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ABSTRACT

Novel Detection Methods for Functional Magnetic

Resonance Imaging

By

Fangyuan Nan

This dissertation considers the detection problem in functional magnetic resonance

imaging (fMRI), i.e., to determine which parts of the brain show active response to

some stimulus. Some basic magnetic resonance imaging and fMRI background is

introduced in the beginning. The underlying principle is that subtle variations in the

image intensity over time can be detected to reveal brain activity.

The detection problem is first attacked on a pixel by pixel basis. A new nonlinear

detector for MRI based on Generalized Likelihood Ratio Test (GLRT) is systemat-

ically studied. Theoretical analysis and Monte Carlo simulation are used to explore

the performance of the new detector. At relatively low baseline signal intensities, I

the GLRT detector outperforms both the conventionally used magnitude correlation

(MC) detector and the newly proposed complex correlation (CC) test. At high base-

line signal intensities, the nonlinear GLRT performs as well as the standard MC test

and significantly better than the CC test.

fMRI signals are actually both temporally and spatially dependent. Pixel-wise



detection, however, considers only temporal correlation information and ignores. spa-

tial correlation information. In order to remedy this deficiency, the dissertation then

uses a multi-scale image segmentation algorithm to first segment an MRI correla-

tion image into several regions, each with homogeneous statistical behavior. A single

pixel detection algorithm is then applied to each homogeneous region. Extensive

simulations demonstrate the efficacy of the new method.
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CHAPTER 1

Introduction

No matter how advanced the computer is, it is still no match for the

human brain, which to this day remains an unfathomable enigma.

Li Hongzhi, Zhuan Falun

Magnetic resonance imaging (MRI) is a powerful diagnostic imaging technique

based on the principle of nuclear magnetic resonance (NMR), describing the interac-

tion of nuclei and magnetic fields [31]. A block diagram of an MRI system is shown in

Figure (1.1), adapted from [31] and [39]. It is a very complicated system, embracing

many aspects of electrical engineering. The patient serves both as a transmitter and

as a receiver.

There are three types of magnetic fields in an MRI system [39, 67]. A static and

very strong magnetic field is generated by huge superconducting magnets. A much

weaker pulsing radio frequency field is employed to generate MR signals. Three sets of

orthogonal gradient fields are used for imaging purposes, i.e., to spatially resolve the

patient’s small structures to form an image. Although other imaging methods such

as projection methods do exist, the current trend for MR imaging is to use Fourier

inversion. The first set of gradient pulses uses linear changes in field strength to

localize a region of interest in the subject’s body to be imaged— “slice selection”.

-
g
.
‘



The second set of gradient pulses employs linear changes in frequency to distinguish

columns in an image —- “frequency encoding”. The third set of gradient pulses

utilizes linear changes in phase to distinguish the rows 7“ “phase encoding” [39, 12].

While traditional MRI provides only static images to analyze anatomical structure,

functional MRI (fMRI), a newer imaging modality which is based on MRI and just

comes to the stage during the past decade, acquires a series of images to detect neural

activity, that is, to locate where— and how — the brain responds to certain stimuli

[12, 37]. In other words, the central task for fMRI is to obtain maps of active and non-

active regions of the brain corresponding to specific stimuli. Figure (1.2) illustrates a

series of images acquired in an fMRI experiment. In this figure, the white small square

indicates an activated region; the black small square indicates an inactive region.

Compared with other imaging techniques, such as X-ray computerized tomography

(CT), MRI is considered safer since it does not require the subject to be exposed to

ionizing radiation [31]. MR images are also of high contrast and resolution. MRI

provides more information since MR signals depend on several tissue parameters [31,

37, 68]. In addition to spin density p(r), the number of NMR visible spins in a

given region, there are two principal relaxation times, each of which, in principle,

can be used individually or combined [12]. MRI does not use exogenous agents, an

advantage over another popular brain mapping technique known as positron ‘emission

tomography (PET).

Research on MRI involves substantial knowledge in physics, physiology, neurol-

ogy, and psychology. This dissertation, however, concentrates on signal processing

aspect. Note that the materials in this chapter are just for illustrative purposes; they

are not meant to be comprehensive. For details, the reader is encouraged to refer to

[12, 31, 37, 39, 68], which are the main sources for materials in this chapter.

 

fin elementary particle with the mass of an electron and a charge of the same amount as the

electron’s but positive.
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Figure 1.1. A block diagram of an MRI system.
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Figure 1.2. A series of images are acquired in MRI to detect neuronal activity.

1.1 How does flVIRI work?

In short, there are basically two foundations [12, 37]. The first is due to physiological

reasons. The other foundation comes from physics, that is, magnetic susceptibility

l Blood contains iron (hemoglobin). Neural activity is linked to blood oxygenation

levels in blood vessels close to active neurons. This relationship is called the Blood

Oxygenation Level Dependent (BOLD) effect [66]. Specifically, neuronal activity

causes an excess of oxygenation level in the blood nearby active brain tissue. De-

oxygenated blood is more paramagnetic than oxygenated blood. Changes in the

local concentration of de—oxyhemoglobin within the brain lead to alterations in the

MR signal. Subtle variations in the magnetic susceptibility of oxygenated and de-

oxygenated blood that are then detected in the MR signal indicate neural activity.

For more details, refer to [12, 37].

 

Any object placed in a magnetic field will magnetize to a degree slightly more than (paramag-

netic) or less than (diamagnetic) the applied field. The relationship between the field experienced

within a sample and the applied field is known as the magnetic susceptibility calculated as the

ratio of the internal field to the applied field.



1.2 Characteristics of the fMRI Signal

Currently, the procedure to do fMRI experiments is to instruct the subject to perform

experimental (E) and control (C) tasks in an alternating sequence of some design [12].

Refer to Figure (1.3a). Specifically, the subject is instructed to remain relaxed in the

controlled (resting) state, and to perform some kind of consecutive and repetitive task

(for example, finger tapping) in the activation (experiment) state [36]. In addition

to controlled stimulus, two responses are also made up in Figure (1.3), one of which

may be from the white spot (active pixel) in Figure (1.2) and the other of which may

be from the black spot (inactive pixel) in Figure (1.2).

It takes some time for MRI signal to reach its peak after the onset of the stimulus,

which is called Response Latency [12].

An fMRI time series has a complicated structure. It contains noise varying with

anatomical location. There is random noise as well as structured noise due to in-

strumental (MR system characteristics), physiological (cardiac and respiratory pul-

sations), and experimental (such as patient motion) factors [ 2, 12, 29, 38].

In addition to this complicated structure, the temporal and spatial characteristics

of the time series are also unknown [29]. All these render the analysis of fMRI time

series very difficult.

The hemodynamic signal changes in MRI during brain activation are extremely

small, from 2 to 5% at moderate magnetic field strengths (1.5T) [12].

1.3 Outline for Detection Methods for MRI

So far most fMRI detection methods are only pixel-wise. Generally, analysis of

changes in neural activity is explored using statistical parametric map (SPM) [69],

which is a two dimensional (2-D) image of a test statistic determined at each pixel

by some operation between signal and reference. Originally, t statistics were usually

5



used [14]. In repetitive experiments involving a dynamic time sequence of images,

a correlation method is now common, in which the correlation between each time

series and a reference signal is used to decide whether or not activity is present [3]. It

reduces to an F statistic test. Many generalizations and extensions of this simple idea

have been proposed [24, 25, 36, 55, 60, 64]. Chapter 2 is also on pixel-wise detection,

but contrary to most methods, complex-valued data are considered.

Detection methods exploiting spatial information (correlation) of fMRI signal have

also been recently proposed for MRI [21, 35, 58]. Most of them use Bayesian strate-

gies. For example in [35, 17], Bayesian principles and Markov Random Field (MRF)

models are employed to facilitate joint spatio-temporal analysis of fMRI data. Chap-

ter 3 develops a new multi-scale framework for similar purposes.

1.4 Organization of This Dissertation

Chapter 2 stresses pixel-wise testing, which is most common in practice. First a

model for the complex fMRI time series is proposed . The most distinct feature of

the model is that the baseline nuisance component and reference signal component

share a common phase. A nonlinear detection problem ensues. Based on the classical

generalized likelihood ratio test (GLRT), three methods are investigated to attack

that detection problem: the conventionally used magnitude correlation (MC) detec-

tor, the complex correlation (CC) detector newly proposed by Lai and Glover [36],

and a new nonlinear GLRT detector, with emphasis on the last one. The properties

of the nonlinear GLR detector are carefully studied and a method for threshold se-

lection from numerical simulations is presented. The nonlinear GLR detector has the

best performance among the three [48].

An multi-scale detection method exploiting spatial information is presented in

Chapter 3. Specifically, the idea of multi-scale image segmentation is used to improve



the performance of fMRI detection. An multi-scale Bayesian framework for image

segmentation is introduced in the beginning. Two image segmentation algorithms

are then investigated, with emphasis on the second one whose application to fMRI

detection is the second part of this research.

Some discussions and conclusions regarding work of this dissertation are gathered

in Chapter 4.

Chapter 5 collects Appendices including some notations used throughout this

dissertation, some results on x2, F and t distributions useful for the development in

Chapter 2, the t-test used in MRI detection [14], principle of and some definitions

and theorems on invariant tests [7, 56] used in Chapter 2, and the sequential maximal

a posterior (SMAP) algorithm for multi-scale image segmentation [10].
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Figure 1.3. Illustration of fMRI stimulus and responses. a) Controlled stimulus; b)

Response from an activated area; c) Response from an inactivated area.



CHAPTER 2

Pixel-wise Detection for flVIRI 1

A tree broader than a man can embrace is born of a tiny shoot;

A dam greater than a river can overflow starts with a clod of earth;

A journey of a thousand miles begins with a single step.

Lao Tzu (500 BC, China), Tao Te Ching

2. 1 Overview

In fMRI a series of MR images of the brain are acquired over time to detect neural

activity. As explained in Section (1.1), the BOLD effect can be used to obtain maps of

active and non-active regions of the brain. In order to achieve high signal noise ratio,

the spatial and temporal imaging resolution must be limited [34]. Unfortunately,

low resolution imaging may lead to a loss in signal information originating from

microvasculature [60]. Hence, there is a fundamental trade-off between resolution and

SNR in MRI. It is therefore of great interest to develop reliable detection methods

for MRI in the presence of noise.

Almost all fMRI tests are based on the image magnitude data. In standard prac-

tice, the raw MRI data is reconstructed and the magnitude is taken to eliminate the

(unknown) phase. I focus in this chapter on the repetitive experiments involving

9



a dynamic time sequence of images. Under various assumptions and experimental

setups the fMRI detection problem reduces to well-known statistical tests including

t-tests and F-tests [69].

When comparing two groups of images — “rest state” and “active state” images

— a t-test is usually used [14], the derivation of which is at Appendix IV of Chapter

5. Another common approach to fMRI detection, called magnitude correlation (MC)

detection in this dissertation, is based on a test statistic obtained at each pixel by

correlating the magnitude time-series with a reference signal, which is assumed to

be known and representative of the BOLD response [3]. Many generalizations and

extensions of this simple idea have been proposed [24, 25, 36, 55, 58, 60, 64]. For

example, recently Lai and Glover proposed a complex correlation (CC) test based

on the complex data (i.e., image data before taking the magnitude at each pixel), in

order to take advantage of phase information in the data and improve the detectability

of fMRI responses [36].

The CC test statistic is F-distributed and the detector has a constant false-alarm

rate (CFAR) property, which means that a specified false-alarm rate, i.e., the proba-

bility of deciding a pixel is active when in fact it is not, can be achieved irrespective of

the unknown parameters. Throughout this dissertation, the false-alarm rate is denoted

by P, and the probability of detection is denoted by P4. Despite the CFAR property,

the CC test focuses only on the response component (called signal component) of the

data and ignores the baseline component (nuisance component in a general setting)

of the data. The baseline component does not contain information relevant to the re-

sponse itself (and is hence called nuisance component), but it does contain important

information about the phase. In this chapter, a new test is proposed based on the

GLRT principle that allows us to incorporate the phase information contained in the

baseline component.

In this chapter simple pixel-wise testing is stressed based on a Gaussian white

10



noise observation model. Pixel-wise testing ignores spatial relationships in MRI

data, which is to be considered in Chapter 3. However, since the focus of this chapter

is to assess the potential benefits of fMRI detection using complex data, a simple data

model and testing procedure is employed to explore this basic issue. The assumptions

are perhaps too simplistic in many practical cases. However, it is possible to extend

the results and conclusions to more elaborate approaches based on more realistic data

and/or correlated noise models, potentially accounting for uncertainties in the BOLD

response and/or different nuisance component. Such extensions are briefly discussed

in the conclusions of Chapter 4.

This chapter is organized as follows. In Section (2.2), a basic model for MRI

data is reviewed. Three tests will be studied, all of which may be interpreted as

GLRTs under different data model assumptions. Therefore, before looking at each

method, the GLRT principle is briefly reviewed in Section (2.3). In Section (2.4) and

Section (2.5), the standard MC and recently-proposed CC tests are examined and

the statistical properties of each are studied. The new GLRT for MRI is derived in

Section (2.6). Its properties are explored in detail. In Section (2.7), the performance

of the MC test, CC test, and GLRT in various regimes of baseline signal intensity

to noise ratio are compared. Extensive Monte Carlo simulation is used to assess

the performance of the detectors. The results show that the GLRT does have a

CFAR property and a simple rule for choosing the threshold to achieve a desired

P, is observed. The distribution of the GLRT statistic at high ratio of baseline

signal intensity to noise is approximated from observation on threshold selection.

Numerical studies show that the GLRT outperforms the CC test. Specifically, for a

fixed false-alarm rate Pf, the GLRT’s detection rate Pd is higher than that of the

CC test. Furthermore, the GLRT also performs significantly better than the MC test

at low baseline signal intensity. The performances of the GLRT and MC detectors

are roughly the same at high baseline signal intensity, and in such situations both

11



perform better than the CC detector. In Section (2.8), the performance of all three

detectors is demonstrated in a simulated fMRI experiment.

Section (2.9) contains the three detectors for the same model but with known

noise varianceone, which is a by-product of my research.

2.2 fMRI Signal Model

Due to phase errors which are difficult to control, the signal component of the mea-

surements occurs in both real and imaginary channels [41, 6]. This suggests the

following simple model *for an MRI pixel time-series. Suppose there are N images

acquired in the experiment. Let x denote an N x 1 vector containing the time-series

data from one pixel:

x = (a1 + br)e“9 + one. (2.1)

The data vector x consists of three complex-valued components. The first com-

ponent a1 is a constant (DC) baseline component, where 1 denotes an N x 1 vector

of ones and a > O is the amplitude of the DC component. This vector represents the

average value of the time-series. The baseline component model proposed here is the

simplest version of the nuisance component. The second component br is the oscilla-

tory response (signal) component. The vector r is a reference function that models

the expected response characteristic. The amplitude b characterizes the strength of

the response. In the absence of activity, b = 0.

Typically, in MRI studies, while the subject is under some baseline condition (for

example, at rest), a number of frames Nb is acquired; then the subject is asked to

perform some task (for example, finger tapping) and a number of activation frames

N, is acquired, or vice versa. These constitute one cycle. During each cycle, the total

 

This model is attributed to Dr. Nowak.
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number of frames is thus N = N, + Na. This pattern is repeated for a number of

cycles. In Figure (2.1) adapted from [2], the activation-baseline pattern is represented

by a periodic rectangular waveform of period N, with 1 and 0 representing activation

and baseline, respectively [2].

One can think of the signal component as the response of a system whose input

is the activation-baseline pattern. See Figure (2.1b). In real problems, the response

signal r (the output of the system in Figure (2.1)b) is unknown. Friston et al. modeled

the system as a linear time invariant (LTI) system [22], which is questioned by [2,

3]. Several possible estimates for the reference signal are suggested in [2, 3]. The

first method is to use a delayed version of the activation-baseline pattern. It is most

easily implemented. The disadvantage of this method is that the delay is not known

a priori, and it may vary from pixel to pixel. The second suggestion is to select the

response of one or more activated pixels as the reference signal. The third Option is

to average the response of some activated pixels across cycles. The reference signal

would then be formed by periodically replicating this time-averaged cycle throughout

the time course. None of these approaches is perfect. Throughout this dissertation,

the reference signal r is assumed to be known.

The baseline component and signal component share a common phase 19. Hence,

we model this phase-coupling by multiplying both components by the complex number

e‘”, where i = \/—_1. In addition to these two components, an additive complex

Gaussian white noise component onc models errors primarily due to thermal noises in

the patient [13, 18, 19, 44]. The term 116 denotes a standard (zero mean, unit variance)

complex Gaussian vector of length N. The factor a scales the noise resulting in a

variance of 02. In general, the parameters of this model a, b, 19, and a are unknown

and are different for each pixel time-series. This model was compared to actual fMRI

time-series and these assumptions are in good agreement with actual data. Figure

(2.2) shows the real part, imaginary part and phase of one time series from real fMRI
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Figure 2.1. (a) Activation-baseline pattern for an MRI experiment; (b) Modeling the

activated pixel as a system.
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experiment and it is illustrative of the constant phase idea in the model.

The modeling of fMRI signals is a very complicated process [24, 29, 38]. Our model

is still rough and not complete. The noise structure in fMRI is very complicated. Our

model does not try to capture more complicated disturbances present in fMRI data

such as other nuisance components, for example, due to physiologic motions. For

the sake of simplicity and demonstrating our method and ideas, the noise is assumed

to be white Gaussian. The whiteness assumption does not change the problem

essentially, since we can always use Cholesky factorization [56] to whiten the signal

and leave the detection problem unchanged, although, of course, estimation of the

covariance of the noise is a challenging problem in itself. Usually parametric tests,

to which discussions in this chapter are confined, assume a Gaussian model for the

underlying time series. Several researchers have challenged this assumption and have

used nonparametric tests, including the Kolmogorov-Smirnov test, Kruskal-Wallis

test, and Wilcoxon signed ranks test, for a summary, see [69].

I succeed in deriving the GLRT directly from this complex model in Equation

(2.1):

_ xHx—N[af+a§]

xHx - the + a3 + a? + a3 + t/(2ata2 + 25152)? + (at + a? — a3 — am’

 

L0  

where H denotes complex conjugate transpose and

xgl

01 = —i

x/N

xTr

)61 = _R—"

\/N

x?1

02 = —?

\/1—V_

le

fl2 = -I—-

\/N
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Figure 2.2. One time series from a real fMRI experiment. (a) Real part; (b) Imaginary

part; (0) Phase.
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This form, however, is not well suited for mathematical analysis. I thus turned

to analysis in real domain. Because complex numbers can be interpreted as pairs of

real numbers, I therefore re-express the complex model (2.1) as a 2N x 1 dimensional

real-valued model:

y = 845 + uH¢ + on, (2.2)

where u “=— b/a and

x 1 0 r 0 acosr9 n

y = R , S = , H = , z ’ n = CR

x1 0 1 0 r asinz? nd

The subscripts R and I denote real and imaginary parts, respectively. The phase-

coupling in the complex model is manifest in this real model as a nonlinear coupling

between parameter p and parameter 45. The reader is reminded here that u is the

ratio of reference signal intensity to baseline signal intensity.

Note here that this nonlinear model stands in marked contrast to the classical

linear regression model:

y = $4), + MH¢2 + on, (2.3)

where 421 and (fig are independent. In the following it is shown that the CC test of Lai

and Glover [36] can be derived from the linear model above. It is our contention that

the nonlinear model is a more accurate representation of the physical fMRI problem,

and, indeed, the new GLRT based on the nonlinear model outperforms the CC test.

2.3 Generalized Likelihood Ratio Tests

The likelihood ratio test (LRT) [33] is an optimal method for deciding which of two

hypotheses (competing data models) best describes a set of observed data. The data

model corresponding to each hypothesis is given by a probability density function
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(pdf). Unfortunately, however, to implement the LRT, the pdf’s under each hypoth-

esis must be completely specified. The corresponding test is called simple hypothesis

test problem. This is not the case in fMRI. In the fMRI case, we have two hypotheses:

Ho, BOLD response absent (u '= O), and H1, BOLD response present (a at 0). Under

hypothesis H0, the vector 05 and the noise power 02 are unknown. Under hypothesis

H1, 05, o2 and u are unknown. Due to the unknowns, in fMRI we have what is called

a composite hypothesis test.

There are two standard approaches to composite hypothesis testing. The Bayesian

approach prescribes a prior pdf’s for the unknown parameters themselves; and the

likelihoods are integrated against these pdf’s to eliminate the dependence of the LRT

on the unknown parameters. Another approach, the generalized likelihood ratio test

(GLRT) is often preferable to Bayesian approaches due to its ease of implementation

and less restrictive assumptions. Specifically, the GLRT does not require the specifi—

cations of a priori probability distributions for the unknown parameters [33, 56]. For

these reasons, this chapter focuses on the GLRT.

The idea of GLRT comes from the LRT used in simple hypothesis testing which

means the pdf for each assumed hypothesis is completely known. Let pH,(x; 8,),

i = 0,1, denote the pdf’s corresponding to the two hypotheses. Recall that x denotes

the data. The argument 6.- denotes known parameters that specify the precise form

of the pdf. For example, 9; may represent the mean vector and covariance matrix of

a multivariate Gaussian density. The LRT decides H1 if

L(x) _ PH1(X; e1)
_ > ,

pHo (X; 90) n

where n is the threshold, which can be chosen to achieve a desired P,. The likelihood

ratio (LR) L(x), a function of the data x, is called the test statistic.

The GLRT is also based on the LR, but in the composite case the parameters are
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unknown. The key idea in the GLRT is to replace the unknown parameters by their

maximum likelihood estimates (MLE’s). In general, the GLRT decides H1 if

pHo (x; 60)

)

where O1 is the MLE of 81 assuming H1 is true, and O0 is the MLE of Go assuming H0

is true. The MLE of a parameter is simply the value of the parameter that maximizes

the corresponding pdf (i.e., the value that makes the observed data most likely).

The GLRT has no optimality property, in general, but it asymptotically ap-

proaches the uniformly most powerful (UMP) test among invariant tests [7]. For

more details on maximum likelihood estimation and the GLRT, see [33]. In the fol-

lowing sections we review the basic MC and CC tests and introduce the new nonlinear

test for fMRI detection using the GLRT.

2.4 Method 1: Magnitude Correlation Detection

The magnitude of MRI data is known to be Rician distributed [41]. To see this, note

that 1:,- in Equation (2.1), the jth observation in the time series can be written as

$3- = (a + brj) c039 + (mg,- + i[(a + brj) sin 9 + on;,-].

The two terms being independent, 2, E [le is Rician distributed (see Definition (3)

and Equation (5.1) in Appendix III). However, for large values of ratio a/o (ratio of

baseline component intensity to noise standard deviation) the Rician density can be

well approximated as a Gaussian distribution because

 

ZjEIIEj] = x/[(a+brj)cosl9+onR,—]2+[(a+br,-)sin0+on1j]2

 

: \/(a + brj)2 + 02073.2]- + 7731-) + 2(0 + ij)0(nRJ €080 + nlj Sin 0)
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20(nR-c036+n1-sin0) 02
:: (a+bTJ)¢1-[- .7 a+brj J +——-——(a+brj)2(n§j+n%j).

Note that n3, c050 + n],- sin9 is nothing but another Gaussian random variable.

We denote it as n,. Also note that n,- and nk are independent for j 79 k. n32]- + njj

is a x3 random variable. Under the assumptions that a >> a and a = b/a is very

small, the third term under the square root sign is much smaller than the second one

and therefore can be neglected. In this case, application of the binomial expansion

Wz1+éx |:r|<<1,

to the above equation leads to

z,- za+brj+onj.

Hence, the following Gaussian approximationa is commonly assumed for fMRI

detection [3]:

z z a1 + br + on, (2.4)

where here 2 = Ix], n is (real) Gaussian distributed, and with b = 0 under Ho and

b 75 0 under H1. Hence, in this case 60 = [a 02] and 91 = [a b 02]. Bear in mind

that this approximation does not accurately model the data when a/o is small, as we

shall see later in some examples.

The GLRT for the above detection problem results in the following test statistic

[56, 57]:

II epez II2

II PePez II”

 

t1(Z) = (N - lllL1(Z) - 1] = (N - 1) (2-5)
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where

2

II Psz H
L z = .

“’ “Pent

If t1(z) > m, then we decide H1; otherwise choose Ho. On the assumption that z

is truly Gaussian, t1(z) is distributed as F1,(N_1)(SNR) [57], where SNR E uzaz/oz.

Refer to Appendix II in Chapter 5. The detector has CFAR property I Therefore,

we can choose a threshold in to achieve a desired P, irrespective of the signal to

noise ratio, which is generally unknown a priori. This detector is called the magni-

tude correlation (MC) detector because the test statistic t1(z) is proportional to the

. correlation between the magnitude data 2 and the reference signal r.

Unfortunately, the Gaussian approximation in Equation (2.4) is unreasonable

when a/o S 3. In fact, when a/o is small, the distribution of test statistic t1(z)

is not known, nor whether the MC detector has CFAR property. So determination

of a proper threshold to obtain a desired Pf is theoretically very difficult. How to

solve this problem will be explained together with numerical results. Moreover, in

this case, one expects the performance of the MC test to suffer. This is indeed the

case as shown later by numerical results.

2.5 Method 2: Complex Correlation Detection

Recently, Lai and Glover proposed a complex correlation (CC) test based on the

complex data, in order to take advantage of phase information in the data and improve

the detectability of fMRI responses [36].

Here, the CC test statistic is shown to be also F—distributed and also has a CFAR

 

Note that the MC test statistic has a central F1,N-) distribution under Ho ([1 = 0).
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prOperty. Recall the linear model

y = 54>, + qubg + an. (2-5)

The unknown parameters in this case are 90 = [of d); 02] and 91 = [of g a 02].

The GLRT based on this model in fact coincides with the CC test [36] and is given

  

by

.L 2 P PL 2

so) = (N—1)[L.(y) - 11=(N—1)“priy”. = (IV-1)” Z 1"”. (2.7)
“PSHPSyH “PHPSY”

where

2

|| PsLy ll _ yTPsiy
 

1420’) = — —-

H y H2 " ll Ps)’ ”2 — ll PH)’ “2 YTPSLHY

(2.8)

If t2(y) > 172, then we decide H1; otherwise, choose Ho. This test is called the

complex correlation (CC) test because it is based on the correlation between reference

signal and real and imaginary components of the complex data. The pdf of t2(y) is

non-central F2,2(N_1)(SNR), where again SNR = u2a2/02, and thus the detector has

the CFAR property i

Despite this desirable property, the drawback to this test is that it is based on a less

accurate model. The CC test focuses only on the response component of the data and

ignores the baseline component. The DC component does not contain information

relevant to the response itself, but it does contain important information about the

phase. Although the phase is a nuisance parameter in the testing problem, more

accurate knowledge of the phase can improve the detectability of the fMRI response.

As noted previously, the phase-coupling between the nuisance and signal response

components of the data dictates the nonlinear model in Equation (2.2). Therefore, I

next derive a new GLRT based on this more accurate model.

 

Note that the CC test statistic has a central F2300-” distribution under Ho (p = O).
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Figure 2.3. Structure of matched subspace detector.

Before going to next section, I’d like to summarize a little bit. The MC detector

and CC detector actually have the same structure as shown in Figure (2.3) adapted

from [57], which is known in the signal processing literature as a matched subspace

detector [57]. First the data are projected onto a low-rank subspace by removing

interference. The projector is also termed an interference rejecting or null steering

filter [57]. Then the resulting data are further projected onto another low-rank sub-

space that is matched to the signal component, and energy is taken. This projector is

usually called a matched subspace filter. Since the noise level is unknown, this energy

is then compared with the energy in the component orthogonal to signal subspace.

The ratio is computed and compared with a threshold for a decision [57].

2.6 Method 3: Nonlinear GLR Detection

In this section, a new nonlinear test based on the GLRT principle is found that

incorporates the phase information contained in the baseline component [48]. The

unknown parameters in model (2.2) are 90 = [¢T 02] and 81 = [¢T u 02], under Ho
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and H1, respectively. Recall that the phase coupling introduces a nonlinear coupling

between the parameters u and if) under H1. This nonlinearity makes the MLE’s very

difficult to compute, but, remarkably, a closed-form solution for the GLRT statistic

which is derived in the following subsection does exist:

t3(¥) = [L300 - llUV - 1), (29)

where

2” PsLy II2
(2.10)

H Pity II2 + II Pry |l2 - \/l| Pay II4 + II Psy II4 + 2II Pay l|2|| Psy “2008 2‘P

 

L3(Y) =  

 

with

T

(61:02) yT-}%y

coscp y = = (2.11

‘ ’ II a. HH 02 n n Pay nu Psy ll ’

and 01 and 02 are two sufficient statistics

1 T 1 T
01(y) = NH y, and 02(y) = N5 y. (2.12)

As usual, given a specified threshold 173, we decide H1 if t3(y) > 173, and Ho

otherwise.

2.6.1 Derivation of the GLRT Test Statistic

In my derivations, I assume lTr == 0 and rTr = N without loss of generality, so

STH = HTS = 02x2,STS = HTH = N12“. The second condition can always be

satisfied since we can always normalize the reference signal without changing the

problem essentially. The first condition is more difficult to meet. But the same

ideas of decomposing one orthogonal projection operator into two oblique projection

operators as in [4, 57] can be utilized to achieve the result, even under more compli-
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cated nuisance and signal (reference) structures, i.e., the nuisance component is not

just a constant baseline 1, nor is the signal component just one reference signal r.

Possibly, both of them may be adaptively selected from real data to contain several

components (see discussions in Chapter 4). However, the analysis of the test statis-

tic’s properties (such as invariance), and hence the determination of the threshold are

much more complicated than presented in this dissertation. Even so, the properties

of the corresponding linear detector may still be used as a guide.

Let 30 and 31 denote the MLEs of noise variance under hypotheses Ho and H1,

H (Xiél)

respectively. Recall that the GLRT is based on m. It is easy to show that this
0 2

statistic reduces to

L3(y) = min(3§)/min(3f). (2.13)

Recall that under Gaussian distribution the maximum likelihood estimate is the

same as the least square estimate. Therefore, the calculation of min 33 is straightfor-

ward:

. A 2

"111103 = II PsLy ll (2-14)

However, determining min(3f) is much more difficult due to the nonlinear coupling

between the two unknowns u and (b. To circumvent this difficulty, I first decompose

y and y — Sd) — uH¢ into three orthogonal components, i.e.,

y = PsLHy + Psy + PH)"

and then

8f = IIy-——S<2b-MH<1>II2

2

= II PéLHy + (Psy - S¢>) + (Pay - uH¢l ll

2

= II Patty II + II Psy — S¢ II” + II PHY - uH¢ II’
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= n Pay “2 + n 862 -- s¢ u? + II He. — uH¢ n2

"' I] Pray ”2 + N[91T01+ 0392 +(1+ #2)¢T¢ — 2(92 + Halle’l

where 01 and 02 are given by Equation (2.12).

Now min 3;" is equivalent to min J = (1 + u“)¢T¢ - 2(92 + #01)T¢. Setting partial

derivatives of J with respect to u and (b to zero results in:

ai- = 2u¢T¢ - 29m = 0.

3;; = 2(1+ #2)d> - 2(92 + not) = 0

We then get

A 9T“

A 92 + I201

= —, 2.1¢ 1 + 1,, ( 6)

So now

mine? = u Pay ”2 + N(9f01+ 91592) — N<1+ new.

Furthermore, note that

N(9i91+ 9592) = II Pay II2 + II Psy “2, and II PsLHy II2 + II Psy II2 + II Pay II2 = ll 3’ “2,

which gives

minaf = u y ll’ — N0 + nvra—— II y u— .2”————[6T92 + 2min. + refit]

Eliminating d; from Equations (2.15) and (2.16) (or setting the derivative of the
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above equation with respect to II to zero) shows that II must satisfy:

0302 + 2,70% + n20'{01 _ 9% + p019,
  2.171+? p ( )

Using this equation, min 8? can be further simplified:

.. oTo

min 0i = H 3' ||2 - N(9f91+ 1_fi2) (2-18)

This equation is important in our derivation of an asymptotic expression for L3 (y) in

the following subsection.

From Equation (2.17), II satisfies quadratic equation p2 + cu — 1 = 0 with

 

zfla—fla

93‘s,

Since a] [1.2 = —1, there are two solutions of Opposite signs:

c c 2

A = —— :l: 1 —u 2 + (2)

However, from Equation (2.18), to make sure 3? is minimal, fl must have the same

sign as 9:32, and so the unique solution for 22 is:

A c 2

p:—§+ l+(-).

Substitution of ii into Equation (2.18) yields the right solution for min 3?. Finally,

from Equations (2.13), (2.14) and (2.18) I get the closed form expression for L3(y)

as given by Equation (2.10).

Instead of using L3(y) directly, I use Equation (2.9) as the test statistic, which is

suggested by the form of test statistic t2(y) for the CC detector. The main reasons are
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to facilitate the determination of the proper threshold and to get a good comparison

between the three different detectors. It will become much clearer when we study the

asymptotic property of t3 (y).

Having established the form of the test statistic, the next question is naturally

how to choose the threshold, which is a very difficult problem. In order to answer this

question we need know the pdf of this statistic. Unfortunately, unlike the CC test,

a closed form for the pdf of t3 (y) is not known to me at this stage. I can, however,

show that the pdf of t3(y) is a function of a and a2/o2 alone.

2.6.2 Invariance of GLRT Test Statistics

In this subsectiOn, I employ theories on invariance [46, 56] to prove that the pdf

of t3(y) is a function of only a and a/o. In order not to interrupt the continuity

of description, the ideas and principles on invariant test are put in Appendix V of

Chapter 5.

The difficult part in using invariant theory is to find an appropriate set of trans-

formations which fully exploit the structure of the signal to be detected. Since our

problem is nonlinear, finding this set of transformation is not an easy matter. Actu-

ally discovery of this set of transformations comes simultaneously with its proof. The

following theorem may be regarded as an extension of the results in [56, 57], which

only deal with the linear model of Equation (2.3).

Theorem: The family of distributions of y defined by

y = quJ + Sci) + on (2.19)

where n is Gaussian distributed as N(0, I), is invariant to the group of transformations

defined by:

G = {9(y) = 9(y) = CQSQHy} (2-20)
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where the two orthogonal matrices

Q5 = UsQU§+PsL = (Sngv'l'I—‘Sfi—T,

Q” = Utter/term- : 7",QHT;+I-”THT,

c is any constant and Q is any 2 x 2 orthogonal matrix, Us and UH are defined in an

obvious way.

Under the above transformation, g(y) is explicitly expressed as

9(3’) = HIH¢1+ S¢1+ Uln (2°21)

with the induced transformation G given by:

#1 = H

¢1 — CQ¢

01 = 60’

Note that Q5 and QH are two orthogonal matrices (rotational matrices [56]).

The geometrical meaning of this transformation is thus consecutive rotations of the

original signal within the 5 plane (defined as the subspace spanned by the columns of

S) and then within the H plane followed by scaling that introduces unknown variance.

The following is presented to make the proof as applicable as possible to a general

case.

Proof:

QHY = Q3595 + #QHHd’ + €7an = 545 + HHW + UQHD,
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since

(235' = (UHQU; + Pfi)S = PfiS = S,

. T

because HTS = 0, i.e., U55 = g—fiS = 0.

Similarly,

Q5H = Hi

while

Hd)’ = Qng) = (UHQUE; + P§)H¢ = UHQU§H¢

= UH(U,§UH)-1U,7,‘UHQU;H¢

= H(HTH)-1HTQHH¢ (2.22)

due to the fact that UEUH = I.

Therefore,

QSQHY = Qs(S¢ + #HW + UQHD) = 545" + #1143! + OQSQHD

where, similarly to Equation (2.22),

sa” = sta = S(STS)"STQSS¢. (2.23)

It turns out that 03’ in Equation (2.22) and 03” in Equation (2.23) are coincident,

which is the fascinating and devious part for finding the above set of transformations:

T

”T“ -H—H¢=Q¢.d" = (HTHl-IHTQHH¢=NWQW
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due to the fact that HTH = N12x2. Similarly,

¢" = (STS')"’STQSS<I3 = Q45 = 45'-

Regarding the transformed form of noise 11, since Q3 and QH are both orthogonal

matrices, Qngn has exactly the same covariance matrix form as that for 11. So,

g(y) = cQSQHy assumes the form as expressed in Equation (2.21). QED.

It follows that (a, I] d) ||2/02) or more simply (,u, 02/02) is a set of maximal invariant

parameters under G (see [7, 46, 56]) for details on invariance principles).

Furthermore, it is easy to verify that t3(y) is invariant to the transformation group

G. To see this, first of all, we observe that t3 (y) or L3(y) is a function of only I] y I],

I] 61 (y) I], l] 02 (y) I] and coscp (equivalently $92). We already know that Q; and QH

are both orthogonal matrices. Moreover, noting that

HTQs = HT, HTQH = QHT.STQ5 = QST. STQSQH = QSTQH = QST,

we have invariance for the norms

|| 01(3') l|=|| 91(QsQHy) II, II 920') ||=|| 92(QsQHY) II. II y ll=|l @5033! ll -

and

9i(Y)92(Y) = 9i(QsQHY)92(QsQHY)-

A constant c in both numerator and denominator of L3 (y) and cos (p does not change

the original quantities. Therefore, t3 (y) is invariant to the transformation group G.

Hence, from Theorem 3 in Appendix V of Chapter 5, the pdf of t3(y) is a function

of p and a/o alone (instead of all four model parameters a, o, 19, and u).
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This is a desirable and very useful feature, since this result shows that the test is

only a function of two key variables whereas in general a test could depend on all four

of the unknown parameters (a, p, i9, 02). In particular, the GLRT is invariant to the

unknown phase 19. The invariance property saved me a lot of work when I performed

numerical simulations in the next stage.

Unfortunately though, the dependence of the test on a2/o2 in addition to signifi-

cant parameter u implies that, in general, this test does not have the CFAR prOperty.

Hence, selection of a threshold 7);, to achieve a desired P, is still very difficult.

2.6.3 Upperbound of GLRT Test Statistics

However, some interesting relationships exist between the nonlinear GLRT test and

the CC test, which suggest some possibilities for threshold selection. Let us compare

Equation (2.8) with Equation (2.10). Note that if (p = O in Equation (2.10), then

L3 and L2 coincide. It is precisely through the term cos 2cp that the effect of phase

coupling comes into play. Actually, from Equation (2.10), the upper bound of L3(y)

is easily seen to be coincident with L2 (y).

Therefore, one method of threshold selection is to choose the threshold slightly

smaller than that determined for the CC test statistics, which has the F2,2(N_1) dis-

tribution. Furthermore, if the true parameter [1 under H1 is small, which is the case

for most fMRI detection problems, then we show in the following subsection that

L3(y) asymptotically (as N, the length of the time-series, increases) has the same

distribution as L,(y) This provides a more solid foundation for this threshold choice

method. Under the guidance of this rough method, extensive numerical simulations

lead to more accurate threshold selection method in Subsection (2.6.5).
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2.6.4 Asymptotic of GLRT Test Statistics

In detection problem, our concern is low SNR case. In our situation, we assume that

the true parameter )1 under H1 is small, i.e., u -> 0. By the asymptotic property of

maximum likelihood estimates, as N —+ 00, ii —) p. In order to get a more accurate

approximation of II, we use Equation (2.16) combined with II —> ,u —+ O (as N —-) 00)

and get rib—e 92, so from Equation (2.15) (as N —> 00),

A ~ 9T92
~——— 2.24It 0302. ( )

which is the maximum likelihood estimate for the corresponding linear model in

Equation (2.3).

Substituting Equation (2.24) into Equation (2.18) we have

min??? = H y H2 — NW. + 0362) = H y H2 — II Psy ll’ — ll PHY Il2- (2.25)

Noting that

Pslrr = PéPsLHPsL. (2-26)

P; —— Psi” = PgLPHPgL = PH = PHPgL, (2.27)

PSJ-HPgL = PML = P3,, = I — PS — PH. (2.28)

we get, from Equations (2.13), (2.14), (2.25), as N —> 00,

L3()’) 3 1426’)-

This implies that t;, (y) asymptotically has the same distribution as t, (y), i.e., non-

central F2,2(N_1)(SNR), and thus asymptotically has the CFAR property with small

u.
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2.6.5 Threshold Selection Based on Numerical Simulation

Another method is to try to determine the exact thresholds via Monte Carlo simula-

tion. Some of the results of our simulations are given in the next subsection. Here,

we summarize the conclusions. Extensive Monte Carlo simulation reveals that the

GLRT test is also CFAR when a/o 2 1, which is the case for most, if not all, fMRI

experiments. More importantly and more interestingly, to achieve the desired P], the

proper threshold of our GLRT detector is almost exactly one half that of the corre-

sponding threshold required for an F1,(N_.1) distributed test statistic. This is confirmed

by extensive Monte Carlo simulation.

2.6.6 Distribution of GLRT Test Statistics

The observation in above subsection may lead to Nan’s Conjecture formulated as

follows.

In mathematical terms, we have

Pf=/ ptaIHo(t3)dt3z/ fo(t)dt, (2-29)

77 2n

where f0 denotes the density of an Fl,(N—l) distributed statistic. Differentiating the

above equation with respect to 1) leads us to an exciting result that the density of the

test statistic t3 under H0 is related to the F1,N_1 density by the approximation

p¢3][10(t3) z 2f0(2t3). (2.30)

This implies that a very accurate threshold can be selected using standard Fl,(N-1)

distribution tables [1].

Actually, on careful observation of the following Tables (2.1-2.3), we find that Pd’s
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for GLRT and for MC detectors are the same, when a/o is large, i.e.,

Pd = / [3,3]”, (t3)dt3 "~"’ / f1(t)dt, (2.31)

n 2n

where f1 denotes the density of an F1,(N-1)(SNR) distributed statistic, since for large

a/o, the approximation for the MC model in Equation (2.4) is quite valid and hence

the Pd for MC detector is given by the right integral of above equation. Differentiating

the above equation with respect to 77 leads us to another result that the density of the

test statistic t3 under H1 is related to the F1,N_1(SNR) density by the approximation

pt3|H1(t3) z 2f1(2t3). (2.32)

When u = 0, fl is coincident with f0. Summarizing two cases, I suspect that

Pt3(t3) z 2f1(2t3)a (2-33)

for a/o > 1. Although theoretical proof for this conjecture is difficult to achieve, it

is still worth investigating. Because the pdf of this statistic does not depend on the

angle 19, the expression of y simplifies greatly and may direct us to its final solution.

I caution here that numerical simulations reveal that the conclusions in Subsec-

tions (2.6.5) and (2.6.6) all break down for a/o < 1.

2.7 Comparisons of the Three Detectors

In order to compare the performances of the three detectors, I run extensive Monte

Carlo experiments. Because originally we only know that the performance of GLRT

depends on two parameters a/o and u E b/a, it is necessary to study the performance

for different values of a/o. However, as mentioned above, for a/o Z 1, the Monte
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Threshold 4.70 3.43 6.85
 

 

 

a/o a CC GLRT MC

1 .3162 .72 .80 .44

3.162 1 .72 .80 .78
 

10 .03162 .72 .80 .80

Table 2.1. Pd with P, = 0.01, N = 120

      
 

 

Threshold 3.75 2.58 5.15
 

 

 

a/o [1 CC GLRT MC

1 .3162 .82 .88 .58

3.162 1 .82 .88 .87
 

      10 .03162 .82 .88 .88

Table 2.2. Pd with P, = 0.025, N = 120
 

Carlo analysis suggests that the GLRT is essentially CFAR.

In Tables (2.1-2.3), we compare the detection rates Pd of the three tests under

three P, specifications. The Pf’s are selected to be representative of those commonly

used in fMRI. In these tables, the first row contains the thresholds corresponding to

the preselected Pf. In order to see the functional dependence of Pd on SNRE ”202/02,

I deliberately select a so that SNR is the same for three different a/o cases. In order

to get as accurate results as possible, for each value of Pd (and PI), 105 simulations

are run and the average is taken as true result.

The most difficult element of the Monte Carlo analysis, except in the CC test

case, is the determination of proper thresholds to achieve a desired false-alarm rate

with each detectors. The CC test is F2,2(N_1) distributed under Ho, and therefore the

proper threshold is very easily determined from standard tables [1].

Because the GLRT is not known to possess the CFAR property, the proper thresh-

old will, in general, depend on a/o. For a given value of a/o, the threshold needed

to achieve a desired false-alarm rate can be determined via Monte Carlo analysis and

trial-and-error over a range of thresholds under the guidance of the rough method
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Threshold 3.03 1.96 3.92
 

 

 

a/o u CC GLRT MC

1 .3162 .88 .93 .69

3.162 1 .88 .93 .92
 

10 .03162 .88 .93 .93

Table 2.3. Pd with Pf = 0.05, N = 120

      
 

described in Subsection (2.6.3). This is precisely how the thresholds were determined

for the results given in Tables (2.1-2.3). Remarkably, however, the Monte Carlo anal-

ysis revealed that both the MC test and the GLRT are essentially CFAR so long as

a/o > 1, which is almost always true in fMRI. Moreover, the Monte Carlo analysis

supports the use of some very simple rules for threshold selection.

First, in the case of the MC test, for very large values of a/o the magnitude

data are very well approximated as Gaussian. Therefore, in such situations, the MC

test is (approximately) F1.(N-” distributed under Ho and the prOper threshold can

be determined again from standard tables [1]. Because the Monte Carlo simulations

show that for a/o _>_ 1 the MC test is essentially CFAR, the proper threshold may be

determined from F1.(N-” distribution for all cases in which a/o _>_ 1. The derivation of

approximation model (2.4) for MC detector also supports this, although not strictly.

Second, the similar performances of the GLRT and MC test for large a/o suggest

the possibility of a relationship between the GLRT statistic and the F1,(N—l)- This

intuition led to the discovery that the proper threshold for the nonlinear GLRT can

be selected as one half the threshold required to achieve the desired P, for a F1,(N—l)

distributed statistic.

The results in the three tables show clearly that our GLRT detector performs best

for all three (low, medium, high) a/o cases. The CC detector performs better than

the MC detector in the low a/o case. However, as the DC component becomes more

and more dominant over the noise, the GLRT and MC test significantly outperform
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the CC test.

Finally, note that the detection rate of the CC test is constant for fixed SNR =

u2(a/o)2. This is expected because the .CC test statistic is non-central F2,2(N_1)(SNR)

under H1. Remarkably, note that the dependence of detection rate of our GLRT

detector also depends only on SNR. The same is not true of the MC test, whose

performance drops severely as a/o decreases.

I also illustrate in Figure (2.4) the results using three performance curves (PD

versus response strength u = £- curves) with N = 120, Pf = .01. Therefore, the

thresholds are chosen as in Table (2.1). Solid (—) line for GLRT; dash-dot(-.) line

for CC; dashed (— —) line for MC. Figure (2.4a) shows the case for a/o = 1.0, which

is low, so we expect MC detector to suffer. It is indeed the case: the GLRT curve is

at the top, CC curve is in the middle and the bottom one is for MC. Figure (2.4b)

shows the case for a/o = 3.162, which is large. In this case, the top one is for GLRT,

the middle one for MC, the bottom one for CC. It shows the MC detector begins

to surpass the CC detector but is still inferior to the GLRT. Figure (2.4c) indicates

the case for a/o = 10, which is quite large, and so the MC and GLRT detectors

have almost the same performance as shown in the figure: the GLRT and MC curves

coalesce to one in the top while the CC detector remains at the bottom. All three

curves clearly demonstrate that our GLRT detector is always the best.

2.8 A Simulated flVIRI Study

One fMRI experiment is simulated to illustrate pixel-wise detection efficiency by the

above three detectors. The results are shown in Figure (2.5). Figure (2.5a) shows one

slice image of the brain (64 x 64 pixels) with simulated activation region highlighted.

A 9 x 9 voxel region in the lower right corner of the brain (indicated in white) is

selected to be active in this simulation. For the simulation, a time series with length
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Figure 2.4. Three curves comparing the performance of three detectors. (a) a/o = 1;

(b) a/o = 3.162; (c) a/o = 10.
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N = 120 is simulated for each voxel. The reference signal r is a square wave with

period 10. The fluctuation of reference signal about constant level is i10%, i.e.,

u = 0.1. The noise variance in each time series is set so that a/o = 3.162. For each

time series, the phase is a constant. Spatially, the phase has a fluctuation (Gaussian

noise with zero mean 0.1 variance) about a constant phase of 1r/3. The reader is

referred to Figure (3.13a) in Chapter 3 for the correlation image for this simulated

experiment.

The desired false-alarm rate in this example is chosen to be P, = 0.01, and

thus the three thresholds for CC, GLRT and MC detectors are 4.70, 3.43, and 6.85,

respectively. The MC test, CC test, and GLRT test are compared in Figures (2.5b—d).

The actual detection rates observed in this simulation, given in the caption of Figure

(2.5), are in excellent agreement with the tabulated Monte Carlo results.

However, we note that in the activation maps shown in Figure (2.5), there is

activation ”detected” outside the brain. This is a serious problem which results from

the fact that spatial information is completely ignored. This is the main defect of

pixel-wise detection. Therefore next chapter is devoted to dealing with the problem

of how to utilize spatial information to further enhance detection efficiency.
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Figure 2.5. A simulated fMRI experiment illustrating pixel-wise detection by three

detectors. (a) Brain image with simulated activation region highlighted; (b) MC test

results: Pd = 0.77; (c) CC test results: Pd = 0.70; (d) GLRT results: Pd = 0.79.
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CHAPTER 3

Multi—scale Detection for fMRI

3.1 Overview

The last chapter focused on pixel-wise detection for fMRI, which is most common in

practice [3, 24, 25, 36, 55, 60, 64]. However, these techniques do not take advantage

of mutual information among neighboring pixels. Ignoring such spatial information

can reduce detection accuracy. Utilizing spatial information may enhance our detec-

tion accuracy. For example, in Figure (2.5) activity is “detected” in areas outside the

brain — an erroneous decision that could be avoided by incorporating ananatomical

information in the decision rule. Furthermore, it may be quite possible that con-

nected region of activation is larger than individual pixel dimensions. In other words,

activated areas in reality tend to occur in clusters of neighboring pixels. Thus, lim-

iting testing to individual pixels imposes artificial boundaries in the analysis process

that may weaken the detection performance. On the other hand, if there is strong

indication that a large group of pixels, which may be thought of as one large pixel

at a very coarse (spatial) scale, is active, then the individual pixels inside this group

may be more likely to be active themselves. Hence comes the idea of (spatial) scale

and incorporating spatial correlation into the fMRI detection process.
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3.1.1 Spatial Modeling and Outline for the Method

In light of the ideas above, the pixel-wise detection is oversimplistic. Therefore, it

is necessary to develop detection methods that take advantage of spatial correlation.

There are many approaches to attacking the problem, for example, cluster analysis

[20, 26, 27] and independent component analysis (ICA) [43]. Detection methods

using Bayesian strategies have also been recently proposed for fMRI [21, 35, 17]. Just

as in the pixel-wise detection strategies, we need to model each time series; when

we incorporate spatial correlation, we also need develop spatial models of the fMRI

data. This is by no means easy. The recent works of [35, 17] use Markov random

field (MRF) models to model the spatial relationships in fMRI data.

These methods all have their shortcomings. The clustering and independent com-

ponent analysis techniques are somewhat ad hoc and do not enable explicit modeling

assumptions about spatial correlation. The existing Bayesian methods mentioned

above are all restricted to modeling only the finest scale (highest resolution). Such

methods tend to be very computationally demanding, and are often difficult to ana-

lyze and interpret. Therefore, we will put forward a novel multi-scale modeling and

detection framework that incorporates spatial correlation information and is much

more amenable to analysis and optimization.

More specifically, this chapter will present a two-step approach forfMRI detection.

First, a new multi-scale image segmentation algorithm is pr0posed to decompose

the correlation image into several different regions, each of which is of homogeneous

statistical behavior. Second, each homogeneous region will be classified independently

as active or inactive using detection methods analogous to the pixel-wise test described

in Chapter 2.
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3.1.2 General Setting of Bayesian Image Segmentation

In a general setting, the fMRI activation mapping may be viewed as a particular

image segmentation problem. We are given a random continuous noisy image Y which

must be segmented into a discrete image X consisting of regions of distinct statistical

behavior. For example, in fMRI, image Y may be composed of the correlation values

(specifically, the correlation between amplitude time series and the reference signal)

at each pixel location; the image X may be just a binary detection map, as in Chapter

2.

To simplify the presentation, I will modify the notation slightly from that used

in previous chapters. From now on, I will adopt some notation from [10]. Symbols

without subscript refer to the whole image field. Individual pixels in the image X

are denoted by Xk where k is a point of a one-dimensional (1-D) or two-dimensional

(2-D) lattice, depending on the context. The collection of lattice points at scale j

is denoted as Sj. Random quantities are usually denoted by upper—case letters. For

notational ease, however, lower-case letters may denote the stochastic quantities or

corresponding deterministic realizations, which should be distinguishable also from

contexts.

We assume that each observed pixel in image Y is dependent on a corresponding

unobserved label in X. Each label specifies one of M possible states, each with its

own statistical behavior. In our case, M = 2 indicating “active” and “inactive”.

However, in general, we may need to segment the correlation image into regions with

homogeneous statistical behavior, so M 2 2.

The dependence of observed pixels on their labels is specified through the condi-

tional distribution of Y given X, i.e., py|,(y|x). The function py|,(y|x) is called the

likelihood function. In fMRI, we are essentially interested in inverting this relation-

ship; that is, we would like to determine pxly(x|y), the probabilistic description of the
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unknown activation map given the observed data. This calculation is facilitated by

introducing a priori knowledge about the size and shapes of regions, modeled by a a

prior distribution p,‘ (x)

By Bayes formula, we will estimate X given observed image Y = y as:

x = arg max p(X = x|Y = y)
I

= p(X=g)p<Y=le=x>
p(Y=y)

= p(X=x)p<Y=y|X=x)

Ear: x P(X)P(Y=ylxl

 

0‘ px(x)py]x(ylx)°

where upper case letters denote random quantities and lower case letters denote the

deterministic realizations.

This is the so-called maximum a posteriori (MAP) estimator. The general frame-

work for Bayesian image segmentation problem is shown in Figure (3.1) (adapted

from [10]).

Despite the apparent simplicity of this estimator, remember that X is 2-D image

of integer values, making optimization prohibitively difficult, in general. Further,

specification of the a priori distribution px(x) is not straightforward, either.

3.1.3 Multi—scale Image Segmentation Methods and Advan-

tages

Traditionally, statistical image segmentation has been accomplished using MRF mod-

els. The global statistical models in the MRF theory lead to substantially better seg-

mentation results than those of simpler, local methods [23, 50]. The theory of MRF

models provides a powerful framework for studying nonlinear interactions among dif-

ferent features [50]. Under the MAP criterion, it leads to the minimization of a global
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Figure 3.1. Illustration of image segmentation.

energy function which is very computationally expensive to carry out [28, 23, 45].

Recently, an alternative to the classical MRF approach to image segmentation

was proposed in [9, 10]. This approach is based on modeling the discrete field X as

a multi-scale Markov chain. In the sequel, it is called Algorithm 1.

The multi—scale hidden Markov model (MHMM) proposed in [15] and its extension

[49] may also be used to deal with the segmentation problem. Instead of the discrete

field X, the states of the wavelet coefficients at different scales are modeled as a

Markov chain. In the sequel, this approach is called Algorithm II.

According to the results and conclusions of previous work [10, 11, 40, 49], this

kind of multi—scale modeling not only captures the key inter-scale physical dependency

present in natural signals and images, it also leads to computationally efficient (usually

scale-recursive) algorithms. A more precise explanation of physical dependency will

be given later in the review of Algorithm I.
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However, before proceeding to the detailed description of algorithms, I will first

give a brief introduction to multi-scale analysis.

3.2 Multi-scale Analysis

In general, multi-scale analysis refers to the study of behavior of signals or images at

various spatial and/or temporal resolutions [8, 32, 53, 54, 63, 65].

3.2.1 l-D Multi—resolution Analysis (MRA)

Let us begin by considering the multi-scale or multi-resolution analysis of a finite

energy 1-D signal. There does exist 2-D MRA. However, it is not used in this disser-

tation and thus omitted. Finite energy signals are those signals belonging to the space

of square-integrable functions on the real line, L2(R), see Appendix I in Chapter 5.

An MRA of L2(R) is defined to be a sequence {Vj |j E Z} of closed subspaces of

L2(R) satisfying the following properties [32, 53, 65]:

1)

Vi C V)“, (3.1)

2)

f(x) 6 W 4:» f(2x) 6 V1“, (3.2)

3) for all f E L2(R),

1.11900!le ||= 0. orlimj_,_°o V, = {0} (3.3)

jig]: n P,’,f - f H: 0, orlimjnoo Vi = L2(R) (3.4)
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where P3, is the orthogonal projection on the space V], which can be considered as

an approximation of f at the scale of 2‘1. In the above definition, j indexes the

scale or resolution of analysis — a smaller j corresponds to a lower resolution of

analysis. A resolution of 2j corresponds to a scale of 2”. The first limit implies

that as resolution gets smaller and smaller (21 —-> 0), the approximation is just 0, all

information (particularly its details) about f is lost. The second limit implies that

the approximation Pf)f converges to the true signal f as resolution gets higher and

higher (23' —-> oo).

4) There exists a function ¢(t) E L2(R) such that {p(t — k)|k e Z} form an

orthonormal basis ‘for V0. k indicates the time (or spatial) location of analysis.

(b(t) is called the scaling function of the associated MRA, which plays an essential

role in MRA. Then it follows that the family {¢t(t) = 21/2¢(2J't — k)|k e Z} is an

orthonormal basis of V1 for all j E Z. The factor 21/2 is introduced for normalization:

II are) H W) n= 1.

The nesting of Vj C VJ.+1 implies that (b E V0 can be expressed as a linear

combination of {firtilk E Z}:

W) = Zhex/Mu — k), (3.5)

k

where coefficients {h,c =< (b(t), J2¢(2t — k) > [k E Z} constitute scaling filter.

In addition to V7, Wj is defined as the orthogonal complement of V1 in W“, i.

e., VJ.+1 = Vj €19 Wj for any j E Z. Wj represents the additional information that is

necessary to pass from an approximation at resolution Zj to an approximation at the

higher resolution 21“. A direct consequence is Wi J. Wj,i 5:5 j. For example, since

 

For sake of generality, some literature first introduce a function b(t) 6 V0 such that {b(t - k), k E

Z} is a Riesz basis for V0. Then another function ¢(t) E L2(R) can be constructed from b(t) such

that {¢(t - k)|k E Z} forms an orthonormal basis for V0. The content of this dissertation is not on

these issues of function construction, therefore I adopt a more direct and simpler definition.

48



W”1 J. V”1 = Wi 63 V’, we have W’+1 _L W‘.

As in the case of V0, there exists another function ’l/J E W0, which is called the

wavelet function and can be constructed from ¢, such that the family {p(x—k) [k 6 Z}

forms an orthonormal basis for the space W0. To understand how one can generate

ib(t) from ¢(t), consider the following. Because Wj C Vi“, wavelet function w E W0

can also be expressed as a linear combination of {fiffiilk E Z}:

Wt) = Etna/2M” — ’9), (3-6)

I:

where gk,k E Z is chosen to be l(—1)"h1_k and constitutes the wavelet filter. It

follows that the family (aria) = 21/21,!)(2j t — k)|k 6 Z} is an orthonormal basis of Wj

for all j 6 Z.

Iteratively applying the relationship Vj+1 = V1 EB Wj, we have

VJ = VJ—l EB WJ—l = VJ—2 EB WJ—2 EB WJ—l = = VJO EB WJ° . . . 69 WJ—l, (3.7)

As J -—> 00, we get

L2(R) = eszOWJ' a; V10. (3.8)

Further, let Jo —> -00, then we get

L202) = $jesz- (3.9)

Equation (3.8) means that there exist c,{°, called scaling coefi'icients, and Oi, called

wavelet coefficients, such that any one-dimensional signal f E L2(R) can be repre—

 

It turns out that there exist other recipes for 11). For example, g)c = (-1)"h1-k+2n,n e Z or

9): = (-1)"'1h_k_1 also work.
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sented as:

f(t) = choagoa) + 2 2012140), (3.10)

1: 1:10 I:

where the coefficients ci° =< f, a)? > and 9,7, =< f,i/z,{(t) > are called the discrete

wavelet transform (DWT) of f. The reader is reminded that 0 in this chapter de-

notes wavelet coefficents. By invoking Equations (3.5) and (3.6), there exist recursive

relations:
7
.
9
.
.

= < Leg; >= :h,_2,.c;+1, (3.11)

0}, = < f,t/1,{ >= Zgnchf’. (3.12)

In practice, there is a fundamental limit on the meaningful resolution when we sample

a continuous (infinitely high resolution) temporal signal or spatial image. Therefore,

we usually start with a scale subspace VJ , with J chosen to be large enough to repre-

sent the finest details of interest in a signal, since Pg,’f a: f for large J (see Equation

(3.4)). So we replace the semi-infinite sum in Equation (3.10) with a sum over a finite

number of scales JO 3 j S J, {J, Jo} C Z, where Jo and J indicate the coarsest scale

(or lowest resolution) and finest scale (or highest resolution), respectively.

This point can be paraphrased from another perspective as well. Because at high

resolutions, the scaling functions are similar to Dirac delta functions (assuming 45 is

localized and well-behaved, i. e. lim,_,co (b(t) = 0), since the time scale is compressed

while the magnitude scale is enlarged,

j —+ 00, 2j/2¢(2jt — k) —> 2‘j/26(t — k2-J'),

which can be verified by checking the integration results of both sides. Therefore, for
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j sufficiently large, for example, j = J, we have

ct = (Let)

= [00 f(t)2J/2¢(2Jt—k)dt

[00 f(t)2"/26(t — k2")dt

= 2‘J/2f(k2") = 2”/2f(kT.).

In other words, the scaling coefficients are approximately prOportional to signal sam-

ples at a sampling rate of T, = 2". So in practical computation of DWT, we start

with an initial set of scaling coefficients Ci, which are assumed to represent an ap-

proximation to signal f at a certain scale 2" (corresponding to the sampling period

T, = 2").

The wavelet and scaling coefficients at coarser scales j < J can be computed

recursively using the lowpass scaling filter {h_,,} and highpass wavelet filter {g_n},

but only even-indexed samples at filter outputs [are retained (downsampling) according

to Equations (3.11) and (3.12). This is called the pyramidal algorithm [65], the

realization structure for which is depicted in Figure (3.3).

Similarly, for signal synthesis (inverse DWT), we have

0;.” = Z C‘Lhk—Zm + Z Gingk_2m. (3.13)

The synthesis operations can be implemented using filter banks as well, involving

interpolation (upsampling) and the two filters {hfl} and {gn}, as shown in Figure

(3.4).

Under some conditions [32, 65] a filter {hnln e Z} corresponds to a valid MRA

satisfying the aforementioned conditions. Determination of the set of coefficients

{hnln 6 Z} (or corresponding scaling function (b(t)) is beyond scope of this disserta-
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Figure 3.2. Nested scale spaces and wavelet spaces

tion. Here, we are only interested in the simplest DWT, i.e., Haar wavelet transform,

in which case,

1 0 S t < 1/2

1 0 S t < 1

¢(t)= . ¢(t)= —1 1/2gt<1

0 otherwise,

0 otherwise,

and the analysis algorithm degenerates to much simpler form. See Section (3.4).
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Figure 3.4. Synthesis by filter bank
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3.2.2 Properties of the Discrete Wavelet Transform

Several attractive properties make the wavelet transform ideal for many applications

in signal and image processing [15, 42]. Two key properties are multi~resolution

and locality each wavelet 1b,],(t) is only a dilated and translated version of the orig-

inal mother wavelet «b(t) and is localized simultaneously in time and frequency. A

third property is the compressive property: the wavelet coefficients of real-world sig-

nals/images tend to be sparse. Two final properties are clustering and persistence: if

one wavelet coefficient is large/small, then its adjacent coefficients within the same

scale are very likely to also be large/small; and large/small values of wavelet co-

efficients tend to propagate across scales. The clustering property suggests that

coefficients may have strong dependencies within scale, while persistence leads to

dependencies across scale. The hidden Markov model used in Section (3.4) utilizes

these pr0perties.

It is very important to note that the above description is just mathematical multi-

scale analysis of a signal/image. Actually, in many applications [10, 11, 40] with

multi-scale analysis, it is the physical nature of the real signal (image) that is directly

modeled via a multi-scale representation. In those cases, no wavelet transform is

performed on the image at all. The motivation to do this is to utilize the nice multi-

scale structure. The nicety is two-fold as summarized in Subsection (3.1.3) and is

well embodied in the review of Algorithm I in Section (3.3) and Appendix V. This

is a fundamental point to be kept in mind. Otherwise, when referred to multi-scale

analysis, one may be misled to jump into the specific wavelet transform and gain

nothing.

In other words, multi-scale analysis and wavelet analysis are not synomonous:

wavelet analysis is just one form of multi-scale analysis. Of course, wavelet analysis

has some benefits as well, one of which, as opposed to other multi-scale analysis
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methods, is that it provides an orthogonal multi-scale decomposition that facilitates

modeling and computation, as we shall see in Section (3.4).

3.3 Image Segmentation by Multi—scale Markov

Modeling Discrete Field

In order to better understand the basic ideas of multi-scale modeling and to see clearly

the distinction between Algorithm I and Algorithm II, I briefly outline the main points

of Algorithm I [10] in this section. A more detailed mathematical derivation appears

in Appendix VI of Chapter 5.

3.3.1 Main Points of Algorithm I

First of all, let us refer to Figure (3.5) and make clear what the field Xj physically

means. Each resolution is a level in a quad-tree in the 2-D case, so a lattice point at

one resolution corresponds to four points at the next finer resolution. This group of

four pixels in the continuous image Y is considered as a block and Xj denotes the

field containing the labeling of each of the blocks at resolution j. We may assume

that the finer segmentation X1+1 of X is an interpolated version of Xj [9]. Note in

Figure (3.5), Y" E Y and X" _=_ X.

The fundamental assumption in Algorithm I is that the sequence of X1 forms a

first-order Markov chain [62], i.e., the distribution of Xj given all coarser scale fields

is only dependent on Xj’1:

P($j]$’ IS j — 1) == ijlzj—l($j]$j—l). (3.14)

This pyramid structure of the multi-scale random fields (MSRF) is depicted in Figure

(3.5b).
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Figure 3.5. Pyramid structure of the MSRF. (a) Continuous image Y at different

scales. (b) The random field Xj at each scale is causally dependent on the coarser

scale field Xj“ above it.
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The second important assumption is that each pixel Xi is only dependent on

a local neighborhood of pixels at the next coarser scale. 6k is used to denote the

neighborhood of point k. The first choice of the neighborhood 8k in [10] is a quad-

tree structure in 2-D case or binary-tree structure in 1-D case, as depicted in Figure

(3.6). Specifically, in the quad-tree structure each point is only dependent on a single

point at the next coarser scale — its father d(k). In words, if, by some means, we

know that 1”,: is active (Xi = 1), then with a high probability, we may say that its

four children are active as well. This probability is just the transitional probability

density between individual pixels from a coarser scale to a finer scale. The transition

probability that X,1, has state m given that its father is in state m’ is

. 1 _ qr
. . , —

 

This equation tells us two facts: 1) the probability that the labeling will remain the

same from scale j — 1 to j is qj + l—Xl-‘i, where q’ E [0, 1]; and 2) the probabilities that

the child has any one of a number of different labels from its parent’s are equally likely,

i. e., hf. The so-called “physical dependency” previously mentioned in Subsection

(3.1.3) is embodied in the transition probability of the Markov chain.

This kind of choice of neighborhood structure leads to a simple and efficient algo-

rithm -— called sequential MAP (SMAP) algorithm — for the image/signal segmen-

tation [10]. For more details, refer to Appendix VI of Chapter 5.

3.3.2 Simulation Result

Figure (3.7) shows the segmentation result for one 2-D image. In Figure (3.7) there

are M = 2 states. Each state corresponds to a Gaussian distribution, but has different

mean and variance dictated by its label.
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Figure 3.6. Neighborhood structure used in Algorithm 1. (a) Quad-tree structure used

for 2—D case; (b) Binary tree structure used for 1-D case.

3.4 Image Segmentation by Multi—scale Hidden

Markov Model (MHMM) of Wavelet Coeffi-

cients

An alternative to the multi-scale method of [10] based on wavelet analysis can also be

used for image segmentation, which is a major contribution of this chapter. The main

idea is to take advantage of the properties of DWT, as explained in Section (3.2.2).

Its origination traces back to [15, 49]. The new method consists of two procedures:

the first one is edge detection and the second is label estimation. In the following

subsections, I will address the first step of edge detection in detail, since it is the

core of our algorithm. I will then briefly explain the second step, which is much more

straightforward, and provide some example applications.

The idea of applying wavelet analysis to edge detection is quite simple. Roughly

speaking, wavelet coefficients represent the differences between signal/image approx-

imations at different scales (or resolutions). Hence, they are actually a kind of difler-

entiation, and intuitively, are well suited for edge detection.
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(b)

Figure 3.7. One simulated image segmentation using Algorithm I. (a) Original noisy

image; (b) Segmentation result.
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3.4.1 Likelihood Function for fMRI Data

In this chapter, I deal exclusively with fMRI magnitude (rather than complex) time

series which is approximately Gaussian distributed at reasonable SNR levels, as dis-

cussed in Chapter 2. Referring back to Equation (2.4), the correlation between the

reference signal r and the magnitude time series 2:

N

y = rTz = :rjzj (3.16)

i=1

is Gaussian distributed (provided the signal noise ratio is not very small). Once again,

the reader is reminded that y in this chapter denotes correlation value.

Hence, the fMRI correlation image may be modeled as a 2-D Gaussian process.

For simplicity, let us first consider the 1-D case. Extension to 2-D case is given

in Subsection (3.4.7). Yielding to convention, we assume that the length of the

correlation sequence is a power of 2. The observation model is:

yi:p,{+w,{, k=0,...,2’—1, (3.17)

where y" _=_ {yjc’} are the observations, p" 5 {p,{} are “true” correlation values, and

{w;,’} are noise.

Now we are going to employ the Haar multi-scale analysis:

'+1 '+1

2!: + yik+1

fl

 

at: .k=0.....2j—1.J05j5J—1.

The multi-scale analyses of p and w are defined in an analogous way. The binary

tree structure of this multi-scale data analysis from scale j+1 to scale j and then to

scale j-l (fine-to-coarse) is shown in Figure (3.8) (adapted from [49]).
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Figure 3.8. Binary data tree structure for Harr wavelet analysis.

It is straightforward to see that

y}, = pi + wi. (3.18)

The noises {wile = 0, - - -,2J — 1} are assumed to be independent, identically

distributed (i. i. d.) as Gaussian random variables with zero-mean and variance 0.

Because Haar wavelet transform is an orthonormal transform, it then follows that the

preceding sentence is also true for any j, resulting in the likelihood function (refer to

the above Equation (3.18)):

23-1

p(ylp”)= [IA/(main), JonSJ (3.19)

where y3= {yizjho1and similarly for p’, N(x | p, 02) denotes a Gaussian density

with mean p and variance 02 evaluated at the point x.

The relationship between a “parent” (e. g., yi) and a “child” (e. g., ygzl) is very

important in multi-scale data analysis. The parent-child conditional likelihood in our
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case turns out to be:

‘+1 ' +1 Vi ‘7

p(ygk [Ui,P)=N (3’21: If'l'+—6J\/——2—1';)1 (3°20)

where

. '+1_ ‘+1

677:: 2k 2k+1 (3.21)

\/§

 

is simply the Haar wavelet coefficient of true correlation p at scale j and location k.

This nice form of the likelihood suggests the use of a special kind of a prior model

for the wavelet coefficients in Subsection (3.4.2), which complements the observation

model and leads to closed-form expression for the a posterior distribution of the states

in Subsection (3.4.4).

The conditional density in Equation (3.20) is derived as follows.

 

 

yj = + 3121:“

k kfi

'+1 '+1

931:; = 2k — 2k+1

:lx/2

1 ' 1

(72):“ + “J“ -1112)?“

J2

 

9i+9wi

where fly}, and Our}, (read 0y and 0w as one symbol, not the multiplication of two

symbols) are the Haar wavelet coefficients for observed correlation data y and noise

w, respectively.

Summing up,

—— + —4. (3.22)
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And since p and w are independent, so are 0}, and 91121. It can also be shown that

y}: and Owi are independent since:

E(149114.) = [E(“42'1) “103551021

:(o2 — 02) = 0.

Since both yfi andfl’hare independent of Owk, and

0w): ~ N(O, 02),

by the property of conditional likelihood [62, 61], Equation (3.20) ensues, which

completes the derivation.

Further, the likelihood function in Equation (3.19) with j = J can be factorized

as follows:

J—l2J-l

p(ylp)= y)’°lp’° HIM;liter; (3.23)

j=Jok=0

where Jo is the coarsest scale for the analysis (usually we use Jo = 0), p(yi,,',H lyi, 01,)

is given by Equation (3.20) and p(yJ°|p"°) is given by Equation (3.19) with j = Jo.

Note that p8 is the global average correlation data.

The factorization follows from the following lines of reasoning. Let us refer to

Figure (3.9), which is an example of three scales. The key point is that the information

contained in data at the finest scale {y§, yf, yg, y§} is completely the same as that in

{313,313, y3, y3} (corresponding to the white dots in Figure (3.9)), therefore,

p(yzlp) = P(y3.y3.y3.y§lp)

= 10013 lP)P(yt. 113. ails/3 . p)
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Figure 3.9. PrOpagation of wavelet coefficients (three scales)

= 21013 lp)p(yt 11/8. p)p(y3. 11308. 213. P)

= 1903 lp)p(y3 lyg. P)p(y3 ly3. vi, p)p(y§|y3. 313. at. p)

= p(y3l93)P(ytly8. p)p(v§ly3.p)P(y§|1/i. P) (324)

due to Equation (3.20), for example:

01

p(ytlyg. p) = N(ytly3, f).

Generalization of Equation (3.24) leads to Equation (3.23).

3.4.2 Key Point for Edge Detection and a Prior Distribution

for the Wavelet Coefficients

Now let us consider (joint) a prior probability for the (unknown) wavelet coefficients

9. A simple approach is to model them as independent Gaussian mixture random vari-

ables. We move beyond this simple a prior, by specifying probabilistic dependencies

between the states underlying the mixtures of parent and child wavelet coefficients.
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To deduce discrete state estimation from continuous data, the key point for our al-

gorithm is to associate the continuous wavelet coefficients with a 2-state (discrete)

Markov chain as depicted in Figure (3.10), i. e., each wavelet coefficient is described

by a Gaussian Mixture Model (GMM). In Figure (3.10), each black node represents

a continuous-valued wavelet coeflicient 0%; each white node represents the discrete

hidden state variable s}, for the corresponding wavelet coefficient 0}: (connected by

a solid line to the state variable 31,). To match the inter-scale coefficient dependen-

cies, the hidden states are vertically linked across scale by dashed lines. Connections

across scale capture the “parent-child” dependency inherent in the DWT of natural

signals/images [49].

For our real problem of edge detection, the states of Markov chain are unknown

(“hidden”) and represent the presence or absence of edges: state 0 indicates a ho-

mogeneous region; state 1 represents the existence of an edge. If we believe that

the underlying signal is generally smooth with a few large edges, then the follow-

ing modeling is intuitively reasonable. Specifically, consider two-state mixture model

where state ‘0’ is a highly probable low-variance Gaussian density, indicative of a

homogeneous region, while state ‘1’, corresponding to another less likely Gaussian

density with a larger variance, indicates the presence of an edge (non-smooth area).

Using this interpretation, we may test for the presence of an edge simply by checking

whether or not the following condition holds:

p(st = lly) > p(si = 013'). (3.25)

If it holds, then we conclude there is an edge at scale j and location k.

Keeping these basic ideas in mind, let us now turn to a formal mathematical

description. The MHMM is based on the modeling assumption that the value of each

state 3}, is caused by the value of its parent state £1912]. This leads to the factorization
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Figure 3.10. Wavelet-based HMM.

of the joint state probability function:

J—121'— 1

=11 HPUIlk/l)’2l (3'26)
j=Jo k=0

where S:_ {sj }’_=__g’1111'”,”2%_1 and p(sg|sg1):— p(sg). At the coarsest scale j-— 0, there

is no parent wavelet coefficient and so a prior is introduced for the state 33 of the

wavelet coefficient 03): 93 (m) E p(33 = m).

Another property of HMMs [16, 52] in general is that, given their respective state

values, all parameters 0 are conditionally independent, which is also implied by the

assumption of the model. That is,

J—l 2L1

p(9ls) = H lealst), (3.27)

'=Jo Ic=0

where p(Oilsi) is assumed to be Gaussian as explained previously:

p(eilsi = m) = NWllui... #3). (3.28)
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We regard the signal and its wavelet coefficients as realizations of a zero-mean random

signal. Therefore, we assume #2,, = 0 for all m and j. In general, the variances T3,? are

scale (j)-dependent, but in our experiment we set them the same at different scales.

In this case, there are only two parameters 7'6" and r3.

3.4.3 A Failure Modeling

An acute reader might raise the question: why do you abandon Algorithm I and pro-

ceed to think about Algorithm II? The first reason is that I need develop something

new for my dissertation. The second reason is that actually we made a big mis-

take before proposing this two-step approach for image segmentation (edge detection

followed by state estimation) in its present form.

At this point, I would like to further emphasize the meaning of Xi and its mod-

eling in Equation (3.15) in Algorithm I. Algorithm I places label X,1 directly on some

abstract of scaling coefl‘icient Y: — refer back to Figure (3.5)). This is a crucial virtue

and stands as a sharp contrast with our Algorithm II, which places states on wavelet

coefi‘lcients. Since the states in Algorithm I reflects directly the image’s classifica-

tion labels, it is easy to physically understand the transition of states between upper

and lower scales (see Equation (3.14) and Equation (3.15)), and thus solve image

segmentation problem directly. Another feature of Algorithm I, as already stated in

Subsection (3.2.2), is that it does not resort to any DWT at all, which is another

contrast with our Algoprithm II.

During the second stage of my research, at first we also hoped to segment the

correlation image directly in one step to active and nonactive regions (instead of

presently used edge detection and label estimation). The fundamental point was to

deduce the labels of image pixels from the states of wavelet coefficients. The modeling

was to use the state of wavelet coefficient at the next coarser scale to represent the

labels of two image pixels at the next finer scale which correspond to that wavelet
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coefficients; mathematically, to associate 8):, the state of wavelet coefficient 0% at scale

j, with one of four values, depending on the two corresponding image pixels at the

next finer scale j + 1:

0,0) 2:1, 2:1, inactive (small)

' 1. . ' 1 .

0,1) 2: inactlve , pat“ active

#
1
.
.
.

||

(

(

. . (329)
(1,0) p.321 active , F2211 inactive

(1,1) p321, pit], active (large)

We also suspected that this approach is equivalent to Algorithm I. But after sev-

eral months’ trial, it turned out that our initial conjecture was wrong. The underlying

reason is that the states of wavelet coefficients DO NOT have the same physical inter-

pretation as to represent the label of image pixels in Algorithm 1. Further, according

to the compressive property of DWT, the states of wavelet coefficients should be just

a few. However, think about the general situation of image segmentation in which

there are M > 2 possible labels for each image pixel. According to above modeling

in Equation (3.29), there would be M2 labels for each wavelet coefficient, which is

contradictory to the compressive property.

That conjecture cost me several months’ time on analytical formulation and nu-

merical simulations. However, our efforts ended up in vain. “Failure is the mother of

success”. So later I changed the meaning of the states of wavelet coefficients to that

as described in the preceding Subsection (3.4.2), and accordingly changed Algorithm

II to two-step approach: edge detection followed by label estimation. The successful

results are shown in Subsection (3.4.8) and Section (3.5).
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3.4.4 Solution for Joint a Posteriori State Probability

Let us continue our discussion with Algorithm 11. Having set up the formulations for

likelihood and a prior, we are now ready to determine the joint a posterior density of

the states 8 given observations of correlation data y. Note that:

p(s=me) = /p(8=m.0ly)d9

oc [pols = m. 0)p(9ls = m)p(s = node

J—12-7—1

= HH [attheirhe =mi)p(0’.Isi=mi)
j=Jok=0

pwzmdng=mmww

J—12-7—1

= H Hp((Sjl': mklsJ'lie/121 ——m[k/12J)Lj(si =mi) (3.30)

szok

where mi is one particular (deterministic) value assumed by random state variable 3},

and Li(3i = m) or p( Jllyi, sf, = m), the essential ingredients for our estimation of

the a posterior states, are actually marginal likelihoods. From the likelihood function

in Equation (3.20) and the a prior in Equation (3.28), we derive them to be:

Lion) = [a(atIlene".. =m>p<.siI=m)d0t

0‘ “1123313315.: m)

= N( é+1lflm+fikfin__-72+0’2)

x/i f’ 2 ’

ngng-L kszugy—1,m=QL an)

Proof: First recall Equation (3.22):

'+1___yi+9__y_ie____ yil+ 9i:

2" 1/2 72+ J2

+—

6w},
7:
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where the first two terms are independent of the third one.

Further, recall Equation (3.28):

i. e.,

Therefore,

 

- - - #2.. if
E(2:1lyfu3ie=m) = ’J—E+-\/k72-

- - - 'r,J,,2+0'2

V“’"( 2zllyfei5'i =77!) = 2

So, Li(m) or p( 2zl|yi,si = m) (where y; is regarded as constant), one marginal

density function, has the closed-form representation in Equation (3.30).QED.

3.4.5 Marginal a Posteriori State Probability Calculation

After determining the joint a posteriori state probability, we can use an upward-

downward probability propagation algorithm [15] to determine the marginal a pos-

terior probability of state 3}, for the wavelet coefficients 9;], and then use Equation

(3.25) to test the presence of an edge.

In the upward-downward algorithm, the Up Step marginalizes the a posterior

state probability recursively from the finest scale j = J — 1 to the coarsest scale

j = 0. At the end the a posterior state probabilities {p(sg = mly)},’]‘,=’(] are provided

and partial marginalizations are also stored for use in the Down Step. The Down
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Step computes the marginal a posterior state probabilities for each sf, recursively.

Specifically, the upward-downward algorithm goes as follows [15, 49]. In the following,

eflmlv E p(si = mist/‘2, = n) and 98(m) a not = m).

Upward-Downward Propagation Algorithm

Up Step

Beginning at j = J — 1, compute

d(n) = Z d(m|n)Li(m), (3.32)

m=0

Then forj= J—2,--~,1

nan) = 2 arm) itinmmtlmInuilm) (3.33)
m=0

and for j = 0

(1800 = (1600611 (n)eg(n)L3(n). (3-34)

The final quantities {q8(m)} are the (unnormalized) posterior state probabil-

ities {10(88 = mly)}.’.f;ti-

Down Step

Beginning the posterior states probabilities at scale 0, set p8(m) = q8 (m). Then

forj= 1,---,J—2

. M" 712 ' mn {H m 2411 m Lj m
mm)___zp’n/I(n)a( mg) )q]. ( ) .< ) (3.35)

n=0

 

andforj=J—1

 

. t.-. at; (n)e’(mln)Li(m)
Pl.(m)=2; l” £01) .
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The final quantities {p,’c(m)}x;01 are the desired marginal a posterior state

probabilities {p(si = m|y)},“,f__f01.

This determines all the marginal a posterior state probability. Then according to

the criterion in Equation (3.25), if the a posterior probability that state S": is 1 is

greater than the a posterior probability that state Si is 0, then we decide that there

is an edge between p321 and pljfll. Note, in this formulation we actually adopt the

Maximum Marginal a Posterior criterion.

3.4.6 Image Label Estimation

After the edges are determined, it is straightforward to formulate likelihood ratio test

to estimate the label of each homogeneous region.

Consider the following multi-hypothesis problem. The observation data y =

[91 92 yn]T within each homogeneous region is Gaussian random vector of di-

mension n. The M hypotheses are

H,:y~N(m,-,C',-), i=1,2,°°°,M, (3.37)

where tn, and 0,, which are assumed known, are the mean vector and covariance

matrix of the observation under the ith hypothesis (i = 1, 2, - - - , M). Suppose each

hypothesis is equally likely and minimum error criterion is adopted [61], the decision

rule then boils down to

choosing H,- where j = arg min [I y — m,- [I2 + lnIC,-|, (3.38)

where I] y -- m,- ||2 E (y - m,)TC',71(y -- 111,-) here and |C,-| is the determinant of 0,.

In the following numerical simulation, the observed data within each homoge-

neous region are assumed to be i. i. d.; that is, in each region it is assumed
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that m,- = mil and C, = ofI. Some important practical problems are the as-

signment of the a prior probability 93(m) for 33 and state transition probabilities

d(mln) = p (sfc = ml S{;/12J = n), as well as the variances 7'3 and 1'12 characterizing

Gaussian mixture density in Equation (3.28). Selection of the parameters for the

Gaussian distribution characterizing each homogeneous region is also crucial. These

parameters may be estimated by a complicated EM algorithm [61]. For the ini-

tial investigation, I set them empirically (by observation). It turns out that our

experimental results are insensitive to the a prior probability 93(m) and transition

probability gumln). This apparent robustness is a nice feature.

3.4.7 Extension to 2 Dimensions

The preceding descriptions in this section are all confined to 1-D case. Direct applica-

tion of the above procedures (edge detection followed by image segmentation) in 1-D

to 2-D is not very easy. Recall the core idea of our Algorithm II is to use the states

of wavelet coefficients as indicators of edges. This is not easily extendable to 2-D

images, since we have three sets of wavelet coefficients at each scale for 2—D DWT,

reflecting signal intensity changes in three orientations (horizontal, vertical and diag-

onal) [53, 54]. How to use the wavelet coefficients to represent edges of 2—D images

in our general framework is not straightforward and needs future consideration.

We can, however, extend the multi-scale analysis and MHMMs from 1-D sequence

to 2—D images by the following method. Instead of taking the usual 2—D wavelet

transform of the original image, we use the following conversion method. First we

convert the original 2-D image into 1-D sequence, and then apply previous l-D wavelet

analysis to the resulting sequence. The conversion details are: first split the image

vertically into two halves, then horizontally splitting each half into two quarters, and

reiterate until each one is a 1 x 1 pixel. Refer to Figure (3.11) for details. The

merit of this conversion is that it retains the original spatial configuration. And by
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Figure 3.11. Conversion of a 2—D image to 1-D sequence

this conversion method, the essential computations are perfomed with regard to 1-D

sequence and thus quite affordable.

3.4.8 A Simulation of the New Segmentation Method

Figure (3.12a—c) shows a simulated noisy image, the detected edges and the gray level

of the segmented image by Algorithm II, respectively. A two-state MHMM is specified

for this problem with the following parameter settings:

78 = 1,

7'12 = 100,

£Wl= &

dmm =.ak=Q~3W-Lj=LngJ—L

9,7;(0I1) .25,k=O,---,2-l—1,j=1,...,‘]_1.

Figure (3.12c) demonstrates that the overall result is excellent.

In Figure (3.12b), there are some artificial edges (boundaries), because, for the

sake of numerical stability, the whole image is divided into 16 subimages and our

algorithm is actually applied to each sub-image. This parsing also brings another

advantage: greatly reducing false edges in the final segmented image. For example,

the region outside the brain usually has different statistical behavior as that inside
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Figure 3.12. One simulated image segmentation by Algorithm II. a) Noisy image; b)

Detected edges; c) Segmented image.
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the brain. By this parsing, these two regions are almost treated separately, thereby

greatly reducing boundaries between brain and air, which are most likely to be false

edges (i.e., edges beyond our interests of activeness). See the following fMRI data

processing example in Figure (3.13).

3.5 Processing Results for fMRI Data by Two-

Step Approach

As stated in the beginning of this chapter, the method for fMRI detection in this

chapter involves a two-step procedure: multi—scale image segmentation will be first

used to break the correlation image into different regions of homogeneous statistical

behavior, each region will then be tested independently as active or inactive by single

pixel detection method.

In order to see the potential of this method for fMRI detection, the following

experiment is conducted to compare results from the combined effects of single pixel

detection and image segmentation with results obtained in the last chapter based

solely on pixel-wise detection.

Using the model introduced earlier in Equation (2.1), a simulated fMRI complex

time series is generated at each pixel. In order to simulate the profile of the brain, the

magnitudes of the baseline signal (a’s in Equation (2.1) in the complex time series

roughly follow the magnitude data from a static brain image. Actually the original

complex data used in this example are the same as those used in Figure (2.5). Next,

the correlation value at each pixel is computed by correlating the magnitude time

series with the reference — see Equation (3.16) — to produce Figure (3.13a).

Figure (3.13b) is the segmented result of the correlation image in Figure (3.13a)

based on our Algorithm II in this chapter. There are M = 2 labels: each pixel is

76



assigned to either 0 or 1 according to its label. The parameters in this example are

set to be:

02 = 1

7'3 = 1;

7'12 2 100;

93(0) = -95;

g},(O|0) = .95,k=0,~-,2J‘-1,j=1,---,J—1;

d(Oll) = .05,k=0,---,2J‘-1,j=1,---,J—1;

m0 = 0;

"11:2.

In this example, I set 01 and 00 (variances for the Gaussian distributions charac-

terizing two homogeneous regions) to be equal. The test criterion in Equation (3.38)

reduces to simpler form in this case. The original simulated active region in Figure

(2.5a) is a 9*9 SQUARE (the coordinates are: y = 40, 41, - - - , 48; a: = 34,35, - - ~ , 42);

in Figure (3.13b) the white region is 10*8 RECTANGLE (the coordinates are:

3; = 41, . - - ,48;.z‘ = 33,34, - ~-,42). They are in good agreement but not in perfect

match. This is not surprising, since, in general, we cannot guarantee the segmentation

step produces exactly the same GEOMETRY as the original simulated regions.

Next I consider applying single pixel detection technique in Chapter 2 to each

of the above homogeneously (statistically) distributed region. The idea is to regard

each homogeneous region as one large, macro-pixel: the average of all time series

inside each macro-pixel is taken to be the new time series characterizing this macro-

pixel; then apply single pixel detection (MC detection) method to the new time

series individually to determine which of these macro-pixels is active and which one
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is inactive. By this approach, the micro-pixels (original pixels in Figure (3.13a), in

contrast to macro-pixel) corresponding to the black region in Figure (3.13b) are all

inactive, which is expected since this region contains a large area outside the brain.

The micro-pixels in Figure (3.13a) corresponding to the white region in Figure (3.13b)

turn out to be all active. In other words, by this approach, only 9 pixels inside the

square are missed while the 8 pixels outside the square are false-alarmed.

Now let us take a comparison between Figure (2.5) in Chapter 2 and Figure (3.13b)

in this chapter. Recalling the results in last chapter, we see spurious activation regions

outside the brain. However, the falsely alarmed regions disappear in Figure.(3.13b)

(except for 8 pixels outside the square) after combining image segmentation with

single pixel detection. Pure single pixel detection methods failed to detect some

active pixles inside the small square in Figure (2.5a). However, these regions (except

for 9 pixles) are now correctly detected by combining image segmentation with single

pixel detection.

The enhancement of detection efficiency is clearly visible and also easily under-

standable. Actually we are given spatial-temporal series. However, the pixel-wise

detection method used in the last chapter only takes temporal information into ac-

count: spatial information is completely ignored. The image segmentation algorithm

in this chapter exactly complements the pixel-wise detection and remedies its short-

coming: it utilizes the spatial correlation information inherent in the data. So it is

no wonder that the detection performance improves after image segmentation.

To see the influence of different parameter setting on detection results, I produce

another correlation image and corresponding detection map in Figure (3.13c) and

Figure (3.13d). Figure (3.13c) is the correlation image produced completely by the

same procedure but with a/o = 10 (a and 0 here are two parameters in our model

(2.1)). If we use the previous set of parameters, the detection result is the same as in

Figure (3.13b). However, Figure (3.13d) is the corresponding detection map achieved
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under a different set of parameters: 02 = 4, 73 = 2, r? = 200 (other parameters are

the same as those used for (3.13b)). The detected region in this case is 8*8 square

(the coordinates are: y = 41, - - - , 48; a: = 33,34, - - - , 40). The performance from this

set of parameters is inferior to that from the previous set of parameters.

To my knowledge, the idea of multi-scale detection has not been applied to fMRI

data processing yet, and therefore the method in this chapter is quite original and is

promising to future real fMRI data processing.

One last point I’d like to make is that in Figures (3.13)b and (3.13)d the brain

profiles are artificially overlapped, as are the cases in Figure (2.5).
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Figure 3.13. Processing results for fMRI data by two-step approach. a) One fMRI

correlation image; b) Segmented image of (a), also final detection results by combina-

tional use of image segmentation and single pixel detection; (c) Another correlation

image; ((1) Segmentation and detection result of (c).

80



CHAPTER 4

Discussions and Conclusions

4.1 For Pixelwise Detection

In Chapter 2, a novel nonlinear GLRT detector for fMRI using complex data is devel-

oped, and is compared to the commonly used MC test and the recently proposed CC

test. The test statistic for the nonlinear GLRT detector has a closed-form expression.

All three tests are roughly equal in terms of computational complexity. Theoretical

analysis establishes an invariance property for the test statistic, and it is shown that

the GLRT and the CC test are asymptotically equivalent (as the length fMRI time

series increases). Monte Carlo analysis is used to demonstrate that the GLRT per-

forms better than the MC test or CC test overall. Furthermore, the analysis reveals

that a desired Pf can be achieved with the GLRT using thresholds selected from

well-known distribution tables. The distributions of GLRT statistic at high baseline

signal intensity under two hypotheses are approximated as well.

There are several avenues for future work within the GLRT framework. First,

the noise structure in fMRI is very complicated. For simplicity and the purpose of

demonstrating our method and ideas, we assume the noise is white and Gaussian.

The whiteness assumption does not change the problem essentially, since given a

known time-correlation structure we can always use the Choleksy factorization of the
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noise covariance to whiten the data [56], producing a model with the same form as

that used in Chapter 2. Hence, many of our conclusions are easily extended to more

realistic noise models that incorporate random fluctuations due to the respiration

and cardiac cycle and patient motions [5, 29, 38], provided that these components

are known.

Second, more realistic (and necessarily more complicated) signal models can be

used in the GLRT framework. For example, multi-parameter models of the reference

signal 1' could account for uncertainties in the BOLD response. Multi-parameter

linear regression models of the response could be used within the GLRT framework

to make the test more robust to such uncertainties.

Some difficulties that we face, however, are 1) the distribution of noise n is usually

unknown a priori — not as nice as Gaussian model which is adopted in this disserta-

tion, and estimation of the noise covariance is a challenging issue even if it is Gaussian

distributed; 2) the structures of nuisance components are quite spatially-varying and

it is hard to distinguish the signal components from the nuisance components. How

to determine adaptively the signal and nuisance components from real data is an

important issue.

Actually, when I was studying on our nonlinear model, of course I pondered on

the linear model in Equation (2.3). Specifically, the problem under my consideration

was how to determine the best representations for signal subspace H and nuisance

subspace S for (magnitude) time series directly from actual data. Ardekani et al

went one step ahead of me. In [2], they partially solved the problem under my

consideration (he also dealt. with magnitude time series), that is, he devised one

method for determining the best representation of nuisance component assuming the

signal component has a known form. Completely solving the problem remains an

important issue.

Finally, we close with a summary of our conclusions regarding complex domain
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fMRI. First, at relatively high baseline signal intensity (a/o > 3), the simple MC test,

which is very common in practice, performs quite well. Hence, in such regimes there

is no compelling reason for testing based on the complex data. This is expected since

the magnitude data is approximately Gaussian at high signal intensity, in which case

the MC test is nearly optimal. In fact, in most typical fMRI experiments a/o > 3 and

the MC test is adequate. However, at lower baseline signal intensity the performance

of the MC test drops off dramatically, and in such situations complex data tests

such as the new GLRT and CC test offer superior performance. Low signal intensity

does occur as the spatial and/or temporal resolution of the fMRI study is increased.

Most fMRI experiments work with limited resolution in order to avoid the low signal

intensity problem. However, high resolution, low signal intensity fMRI may be useful

in certain research or clinical paradigms, and in such cases we advocate the GLRT.

4.2 Consideration on Spatial Information

In the detection method of Chapter 3 I first segment image composed of correlation

data which are assumed to be Gaussian. I then apply single pixel detection method

to each homogeneous region. One disadvantage in real data processing is that we

do not know a priori M, the definite number of homogeneous regions to which the

correlation image is to be classified. We may turn the wheel around: first apply pixel-

wise detection to get the values of test statistics at all pixels, and then apply image

segmentation algorithm to decide active and non-active regions. One advantage in

this direction is that we have a definite number of labels (M = 2) when we perform

image segmentation. However, in this case, the data (test statistics) are most likely

to be F distributed and the nice factorization for likelihood function and parent-child

transition in Chapter 3 breaks down. Hence applying ideas in our Algorithm II is

much more difficult and entails further consideration in this case.
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Considering utilizing spatial correlation information, this dissertation uses

Bayesian image segmentation method. One practical difficulty in real data processing

is that it is hard to determine and incorporate the a prior distribution. Other ap-

proaches involving spatial consideration can be used as well. For example, clustering

analysis are gaining more recognition in this field [20, 26, 27]. Borrowing some ideas

from array signal processing [47, 58, 70] may also be beneficial to fMRI detection.

Formulation as decentralized detection problem is also a promising candidate [30, 51].

4.3 Epilogue

As stated in the very beginning of this dissertation, fMRI involves a lot of background

in physiology, neurology. This dissertation deals with pure signal and image process-

ing, because I lack a priori knowledge about the spatial varying nature of fMRI time

series, the feature of physiological respiration, machine and/or head motion artifacts,

etc. To fully validate and further refine the methodologies developed in this disserta-

tion, comprehensive testing and evaluation with real fMRI data is necessary.

In view of the great complexity of fMRI data processing, insight and expertise

of experts from other fields are very valuable — even indispensable — for success-

ful, practical research on real data processing. However, one biggest disadvantage

during my research is that I did not have enough communication and collaboration

with specialists from other fields, let” alone control over specific experiment. This is

exactly what hindered me from real data processing in this dissertation. I hope these

drawbacks can be remedied later in the future.
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CHAPTER 5

Appendices

5.1 Appendix I: Notations and Some Results on

Projection Matrix

Some mathematical conventions and notations used throughout this dissertation are

established here.

All norms are the standard (Euclidean) 2-norm. Given two real one-dimensional

(1-D) function f(t),t 6 R and g(t), t 6 R, their inner product is defined as

< to >2 [R f(t)g(t)dt.

The norm of f is defined as

H f |l= \/< M >-

Given a sequence h", —00 < n < 00, its norm is defined as

H h n: (5"?
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L2(R) is defined to be the set of {fl [I f ||< oo}. 12(Z) is defined to be the set of

{hnl H h |l< 00}-

Given a real column vector x of dimension N, its norm is defined as

 

||x||=\/)_cT_x=\Z$?.

 

Let M denote an p x q matrix. Let PM denote the matrix that projects a vector

onto the subspace spanned by the columns of M, i.e., PM = M(MTM)‘1MT, where

the superscript T denotes matrix transposition. Let Pf; denote the matrix projecting

a vector onto the complementary subspace that is perpendicular to the subspace

spanned by the columns of M, i.e., Pi, = I — PM, where I denotes the p x p identity

matrix. There are several properties of a projection matrix [4]:

1) Idempotent: P2 = P. The eigenvalues of a projection matrix are either 0 or 1.

2) Symmetry for orthogonal projection: PT = P;

5.2 Appendix II: Some Preliminary Results on X2

and F Distribution

Def 1[33]: Suppose x is a N dimension column random vector x ~ N(m, I), i.e., the

x,’s are independent and 2,- ~ N(m,-,1). If a: = H x I]2 = 21:12:? then :1: ~ xMA)

where the noncentrality parameter /\ = [I m [I2 = 2i, mg. When /\ = 0, it is called

central x2 distribution, otherwise noncentral.

Lemma 1: Suppose x is a N dimension column random vector x ~ N(m, 021), i.e.,

the x,’s are independent and 2:,- ~ N(m,, 02), and P is a projection matrix of rank r,

then

2

w~ x30)-
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where the noncentrality parameter A = “Egan-”i.

Proof: Since P is a projection matrix with rank r, it can be factorized as P =

UNmUflxr where U is a full rank (= r) orthogonal matrix, i. e., UTU = In". Then

|| Px I]2 = xTPx = xTUUTx = l] UTx “2. UTx is now a r x 1 Gaussian random

vector due to the orthogonality of U. So

E(UTx) _—. UTm

Var(UTx) = E(UTxxTU)—E(UTx)E(xTU)

= UTE(xxT)U - E(UTx)E(x'-"U)

= UT(mmT + olexN)U — UTmmTU = 021,”.

In other words, 9% ~ N(U:"‘,I,x,). Therefore the conclusion in the lemma 

follows from Def 1: “Kali-”3 2 || 9;! II2 with the noncentrality parameter A = [Mg—"J: =

A direct consequence is that A = 0 when Pm = 0. In this case, since Pm =

U(UTm) = 0 and the r column vectors in UNX, are independent, we must have

UTm = 0.

Def 2 [33]: If :1: = 27%, where 2:1 ~ x§v1(A) and 232 ~ {732(0) and $1,:r2 are indepen-

dent, then a: has F distribution, denoted as 3: ~ FN,,N,(A). When A = 0, it is called

central F distribution, otherwise noncentral.

Lemma 2: Suppose P and Q are two projection matrices with rank r1 and r2

respectively, and PQ = 0. x ~ N(m, 021). Qm = 0. Then

ll PX ll2
— ~ F, ,. (A).
II ox ”2 ‘ ’

where A = 11%“113.

Proof: Similar to the proof for Lemma 1, we can decompose P and Q as: P =
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UIUT, Q = Ung". And UT): and ng are 7'1 x 1 and 7'2 x 1 Gaussian vectors

and the latter vector has zero mean. In light of Lemma 1, ”-237”: ~ x§(A), and

2

“5%,“— ~ x3(0). Further, their correlation is

E[U{xxTU2] = UITE(xxT)U2

= U,T(mmT+ozl)U2

= 0'2UTU2

= 02(UTU,)U§‘U2(U§"U2)

= e2uz‘PQU2

=0.

Therefore, the numerator and denominator are independent and the conclusion in

Lemma ensues.

5.3 Appendix III: Definition of Rician, Rayleigh

and t Distribution

Def 3 [33]: The pdf of X = ,/X§ + X3, where X, ~ N(p1,02) and X2 ~ N(,u2,02)

are independent, is called Rician pdf. Its pdf is explicitly expressed as:

3‘5; exp[-%,r(:z:2 + a2)]Io(§§-) a: > O

O x<0,

Px($) = (5.1)

where 02 = pf + [1% and [0(a) is the modified Bessel function of the first kind and

order 0:

10(u) = if” ezp(u cos 6)d0. (5.2)
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When a2 = 0 it reduces to the Rayleigh PDF.

Def 4 [59]: Suppose X ~ N(O, 1) and Y ~ x3,(0) are independent. Then the pdf of

E ;% is called t distribution, T ~ tn. Its pdf is explicitly expressed as

n

pp(t) = %(1 + $431 — 00 < t < 00. (5.3)

limnnoopflt) = 9%; exp(—%), i.e., as n is very large, tn —+ N(0,1).

5.4 Appendix IV: Analysis of t Test Used in fMRI

Detection

Refer to Figure (5.1). 12,-’3 and y,’s are all independent. The two hypotheses are:

Ho : 1:,- ~ N(py,02), y,- ~ N(uy,o2) versus H1 : 1:,- ~ N(umoz), y,- ~ N(py,02)

i=1,2,-~,N.

where the parameters #2, ay, 02 are all unknown. Also by GLRT principle, the test

statistics in this case turns out to be [14]:

 

 

£9;

,/2/N

t(x,y) = 1 N _ N _ (5.4)

\/2‘fil2i=1($i " ~77)2 + 25:1(yi - m2]

where 5: and g are the mean of x,’s and y,’s (i = 1,2, - . -,N).

Under Ho: 5: ~ N(m,, g3) and 37 ~ N(m,, 47;), so :2 - g ~ N(O, 2%), i. e.,

i-y
 ~ N(0,1). (5.5)

0'

k
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Figure 5.1. Experiment setup and two hypotheses for t-test used in MRI detection.
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On the other hand,

 

N _ _ 'r 2

Zea-x)? _ llx-rl “2 _ IIx—HN—xn _ n six”? ~ 2 (0)
i=1 02 — 02 _ 02 _ 02 XN-I )

Similarly,

” (xi-:7)? _ n Pliy “2 2 0
ZT—T"V XN—1( )

i=1

Hence,

N _ 2 N - 2

i: (xi-Iv + e: (ye-y)
Z 1 l ,2 1 ~ x§~-2(0). (5.6) 

0'

Further, we observe that Plix .L P1X = 15: and Pliy J. Ply = 137. Therefore, the

numerator and the denominator in Equation (5.4) are independent due to Gaussian

assumption, and finally the t(x, y)|Ho ~ t2N_2 following Definition 4.

5.5 Appendix V: Principle of Invariant Test

In this Appendix I explain the idea behind invariant test [7, [56] and introduce some

basic definitions and theorems [46].

In the hypothesis testing problems in Chapter 2, in addition to the significant

parameter b or u on which we are testing, there are other unknown parameters called

nuisance parameters, such as the amplitude of DC level a and the variance of noise 02.

The nuisance parameters do not affect our decision, but their presence complicates

the distribution of a given test statistic [7] and determination of appropriate threshold

for the detector is entangled.

Therefore, a test is targeted which is unaffected by such nuisance parameters. We

can do this by deliberately selecting a special class of transformations on the data so
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that the distribution of the transformed data still belongs to the same family of dis-

tributions as the original, just with another set of parameters. After transformation,

however, the significant parameters on which we are testing for different hypotheses

still correspond to the same hypotheses as the original while the nuisance parameters

are left free to change. Since the transformed data also support the original hypoth-

esis with the significant parameters staying within the same region of the parameter

space, it is a natural physical reasoning that if a test gives some decision on the orig-

inal data, it has to output the same decision on the transformed data. This is what

invariant test means. The basic idea is depicted in Figure (5.2) adapted from [7]. It

turns out that these transformations possess a group structure [46].

This idea can be formulated more precisely in combination with our detection

problem in Section (2.6). The observed data y is regarded as a point in the sample

space \II of random vectors with the same dimension as y. It has the probability dis-

tribution P9, 8 E Q, where 9 is the parameter (vector-valued in our case) describing

the distribution and lying in the parameter space 0. Under hypothesis H1, (2 becomes

(21; under hypothesis Ho, 52 becomes {21. Thus if {20 and {21 form a partitioning of Q,

the goal of the detection problem is then just to locate which partition 6 lies in Q,

i. e., choose between the hypotheses as follows:

Ho : G E 520 versus H1:G E 01.

From the above description, let 9 be a one to one transformation on the sample

space ‘1! such that gy has the same distribution form as y but is characterized by a

different parameter 9’, that is, it is distributed as Pet, 9’ E $2. This transformation

thereby induces another transformation g on the parameter space defined by g6 = 6’.

It is easy to see that this decision problem is invariant to the transformation 9 if the
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Figure 5.2. Invariant Test.

corresponding induced transformation g maps each of the partitions of Q to itself:

£790 = Q0 991 = Q1-

In fact, the invariance of the test may be achieved by requiring that the test

statistic be an invariant to these transformation groups [7]; what this precisely means

will be explained in the following definitions and is clarified by the proof of our

theorem in Subsection (2.6.2).

We will know from the theory of invariance that all invariant tests can be charac-

terized in this way, and it is possible to answer such questions as to whether they are

CFAR, or if an optimum test exists among them. Further, restricting attention to

such tests may bring us other advantages. For example, in many cases, the transfor-

mations 9 turn out to have such natural physical interpretations that, in practice, any

test without the corresponding invariant pr0perty would not be acceptable, thereby

substantially reducing the class of test statistics needed to be considered [57]. Also,

as can be noted from our own problem in Section (2.6), there is a great reduction in

the dimensionality of the parameters describing the performance of such tests.

Having understood the idea of invariant tests, we now give exact definitions for
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relevant concepts and some theorems [46].

Def 5: A function t(y) is said to be invariant under a group of transformations G if

t(gy) = t(y) for all y E \II and all g E G.

Def 6: The family of distributions {P9 : 0 E Q} is said to be invariant under G if

every 9 6 G, G E Q determine a unique element in Q, denoted by g9, such that when

y has distribution P9, gy has distribution Pge. The ensemble of g constitutes the

induced group of transformations G.

Def 7: A function i/I(G) is said to be a maximal invariant under a group of transfor-

mations G if it is invariant under G and if M91) = p(ez) implies there exists some

I] E G such that 92 = gel.

Def 8: Let the family of distributions {P9 : O 6 Q} be invariant under G. The

problem of testing Ho : 9 6 S20 against H1 : 9 E Q — Do is said \to be invariant under

G ingo = $20 for all g E G.

Thm 1: A function is invariant under G if and only if it is a function of a maximal

invariant under G.

Thm 2: If the family of distributions {P9 : G e 9} is invariant under the group G,

then G = {g : g E G} is a group of transformations from Q to itself.

Thm 3: Suppose that the family of distributions {P9 : G E Q} is invariant under

the group G. If t(y) is invariant under G and «p(e) is a maximal invariant under the

induced group G, then the distribution of t(y) depends only on MB).

5.6 Appendix VI: SMAP Algorithm for Multi-

scale Image Segmentation

In Section (3.3), I only briefly outline the main points of Algorithm I [10]. More

mathematical descriptions of this algorithm are given here. For a comprehensive
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derivation, please refer to the original paper [10]. For the sake of completeness, some

descriptions and equations in Section (3.3) are rewritten below.

5.6.1 A Prior Consideration

First of all, let us make clear what the field Xj physically means. Each resolution is

a level in a quad-tree in the 2-D case, so a lattice point at one resolution corresponds

to four points at the next finer resolution, as shown in Figure (3.5). This group of

four pixels in the continuous image Y is considered as a block and X1 denotes the

field containing the labeling of each of the blocks at resolution j. We may assume

that the finer segmentation Xj+1 of X is an interpolated version of Xj [9].

The fundamental assumption in Algorithm I is that the sequence of X1 forms a

Markov chain [62], i. e., the distribution of Xj given all coarser scale fields is only

dependent on Xj":

P($j]$l l g j — 1) = PIjIIj—I(Ij|Ij—l). (5.7)

This pyramid structure of the multi-scale random field (MSRF) is depicted in Figure

(3.5).

Since Y (in Figure (3.5a), Y" E Y) is exclusively dependent on XJ , where J is

the finest scale index, it follows that the likelihood function is given by

P(ylxj n S J) = p(le’) = pyIMylx’), (5-8)

and then the joint distribution of X and Y may be expressed as product of recursive

transition probabilities:

Jo+1

p(y, 1‘) = amt/Ix") H pzilxj‘1(le$j_l)pr’o($JO)r (5-9)

73:]
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where Jo is the coarsest scale of analysis.

5.6.2 Likelihood Function

Under the assumption that observed pixels are conditionally independent given their

labels, the conditional density function for the image has the form

pyli (ylxl) = H pyklxi (yklxi) (510)

kesl

In [10], the authors confine themselves to models with two properties. First, the

pixels in Xj are conditionally independent given the pixels in X3‘1. Second, each

pixel X,1 is only dependent on a local neighborhood of pixels at the next coarser scale.

Use 6k to denote the set of neighboring locations to k, then the transition distribution

from coarse to fine scale assumes the form

Pym-1W I1“) = 1'1 Mtge-lug?» (5.11)
kesfi

where pd I1&1 is the probability density for 3:}, given its neighbors at the coarser scale

52‘-

The second important assumption is that each pixel Xi is only dependent on a

local neighborhood of pixels at the next coarser scale. The authors’ first choice of the

neighborhood 0k is a quad-tree structure in 2—D case or binary-tree structure in 1-D

case, as depicted in Figure (3.6). Specifically, in the quad-tree structure each point is

only dependent on a single point at the coarser scale — its father d(k). In words, if,

by some means, we know that 1”,: is active (Xj = 1), then with a high probability, we

may say that its four children are active as well. This probability is characterized by

the transitional probability density between individual pixels (from a coarser scale to

the next finer scale). The transition probability that X,1 has state m given that its
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father is in state m’ is

I ' 1 — qj

pdpfidmlm) = qjam,m’ + M - (5.12)
 

This equation tells us two facts: 1) the probability that the labeling will remain the

same from scale j — 1 to j is qj + lx—fi, where qj E [0, 1]; and 2) the probabilities

that the child has any one of a number of different state from its parent’s are equally

likely, i.e., l—X—fi. The so-called “physical dependency” mentioned in Subsection (3.1.3)

is embodied in the transition probability of the Markov chain.

An important property of the quad-tree structure is that the conditional distribu-

tion of Y given X1 has a product form that can be computed recursively:

ICESJ

where puilxl. is defined and computed recursively according to:

M

pyi-lei-l(yi_lll‘l_l = m) = H 2 Pyglg(y¥|m')Pglzg;l(m'lm), ’6 6 SH,

red-1(Ic)m’=1

[(5.14)

where d’1(k) denote the four (two) children of k in 2-D (1-D) case. Thus this kind

of choice of neighborhood structure leads to simple and efficient algorithm for the

image/signal segmentation [10].

5.6.3 Criterion and Solution

A Bayesian estimator minimizes the average cost of an erroneous segmentation:

:i: = arg mxin E[C(X, :13)|Y = y] (5.15)
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where C(X, 12) is the cost of estimating the true segmentation, X, by the approximate

segmentation :17. Notice that X is random whereas a: is deterministic. Expectation E

is with respect to X.

The cost function used by the authors in [10] is deliberately selected to be

C(X, z) = 2’,

where j is the unique scale such that Xj aé 2:], but Xl = (Bi for all i < j.

According to their cost function, :2: turns out to be:

J

a: = argmin22i{1—P(X‘=x‘ ism/=31»
j=Jo

J

= argmaxz 2jP(Xi = :1:i i S jlY = y).
1

1:10

Since the random fields Xj form a Markov Chain, this estimate is computed

recursively. Assuming that 53‘ has been computed for i < j, and using this result to

compute 237':

i“ = arg IggXIOSPeJonWhly): (5.16)

:67 = arg max logplexj—1,y(a>l|§:j"l, y). (5.17)

1:1

The recursion is started by determining the MAP estimate of the coarsest scale

field given the observed data Y. The segmentation at each finer scale is computed as

the MAP estimate of Xj given Xi"1 and the image Y. It is therefore referred to as

a sequential MAP (SMAP) estimator.

Assuming that X10 is uniformly distributed, they use Bayes rule and the Markov
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properties of X to change the above form into another more easily computed form:

5:10 = arg maxlogpylzJo(y|xJ°), (5.18)

z 0

ij = arg m?x{logpylxi (ylxj) + logpzjlxi‘1($jlij—l)}' (519)

I

The first term in Equation (5.19) is the likelihood of the observed data y given

the labeling at scale j. The second term carries the a prior information about the

behavior of X.

In order to satisfy dynamic range requirement, a log likelihood function is defined

at each point at each scale:

li(m) a log pm: Ix, (gym). (5.20)

A new recursion ensues on substituting the transition distribution of Equation (5.12)

into Equation (5.14) and converting (5.14) to log likelihood functions:

lion) = logpyklxi(yklm)i
(5.21)

' M
. . . 1— J .

li—1(m) = Z Iog{q1exp[z:(m)1+Wizexpuumm. Jo+ISjS(3~22)
red-10c) mzl

Finally, the SMAP segmentation may be efficiently computed by using the log

likelihood functions:

531° = argmgx Z l:°(:z:,{°), (5.23)

3” Ices-’0

iJ = Mymy 261(le + “Maggi-1735321)}. Jo + 1 SJ' 5 J- (534)

kESJ
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Noisy Image to be Segmented

 

 
 

15 I I I I I I m l

10 ............................................................................. _

5 l‘ ............................................................ ..

o ....... ; ............ “I ......... _

_5 l I I I I I I l

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Segmentation Result

    

  
3500 4500

Figure 5.3. Segmentation Result Using SMAP Algorithm.

The estimate of individual pixel label is then easily evaluated by:

"’0 = 11° .2:l:,c argmrgilixfl k (m), (5 5)

~’ _ i . . .~_1 -
117,7c — arg mrérlaxflfldm) +logptilr$;1(m|$§,k )}, Jo +1 5 g S J. (5.26)

One simulation result for 2-D image is already given in Section (3.3). Here I give

another example of segmenting 1-D sequence in Figure (5.3).
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