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ABSTRACT

Experimental Verification of Proper Orthogonal

Decomposition in a Cantilever Beam

By

Muhammad Saqib Riaz

We apply proper orthogonal decomposition (POD) to an experimental system,

which results in a set of proper orthogonal modes (POMS) and proper orthogonal values.

The experiments were performed using a cantilever beam, excited by an impulse input

and sensed with strain gages. The strains were converted to displacements and POD was

performed on the displacements. The experimental setup matched conditions under

which, according to vibration theory, the POMS should approximately converge to the

linear normal modes. The POMS were compared with the theoretical normal modes. The

. results confirmed the validity of this method for acquiring lower modes of vibration. To

study the robustness of the method, we examined the effect of changing data acquisition

parameters such as sampling rate, number of samples and time record, and we applied

input at different locations on the cantilever. We also used different types of basis

functions for converting strains to displacements.
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Chapter 1

Introduction

1.1 Thesis statement

Recent studies have shown that under certain circumstances, proper orthogonal

modes (POMS) make good approximations to linear normal modes. While such studies

have been theoretical and numerical, no controlled experiments have been performed in

this field. The goal of this thesis is to experimentally verify that POMS approximate

linear normal modes under appropriate conditions.

1.2 Background

Proper orthogonal decomposition (POD) is an experimental technique which can

be used to find the energy modes of vibrations and optimal energy distribution in a

system. POD is emerging as a useful experimental tool in dynamics and vibrations. Real

systems are often non-linear for even simple geometries. The attraction of POD lies in

the fact that it is a linear procedure. “This robustness makes it a safe haven in the

intinridating world of non-linearity” [3]. In other disciplines the same procedure was

used with different names, such as Karhunen-Loéve decomposition and principal

components analysis, and it seems to have been independently rediscovered many times.



Lumley [3,18,19] traced this idea back to independent investigations by Kosambi (1943),

Loeve (1945), Karhunen (1946), Pogachev (1953), and Obukhov (1954). POD is closely

related to the principal component analysis (PCA) and Singular value decomposition

(SVD) according to Ravindra [ll]. Beltrarni introduced SVD for the first time in 1873

and subsequently Jordan (1874), Sylvester (1889), Schimdt (1907) and Weyl (1912)

developed the method further.

The method is used in a number of fields as turbulence, vibration analysis, image

processing, signal analysis, data compression, process identification and control in

chemical engineering. In the field of mechanics, Lumley [3,18,19] first explored this

technique in the 1960’s in understanding coherent structures of turbulent flows.

The application of POD to structures started few years ago. Cusumano and Bai [6]

and Cusumano et al. [7] used POD for the estimation of number of active states in chaotic

attractors. FitzSimons and Rui [8] used it for understanding of the modal distribution

systems and applied it to modal reduction. More recently Murphy [9] applied this

technique on understanding snap—through oscillations of buckled plates. Sipcic et al. [10]

used it for investigation of fluid/structure interaction problems. Feeny [1,2] and

Kappagantu [1,5] worked on interpreting the proper orthogonal modes in vibrations.

Davies and Moon [14] applied POD to a nonlinear periodic structure, and noticed

correlation between POMS and linear normal modes. Yasuda and Karniya [l7] employed

an equivalent method to uncover modes to be used for nonlinear system identification.

Azeez and Vakakis [15] used Karhunen-Loeve decomposition to analyze the vibroimpact



response for a rotor. Ma et al. [16] used POD for the identification of nonparametric,

nonlinear system identification of a nonlinear flexible system. The level of accuracy

achieved by researchers was different for different applications.

The related SVD has also been widely used for example in the case of sub-

structuring problems in structural dynamics and modal analysis [12]. In these cases SVD

has been found an effective and reliable tool in solving rank deficiency and modal

reduction and noise reduction problems. SVD is a frequently used tool to compute the

number of active degree of freedom or order of the model in system identification [13].

Feeny and Kappagantu [1] proved theoretically that the POMS converge to the

linear normal modes in discrete Structures with a known mass distribution, in the case of

undamped free vibration, lightly damped and forced vibrations. They also showed that

the POMS represent the principal axes of inertia of the data in the measurement space.

For the case of a synchronous non-linear normal mode, the dominant POM provides a

best fit of the normal mode. Feeny [2] extended the above idea to continuous systems. He

showed that if the distributed system is discretized evenly, POMS approximate the linear

normal modes. He applied this to a cantilever and on a hinged-hinged beam numerically.

B. Ravindra [l 1] added to the discussion on POD by Feeny and Kappagantu [1] and tried

to point out potential problems with these estimations.



1.3 Motivation

All mechanical systems can be viewed as continuous systems. Due to infinite

dimensionality, continuous systems can be difficult to analyze. Generally continuous

systems are described by partial differential equations (PDES). Analytical solution to

these governing equations may not be available and boundary conditions may not be well

specified. An approach to tackling continuous systems is to identify modes, and use them

to project the system to a lower-order model. In the field of structures modal analysis,

mode extraction and characterization from real vibrating system has always been a

challenging task. Modal analysis is a form of nonparametric system identification, as it

helps in recognizing degrees of freedom and associated properties. It provides us a basis

for transformation from physical coordinates to natural modal coordinates.

Traditional modal analysis requires frequency response measurements with

several combinations of input and output locations, whereas POD requires a single set of

time histories from several output locations. However, more system information is often

needed to interpret results. Typical usage of POD has been geared towards nonlinear

random or chaotic response. A clean connection with linear systems is worthwhile both in

its own rite as well as in interpreting nonlinear results. POD effectively extracts modes in

the sense of optimal energy distribution of the system and concentrate more on those

modes, which contain maximum energy of the system. These energy modes have been

treated as “empirical“ modes, which can be used in modal reduction. The POD process

enables the optimal distribution of energy to be used as basis.



POD iS a linear process and it does not involve any assumption about the linearity

of the system. POMS have been shown theoretically to approximate linear modes under

certain conditions. A number of numerical simulations have supported this method. So

some controlled experiments are needed to check the feasibility of this process

experimentally. Thus we are motivated to apply this idea experimentally to systems

which meet the requirements, such as lightly damped, linear systems with known mass

distribution, to check the performance of this method. This research on the development

of POD is warranted to broaden its application in experimental and theoretical contexts.

1.4 Proposed Research

The hypothesis for this research is “the experimental proper orthogonal modes

represent the natural modes of vibration for a linear system with a latown mass

distribution and the experimental proper orthogonal values gives us the distribution of

energy in the system”. We perform a series of experiments to verify the POD procedure

as a tool for estimating normal modes.

1.5 Contributions

The main contribution of this thesis is the verification of the POD procedure

experimentally as a modal analysis tool for a class of continuous systems. This method is

simple to implement and easy to learn as compared to traditional modal analysis

procedures. Thus, it provides experimentalists with a new option for modal analysis of

systems in this class.



1.6 Thesis Organization

In the second chapter a discussion about the modal testing procedure, with details

on theory and its application on discrete and distributed linear systems is available. It also

describes the whole process from data handling to POM extraction. The third chapter

provides details about experimental set up and different software and hardware used in

experiments. We also discuss the handling of the Signals, from voltage to strain and then

to displacement. The process of getting properties of our cantilever beam experimentally

and theoretically is described in this section. In the fourth chapter we discuss different

tests performed and the results obtained form them. In order to increase resolution of our

results, we used a redundant set of pseudo displacements. We also used different sets of

admissible functions for a cantilever beam and compared resulting modes obtained when

using those functions as sets of basis functions. In the fifth chapter we conclude with a

summary of the overall results and indicate the direction of the future work.



Chapter 2

Modal Testing Procedure

In this chapter we will discuss the theory of proper orthogonal decomposition and

will see the application of this to the linear normal modes. We will also go through the

application of this method to continuous systems, taking a Simple example of a cantilever

beam. We restrict our studies to linear systems only.

2.1 Definition and theory

From vibration point of view, two important quantities that can be obtained

experimentally are the system’s natural frequencies and associated mode shapes. The

mode shape is the shape in which a system vibrates synchronously at, or close to, its

natural frequency. There are conventional methods used for determining these properties.

The most important assumption regarding those methods is that the system under test is

linear and is driven by the test input only in its linear range. POD does not require the

assumption of linearity of the system. However, linearity must be assumed if the POMS

are to be tied to linear normal modes.



Determining the mode shapes from experimentally measured transfer functions is

slightly more complicated and involves the measurement of several transfer functions [4].

The POD procedure is simple and involves fewer computations. So we prefer POD, due

to its simplicity and linearity, to other conventional methods. However, POD is only

applicable as a modal analysis tool if the mass distribution is known.

During the experimentation process of finding various modes for our cantilever,

we tried to apply a conventional method discussed by Inman [4], which requires impulses

at several locations of the beam to produce frequency response associated with inputs at

those locations. Our beam was so floppy that we could not generate a meaningful signal

on the impulse hammer. This points to an advantage of the POD method, for which

multiple input locations are not generally required at least for obtaining mode shapes. We

will discuss this in detail in Chapter 3.

AS noted above, in order to describe mode Shapes in the displacement coordinate,

the mass matrix must be known. Thus there is a trade off between POD and conventional

modal analysis in terms of information gathering. In lieu of determining the mass

distribution, the conventional method requires several impulse responses, and records of

the input signals.

More generally the POD procedure is a Simple experimental technique used for

evaluating the spatial properties of a system. It has been applied to turbulent flows and

image processing, and more recently to dynamic structures. In statistical studies we



imagine that the same experiment is performed repeatedly and the value of the quantity is

recorded. This method requires measurement or knowledge of some numerical values,

e.g. displacements along of the beam during the course of time, resulting in a large

number of data under superficially identical conditions. We call this set of data an

ensemble. This ensemble is then used to make a correlation matrix, whose eigenvalues

and eigenvectors give us the proper orthogonal modes and proper orthogonal values.

These quantities mean different parameters for different applications. Basically this

method describes the distribution of energy of a system.

Application of POD to structures requires the sensed displacements of a dynamic

system at ‘M’ locations. Let us call these displacements

X 1(t), X20), X30), ..... , XM(t)

If we sample the displacements N times we can form a set of displacement histories

xi(t)= [Xi(t1), x,(t2), x,(t3), ..... ,x,(tN)]"' i =1,2,...,M

In proper orthogonal decomposition we use these set of data to form an NxM ensemble

matrix, say

X = [XI, X2, X3, X4....... m]

In the above matrix we have arranged the displacements such that each row represents the

displacements of M points at any instant of time. We can make a correlation matrix as

R = (MN) XT X. Since R is a real and symmetric, its eigenvalues form an orthogonal

basis. The eigenvectors of R are the proper orthogonal modes (POMS) and the

eigenvalues of R are proper orthogonal values (POVS). These POVS indicate the signal



energy associated with the corresponding mode [2], so we can easily find the dominant

modes from the energy perspective.

2.2 POD for discrete linear systems

In this section we discuss the application of POD to an unforced, undamped linear multi-

degree-of-freedom system [2], with positive definite mass and stiffness matrices M and

K The equation of motion for this class of problem is

Mi + Kx = 0 (1)

where x is an M x1 vector of displacements. The modal vectors vi , when normalized

with respect to the mass matrix, satisfy the orthogonality condition as v? M v1 = 8n for

all i, j =1,2,. . ., M. A coordinate transformation x = M'l’zq can be made, such that

q +M-IIZK M-ll2q=0

The advantage of this representation is this that its matrices are still symmetric and

effective mass matrix is the identity. To this end, we consider equation (1), with M = I,

the orthogonality condition will be v.T v1 = 8“ Suppose the vibration in the system

consists of several modes. We can express motion in general as

x(t)= A1 sin (um-Q1) v1+ A2 sin ((th-Qz) v2+ + AM sin (amt-OM) vM

where the components of x(t) are the displacement of particular coordinate, V, are the

modal vectors and A, and O; depend upon the initial conditions. The above equation can

be rewritten as

X(t)= 81(11) V1+ 62“) V2+ + 654(1) VM

10



where ei(t) ( i = 1,2, .. ., M) are time modulations. Then we can write the X matrix as

X =[ x1... xM ]T =[ e; vlT+ + eM vMT]

Where e; are the ei(t) evaluated at the sample times t = t1, t2 t3 , ,tN. to form Nx1 vectors.

It can be easily checked whether a modal vector is actually a POM by post multiplying

the matrix R by that modal vector. Thus

RVj: RXTX=N [e1v1T+...+eMvMT]T[e1v1T+...+eMvMT]vj

Using the orthogonality condition vi v j = 8 II

RVj: RXTX=IIG [VlTelTej+... +VMTeMTej]

As long as the fi'equencies of the modes are distinct, each term v [Tei Tej IN will disappear

as N-r 00 except for the terms v jTejT ej which is proportional to the v j. Hence a POM

converges to a modal vector. There can be cases when the mass matrix is not proportional

to the identity matrix, then we can define R =RM. Then the right eigenvectors of R are

POMS and the right eigenvalues of R are POVS [l].

Feeny and Kappagantu [1] related the normal modes to POMS using numerical

and analytical methods on simple mass-spring-damper (MSD) systems. They showed for

undamped systems that error decreases with increasing number of samples and time

record lengths. For systems with proportional damping and possessing synchronous

ll



modes, they observed the POMS tending towards eigenvectors of the system with

increasing number of samples. But the error increases for systems with high damping. In

general, POMS lie on the principal axes of inertia of the data in the measurement space.

For the case of synchronous nonlinear normal modes, the dominant POM represents a

best fit of the nonlinear normal mode. Observations of Ma at el. [16] suggest that this

may carry over to oscillations with multiple nonlinear normal modes involved.

2.3 POD for distributed linear systems

In this section we summarize the application of the POD to distributed parameter

linear systems [2]. Consider as an example a beam of length L. The unforced model of

the system is

m(x)5' + In = 0

where y(x,t) is a displacement, with dots representing the partial differential with respect

to time, and L1 is a self-adjoint linear operator. Similar to discrete systems, a coordinate

transformation u = In"2 (x) y will make above equation have the form

u + m""2(x) LI m'1’2(x)u =0

or simply

u + L u = 0
2

Here L2 is self-adjoint. The modes Mx) obtained from above equation can be normalized

such that

12



The displacement u(x,t) of the beam is sampled at M locations, which give uS a set of

displacements as u(t) = [ u(x1,t) u(xM,t) ]T. This displacement is approximated as a

truncated series of the linear normal modes

where o = [ ¢1(x) mod 1"" is a vector of modal functions and q(t) =[ q1(t) qM(t) 1* is

the vector of modal coordinates. Let us define a matrix

(D = [v1 VM]

where the vector v, = [ ¢i(xl) ¢i(xM) ]T. Then we can write

11 = <I> «10)

The above equation relates the discrete displacement of the beam to the discretization of

the mode Shapes (Mx). We can make an NxM ensemble matrix U by sampling

displacements N times at M locations on the beam. This is written as

U = [ um) u(thT: [<I>q(tr) <I>q(ts)]T

or U=(<I> (2)"

where Q = [q(t1) q(tN)] is an MxN matrix. Now we can make a correlation matrix as

1 'r 1 1. 'r
R: —U U=—<I> (I)N N QQ

To check that whether Vj is an eigenvector of R, post multiplying Vj into R as

I

RVj=E¢QQT¢TVj (2)

13



In the above equation <1)ij has elements of the form v, M . We assume that the Spatial

discretization is evenly Spaced. Then we can say, using the rectangular rule, that

ViTVj =g¢i(xk) ¢j(xk)z[-’l;) Iffix ) ¢j(x )dx (3)

where h is the Spacing of the spatial discretization. Here we make an approximation as

v, N, ... (l/h) 6,,- . The equation becomes «>ij z [o ,0,1/h,0, of = h, . With this

result equation (2) takes the form

1 T
R Vj z —<I) QQ hj

N

N

The ijth elements of QQTare 24:01:) (1101.)

i=1

If the frequency of oscillation of q (t) and qi (t) are incommensurate, then for a large

number of samples

N

lim N 9.... 732““) q,(r,) =0 in
k=l

Thus

lim N—eoo % QQT=D

Which is diagonal with diagonal elements

d.. zifiq.(t )2
u N t k

k=l

Which are mean squared values of qi (t).

14



In such case, RVj -v ¢Dhj z <th djj z Vj djj lh. So for large N with evenly Spaced

data when the modal frequencies are distinct, the discretized modal vectors V,-

approximately satisfy the eigenvalue problem associated with R. In such case, it may be

reasonable to expect that the POMS converge to Vj, the discretized normal modes, and

POVS converge to djj lh , which is proportional to mean squared modal coordinates. This

formulation has been tested numerically applying to the free vibration of a cantilever

beam and a hinged-hinged beam. However, an experimental test has not been performed

to verify this numerical Simulation.

The crux of the approximate convergence of the POMS to discretized modes is in

equation 3. In the approximate equality between the integral representing orthogonality of

modes and the sum via the rectangular rule of integration. Immediately, we can suggest

that results should increase in quality as the resolution of the discretization become finer.

2.4 Conventional Modal Analysis [4]

We have already discussed some conventional experimental techniques for modal

frequencies and damping ratios. Determining the mode Shapes from experimentally

measured transfer functions is Slightly more complicated and involves the measurement

of several transfer functions. For a multi-degree-of-freedom system with harmonic input

(f ejwdt ), the response (it) is given by

u =(K—wd2M +jcodCIl f
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where K, M and C are stiffness, mass and damping matrices respectively. A receptance

matrix can be obtained as

a(wd)= (K—mdzM + jcodc)“l

Assuming the damping to be modal, we can represent the matrices in diagonal form as

A, = diaglmfl: PTMmK M‘WP

A, = diag[2;,w,]= PTMWC M’WP

where P is the normalized eigenvectors of the matrix M ’“2KM ‘“ 2 and PTP = I .

The receptance matrix can be written as

51(0):! ) = [S diangiz -' (”d 2 + zgiwiwd 15¢ I]

where S = M “2P. The columns of S 'T are the mode Shape vectors ( u, ) of an undamped

system. Then the above equation can be written as

“(war ) = : ui ui
[=1 (60,2 “(04 2)+(2(iwiwd )j

 

(1)

This equation provides a relation between receptance matrix and system’s mode Shapes.

The elements of the receptance matrix located at the intersection of sth row and rth

column of a(a)d) is essentially the transfer function between the response at the point s

and u, the input at the point r, f, , when all other inputs are held to zero. The srth element

of 0(0),) is

a,,(wd)=: Li uiTL

at (wiz-wd 2)+(2§,.w,.wd )j
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Since a(ard) is a matrix, it can not be written as ratio of an output to an input. However

each element can be written as transfer functions

 

u: = [a(wd in = Hsr (we!

f. ) ’
whereH3, (rod ) is the transfer function between an input at point r and an output at point

3. For the case a), = (0,, equation (1) becomes

H..(w.-l 

 

T _ 2

ui ui l— I240). I

The above equation gives magnitude of one element of matrix [ ui uiT ]. The phase plot of

H ((0.) is used to determine the Sign of the element. So in order to compute mode

shapes, the knowledge of amplitude and phase at various locations is vital. In our case,

due to floppy behavior of beam, this method is not applicable, as we cannot obtain the

frequency response from an impulse excitation at all the desired locations, Since the

impulse is very small and does not trigger the signal analyzer. This shows the importance

of the need of another method which can handle such situations.

While information is needed about the input for a conventional modal analysis, it

is applicable regardless of knowledge of the mass distribution. Furthermore, it does not

involve a rectangular-rule integration approximation, which is at the crux of the

application of POD to continuous systems. Finally, traditional modal analysis can tie the

identified mode-shapes to their modal frequencies while POD is geared to find mode

shapes independently.
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Chapter 3

Experimental Setup

We have formulated an experiment for testing the POD as a modal analysis tool.

We choose a cantilever beam because it is a well understood system which is easily

sensed with strain gages. Another reason is that it is relatively inexpensive and easy to

build. In this chapter a discussion about the experimental setup and the interface between

different hardware elements is presented. We will also see the conversion of voltage

signal generated by the strain gage conditioner to strain and then to displacement. Some

physical properties like modal frequencies and damping factors for the beam are

computed theoretically and experimentally in this section. First we review the theoretical

model of a cantilever beam.

3.1 Beam Model

We are considering a well understood system, so that we can compare the results

with POD process. For this theoretical model, we assume that the beam used has uniform

cross sectional area. It is homogenous, isotropic and obeys Hook’s law within the elastic

limit. We also assume uniform mass distribution and elasticity in the beam and ignoring
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rotational inertia. Cross sections perpendicular to neutral axis remain planar or there is no

shearing is occurring in the beam. A unforced model of a cantilever is

MM} + lty = 0

where y(x,t) is the displacement, with dots representing the partial differential with

respect to time, and L1 = E I yKm is a self-adjoint linear operator with ymx as the fourth

derivative with respect to x. E and I are the Young’s modulus and area moment of inertia

of the system. The boundary conditions for this system are

y ( 0 , t ) = 0 Zero displacement at the fixed end

yx( 0, t ) = 0 Zero Slope at the fixed end

yu( I, t ) = 0 Zero moment at the free end

ym( (, t ) = 0 Zero shear at the free end

where I is the total length of the beam.

3.2 Physical Beam

The main parameter needed for the application of proper orthogonal

decomposition is the displacement or velocity information at different locations. The

displacements of the beam at various locations can be taken by using proximity probes,

laser transducers, strain gages or accelerometers. We choose to use strain gages because

they have minimal effect on the dynamics, and have good behavior in the frequency

range of our experiment. Other reasons were the low cost of strain gages and the

availability of strain gage conditioners in the lab.
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The cantilever is consists of a 0.3937 x0.012 X0.00079 m3 beam of mild Steel

with one end fixed in a steel clamp. The beam has Young’s modulus E = 128 X109 N/m2

and a density p = 7488 kg/ ms. The coordinates for this system are taken as x along the

length, y along the thickness and 2 along the width of the beam. The displacements at

various points are measured with the help of strain gages. Twelve strain gages were used

to make six half wheat-stone bridges.

 

I 2 3|:4:]5|:]6

  

\
, Cantilever Beam

Strain gages

Z

Figure 3.1: Cantilever beam with strain gages. The beam displacement is normal to the

   

page.

The strain gages were mounted starting from fixed end to the free end at equal

distances and numbered them form 1 to 6, starting from fixed end as shown in Figure 3.1.

The gages were Spaced equally at 0.049 m. We did not put more than Six strain gage

circuits due to the finite length of the beam. Another important factor was the

concentration of Strain towards the fixed end, and minimal strain at free end. For this

reason, the gage locations are biased towards the clamped end to improve sensitivity. The
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locations were “optimized” by performing numerical Simulations and iterating the gage

locations [5] . However, a rigorous optimization procedure has not been performed.

3.3 Strain gages and instrumentation

All the strain gages are of the type Micro-Measurements Precision Strain Gage

model CEA-06-250UN-350. These have resistance of 350:0.3 %, a gage factor of

21:05 % and transverse sensitivity of (+0.1: 0.2 )% all at 24 °C. For minimizing the

effect of wiring, we used Micro-Measurements single conductor wire type 134-AWP. To

reduce the effect of noise, we twisted the three wires coming out of each strain gage pair,

representing half bridge.

 

Cantilever Beam with six

Strain Gages, generating

six voltage signals

i

Strain Gage Conditioner

2120

t

MASSCOMP 5550

Used for

Data Acquisition

l

Matlab for computing

Displacement matrix and

thus POMS and POVS

  
 

 

  
 

 

   

 

  
 

Figure 3.2: Block diagram showing data acquisition process
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The voltage Signal from Strain gages was conditioned in strain gage conditioners

model 2120 from Micro-Measurements Group Inc. A gain of 2000 was used on the strain

gage conditioner and an excitation voltage of 10V was used to excite the circuit. Each

half bridge was balanced prior to collecting the data. For data acquisition we used

Laboratory Workbench of Concurrent Computer Corporation on a MASSCOMP 5550.

Various sampling rates up to 1000 samples/seconds were used for data acquisition. The

limit on the sampling rate was due to the memory available on MASSCOMP. The data

was taken with different time record lengths and with varying number of samples to see

the effect on accuracy of results.

3.4 Voltage to strain

An electrical-resistance strain gage will change in resistance due to applied strain

according to the equation

—=5 E (1)

where AR/R is the change in resistance per original resistance, SE is the gage factor, and 8

is the strain. The gage factor and resistance parameters are generally provided by the

manufacturer. As we are using half wheat-Stone bridges for strain measurement, we will

have two active resistances in the circuit as shown in Figure 3.3. Then for the change in

voltage E across the circuit we have

 

RrRz (ARI _ M2) (2)

(R. +R.)2( R. R.
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where V is the excitation voltage and R1 and R2 are the resistances of two strain gages in

 

 

   

the half bridge circuit.

Active C

(Tension) RI Dummy

E

Active

(Compression) R2 Dummy;

4m.__

V

Figure 3.3: Resistances forming “half wheat-stone bridge circuit” configured for

bending.

As all the strain gages have the same gage factor, and if the strain on one is due to

 

compression then the Strain on the other will be due to tension or 8 = 81 = - 82, , then eq.

2 using eq.l gives

_g (R. +R.)2 1 (3)

V 1th2 ZS:

After plugging in the known parameters values in eq. 3 we obtained a conversion

factor for voltage to strain, using gain factor of 2000, as

8 = AEx 2000x0.095238095 = AEx 190.4762

The gain factor was used to amplify the voltage signals from strain gage conditioners as

they were very weak.
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3.5 Strain to displacement

The strain 800 in a symmetric beam subjected to bending is related to the

transverse displacement y(x) by

32y

E =C—

’3 8x2

where c is half the width of beam. By approximating

y(x.r)=i¢.(x>u.(t)
i=1

where ¢i(x) form a basis satisfying the geometric conditions, we can write the Strain as

u._(t)

8,.(x) = CIV/r (x)...J//..(x)

u..'(t)

where

w (x) = —az¢"(x)
' 3x2

Now taking strains at it different points of the beam, we can have n such equations which

can be written in matrix form as

or 8:0 ‘I’u

where ‘1’- = w‘. (x1)
U
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u=[u1 ,..., un]T , 8: [81 ,..., an? and 8, indicate the Strain measured at the ith location xi.

If we express the displacements y(x,t) at locations xk with similar notation, we write

-)’i' '011- - AM- ”ur-

      at. 45,....i,, i...

or y=<I>u

where ¢g(xj) form a basis satisfying the geometric boundary conditions. Assuming \v is

invertible, we can solve for y in terms of e, such that

-1

X1 l¢rrw~¢rn Wll'“wln 5:1

° _3
y, ¢,,1 ....¢,,, rims/rm s3,

Note that while y(x,t) can be evaluated at any xk , k= l,2,...,p, there can only be n

independent displacements. Later, we try using p>n to see if extra “pseudo sensors”

might provide a means of interpolation of data.

3.6 Identification of modal frequencies and damping ratios.

Theoretical modal frequencies from model in section 3.1 were computed using

w. -- flf‘l-fé-

where Bu are the weighted frequencies per unit length, and I: bh3/12 is the area moment

of inertia with b as the width and h being the thickness of the beam. A is the cross

sectional area of the beam and p is the volumetric density of the beam material.
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With values of “8., I ” from Inman [4] (where f is the length of the beam) for first

six modes as 1.87510407, 4.69409113, 7.85475744, 10.99554073, 14.13716839,

17.278759, we obtained the theoretical modal frequencies as 4.52, 28.36, 79.38, 155.57,

257.17, 384.17Hz.

For experimental modal testing, it is hard to decide the effective number of

degrees of freedom. One way is to count the clearly defined number of peaks or

resonances, which can be bad if the structure has closely spaced natural fiequencies. A

good method to use is called Single-degree-of-freedom curve fit. In this method the

compliance is sectioned off into frequency ranges breaking each successive peak. Each

peak is then analyzed by assuming that it is the response of a Single—degree-of-freedom

system. An assumption in this is that in the vicinity of the resonance, the frequency

response function is dominated by that single mode [4]. We used this method to find the

natural frequencies and modal damping ratios of the system.

In our experiment we used the A&D Co. Ltd.’S AD 3525FFI‘ Analyzer to

graphically see the frequencies present in the Signal. We used impulse hammer to give an

input to the system and recorded the PET response on the analyzer. In order to increase

accuracy we took an average of ten inputs. The experimental values are 4.5, 27.25, 75.5,

' 147.5, 243.75, 365 Hz. The error with the theoretical frequencies obtained from model in

section 3.1, was 0.44, 3.91, 4.88, 5.18, 5.21, and 4.98 percent respectively. Theoretical

frequencies are higher than the experimental ones. The theoretical frequencies come from

a model which involve assumptions. Assumptions are effectively associated with
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constraints, which typically stiffen a system and increase the natural frequencies. The

error in results also depends upon how accurately the data is acquired. Presence of noise

in the Signal, improper interface of hardware elements, quality of software and hardware

used and human error can be counted towards the error cause. A graphical comparison is

present in figure 3.4.

 

Comparislon between theoretical and

experimental frequencies

 
 

 

 
 

 

  

Theoretical

A 400 —-

i3. .____

5‘
c 200 +————
3 Experimental

g 100 /

l 0 : I I I I I I

2 3 4 5 6

  
 

Figure 3.4: Comparison between theoretical and experimental frequencies of

cantilever beam.

The damping ratio associated with each peak is assumed to be the corresponding

modal damping ratio 9, in the modal coordinate system. Each peak was considered

separately. For a system with light enough damping, so that the peak is well defined, the

modal damping g is related to the frequency corresponding to the two half power points

as shown in figure 3.5.
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|H(w.)
 

= |H(wb)l = |H((:d)|4‘

With or. - (or, = 29', cod we found damping ratios 9 as

_ (”b ‘ (”a

S Zmd

where (ad is the damped natural frequency of the system. We obtained the values of tea,

(at, , and and using the plots on the FFT analyzer. It was easy for us to read the values on

the analyzer as we can snap to the peaks with the cursor and read the exact values of

frequency related the peaks or half-power points. We assumed the peak frequency of

damped system equal to damped natural frequency of the system as the system was

lightly damped.

Amplitude

 

 

[H(0),, )i

IH(or, )|

2

 

      
C0: 03,, Frequency —-)

(Dd

Figure 3.5: Illustration of the calculations of damping ratios by using quadrature peak

picking method for lightly damped systems
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We found the damping ratios as 0.01606, 0.0158, 0.009, 0.00467, 0.0031, and

0.00224. The accuracy of damping ratios depends upon the frequency resolution and how

preciously the plots were read for the values of half power points. We tried to find the

mode Shapes with a method discussed by Inman [4]. In that method we need to measure

impulses at several locations of the beam to produce frequency response associated with

inputs at those locations. Our beam was so floppy that we were unable to generate

meaningful signal on the impulse hammer. This points to an advantage of the POD

method, for which multiple input locations are not generally needed. This method can

be applied for a fixed fixed beam, which can be helpful for~comparison with POMS.

We also computed time constant ( 1/ gain ) and settling time ( 2% settling time is

close to 4/ 9(1)n ) for each mode which are tabulated in Table 3.1.

 

 

 

 

 

 

 

Mode Time Constant Settling Time

Experimental Experlmental (sec)

1 13.837 55.348

2 2.3226 9.2904

3 1 .4716 5.8866

4 1 .4517 5.8069

5 1 .3234 5.2936

6 1 .2230 4.8923     
Table 3.1: Experimental values of time constant and settling time for each mode.

29



Node points for each mode is provided in Table 3.2. These points are obtained by

plotting linear normal modes.

 

Modes Node Positions, in x

 

1 No node

 

2 0.3084 m

 

3 0.1982 In

0.3413 m

 

0.1411 In

4 0.2531 at

0.3656 In

 

0.1097 in

5 0.1968 in

0.2843 m

0.3718 m

 

0.0899 in

0.1611 m

6 0.2326m

0.3042m

0.3758 m    
 

Table 3.2: List of node points for the first Six linear normal modes of a cantilever beam,

measured in x from the fixed end.
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Chapter 4

Tests and Results

In this chapter we discuss different tests performed and their results. We have

divided the tests in four sections. In first section, the effect of the sampling rate on the

accuracy of POMS iS studied. The second section discusses the behavior of POMS with

varying sample lengths, in third attempt we applied input at different points of beam to

see behavior of POMS. In order to improve the resolution of our results, we applied an

idea of putting “pseudo sensors” between our real sensors. To check the validity of this

process two sets of admissible functions were made and used as basis functions. We also

applied the idea of pseudo sensors to both these set of functions. Lastly we try to extract

modes directly from strains. Actually this is to study the feasibility of applying POD at

various Stages of data analysis. The results are compared with the linear normal modes

(LNMS) of vibration and the data for these normal modes was taken from the book

Engineering Vibration by D. J. Inman [4]. An impulse input was given to the beam to

excite the modes.
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4.1 POD with various sampling rates

The selection of an impulse input for the system was due to the reason that it can

excite maximum number of frequencies possessed by the system. Although it is not easy

to give an ideal impulse, it still works. Our first experiment was to acquire data at

different sampling rates and various time records. The software has the capability of

acquiring data up to 5000 samples per second. But with higher sampling rates the Size of

data files will increase, and the unavailability of memory, restricted us to work under

1000 samples per second. We used four different sampling rates i.e. 1000, 800, 400 and

100 samples per second to compare the accuracy of the results. The modal frequencies

computed in section 3.5 range from 4 to 384 Hz. So for the case of sampling rates of 100

and 400, the high frequencies will be aliased.

The POMS were normalized for the sake of comparison. Both POMS and LNMS

are plotted on the same graphs to compare both modes. We have formulated our plots to

give us the mode shapes of the cantilever and not the displacement of the point where the

strain gages are located. So plots are of displacements that are located on the beam

equally spaced along the whole length. The first point for the plots is taken as zero as

there is zero displacement at the fixed end. For easy comparison, norm of the error for

each mode was calculated and presented with each test. For this we normalized both the

POMS and LNMS and found the difference between them. The norm of error provides us

with the information that how much content of each mode is present in a particular mode

Shape, while POVS tell us about the energy contents of each mode.
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For the first attempt we tried a sampling rate of 100 samples per second with 250

samples. A time record of 2.5 seconds is enough for capturing characteristics of the Signal

as during this time none of the mode died down. Settling time for each mode can be seen

in Table 3.1. As the beam was given input at the free end, the first couple of modes were

more likely to be excited Figure 4.1 with Table 4.1 Shows the POMS, their corresponding

POVS and the norm of error computed for each mode. The continuous line Shows the

linear normal modes and the circles Show the POMS. With a sampling rate of 100

samples/second, we can see that POMS are converging to linear normal modes. AS the

input was at the free end, so chances are more of excitation of 1St mode. The POVS also

indicate the maximum amount of energy in the first mode.

When the sampling rate is increased to 400 samples/second with 250 samples,

some encouraging results can be seen. Figure 4.2 and Table 4.2 gives the details about

POMS and POVS. Here a change in the numeric values can be seen, we can say that the

results are more accurate as compared to the previous results due to high sampling rate.

First mode is similar to the natural modes for a cantilever beam. The rest of the modes are

close, but a little deviated. By looking at the eigenvalues or POVS, we come to know that

first two modes have the highest energy or power and the rest of the modes have less

energy. This may be partly due to the location of the excitation at the end of the beam.
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With sampling rate of 800, we used a large number of samples. For this case the

number of samples used were 4000. The data was acquired for five seconds. By looking

at the settling time in Table 3.1, we can see that in 5 second time all the information for

that last five modes is available. Sowe can say that this is a good selection of sampling

rate and time window to capture the characteristics of the signal. A bit more accurate

results are expected which can be seen in Figure 4.3 and table 4.3. Here the results are a

little different, and we can see that first and last two modes are excited mostly. There is a

change in the magnitude of POVS, but over all picture of the energy distribution in the

modes is quite Similar.

Figure 4.4 with Tables 4.4 provide the results when the sampling rate is 1000

samples/seconds with 4000 samples. Similar trend can be seen here. POVS are quite

Similar to the last results. Here first four modes are excited more. The excitation of a

Specific mode depends upon the initial conditions provided to the system and may be

more number of Strain gages. We were limited to this sampling rate due to memory

constraint.

The conclusion of this section is that the computation of the lower modes is quite

robust to the choice of the sampling frequency, even when the Nyquest Criterion is not

met for all modes.
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Figure 4.1: Proper orthogonal modes with sampling rate of 100 samples per second
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pOMs Norm = no, -v|| POVS

1 0.0119 4.0145

2 0.3139 6.3503 x 10‘4

3 0.5914 5.9517x 10T

4 0.5469 3.1631x 10*5

5 0.3843 1.0233x 10'7

6 0.3895 4.1540x 10'9

 

Table 4.1: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 100 samples per second.
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Figure 4.2: Proper orthogonal modes with sampling rate of 400 samples per second

 

 

 

 

 

 

 

 

  

POMs Norm = M - VII POVs

1 0.0175 6.922

2 0.3053 1.332 x 10'3

3 0.7721 2.267x 10‘5

4 0.7882 2.864x 10*5

5 0.3858 4.785x 10'8

6 0.3996 3.221x 10'9   
Table 4.2: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 400 samples per second.
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Figure 4.3: Proper orthogonal modes with sampling rate of 800 samples per second

 

 

 

 

 

 

 

poms Norm = no, —- V" POVS

1 0.0091 1.4585

2 0.2976 2.094x 10‘4

3 1.8863 3.235x 10“

4 1.8515 3.760x 10'7

5 0.4871 1.607x 10"

6 0.4249 2.700x 10'9     
 

Table 4.3: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 800 samples per second.
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poMs Norm = ¢,, — v|| POVS

1 0.0096 1.8315

2 0.2963 1.634x 10‘3

3 0.4848 1.023x 10"

4 0.4482 1.933x 10*55

5 1.0566 8.158x 10'9

6 1.0705 1.318x 10‘7 
 

 

 

 

 
Table 4.4: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 1000 samples per second.
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4.2 POD with input at various points of the system

In this section the effect of application of input at various points of the cantilever

is studied, to see whether we can excite other modes better by providing different initial

conditions. In previous section the system was excited by input at the free end. In the

results we found that mostly first mode is excited, which motivated us to try input at

different locations of the beam. In these experiments all the data is acquired at a

sampling rate of 800 samples/second and for a time record length of one second.

For the first test, input was given between 4th and 5th strain gages which are

located on beam at 0.15227m and 0.20127m from the fixed end. The details of the node

points for different modes can be seen in Table 3.2. The numbering of strain gages starts

from 1 to 6, where l is close to the fixed end. We plotted the POMS and LNMS on the

same graphs to compare both results. The norm of error provides us with the information

that how much content of each mode is present in a particular mode shape, while POVS

tell us about the energy contents of each mode. Figure 4.5 and Table 4.5 indicate that

nearly all the modes, contributes to this response. So we can see that impulse has excited

all the modes, the reason of excitation of first mode more are the initial conditions.

When the input is given between 3rd and 4th Strain gage, first four mode are

excited the most, which can be seen in Figure 4.6 and Table 4.6. There are nodes present

for 4m and 5m modes in the area of application of impulse. So we can say that force was

applied at or close to a node point of 5th mode and a bit far from 4th mode node point,

which allowed slight excitation of 4th mode. For the next test, input is given between 2"“1
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and 3rd strain gage. In this area a node points for 6‘“ mode is present. Figure 4.7 and

Table 4.7 give us the excitation of nearly all the modes except the 6th mode. Lastly when

the input is applied between lSt and 2"d strain gage all the modes were excited as there is

no node point for any mode near the area of application of force.

So we can observe that by giving various initial conditions to the system we can

excite different modes especially the lower frequency modes. This could effect the

efficacy of POD process. The little discrepancies in the results can be attributed towards

the improper application of impulse or limitations of the data acquisition system. Here we

can again say that this method is pretty robust for first 3 modes.
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Figure 4.5: Proper orthogonal modes with sampling rate of 800 samples per second and

force applied between 4th and 5'h Strain gage

 

 

 

 

 

 

 

    

POMS Norm = "an — V|| POVS

1 0.0101 2.8837

2 0.2974 3.74llx 10'3

3 0.4579 1.1931x 10'5

4 0.5277 1.1909x 10*3

5 0.4724 2.2223x 10'8

6 0.4068 1.5266x 10‘9

 

Table 4.5: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 800 samples per second.

41



Strain gages

 

 
EDDDDE Beam

  

 
 

  

            

i /’ i 0. /°\

2A EWV“ R
0 2 4 6 0 2 4 6

Sensor Locations Sensor Locations

1 1

. g .

131. A A.
o / V

'10 2 4 e '10 2 4 6

Sensor Locations Sensor Locations

 
 

  

            

  

  5 > r

            

Figure 4.6: Proper orthogonal modes with sampling rate of 800 samples per second and

force applied between 3"l and 4m strain gage.

 

 

 

 

 

 

 

POMS Norm: |l¢, —v|| POVS

1 0.0118 1.1682

2 0.2963 8.1544x 10'3

3 0.4155 5.0564x 10‘5

4 0.5656 1.031x 10*5

5 1.6968 8.2399x 10'9

6 1.0841 2.6738x 10'8    
 

Table 4.6: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 800 samples per second.
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Figure 4.7: Proper orthogonal modes with sampling rate of 800 samples per second and

force applied between 2"" and 3'1d strain gage.

 

  

 

 

 

 

 

 

pom Norm = ¢n - VII POVS

1 0.0106 1.0103

2 0.2986 3.4006x 10'3

3 0.4298 . 6.7788x 1045

4 0.5482 3.5322x 10‘7

5 0.9924 5.6277x 10-10

6 1.0281 3.6034x 10'9     
 

Table 4.7: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 800 samples per second.
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Figure 4.8: Proper orthogonal modes with sampling rate of 800 samples per second and

force applied between 1St and 2“6 strain gage.

 

 

 

 

 

 

 

POMS Norm = “4’. — V" POVS

1 0.0105 0.14704

2 0.3083 2.5044x 10'2

3 0.4585 2.5450x 10'3

4 0.4605 4.6211x 10‘5

5 0.5999 1.6238x 10'6

6 0.4232 7.8967x 10°8      
Table 4.8: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 800 samples per second.



4.3 POD with variable time record length

In this section we will observe the effect of time record length on the validity of

POD process. A sampling rate of 800 samples/second was used for all these experiments.

The reason for selection of this sampling rate is the satisfaction of Nyquist criterion. The

time record length used for tests are 0.0075, 0.025, 0.25, 0.5 and 1.0 seconds, which

contain 6, 20, 200, 400 and 800 samples respectively, was used to observed the response

of POMS. The justification for selection of such small time record lengths is that there are

enough harmonics present to describe the characteristics of the signal. We used the data

of the test, when the input was applied between 4'11 and 5'11 strain gage. We choose this

impulse location since it led to one of the better results in section 4.2.

For first attempt, only 6 samples were used to observe the accuracy of the POMS.

The results Show that, even a small number of data, if taken at a high sampling rate,

preserve the gist of the mode shapes. This can be seen in Figure 4.9 and Table 4.9. The

magnitude of the POVS are small, the reason for this can be that POVS represent mean

squared values. They therefore vary with the magnitude and location of impulse, and

Since we do not normalize with respect to the input, we expect variation in the magnitude

of POVS anyway. Key things for obtaining modes are POMS and relative values of

POVS. Here we can see the excitation of first four modes mostly. When we try with 20

samples, the results Show excitation of nearly all Six modes, as in Figure 4.10.

A time record length of 0.25 sec. showed a change in the results. A significant

difference in POVS, shows the effect of time record length. Figure 4.11 and Table 4.11

shows the excitation of nearly all the modes. With 400 samples, the results are quite
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Similar to the pervious one. So we can see the results converging to certain values as

number of samples are increasing. Figure 4.12 shows these facts. For 800 samples we can

go back to see Figure 4.5, which also shows similar behavior. If we refer to Table 3.1 for

settling time, we can see that during the time of one second none of the modes Should

have died down, which tells us that there Should be enough oscillations captured in the

time record of the signal.

From these results we can infer that with increasing time record length, results

converge to certain modes. But for a reliable result, there should be enough harmonics

present to describe the characteristics of the Signal. Again though pretty robust for lower

modes (first 4 here).
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Figure 4.9: Proper orthogonal modes with sampling rate of 800 samples per second and

 

 

 

 

 

 

 

 

 

POMS Norm = It)" - V“ POVS

1 0.02293 0.2391

2 0.3127 6.0648x 10‘4

3 0.4671 1.5042x 10*5

4 0.4954 1.0023x 10‘8

5 1.2651 1.3219x 10H

6 1.3115 3.6267x 10"°   
 

Table 4.9: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 800 samples per second.
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Figure 4.10: Proper orthogonal modes with sampling rate of 800 samples per second and

time record length of 0.025 sec. (20 samples)

 

  

 

 

 

 

 

 

 

POMS Norm = a. - vll POVS

1 0.0167 0.3736

2 0.3081 7.4483 x 10'3

3 0.4325 2.6055x 10'5

4 0.5537 3.6777x 10'7

5 0.6288 3.2394x 10‘9

6 0.3917 2.4802x 10"°   
 

Table 4.10: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 800 samples per second.
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Figure 4.11: Proper orthogonal modes with sampling rate of 800 samples per second and

time record length of 0.25 seconds. (200 samples)

 

 

 

 

 

 

 

POMs Norm = In. — VI POVs

1 0.0106 3.6586

2 0.2972 7.4897 x 10'3

3 0.4573 3.3040x 10"

4 0.5052 3.2049x 10*5

5 0.4421 3.2220x 10'8

6 0.4224 1.3198x 10"i     
Table 4.11: Norm of error with LNMS for each mode and their corresponding proper

orthogonal values for sampling rate of 800 samples per second.
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time record length of 0.5 seconds. (400 samples)

 

  

 

 

 

 

 

 

POMs Norm = ¢n - V|| POVS

1 0.0105 3.6438

2 0.2976 5.8039 x 10'3

3 0.4510 2.0844x 10'5

4 0 5030 1.9993x 10*S

5 0.4528 2.6580x 10'8

6 0.4189 1.3646x 10°9      
Table 4.12: Norm of error with linear normal modes for each mode and their

corresponding proper orthogonal values for sampling rate of 800 samples per second.
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4.4 Decomposition of the Strain Signals

In this section we approach the modal analysis through the strain signal and

obtain the modes called “strain modes”. We discuss the method followed by different

experiments performed to obtain these modes. The goal here is to see whether it is

feasible to apply POD at various stages of the data-analysis process. Before, we sensed

the strains, estimated displacements at various points on the beam, and applied POD to

those displacements. The displacements, and hence the modes, are dependent on the basis

used for the conversion form strain to displacement. “Strain modes” would be

independent of the choice for the basis functions. The question here is whether it is

worthwhile to apply POD to strain distribution and then convert strain modes to

displacement modes.

4.4.1 Strain Modes

Consider as an example a beam of length ‘L’. For normalization of “strain modes”

Wi (x) = ¢'(x) we can use the inner product of modes ¢i (x) and ¢j (x). the if the modes

are normalized, we can say

L "' 2

(«7.- . L(¢,-) )=jE I ¢,- ¢.. cir=wj 6,1.

0

Using integration by parts and boundary conditions listed in section 3.1 we can say

L II II

I ¢r (30¢, (X) dx =aj61j

where a. = __

S



Keeping the section 2.3 in mind, the strain modes in (x) can be discretized such that

w. = [ vttxt) \i’i(XM) 1T

Then for an equally spaced strain distribution, the orthogonality condition using

rectangular rule is

W1W1: 2Wi(x1) W} ()xk ~(;1;):Iwi(x )dx

i=1

where h is the spacing of spatial discretization. But the problem arises here is that the

distribution of strain along the length is not even. To over come this problem we can try

two options.

1. Try weighted POD to account for head > hs (to be developed)

2. Assumption of strain as nearly zero at the free end region

W (X)

 

a L ..... . -\
V V V V

had Length of beam

  
 

Figure 4.13 Strain distribution along the length of beam

We tried the second option in our tests. If the strain is taken at ‘M’ different locations on

the beam then at any time ‘t’, then the strain values are

st(t), 82(t), s3(t), ..... , 854(1)
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If we collect N times samples we can form a strain-history vector as

s;(t)= [s,(t.), 8,02), sing), ..... ,Si(tN)]T i =1,2,...,M

An NxM ensemble strain matrix can be formed as

S = [81.82.8184,,,,,,, SM] NxM size matrix

In the above we have arranged the matrix such that each column represents the Strain at

M points at any instant of time. A correlation matrix can be made as

R. = fis’s

Now we will convert the strain correlation modes to displacement form so that we can

compare it with the normal modes. Say we have Six modes from above correlation as jt,

jz, j3, j4, js, ja, We can convert each modal vector to displacement vector using modal

basis formula

di= ¢i (X) \l’i -100 .11

where ¢>i(x) form a basis satisfying the geometric conditions and

32¢.- (x)
W: (X) = 8x2

4.4.2 Experimentation and results

We tried this technique for finding strain modes for our cantilever beam. First

attempt was made with strain correlation modes, and found the Strain modes as shown in

Figure 4.14 and Table 4.13. Only the dominant mode with maximum energy is

comparable. The second try to improve the results was done manipulating strain

correlation modes. As the strain at the free end of cantilever is zero, so the last entry of
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each mode was made zero to see the effect. The results are present in Figure 4.15 and

Table 4.14. Here the results did not showed a lot of improvements. The main reason

behind the improper results is the uneven distribution of strain. So we can say that it

works well if the interest is in the dominant mode only. Whether it works for a uniform

strain distribution remains to be seen.
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Figure 4.14: Displacement modes converted from Strain modes with sampling rate of

800 samples per second and input applied between 3"1 and 4‘h strain gage.

 

  

 

 

 

 

 

 

SMs Norm = ¢n - VII SPOVS

1 1.7003 2.5430

2 1.5335 6.1103x 10'1

3 1.7525 1.7074x 10‘2

4 1.5881 1.0379x 10‘4

5 1.1984 3.4607x 10'5

6 1.4358 1.7909x 10“      
Table 4.13: Norm of error with linear normal modes for each mode and their

corresponding strain POVS for sampling rate of 800 samples per second.
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Figure 4.15: Displacement modes converted from strain modes with sampling rate of

800 samples per second and input applied between 3rd and 4‘h strain gage for zero end

strain correlation vectors.

 

  

 

 

 

 

 

 

SMs Norm = ¢, — vil SPOVS

1 1.6592 2.5430

2 1.3294 6.1103x 10'1

3 1.5101 1.7074x 10'2

4 1.5274 1.0379x 10“

5 1.2816 3.4607x 105

6 1.5669 1.7909x 10“      
Table 4.14: Norm of error with linear normal modes for each mode and their

corresponding strain POVS for sampling rate of 800 samples per second.
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4.5 POMS based on a large number of “pseudo sensors”

Until now POMS were determined using six sensors. The conversion from strain

to displacement information was done for discrete locations by using the first Six LNMS.

We are extending this idea to generate a large number of “pseudo sensors” on the beam.

Here, we evaluate the linear normal modal functions at 21 different locations thereby

yielding 21 pseudo displacement sensors, separated by 0.0197m on a cantilever of length

0.3937m. However, as we used only first Six LNMS to curve fit, the system measurement

only contains six independent displacements.

The motive for using the pseudo sensors is to improve the resolution associated

with the rectangular rule integration that effectively underlies the relationship between

orthogonality of linear normal modal functions, orthogonality between discrete POMS

and the uniformly discretized modal vector. The six LNMS (or basis functions in general)

in some way provide a smoothing interpolation for the numerical integration. Kappagantu

[5] had previously used Gramm-Schmitt orthonormalization when converting from

discrete POMS to continuous “proper orthogonal modal function”. Evidence indicated

that the pseudo sensors performed an equivalent task. However, this interpolation

depends on the interpolating functions and how well they depict the physics of the

problem.

Using these pseudo sensors we obtained displacements at 21 equi-distant points

along the whole length of the beam. We applied this idea to three different tests to check

the validity of this concept. Figure 4.16 to 4.18 shows the POMS obtained using pseudo
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sensors. A general observation from these plots is that the continuous version of the

dominant modes tend to the orthonormalized functions with increasing number of

sensors. A comparison can be made by looking at the Figure 4.5 - 4.7 of the same

configurations with Six sensors.

In this case, the quality of the results may be a reflection of the fact that our basis

consists of the LNMS. With the pseudo sensors, we are effectively interpolating between

sensors with the ideal interpolating functions. Testing with other choices of basis

functions will be done in the next section.
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Figure 4.16: Proper orthogonal modes with sampling rate of 800 samples per second and

input applied between 4‘ll and 5"I strain gage using 21 pseudo sensors.
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Figure 4.17: Proper orthogonal modes with sampling rate of 800 samples per second and

input applied between 3rd and 4‘11 strain gage using 21 pseudo sensors.



 

 

 

 

     
 

 

 

 

 

       

 

 

 

 

       

051

.1 .

0 5 10 15 20

1 Sensor Locations

3QW’

2 .5

-1

0 5 10 15 20

1 1 Sensor Locations

-1 .
E M° 4° (:99;
g 0 0V \ o

2 -0.5 o

-1

0 5 10 15 20

Sensor Locations

 

 

 

 

      
 

 

 

 
 

 

     
 

 

 

 

 

      
 

' O

i s.

2 -0.5 ‘QQQ"

-1

0 5 10 15 20

1 Sensor Locations

E 0.5 fl
Gabon 0

i \Qo/o o
2 '0.5|

-1

0 5 10 15 20

1 Sensor Locations

5' 0.5 G

1 °" 523 it?” t
5 -0.5

-1

0 5 10 15 20

Sensor Locations

Figure 4.18: Proper orthogonal modes with sampling rate of 800 samples per second and

input applied between 2"d and 3rd strain gage using 21 pseudo sensors.
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4.6 POD with Admissible Basis functions

Up to now we have been blessed with an orthonormal basis which is composed of

LNMS of the model. Typically, the LNMS of the model will not be available; indeed the

model itself may not be available. In such case we need to choose a set of basis functions

which differ from the real modes. In the following, we use two other sets of orthonormal

basis to see if our pervious results have been positively biased due to LNMS as a basis.

In the field of vibrations we define two classes of functions. The functions

satisfying the entire boundary conditions of the problem and can carry P derivatives, are

referred to as the class of comparison functions, where P is the order of the self-adjoint

operator L in the governing equation of motion of the system. The other class is called

the admissible functions. These are functions which satisfy only the geometric boundary

conditions of the problem and can carry P/2 derivatives. The comparison functions are by

definition admissible functions, and in fact they constitute a small subset of the much

larger class of admissible functions.

We selected two sets of basis functions which satisfy our geometric boundary

conditions. The first one is as follows:

(x): it2

(x)

3(x)=x2 +b Jr3 +c x"

(x

(

)

x)=x2+g x3+hx‘+ix$+jx6

)

Jt2+ax3

‘
3
4
:
»

x2+dx3+ex‘+fx5

t
a
b
?
”

(x =x2+kx3+mx‘+nx5+ox°+px7
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The values of constants a, b,.. ., p were found using an inner product over the whole

length of beam to make each function orthogonal to all others. So for the value of ‘a’,

0.3937

using first two basis functions, we used I f, (x) f2 (x) dx = 0

0

Similarly for ‘b’ and ‘c’, using first three equations to form two algebraic equations by

making f 3(x) orthogonal to f 1(x) and f 2(x). For our beam of length 0.3937 m, we found

the values of the constants as

a = -3.04801, b = -7.11201, c = 12.043, (1 = -12.192, 6 = 46.4517, f = -56.l846,

g = -l8.288, h = 116.129 1 = -132.015, j = 294.337, k = -25.4001, m = 236.56,

= 4030.05, 0 = 2125.77, p = -l679.83.

We used this set of admissible functions as basis functions for POD process. In

first experiment, the data was taken at the rate of 800 samples/second. The input was

given at the free end, so the excitation of first mode is expected to be higher. The results

showed that POMS roughly approximate LNMS. The energy distribution also shows

maximum energy in the first mode. The results can be seen in Figure 4.19 and Table 4.15.

In the second test, data were taken at a sampling rate of 1000 samples/second with input

at the free end. Figure 4.20 and Table 4.16 also show the same trend. In Figure 4.21 and

Table 4.17 we plotted POMS vs. basis functions to see whether POMS converge to

admissible functions. The results show a little different trend from when POMS were

compared with LNMS. Comparing Figures 4.19 and 4.21, the norm of error is decreased

when POMS are compared with basis functions. The behavior of the curves at the end in

plots can be regarded as the characteristics of admissible functions.
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We applied the idea of pseudo sensors (section 4.5) to see whether the dominant

modes tend to the orthonormalize with increasing number of sensors. Figures 4.22 and

4.23 clearly Show the validity of this idea. So we can say that with increasing number of

sensors, it allows the rectangular integration to increase resolution, hence leading to

better approximation. In these plots we can see that endpoint of POMS Show different

behavior from rest of points. This can be due to the properties carried by the basis

functions. Curiously, if we omit the few end data point pseudo sensors, POMS 3, 4, 5 and

6 otherwise seem to match LNMS 2, 3, 4 and 5 respectively. We increase the number of

pseudo sensors from 21 to 41 to see the effect on the endpoints of POMS. Figure 4.24

Show that with increasing number of sensed data the modes converges more towards

LNMS.

AS a conclusion we can say that the basis functions have a Significant influence on

the results. The POMS are distorted from LNMS compared to earlier examples.The

pseudo sensors may help a little, but not greatly.



 

 

     
 

 

 

Figure 4.19: Proper orthogonal modes with sampling rate of 800 samples per second
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poms Norm = 4’. - v|| POVS

1 0.1008 1.8232

2 0.6007 8.6645x 10“

3 1.0102 3.1630x 10“

4 1.0211 5.0322x 10‘7

5 0.7488 5.0314x 10'8

6 0.5091 4.8254x 10'9 
 

Table 4.15: Norm of error with lSt set of admissible functions for each mode and their

corresponding proper orthogonal values for sampling rate of 800 samples per second.
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Figure 4.20: Proper orthogonal modes with sampling rate of 1000 samples per second

using 1"‘ set of admissible functions (— Show the LNMS).

 

 

 

 

 

 

 

POMS Norm = "41,, - vfl POVS

1 0.1030 2.2951

2 0.5440 5.2711x 10'3

3 0.9546 1.0876x 10‘4

4 0.9307 3.4825x 10‘

5 1.0345 1.3127x 10°8

6 1.1585 4.0077x 10'7    
 

Table 4.16: Norm of error with 1“ set of admissible functions for each mode and their

corresponding proper orthogonal values for sampling rate of 1000 samples per second.
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Figure 4.21: Proper orthogonal modes with sampling rate of 800 samples per second

using 1" set of admissible functions (— Show the Basis function).

 

 

 

 

 

 

 

 

POMS Norm = Ion - v|| POVS

1 0.04864 1.8232

2 0.4513 8.664x 10“

3 0.8245 3.1631x 10'5

4 0.9648 5.0322x 10'7

5 1.7457 5.0314x 10'8

6 1.1304 4.8254x 10'9     
Table 4.17: Norm of error with 1“ set of admissible functions for each mode and their

corresponding proper orthogonal values for sampling rate of 800 samples per second.
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Figure 4.22: Proper orthogonal modes with sampling rate of 800 samples per second

using 1" set of admissible functions with 21 pseudo sensors
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Figure 4.23: Proper orthogonal modes with sampling rate of 1000 samples per second

using 1'“‘ set of admissible functions with 21 pseudo sensors
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Figure 4.24: Proper orthogonal modes with sampling rate of 800 samples per second

using 1" set of admissible functions with 41 pseudo sensors

70



The second set of admissible functions used is

\

f,(x)=1- Coy[-2”—lx)

 

We used this set of admissible functions as basis functions for POD process.

These functions satisfy the geometric boundary conditions, and also one of the

natural boundary conditions, that of zero curvature at the end of the beam. While these

functions are independent, they are not orthogonal. The same tests were repeated by

using same data, to compare the results of both sets of functions. The results with 800

samples/second data are quite encouraging and can be seen in Figure 4.25 and Table

4.18. But there is little difference in results, between the first and second set of admissible

functions, which can be due to improper selection of admissible functions or on the other

hand the problem of not acquiring data precisely. But the overall picture of the system

behavior is acceptable. The first mode is carrying the maximum energy of the system.

For the second test with 1000 samples the results are at Figure 4.26 and Table 4.19.
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The pseudo sensor idea is also applied here. The results here are more appreciable

with increasing number of sensors. Figures 4.27 and 4.28 give the plots showing

improved resolution and modes converging to LNMS. We can also compare that the

resolution in the case of 2"“ set of admissible functions is more than the first set.
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Figure 4.25: Proper orthogonal modes with sampling rate of 800 samples per second

using 2""1 set of admissible functions.

 

 

 

 

 

 

 

 

  

POMs Norm = In. - VII POVs

1 0.0296 1.3411

2 0.5265 13me 10'3

3 0.9533 2.9207x 10'5

4 0.9639 3.3137x 10‘7

5 1.0965 1.2567x 10'8

6 1.2060 1.9617x 10'9  
 

Table 4.18: Norm of error with 2“‘1 set of admissible functions for each mode and their

corresponding proper orthogonal values for sampling rate of 800 samples per second.
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Figure 4.26: Proper orthogonal modes with sampling rate of 1000 samples per second

using 2nd set of admissible functions.

 

 

 

 

 

 

 

pom Norm = "1’. - VII POVS

1 0.0263 1.689

2 0.4668 7.4224x 10'3

3 0.9396 8.1780x 10'5

4 0.9307 2.1515x 10*5

5 1.0325 4.5328x 10'9

6 1.1086 1.6436x 10‘7    
 

Table 4.19: Norm of error with 2"‘1 set of admissible functions for each mode and their

corresponding proper orthogonal values for sampling rate of 1000 samples per second.
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using 2"“ set of admissible functions with 21 pseudo sensors
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Chapter 5

Conclusions

5.1 Summary of work

In this study, the application of POD as a tool for identifying linear normal modes

in distributed parameter systems has been done experimentally. These experiments

validate numerical Studies done previously. We have shown the ease of use of this

method and compared the results with LNMS.

First we summarized the theory behind the proper orthogonal decomposition to

understand the previous work. To obtain experimental modes, we used a cantilever with

strain gages. The Six strain gages restricted us to six identified modes. Simple bending

theory was used to find the relation between strain and displacement. To check the

validity of POD, different experimental parameters were varied. Matlab was used for

different data manipulations, which were acquired from the cantilever.

5.2 Conclusion

Various experiments were performed to monitor the accuracy and validity of the

POD process. The accuracy of results depends upon how accurately the data is acquired.
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Reduction of noise, proper interface of hardware elements and quality of software used

improves the quality of data acquisition. All the results based on displacements

measurements showed that the lower POMS converge to approximately LNMS. For the

portion of experiment when the sampling rate was varied, it was observed that the

accuracy of results increases somewhat with increasing sampling rates. This is logical in

the sense that as more information of a signal is available for a certain period, it is easier

to obtain characteristics of the signal. But the most important aspect is to meet the

Nyquist criterion to avoid aliasing effects. Overall, this method is quite robust for lower

(1-3) modes.

The second portion of the test was to excite different modes by applying input at

various locations of the cantilever. As we were not providing the exact initial conditions

for any specific mode, no pure mode was excited. We provided impulse input to the

system, so higher modes were likely excited. When the input was toward the free end,

excitation emphasized the first mode. Similarly when we moved the input towards the

fixed end, there was increased excitation of other modes. But in all the cases we saw that

maximum energy was with the first mode. When the input was applied near a nodal

point, the corresponding mode was excited less. The magnitude of energy was reduced

as the other modes were excited more. But there are some modes which always had

significant energy in them. We should consider such modes for design and analysis.

For the next tests we varied the time record length of data acquisition. It was

found that for a very small time record length, a rough excitation of the system
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characteristics can be made. But for a precise result, we should have enough data to get

system characteristics accurately. As a conclusion for these tests, we can say that POMS

converge to LNMS as time record length increases, and are quite robust for lower modes.

The POMS obtained from the above experiments were quite close to LNMS. We

tried to increase the resolution of our results by putting some pseudo sensors in between

the real sensors. From different simulations performed, we can conclude that with

increasing number of pseudo sensors, the resolution of the results improved, even though

these pseudo sensors did not effect the number of independent sensors. But here we were

using LNMs'aS a basis, so it is expected. Generally, increasing the resolution in sensors

should improve results since the approximation is limited by the resolution through a

rectangular rule integration of the orthogonality property if the basis functions provide

good interpolation.

We tried to get “strain modes” and convert them to displacement modes. The

objective behind this was to check the feasibility of the application of POD to various

stages of the data analysis process. The main problem for this kind of analysis was the

uneven distribution of sampled strains along the length of cantilever. The strain at the

free end of the cantilever was zero and maximum at the fixed end. We tried to make the

end point strain correlation modes zero by putting zero at the end of each mode. This

technique seemed to work for dominant modes only. But we were unable to get

meaningful results beyond that.
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We investigated the usage of various basis functions for the conversion from

strain to displacement. The results suggest that the closer the basis are to the real modes,

the better the results are. A measurement which does not involve strain-to-displacement

conversion may not have this limitation. There are two possible conclusions. One is that

the choice of basis functions influences the POMS “seen” in the system. This may be

particularly true with the pseudo sensors, where information is fabricated or extrapolated

based on the basis. The other possibility is that the LNMS provide the most accurate

estimations of actual displacements for any choice of bases, thus leading to more accurate

POMS. To clarify this mystery, it would be beneficial to test a system with directly

measured displacements.

The difference between theoretical and experimental results can be due to the

assumptions made in the original mathematical model, which result in theoretical normal

modes. Thus for better results we should build a mathematical model which should

closely meet our real beam. Some other reasons for discrepancies can be noise in the

Signal or improper interface between the hardware elements. But even then we can see

encouraging results by using this simple technique to acquire modes of vibrations.

The cost involved in the data acquisition can be regarded as a disadvantage of this

process, but it is still better when we compare it with the computational expenses and

learning curve associated with the sophisticated and expensive software involved in

determining LNMS by traditional methods. The drawback is that the mass distribution

must be known.
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5.3 Future work

During the course of our research, we found some improvements and extensions

that can be done to extend this work further. First of all we put a basic condition of

knowing mass distribution for the usage of POD in modal analysis. If by any way we can

relax this condition, the application of this method will increase to a vast number of

systems. To make our model more solid, we can consider the vibration along the length

of the beam. We are unable to get some good results with highly damped systems, as

oscillations die down quickly, so some work can be done on that side too. It may turn out

that as the applicability expands beyond current limitations, so will the complexity of the

method. Perhaps when it is as widely applicable as conventional modal analysis

techniques, it will no longer offer any advantage in terms of simplicity.

It would also be beneficial to extend applicability to uneven sensor distributions.

This may require a weighted version of POD. In order to increase the accuracy of results,

a more accurate data acquisition hardware system can help. In order to make it a more

sound procedure some experiments should be done using other type of beams.

Another area worth investigation are experiments with direct displacement

sensors. Such experiments will factor out limitations that depend on the choice of basis

functions. It could be important to directly compare POD with conventional model

analysis. We could do this with a stiffer system in which an impulse hammer would

provide a clean input signal at all locations on the beam. Finally, it would be beneficial'to

extend the idea in this work to two-dimensional problems such as plates and shells.

With this we conclude our thesis.
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