has been of interest for a long time to give sharp estimates for the norm of the
Hilbert transform and related operators in LP(R). In the present work we look at
the estimates of the Hilbert transform in weighted and/or vector spaces. We restrict
ouselves to the case p = 2.

It will be of great help to reduce various estimates for H to estimates of dyadic
type. We will prove that there is a very nice representation of the Hilbert transform
via averaging operators that we will refer to as dyadic shifts.

Let us start with vector problems. Recently some activity has been focused on
the area of non-commutative weighted estimates. By non-commutative weighted es-
timates we understand, for example, the estimate of the singular integral operators
T, say, the Hilbert transform H, in the space of vector functions with matrix or
operator weights. Let us refer the reader to [16], [17], [8], [18].

The problem of estimating |T||i2w)—»r2w) is equivalent to estimating
|WY2TW~-/2|| 12,12 which is non-linear in W. But there is a linearized counter-
part, which comes down to estimates of commutators of the form T'B — BT'. This
problem is linear in B. It is well known that estimates of commutators of matrix
multiplication with the Hilbert transform yield estimates of Hankel operators.

In the present work we are going to give the estimate from above in terms of the
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dimension n,
”HB - BH”Lz(Cn)_,Lz(cn) < Clog n”B”BMo. (1.1)

We refer to [11]. In [7] it has been proven that there exists an n x n matrix function

B such that
”HB h BH”LZ(cn)__,Lz(Cn) > Cl log TL”B”BMO (1.2)

(the symbol ||B||smo is defined below), which proves sharpness.

The same idea of averaging can be tried for weighted estimates of the Hilbert
transform and other CZ operators. Now we are in the scalar but weighted situation.
The space considered is L%(w), where w is in A,, the exact class of weights that
allows the Hilbert transform to be bounded.

The question for sharp estimates for the Hilbert transform, the square function
and a uniform bound for martingales on weighted L? spaces in terms of the A,
constant of the weight has attracted considerable interest in recent years. S. Buckley
in [1] proved that the square function is bounded by |lw||%, and that the Hilbert
transform is bounded by ||w||%,. More recently, in [5] the quadratic bound for the
square function has been proven. This bound is sharp. An alternative proof can be
found in [19] and [12], where the estimate is found using the lower bound for the
square function, which is linear. The linear lower bound for a harmonic version has
been proven in (2] and independently for the dyadic version in [12]. We prove the
cubic bound for all dyadic shifts and hence the Hilbert transform.

By the different method of Bellman functions we obtained the sharp estimate in
terms of invariant A,, which is the version of A; using Poisson averages instead of box
averages. The proof uses a nice ‘duality’ between sharp uniform estimates for dyadic
martingales and its continuous analog, the Hilbert transform. The proof includes

an alternative to what is known as bilinear imbedding theorem in [10] involving two
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weights. We establish slightly simpler conditions on the two weights v and w for the

imbedding. The function to prove the theorem is

B(X,Y,z,y,7,5,G,H,M,N,K) =

2 4P 72 y? 72 y? x28—2zyg;+y2r
5X +5Y —2— —2=—— b T = 7 N 3
T 8 r+gor stm rtmm st TS —of



CHAPTER 2

The Hilbert Transform and Dyadic

Shift Operators

2.1 Definitions

We will be using a variety of dyadic grids in R. The standard dyadic grid is the
collection of the following intervals with disjoint interiors : {[2"k, 2"(k+1)],n,k € Z}.
The point 0 has the significance to be the only point that does not lie in the interior
of any of the intervals. We call the standard dyadic grid D%! and we denote by hg’l
the Haar function for J € D%, namely h}' = 1//|J] (xs_ — xs,) where J_ is the
left half of J and J, the right half of J. We obtain a variation of D%! by first
shifting the starting point 0 to @ € R and secondly choosing intervals of length r-2"
for positive r The resulting grid is called D*". The corresponding Haar functions
he™ are chosen so that they are still normalized in L?. We often omit the indices

a,r in our notations for the Haar functions. The following is an illustration of D*".



For f € L*(R) we have

f) =) (fiho)hu(z).

IED“"

We define a dyadic shift operator III*":

(W f)(z) = Y (fh) (e (2) = hu, (2)):

IeDr

The symbol ‘III’ is a cyrillic letter that reads ‘sha’. Its L? operator norm is v/2 and

its representing kernel is

Ko (t,z) = Y hi(t)(hs_(z) - hu,(2)), (2.1)

IeDor

by which we mean that

(L f)(z) = / Ko7 (t, <) f(¢)dt

for smooth compactly supported f and z outside the support of f.

2.2 The Representation of the Kernel via Limits

of Averages

The kernel of the Hilbert transform is K(t,z) = - Constant multiples of this

z —
function are characterized by the four properties that K only depends on the distance
z —t, K # 0, the correct degree of homogeneity and antisymmetry. We will pick
the correct averaging process to form such properties from K" defined in equation

(2.1).



Lemma 2.1 The convergence of sum (2.1) is uniform for |z —t| > § for every § > 0.
For x #1t let
L

k(t,z) = nglgo 2log L Jy1, R—)oo 2R

/ K" (t, x)dadr

The limits exist pointwise and the convergence is bounded for |z —t| > & for every
d > 0. K(t,z) is a nonzero constant multiple of the kernel of the Hilbert transform:

K(t,z) = & for some cy > 0.

PROOF.

First note that Va € R and Vr > 0:

3 1h(®) (b (@) = b, (@) € o

IEDO,Y‘
In fact, if |I| < |t — z| then h;(t)(hi_(z) — k1, (z)) = 0, so picking ng minimal such

that r2™ > |t — z| we get

S Ihi(®)(ha (=) = hr, (2))]

IEDO r

< Z > () (hi_(z) = bu, (2))]

n=ng I€D™T
|I|=r2n

= V2
< ZE;
n=ng

2v?2

|t — |

In particular, the sum converges absolutely and uniformly for |z —¢| > § for every

6>0. So
Al—ﬁﬁ/ K*"(t,z) da
— I%_l_];lgo-z—ﬁ/ Z h,] t) h[ h1+(17)) da
n=ng IeD>r
|I|=r2n



by dominated convergence. The limit

1 R
lim / S ha(t)(hr_(z) - hu, (2)) da

R—oo -R 1D
|I|=r2n

exists for all fixed r because shifting a certain grid by 72" will result in the same
intervals of that particular length:

Y (@) —h ()= D m(t)(h(z) = ki (2)).

IeD>r Iepatra™r
|I|=r2n |I|=r2n

The outer limit in L exists for similar reasons. Here the entire grid repeats itself,
ie. D* = D" for any integer k, so K*" = K*?** The main point is to show
that K(t,z) = ;% . For this purpose it is enough to prove the following properties of

K(t, z):

1. Translation invariance, i.e. K(t,z) = K(t+c,z+c) Vc € R, so K(t,z) =
K(t-1z)

2. Antisymmetry, i.e. K(t,z) = —K(—t,—z) ,s0 K(z—t) = -K(t — z)
3. Dilation invariance, i.e. K(t,z) = AK(At,Az) YA >0
4. K(1)=¢ >0

In order to check the first three properties we observe the following simple relation-
ships between the Haar functions of different dyadic grids for translations, reflections
and dilations. For any interval I € D*" there exists an interval of the same length in
D" so that hy"(t + ¢) = h7 “"(t). In a similar sense h]"(—t) = —h;*"(t) when
changing grids from D*" to D=*" and h®"(At) = A~Y/2h*"/X(t) when changing
from D> to D/A/A,



In more detail:

Y BT+ R (x4 ) — kT (@ + ) (22)
IeDQ,"
|I|=r2n

— Z ha cr ha cr( )_h?:c,r(x)) VCGR-

Ie'DQ c,r

|I|=r2n
PR COICACREC) 23
IeDa,r
|I|=r2n

= S R (@) + A (2)

Do"

€\ )=ran
= = Y RO (@) - ki (@),
IGD"O"
[I|=r2n
3" RTOR)(RTT (M) — T (Az)) (2.4)
IeD>"
[I|=r2"

= Y W - (kO —a) — Y Az — @)
IeDOT
|I|=r2"
_ Z Rt — a/N) (RS (z — a/X) — KTz — a/N))
Ie'D° /A
I|=r/A2"
% Z Re/AIN () (RS () — h?{*”/*(m)) VA > 0.

IeDa/A,r/A
\I|=r/A2"



Now we are ready to prove the first three properties.

Proof of translation invariance:

K(t+cz+c)

— Ll-»oozl;gL/,LLn-»odR K*(t+¢,z +c)dadl
L

= [!—»oo2101gL/‘/LR—>oo2R/ Koo (t,2)da &
L R-c

= I}i-»nc}o2lolgL I/Léil‘o‘o% Kb z)da &

= K(t,z)

by first using (2.2), then a substitution in a and the fact that the modulus of the
integrand is bounded by I%—C?I

Proof of antisymmetry:

K(-t,—z)
L

_ 1 a, r _ d?’
- Ll—»oo 2logL 1/L R—boo 2R _/ K b 17) da -

1 L d
. li K% T
z}gxgomogL/l-/LRgEozR/_R (t, ) da 5
—-K(t,x)

by applying (2.3) and a substitution in « .



Proof of dilation invariance:

K()t, \z)
: 1 L : 1 R a,r dT‘
B ngxolo2logL /Li%l—r»!c}oﬁ/ K= (X, Az) dar -

N Y
z}L 2log L /LR—»oo2R

: 1 L R/x /A dr
I}-I-D 210gL//LR—>OO 2R R/,\K (t x)d

1

A

1

A

L ym =L [ K" (t,z)d
B XLEEO2logL//(L,\)R—>oo2R/ tz) a

1

A

/ Ka/A r/A(t J?)d dT

K(t,z)

by first using (2.4), then a substitution in a, then a substitution in = and the fact

that the integrand is bounded by 2v2

lz—t| *

These three properties prove that the kernel we obtain must be K(t,z) = ;2.

-z

For our purposes it is essential to know that ¢y # 0.

2.2.1 Proof that K(1) =¢ >0

Let us first illustrate h;(t)(hr_(z) — b1, (z)):

T

] + + [}

hi(t)(hi_(z) — k1, (z)) # 0 if and only if the point (¢,z) lies in this square. Its value

is :i:%lj, where the correct sign is indicated inside the smaller rectangles.
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Let us first compute

T 3 1 R
Kn(t’x) = }%I—I;Igoﬁ -/—‘R Z hl(t)(hf— (.’L‘) - h1+ (I)) da’ (25)
IeD>T
|I|=r2n
for fixed » > 0 and n € Z and assuming ¢ > . The picture is the following:

JH AN

Jd AN

144N
(3 3

I\

The exact location of the squares along the diagonal is influenced by the starting
point a. The picture will repeat for two values of o that differ by an integer multiple
of |I|. We compute (2.5) in (t,z) by considering the probability that (¢,z) lies in
any of the squares. Due to the averaging process in «, this is only going to depend

on t — z. We only need to compute for |t — z| on the dotted lines:

T

If
t—z=0 thenK;(t,z)=%ﬁ+%(—l,f)+%°|,£f+

PN

(=) » and similarly

t—z=1I| then Ki(t,z)= 3%

t-x:%l]l then K:;(tyx)=0
t—1 = %|I| then K[ (t,z) = "i%

t—z>|I] then K[(t,z)=0.

11



Since K[ (t,z) = K (t — z) is piecewise linear in ¢t — z, we obtain the following

graph, depending on n and r:

\/rﬁ" t—z

Next we compute

T 4 1 R a,T
K'(t,z) := I%}_I}(Lﬁ/i}{ K*"(t, z) da. (2.6)
First note that
T H 1 R
K(t,a) =Y Jim L /_ Xm0 ()~ by (@) de, 2.7)
nezZ IeD>r
|I|=r2n

so we compute K" (t,z) using K, (¢,z) defined in equation (2.5) for different values of
n and summing over n € Z. It suffices to compute K'(t,z) for values t — z = 3r2"
and t—z = r2" since the graph is piecewise linear on intervals [2"~!, 32"] and [32", 2"]

for all n.

Fort—z = %7‘2" we obtain that

3 on 1v2 3v2 9v2, 1 1 V2
AViER P TR TS TR b S RS TR A= T
and for t — z = r2" we get
prem 3V2, 1 1 V2
K™(r2 )——E'r2—n(1+z+ﬁ+...)-—4r2n. (2.9)
Equations (2.8) and (2.9) imply that
3v2 V2
—— < K'(t—-1z) < —— . .
B —2) < K"(t z)_4(t_$) Vr >0 (2.10)

The expression in Lemma 2.1 is obtained from K"(t — z) by a limit of averages in 7,

so it is clear from equation (2.10) that ¢o >0. H

12



CHAPTER 3

Application to Hankel Operators

with Matrix Symbol

3.1 Definitions and Statement

We consider vector valued L2 = L3(C") for n > 2, i.e., measurable f: R — C" such
that [o(f, fler = |If ||i§(c,‘) < 00. We also consider BMO - matrix functions B of

size n X n with ‘B € BMO’ in the following sense. If B is an n x n matrix function

on R, we say that B € BMO. if for all e € C", |e|| denoting its Hilbert space norm,
sup(]| Be - (B)sell’)s < allell?, (3.1)

where the supremum is taken over all intervals in R. The notation (-); means
averaging each entry over J. We say that B € BMO, if B* € BMO,, meaning
that for all e € (C*)*

sup(leB — e(B)sl|*)s < alle]|*. (3:2)

We say that B € BMO if B € BMO.N BMO,. The square root of the best a
satisfying both (3.1) and (3.2) will be denoted as ||B||gpmo- Note that this definition

is ‘symmetric’, meaning that B and B* have the same norm.

13



We are going to prove that the commutator HB — BH, H denoting the Hilbert
transform, as an operator from L3(C") to itself is bounded by a logn multiple of

||Bllemo- To be precise,
Theorem 3.1 There erists C > 0 such that for all B € BMO

”HB - BH”L%(C")—«)L&(C") < Clogn”B“BMO-

3.2 The Proof

PROOF.

We estimate |HB — BH|| by relating it to ||ILIB — BIII||.

The operators III*" are norm bounded by v/2, so the collection of operators Ty,
defined by
1 (R
T : f— 2R II*" f da

are, as averages, also norm bounded by v/2. By compactness of the closed unit ball
in B(L?) in the weak operator topology and the fact that the unit ball is metrizable,
there is a subsequence T, such that T converges weakly, which means there exists
T™ with norm < v/2 such that Vf,g € L? : (Tg, f,g9) — (T"f,g) as k — oo. Then
consider

L foi [ Tyl
L 2log L Jy/1 T

By the same argument there exists a subsequence T, that converges weakly to a

bounded operator T'.

14



Let us show that T is represented by the kernel ¢y/(t — z). Because of bounded

convergence in Lemma 2.1, we have for f,g compactly supported with disjoint sup-

ports,
(Tf,9)
= lim (Tt f,9)
L
= Jm 210g1(Lk) /1,;(7” 9) F
1 Ly R;

— — ar dr
- klg{olo 2log(Ly) _//L zliglo 2R, (IH f9) da 5

L : 1 R a,r dr
/ 1O i e o) 2log(Lk) / - }_‘,’2, R | K (b da et )

co (Hf,9).

By [15] (p. 33) there exists a bounded measurable function a such that Tf(z) =
coHf(z) + a(z)f(z) a.e., hence ¢o(HB — BH)f = (TB — BT)f. By convexity
|ITB — BT|| < sup,, ||I*"B — BIII*"||. So we are left to estimate the commutators

with [II*" uniformly. We show that for all « € R and for all 7 > 0
||IH° "B — BIII*" ||L2 Cn —)Lz(C") < ClOgn“B“BMO (33)

In the following a,r will be omitted because all estimates do not depend on the
dyadic grid. It suffices to consider f € D(R) only, because the estimates do not
depend on the support of f. First let us decompose the product Bf, at least for
‘almost compactly supported’ B in the sense that B differs from a compactly sup-
ported function only by an additive constant. Note that for any such BMO matrix
function, the sum

B(z) = Z(B, hr)hi(z) (3.4)

IeD

is meaningful, in the sense that it converges unconditionally to an L? function. The

reason is that coefficients of constant functions vanish, so (3.4) ignores constants and

15



treats our B like a compactly supported one, whose entries are in L?. For our vector

function f we have

f(z) =D _(fih)hi(z). (3.5)

IeD

By multiplying the sums (3.4) and (3.5) formally one gets

Bf = Ap(f) + 15(f) + Ra(/),

where

Ap(f) = (B, h1)(f, hi)h},

IeD

Ms(f) =Y (B, hi){f)1 b,

IeD

Ra(f) = (B)i(f,hi)hr.

IeD

The formal multiplication is meaningful due to our assumptions on f and B.
Hence SB — BS = SAg — AgS + Sllg — IIgS + SR — RS and we can estimate

the terms separately for our special class of B.
By [9] and [6]
Mgl 2(cr)-r2(cmy < Clogn|| Bl smo,

where C does not depend on n. The proof in [9] is by a Bellman function construction,

whereas the independent proof in [6] is by a stopping time procedure.
For the part involving Ap, note that Ay =Ilpg.. So
|As|| < Clogn||B*| smo = Clogn||B||smo,

so the parts involving IIp and Ap are bounded by v/2Clogn||B||saso-

16



We estimate the last term as commutator:
HIRgf — RglIIf
= S (B)i(fiho)hr. = > (B)r_(f,hr)hs +
I

I

Z(Bh(f,hz)hu S (B)1, (£, ho)ha,

I

= 22((19),+ (B)1_)(fyhi)(hi_ — hy,).

So it suffices to show that
I((B)1, — (B)1.)ell*> < ClBllbpo llell* Ve € C
with C independent of n. In fact,

I(B)r, — (B)1_)el?
— 4B - (B)L)e]?
1 2
- /, (B)r - B(®)e

ﬁ / I((B)1 - B(t))e|]? dt

IA

% /, 1((B)1 — B(t))e|? dt

< 8| Blisumollell*.

IA

Now we pass from our ‘almost compactly supported’ B to general B € BMO.
For fixed B we consider the sequence of intervals I, = [—k,k|. We can construct
By so that By = B on I, Bx = (B)j, outside the interval concentric with I; and
three times its length and furthermore, ||Bk||smo < ¢||B|lBmo With ¢ independent
of k. A suggestion for such a construction can be found in [3] (p.269). So the family
of operators III By — BiIII is uniformly bounded in L?, by Clogn| B| smo. Hence
by a weak compactness argument, the operator III B — BIII is bounded by the same
norm, which gives us the estimate for general B, finishing the proof of inequality

(33). m

17



3.3 Sharpness of Result

In [7] it has been proven that there exists an n x n matrix function B such that
|HB — BH||2(cny—sL2(cm) > C'logn|| Bl smo (3.6)

which shows that the estimate in terms of logn is sharp. We would like to point
out that the same averaging technique has been used to obtain the lower bounds for
paraproduct operators and hence for Carleson imbedding theorem using the lower
bounds for commutators. The proofs can be found in [7]. As a consequence, the logn

upper bounds for paraproducts and Carleson imbedding theorem are sharp.

18



CHAPTER 4

The Cubic Bound for the Hilbert

Transform

4.1 Definitions and Statement

We are now in scalar but weighted situation. We consider weights w € L},., where

w € Ay with norm

lwlla, = sup (W) (w1,

where the supremum runs over all intervals. We also consider a dyadic version, A%,
where the supremum runs over dyadic intervals only. So the norm |w]| 4,4 may depend
on the choice of the dyadic grid. We are concerned with weighted L? spaces, denoted
by L}(w), containing functions so that | f||2 := [ |f|°w < co. Our main theorem in

this chapter is the following:

Theorem 4.1 H : L%(w) — L&(w) has operator norm ||H|| < c|wl3,-

We will reduce the problem to upper and lower bounds of certain square functions,

using averaging technique from chapter 2. The square function S is defined by

19



t)—\//le (t)2de = \/Zlf,hz 12"[”

where & denotes the space {—1,1}? provided with the natural measure de which
assigns equal measure 2% to every cylindrical subset of {—1,1}? of length 2* and

T. is the martingale transform
T.:fr Z e(I)(f, hn)h

associated with the sequence () € {—1,1}?. The following has been proven in [2]

(in a harmonic version) and independently in [12]:
Theorem 4.2 There exists ¢ > 0 such that for all f € L*(w)

£l < cllwllaghSllo-

In [5] the sharp upper bound has been proven:

Theorem 4.3 There exists ¢ > 0 such that for all f € L*(w)

15f1l < elwl3gl -

Both [19] and [12] contain a proof of the fact that the quadratic upper bound
follows from the linear lower bound, which implies that the lower bound is sharp as

well.

4.2 The Proof

We will give a short and elegant proof of Theorem 4.1. It was found together with
Sandra Pott.

As seen in Chapter 2, H lies in the closed convex hull of dyadic shift operators.

The square function does not ‘see’ the dyadic shift:

20



Proposition 4.4 (SIIIf)(z) = V2(Sf)(z) for all .
PROOF.
SUIf(x)?
- [P
_ /E | 32D, hrha(e) e
- / |30 B = ell ), )
© 4 /|E )(f, ki) () Pde
= 25f(z)?

where (%) is an effect of the averaging over sequences of signs €(I) and the fact

that for each fixed z there exists a sequence of signs £(I) so that we have for all I:
V2hi(z) = EI)(e(I- )k — e(Li)hr,)(z). m

Now it is easy to prove Theorem 4.1:

PROOF.
Dyadic shifts with respect to all translates and dilates of the standard dyadic grid

have cubic bound, indeed

e @ @ 3)
I flly < ellw] ygor ST fllo = ellwl ggor 1Sfllo < ellwllygar 11l

where (1) is by Theorem 4.2, the lower bound for the square function, (2) by Propo-
sition 4.4, the fact that the square function does not see the dyadic shift and (3) by
Corollary 4.3, the upper bound for the square function. By convexity, as before, we

obtain the desired bound for the Hilbert transform:

|H|| L2(w)-12w) < csup ITI® || 2wy L2(w) < csup ||w||3dar < cllwlf3,-
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CHAPTER 5

A Sharp Bound for Weighted

Hilbert Transform

5.1 Definitions and Statement

In this section, it is more convenient to work on the unit circle T. We consider the
space L2(w) where, as before, w is a positive L! function, called a weight. Let m be
normalized Lebesgue measure on T. The norm of f € Li(w) is (f;|f |2wdm)l/ ? and
denoted by || f|l.- We are, as before, concerned with a special class of weights, called

A;. Wesay w € A, if
llwlla, := S‘;D {(W)r{w=1)r < oo

where the supremum is taken over all dyadic subarcs / C T. The notation (w);
means the average of the function w over I. We also consider a version of A, that is

invariant under Mobius transforms, called A ;,,. A weight w € Ay ;p, if
Wl 4g,1my 7= SUP Vw(2)w™1(2) < 00
zeD

where w(z) denotes the harmonic extension of w, so w(z) = [ w(t)P,(t)dm(t), where

P,(t) = Tlf_-l-;% Note that in general w=!(z) and w(z)~! have different meaning.
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The first expression means taking the harmonic extension of the reciprocal of w, the
second one means taking the reciprocal of the harmonic extension of w. Observe that

w(z)w™!(z) > 1 by Jensen’s inequality, so |lw| 4,,,, = 1. In [4] it has been proven

that the exact sharp relationship between the two different A, norms is as follows:

crllwllas < lwllagme < callwll,-
In particular, w € A, if and only if w € Ay iny.

In what follows, H stands for Hilbert transform on the circle T. H acts on

trigonometric polynomials as follows:

H(Z are®*) = —i Z are®* +1i Z are'’*.

k>0 k<0

Let Hy be the operator H + iPy where Fy: f — f(0).

Theorem 5.1 H : L}(w) — Li(w) has operator norm ||H|| < cllwl|%,,., -

Note again, that in our notation ||w||%, . = sup,ep w(z)w™!(2).

5.2 Proof

| Pollz2w)—»r2(w) < llwllagsm,- Indeed, applying Jensen’s inequality we obtain
I1P(AIZ = 1fO)Pw(0) < (IfPw)0)w ' (0)w(0) < llwlif,, JfIZ. As [[H] <
|Ho|| + || Poll and ||wl|la;;,, = 1 it suffices to show that ||Hg| < c||w||§2vm. We
estimate ||Hol|z2(w)-12(w) by duality. Since (Ho tf,g/t) = (Hof,g), it is enough to
show that |(Hof, 9)| < cllwll%, .., (If1I% + llgli2-) for all f € L}(w) and g € L(w™)

(just use t = \/||gllo-1/||fllo if f # 0). It suffices to consider real valued and non-
negative functions f and g. By polarizing 3] (p. 236) we have

[ (Fof — Eaf(0)(9 — 9(0)im = 5 [ (VHof) (Vo) log 1A (o)

2|
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Due to Hof(0) = 0 the left hand side equals (Hpf,g). Since |VHyf| = |V f| we get

(Hof,0)| < o / IV £1IVg]log l—IdA(z>

Note that for f real valued, |V f| = 2|0f/9z|. We will write f(z)’' for the holo-
morphic function 9f/0z.

We split the integral into four parts. One can see that

/., 1£(2)'llg(2) | log ~-dA(z) <

B
[ 1s@lgten |5 - L) 9L Ak ioq L
+ [l j(())—‘;(()) 1og|_1.|d,4(z)
+ [ |2 | A -2 (()) og 144
+ [1r@Neen 2] (2 og Zaae)

The first integral can be controlled in the same way as done in [9], in fact, the
proofs are identical. For the second and third integral we need to proceed in two
steps. Again, we want to use the same proof as in (9], but in order to do that we need
to have an estimate for a certain Green’s potential function involving the weight. But
there is a dyadic analog for this estimate, which showed up in the proof for sharp
bounds for the dyadic square function in L?(w) and was proven by Bellman function
technique ( see [5]). We will use the same Bellman function to obtain estimates for the
Green’s potential. The fourth integral requires what is known as bilinear harmonic
imbedding theorem. The appropriate Bellman function was constructed with help
from [9]. We give an explicit expression for the function. The imbedding conditions
are again certain Green'’s potentials. We find the appropriate bounds using Bellman

functions found in [9] and [19).
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Before we start to estimate the four integrals we need the following lemma to relate

Laplacians to second differentials:

Lemma 5.2 If b(z) = B(h(z)) where h = (f;); : C - R™ and B : R* - R with B
and h sufficiently smooth, then

Ab(z) = 4 (dzB(h(z)) (%).-’ (%) ) + 4(VB)(h(2)) ( §:§; ).- (5.1)

)

In particular, if all f; are harmonic, then
0 i 15) i
Ab(z) =4 (d23(h(z)) (6—‘2) K (a—j;) ) (5.2)

PROOF.

By elementary computation.

We will be using the appropriate Bellman functions to bound all integrals. Each
variable carries meaning, usually harmonic extensions of functions or Green’s poten-

tials for some fixed z. The following variables show up frequently:

X = fw(z) Y = ¢gwl(z)

If we assume f,g to be real and nonnegative, all variables will be nonnegative.

Furthermore we have the following natural estimates:

1<rs <@ if we write Q for ||wl|2,inv (5.3)

2 < Xr and 3% <Ys because of Jensen’s inequality. (5.4)

These restrictions give a natural domain of our Bellman functions.
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5.2.1 The First Integral

Consider the following function of six real variables
72 y?
B(X,a:,r,Y,y,s) =X - 7 +Y - —S—
then we get the following size estimate within the natural domain of B:

0<B<{X+Y.

and by direct computation of the second differential we get

dz drl? 2

T T

—d“B:——

r

(5.5)

Also consider the function b: C = R

b(2) = B(h(2)) = B(f*w(z2), f(2),w™"(2), °w ™ (2), 9(2), w(2)),

then we obtain the following estimate for —Ab(z) using (5.2) and (5.5)

—Ab(z)

If( )12 | f(2) w‘l(Z)'2 9(2)1? |g(2)  w(z)|*
w(2) | f(z) wl(2) w(z) |g(z) w(z)
1f(2)g(2)l |f(2) wl(2)||g(z) w(z)

2 16 wl(z)w(z) | f(z) w(2)[]|g(z) w(z)

If(2)9(2)| | f(2)  w™(2)||9(2) w(2)

2 0 T | i T e@ |

integral:

log T%dA(z)

We use the above estimate for —Ab(z) and Green’s formula to estimate the first
Z)’ wl(2)'||9(2) _ w(2)
)

Jrestel |55 = =51 5 ~ 56

< clwllpn / —Ab(z logﬂdAu

=qmmm0@'ﬁwﬁ

< cllwlagim, (NFIE + NlgllE-1)-
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The last step uses that b = 0 on T and that the size estimate B < X + Y means
5(0) < IFN12 + Nlgll2-: -

5.2.2 The Second and the Third Integral

The second and the third integral are analogous, so let us only prove the estimate for
the second one.

We consider the function from (5]
404
B(r,s) = r(_r_s —rs+4Q* + 1),

this function has the following properties:

1<rs<Q*=0< B(r,s) <cQ'r

1<7rs<Q?= —d’B > Cs(dr)%.
Let us also consider the function b: C - R

b(z) = B(h(2)) = B(w™(2),w(2)),

0 < b(2) < cQ*w™(2) and — Ab(2) > cw(z)|lw™(2)'|%
This function will help us to estimate the following Green’s potential:
G(lw™"Pw)(2)

- /logls(g)llw (&) Pw(€)dA(E)
< C/D—Ab £) log . (g)|dA(§)

® . /D —Ab(S—z(E))logr

q
= c(b(z) —/dem)

< Q'w(2)

dA(¢)
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where S,(§) = . In (%) we just did a change of variables £ — S_,(£) ( note that

the symbol A carries the variable as well). Hence we proved that

G(lw™"IPw)(2) < cllwll,, v (2)

and analogously

G(lw'Pw™)(2) < cllwlli, . w(2).
The reader should note the similarity between the estimate for the Green’s poten-
tial and its dyadic analog found in [5)

Vi) Zl — (W [Hw™)ilI] £ cQ*w)y.

IcJ

Functions of similar form as discussed in the proposition below will appear fre-

quently. We take care of their concavity.

Proposition 5.3 Functions of the form

1.2

y+z

f(w,a:,y,z) =w -
with y > 0 and z > 0 are concave.

ProoOF. The matrix

(0 0o o 0 )

0 2 —2z —2z
—d*f = vtz wra)? (+a)?

0 -2z 2::2 2x2
w+2)? W+ Ww+z)’

\0 —2z 23 2z
W+a)? W+ ([w+2)®

is positive semidefinite. 1
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Let us introduce a new variable
G = G(lw™PPw)(2).
Now we are ready to steal from [9] the Bellman function used to prove weighted

dyadic imbedding theorem. We let

x? Yy
B(X,z,r,G,Y,y,s) =X - ——+Y - L
T+ ot s

B is, as a sum of two functions of the form discussed in Proposition 5.3, concave.

Consider

b(2) = B(h(2)) = B(f*w(2), f(2),w™!(2), G(lw™""|Pw)(2), g*w ™ (2), w(2))

We will have to estimate —Ab(z) from below. We use equation (5.1) to estimate
the part involving X, z,r, G, where the concavity of B allows us to drop the part
involving the second differential. We only need to consider partial derivative in the
‘non-harmonic variable’ G. Note that —AG(|w™!'|?w) = |w™!'|?w. We use (5.2) and

(5.5) for the part involving Y, y,s.

—Ab(2)
o fEAAG( Pw)() L 02 |a()  w(e)[?
2 R T G P T P e@) [G) T o)
PR Pul2) 92 |9(z) _ w(z) [
2 U@+ @G )@ T Cw() o)~ o)
SN @) | 0 |a) w(z)
2 QU0 ) ) T w)
W@ ||9) Wz

> Q7’| f(2)9(2)]

wi(2)|19(z)  w(z)

Now we use Green’s formula, the fact that 5> 0 on T and 5(0) < || f|I2 + llg/|>-:
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to estimate the second integral:

)| (o) _ wlz)
[irens@n =2 125 - 25

< cwl? / — Ab(z) log ——dA(z)
D |2|

< cllwlP(FIE + Ngls-1)-

log l—ildA(z)

5.2.3 The Fourth Integral

We will apply Lemma 6.1, the harmonic bilinear imbedding theorem whose statement
and proof can be found in chapter 6. We apply it for the weights w and v = w™!

with ||wl|4,,., = @ and, up to a normalization constant not depending on @,

o(a) - @1
(o (2)

We need to prove the imbedding condition inequalities (6.1), (6.2) and (6.3). We

first turn to (6.1):

Consider the function from [19]

2
B(s,r) = s(—% - 4%2 +4Q% +1),

this function has the following properties:
1<rs<@Q*=0< B(r, s) < cQ?s

dsdr

ST

1<rs<Q*= —d*B>Cs

Let us also consider the function b: C - R
b(z) = B(h(2)) = B(w(2),w™(2)),
then
0 < b(2) < cQ*w(z) and
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—Ab(z) > 4Cw(z) () llw™(z)' = 4Cw(2)a(z).

w(2)w™1(2)

This function will help us to estimate the following integral:
| g g eteieraate

: / A 1°g|s«s)| AQ
_ / A S_z(é))log| dA(€)

- o)

< Qw

3

similarly we obtain
| 108 g™ €)dA(e) < Qw7 (2),
which give the desired estimates (6.1) and (6.2).
We are left to show the inequality (6.3), namely that
| o8 T rateies @A) < g
Consider the function from [9]
B(s,r) = 4Q+/sr — sr,
this function has the following properties:

1<7rs<Q*=0< B(r,s) <4Q?

1<rs<Q?®=> —d’B > c|dsdr|.
Let us also consider the function b: C - R
b(z) = B(h(z)) = B(w(z),w™'(2)),
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then

0 < b(z2) < c@? and

—Ab(z) > 4Cw(2)w™(2) w(z)llw ()] _ 4Cw(2)w™ (2)a(2).

w(z)w=1(z

This function will take care of the following integral:

/ log 7570 (s>w-l(s)dA( )

< o | a0 08 gy (E)I Al)
= c/D-—Ab S—z 6))10g EdA(g)

— ¢ (b(z) - /T bdm)

< c@?

proving (6.3).

5.3 Shortcut

There is a faster, but less instructive way to obtain the desired result. We use the
dyadic analog and deduce the existence of the corresponding Bellman function. In

[19] it has been proven that

S 1 k)G, Bl < cllwllBglfllullgllo-s.
I

By restricting f and g to J and discarding some positive terms on the left, we can

deduce the following for all dyadic J

5 M = (D lads, = (0)r-| < ellf, TPR) P

IcJ

Again, the reader should note the similarity with our integral:
' ' 1
[ \£(aYllg(aY 10g T-dAG2).
D ||
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Since the above dyadic estimate holds, there exists a function B : D — R where

D={v=(X,Y,s,r,z,y) € RY;: 1 < sr < Q?} so that

veD=>0<B<cQ*VXY (5.7)
and
B() - 5(B(v:) + B(v.)) 2 cle, ~z_|lys — v-| (5.8)

whenever v,v,,v_ € D and v = 1/2(v; + v_). Such a function is
B(X,Y,s,7,2,3) = sup = SO s, — 1)1l o)r, — {o)r|,
W1
where the supremum runs over functions f € L?(w), g € L?(w™!) and weights w € A

with norm |lw||4, = @ so that

<f>J =z, (g>J =Y,
W =8, W hs=r

(ffw)s =X, (g*w™h)s =Y.

The lower bound in (5.7) is clear by definition of B and the upper bound is just
the fact that the dyadic estimate holds. Inequality (5.8) follows by investigating the
relationship between the contributions to the supremum that are made by the right
and left hand sides of the interval J. In fact, for v € D and v,, v_ € D so that
1/2(v4 + v_) = v we have that
) 2 sup 57 Z (F)r, = (Frg)r, — (g)r],
ICJ
where the supremum is taken over the (smaller) set of functions f € L%*(w), g €

L*(w™!) and weights w € A; with norm |[w|l4, = Q so that the averages match:
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(f)Ji =Ty, <g>J¢ = Y+,

("")Ji = S1, (“-’-l>J¢ =T,

<f2w)1¢ = Xy, (92“)_1).& =Y,.

By splitting up the sum and realizing that the supremum does not depend on the

choice of J we obtain (5.8).

To proceed, we are going to need a smooth version of B satisfying the same
estimates. For any compact subset K € D with dist(K, D) > e, consider dilates
P (z) = 1/e8®(z/€) of a smooth bellshaped function ® supported in the unit ball of
RS. Then the convolution B, = B * ®, is smooth and satisfies the same estimates
than B in the set K with different constants not depending on €. So we have the

following size condition on B(v) for all v € K.
0 < B.(v) < cQ*VXY.
The condition (5.8) implies the following estimate for the second differential of B,:
—d’B.(v) > c|dz||dy|. (5.9)

Now let v(2) = (f*w(2),g’w™!(2),w(2),w™(2), f(2),9(2)). The set {v(2) : |2| <

r} is a compact subset of D. Choose € accordingly and consider

be(2) = Be(f*w(2), g°w ™ (2),w(2),w™(2), f(2), 9(2)).

Then applying (5.2) together with (5.9) gives
—Abe(2) = c| f(2)']lg(2)"|-
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Now we are ready to estimate the fourth integral:
! / 1

[ 176yl 1108 -dA)

D |2

= lim / 1) lo(=Y 1og Liae)

r—1 |Z|
1
< 1 —_ J—
< ll_l}}C/rD Ab(2) log |z|dA(Z)

= c(be(O) —clim / bcdm)
r—=1 J.¢

Q@ (| fllllgllo-1)-

IA

5.4 Sharpness of Result

Sharpness can be seen using power weights. We refer the reader to [5] and [13].
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CHAPTER 6

Harmonic Bilinear Imbedding

Theorem

6.1 Statement and Proof

Lemma 6.1 Let a(z) > 0 and w,v be two weights so that 1 < w(2)v(z) < Q2 for

all z €D and
| e og rrmrdate) < Q) (61)
| @) 108 ) < @u(e) (62
and
| atnyatnyotn tog rdam) < @* (63)

Then for f,g >0 € L*(T) we have

/D a(z) f(2)9(z) log T_IdA(z) < @l fllo-1llgllu-s-
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PROOF.
As before, it is more convenient to switch to Young’s inequality. It suffices to show

that

/D a(2)(2)a(z) og 77 IdA( 2) < cQ@(If 121 + lgl2s).

Let us consider the following variables:
X=fv) z=f(z) r=0(2)
Y=g%wl(z) y=9g(2) s=uw(2)

and the following non-harmonic variables

1
M = [ a(e)o(e) o gy [ elmuinetn os g Se A 4AE)

N = [ syl g 5z [ atrtnyv(n) log iz dam) dae)
1
K= /D a(n)v(m)w(n) log r—s dA(n)

We have the natural estimates:

1<rs< Q2
z? < Xr and y? < Ys by Jensen’s inequality
M < Q% and N < Q*s by (6.1), (6.2), (6.3)

K < @Q? by (6.3) .
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Let us consider the following function of nine (!) real variables:
B(X,z,r,Y,y,8, M,N,K) =
B(X,z,r, M)
+ By(Y,y,s,N)
+ B;(X,z,nY,y,s K)

where

2

B,(X,z,m, M) =X —
1( 5T ) r+g;

2
B;(Y,y,s,N) =Y — y ~
3+6:

zls — Z:zygg + y’r

2

B3y(X,z,n,Y,y,s, K) =X +Y —

and, as before, b(z), b1(z), b2(2), b3(z) the corresponding functions on . We discuss

the properties of B.

Derivative estimates:

2
9B, > 1y since N < Q*s

ON ~ 4Q*s?

3_33.> 69;;“ ifbothK§Q2§§andK§Q2§§

0K ~

0 else
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. . 2
By exchanging = and y we only need to consider the case {— > L for the derivative
estimate of B3. Let us point out where B; came from. It was taken from an early

version of (9], where it was written (up to normalization) in the following form

B;(X,z,r,Y,y,8,K) =X +Y —supf(a, X, z,1,Y,y,s, K)
a>0

where
2 2

z y°a

Bla, X,z,7,Y,y,8,K) = .

(, P e I | ,y” ) T aé{ as é{

Let us write K for K/Q?. It has been shown in an early version of [9] that under

the restrictions above

2 1 2
Y yr
aX’ ’ ’},a ) ’K >—" -— f = 6.4
Ble X,2,m Y 0,8, K) 2 =+ 5L for g =L (64)
we will include the proof for the sake of completeness. Let us first observe that
2 2 2 2 2 a2
z ~2:':——aK§—2- and y -Zy——a”le—2
r+aK T T s+alK s s
and hence
2?2 P _z? P
B(a,X,a:,r,Y,y,s,K)27+?—(aK;-5+a ‘K;). (6.5)
The part in parentheses for a = ap = £ is
-z 1xs - y? . (%) g2
ek +ZkL 2@ g <L (6.6)
s TS 2s

s r2  yr
Now we obtain the required estimate from

where (x) uses the assumption

below for B at ay:

N =

® z2 P yz_x+
s 2 T

> = v
S

B(ao, X, z,7,Y,y,8,K)

where (%) uses (6.5) for ao together with (6.6). So taking supremum in the first

variable yields
2 1 y
sup B(a, X, z,1,Y,9, s, K)>-—+ =.
a>0 2s
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Note that ( is continuously differentiable in a for a > 0 and that (3 is close to
"72 for a near 0 and close to V; for very large a. So 3 as a function of a attains its
maximum in (0,00). Testing for critical points yields

2 2
Qg=_ a:K~ + yK. and Qg:O(r:»a:——..—.
Oa (r+aK)? (as+ K)? Oa zs —yK

By the above it is already clear that a,, := lﬁ;‘i’ > 0 and that [ attains its

maximum at this point. We found our Bj by letting a = a,, = 5:%:%. We consider

the one parameter family of functions
B}(X,z,nY,y,8,K) =X +Y - B(a, X, z,r1,Y,y, s, K).

In an early version of [9] the following derivative estimate has been proven:

6B~3 > 2 where Ay = M , (6.7)
0K a=am rs xs — yK
but Bs3(X,z,nY,y,s, K)=B3"(X,z,1,Y,y,s K) so
0B, 0Bj|  fam OB
0K Oa|,_, 0K 0K |,,
Note that %");5- = - %g amay = 0 since B attains its maximum in a,,. We have

the derivative estimate

0By , c zy
0K — Q%rs’

Let us include the proof of (6.7). First observe that according to (6.4) we have

that

2 2 2
z z
4+ —Y _>Z
r+anK s+a;lK T

)

v
S

| =

which implies ;3;7( > !5 and hence s > a,‘nlf( . But since ’—: > ‘V; inequality (6.4)

implies also




~

and similarly we obtain r > a,, K.

Now we are ready to show the estimate in (6.7).

0B  aa? 4 a~ly? > 9 Ty
K (r+aK)? (s+a'K)?~ (r+aK)(s+a'K)

now using r > amI? and s > a;‘f( we obtain the desired estimate.

Size:

We have the following obvious size estimates for B;:

0<B;<X 0<B;<Y 0<B3<X+Y

where 0 < Bj follows from the fact that X — == > 0 and Y —

positive a.
Concavity:
B, and B, are of the form (5.3) so

—-d*B; >0 —d?B,>0.

2

s+a~1K >0 for

Functions B§ are concave for all parameters a, so Bj is, as infimum of a family of

concave functions, concave, so
—d?*B; > 0.

So B is concave.

We turn to the main estimate. The functions B;, B; and Bj; will play their main

roles in different parts of the unit disk. We divide D into three parts

_ : 29(2)u(2)
Al—{ZGD.K(Z)ZQ 4f(z) }

41



A2={zelD>:K() > p{E(2) )(Z())}

A3 =D\ (A1 U A,)

If z € A;, then

(2)v(2)
4f(2)

and similarly, if z € Ay, then

~b(z) 2 el f(2)a(e).

If 2 € A3 then

— Aby(2) > 6B~°’( _AK)

> 52 faga) 898 (Jlz)o(2)

= Q2 a(z)f(2)g(2)-

Since —Ab; 23 > 0 on all of D we have all together
—cQ*Ab(z) > of2)f(2)g(2)
and we are ready to run the Green'’s formula trick:
[ et tela) 108 7 IatA(z)
< cQ2/ —Ab(z) log ﬂdA( 2)
= ¢cQ*(b(0) / bdm)
< QIS5 + Nlglle-).
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