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ABSTRACT

Some Sharp Estimates Involving Hilbert Transform

By

Stefanie Petermichl

We construct the Hilbert transform on R as an average of dyadic operators, al-

lowing us to translate norm estimates to estimates of dyadic type. We are going to

apply this representation to give the sharp dimensional growth of the commutator of

the Hilbert transform with matrix multiplication by a BM0 matrix of size n x n.

The bound is a multiple of logn times the BMO-norm of the matrix. Furthermore

we will apply this representation to give an elegant proof of the fact that H, as an

operator in scalar but weighted L2, is bounded by the cube of the classical A2-norm

of the weight. By the different method of Bellman functions, we show the quadratic

bound for H in terms of invariant A2 and this estimate is sharp.
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CHAPTER 1

Introduction

It has been of interest for a long time to give sharp estimates for the norm of the

Hilbert transform and related operators in BUR). In the present work we look at

the estimates of the Hilbert transform in weighted and/or vector spaces. We restrict

ouselves to the case p = 2.

It will be of great help to reduce various estimates for H to estimates of dyadic

type. We will prove that there is a very nice representation of the Hilbert transform

via averaging operators that we will refer to as dyadic shifts.

Let us start with vector problems. Recently some activity has been focused on

the area of non-commutative weighted estimates. By non-commutative weighted es-

timates we understand, for example, the estimate of the singular integral operators

T, say, the Hilbert transform H, in the space of vector functions with matrix or

operator weights. Let us refer the reader to [16], [17], [8], [18].

The problem of estimating ||T|| L2(W)_,L2(w) is equivalent to estimating

||W1/2TW‘1/2||L2_,L2 which is non-linear in W. But there is a linearized counter-

part, which comes down to estimates of commutators of the form TB -— BT. This

problem is linear in B. It is well known that estimates of commutators of matrix

multiplication with the Hilbert transform yield estimates of Hankel operators.

In the present work we are going to give the estimate from above in terms of the
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dimension n,

”HB — BHHL2(C")—)L2(C") S Clog nllBllBMO (1.1)

We refer to [11]. In [7] it has been proven that there exists an n x n matrix function

B such that

”HB - BH]]L2(C")—->L2(C") 2 C, logn||B||BM0 (1.2)

(the symbol ||B|| 3M0 is defined below), which proves sharpness.

The same idea of averaging can be tried for weighted estimates of the Hilbert

transform and other CZ operators. Now we are in the scalar but weighted situation.

The space considered is L2(w), where w is in A2, the exact class of weights that

allows the Hilbert transform to be bounded.

The question for sharp estimates for the Hilbert transform, the square function

and a uniform bound for martingales on weighted L2 spaces in terms of the A2

constant of the weight has attracted considerable interest in recent years. S. Buckley

in [1] proved that the square function is bounded by ||w||§42 and that the Hilbert

transform is bounded by ||w||f42. More recently, in [5] the quadratic bound for the

square function has been proven. This bound is sharp. An alternative proof can be

found in [19] and [12], where the estimate is found using the lower bound for the

square function, which is linear. The linear lower bound for a harmonic version has

been proven in [2] and independently for the dyadic version in [12]. We prove the

cubic bound for all dyadic shifts and hence the Hilbert transform.

By the different method of Bellman functions we obtained the sharp estimate in

terms of invariant A2, which is the version of A2 using Poisson averages instead of box

averages. The proof uses a nice ‘duality’ between sharp uniform estimates for dyadic

martingales and its continuous analog, the Hilbert transform. The proof includes

an alternative to what is known as bilinear imbedding theorem in [10] involving two
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weights. We establish slightly simpler conditions on the two weights 1) and w for the

imbedding. The function to prove the theorem is

B(X)Y)x3ylr)S?G)H7M’N’K) :

 

I172 y2 $2 y2 $2 y2 $23 — 2333/52. + yzr

7‘ 8 T+-qu 8+6: T+a7 S+'Q-.{ T's-a



CHAPTER 2

The Hilbert Transform and Dyadic

Shift Operators

2.1 Definitions

We will be using a variety of dyadic grids in IR. The standard dyadic grid is the

collection of the following intervals with disjoint interiors : {[2nk, 2"(k+ 1)], n, k E Z}.

The point 0 has the significance to be the only point that does not lie in the interior

of any of the intervals. We call the standard dyadic grid Do'1 and we denote by hg’l

the Haar function for J 6 D04, namely ho’1 = 1/m(XJ_ —- XJ+) where J. is the

left half of J and J+ the right half of J. We obtain a variation of 190'1 by first

shifting the starting point 0 to a 6 IR and secondly choosing intervals of length r - 2"

for positive 1' The resulting grid is called D0". The corresponding Haar functions

ha" are chosen so that they are still normalized in L2. We often omit the indices

a, r in our notations for the Haar functions. The following is an illustration of D0".



 

For f E L2(R) we have

f0?) = Z (f,hr)h1($)-
[Evam

We define a dyadic shift operator III”:

(HI“"f)(x) = 2 (f, h1)(h1_ (17) — ’11,. (53))-

lava-r

The symbol ‘III’ is a cyrillic letter that reads ‘sha’. Its L2 operator norm is \/2 and

its representing kernel is

Ka’r(t,$) : Z h1(t)(h1— (x) _ h1+(.’13)), (2'1)

1613“"

by which we mean that

(,maTf)($)=‘/l; K0,,T‘ (t, xv

for smooth compactly supported f and 1: outside the support of f.

2.2 The Representation of the Kernel via Limits

of Averages

1

The kernel of the Hilbert transform is K(t,a:) = ——Z. Constant multiples of this

function are characterized by the four properties that K only depends on the distance

:r — t, K 5.5 0, the correct degree of homogeneity and antisymmetry. We will pick

the correct averaging process to form such properties from Ka” defined in equation

(2.1).



Lemma 2.1 The convergence of sum (2.1) is uniform for lax—t] Z 6 for every 6 > 0.

For 3:7ét let

1 L 1 R d

K =' —— l' — a” 4.

(t,:r) Ilfi2logL/1/LR1—13602RZRK (t,:r)da7.

The limits exist pointwise and the convergence is bounded for [2: - t| 2 6 for every

6 > 0. K(t, :r) is a nonzero constant multiple of the kernel of the Hilbert transform:

K(t,:r) = if“; for some co > 0.

PROOF.

First note that Va 6 R and Vr > 0:

Z lh1(t)(h1_(x) — hm)» s If—fi-
Ievam — ml

In fact, if [I] < It — as] then h;(t)(h1_ (:13) — h1+(:c)) = 0, so picking no minimal such

that r2"° 2 It —- a:| we get

2 |h1(t)(h1_($) — hI+($))|

16m”.

x

_<_ Z Z Ih,(t)(h._(x)—m.<x)>l
n=no IE’D‘”

|I|=r2"

°°\/§Z—

r2“

n=no

2J5

lt-évl'

 

In particular, the sum converges absolutely and uniformly for [re - t| _>_ 6 for every

6>0. So

1 R

AfifiIRK ’ (t,a:)da

co . 1 R

= 7;. $3051}. [.3 16;? h1(t)(h1_(a:) —- h1+(:c))da

|I|=r2"



by dominated convergence. The limit

R
, 1

,lggo m _R I; h1(t)(hl-($) — hm» da

|I|=r2fl

exists for all fixed r because shifting a certain grid by r2" will result in the same

intervals of that particular length:

2 h1(t)(h,_ (513) —hI+($)) = Z h1(t)(hr-($) —h1+($))-

IE’DQ" [Ego-Hann-

'1[”2" |I|=r2"

The outer limit in L exists for similar reasons. Here the entire grid repeats itself,

i.e. D0” = Da'zk' for any integer It, so Ka" = K“’2" The main point is to show

that K(t, x) = 259;. For this purpose it is enough to prove the following properties of

K(t, 3:):

1. Translation invariance, i.e. K(t,:r) = K(t + c,:l: + c) \7’c E IR, so K(t,;c) =

K(t — :r)

2. Antisymmetry, i.e. K(t,:r) = —K(—t, —:r) , so K(a: — t) = —K(t — :r)

3. Dilation invariance, i.e. K(t,:r) = AK(/\t, Ax) VA > 0

4. K(l) = co > 0

In order to check the first three properties we observe the following simple relation-

ships between the Haar functions of different dyadic grids for translations, reflections

and dilations. For any interval I E ’D°‘" there exists an interval of the same length in

Da‘c” so that h?"(t + c) = h?”°"(t). In a similar sense h?"(—t) = —h,’°‘"(t) when

changing grids from D” to 13—0" and h?"()\t) = A‘l/L’hCIVA’r/AU) when changing

from 'D‘” to ’Da/A‘r/A.



In more detail:

2: h‘,’”(t + c)(h‘;f(a: + c) — h‘;f(x + c)) (2.2)

IeDOfi'

|I|=r2n

= Z h‘}'c”'(t)(h‘;_"c’r(:r) — h‘,’:c"(a:)) VC 6 n.

Jena-cw

|I|=r2"

Z h?"‘<-t>(h?:'<—x) — m-..»
(2,3)

IG‘DOn‘

|I|=r2"

= Z —h;°"<><—h;:”<x) + 22mm»

D—a,r

16'”:an

_Z h—a,(,r )(h-a,r(x) _ h;+a,r(x)).

[ED-'0",r

|I[=r2"

Z h?”<At><h?;”<Ax) waives»
(2,4)

IE'D‘W'

|I|=r2"

= 2 him — a><h9f0x — a) — 22310.2 — a»
16190,r

|I|=r2n

2.1—Z how/A“ _a”W
how/ACE —CY/A)—

hO,T'/)\(:c —a/)\))

AW)r/A

|I|=r/A2"

'1’ Z hi/A’r/A(t)(hi_/A’r/A($)
— hfiA’r/ACCD VA > 0.

leva/AJ/A

|I|=r/»\ 2"



Now we are ready to prove the first three properties.

Proof of translation invariance:

 

K(t+c,:r+c)

. 1 L , 1 R a, d,
—Ill—>Hol<>210gL//LRh-£I<io2_B/RK (t+c,x+c)da-7.—

L

 

a—c,r d?”

Lli—mo210gL 1/LRi’*°°m2R/—‘: K (t’ :r)da—

— lim 1 [L lim —1- R:K“"(t.aa:)d 61—?
_ L—tooZlogL I/LR—too2R -R—

= K(t,:r)

 

by first using (2.2), then a substitution in a and the fact that the modulus of the

integrand is bounded by $43.

Proof of antisymmetry:

K(—t, —:c)

— lim1 fLm1/:Kar(t,—x)dad—-r
_ L—iooZlogL MRI—>002?

lim—1 [Llim —/: —K"°’'(t, 3:) da—dr

L—mo 2logL 1/L R—Enoo 2R

—K(t, x)

 

by applying (2.3) and a substitution in a .



Proof of dilation invariance:

K(At, Ar)

1 L 1 R d
= l ' — a’r l

LflflogL‘A/th—ngo 2R/_R K (At,A:r)da r

1 L

- a/A,r/A d?“

35202logL‘/1/LRi—+oozll2/: K (t :13)da

.1.
A

1 1 L R/A

_ - c,r/A d__7_'

AIll—roo 210gL//LRi—)oo—2R _R/AK (t$)d01

l
A

.1.
A

 

 

 

 

1 “A adr1.
K0,,1' (t,

[41-1330 210gLf/(LA)R->OO1112112]: x)

K(t, x)

by first using (2.4), then a substitution in a, then a substitution in r and the fact

that the integrandlS bounded by M
II-t|

These three properties prove that the kernel we obtain must be K(t, :r) = 7:95.

For our purposes it is essential to know that co # 0.

2.2.1 Proof that K(l) = co > 0

Let us first illustrate h1(t)(h1_(a:) —- h1+ (1.))

 

h1(t)(h1_(a:) — h1+(x)) 75 0 if and only if the point (t, 2:) lies in this square. Its value

is ifi, where the correct sign is indicated inside the smaller rectangles.

10



Let us first compute

7' ' 1 R

max) := 11320 a [_R g): h1<t><m_<x> — h1+<as))da, (2.5)

|I|=r2"

for fixed 7' > 0 and n E Z and assuming t > :13. The picture is the following:

 
The exact location of the squares along the diagonal is influenced by the starting

point a. The picture will repeat for two values of a that differ by an integer multiple

of II| We compute (2.5) in (t,a:) by considering the probability that (t, :2) lies in

any of the squares. Due to the averaging process in a, this is only going to depend

on t — x. We only need to compute for It — xl on the dotted lines:

IL‘

 

If

t — a: = 0 then K;(t,:1:) = 3g + %(— II?) , and similarly

E

t— a: = fiIII then K;(t,:c) = %£

t— a: = %|I| then K;(t,a:) = 0

t— a: = §|I| then K;(t,a:) = —

t-xZ |I| then K;(t,:c)=0.

11



Since K;(t,a:) = K;(t — as) is piecewise linear in t — as, we obtain the following

graph, depending on n and r:

(l

3%?
#-

 

Next we compute

7' 1%. _ a,(r a. .

K (t,:1:):= 1m0022 :'K (,tx)da (26)

First note that

1mm) zzgfl .2?1/: Z h1(t) —,h1+(:c))da (2.7)

1162 1617'"

|I|=r2"

so we compute K'(t, 1:) using K;(t, 11:) defined in equation (2.5) for different values of

n and summing over n e Z. It suffices to compute K'(t, ax) for values t — :1; = %r2"

and t—a: = r2" since the graph is piecewise linear on intervals [2"‘1, %2"] and E2", 2"]

for all n.

For t — :1: = g-TZ" we obtain that

3 If 3f 9f \f2'

 

K (2’2 )= ‘15 + 163: + 6—4-1~2_"(1 +4 + E + ~=> grew (28)

and for t - a: = r2" we get

. .. 3 f \/§

K (7‘2 )16'r_22n( +4+'11_6+” '=) 47-21" (2'9)

Equations (2.8) and (2.9) imply that

3‘5 ‘5 V7" > 0. (2.10)

32(t-$)— K’(t— x)‘<'4(t—x)

The expression in Lemma 2.1IS obtained from K'(t — :13) by a limit of averages in r,

so it is clear from equation (2.10) that co > O. I

12



CHAPTER 3

Application to Hankel Operators

with Matrix Symbol

3.1 Definitions and Statement

We consider vector valued L2 = L§(C”) for n 2 2, i.e., measurable f : IR -+ C" such

that fR(f, f)Cn =: N f”flaw,” < 00. We also consider BMO - matrix functions B of

size n x n with ‘B E BM0’ in the following sense. If B is an n x n matrix function

on IR, we say that B E BM06 if for all e E C", ||e|| denoting its Hilbert space norm,

sgp<lIBe — when?» s allellz. (3.1)

where the supremum is taken over all intervals in IR. The notation ()J means

averaging each entry over J. We say that B E BM0, if B“ E BM0c, meaning

that for all e E (C")*

83P<IICB - e<B)Jll2)J S allellz- (3-2)

We say that B E BMO if B 6 BMOC fl BMO,.. The square root of the best a.

satisfying both (3.1) and (3.2) will be denoted as “B”3M0. Note that this definition

is ‘symmetric’, meaning that B and B“ have the same norm.

13



We are going to prove that the commutator HB — BH , H denoting the Hilbert

transform, as an operator from L§(C") to itself is bounded by a logn multiple of

||B||BM0. To be precise,

Theorem 3.1 There exists C > 0 such that for all B E BM0

IIHB - BHIILg(cn)_.L,2,(cn) S 0 log nllB “BMO-

3.2 The Proof

PROOF.

We estimate ||HB — BH|| by relating it to “1118 — Bill”.

The operators 111“” are norm bounded by J2, so the collection of operators Tfi,

definedby

1 R

Tfisz-Zfilfllll’fda

are, as averages, also norm bounded by \/2. By compactness of the closed unit ball

in 3(L2) in the weak operator topology and the fact that the unit ball is metrizable,

there is a subsequence Tfik such that Tfik converges weakly, which means there exists

’1" with norm S \/2 such that Vf,g E L2 : (Tgkf,g) ——> (T'f,g) as k —> 00. Then

consider

T -fI—> 1 [LT’fd—T
L. 2logL1/L 7".

 

By the same argument there exists a subsequence TLk that converges weakly to a

bounded operator T.

14



Let us show that T is represented by the kernel co/ (t — 2:). Because of bounded

convergence in Lemma 2.1, we have for f, g compactly supported with disjoint sup-

ports,

(Tfig)

: klino(Tkaig)

1 L" d

= lim —/ Tr , l

k—roo210g(Lk) 1/L,.( f9) 7'

- 1 Lk 1 R1 ar d?”

- ham/M; 312.2121,” 159”“?

Li: 1 R1 01' d?"

(/f(t) lim—— lim— K ’ (t, :13) da Tdt , g)
k—>oo log1(Lk)121/Lk l—+oo 2R-_l

com]: 9.) ,

By [15] (p. 33) there exists a bounded measurable function a such that Tf(1:) =

con(a:) + a.(x)f(:1:) (i.e., hence co(HB — BH)f = (TB — BT)f. By convexity

||TB — ET” 3 sup” ||IH°"B — Bmwu. So we are left to estimate the commutators

with 1.11“” uniformly. We show that for all 01 E R and for all r > 0

“1110MB - Bma’|IL§(C")—>L§ (on) < 0108 "HBIIBMO (3-3)

In the following a, 1' will be omitted because all estimates do not depend on the

dyadic grid. It suffices to consider f E ’D(R) only, because the estimates do not

depend on the support of f. First let us decompose the product Bf, at least for

‘almost compactly supported’ B in the sense that B differs from a compactly sup-

ported function only by an additive constant. Note that for any such BM0 matrix

function, the sum

Ba) = [(3, h;)h1(:c) (3.4)

1619

is meaningful, in the sense that it converges unconditionally to an L2 function. The

reason is that coefficients of constant functions vanish, so (3.4) ignores constants and

15



treats our B like a compactly supported one, whose entries are in L2. For our vector

function f we have

f(w) = EU. haw). (3.5)

IED

By multiplying the sums (3.4) and (3.5) formally one gets

Bf = AB(f) + HB(f) + RBU),

where

Ago) = 209, hm, hm,

16D

HBU) = 2(B,hi)<f>1 In.

160

RB(f) = 2(B)1(f,h1)h1.

IE’D

The formal multiplication is meaningful due to our assumptions on f and B.

Hence SB — BS = SAB — ABS + $113 — HES + SR3 — RES and we can estimate

the terms separately for our special class of B.

By [9] and [6]

llHBl|L§(Cn)—>L§(cn) S Clog nHBHBMOa

where C does not depend on n. The proof in [9] is by a Bellman function construction,

whereas the independent proof in [6] is by a stopping time procedure.

For the part involving AB, note that A}; = HB-. So

“AB“ S ClOSTIIIEIIBMo = ClognllBHBMo,

so the parts involving I13 and A3 are bounded by fiC log n||B|| 3Mo-

16



We estimate the last term as commutator:

IHRBf — Remf

= Z<B>(f, huh, — 2(8>(f,hz)h1_ +

I

23B>(f hi))-h1+ [(8)1415 ham.

2-Z((B —_(B>1 )(f,hz)(h1_ — m.

So it suffices to show that

||((B)1+ -<13>1_)€||2 S C||B||23Mo llell2 V6 6 C"

with C independent of n. In fact,

l|((B)z+ - (3)1.)ell2

= 4H((B>I-(B>-e>u2

= 4ll-I-—I_I/_<B((B>1—t)))edtll"’

I——,_I/_(I((B>BI—(newt

(178/, ((((B>I —- Bowen? dt

S 8||Bll2amolle||2-

I
A

|
/
\

Now we pass from our ‘almost compactly supported’ B to general B E BM0.

For fixed B we consider the sequence of intervals 1,, = [—k, k]. We can construct

Bk so that Bk = B on 1],, Bk = (B) [k outside the interval concentric with 1,, and

three times its length and furthermore, “BkHBMO S cIIBIIBMo with c independent

of k. A suggestion for such a construction can be found in [3] (p.269). So the family

of operators IIIB,c — 81,111 is uniformly bounded in L2, by C log n||B|| 3M0. Hence

by a weak compactness argument, the operator IIIB — BHI is bounded by the same

norm, which gives us the estimate for general B, finishing the proof of inequality

(3.3). I

17



3.3 Sharpness of Result

In [7] it has been proven that there exists an n x n matrix function B such that

HHB — BHHL2(C")->L2(C") 2 0' log nllBHBMO (3-6)

which shows that the estimate in terms of logn is sharp. We would like to point

out that the same averaging technique has been used to obtain the lower bounds for

paraproduct operators and hence for Carleson imbedding theorem using the lower

bounds for commutators. The proofs can be found in [7]. As a consequence, the log n

upper bounds for paraproducts and Carleson imbedding theorem are sharp.
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CHAPTER. 4

The Cubic Bound for the Hilbert

Transform

4.1 Definitions and Statement

1
ICC, whereWe are now in scalar but weighted situation. We consider weights (.0 E L

w 6 A2 with norm

“LUNA; = Slip (w)1(w“1)1,

where the supremum runs over all intervals. We also consider a dyadic version, Ag,

where the supremum runs over dyadic intervals only. So the norm ||w|| Ag may depend

on the choice of the dyadic grid. We are concerned with weighted L2 spaces, denoted

by L§(w), containing functions so that [I f “E, := In | f |2w < 00. Our main theorem in

this chapter is the following:

Theorem 4.1 H : Lid”) —> Lfi(w) has operator norm ”H” S cllwlliz.

We will reduce the problem to upper and lower bounds of certain square functions,

using averaging technique from chapter 2. The square function 5' is defined by
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Sf(t) = \//2 |(Tef)(t)l2d5 = l/ZI: |(f,hz)|22(IIT(It2

where 2 denotes the space {-1, 1}” provided with the natural measure (16 which

assigns equal measure 2"“ to every cylindrical subset of {—1,1}D of length 2" and

T5 is the martingale transform

T. = f e Eamon ham
I

associated with the sequence 6(1) 6 {—1,1}D. The following has been proven in [2]

(in a harmonic version) and independently in [12]:

Theorem 4.2 There exists c > 0 such that for all f E L2(w)

llfllw S cllwllAgHSwa-

In [5] the sharp upper bound has been proven:

Theorem 4.3 There exists c > 0 such that for all f E L2(w)

“‘8wa S CIIWIliallfllw.
2

Both [19] and [12] contain a proof of the fact that the quadratic upper bound

follows from the linear lower bound, which implies that the lower bound is sharp as

well.

4.2 The Proof

We will give a short and elegant proof of Theorem 4.1. It was found together with

Sandra Pott.

As seen in Chapter 2, H lies in the closed convex hull of dyadic shift operators.

The square function does not ‘see’ the dyadic shift:
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Proposition 4.4 (SIIIf)(x) = x/2(Sf)(x) for all x.

PROOF.

3mm»?

= / ((T.mf>(a:)(2de

= / (2134001112 hawnzde

A l Z(f,h1)(6(I—)h1_ — €(I+)h1+)|2d€
I

(L) x 2
— 2 f2 |;8(I)(f,h1)hz( )lde

= 2Sf(x)2

where (*) is an effect of the averaging over sequences of signs 5(1) and the fact

that for each fixed x there exists a sequence of signs 5(1) so that we have for all 1:

fihzfiv) = 5(1)(€(1—)hz_ - 6(1+)ht+)(-B)- I

Now it is easy to prove Theorem 4.1:

PROOF.

Dyadic shifts with respect to all translates and dilates of the standard dyadic grid

have cubic bound, indeed

a (1) r (2) (3)

“HI ’ero < CllwllAgamHSIHa’ fllw = CllwllAgamHSfHo < Cllwlligwllfllo

where (1) is by Theorem 4.2, the lower bound for the square function, (2) by Propo-

sition 4.4, the fact that the square function does not see the dyadic shift and (3) by

Corollary 4.3, the upper bound for the square function. By convexity, as before, we

Obtain the desired bound for the Hilbert transform:

IIHHL2(w)—)L2(w) S CSIIp Ilma’rllL2(w)—*L2(W) S CSIIp “w“:ga’r S Cllwuiz.

c,r c,r

I
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CHAPTER 5

A Sharp Bound for Weighted

Hilbert Transform

5.1 Definitions and Statement

In this section, it is more convenient to work on the unit circle '1‘. We consider the

space L?r(w) where, as before, w is a positive L1 function, called a weight. Let m be

normalized Lebesgue measure on '11‘. The norm of f E L%(w) is (f1. I flzwdmr/2 and

denoted by N f llw. We are, as before, concerned with a special class of weights, called

A2. We say (.0 6 A2 if

(MIA. == sgp (w>1<w’1>1 < oo

where the supremum is taken over all dyadic subarcs I C '11‘. The notation (no);

means the average of the function w over I . We also consider a version of A2 that is

invariant under MObius transforms, called A2,,nv. A weight w 6 A2,,“ if

“th... == sup mow-1(2) < oo
26!)

where (0(2) denotes the harmonic extension of 4.), so w(z) = f w(t)Pz(t)dm(t), where

Pz(t) = Ill—jg); Note that in general w'1(z) and (.4)(.z)‘1 have different meaning.
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The first expression means taking the harmonic extension of the reciprocal of w, the

second one means taking the reciprocal of the harmonic extension of w. Observe that

w(z)w‘1(z) Z 1 by Jensen’s inequality, so "(all/42‘,“ > 1. In [4] it has been proven

that the exact sharp relationship between the two different A2 norms is as follows:

CllleAa _<. llwlle,.-... S 02IIWIlf42-

In particular, to 6 A2 if and only if w 6 Ann”.

In what follows, H stands for Hilbert transform on the circle '1‘. H acts on

trigonometric polynomials as follows:

H(2 akew") = —iZ akewk + iZ akeio".

1:20 k<0

Let Ho be the Operator H + iPo where Po : f v—-> f(0)

Theorem 5.1 H : L%~(w) —> L%(w) has operator norm “H“ S cllwllfag’m.

Note again, that in our notation “WW/12,4“ = supzen w(z)w"1(z).

5.2 Proof

||P0|| L2(w)_, 1.20.1) g ||w||A2Im. Indeed, applying Jensen’s inequality we obtain

||Po(f)||.2o = If(0)I2w(0) S (|fl2w)(0) w'1(0)W(0) S llwllig,....||f||3- As ”H” S

”Hall + ”Poll and “WM/12...... 2 1 it suffices to show that “Ho“ 3 cllwllizm. We

estimate ||H0||L%(w)—+L%(w) by duality. Since (Ho tf, g/t) = (Hof, 9), it is enough to

Show that |(Hof,9)| S cllwlliah...(llfllfi + Halli-1) for all f 6 Lila!) and 9 E L-iW")

(just use t = \/||g||w-1/||f||w if f 76 0). It suffices to consider real valued and non-

 

negative functions f and 9. By polarizing [3] (p. 236) we have

[f(Hof — Hof(0))(9 — g<0>>dm = % f(VHof)(Vg) log iii/1(2).
lzl
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Due to Hof(0) = O the left hand side equals (Hof, 9). Since IVHOf | = [Vf l we get

|(Hof,g)| _<. 511; [D IVfIIVgllog
1

lzl

dA(z).

Note that for f real valued, |Vf I = 2|(9f/az|. We will write f(z)’ for the holo-

morphic function (9f/Bz.

We split the integral into four parts. One can see that

[D lf(z)’l|g(z)’llog

/ |f(z)||g(2)|
D

+ flf(2)ng(2)l

+ /|f(z)llg(z)|

+ (mange)

   

 

 

 

 

   

  

   

 

I—iIdA(2)s

f(Z)’_w‘1(z)’ g(2)’_w(2)' 0 i z

1(2) 24(2) 4(2) 2(2) lglzldA(’

24(2) g(2)’_w(2)' 0 _1_ z

24(2) 4(2) 2(2) lngldA()

2(2) f(Z)’_w“(z)’ 0 i z

2(2) 1(2) w-1(2)’gl2("A(’
w‘1(z)’ w(z)’ i z

24(2) 2(2) longldA( "    

The first integral can be controlled in the same way as done in [9], in fact, the

proofs are identical. For the second and third integral we need to proceed in two

steps. Again, we want tO use the same proof as in [9], but in order to do that we need

to have an estimate for a certain Green’s potential function involving the weight. But

there is a dyadic analog for this estimate, which showed up in the proof for sharp

bounds for the dyadic square function in L2(w) and was proven by Bellman function

technique ( see [5]). We will use the same Bellman function to obtain estimates for the

Green’s potential. The fourth integral requires what is known as bilinear harmonic

imbedding theorem. The appropriate Bellman function was constructed with help

from [9]. We give an explicit expression for the function. The imbedding conditions

are again certain Green’s potentials. We find the appropriate bounds using Bellman

functions found in [9] and [19].
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Before we start to estimate the four integrals we need the following lemma to relate

Laplacians to second differentials:

Lemma 5.2 If b(z) = B(h(z)) where h = (fi), : C ——) IR” and B : 1R" ——) IR with B

and h sufficiently smooth, then

Ab(z) = 4 (423(h(2)) (63?), (if) ) + 4(VB)(h(z)) (:3;)1. (5.1)

1

  

In particular, if all f,- are harmonic, then

0 i 0 ,-A.(.)=.(2B(h(.»(6:),(39) (5.2)

PROOF.

 

By elementary computation. I

We will be using the appropriate Bellman functions to bound all integrals. Each

variable carries meaning, usually harmonic extensions of functions or Green’s poten-

tials for some fixed .2. The following variables show up frequently:

X = f2w(z) Y = 92w‘1(2)

If we assume f, g to be real and nonnegative, all variables will be nonnegative.

Furthermore we have the following natural estimates:

1 3 rs S Q2 if we write Q for ”(dummy (5.3)

x2 S Xr and y2 3 Y3 because of Jensen’s inequality. (5.4)

These restrictions give a natural domain of our Bellman functions.
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5.2.1 The First Integral

Consider the following function of six real variables

$2 312

B(X,£L',T,Y,y,3) : X — T +Y _ —S-

then we get the following size estimate within the natural domain of B:

OSBSX+Y.

and by direct computation of the second differential we get

$2

—d2B=—$—

7‘

dy ds2

y 8

dx dr2

LE 7'

+2312

3    

(5.5)

Also consider the function b : (C —+ R

5(2) = 3(11(2)) = B(f2w(2),f(z),w'1(2),92w’1(2),9(2),w(2)),

then we obtain the following estimate for —Ab(z) using (5.2) and (5.5)

   

    

 
 

    

   

—Ab(z)

8f|f(z)|’1(2) _24(2)'2 (4(2))? g(2)’_2(2)'2

824(2) (2) 24(2) 2(2) 9(2) 2(2)

If(2)g(2)( f(z)’_w“1(z)’ 4(2) _2(_2_)_'

2 16 w‘1(z)w(z) f(z) 224(2) 9(2) 2(2)

If(2)g(2)| 1(2) _ 24(2) 9(2) _ 2(2)’

2 16 c2 f(2) 24(2) 4(2) 2(2)‘    

integral:

1

log Ian/1(2)

We use the above estimate for —Ab(z) and Green’s formula to estimate the first

f((2__)_' _w”(2)’ 9(Z)’ _ w(2)’

1W) f(z) 24(2) 4(2) 2(2)

_<cu2u2....Zif—-(Ab(2)104fid2422)

= Cllwlle,.-... (12(0) — [T bdm)

S Cllw||42,.-...(llf||3 + Halli—1)-
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The last step uses that b :—: 0 on T and that the size estimate B S X + Y means

12(0) _<_ IIfIIE. + Halli—1-

5.2.2 The Second and the Third Integral

The second and the third integral are analogous, so let us only prove the estimate for

the second one.

We consider the function from [5]

4 4

BO", 8) = “—73— — T3 ‘1' 4Q4 + 1),

this function has the following properties:

ISrsSQ2=>OSB(r,s) ScQ4r,

1 _<_ rs S Q2 => —dZB Z Cs(dr)2.

Let us also consider the function b : C —-) R

b(Z) = B(11(2)) = B(w’1(2),w(z)),

0 S b(z) S cQ4w"(z) and — Ab(z) Z cw(z)|w—1(z)’|2.

This function will help us to estimate the following Green’s potential:

GUM1 'lzw)(2)

_ _1__ —1 I 2

— / log I s.(4)I"" (o I 2(e)dA(<)

1

s c [D —Ab(4)ammo

(:2 _ .1.— 2]” Ab(S—z(£))10gI€IdA(€)

= b - bd

.( <4 f. m)
s cQ4w'1(Z),
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where 33(5) = £15? In (*) we just did a change of variables 5 1—) S_z(£) ( note that

the symbol A carries the variable as well). Hence we proved that

C(lw‘1’lzw)(z) S Cllwll‘342,,,,w"(2)

and analogously

G(lw'l2w"1)(z) S Cllwlliz.,,.w(z)-

The reader should note the similarity between the estimate for the Green’s poten-

tial and its dyadic analog found in [5]

I—j—IZ I(2)z. — <w>z_|’<w">z|1| s 224(2)»
ICJ

Functions of similar form as discussed in the proposition below will appear fre-

quently. We take care of their concavity.

Proposition 5.3 Functions of the form

$2

y+z

 

f(waxi 31,2) z w _ (56)

with y > 0 and 2 Z 0 are concave.

PROOF. The matrix

{00 0 0)

0 _2_ —2x —2x

_d2f = y+z (14+sz (y+z)"’

0 -2x 2::2 2x2

(y+z)’ (y+2)3 (2+2)3

-2 2x2 222

K 0 (2+5)? (IMP (y+2)3 /

is positive semidefinite. I
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Let us introduce a new variable

0 = G(lw’1 ’lzw)(2)-

Now we are ready to steal from [9] the Bellman function used to prove weighted

dyadic imbedding theorem. We let

 B(X,x,r,G,Y,y,s)=X— G +Y——

r

B is, as a sum of two functions of the form discussed in Proposition 5.3, concave.

Consider

W) = B(11(2)) = B(f2w(2),f(2),w"(2), GUM1 'lgw)(2),92w"(z),w(2))

We will have to estimate —Ab(z) from below. We use equation (5.1) to estimate

the part involving X, x, r, G, where the concavity of B allows us to drop the part

involving the second differential. We only need to consider partial derivative in the

‘non—harmonic variable’ G. Note that —AG’(|w‘1 ’|2w) = [of1 ’l2w. We use (5.2) and

(5.5) for the part involving Y, 3;, s.

 
 

  

 
 

  

 

  

 

—Ab(z)

2 ‘24 (2f1(8::3Fg(It-ITZE)(»))”835(2)) 9412))" 2:) 2

Z CQM’(24($(:)2343(I:|—23(I:32)(2))2+0272): 21—3-38?
2 CQ_4f(z)2|:::E:);l’w(2) +c%_ %_ ago

2 co2|f(z)g(Z) “5:18 2):) it)    

Now we use Green’s formula, the fact that b _>_ O on T and b(0) S Ilfllf, + Ilgllffl
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to estimate the second integral:

:‘1(z)’9(2)’ w(2)’
flf(2)IIg(2)I () 9(2) 2(2)

—1-dA(z)s cllwll’ / —Ab(2)log
n lzl

_<_ Cllwll2(llf||3 + Halli—1).

  

    

1

log mdA(z)

5.2.3 The Fourth Integral

We will apply Lemma 6.1, the harmonic bilinear imbedding theorem whose statement

and proof can be found in chapter 6. We apply it for the weights w and v = w“

with ||w|| Ann” = Q and, up to a normalization constant not depending on Q,

|w(Z)'||w'l(Z)|

w(z)w‘1(z) °

We need to prove the imbedding condition inequalities (6.1), (6.2) and (6.3). We

 (1(2) =

first turn to (6.1):

Consider the function from [19]

2

B(s, r)—- s(—% - 2% + 4Q2 + 1),

this function has the following properties:

lsrsSQ2:0£B(r,s)Scst

dsdr

sr °

lsrsSQ2=>—d2BZC's
 

  

Let us also consider the function b : C —> R

11(2) = B(h(Z)) = B(w(2),w‘1(2)),

then

0 S b(z) S cQ2w(z) and
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—Ab(z) > 40w(7.)IwW<)’||w‘1 (2)" = 4Cw(z)a(z).

w(2)w“(z)

 

This function will help us to estimate the following integral:

/124—IS(Olaae(e)2(4)dA(4)
1,

g / —Ab()£ logI—gzITIIdAc)

= /_—Ab(S'_z(€))logI—421(4)

=(2I2)
_<_CQw

6|

similarly we obtain

1

lo ——a 5 (fl 5 dAE S csz"1z,fogISzIIIIu () () ()

which give the desired estimates (6.1) and (6.2).

We are left to show the inequality (6.3), namely that

/ log IS—I—III2(4)2(4)2(024(2) 3 co .

Consider the function from [9]

B(s, r) = 4Q\/s7 — sr,

this function has the following properties:

lgrssQ2=>OSB(r,s)S4Q2

1 3 rs S Q2 => —dQB Z c|dsdr|.

Let us also consider the function b : C —) IR

5(2) = 3072(2)) = B(W(Z),w"(2)),
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then

0 s 13(2) 3 CQ2 and

—Ab(z) 2 wimp-1(2) 'WYHWWI = 4Cw(z)w_l(z)oz(z).

w(z)w‘1(2)

 

This function will take care of the following integral:

/log—ISI“), 2()2(:)2- (924(5)

1

g 0/0 —Ab(£))log Mama)

2 CA—Ab(S—z(€))10g

= c (be) — [T bdm)

Q2

proving (6.3).

1

“lad/1K)

5.3 Shortcut

There is a faster, but less instructive way to obtain the desired result. We use the

dyadic analog and deduce the existence of the corresponding Bellman function. In

[19] it has been proven that

Z |(f:h1)||(9,h1)| s Cllwllizllfllwllgllw—x.

I

By restricting f and g to J and discarding some positive terms on the left, we can

deduce the following for all dyadic J

 

.7.ZIIH<f mm> —(g)1_( s cllwlli,x/(f22)1(g22-1>J.

ICJ

Again, the reader should note the similarity with our integral:

I I 1

If (Z) “9(2) llog -dA(Z)-
n lzl
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Since the above dyadic estimate holds, there exists a function B : D -—> IR where

D: {v= (X,Y,s,r,:c,y) ERgo: 1 S STS Q2} so that

vED=>OSB_<_cQ2\/)TI7 (5.7)

and

8(2) — $092.) + 8(2)) 2 212+ — any. — y-) (5.8)

whenever 22, 22+, (1. E D and v = 1/2(v+ + 2)-). Such a function is

B(X.Y,s,.:=2,y)—sup—n: |I||<f f>gz_||<) —<g>z-l,
lch

where the supremum runs over functions f E L2(w), g E L2 (w‘l) and weights (0 6 A2

with norm ”cull/12 = Q so that

(f)J = 517, (9).! = y,

(00h = 3, (w’lh = 7‘,

(fzwh = X, (gzw'llJ = Y-

The lower bound in (5.7) is clear by definition of B and the upper bound is just

the fact that the dyadic estimate holds. Inequality (5.8) follows by investigating the

relationship between the contributions to the supremum that are made by the right

and left hand sides of the interval J. In fact, for v E D and v+, v- E D so that

1/2(v+ + v-) = v we have that

zl—supWEN”) mm> —<g))_(,
lch

where the supremum is taken over the (smaller) set of functions f E L2 (w), 9 €

L2(w"1) and weights w 6 A2 with norm ||w|| A, = Q so that the averages match:
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<f>Ji : xi) <g>Ji = yia

<W>Ji = 3i: (w—llJi = Ti,

<f2w)Ji = Xi, (922-1)). = Yi-

By splitting up the sum and realizing that the supremum does not depend on the

choice of J we obtain (5.8).

To proceed, we are going to need a smooth version of B satisfying the same

estimates. For any compact subset K E D with dist(K, DC) > 5, consider dilates

(1)6(33) = 1/66<I>(:r/6) of a smooth bellshaped function <I> supported in the unit ball of

R6. Then the convolution B5 = B * (be is smooth and satisfies the same estimates

than B in the set K with different constants not depending on 6. So we have the

following size condition on Bc(v) for all 1) E K.

o s 36(2) 3 csz.

The condition (5.8) implies the following estimate for the second differential of Be:

—d23£(v) Z cldxlldyl. (5.9)

NOW let 2(2) = (f2w(z),g2w‘l(z),w(2),224(2),f(Z),9(Z)). The set {11(3) = IZI S

r} is a compact subset of D. Choose 6 accordingly and consider

b.(2) = Be(f2w(2),92w’1(2),w(2),w"1(2), f(2), 9(2)).

Then applying (5.2) together with (5.9) gives

-Abe(2) Z C|f(2)'||9(2)'|-

34



Now we are ready to estimate the fourth integral:

[D |f(z)’||g(z)’llog int/1(2)
IZI

- I I 1

— hm f... (f(z) llg(z) (log -dA(z)
r—>l '2'

_<_ limc/ —-Ab£(z)log-—1-dA(z)

rD
r-)1 '2'

= 6(1),,(0) — clim / bcdm)
r—+l rT

CQ2(|lf||2||9||2-1)-|
/
\

5.4 Sharpness of Result

Sharpness can be seen using power weights. We refer the reader to [5] and [13].
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CHAPTER 6

Harmonic Bilinear Imbedding

Theorem

6.1 Statement and Proof

Lemma 6.1 Let a(z) Z O and w,v be two weights so that 1 S w(z)v(z) S Q2 for

all z E D and

/ a(5)2(5) 122—IS(5)) 24(5) s 222(2) (21)

[D 2(5)2(5)1ogI1(5)) 24(5) s 2222(2) (22)

and

[D a(n)w(n)v(n) 125 @222) s 222. (6.3)

Then for f, g 2 0 E L2('Il‘) we have

foawe)g(zz)1ogI—I_2A(z)< cQ2||f||v1||gHw-1.
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PROOF.

As before, it is more convenient to switch to Young’s inequality. It suffices to show

that

A2(z)f(z)g(z)1ogI:IdA(z) s cQ2(|lf||3-1 + Ilglli-1).

Let us consider the following variables:

X = f2v“1(z) a: = f(z) 'r = v(z)

Y=92w“1(2) y =9(z) s =w(2)

and the following non-harmonic variables

1

M: f‘w" 10g(£)I/IS )log)ldA(n)|S5( 24(5)

N— [2(02 )1|__°g1()/(€)la(n)w()1m51°gl—_ln)|dA(n)21(5)

1

K: /a(17)v(77)w(77)510gI'——InIIdAOI)

We have the natural estimates:

13733622

2:2 S Xr and y2 S Y3 by Jensen’s inequality

M S Q47“ and N S Q43 by (6.1), (6.2), (6.3)

K S Q2 by (6.3) .
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Let us consider the following function of nine (l) real variables:

B(X,x,r,Y,y,s,M,N,K) =

Bl(X, 33,1‘, M)

+ Bg(Y,y,s, N)

+ B3(X, x, r, Y, y, s, K)

where

$2

B X, ,,M =X—

1( :cr ) r+$§

 

2

B2(YayaSaN)=Y_ yN

8+6?

 

9:23 — 2x313; + y2r

2
Bg(X,x,r,Y,y,s,K) =X+Y— 

and, as before, b(z), b1(z), b2(z), b3(z) the corresponding functions on ID. We discuss

the properties of B.

Derivative estimates:

2

63—le 2 47124:; since M S Q47"

632 > 1 y2

EV— _ 4724-55—2 since N S Q43

1‘8

033 3‘35}! if both K S 622% and K S Q23

0 else
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By exchanging a: and y we only need to consider the case {— 2 y;- for the derivative

estimate of Ba. Let us point out where 3;; came from. It was taken from an early

version of [9], where it was written (up to normalization) in the following form:

B3(X,x3r,Y’y’s,K) =X+Y—Supfl(a,X’x)r3Ky,S’K)

aZO

where

2:2 y2a

aaxaxarax ,8,K = _—

m y ) r+agg as+g§

 

Let us write R for K/Q2. It has been shown in an early version of [9] that under

the restrictions above

2

18(a’X)$)T)Y,y)s)K) Z x

2

+ E’— for 00:91; (6.4)
3 CBS[

\
D
I
r
-
a

’l‘

we will include the proof for the sake of completeness. Let us first observe that

 

2 2 ~ 2 2 ~ 2

a: .. Zi—aKE-z— and ——-y——1—~—>g-—a’1K&2-

r+aK 1' 7' s+a-1K s s

andhence

x2 yz ~$2 _ ~y2

fi(a,X,x,r,Y,y,s,K)ZT+:-(aK-fi+a le—i)‘ (6.5)

The part in parentheses for a = a0 = g is

where (2:) uses the assumption R _<_ 1%. Now we obtain the required estimate from

below for 6 at a0:

V

t
o

[
O

(*

a(ao,X. 33,73 Y. y. s, K) 2 3:— + m 313
SN

I
H

y_2 _

s r

where (2:) uses (6.5) for a0 together with (6.6). So taking supremum in the first

variable yields

$2

supfl(a,,,,X:crY,y,s, K)>—+1y2.

a>0 28

39



Note that 6 is continuously differentiable in a for a > 0 and that [3 is close to

5r: for a near 0 and close to ”:2 for very large a. 80 6 as a function of a attains its

maximum in (0,00). Testing for critical points yields

2" 2" _ ~

Qéz— 3K. + yK~ and a—B=O<=>a=yr—£I—:.

30 (r-l-aK)2 (as+K)2 00 xs—yK

By the above it is already clear that am := 3333; > O and that 6 attains its

maximum at this point. We found our B3 by letting a = am —— m1; We consider
zs—yK

the one parameter family of functions

B§(X,a:,r,Y,y,s,K) :2 X + Y -— fi(a,X,a:,r,Y,y,s,K).

In an early version of [9] the following derivative estimate has been proven:

aBg
 

 

  

 

.. Z cay- where am =M , (6.7)

6K a=am 7‘3 $3 — yK

but B3(X,:c,r,Y,y, s, K) = B§m(X,:c,r,Y,y, s, K) so

923. _ BB? . 22m. + 03:?
6}? 0a 0:0,“ 01? 61? 0:0," .

Note that 6755- = -— gg— a=am = 0 since 6 attains its maximum in am. We have

 

the derivative estimate

999. :2
6K _ers'

Let us include the proof of (6.7). First observe that according to (6.4) we have

that

$2 212 2

a

x

Z 3

N
l
i
—
I

+

2

_ y_

7' 8

——.. + ———7

r + amK s + ,‘an

. . . 2 2 _1 ~ . 2

Wthh implies Eff—I? 2 32’; and hence s 2 am K. But smce $7 _>_ 3’; inequality (6.4)

implies also



~

and similarly we obtain 1' Z amK .

Now we are ready to show the estimate in (6.7).

.. — .. + .. .. ..

6K (7‘+aK)2 (3+a‘1K)2_ (r+aK)(s+a—1K)

 

68; (1:1:2 a‘ly2 > my
   

now using 1' Z amff and s 2 (1,7111? we obtain the desired estimate.

Size:

We have the following obvious size estimates for Bi:

OSBISX OSB2_<_Y OSBgSX+Y

 

where 0 _<_ 83 follows from the fact that X — mix 2 O and Y — Elli—11? Z 0 for

positive a.

Concavity:

BI and 82 are of the form (5.3) so

—d2B1 2 0 — 01ng _>_ 0.

Functions B; are concave for all parameters a, so B3 is, as infimum of a family of

concave functions, concave, so

—d2Bg 2 0.

So B is concave.

We turn to the main estimate. The functions B1, 82 and B3 will play their main

roles in different parts of the unit disk. We divide ID into three parts

A1={z€D;
K(Z)2Q2%

}
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A2 = {z E 11);K() szf+:()2)}

A3=1D>\(A1LJA2)

If 2 6 A1, then

 

fla<z>v<z>229fifj§> 

 

and similarly, if z 6 A2, then

 —Ab2(z)> 16162201(2)f(2)gz921)

If 2 E A3 then

633

—Ab3(Z)_>-——-——K—-—-(AK)

0 f(2)9(z)
2 Q?T—wz)vIz)a(2)w(2)v(Z)

= @361a»2'(2)f(Z)g()-

Since —Ab1,2,3 2 O on all of II) we have all together

-CQ2Ab(2) Z a(Z)f(Z)9(Z)

and we are ready to run the Green’s formula trick:

[0 a<z)f(z)g<z)logI—1—IdAl<z)

3 co? f” —Ab(z) log Ham2)

= cQ2(b(O) — fr)bdm)

.<_ 6Q2(||f||3—1 +llglli-1)-
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