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ABSTRACT

COUPLED MULTIOBJECTIVE OPTIMIZATION OF CRASHWORTHINESS AND

MODAL FREQUENCIES IN STRUCTURES USING GENETIC ALGORITHMS

By

David J. Eby

This dissertation presents an approach to concurrent optimization of

stnictures by using an island injection Genetic Algorithm for: 1) crash energy

management, 2) modal vibration frequency response, 3) peak crush force, 4)

weight reduction, and 5) manufacturability, while considering stochastic variability

of design variables and loading conditions. Existing automated design technology

has never simultaneously addressed all of these competing mechanisms. In

addition, this dissertation presents the development of a geometrically nonlinear

first-order zig-zag sublaminate theory and finite element model which accounts

for moderately large displacements and moderate rotations using a Total

Lagrangian formulation. The accuracy of the model is demonstrated by

comparing its structural response predictions with results from previous

experimental investigations and with numerical tests. Finally, the optimal design

of sandwich panels was approached with a simple Genetic Algorithm and the

developed geometrically nonlinear first-order zig-zag sublaminate finite element

model.
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Chapter 1

INTRODUCTION

1.1 Introduction

Current automated design technology generally requires computation of

gradients of the objective functions and constraints with respect to the design

variables in order to identify a better design. Due to the noisy, chaotic nature of

crash problems, gradients of objectives and constraints with respect to typical

stmctural design variables are difficult, if not impossible, to attain. A gradient-

based optimization approach assumes that the objectives and constraints are

unimodal with respect to the design variables, and will seek extremal portions of

the design space where the gradients are equal to zero. A gradient-based

optimization approach experiences difficulties in multimodal design spaces due

to the fact that many local extrema may exist, making it difficult for such an

approach to escape a local minimum. Typically, many real-life design spaces are

extremely multimodal.

A Genetic Algorithm (GA) is a global search technique that does not

require the computation of gradients for the minimization of objectives or

constraint violations, with the ability to consider stochastic behavior of the design

space. An Injection Island Genetic Algorithm (iiGA) can help increase the

computational efficiency of a simple GA with a divide-and-conquer approach by

searching a discretized design space simultaneously at various levels of

resolution in a heuristic hierarchical fashion (Goodman, 1996).
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Fiber reinforced laminated composites have a natural ability to be

optimized. Additional design variables are introduced into the optimization

problem statement when laminated fiber reinforced composites are considered.

Laminated composites are orthotropic in the plane with low ratio of transverse

shear modulus to in-plane modulus and are laminated through-the-thickness.

This allows for a rich design space when compared to standard monolithic

materials. Fiber reinforced laminated composites also have high specific strength

and stiffness when compared to conventional monolithic materials. This increase

in freedom and flexibility is not free; the cost is complex structural behavior at

local and global levels. Fiber reinforced laminated composite lamination schemes

can be specifically constructed to optimally perform under complex loads (large

static loads and large dynamic impact loads). Fiber reinforced composite

material behavior is unique and complex at both the local and global level and

therefore difficult to predict, especially when considering geometric nonlinearities.

The task of manually designing an optimal laminated composite structure

becomes staggeringly hindersome when a large number of discrete lamination

sequences is coupled with complex geometric nonlinear structural behavior.



  

3F

slr

sln

brc

line

slrL

don

SIOChg

are sir



1.2 Literature Review

The purpose of this literature review will be to give an overview of the

current level of automated design and composite technology while setting the

stage to define the uniqueness and overall contribution of this research. A huge

amount of research has been performed in the area of structural optimization.

With such a broad area of research, it is impossible to review all aspects of

structural optimization. Since the focus of this dissertation is the optimization of

structures considering nonlinear behavior, this literature review will not include a

broad view of optimization problems where the structure is considered to behave

linearly. Very few researchers have been successful in the area of optimization of

structures while considering nonlinear behavior. The literature review is broken

down into five major parts. The first part will contrast various optimization

approaches. In the second part of the literature review, relevant papers

pertaining to classical optimization will be discussed. The third part of the

literature review will present papers regarding the optimization of robust

structures. The fourth part of the literature review will contain recent applications

of GAs in appropriate areas of structural optimization. Finally, the fifth part of the

literature review will refer to papers dealing with the development of fiber

reinforced laminated composite finite elements.

Optimization approaches include hill climbing, stochastic search, directed

stochastic search and hybrid methods. Hill climbing or gradient-based methods

are single-point search methods that have been applied successfully to many
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shape optimization problems (see Soto and Diaz, 1993, and Suzuki and Kikuchi,

1991). Gradient-based methods are less applicable to problems in which the

design space is nonconvex and multimodal (see Sangen, 1990). Random

search methods simply evaluate randomly sampled designs in the search space,

and are therefore generally limited to problems that have small search spaces, if

practical search times are required. A directed random search method, such as

a Genetic Algorithm (GA), is a multiple-point, directed stochastic search method

that can be an effective optimization approach to a broad class of problems

(Goldberg, 1988). The use of GA’s for optimal design requires that a large

number of possible designs be analyzed, even though this number generally still

represents only a miniscule fraction of the total design space. When each

evaluation is computationally intensive, a traditional simple or parallel GA can

thus be difficult to apply. Injection Island Genetic Algorithms (iiGA’s) can help

reduce the computational intensity associated with typical GA’s by searching at

various levels of resolution within the search space (see Eby et al., 1999, Mallot

et al., 1996).

Application of gradient-based topological optimization for crashworthiness

was attempted with success using homogenization (see Mayer, et al., 1996).

The objective of the optimization problem was to maximize the internal energy of

the rear rail of an automobile with a single inequality constraint on total mass.

The objective function was a weighted sum of the internal energy at specified

points in time. The crash analysis was performed with LS—DYNA, an explicit finite
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element code. A homogenization method was used to compute the elastic and

plastic moduli as a function of the density of the material. The technique begins

searching from a “baseline” design, where gradients of the objective and

constraint are computed with respect to the density of the material for each finite

element. These gradients directed a search algorithm which determined a set of

design variables (material densities) to find a better design in terms of the

objective and constraint. The final design had a 47% increase in internal energy

when compared to the original “baseline” design. The paper makes reference to

a stiffer structure, without specifying the actual peak crush force. No constraints

were placed on: peak crush force, modal response, packaging or

manufacturability. Stochastic variation of gage thickness was not considered.

The paper did show that an optimality condition exists, requiring that each finite

element must have a constant strain energy.

The construction of response surfaces can provide information needed for

gradient-based optimization. Roux et. al (1996) constructed response surfaces of

nonlinear structural analysis considering material, geometric and contact

boundary conditions for a semi-solid tire. The objective of the optimization

problem was to minimize the mass of the design while minimizing strain at a

point. Constraints were placed on the deflection of a point on the design under a

prescribed load. The design variables included the thickness of the tire at

specified regions and the number of “webs” in the design. "Webs” determine the

spacing of material inside the tire which contains air chambers. The authors

began the optimization procedure with a crude finite element model to represent
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the initial design. Final design iterations in the optimization procedure were

performed using a refined finite element model. This optimization process

represents an attempt to perform a reasonable approximation of the behavior of

the design early in the optimization process while refining the finite element

model later in the optimization run to capture more complex structural behaviors.

A design can be considered robust when small changes in the design

variables and/or loadings produce little or no effect on the behavior of the

objective function and constraints. It is often desirable to desensitize the

objective function and constraints with respect to small changes in the design

variables. Kushel and Rackwitz (1998) formulated a classical gradient-based

approach to reliability-based structural optimization. This was accomplished by

incorporating a smooth differentiable failure probability function into the classical

gradient-based optimization problem statement as a set of constraints. Similariy,

Vietor (1997) approached a stochastic distribution of design variables with a

classical optimization approach as a set of constraints. Gausser and Schuller

(1997) considered optimization of a geometrically nonlinear truss structure with

statistical uncertainties for loading and structural properties through the use of

response surfaces.

The idea of robust optimization through desensitizing engineering systems

to uncertainties, such as manufacturing errors and operational variances has

been the subject of much research (see Belegundu, 1992, Khot, 1991, and

Sundaresan, 1992). Traditionally, the sensitivities of optimal designs are
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recorded after the products are manufactured. G. Taguchi (1985) developed a

method to measure sensitivity of a system during the initial design process. The

method was first developed at a time when little computer simulation was

available, so most data was gathered from actual experiments. Taguchi used

orthogonal arrays for approximating the expected design sensitivity to be efficient

with respect to the number of evaluations, due to the lack of compute power.

Many researchers are currently investigating application of GAs for the

optimal design of structures using various numerical methods (Genta, 1995 and

Queipo, 1994). Most papers apply GAs to optimization problems that assume the

structure behaves in a linear fashion (see Chapman, 1996; Eby, 1999; Fabbri,

1997; Flynn, 1995; Foster, 1997; Furura, 1993; Furura, 1995; Genta, 1995;

Haslinger, 1996; Keane, 1995; Kosigo, 1993; Le Riche, 1993; Mallot, 1996;

Mares, 1996; Parrnee, 1997; Punch, 1995; Punch, 1994; Rajan, 1995; Sangren,

1990 and Wolfersdorf, 1997)

Optimization of structures considering nonlinear structural response using

GAs has been applied successfully by Hajela and Lee (1997). Hajela considered

crashworthiness of rotorcraft subfloor structures with a GA in conjunction with a

neural network. A crash model was developed to capture the overall behavior of

the structure through the use of lumped masses, nonlinear beam elements and

nonlinear spring elements. The objective of the optimization problem was to

minimize the accelerations experienced by the occupants for multiple load cases.

The objective was minimized by determining the optimal load-deflection behavior
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of energy absorbing elements while simultaneously finding their optimal location

in the structure. The neural network constructed a response surface of the

objective function (acceleration experienced by the occupant) based on a set of

training data points (in terms of design variables). The surface from the neural

network seeks to approximate the behavior of the structure in a least squares

sense from the data points, and can be viewed as a form of nonlinear regression

analysis. It was shown, for this problem, that the neural network adequately

represented the actual response of the objective function with respect to the

design variables. The load-deflection curves were defined as piecewise linear

functions. An energy balance of the initial kinetic energy of the system and the

internal energy of the structure at rest was performed to produce realistic bounds

on peak force of the load-deflection curves. The second set of design variables

was the topological placement of the energy absorbing components at discrete

locations. The acceleration levels for two load cases were weighted in the

objective function. Multiple independent runs with different weights placed on the

objectives were performed to obtain a Pareto front. A Pareto front is a tradeoff

surface of the objectives (acceleration level for two load cases).

Furuya et al. (1993 and 1995) used a simple GA to optimize the stacking

sequence of a laminated composite plate for buckling load maximization. A

serious problem with GAs occurs when a single analysis is computationally

demanding. In light of this, the objective of the work was to reduce the

computational intensity associated with GAs. One step made in this direction

was the use of a binary tree. A binary tree was used to store all previous
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analyses performed in the optimization to be retrieved later if an exact duplicate

analysis was reiterated, avoiding costly repeat analyses. A binary tree can

reduce computational costs when a high computational price is paid for each

evaluation (compared to the time used to search the binary tree). A drawback of

the binary tree is the need for a large amount of available memory to store

previous design information. A second step made in the direction of reducing the

computational intensity of GAs was the approximation of certain buckling loads.

Buckling loads were computed exactly for each design string created by genetic

operators. The set of all possible combinations of design strings is approximated

by a linear least squares fit based on bending lamination parameters. The best of

these combinations replaced the nominal design in the population. This

technique searches a small neighborhood of designs for a local optimum.

Punch et al. (1994 and 1995) also used GAs to find optimal composite

structures. They searched for optimal laminated composite beams with a

coarse-grained island injection Genetic Algorithm (iiGA). The objective was to

find stacking sequences for a laminated composites beam that maximized the

amount of mechanical energy absorbed by the beam before fracture. The goal of

approaching the problem with an iiGA was to reduce computational effort. This

was accomplished with an iiGA by searching at various levels of spatial

resolution on separate computational nodes. Structured migration amongst

islands allowed good individuals at low spatial resolution to be injected into

islands of higher spatial resolution. The fitness of the beam was evaluated with

first order zig-zag finite element model developed for composite laminate

 



analysis. The new finite element model accounted for Iayenrvise variations of

displacements and stresses by assuming a piecewise linear through-the-

thickness in-plane displacement distribution. A clamped-clamped graphite-epoxy

composite layered beam had a point lead applied at its midspan. The GA was

allowed to place either a 0 or 90 degree ply in each element in the discretized

beam. First, a symmetric beam with a small search space was explored with the

island injection GA. The final results from the island injection GA were confirmed

to be the global optimal solution by enumerating (exhausting) the search space.

Next, larger search spaces that did not assume beam symmetry were explored

with the island injection GA with promising results.

Mallot, et al. (1996) used an island injection GA to optimize an idealized

airfoil. The objective of the problem was to find composite stacking sequences of

sandwich plates that maintain an appropriate opposite twist to compensate for in-

flight aerodynamic loads that cause adverse airfoil twisting, while minimizing

weight under stiffness and ply clustering constraints. Displacements and

stresses were predicted with a finite element model based on a cubic zig-zag

plate theory. The iiGA approach was able to find designs which reduce weight by

66%, increase minimum in-plane stiffness values by 33% and increased the twist

by a magnitude of 77 times the baseline design, but in the opposite direction. In

comparison with a variety of search methods tested, the iiGA approach was the

most efficient in terms of computational time.
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Out-of-plane loading of a laminated composite can cause appreciable

transverse stresses with respect to other components of stress. Central and edge

delaminations are the primary damage mode in laminated composites. Often,

central delaminations are caused by impact loading while an edge delamination

can often be attributed to the free edge effect (see Liu, 1988). The correct

prediction of transverse stresses is crucial since the interiaminar stresses play a

major role in the energy absorption capability of the laminated composite during

failure.

The first plate theory developed is referred to classical laminate plate

theory and is based on the Kirchoff-Love hypothesis that the in-plane

displacements vary in a linear fashion through-the-thickness while the transverse

displacement remains constant and the transverse shear strain is zero (see

Raddy, 1993). First order shear deformation theory (FSDT) was independently

developed by Reissner and Mindlin, and is typically referred to as Reissner-

Mindlin theory. The theory relaxed the Kirkoff-Love hypothesis which enforced

that the normals to the mid-plane of the plate must remain normal throughout

defamation (see Reddy, 1993). This deformation mode implies a constant

through-thickness transverse shear stress. Shear correction factors are needed

to satisfy equilibrium conditions (see Reddy, 1993). FSDT theory accurately

predicts displacements and stresses of thin and moderately thick isotropic

structures. FSDT theory does not satisfactorily predict displacements and

stresses in some laminated composites (see Cho, 1997). High-order shear

deformation theories (HSDT) have been developed to account for more accurate
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displacements and stresses (especially the transverse stresses) in laminated

composites (Averill, 1992). The through-thickness displacement field is based on

higher order polynomial functions. The higher order polynomials enforce smooth

and continuous variation of displacements. This smooth continuous variation of

displacement causes double valued stresses at inter-laminar interfaces. With

abrupt changes of material properties at ply interfaces, the displacements and

strain field through-the-thickness are not smooth and continuous (see Cho,

1997). Rather, the displacements can “zig-zag” through-the-thickness of the

laminated composite. With this “zig-zag” variation in mind, the goal of Iayenrvise

theories is to describe each laminated composite as an assembly of individual

layers and then impose one or more continuity condition(s) at the laminate

interfaces. Accurate displacements and stresses are predicted, but the total

number of degrees of freedom is proportional to the total number of layers in the

laminated composite. In view of the strengths and weaknesses of the high order

and layerwise theories, an accurate efficient theory is highly sought.

A new class of laminate theories called first order zig-zag theories (FZZT)

was first developed by DiSciuva (1985). Zig-zag theories use a presumed

displacement field for each layer while analytically enforcing interlaminar

continuity of transverse shear stress while maintaining an independent number of

degrees of freedom per layer. Later, many researchers (see DiSciuva, 1993,

Cho, 1993, Averill, 1996 and Yip 1996) improved the accuracy of FZZT, the

primary improvement was achieved by superimposing a piecewise linear

variation of in-plane displacements on a cubic function of the through-thickness

12



coordinate, which is commonly referred as higher order zig-zag theories (HZZT).

This improved capturing the kinematics associated with warping of unsymmetric

laminates but required C1 continuity of the approximation of transverse

displacement, thus Hennitian-type interpolation functions are required. This

introduced additional rotational degrees of freedom which are gradients of the

through-thickness displacement. These additional degrees of freedom make it

inconvenient, if not impossible, to implement into a commercial finite element

code that allows only six degrees of freedom per node (three displacements and

three rotations).

Averill and Yip (1995) developed a generalized FZZT and a HZZT that

eliminated the requirement of C1 continuity of the through-thickness displacement

with an interdependent element (anisoparametric) scheme and the penalty

method for beams with a two-noded element. These elements still required

additional degrees of freedom associated with the gradient of the transverse

displacement. Yip and Averill (1996) approached this problem by combining the

strengths of discrete-layenlvise theory and zig-zag theory. The new theory

permits the laminate to be subdivided into a set of sublaminates. Each

sublaminate can contain many layers. Each sublaminate is modeled with zig-zag

kinematics. The FZZT in-plane displacement field in each sublaminate is

assumed to be a piecewise linear function through-the-thickness (Cho, 1997).

The finite element was cast as an eight-noded brick with three translations and

two rotations as degrees of freedom. Yip (1996) expanded the HZZT to include

von Karrnan geometric nonlinear Green’s strains with the Total Lagrangian

13
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approach. Lee (1998) developed C1 continuity zig-zag plate elements with the

full set of nonlinear Almansi strains with an Updated Lagrangian formulation.

1.3 Present Study

The overall objective of the present study was to develop tools and

approaches for optimization of structures using GA’s. Combining a GA with the

finite element method is by now a familiar approach in the optimization of

structures. Using an Injection Island Genetic Algorithm to perform optimization

considering crashworthiness, modal response, mass, manufacturability,

stochastic variability of design variables and load cases has never been

attempted. Accurate, efficient evaluation tools are necessary when performing

any type of optimization, this is especially true when attempting to predict the

geometrically nonlinear response of composite structures.

For reader familiarization, the mechanics of GA’s and Injection Island GA’s

will be reviewed. An optimization problem involving crashworthiness, modal

frequency response, mass, manufacturability, stochastic variability of design

variables and load cases will be approached with an Injection Island GA. The

development of a geometrically nonlinear first order zig-zag finite element model

will be presented. Verification of the geometrically nonlinear first order zig-zag

finite element model will be confirmed with experimental and computational

methods. Lastly, the optimization of composite sandwich panels will be

14



approached with a GA considering geometrically nonlinear response of sandwich

panels using the first order zig-zag finite element model.
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Chapter 2

THE MECHANICS OF GENETIC ALGORITHMS

2.1 Introduction

The goal of this chapter is to review the mechanics of simple Genetic

Algorithms and island injection Genetic Algorithms. First, the mechanics of

simple Genetic Algorithms are described. Next, the benefits of approaching an

optimization problem with an island injection Genetic Algorithm are discussed.

Finally, the “pros” and “cons” of Genetic Algorithms are presented.

2.2 Simple Genetic Algorithms

Genetic Algorithms (GAs) are a powerful technique for search and

optimization problems, and are particulariy useful when the design space is large

and complex. Many design spaces are discontinuous, nonconvex and

multimodal. These design space characteristics bring strong possibilities that

many local suboptimal solutions exist, which limit the applicability of gradient-type

approaches. The main downfall of a simple GA is the potentially large number of

design evaluations required to obtain a set of satisfactory solutions.

A GA is a search procedure based on the mechanics of natural selection.

Specific knowledge is embedded in a chromosome which represents the overall

design with a set of design variables. The fidelity of each design variable is

determined by the number of bits in the string defining each locus, or position on

the chromosome. These design variables are the building blocks used to
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construct a particular design. Typically, each design variable has the potential to

be mapped from the chromosome to a physical attribute of the actual design.

Designs are created and destroyed by the process of decoding

chromosomes. Natural selection is the connection between a chromosome and

the performance of the chromosome and is a process that causes superior

performing chromosomes to have a higher probability of reproduction, while

inducing poorly performing chromosomes to have a lower probability for

reproduction. During reproduction, two genetic operators are commonly modeled

which can produce new chromosomes: crossover and mutation, a third genetic

operator, inversion is sometimes added. The amount of crossover, mutation and

inversion are all controlled by the user. A high crossover rate will produce new

organisms quickly, but will also have a high probability to disregard higher

performing chromosomes. A low crossover rate could stagnate search, producing

no new chromosomes. Many mutation operators exist, and their main purpose is

largely to aid search by introducing new design variables during search. Mutation

helps maintain diversity and reduces the probability of premature convergence.

The inversion operator was not used in this study.

A set of co—existing chromosomes defines a population, while successive

populations are termed generations. A large genetic pool increases diversity in a

population, which in turn improves the ultimate results of the GA. Figure 2.1

displays the structure of a simple GA. The simple GA begins by creating a single

initial population, wherein chromosomes of different design variables are

randomly created. At this point the "goodness" of each design is measured.

17



Biased by the evaluations obtained, the GA uses unary and binary operators on

these, designs to create another population. This population probabilistically

maintains the previously ”good" designs while discarding poorly performing

designs. The program evaluates the new population members and continues

with additional rounds of generation and selection. This is repeated until

satisfactory solution(s) are obtained (see Goldberg, 1988). Incorporating these

processes in a computer algorithm will produce an algorithm that solves

problems in a manner reminiscent of natural evolution.

2.2.1 Representation of Design Variables within a Chromosome

A chromosome of “p” potential design variables (x.) can be represented in

vector form as: {x1, x2, x3, xp}. Each design variable is typically referred to as

a field or locus on the chromosome. The size of each field on the chromosome

will define the number of choices for each design variable. If a coarse

representation of a continuous design variable is sought, then the field size of the

continuous design variable should have a small number of choices between the

lower and upper bounds of the design variable. A larger number of choices

between the lower and upper bounds of a continuous design variable can be

defined to refine the representation of the continuous design variable. Each

design variable (field) on the chromosome can have an independent field size. If

a design variable is truly discrete in nature, than the field size of the discrete

design variable should be set at the number of choices in the discrete set.

18

 



2.2.2 Initial Population Generation

First, the GA must perform initialization and evaluation of the initial

population. The GA stochastically creates a population of chromosomes

composed of a randomly chosen allele at each locus. A measure of “goodness”

or fitness is assigned to each individual based on the fitness function.

2.2.3 Selection

The next process the GA must perform is selection. The selection

mechanism for GAs is simply the process that favors the selection of fit

individuals to be placed in a mating pool. The fitness function provides a means

of comparing individuals and the selection process determines how the

individuals are compared. Selection mechanisms determine which chromosomes

are placed in the mating pool. Roulette wheel, stochastic remainder and rank

based are all common selection mechanisms. Tournament selection was used

exclusively in this study due to its low selection pressure. Tournament selection

allows for a group of individuals that are chosen stochastically to gather and

compete in a tournament, the individual with the highest fitness is placed in the

mating pool. A low selection pressure lessens the pressure to converge by

disallowing any “super" individual to dominate the reproduction cycle, promoting

diversity. The mating pool is comprised of the individuals that will create the next

generation through genetic operators. Selection is the GA search catalyst that

works by mimicking natural selection.

19



2.2.4 Crossover

Crossover is a genetic operation performed by a GA that recombines

building blocks from two chromosomes to create new chromosomes. Pairs of

chromosomes that were placed in the mating pool through the selection process

are combined through crossover. Uniform order-based, cycle, partially matched,

one-point, two-point and uniform crossover are commonly used procedures.

One-point crossover was used exclusively in this study and is explained in detail.

Consider the two chromosomes below that have five design variables:

{X1. X2. X3. 54. >55}

{ Y1. Y2. Y3. 14. Its }

One-point crossover only occurs between two loci. One-point crossover occurring

between the third and fourth loci would result in the following new individuals:

{ Y1. Y2. Y3. £4. £5 }

{X1. X2. X3. 14.25}

This new set of designs have simply been created through recombination of the

original two chromosomes by swapping their fourth and fifth design variables

between the two chromosomes.

2.2.5 Mutation

Mutation is another genetic operator that aids GAs in search and

optimization. The mutation operator helps maintain diversity during search by

introducing new alleles. A mutation operator that acts upon a field-by-field basis
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of the chromosome was used in this study. A field-by-field mutation of this type is

demonstrated in the following example at the first locus on the chromosome:

{51. X2. X3. X4. X5}

The new chromosome would be:

{513 X2. X3. X4. X5}

The field-by—field mutation would randomly change the value of the first design

variable (bounded by the field size). Typically, low rate of field-by-field mutation

occurs for each field on the chromosome.

2.2.6 Fitness Function

For the problems investigated in this study, the “goodness” of each design

was represented with a single scalar value called the fitness function. The formal

definition of the type of optimization problems addressed in this work is:

Find: {x.} i=1 Number of Design Variables

Such that: Minimize F(xr)

Subject to:

hj. (x,) s 0 j=1 Number of Inequality Constraints

5.. (x,) = O k=1,...,Number of Equality Constraints

x,’ s x, s x,“ i=1 Number of Design Variables

State Equations

where {x.} is a vector of design variables, F(xr) is the objective function, h1. (x,) is

the jth inequality constraint, 5.0:.) is the kth equality constraint while x: and
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x: represent the lower and upper bounds on the i‘" design variable. The state

equations relate the behavior of the objective function and constraints to the

vector of design variables.

For all problems investigated in this study, the “goodness” of each design

was represented with a single scalar value called the fitness function. Within the

fitness function the objective(s) are either maximized or minimized, for this

research, the fitness, thus the objective(s), are maximized. All constraint

violations are minimized with the penalty method. To evaluate the fitness of a

design, the objectives and constraints are normalized and aggregated. The

formal optimization statement can be rewritten as:

Find: {xm} m = 1,...,Number of Design Variables

Such that: Maximize: Fitness(xm)

Subject to:

x; S xm S x;

State Equations

The ‘fitness” of a candidate design can be defined as:

  

. . n. n
,, ob Ob' n ["4 meq. -t_lneq. J n eq —t_eq k

FimeseA+ :3,- i — Z Cj[ ’ 1] - ka[—k-—k] 2-1-)
M or»: 1.0 t_inegi M t_eqk

where “n_obj” is the number of objectives to be maximized, “n_eq” is the number

of equality constraints and “n_ineq” is the number of inequality constraints. “A” is

a large coefficient which insures that the fitness is positive. “Br", “C,” and “Dr.” are

weights associated with the i"‘ objective, j‘“ inequality constraint and the k‘’1
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equality constraint, respectively. C, are penalty coefficients which are set to zero

when the associated inequality constraint is satisfied.

For a candidate design: “Obj.” is a scalar value representing the ith

objective, ineqj is a scalar value of the jth inequality constraint and “eqk” is a

scalar value of the kth equality constraint. “Norm.”, “t_eq,-", and “t_ineqk" are target

values used as scalars that normalize the objectives, equality constraints and

inequality constraints with respect to their target values. “nk” and “n,” are penalty

parameters which are chosen such that a violation of a constraint reduces the

overall fitness of the design. Typically take on values of 2 or greater. This

guarantees the fitness of an infeasible design is penalized in at least a quadratic

fashion with respect to the violation of any constraint. This technique ensures the

fitness rapidly decreases when the candidate design violates any constraint.

Often, optimal solutions lie near or at a constraint boundary, so the penalty

method can help maintain solutions that nearly or slightly violate a constraint.

2.3 Pros and Cons of Genetic Algorithms

A good optimization algorithm should not necessitate excessive

computational costs while progressively finding better solutions. Unfortunately,

no single approach is best for all problems. Fortunately, certain optimization

approaches work better for a specific class of problems. Calculus based hill-

climbing methods work well for an explicit class of problems whose objectives

and constraints change in a smooth, well-behaved manner with respect to the

design variables. Most real life design spaces do not have a convex unimodal
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design space. If a design space is known to be convex, a calculus based hill-

climbing approach should be applied. Calculus based hill-climbing will tend to

proceed to local sub-optimal solutions when extended to problems with complex,

noisy design spaces. This handicaps the applicability of calculus based hill-

climbing methods to many nontrivial problems.

To the other extreme, one technique to alleviate these problems is to

simply enumerate the design space. Exhausting the design space is not

practical if the space is large and or if a single computational evaluation requires

a moderate amount of compute time.

GAs do not require the existence or computation of gradients of the

objective and or constraint functions to perform optimization. Rather, a GA

requires that the fitness of each design can be evaluated. The fitness should

represent a design’s “goodness”, or overall performance in terms of the

objectives and constraints. This makes GAs applicable to a large set of

problems. A GA is a multi-point search procedure modeled specifically on the

mechanics of natural selection. A simple GA is a multi-point search procedure

that occurs within isolated surroundings, interacting with nothing else. Even

though a GA requires fitness evaluation for only a fraction of the total design

space, the total number of evaluations to find an optimal solution can still be

much too large for practical applications. This requirement represents the

number one downfall of a GA. This is tme for GA applications in structural

optimization using computational methods such as the finite element method. An

additional downfall to a simple GA is its propensity to converge to suboptimal
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solutions. Parallel GAs attempt to mitigate both of these issues by allowing

search to happen on a set of multi-point searches (often on separate

computational nodes) with various topological structures allowing structured

migration amongst the search sets.

2.4 Island Injection Genetic Algorithms

An island injection Genetic Algorithm (iiGA) also uses structured migration

of search points amongst a group of search sets, but allows for the exploration of

various levels of resolution of the search space to reduce the overall

computational time required to arrive at a given set of well performing solutions.

iiGAs search at various levels of resolution to quickly find building blocks at low

levels of spatial resolution to inject into higher levels of resolution. iiGAs can

independently search for optimal solutions considering multiple objectives

concurrently while handling stochastic variabilities. An island injection Genetic

Algorithm (iiGA) represents an approach to search at various levels of resolution

within a given space in a structured hierarchical fashion (see Eby, 1996,

Goodman, 1996). This includes first searching at low levels of resolution on

different nodes (islands) and then injecting the high performing individuals into

islands of higher resolution to “fine-tune” the design. If the formal definition of the

fitness is known to change when migrating individuals, the receiving

subpopulation must reevaluate the migrants performance. Figure 2.2 displays a

typical island injection topology that has an island that searches at a low level of

resolution and migrates good designs to islands of higher resolution. The search
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space is fundamentally divided into hierarchical levels with well defined overlap

(the search space of the parent is contained in the search space of the child).

The rate and structure of migration can be set for each island. Each island could

independently represent the problem in terms of design variables, objectives,

constraints, fitness definition and fitness evaluation. The design variables,

objectives and constraints on each island could be considered stochastic or

deterministic. The rates of each genetic operator could be independently set for

each island. Each island could be evaluated on separate computational nodes.

Many variations on the island topology in Figure 2.2 can easily be performed for

problem dependent custom tailoring. iiGAs embody a divide-and-conquer and

partitioning strategy which has been applied to many problems (see Eby et al.,

1999 and Mallot et al., 1996). The simple GA and iiGA applied in this dissertation

were developed by Goodman (1996).
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Figure 2.2. A simple iiGA topology that simultaneously searches various levels of

resolution of the design space on three separate computational nodes (islands).
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Chapter 3

OPTIMIZATION OF CRASHWORTHINESS AND MODAL FREQUENCIES OF

AUTOMOTIVE STRUCTURES

3.1 Introduction

The goal of this chapter is to demonstrate an island injection Genetic

Algorithm’s ability to perform optimization of crash type problems while

concurrently satisfying a set of conflicting constraints considering stochastic

variability of design variables and load cases. The traditional optimization

statement for this problem will be developed in terms of the objective functions,

constraints and design variables with respect to an island injection Genetic

Algorithm. Results display an island injection Genetic Algorithm's ability to

maximize multiple objectives while concurrently satisfying multiple conflicting

constraints. A beam-type structure typically referred to as an automotive lower

front motor compartment rail will be the particular automotive structure

considered during this research. The front motor compartment rail is considered

the main mechanism that governs mechanical transfer of energy during a crash

event. The front motor compartment rail connects the front bumper to additional

beam-type stmctures along the front of dash of an automobile.

3.2 Optimization Problem Statement

In order to define the optimization problem this section describes 1)

optimization design variables, 2) optimization objective functions, and 3)

optimization constraints. The optimization problem can be stated as: find the
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cross sectional shape and thickness varying along the length of a rail structure to

maximize the energy absorbed by a specific region within the structure subject to

inequality constraints on the first and second modal frequencies, peak crush

force, mass and manufacturability while considering multiple load cases with

stochastic variability of loads and design variables. The objectives were

decomposed by simultaneously (but independently) seeking deterministic optimal

solutions for each load case in hierarchical heuristic levels of refinement.

Concurrently, the objectives were stochastically represented with stochastic

variation of the design variables. An objective function can be considered

stochastic when non-unique objective values are possible for a unique design.

The stochastic nature of the objective functions can be defined by the stochastic

nature of the design variables.

3.3 Optimization Design Variables

Every design variable in structural optimization can be thought of as being

either discrete or continuous in nature while behaving in either a deterministic or

stochastic manner. A design variable behaves stochastically when the mapping

of the intended design variable to the actual design is non-unique. A design

variable acts stochastically when a design is produced multiple times and the

produced designs are not necessarily identical. Each time the design is

produced, a slightly modified design could be created. This inherently occurs in

many processes - each time a design is manufactured, slight differences in the

manufacturing process will produce slightly different design variables. A design
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variable behaves deterrninistically when a unique mapping from the intended

design variable to the actual design occurs. Given a set of deterministic design

variables, a unique design will be repeatedly produced, irrelevant of the process

that creates them. Many real life design variables are stochastic in nature.

Stochastic variability of design variables should not be disregarded for problems

that involve noisy chaotic objectives. Nonlinear response of structures is often

very sensitive to small changes in the design variables.

The cross sectional shape of the structure was viewed as a discretized

composition of cross section primitives or structural elements. With this in mind,

the first set of design variables was defined as a deterministic discrete set of

cross sectional primitive shapes. The cross sectional primitives allow variation of

the shape of the cross section along the axis of the stmcture, see Figure 3.1. A

total of five cross sectional primitives biased towards the front of the rail defined

the overall surface of the design, using interpolation from cross section to cross

section with a linear blending function (see Figure 3.2). The surface was

smoothed with a fourth order Bezier surface at the cross sectional primitives to

avoid sharp changes in geometry that would be artificially generated from the

linear blending of the primitive cross sections.

Biasing of the design variables was performed to increase the model

fidelity in critical portions of the stmcture. Refinement of the design variables in

critical regimes of the stmcture was performed to control complex localized

behaviors. Coarsening of the design variables was performed in non-critical

areas of the structure where localized behavior was of a lesser concern. Since a
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progressive crush is sought, the cmsh of the front of the rail is crucial. Therefore,

the placement of primitive cross sections was biased towards the front of the rail

in the “crush-zone". Figure 3.2 and 3.3 display biasing of the design variables

towards the front of the rail structure.

The second set of design variables was the thickness of each section of

the rail, which was considered a continuous stochastic design variable. The

manufacturing process of the rail stmcture was considered stochastic - each

time a target design was created the thickness of the rail stmcture would change

within ten percent of the target thickness. The stochastic noise in thickness was

considered to play an important role in the objective functions. Thickness

changes occurred between the placement of each cross sectional primitive, see

Figure 3.3. Since the surface of the design was generated with five primitive

cross sections, there were four design variables describing the thickness of the

rail structure. The rail structure was made out of aluminum.

As depicted in Figures 3.1 and 3.2, the cross sectional shape of the rail

was allowed to vary as a function of the rail axis by choosing a set of primitive

cross sections. The choice of primitive cross sections was bounded by a discrete

set of manufacturable primitive cross sections. The iiGA could choose any

combination of cross sectional shapes from a predefined library of

manufacturable primitives. This library of cross section primitives is not arbitrary

— rather, it is knowledge based. Figure 3.4 displays a primitive library that

contains a set of knowledge-based manufacturable cross sections. A design

volume constrained the rail structure to have a smaller width compared to the
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height of the rail cross section. Each cross section in Figure 3.4 was scaled up

to 1.5 times the dimension of the original perimeter to define the upper and lower

bounds for each cross section design variable.

The representation of the design variables within the chromosome was set

up in an order that staggered the primitive cross sections with the thickness of

each section. The order of the design variables on the chromosome was

constructed to reflect the physical attributes for a given design which has been

known to aid search within a GA (see Holland, 1975, Goldberg, 1988).

3.4 Optimization Objective Functions

The optimization objective function is the maximization of the internal

energy of a specific region of the structure termed the “crush-zone” for multiple

load cases. The internal energy of the crush-zone was computed by LSDYNA,

(see LSTC/KBSZ, 1999). The objective function for a single load case can be

stated as:

Elli

1.11:1; jsi.dei.dc|.=., 31.)
2no 1 1

where Q is the volume of interest called the “crush-zone”, Sq is the second

Piola-Kirchoff stress tensor and 8;,- is Green’s strain tensor. The equations of

motion were simulated with LS—DYNA (see LSTC/KBSZ, 1999) to obtain the

objective functions. LS-DYNA is an explicit nonlinear finite element code.

The upper bound of the internal energy of a feasible design was computed

by considering the inequality constraint on the maximum crush force and the
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maximum distance the rail could displace during crush. This value was used to

normalize the objectives.

Load cases considered were meant to simulate a component of a front

end of an automobile during various crash events. During frontal crash events,

the lower front rail is often designed to be the main mechanism to govern crash

energy. The crash event was modeled by defining an initial velocity for the lower

front rail structure and allowing it to move into a stationary rigid wall. A lumped

mass (with identical initial velocity as the rail) was constrained at the end of the

rail structure to simulate inertial effects that would drive the rail into the rigid

barrier. Different crash events were modeled with various load cases. The first

load case was meant to simulate a rail structure traveling at 35 mph colliding with

a rigid barrier. For the first load case, a lumped mass was placed directly behind

the rail structure as depicted in Figure 3.5. The second load case was meant to

simulate a rail structure traveling at 40 mph colliding with a rigid barrier with

additional moments into the system. The second load case placed an “eccentric”

lumped mass behind the rail at an offset to create additional moments into the

system as shown in Figure 3.6.

3.5 Optimization Constraints

The first and second inequality constraints in this optimization problem

were to ensure that the first two modal frequencies were greater than or equal to

predetermined target values. The cross sectional properties of the structure

were computed and the modal response of the structure was based on a beam
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analysis performed by ADINA (see ADINA, 1999). It is well documented that an

optimization problem that considers at least two modal frequencies is non-convex

and multimodal with portions of the design space that have undefined gradients

(See Haftka and Gurdal, 1993, and Gurdal, 1999) due to the possibility that order

of modal frequencies may switch as search occurs.

The third inequality constraint was that the maximum force experienced

during crush be less than or equal to the target force. The peak crush force was

computed at the rigid barrier by LSDYNA, (see LSTC/KBS2, 1999). A definition

of work is the “dot” product of force and distance, while energy can be defined by

integrating work through time. With this in mind, there are two ways to increase

the objective function for a specific load case: the internal energy of a structure

can be maximized by increasing either the force or distance vectors during crush.

The Euclidean length of the force vector was constrained. To this end, we can

conclude that the constraint placed on the maximum crush force will play a major

role in limiting the amount of energy absorbed during crush.

The fourth constraint in the optimization problem was to insure that the

total mass was less than or equal to a target value. Equation 3.1 defines the

objective function of a single load case as the internal energy of a specific

volume of the rail structure. An increase in volume would obviously increase the

total mass of the rail structure. For a given design, the total energy of the system

will remain constant. Kinetic energy will be the only form of energy that is input

into the system. An increase in volume (mass) will slightly increase the initial

(kinetic) energy of the system. The internal energy absorbed by a design is



bounded by the total energy into the system (kinetic energy), which in turn is

bounded by the volume (mass) of the design.

The last constraint measured is the manufacturability of the design.

Manufacturability constraints were enforced by ensuring good designs had a

maximum “local-taper” less than or equal to a target value. The “local-taper” of a

design was the maximum amount of change in the size of the perimeter of the

rail as a function of the rail axis. This constraint limits the amount of load that the

structure could carry in localized bending. Localized bending is often required to

initiate crush.

All constraints were evaluated prior to a “full” crush analysis. The

maximum force experienced during crush often occurs shortly after the instant of

contact of the rigid barrier with the rail substructure. If all constraints were

satisfied within 30 percent of the target values, then a full crush evaluation was

performed to determine total internal energy of the crush zone and the actual

maximum force experienced during full crush. If a design severely violated any of

the constraints, then the fitness was penalized by assuming the internal energy

of the crush-zone was zero. This technique reduced the total number of crush

evaluations of “poor” designs that harshly violated constraints.

The fitness for each design was computed using equation 2.1. Target

values for all constraints are given in Table 3.1. All coefficients used in the fitness

function are given in Table 3.2. The weights for the fitness function are all equal

except for the manufacturability weight. The optimization process should not be

dominated by manufacturability constraints.
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3.6 Application of an Island Injection Genetic Algorithm

An iiGA approaches an optimization problem by simultaneously searching

at various levels of resolution within the design space in a heuristic hierarchical

fashion. The following paragraphs present the framework of the iiGA applied

within the context of the current application.

Figure 3.7 shows an iiGA topology that breaks down the total design

space into three levels of design variables and time-based resolutions. The

overall iiGA topology seeks designs which maximize the internal energy for the

two load cases discussed previously. Each island independently searches on

one of nineteen separate computer nodes (termed islands) while simultaneously

sharing information in an ordered fashion. Each computer node had 400MHz

processing speed, on a P586 architecture. Table 3.3 gives genetic operator rates

for all the islands in Figure 3.7.

Each level of resolution was defined by the discretization of the design

variables (rail section thickness and cross sectional primitives) and crush

evaluation time. Islands 0 through 2 have a low level of design variable

representation with a small duration of simulated crush, islands 3 through 8 have

a medium level of design variable representation with a larger crush evaluation

time, while islands 9 through 18 have the highest level of design variable

representation and largest cmsh evaluation time. The total number of possible

designs grows with an increase in the level of resolution (discretization) of the

design variables. Each cross section depicted in Figure 3.4 was bounded by 35
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by 127 and 55 by 200 millimeter design areas. Each primitive had an equal

number of choices scaled uniformly between the upper amd lower bounds of the

design areas. Table 3.4 contains the total number of cross sectional primitive and

thickness choices. The lower and upper bounds on the thickness were 2.5 and

6.5 millimeters.

Figure 3.7 also displays the structured mles of migration within the iiGA

topology. The coarse design spaces were constructed to map into the refined

design spaces in a hierarchical fashion. In general, a unique mapping from a high

to low level of design variable resolution cannot be defined, so designs cannot be

shared from a high to low level of design variable resolution. The best design

plus a randomly chosen design was injected according to the iiGA structured

migration rules as depicted in Figure 3.7 at the end of every generation.

The evaluations performed with LS-DYNA are dynamic, thus time

dependent. An evaluation that measures the performance of design over a small

amount of time is computationally cheaper when compared to evaluating the

identical design over a longer period of time. This fact can be taken advantage of

by allowing the iiGA to search with evaluation times that can vary from one set of

islands to another. This can also benefit the development of a design that

progressively crushes. Table 3.5 contains evaluation times for all islands.

Many islands have stochastic design variables and load cases. Islands 0,

2, 3, 8, 9 and 18 evaluate a single deterministic objective function. Islands 0, 3

and 9 evaluate designs based on the first load case. The first load case placed a

lumped mass directly behind the rail with an initial velocity of 35 MPH. Islands 2,
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8 and 18 evaluate designs based on the second load case. The second load

case placed an eccentric lumped mass at an offset behind the rail with an initial

velocity of 40 MPH. Islands 1, 4 through 7, and 10 through 17 considered

stochastic variability of load case and rail section thickness. For these islands,

the load case was randomly chosen for each evaluation. Each load case had an

equal probability to be chosen for these islands. The thickness of each finite

element was allowed to vary within 10% of the original variable.

The iiGA topology in Figure 3.7 was also dynamic in nature: islands 0

through 2 evaluated 30 generations of designs and then were reinitiated to

monitor the overall progress of the topology, see Figure 3.8. Upon re-initiation,

the islands evaluated the best designs from the highest level of resolution from

the iiGA topology in terms of each load case. This set of islands were meant to

monitor the overall performance of the iiGA topology, not to perform additional

search. No genetic operations were performed on the designs injected into the

monitoring islands.

3.7 Results

The performance of the iiGA topology is represented in Figures 3.7 - 3.8

for each deterministic objective (load case). The overall performance of the iiGA

topology will be measured by viewing the behavior of the objectives and

constraints for a monitoring island in Figure 3.8.

Figure 3.9 displays a progressive increase in the deterministic objective

function of internal energy of the crush zone for the first load case of the best
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design found as a function of generation number for island 9 in Figure 3.8.

Figure 3.10 displays the deterministic normalized constraints for the best design

found as a function of generation number for island 9 in Figure 3.8. It is

important to realize that a feasible design has normalized mass, force, and

manufacturability constraints which are less than or equal to unity. A feasible

design also has normalized first and second modal frequency constraints which

are greater than or equal to unity.

Figures 3.9 and 3.10 display a search that allowed for tradeoffs in

constraint violations in order to maximize the deterministic objective of

maximizing the internal energy of the crush zone for the first load case. Many

constraints are violated throughout the evolutionary process depicted in Figure

3.10, but the final design satisfies all the constraints except for the force

constraint, which violates the target force by only 2%.

Figure 3.11 shows the deterministic objective function of internal energy of

the crush zone, for the second load case, increasing for the best design found,

as a function of generation number for island 18 in Figure 3.8. Figure 3.12

displays the deterministic normalized constraints for the best design found, as a

function of generation number for island 18 in Figure 3.8. The run lasted a total of

40 generations and the best design of the run was found at generation 35.

Similar to the results portrayed in Figure 3.9 and 3.10, Figures 3.11 and

3.12 display a search that allowed for tradeoffs in constraint violations in order to

maximize its deterministic objective for island 18. The deterministic objective

function of island 18 was the internal energy of the crush zone for the second
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load case. Figure 3.11 shows a slight decrease in internal energy of the crush

zone for the second load case from generations 9 to 10 and 19 to 20. This is can

be explained in Figure 3.12 by inspecting where the constraints were violated. A

sudden drop in overall constraint violations occurred over generations 9 to 10

and 19 to 20. This was reflected in the measure of fitness of the designs by

enforcing the constraints with the penalty method.

Figures 3.13 and 3.14 depict the overall performance of the iiGA topology

considering each stochastic objective and constraint. Figures 3.13 and 3.14 show

the objectives increasing along with the behavior of the normalized constraints.

It should be stressed that the monitoring islands in Figure 3.8 were initiated after

islands 0 through 2 completed 30 generations of search, which spanned about

three days. During this initial time, the entire iiGA topology was performing

search seeking good solutions for each load case with stochastic variabilities - in

other words, a huge amount of work was performed before the monitoring islands

were spawned. Figures 3.13 and 3.14 plot the objectives and constraints as a

function of evaluation number due to the fact that the monitoring islands did not

perform any search. The iiGA topology compute time was six and a half days.

Table 3.6 contains the number of evaluations and full crush evaluations. If a

design did not satisfy the constraints, then the objective function was not

evaluated, eliminating the LSDYNA nonlinear finite element evaluation. A full

nonlinear finite element evaluation took about 13 minutes of compute time for a

single load case.
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Figures 3.15 and 3.16 animate the deformation of the best design found

for the first and second load cases, respectively. The design crushes

progressively from the front to rear of the crush zone for both load cases. Two

additional independent runs were performed to verify that the algorithm

converges to a similar best design. The three best designs found in the three

independent runs are depicted in Figures 3.17 through 3.19. Table 3.7 contains

the thickness of each section for all three designs. All three designs closely

resemble each other in overall shape and thickness - this is an important fact

because it displays the iiGA topology repeatedly converged to similar solutions

even though the algorithm started with different initial search sets. The objective

and constraint function values are listed in Table 3.8 for all three designs. All

three designs have near identical objective and constraint function values. To

verify that the objectives are not highly sensitive to stochastic variability of

thickness, twenty additional independent evaluations were performed on the best

designs depicted in Figures 3.17-3.19. It was found that the standard deviation of

internal energy was small compared to the average internal energy. Table 3.9

contains the average and standard deviation of the internal energy for the design

portrayed in Figures 3.17-3.19.

3.5 Conclusions

The study developed an approach that overcame the shortcomings of

available optimization techniques by allowing concurrent optimization of

structures with an island injection Genetic Algorithm for: 1) crash energy
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management, 2) modal vibration frequency response, 3) peak crush force, 4)

weight reduction, and 5) manufacturability, while considering stochastic variability

of design variables and loading conditions. Existing automated design technology

has never simultaneously addressed all these competing mechanisms.
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Figure 3.1 Biasing of cross sectional primitives along the length of a rail structure.
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Figure 3.2 Surface of rail structure is developed with a linear blending of the cross

sectional primitives. The surface was smoothed at each of the cross sectional

primitive locations.
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Figure 3.3. Potential thickness changes occurred at the placement of each cross

sectional primitive.
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manufacturable cross sections.
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Lumped mass Z

Figure 3.5. Finite element model and of rail structure running into a stationary

rigid wall for the first load case. A lumped mass was placed directly behind the rail

structure.
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Figure 3.6. Finite element model and of rail structure running into a stationary

rigid wall for the second load case. An eccentric lumped mass was placed behind the

rail structure.
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Figure 3.7. An iiGA topology that breaks down the design space into three levels of

design variable and evaluation time based resolutions with multiple load cases.
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Figure 3.8. An iiGA topology that monitors islands the performance of the best

designs for the two objectives defined by two structural load cases.
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Figure 3.9. Crush zone internal energy as a function of generation number for load

case 1, island 9.
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Figure 3.10. Normalized constraints as a function of generation number for island 9.

A feasible design has normalized mass, force, and manufacturability constraints

which are less than or equal to unity. A feasible design also has normalized first and

second modal frequency constraints which are greater than or equal to unity.
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Figure 3.11. Crush zone internal energy as a function of generation number for load

case 2, island 18.
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Figure 3.12. Normalized constraints as a function of generation number for island

18. A feasible design has normalized mass, force, and manufacturability constraints

which are less than or equal to unity. A feasible design also has normalized first and

second modal frequency constraints which are greater than or equal to unity.
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Figure 3.13. Crush zone internal energy as a function of evaluation number for load

cases 1 and 2 from monitoring island.
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normalized first and second modal frequency constraints which are greater than or
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Figure 3.15. Animation of deformation for the best design found (load case 1).
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Figure 3.16. Animation of deformation for the best design found (load case 2).
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Figure 3.17. Surface models for best design found, run 1.
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Figure 3.18. Surface models for best design found, run 2.



 
Figure 3.19. Surface models for best design found, run 3.



Table 3.1 . Target values of inequality constraints for fitness function.
 

 

       

 

 

Cl C2 C3 C4 C5

120kN 5.1 kg 75 Hz 115 Hz 0.1

Table 3.2 Weight values used for fitness function.

A Bl, El'E4 E5

1000000 500.0 100.0

     

Table 3.3. Genetic operator rate for each Island In the Island injection

Genetic

 

utatron

Number Size

1
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Table 3.4. Primitive and thickness design variable Information.
 

 

 

 

    

 

 

 

 

    

Number of thickness Number ofPrimitive
Island Numbers . .

chorces chorces

0 through 2 16 32

3 through 8 64 128

9 through 18 128 256

Table 3.5. Crush evaluation times per island and load case.

Island Numbers Evaluation Time Evaluation Time

(Load Case 1) (Load Case 2)

0 through 2 3.84 3.36

3 through 8 8.4 7.35

9 through 18 12.36 10.82

Table 3.6. Number of full and evaluations.

 

 
Table 3.7. Thickness design variables for each best design.
 

 

 

 

 

First Second Third Fourth

Run Number Thickness Thickness Thickness Thickness

(In!!!) (nun) (MD) (MI!)

1 5.34 5.00 3.98 3.85

5.50 4.75 4.15 3.90

3 5.25 4.85 4.05 4.00     
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Table 3.8. Objective and constraint data for the best design found in

three different independent runs.
 

 

 

  

Internal Internal

Energy Energy Peak First Second

Run Load Load Mass Modal Modal

Force Manuf.

# Case 1 Case 2 (kg) (kN) Resp. Resp.

(kN- (kN- (HZ) (HZ)

mm) mm)

1 25298.6 24527.1 5.12 123.0 82.1 126.0 0.8

2 25611.2 24201.4 5.05 125.1 84.0 125.8 0.74

3 25010.6 24727.6 5.08 119.5 83.5 124.9 0.70       
 

Table 3.9. Stochastic variability of internal energy for the best

designs found (20 independent evaluations) with respect to

 

 

 

  

thickness.

Standard Standard

Average Average

Internal Dev. Internal Dev.

Run Internal Internal

Energy Ener Energy Ener

Load Case 1 3” Load Case 2 3"
(kN-mm) Load Case 1 (kN-mm) Load Case 1

(kN-mm) (kN-mm)

1 24981.6 405.1 24305.4 601.9

2 25111.2 367.1 24150.3 613.2

3 25310.6 503.5 23891.1 643.1      
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Chapter 4

DEVELOPMENT OF A GEOMETRICALLY NONLINEAR ZIG-ZAG FINITE

ELEMENT MODEL

4.1 Introduction

Analysis of laminated composites and sandwich panels often requires a

compromise between accuracy/complexity and efficiency/simplicity. While first-

order shear deformation theory (Yang, et al., 1966) and higher order theories

(see Reddy, 1990) are able to predict the overall structural response of most

relatively thin laminated structures, these theories often pooriy predict the

magnitudes and distributions of local strains and stresses. In sandwich panels,

these theories, as well as more specialized but traditional sandwich theories (see

Vinson, 1999; Zenkert, 1997), fail to properly predict core shear and compressive

stresses, cannot be applied to the full range of core densities and types, and

cannot handle the extremes of skin thicknesses and moduli. At the other end of

the spectrum, fully three-dimensional finite element models typically require

significant through-thickness discretization (e.g., one element per layer),

involving large computing power and an onerous model development effort. The

above issues are further exacerbated whenever a nonlinear analysis is required.

The goal of most new laminate modeling approaches is to increase

accuracy while decreasing modeling effort and/or computational cost. Toward

this goal, a new technical theory and associated finite element model have been

developed for analysis of thick or thin laminated composite and sandwich panels

(Cho and Averill, 2000). The theory employs the sublaminate concept such that
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each computational layer contains several physical layers. Within each

sublaminate, an accurate approximation of the displacement field accounts for

discrete layer effects without increasing the number of degrees of freedom as the

number of layers is increased. This is accomplished by analytically satisfying the

continuity of transverse shear stresses at layer interfaces. Because the resulting

through-thickness variation of ”in-plane” displacements takes the form of a

piecewise linear function, the theory is often called zig-zag theory. Depending on

the laminate layup and the type of global and/or local response measures that

are sought, the optimal number of sublaminate approximations required for

accurate analysis of thick multilayered composite laminates or sandwich panels

is far less than the number of layers in the laminate. Often, only one sublaminate

is required.

This model has been cast in a form that is very convenient for use in finite

element analysis, namely, eight-noded brick and six-noded wedge three-

dimensional elements have been developed that behave very much like plate

elements, but have nearly all of the advantages of traditional three-dimensional

elements (Cho and Averill, 2000). In particular, these layered solid elements can

be stacked in the thickness direction of a laminate, allowing any desired degree

of through-thickness discretization. Further, these elements may have very large

aspect ratios without exhibiting shear looking or Poisson ratio locking. The three-

dimensional zig-zag sublaminate finite elements contain only the typical five

engineering degrees-of-freedom (i.e., three translations and two rotations) at
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each node, so they are compatible with the requirements of most commercial

finite element packages.

The first-order zig-zag sublaminate theory and its associated finite

elements have been shown to be very accurate and robust for predicting the

linear stmctural response of a wide range of laminated composite and sandwich

panels. However, the effectiveness of this model in predicting nonlinear response

has not been thoroughly investigated. The zig-zag sublaminate approach seems

to have great promise for predicting progressive failure, sandwich skin buckling,

and other nonlinear structural behaviors. Hence, recent attention has been given

to the development of geometrically nonlinear zig-zag models. Geometrically

nonlinear models of various forms of the zig-zag plate theory have been

developed by several investigators (Yip, 1996; Lee, 1998; DiSciuva, 1996,1997).

The combination of accuracy and simplicity of the first-order zig-zag sublaminate

model makes it more convenient for general purpose use compared to the

available higher-order zig-zag type models. Thus, in the present work the first-

order zig-zag model (Cho and Averill, 2000) is extended to account for geometric

nonlinearity due to moderate rotations of the plate reference surface. Such an

extension is motivated by the need to simulate nonlinear phenomena such as

those mentioned above. Here, the new nonlinear model is developed and

validated.
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4.2 Basic Ingredients Needed For The First-order Zig-Zag Plate Theory

In this section a brief description of the geometrically nonlinear first-order

zig-zag sublaminate plate theory is provided. Many details related to the

mathematical development of the zig-zag coefficients are neglected, and

attention is focused on the extension of the model to account for moderately

large rotations. For a complete description of the geometrically linear theory and

the associated numerical validation studies, the reader is referred to (Cho and

Averill, 2000).

It is assumed that the laminate is composed of N, perfectly bonded

layers. The thickness and material stiffness properties may vary arbitrarily from

layer to layer. The laminate is modeled as M sublaminates, with each

sublaminate containing N," layers, where m is the sublaminate number.

Mathematically, this is represented as:

M

M=ZM an

In order to facilitate the development of the theory, all expressions in the

following derivation pertain to the m-th sublaminate. The sublaminate number

designation m is omitted for brevity. The reference surface of the m—th

sublaminate is assumed to be the bottom surface of the sublaminate, as shown

in Figure 4.1.

The global X3-axis is taken perpendicular to the in-plane X1, X2 coordinate

axes and has its origin at the bottom of the laminate, while x3 is a local
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sublaminate coordinate in the direction of X3 with its origin at the bottom of the

sublaminate (See Figure 4.1).

The constitutive relations for a three-dimensional stress state in the k-th

layer of the m-th sublaminate can be written as:

(n‘ F (k) (k) (k) at)“ (k) ‘

IS“ C” C.. 0.. 0 0 C.. I8.

(1:) (k) (k) (k) (k) (1:)

S22 C12 C22 C23 0 0 C26 822

Sac) Cm Cm Cm O 0 Can (k)

< 3(1) }= 13 23 33 m (k) 36 < 83:) q (42.)

Se 0 0 0 C.. C.. 0 7..

SI.“ 0 0 0 Cl? (35‘? 0 73"

Sun Cm Cm Cm O 0 Cm Dim

( 12 j _ l6 26 36 66 _ 12 .      
where 85’" are the components of the second Piola-Kirchhoff stress tensor and

5;“ are the components of the Green strain tensor. For most practical laminated

composites, the 13 coefficients of the material stiffness matrix are obtained from

9 independent material constants and a transformation law (see Jones, 1999).

If strains are small compared to unity but rotations of the plate reference

surface are moderate, then the Green strain tensor can be degenerated to a

simplified form commonly referred to as the von Karrnan strain tensor, defined in

vector format as:

      

i811 i “1.1 2 3"

(k) (k)

822 “2,2 _1_(u(k)

a”) u“) 2 3'2

3.3

< 3’ I=< I+< 0 i (4.3)
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where uf“ is the displacement of a point in the x, direction and ( )1. implies

differentiation with respect to x).

The sublaminate displacement fields are initially assumed in the following

form:

1-1

uf“ (x,,x2,x3,t) = “3 + x3311, + 2(x3 —x3,)-§,

i=l

k-l

ug") (x,,x2,x3,t) = vb + x3 -‘I’2 + EX}:3 — x3,)-77,. (4.4)

.-.1

ug") (x,,x2,x3,t) = wb -(1-%)+ w, (Eli-J

where t represents time, h is the thickness of the sublaminate, u, and v, are the

axial displacements in 2:1 and x2 directions, respectively, at x, =0, LI’, and ‘P,

are rotations of the normal at 2:3 =0, and w, and w, are the transverse

deflections of the bottom and top surfaces, respectively, of the m-th sublaminate.

Thus, it is assumed that u,""and 14;") vary in a piecewise linear fashion through-

the-thickness of a sublaminate and u§"’ varies lineariy through-the-thickness. The

parameters 5, and 77,. in equation 4.4 are eliminated by enforcing continuity of

transverse shear stress at each ply interface (Cho and Averill, 2000; DiSciuva,

1997). The shear stress continuity conditions at the k-th interface can be

expressed as:

s? = Sr”. 5:.“ = Sr” (4.5)

Assuming that infinitesimal strain theory holds for the transverse shear strain

components, the form of the assumed displacement fields in equation 4.5 is such

that the in-plane displacements uf“ and 12;") contribute only constant terms to
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the transverse shear stresses, Sf? and 5;). For consistency, then, the

transverse displacement u§“ should also contribute only constant terms to these

stress components. In order to achieve this consistency, terms in the transverse

shear strain expressions that involve the transverse displacement variables are

evaluated at the midplane of the sublaminate, thereby taking a thickness

averaged value of these terms. Substituting equations 4.3 and 4.4 into equation

4.5 and solving for 5, and 77,, it can be seen that 5, and 77, depend on the ratios

of shear properties between adjacent layers and on the shear deformation in

each sublaminate. If either of these quantities are small, then discrete-layer

effects will also be small.

The rotational variables ‘1’, and ‘1’, in the displacement field are now

eliminated by introducing the variables u, and v, (the in-plane translations at the

top surface of the sublaminate) in order to expedite the development of versatile

finite element models. Thus, rather than describing the in-plane displacement

field by a translation and rotation at one point, it can more conveniently be

described here by the translation at two points.

The displacement fields must be further manipulated in order to develop a

Go finite element. Because the derivatives of transverse deflections

aw” aw' aw” and EM) appear in the displacement field, their second

(511’5x1’5x2 5X:

 

derivatives will be present in the strain energy functional. C1 continuity of w, and

w, is thus required. It is desirable to alleviate such a requirement by introducing

new rotational degrees of freedom as follows:
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 (4.6)

These relationships will be constrained in the strain energy via a combination of

the interdependent interpolation and the penalty method. The displacement fields

can now be written using indicial notation as follows:

11,“) = flap-(1)22, a?) = 17.113 -‘I’g;,’, ug") = W” 42,, a =1...4; ,6 = 1,2 (4.7)

where the index ,6 is used to denote the top and bottom of the sublaminate with

1: bottom and 2: top, and (1)23)ng and O, are shape functions in the thickness

direction (see Cho and Averill, 2000). Unless noted otherwise, summation on

repeated indices is implied. The variables Ea, are:

17,,=u,,, iizfl=v,,, H,,,=6,,, 543:0“, (4.8)

The transverse normal strain arising from the assumed displacement field

(4.7) is constant through-the-thickness of a sublaminate and takes the value

(w, — w,)/h. This assumption may generate substantial errors in composites

that have a soft core or layer, such as in sandwich panels, laminates containing

damage, or adhesive layers. It is desirable to improve the distribution of the

transverse normal strain through-the-thickness. The improvement can be

achieved by assuming a constant transverse normal stress, E, through-the-

thickness of a sublaminate. 3'3, can be determined using Reissner‘s mixed

variational principle (Reissner, 1986). From equation 4.2, the transverse normal

strain is obtained as:
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C3.

S33 is then determined analytically from the following relation:

N ’30) k w _w

0:2; r(e<.>————vb)... (4.10)
r.-. , II

111-11

The constant transverse normal stress §,, is found to be:

5,, =f,(aa,,w,,<b;;’,\P;;’,Q;;’) (4.11)

Now, the newly defined transverse normal strain can be written as:

5;,” = f,(17,,,w,,<1>;;’,\11,§,’;’,(2;;’) (4.12)

The functions f, and f2 are defined in (Cho and Averill, 2000) for small

displacement analysis. For the purpose of calculating S3,, the von Karrnan

nonlinear strain terms must be included in equation 4.9 to ensure accuracy of the

solution for all types of laminates.

4.3. Virtual Work

The equations of motion, the essential and natural boundary conditions,

as well as the displacement-based finite element model can be developed from

the principle of virtual work. Again, attention will be limited to a single

sublaminate. The work functional is modified here to include the imposition of the

constraints in Equation 4.6 via the penalty method. The total work performed by

internal and external forces on a sublaminate is:

W = W, + W, (4.13)
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For linear elastic material behavior, the internal work is:

1
W, = 3 LSE dV (4.14)

where E and S are vector representations of the Green's strain and the second

Piola-Kirchhoff stress states. WE is the work of the external forces performed on

the sublaminate:

W, = — jb’udV — Lt’udf‘ (4.15)

where u is a vector of displacements, b is a vector of body forces and t is a vector

of tractions on the surface I‘.

The work functional defined by equation 4.13 will be subject to the four

constraints in equation 4.6, which can be represented as:

G, (u,u') = O i = l,2,3,4 (4.16)

We now introduce a modified work functional:

WM =W, +W, +W,, (4.17)

If the constraints (6) are enforced using the penalty method, then:

W, = 24.}; LGfdQ (4.18)

where y is the penalty parameter, Q is the domain upon which the constraints

are to be enforced, G, =iwi+6n , G, =a—W'—+6I,, , G, =-%-6,, , and

6x, 8x, 6x,

G4 = 9—“;- 11

6x,
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The total virtual work performed on a sublaminate is now defined by the

first infinitesimal variation of the modified work functional:

5W” =6W,+5W,,+6'W,,=O (4.19)

6W. is the virtual work resulting from internal forces:

6W, = (S 5EdV (4.20)

8W5 is the virtual work resulting from external forces:

W, = -[11’de — lt’é‘udl‘ (4.21)

6Wp is the virtual work resulting from violation of the equality constraints:

W, = fir j[6G,(u,u')G,(u,u')]dV (4.22)

i=1

As the penalty parameter 7 becomes larger, violation of the equality constraints is

minimized in a least squares sense. The governing equations, finite element

model and boundary conditions can be derived directly from equation 4.19. The

details of this procedure are omitted for brevity.

4.4 Finite Element Formulation

The standard form of the finite element approximation is:

u = NH (4.23)

where N is a matrix of element interpolation functions and i is a vector of nodal

degrees of freedom.

Green’s strain can be written as the sum of linear and nonlinear parts:

E = a, + 8”, (4.24)
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The linear portion of the Green’s strain is:

a, =Lu =LNii=B,fi (4.25)

where L is a matrix of linear differential operators and BL is a matrix containing

gradients of the interpolation functions. All coefficients needed to formulate BL

can be found in (Cho and Averill, 2000). The nonlinear portion of the Green’s

strain is:

5,, =—;-A(l9)l9(u) (4.26)

where 6(u) is a vector of displacement gradients and A(6) is a matrix composed

of the vector 19(0). Green’s strain can then be written as:

E = ms+ %A(6)6(fi) = 1311' (4.27)

and the first infinitesimal variation of Green’s strain is:

6131 =B,6i+%(6A(0)6(fi)+A(6)56(fi)) (4.28)

To simplify the definition of the first variation of Green's strain we note that:

6E .—. B,6i+%(A(66)6(fi)+A(6I)66(fi)) (4.29)

and:

619(6): amen (4.30)

so that:

6E = 13,511 + A(6I)6(Ti)6i (4.31)

The first variation of the Green's strain can now be written as:
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3E =B,6fi+A(6)6(fi)6fi= (B, +A(0)G)éi 4333 (4.32)

where G is a matrix of nodal shape function gradients.

The virtual work can now be written as:

W, = err-’(jETSdV + 7 Lp’pfido — [b’NdV — lt’Ndl“)= 0 (4.33)

where p is a vector containing nodal shape functions used to define the penalty

constraints. This relation is valid for an arbitrary variation of the element nodal

degrees of freedom, thus:

r(Tr') = [ETSdV + 7 Lp’pfido — [b’NdV — jt’Ndr = 0 (4.34)

In general, an exact solution to equation 4.34 will not be attained, so the residual

1-(11‘) will be non-zero. The residual is often called the out-of-balance forcing

vector since it represents the amount that the current solution is “out of

equilibrium.”

Equation 4.34 is typically written in the form:

D Ki = f (4.35)

where the direct stiffness matrix (including the penalty term) is written as:

D K = [E’DfidV + y Lp’pdn (4.36)

and the forcing vector is written as:

r = b’NdV + jtTNdr (4.37)

It should be noted that direct iteration of equation 4.35 can be performed

by constructing, inverting and iterating upon the unsymmetric direct stiffness

matrix, but this leads to high computational costs and slow convergence rates.

Instead, we employ the Newton-Raphson solution technique that uses a
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symmetric tangent stiffness matrix to iterate until a sufficiently accurate solution

is obtained.

4.5 Newton-Raphson Method

To define the tangent stiffness matrix TK, we expand the residual in a

Taylor series expansion about the current equilibrium configuration (denoted by

the subscript o):

 r(fi)=ro+aE§fi+i§fi’§Léi+-n (4.38)

au 2! 332

Higher order terms in the Taylor Series expansion are assumed to be small when

compared to the constant and linear terms. We wish to minimize the residual

r(ii) so equation 4.38 becomes:

 0 = r, + ar, an (4.39)

an

The first variation of nodal degrees of freedom about the current configuration is:

are ‘1 __r '1
(Sn—{W} r,— (K) r, (4.40) 

For complex formulations such as the current one, direct application of equation

4.40 can be cumbersome. Alternatively, but equivalently, the tangent stiffness

can be formed by taking the second infinitesimal variation of the modified

functional (see Crisfield, 1991 ). The tangent stiffness can then be defined as:

 6(5WM)= 55(11): Weigh = 50171033 (4.41)

We can express the first infinitesimal variation of the residual roar“) as:
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(5‘1“,(6) = 55’ {j (513’S+§’5s)dV+ 7 L(p7p)ifl§fi} (4.42)

The first term in (42) can be written as:

55’ [53’SdV = 55’ j(5A(e)G)TSdV (4.43)

which can be rearranged and manipulated (due to the symmetry of the second

Piola-Kirchhoff stress tensor) to form:

55’ [G’(5A(e))TSdV = 55’ jGTS5A(e)dV (4.44)

A

where S is a matrix of second PioIa-Kirchoff stresses which gives rise to the

stress stiffening matrix “K:

55’ (GTS5A(e)dV = 55’ (jG’SGdVbn = 5fi’(’K)55 (4.45)

The stress stiffening matrix represents stmctural stiffening effects due to stresses

that arise during the nonlinear deformation.

The second term in equation 4.42 can be simplified as:

55’ [3’5st = 55’ [13’0de = 5a’(j§’c§dV)55 = 55’(T<')55 (4.43)

The stiffness matrix K represents the combined stiffening effects from large and

small displacements.

The last term in equation 4.42 can be represented as:

55’y(Lp’pdo)55 = éfi’(”K)éi (4.47)

The penalty stiffness matrix PK represents the stiffness required to enforce the

linear equality constraints in a least square sense.

Finally, the tangent stiffness matrix is:

’K=’K + K+PK (4.43)
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The solution at the i-th iteration of the n-th time increment is obtained

using:

[’Kl? {Mir-1. = {F If - [”Kl {i}? (4.49)

and:

to}; = Atfilr. + {i}: (4.50)

where {ii},';, and A{ii'}" are the total and incremental displacements at iteration
i+l

i+1 for the n-th time increment. The equations 4.49 and 4.50 are solved iteratively

until A{fi},’.',, is sufficiently small.

4.6 Finite Element Approximations

The first-order zig-zag sublaminate finite element model formulation for

linear strain theory was developed by Cho and Averill (2000). These elements

are based on a formulation that involves sublaminate surface variables, which

facilitates the development of a three-dimensional finite element model. Each

node contains five degrees of freedom — three translations and two rotations.

Both an eight-noded brick and a six-noded wedge finite element have been

developed (see Figure 4.2). For the geometrically nonlinear model formulated

here, a similar approach is used. For brevity, only the eight-noded brick element

is discussed.

The in-plane displacement and rotational degrees of freedom are

approximated by bilinear Lagrange interpolation functions:

M
a

M
:
-

u, = u,,N. u =
l 1

EN. (4.51)
(I t

.
0
.

'
l
-

u
.
-
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v, = firm. v = firm, (4.52)

0,, = £67,,N. 19 = i6 .N. (4.53)

.9 =fijéy,,N, (9,,=_ 5,,N, (4.54)

where N. are bilinear Lagrange interpolation functions and n is the number of

nodes that define either the top or the bottom surface of the element. For the

eight-noded brick element, n=4.

An interdependent interpolation scheme is used for the transverse

deflection degrees of freedom. The interdependent interpolation scheme reduces

the effects of locking and facilitates the satisfaction of the constraints in equation

4.6. The interdependent interpolation concept was first developed by Tessler

and Hughes (1983). This scheme does not require additional degrees of freedom

and it improves element accuracy and efficiency. The interdependent

interpolation scheme couples the transverse deflection degrees of freedom with

the rotational degrees of freedom, as follows:

w, = :(Nfifl, + 117,52, + 5,5,...) (4.55)
is]

where N. are the bilinear Lagrange interpolation functions, 11?, are special

quadratic functions, ,6 ranges from 1 to 2 (1= bottom, 2=top). and n=4 is the

number of nodes on the top or bottom surface.

While the interdependent interpolation scheme alleviates some of the

shear locking in the element, it does not eliminate it completely. A locking-free

element is obtained by enforcing both field and edge consistency conditions, as
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shown by Prathap and Somashekar (1988). These concepts have been applied

to the current element (Cho and Averill, 2000) to make it robust for application to

both very thin and very thick laminated plates.

Appendix A defines all matrices needed to form the direct and tangent

stiffness matrices for the geometrically nonlinear first-order zig-zag sublaminate

finite element model accounting for moderately large displacements and

moderate rotations. The current geometrically nonlinear finite element model has

been implemented as a user element subroutine within the commercial finite

element code ABAQUS (Hibbit, et al., 1997). This approach takes advantage of

the efficient iterative solution algorithm native to ABAQUS and allows attention to

be focused on development and testing of the new nonlinear zig-zag sublaminate

theory and its associated finite element model. All numerical results in the

following section were obtained using the present model as a user element

subroutine within ABAQUS.

4.6 Numerical Results

In this section, sample numerical results obtained from the first-order

geometrically nonlinear zig-zag model are compared with available experimental

results (see Zaghloul and Kennedy, 1975; cited in Ochoa and Reddy, 1992) for

bending of square, symmetrically laminated, simply-supported and clamped

composite panels subjected to a uniform transverse pressure load. Since the

geometrically nonlinear response of composite plates is highly dependent upon

the lamination scheme and boundary conditions, it is essential to faithfully
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represent the lamination scheme and boundary conditions in the experiment if

numerical and experimental results are to be compared. The numerical

replication of the experimental setup can often be accomplished to a satisfactory

level of accuracy, but usually cannot be replicated exactly. In order to illustrate

the importance of zig—zag effects in nonlinear analysis of laminated stmctures,

numerical results are also presented for bending of a square, symmetrically

laminated, simply-supported sandwich composite panel subjected to a uniform

transverse pressure load.

The first laminate studied is a simply supported, single-layer orthotropic

square plate with in-plane dimensions of 12 by 12 inches and a thickness of

0.138 inches. Material properties of this panel are given in Table 4.1. The second

laminate studied is a clamped square cross-ply laminate with a (0/90/90/0) layup.

This panel has the same in-plane dimensions as the first example, but it has a

total thickness of 0.096 inches. Table 4.2 contains the stiffness properties of the

material used in this second panel. Due to symmetry of the panels, only a quarter

plate model was developed, with meshes in the quarter region as given in the

figures (e.g., 4x4x1). Along the simply-supported edges of the plate model in the

first example, simply-supported boundary conditions were imposed at the bottom

of the laminate to best represent the experimental setup (Zaghloul and Kennedy,

1975)

Figures 4.3 and 4.4 contain the experimental and predicted load-deflection

curves for the square simply supported single-layer orthotropic plate and the

square clamped cross-ply laminate (0/90/90/0), respectively. Numerical results
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are presented for both the first-order zig-zag sublaminate finite element model

and the 84R shell element available in ABAQUS. For the first-order zig-zag

model predictions, results are given for various levels of in-plane and through-

thickness mesh refinement. Both plates stiffen significantly due to the coupling of

bending and membrane stresses. Figures 4.3 and 4.4 show excellent correlation

between results obtained from the geometrically nonlinear first-order zig-zag

sublaminate model, numerical results using ABAQUS, and the experimental

results. The small differences in the solution predicted by the S4R element and

the first-order zig-zag element can most likely be attributed to the slightly different

boundary conditions utilized. In the S4R element, boundary displacement

constraints are imposed at the plate mid-surface, as is common practice for shell-

type finite elements. On the other hand, boundary displacement constraints in the

three-dimensional first-order zig-zag element are imposed at the bottom surface

for the simply-supported case and at both top and bottom surfaces for the

clamped case. Based on the results using the first-order zig-zag sublaminate

model, it is clear that through-thickness refinement does not improve the

predictions of global response for either of these panels. The correlation between

the two numerical solutions is better than the correlation between either of the

numerical solutions and the experimental results. For both cases considered,

discrepancies between the computational results and the experimental results

are likely due to differences in boundary conditions and material properties.

The final numerical example was constructed to compare the predicted

through-thickness variation of displacements and stresses using the
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geometrically nonlinear zig-zag model. The laminate considered here is a simply

supported sandwich panel with a compliant core, which has been studied

previously (Cho and Averill, 2000). The plate has in-plane dimensions 10 x 10

inches and a total thickness of 1 inch, so the aspect ratio of the plate is ten. The

plate is loaded by a uniform pressure applied on 4 x 4 inch square patch at the

center of the plate. Tables 4.3 and 4.4 contain the material properties and

lamination scheme, respectively, of the sandwich panel. Due to symmetry, only a

quarter of the plate was modeled with a uniform 5x5 finite element mesh in the

plane of the laminate and with a varying number of elements through-the-

thickness. For example, when three elements are used through-the-thickness of

the plate the total thicknesses of the bottom face sheet, the core and the top face

sheet were each represented by one element. As in the first example, simple

supports were imposed along the bottom edge of the panel. The results of the

present model are compared to predictions of the ABAQUS layered solid element

denoted as C3D8I, which uses incompatible modes to overcome locking.

Figure 4.5 displays the predicted load-deflection curves (at center of the

sandwich panel) obtained by the linear and the geometrically nonlinear first-order

zig-zag element and the ABAQUS C3D8I element at the top of the simply

supported sandwich panel. It can be seen that the ABAQUS element requires

three elements through-the-thickness to achieve a converged solution for the

transverse deflection at the top of the panel, while the first-order zig-zag model

requires only a single element through-the-thickness to attain a similar level of

accuracy.
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Figure 4.6 displays the predicted load-deflection curves (at center of the

sandwich panel) obtained by the linear and the geometrically nonlinear first-order

zig-zag element and the ABAQUS C3DBI element at the bottom of the simply

supported sandwich panel. It can be seen that the ABAQUS element requires

three elements through-the-thickness to achieve a converged solution for the

transverse deflection. The deflection at the bottom of the panel decreases as the

number of first-order zig-zag elements is increased through-the—thickness. Figure

4.5 depicts very little change in deflection at the top of the panel as the number of

first-order zig-zag elements is increased through-the-thickness. Together,

Figures 4.5 and 4.6 show an increase in nominal transverse normal strain as the

number of first-order zig-zag elements is increased through-the-thickness. This

occurs due to the compliant core of the sandwich panel. For this problem, three

first-order zig-zag elements through-the-thickness are required to capture the

transverse “squashing" of the core. To determine if the core is “squashing” due to

geometrically nonlinear through-thickness refinement effects, a set of small

displacement analyses were conducted with first-order zig-zag and ABAQUS

C3D8l elements. Table 4.5 contains the deflections at the bottom and top of the

sandwich panel assuming small displacements using the first-order zig-zag and

ABAQUS elements with one, two and three elements through-the-thickness.

Table 4.5 shows the deflection of the top of the panel remaining nearly constant

for the first-order zigzag finite element model, while the deflection at the bottom

of the panel decreases as the number of elements through-the-thickness is

increased. The “squashing” of the core is captured as the number of elements
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through-the-thickness is increased, even though small displacements are

assumed.

For an applied load of 9.5 ksi, Figures 4.7 and 4.8 display the predicted

through-thickness variation of in-plane displacements. The in-plane

displacements from ABAQUS and the first-order zig-zag element agree with

sufficient refinement (three elements through-the-thickness).

Figures 4.9 and 4.10 display the predicted through-thickness variation of

the in-plane Cauchy bending stresses at the nearest integration points to the

center of the plate for an applied load of 9.5 ksi for various levels of through-

thickness refinement. For clarity, Figures 4.11 and 4.12 compare the ABAQUS

and first-order zig-zag model prediction of through-thickness variation of the in-

plane Cauchy bending stresses within the top “skin” of the sandwich panel. The

in-plane bending stresses from ABAQUS and the first-order zig-zag element

agree with sufficient refinement (three elements through-the-thickness).

Figure 4.13 displays the transverse normal Cauchy stress at the

integration points closest to the center of the plate. Due to the assumed constant

transverse normal Cauchy stress, each sublaminate of the first-order zig-zag

finite models will have a constant through-thickness normal Cauchy stress. The

ABAQUS and first-order zig-zag predictions differ significantly in the top and

bottom “skins” of the sandwich panel in Figure 4.13. This can be accounted for

by inspecting the kinematic assumptions of each finite element model. The

ABAQUS finite element model assumes that the displacements vary lineariy

within an element. This enforces the strains to be continuous at each layer
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interface within an element. This implies that the stresses are discontinuous at

each layer interface due the abrupt changes in material properties within a single

ABAQUS element. Conversely, the first-order zig-zag element assumes that the

stresses are continuous at each layer interface within a sublaminate. For this

reason, the first-order zig-zag element is expected to yield higher accuracy when

compared to the simple linear ABAQUS element.

Figure 4.14 displays the transverse normal strain at the integration points

closest to the center of the plate. Due to the assumed constant transverse

normal Cauchy stress, the transverse normal strains vary linearly within each

layer of the first-order zig-zag finite model. As the number of sublaminates (or

elements) is increased through-the-thickness, a larger amount of nominal

transverse strain is predicted. Figure 4.14 depicts the previously discussed

transverse “squashing” of the core conveyed in Figures 4.5 and 4.6.

Figures 4.15 and 4.16 display the predicted through-thickness variation of

the transverse Cauchy shear stresses for the first-order zig-zag model and

simple linear ABAQUS element for various levels of transverse refinement. The

difference in kinematic assumptions for the first-order zig-zag and linear

ABAQUS finite element explains the discrepancies in the through-thickness

variation of the transverse Cauchy shear stresses within the bottom and top

“skins” of the panel. The linear ABAQUS element assumes a constant state of

strain within an element, thus the stresses have double values at each layer

interface within an element. The first-order zig-zag finite element model assumes
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a piecewise linear variation of in-plane displacements through-the-thickness of

the sublaminate while satisfying continuity of inter-laminar stresses.

Figure 4.17 depicts the predicted through-thickness variation of the in-

plane Cauchy shear stress for the first-order zig-zag model and simple linear

ABAQUS element for various levels of transverse refinement. Both elements

predict similar through-thickness variation of in-plane Cauchy shear stress.

Differences between the first-order zig-zag and linear ABAQUS solutions

can be attributed to the different kinematic assumptions used in the models, with

the zig-zag element being expected to yield higher accuracy than the simple

linear model employed in the C3D8l element. For clarity, Figure 4.18 depicts the

measurement points of the in-plane displacements, stresses and strains.

4.8 Conclusions

A new geometrically nonlinear first-order zig-zag sublaminate plate theory

and finite element model have been formulated, implemented and validated

against existing experimental and numerical results for laminated composite

panels. This model is accurate for a wide range of laminated panel applications

including very thin laminated panels up to very thick laminated and sandwich

panels. Further, this model is cast in a form that facilitates its use within

commercial finite element packages. Namely, the finite element models

developed take the form of a three-dimensional eight-noded brick or six-noded

wedge element with the usual five engineering degrees-of-freedom per node.
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Figure 4.1. Schematic of ply stacking and coordinate system used in first order

sublaminate theory.

 

  

    

Figure 4.2. Element topology for the eight-noded brick and the six-noded wedge finite

elements based on first order zig-zag sublaminate theory.
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Figure 4.3. Load versus deflection for a square simply-supported single-layer orthotropic

plate under uniform pressure at various levels of in-plane and through-thickness

refinement.
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Figure 4.5. Linear and nonlinear load versus deflection at the top of a simply-supported

square sandwich panel under uniform pressure using first-order zigzag sublaminate

theory.
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Figure 4.9. Through-thicloress variation of the normal Cauchy stress (in the Xl-direction)

at the Gauss points nearest to the center ofthe plate.
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Table 4.1. Material properties for square single-layer orthotropic plate.

 

 

 

  

E11=3.OOE6 ps1 E22=1.30E6 ps1 E33=3.00E6 ps1

v12=0.32 vz3=0.32 V13=O'32

G,2=O.36E6 psr G23=O.36E6 psi G13=O.36E6 psr
  
 

Table 4.2. Material properties for square cross-ply laminated plate (0/90/90/0).

 

 

 

  

E, 1=l .82E6 psr E22=1.82E6 psr E33=l .82E6 psr

V12=0'2395 v23=0.2395 V13=O'2395

G12: 0.31E6 pSl G23=0.31E6 pSl G13=O.31E6 pSi

  
 

Table 4.3. Material properties for sandwich panel.

 

 

 

 

 

 

 

 

 

 

Material 1 Material 2 Material 3 Core

W80 1 33 25 0.05

E2200" psi) 25 21 1 0.15

1.333([05 psi) 1 21 1 0.05

0,. 0.01 0.25 0.25 0.01

023 0.25 0.25 0.25 0.15

v ,3 0.25 0.25 0.25 0.15

G 12(106128?) 0.5 8 0.5 0.02

(323,006 psi) 0.5 8 0.5 0.04

G 13(ID6 psi) 0.2 8 0.5 0.02       
 

Table 4.4. Lamination scheme for sandwich panel.

No.
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Table 4.5. The effect of transverse refinement considering small displacements.

 

 

 
 

Number of ABAQUS: ABAQUS: FZZ: FZZ:

elements Displacement Displacement Displacement Displaceme

at bottom at top at bottom nt at top

through- (inches) (inches) (inches) (inches)

thickness

1 0.3950 0.3978 1.422 1.484

2 0.9757 1.027 1.425 1.496

3 1.317 1.401 1.375 1.449
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Chapter 5

OPTIMIZATION OF SANDWICH PANELS USING GENETIC ALGORITHMS

5.1 Introduction

Optimization problems are encountered on an hourly basis in the everyday

life of an engineer. For example, we will review a typical optimization problem

posed by a naval engineer. The goal of the optimization problem is to find a

sandwich panel design with minimal mass while simultaneously satisfying

stiffness and stress constraints applying state equations that are governed by the

geometrically nonlinear (moderately large displacements and moderate rotations)

equations of motion. The sandwich panel designs found with a simple Genetic

Algorithm will be contrasted to an existing “baseline” sandwich panel design in

terms of its design variables, objectives and constraints.

5.2 Sandwich Panel Optimization Problem Statement

All optimization problems can be defined as finding a set of bounded

design variables to minimize objective(s) while satisfying all constraints. We will

follow in similar fashion by describing the design variables, the objective and

constraints for the sandwich panel optimization problem statement.

Typically, sandwich panel designs are constructed of layered composite

materials on the top and bottom of the panel (referred to as the bottom and top

skin). The center of most sandwich panels is composed of lighter materials

(often called the core). The skins of a classic sandwich panel design are meant
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to carry the bulk of the bending stresses while the light weight core experiences

most of the shear stresses. With this in mind, the simple GA was allowed to vary

the number of layers in the bottom skin, top skin and core of the sandwich panel.

The bottom and top skins of the sandwich panel were independently required to

each have at least two, but no more than eight plies. The core of the sandwich

panel was required to have at least one, but no more than three layers. The

bounds on the number of layers in the bottom skin, core and top skin of the

sandwich panel were chosen to satisfy manufacturability requirements. The GA

could change each ply orientation ranging from 0 to 180 degrees with a 15

degree increment. The choice of ply orientation was discretized in such a manner

to meaningfully reflect a realistic manufacturing increment. The GA chose each

ply material from a discrete set of materials given in Table 5.1. For each layer in

the core, the GA could change the core layer thickness ranging from ‘/4 to 1%

inches with a ‘/4 inch increment. The thickness of each layer within the core was

discretized to reflect a meaningful manufacturing increment. The GA chose each

core material from a discrete set of materials given in Table 5.2.

The representation of the design variables along the chromosome was set

up in an order that staggered the number of plies in the top, core layers and

number of plies in the bottom with material choice, orientation direction and

thickness to reflect their physical location on the sandwich panel. This choice

was made according to the principal of keeping related physical entities close to

each other on the chromosome, which has been known to aid search within a GA

(see Holland, 1975, Goldberg, 1988). The first discrete variable on the
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chromosome was the number of plies on the bottom skin of the panel. Next, a

discrete ply material choice and orientation choice was staggered on the

chromosome for each bottom ply. The discrete number of layers in the core was

followed by a core material choice for each possible layer in the core. The next

discrete variable on the chromosome was the number of plies on the top skin of

the panel. A discrete ply material choice and orientation choice was then

staggered on the chromosome for each top ply. The simple GA had a population

size of 50, 70% crossover rate and 1% mutation rate per field.

The objective of the sandwich panel optimization problem was to minimize

mass. Inequality constraints were placed on the maximum transverse

displacement and on the maximum value for a set of failure indices. The first set

of failure indices was defined as the ratio of the inplane stresses to inplane

strengths of each ply and core layer. An additional failure index was defined by

the ratio of the shear strength to shear stress of each layer in the core. A failure

index greater than unity indicates initiation of material failure. It was assumed

that a suitable factor of safety was included in the definition of the loads, so no

additional factor of safety was used in the displacement or stress failure

constraints. The in-plane and shear strengths are listed in Tables 5.1 and 5.2 for

each material choice.

The state equations were the geometrically nonlinear static equations of

motion evaluated with the first order zigzag finite element model developed in

Chapter 4 of this dissertation. The finite element mesh and boundary conditions

are displayed in Figure 5.1. The sandwich panel was considered to be clamped
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on all edges with no pressure applied on the front half of the panel. A 220psi

transverse pressure load is applied at the middle of the panel at a 45 degree

angle over a six inch band and a 30psi transverse pressure load is applied on the

rear half of the panel. The model was meant to represent a section of boat hull

under pressure loadings that occur during extreme usage. All finite element

meshes of the boat hull referenced in this paper contained a 14 by 6 in-plane

discretization with a single element through the thickness. The finite element

mesh was constructed to align the pressure loads with the finite element

discretization.

The baseline sandwich panel design was a symmetric layup composed of

two plies in the bottom skin, a single core layer and two plies in the top skin. The

orientations of all plies were aligned with the global coordinate system. Starting

from the bottom of the sandwich panel, the first and second plies were composed

of materials CM-1808 and XM-1808, found in Table 5.1. The baseline sandwich

panel core material had properties given by material A550 in Table 5.2, with a

thickness of 1.340 inches.

The baseline sandwich panel weighs 18.47 pounds with a maximum

transverse displacement of 0.73 inches and failure index of 3.14 when evaluated

with the geometrically nonlinear first order zig-zag finite element model

developed in Chapter 4 of this dissertation. The maximum transverse

displacement and failure index occur at the center of the panel within the high

pressure strip. The baseline design is infeasible in terms of the inequality

constraints placed on the maximum failure index.
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5.3 Results

Two independent simple GA mns were performed. The two best designs

obtained using a simple GA were unsymmetrical layups. Figure 5.2 displays the

mass of the best design as a function of generation number for the first simple

GA run. At first, the mass is much larger than the baseline design, but eventually

converges to a design which is slightly lighter. Figure 5.3 displays the normalized

constraint of the best design found as a function of the generation number for the

first simple GA run. Initially, the stress constraint is severely violated, but it

eventually converges to a feasible final design. Tables 5.3 displays the baseline

and simple GA sandwich panel designs in terms their design variables,

objectives and constraints for two independent runs. The simple GA designs

have neariy identical masses compared to the baseline design while faintly

violating the displacement constraint. The maximum failure indices for the simple

GA sandwich panel designs are below the enforced failure constraint bound. The

two independent runs produced two distinct final designs, indicating the simple

GA prematurely converged to at least one suboptimal design. Each simple GA

mn lasted 5 days on a single 550 MHz cpu; each nonlinear finite element

evaluation took about 3 minutes. As demonstrated on this problem, a simple GA

tends to converge to suboptimal solutions while requiring large overall run times.

Figure 5.4 displays the force deflection response of the simple GA designs

and baseline designs, showing significant stiffening due to geometric

nonlinearities. Whereas the baseline design is stiffer at small loads when
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compared to the simple GA designs, the stiffnesses for all designs are identical

at large loads. The GA has discovered designs which take advantage of the

geometrically nonlinear behavior of sandwich panels. The ply layup scheme and

the core of the simple GA designs develop smaller stresses by carrying larger

membrane stresses which help reduce stresses associated with bending while

maintaining the appropriate geometrically nonlinear stiffness. Load that is

transferred through bending causes a significant increase in overall stress when

compared to load that is transferred through membrane effects. If the state

equations had ignored geometric nonlinearities. the best designs found by the

simple GA could have been considered to be infeasible designs with respect to

the stiffness inequality constraint.

5.4 Conclusions

The design space of an optimization problem involving geometric

nonlinear response of sandwich panels was searched with a simple GA. The

simple GA found designs that outperformed the original baseline design. The

original baseline design satisfied the displacement inequality constraint, but

harshly violated the inequality constraint placed on the failure index. Both simple

GA designs satisfy all constraints with nearly identical mass to that of the

baseline design. The simple GA designs are more compliant at small loadings

(compared to the baseline design), but are specifically constructed to significantly

stiffen at larger loads, due to geometric nonlinearities. while maintaining feasible

stresses.
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Figure 5.1. Finite element mesh including applied boundary conditions. Location of
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wide and 84 inches long.
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Table 5.1. Ply material properties.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
 

 

 

 

 

 

 

  

. Fiber . Longt. Trans.

$110“? (£11) (£31) (1821) V Wight “1:011:88 Strength Strength
(oz/ydz) (ksi) (ksi)

CM-1208 2.17 1.66 1.34 0.3 18.9 37 36.76 14.13

CM-1215 1.86 1.33 1.34 0.3 25.6 37 23 14.13

CM-1608 2.13 2.07 1.22 0.3 22.5 44 24.75 13.17

CM-1615 1.77 1.87 1.22 0.3 29 56 22 13.63

CM-1808 2.59 1.74 1.19 0.3 24.4 43 35.27 13.34

CM-1815 2.2 1.82 1.15 0.3 31.2 57 28.48 15

CM-2308 2.37 2.28 1.36 0.3 29 53 29.9 13.86

CM-2315 1.85 1.79 1.18 0.3 36.7 73 26.33 13.07

CM-3308 2.38 2.52 1.18 0.3 36.7 61 41.19 13.07

CM-3415 1.98 2.01 1.1 0.3 36.7 80 25.46 11.65

CM-3610 2.17 2.27 1.1 0.3 36.7 76 29.86 11.65

XM-1208 1.3 1.33 2.03 0.3 19.2 39 13.59 27.04

XM-1215 1.2 1.02 2.19 0.3 26 47 15.68 27

XM-1708 1.31 1.25 2.05 0.3 24.4 44 14.26 31.82

XM-1715 1.36 1.35 2.25 0.3 31.1 51 16.2 31.49

XM-2408 1.14 1.34 2.05 0.3 31 50 10.58 31.82

XM-2415 1.22 1.62 2.19 0.3 37.8 66 13.53 24.99

XM-1305 1.85 2 2.1 0.3 24 26 8 18

XM-1308 1.85 2 2.1 0.3 24 29 8 18

XM-l708 .5 2.2 2.1 0.3 24 48 13.6 18

XM-1808 .5 2.2 2.1 0.3 24.8 48 13.6 23.4

XM-1808B .5 2.2 2.1 0.3 24.8 48 13.6 23.4

XM-2408 .55 2.2 2.2 0.3 30.8 56 14.2 33.2

XM-2415 .5 2.1 3.1 0.3 37.5 71 11.5 39.8

Table 5.2. Core material properties.

. . Shear Compressive
Core Material E1 Densrty

Name (psi) V (lb/113) 88:2? 8:2?

A400 4.998e3 0.3 4.0 125.0 80.0

A450 6.5000e3 0.3 4.5 135.0 95.0

A500 8.4440e3 0.3 5.0 142.0 115.0

A550 8.8000e3 0.3 5.7 166.0 142.0

A600 9.2170e3 0.3 6.3 191.0 165.0

A650 9.8850e3 0.3 8.0 241.0 210.0      
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Table 5.3. Baseline and optimized sandwich panel design variables. All material

names are in reference to Tables 1 and 2.

 

 

 

 

 

 

 

 

 

 

    

Baseline Opt. Run 1 Opt. Run 2

# ofplies in bottom skin 2 3 3

# of core layer(s) 1 l 1

# of plies in top skin 2 2 4

Orientation ofbottom plies (degrees) 0.0, 0.0 30, 150, 60 0, 75, 120

Orientation oftop plies (degrees) 0.0, 0.0 45, 75 0’ 15;)6135’

CM-2315, XM-l708,

Bottom ply materials $111883 CM-1208, CM-1208,

CM-3610 CM-1208

Core material(s) A550 A400 A400

Core thickness (inches) 1.340 1.0 0.625

XM-l 8088,

Top ply materials CM-1808, CM-3610, XM-1208,

XM-1808 CM-l808 CM-1608,

CM-23 15

 

Table 5.4. Baseline and GA optimized sandwich panel objectives and constraints.

 

 

 

      

Ineq. Constraint Baseline Opt. Run 1 Opt. Run 2

Mass (lbs) -- 18.47 17.88 18.94

Transverse

. . 0.73 0.73 0.74 0.74

displacement (Inches)

Max. failure indicy 1.0 3.14 0.92 0.87
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Chapter 6

SUMMARY AND CONCLUSIONS

This dissertation addressed three major areas: multi-objective optimization

of crashworthiness, geometrically nonlinear analysis of laminated composite

materials and optimization of laminated composite sandwich panels considering

geometrically nonlinear response. Each area of research in this dissertation

contributed unique accomplishments within their field.

The shortcomings of available optimization techniques were overcome by

developing an approach that allows for concurrent multi-objective optimization of

structures with an island injection Genetic Algorithm for". 1) crash energy

management, 2) modal vibration frequency response, 3) peak crush force, 4)

weight reduction, and 5) manufacturability while considering stochastic variability

of design variables and loading conditions. Existing automated design technology

has never simultaneously addressed all these competing mechanisms. Three

independent runs converged to nearly identical designs. This result does not

guarantee that the global optimum was found; rather it indicates that a similar

search of the design space was completed for each run, from different initial

populations, making it at lease possible that a relatively thorough search was

conducted (noting that if radically different designs had resulted, this claim could

not be made).

A new geometrically nonlinear first-order zig-zag sublaminate plate theory

and finite element model was formulated and implemented. The new
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geometrically nonlinear first-order zig-zag sublaminate plate theory and finite

element model was validated against existing experimental and numerical results

for laminated composite panels. This model is accurate for a wide range of

laminated panel applications including very thin laminated panels up to very thick

laminated and sandwich panels. The model is cast in a form that facilitates its

use within commercial finite element packages. The finite element models

developed take the form of a three-dimensional eight-noded brick or six-noded

wedge element with the usual five engineering degrees-of-freedom per node.

Finally, an optimization problem was considered involving geometric

nonlinear response of sandwich panels with a simple GA. The simple GA

designs were compliant at small loadings, but were specifically constructed to

significantly stiffen at larger loads due to geometric nonlinearities. while

maintaining feasible stresses. This was accomplished by the ply layup scheme

and the core of the simple GA designs, which develop smaller overall stresses by

carrying more load through membrane effects.
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APPENDIX A

The displacement fields for the first order zig-zag theory can be expressed in

indicial notation as:

m _ — (t)
u" — u(15¢a,

ugf’ = 17,5115: (2 =1...4;,B =1,2 A.(1)

(k) _

13 _

u prfl

where the index ,6 is used to denote the top and bottom of the sublaminate with

1:bottom and 2:top, and (D23, ‘1’? and Opare shape functions in the thickness

direction (see Cho and Averill, 2000). Summation on repeated indices is implied

unless othenrvise noted. The variables 17 are:
or)?

17m=ufl, 1725:”, 235:0”, 545:0”, A.(2)

Green’s strain can be written as the sum of linear and nonlinear parts:

E=8L+am A.(3)

The linear portion of the Green’s strain is:

a, =Lu=LNfi=BLii A-(4)

Since (DZ; ,‘1’3’ and Q, are functions of the through-thickness direction only,

two dimensional shape functions (equations 4.51 — 4.54) can approximate the

nodal variables 17“”. The linear strains are first approximated as:
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11 L 11,6,“ qfl

(k) _— (k)

822 L — u ,Xz‘yafl

(k) _.

833 L " wpflp x,

(k) _— (k) A. 5

723 1. ”uaqugfl + Wanna); 11:3 ( )

2

(k) __ (k)

2’13 L _ uapqlq, + Wanap Li

2

(k) __ - (k) - (k)

712 L - uafi.qu)afl Tue/9.471414

where tensor notations are implied and a comma denotes partial differentiation.

The contribution of the transverse deflection to the transverse shear strains 7%"

(It)
,3 are evaluated at the at the middle of the sublaminate to obtain constantand )1

shear stresses through-the-thickness of the sublaminate.

A constant transverse normal strain may give rise to substantial errors in

composites which have a soft core or layer (see Cho and Averill, 2000). An

improvement in the through-thickness description of deformation can be found by

assuming a constant transverse normal stress which can be obtained using

Reissner’s mixed variational principal (see Reissner, 1986). The newly defined

transverse normal strain for small displacements can be written as:

‘0‘) _
_ (k) — (k)

833 L _ uafi,xl 23.096 + “(1,64, lxzafl + wfll
, A.(6)

The coefficients ,1“) 2“W. ,2; and 2,. are defined in Cho (1997).

For an eight noded brick element, B L can be defined as:

124



39) (1,11) = 409%,,

B9) (1,12) = 09:01,,

39’ (1,12) = 0

39‘) (1,14) = 091’N,,x

39) (1,15) = 091le

where:

B9) (1, i6) = (092%,

B9) (1,17) = (1)92)NM

139) (1, i8) = 0

B9) (1,19) = 0592)th

3901,110) = egg”,

3902,11) = 119W“,

3902,12) = 999m,

39) (2,13) = 0

3902,14) = 119le

39) (2,15) = 929111,,

39) (2,15) = 519%,

39) (2,17) = \Pé’éww

3902,17) = 0

3902,19) = 999m,

3902,110) = W§:)Ni,y

where:

1=1...4

11=(1-1)*5+1

12=(1—1)*5+2

13=(1—1)*5+3

14=(1-1)*5+4

15=(1—1)*5+5

15=(1—1)*5+21

17=(1—1)*5+22

1'8=(i-1)*5+23

19=(1—1)*5+24

110=(1—1)*5+25

i=1...4

i1=(i-l)*5+1

1'2=(i—1)*5+2

i3=(i—l)*5+3

i4=(i-l)*5+4

i5=(i—1)*5+5

i6=(i—1)*5+21

i7=(i—l)*5+22

i8=(i—l)*5+23

i9=(i—l)*5+24

i10=(i—1)*5+25
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3903,11) = 2531111,, + 2931M.”

3903,12) = 2931M, + 295114,},

3903,13) = -x: N.-

3903,14) = 493.1%, + A‘y’s’m) — 2.- N1.-

3903,15) = 15:1)le + 1(311‘71') - Z1N21

BEk)(3, i6) ___ 121%N132: + 1(ykl)2Ni’y Where:

3903,17) = 153%; + 4‘3,N1.)

3903,18) = M.-

3900119) = l§§)2N1,x + $32M) + 2’1 N11

8903, 1'10) = 151,4)2Nm + 3:13sz + Z1 N21

3904,11) = W9: N,.

3904,12) = 11193},

3904,13) = 41$") 1:112 471,)

3904,14) = ‘39:): N,

3904,15) =w§f?zN,. .

where.

(1) - _ (k) ,3L (4,16)—‘¥12,ZN,

(k) - _ (k) ,3L (4,17)—‘P22,ZN,

. k ‘3904,18) = Q(2 ) 'z=h/2 NW

i=1...4

il=(i-l)*5+1

12=(i-1)*5+2

i3=(i-1)*5+3

i4=(i-l)*5+4

i5=(i-1)*5+5

i6=(i—l)*5+21

i7 =(i-1)*5+22

1‘8=(i—1)*5+23

i9=(i—1)*5+24

i10=(i—1)*5+25

1:1...4

11=(1—1)*5+1

12=(1—1)*5+2

13=(1—1)*5+3

14=(1—1)*5+4

15=(1—1)*5+5

i6=(i—1)*5+21

17=(1—1)*5+22

i8=(i-1)*5+23

19=(1-1)*5+24

110=(1-1)*5+253904,19) = 19;): N,-

3904,110) = 119;): N,-
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3905,11) = ‘39: N,

3‘"05,12) = 9"")N,

B‘"’(5 1'3)-— -o‘"’ 12-1.11 N

30:) - _ (k)
3, (5,14)—\P3LZN,

(k) - _ (k)
3, (5,15)—‘P4LZN,

3‘"05,16)= 111‘")N,

(k)(517)‘11(")N-

‘"’<518) 0‘"02-111471

3‘"05,19)= ‘3‘")N,

3‘"05,110)= \P‘") N,

3‘"06,11)=<1>‘")N,+W9’N,,,

3906,12) = <D(2"1)N,y + 119W”

3906,13) = o

3906,14) = 63311,, +‘I’§’;)N,,

3906,15) = o9l)N,y + \Pfi’N,,,

3906,16) = o‘l’;)N,,,, +‘P(k)N,x

3906,17) = ¢92’N, +‘P(")N,,

‘"’ (618) = o

‘"0619)<1>‘")N,+\11§’;)N,,

Ir 2k k

3, 06,110) = o‘42’N,, +w§2)N,,,
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where:

where:

i=1...4

i1=(i—1)*5+1

i2=(i—1)*5+2

i3=(i-1)"'5+3

i4=(i-l)*5+4

i5=(1‘—1)*5+5 A.(11)

i6=(i—1)*5+21

i7=(i—1)*5+22

i8=(i—1)*5+23

i9=(i—l)*5+24

i10=(i-1)*5+25

1=1...4

11=(1-1)*5+1

12=(1—1)*5+2

13=(1—1)*5+3

14=(1-1)*5+4

15=(1—1)*5+5 A.(12)

i6=(i-1)*5+21

17=(1-1)*5+22

i8=(i—1)*5+23

19=(1-1)*5+24

110=(1-1)*5+25

It should be noted that the through-thickness shearing strains represented here

are in their original form. Cho and Averill enforced field consistency, consistent

penalty constraints and edge consistency to define alternate through-thickness



shearing strains which alleviated locking. All coefficients needed to formulate BL

can be found in Cho, 1997.

The nonlinear portion of the Green’s strain is:

1

8,, = EA(6)0(u) A.(13)

where 0(u) is a vector of displacement gradients and A(6) is a matrix

composed of the vector 0(a). For this element formulation, equation A.(13) can

be written in compact vector form as:

     

r w

1

"8:1“ EQIu3vaIQau3av’1

(1) 1

822 _Q “3311 0 “3a,:

egg" 2 " '0’ " ’ a=1,2
4 =< A. 14

7:?" O " B=1,2 ( ’
m

713 0

1)

xylg J NI. 0

k fluJflv‘l «“3042 J z=h/2

where Q , are one-dimensional linear shape functions:

Q,=1--’-‘—3- Q, =35— A.(15)
h h

where h is the height of the sublaminate, while b and t denote the bottom and top

of the sublaminate. The one-dimensional shape functions are evaluated at the

mid-plane of the sublaminate to ensure that transverse shear strain expressions

only contribute constant terms to the transverse stresses Sg’and S,‘,"’, to

(k)

l

(k)
and u2maintain consistency with the terms in the in-plane displacements u

(equation 4.4).
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The von Karrnan strain terms are present in the transverse normal strain due to

the constant transverse normal stress assumption. The nonlinear contribution of

the transverse normal strain for the kth layer is:

_ l —

= (5 —Wc* 4:96“) —c::>1::>~.) 11.116)33 NL C(11) 33M. 11 NL 22 NL

33

ti,” is then determined analytically from Reissner’s mixed variational principle

(equation 4.10) to obtain the following relation:

:3,

._ N . . . . o -

Sufi/1.2:llcrg’s,‘:’~.+C:;’s" +Cié’7fé’11ldx3 Am)22 NL

i=1 X3l-I

where N is the number of layers in the sublaminate and the coefficient A1 is:

 A, = fil/[m ' x317 ] A.(18)
1.1 C,‘;"

Each nonlinear strain term in equation A.(17) is a function of the through the

thickness coordinate (x3). After substituting the one-dimensional through-

thickness shape functions (equations A.(15)) into equation A.(17) and integrating,

the analytical form of the geometrically nonlinear through-thickness constant

normal stress within a sublaminate (equation A.(17)) is:

_ — 1 1 1 323 A36S33,, — -2— w,,w,.xlA 3a, + 5WMw,M1 113 + W,,,,W,,, a, A.(19)

where a comma denotes partial differentiation, while a and ,6 are used in tensor

form, and the coefficients A130,”, A230,, and A36“, are:

N N N

A1364? = A124,"; A2314? = [112,233,411 A3611)? = 4242K; A.(20)

["1 i=1 is}
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and:

K;, = locum, A.(21)
x
31—1

The gradients of the transverse displacement with respect to the in-plane

directions (x1 and x2) are:

4

w“, = 2(w . NM + 19,411,, + 0mm) 5 = x, ,x, a =1,2 A.(22)

where a comma denotes partial differentiation, N1.: are the gradients of the

bilinear Lagrange interpolation functions and IV1.r are the gradients of the shape

functions obtained from the interdependent interpolation scheme as found in

Cho, 1997.

The analytical form of the geometrically nonlinear through-thickness

normal strain for the k‘” layer in a sublaminate can be found by substituting

equations A.(15) and A.(17) into equation A.(16) to obtain:

1 1

50:) = __1__ 5w5131W0o31A13afl + 5 will: WG-12A23afi

33 ”L Cg) + A36
WNW“: a5

A.(23)

1 1
(k) (k)

E rlB QflwflaqQaWag. + E r23 0,6W542Qa Waux,

 
(k)

+ r36 Qfiwfi.x.QaWa.x2
z=h/2

where a comma denotes partial differentiation, while a and ,6 are used in tensor

form.
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Now that the constant transverse normal stress and transverse normal strain

have been defined including the von Kannan strains, we can move on to the first

infinitesimal variation of the nonlinear strain as defined in equation 4.31:

5cm = A(9)9(‘fi)6‘fi A.(24)

Let 0(a) be defined as a vector containing all the nonlinear coefficients:

7'

0(u) = {WILXI wt,x1 Wb,X2 wt,x2 } A'(25)

A(6) was developed by taking the first variation of the von Kannan strains in

equation A.(14) including the geometrically nonlinear through-thickness normal

strain as defined by equation A.(23). For the k‘h layer in a sublaminate A(l9) is:

A(1,=1)""-(§2,o w )
a 0.x]

A(1,2)‘*’=-(00,0aw,_:.,,)

A(2’3)(k) = (Qb0 w Nz=hl2

 z=h/2

 

 

 

 

A(2,4)m =(QQ:0aWm) z=h/2

A(3,1)""=1,—,-,(WMA13~2 + W2m)

—r.(3(“Q[,Qawa .x1 +r3ik)QanWax2) =h/2

A(3,2)m=1(k_)(WMA13” + Wa'’1A36a)
33

—r|3((”QQawa,x1 +r3fsk)QdeWd32) z=hl2

11l(3,3)""=-1,—l,(“2.1/323M:+ W«1m),,
A.(26)

_rn((“Q(,Qawa.xz +ri")Qanw"‘1]z=hl2
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A(3,4)‘“— 1”)(WMA23 +wA36)

_((r:<:k)gflaw!”2 +r,‘,“Q90%.“)!gm

A(6,1)‘*’= flawam)!_,,,2

A(6,2)"" =(Q,Q,w,)l

A(6,3)‘*’ = (0flaw,)I ,_,.,2

A(6,4)"" =(oo w )[m
raa,x,

wherea is summed from bottom to top. All other positions of the A(6) matrix are

homogeneous.

The stress stiffening matrix 5 was found from the relationship:

6A’s = 560 A.(27)

For the kth layer within the suiblaminate, § can be defined by:

_

 

 
 

  

 

  

5(1,1)<“ =,,[5Q,o,+[-rA—é—ijb - rff>o,o,]5,,

33 - zsh/Z

$032)“) = PSnQer + [—%%L _ rlik)Qer]‘§33:|

. 33 zsh/Z

50,3)“ = 5,0,0, + [A312, — ri"Q,Qb]§,3- A.(28)

. 33 - z=hl2

S(l,4>‘*’ =_S,20:0. + (ASE? - r3010.)E]

- 33 z=h/2

5(2,2)“) [=5,,:2(2 +63% — rff’o,o,]5,,]

33 z=h12 
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. A —

5(2,3)m {5,952, {137?}- :‘*>Q,Q,)S,,]

33 z=hl2

A A —

8(234)(“ = $12010: +[ :3)“ $0101) 33]

33 z=h/2

. " A23 — -

5033)“) = Szzabe+[ C(kfb _r::)Qbe] 33

- 33 - z=hl2

5(3,4)<*> = 5,0,9, {Aggy r<*’o,o,]5,,

- 33 = z-h/2

A _ A2 _

5(4,4)<n = 5,,o,o,+( C3)" ’I."Q'Q']S”]

b 33 ssh/2 

Only the upper portion of the stress stiffening matrix 3 is displayed due to

symmetry of the second Piola-Kirchhoff stress tensor. Note that all positions in S

are functions of the newly defined constant geometrically nonlinear transverse

normal stress.

Finally, the matrix of nodal shape function gradients G is:

G(1,i5) =N

G(1, i5 +1) = N,,

G(1, i5 + 2) = N,,

G(2, i5 + 20) = N,,

G(2, i5 + 21) = N,,

G(2, i5 + 22) = N,,

G(3, i5) = N,,

G(3, i5 +1) = N,,

G(3, i5 + 2) = N,,

G(4, i5 + 20) = N,

G(4, i5 + 21)

G(4, i5 + 22)

i=1...4

i5 = 5*(i—1)+3 M29)
1‘2

N
fix,

A

int)

All other positions of G are zero.
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We can define l3 and i as:

13 = B, + éAG A.(30)

"15:13, +AG A.(31)

13, E, G, and 3 form the direct stiffness and tangent stiffness matrices as

defined in equations (4.36) and (4.45).
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