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ABSTRACT

ENHANCING PATTERN RECOGNITION USING EVOLUTIONARY

COMPUTATION FOR FEATURE SELECTION AND EXTRACTION WITH

APPLICATION TO THE BIOCHEMISTRY OF PROTEIN-WATER

BINDING

By

Michael L. Raymer

Statistical pattern recognition techniques classify objects in terms of a representa-

tive set of features. The selection and quality of the features representing each object

have a considerable bearing on the success of subsequent pattern classification. Fea-

ture extraction is the process of deriving new features from the original features in

order to reduce the cost of feature measurement, increase classifier efficiency, and

allow higher classification accuracy. Many current feature extraction techniques in-

volve linear transformations of the original features to produce new features. While

useful for data visualization and increasing classification efficiency, these techniques

do not necessarily reduce the number of features that must be measured since each

new feature may be a linear combination of some or all of the original features. Here

a new approach is presented in which feature selection, feature extraction, and classi-
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fier training are performed simultaneously using evolutionary computing (BC). This

method is tested in conjunction with a k-nearest-neighbors classifier, and Shown to

outperform other current methods for feature selection and extraction in terms of

minimizing the number of features employed while maximizing classification accu-

racy. Two new classifiers based on the naive Bayes classifier are developed in con-

junction with the EC feature selection and extraction technique, and the resulting

hybrid classifiers are shown to yield further improvements in feature subset parsimony

and classification accuracy. A key advantage to the methods presented here is the

ability to examine the set of linear feature weights produced by EC to perform data

mining and exploratory data analysis. The EC feature selection and extraction tech-

nique is applied to an important and difficult problem in biochemistry—classification

of potential protein-water binding sites. The resulting classifier is able to identify

water-binding sites with ~68% accuracy, and identifies a set of physical and chem-

ical features that correspond well with the results of other studies of protein-water

binding.
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Chapter 1

Introduction

1.1 Overview—Contributions of the Thesis

This thesis describes several contributions to the state of the art of computational pat-

tern recognition, evolutionary computation (EC), and biochemistry. A novel method

for Simultaneous feature selection and extraction using evolutionary computation is

described. This method compares favorably with the best current algorithms for

feature subset selection in terms of minimizing the number of features selected and

classification accuracy. In addition, several new classifiers based on the Bayes clas-

sifier are developed and tested alongside the k-nearest—neighbors classifier and other

methods, and are Shown to perform well in conjunction with the EC feature selection

and extraction methods developed here. The ability of the hybrid EC-classifiers to

produce consistent feature subsets across various experiments is demonstrated, and

it is shown that this capability can be useful in the analysis of classifier results for

data mining and analysis. Finally, application of these methods to the biochemical

1
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problem of understanding protein-water interactions demonstrates two new classifiers

that can predict water binding and conservation among protein structures. The ac-

curacy of these classifiers is shown to compare well with other current methods for

prediction of protein solvation. Furthermore, the new classifiers developed here do

not exhibit a tendency to overpredict solvation, as is common among other methods.

Analysis of the experimental results of these classifiers has provided new insights into

the determinants of water binding to proteins. The weighted k—nearest-neighbor clas-

sifiers described here, with feature weights determined by GA optimization, has been

incorporated into a new algorithm for identifying promising drug leads (Schnecke and

Kuhn, 2000), and is currently being evaluated for incorporation into a well-known

software package, XtalView, for identifying water binding sites during protein struc-

ture determination (McRee, 1992).

1.2 Motivation

1.2.1 Evolutionary Computation for Feature Selection and

Extraction

The field of computational pattern recognition has produced useful applications in

many areas of science and engineering. Pattern recognition techniques have been

employed with great success, enabling computer systems to recognize typed, hand-

written, and spoken language, to analyze satellite imagery, to aid in decision making

in medicine and finance, and to perform numerous other difficult classification tasks.
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A broad range of methods, including statistical classifiers, decision trees, neural net-

works, and fuzzy logic have been applied to pattern recognition and classification

problems. (Duda and Hart, 1973). Yet despite this wide variation in problem areas

and techniques, several features are common to most classification systems. The pri-

mary goal of a classifier is to categorize objects or concepts into groups. A diagnosis

system, for example, might classify patients as “at—risk” or “not-at-risk” for a certain

disease, while OCR systems typically classify typewritten characters as belonging to

one of 100 or so groups, one for each possible printed ASCII character. In order to

perform this categorization, a classifier is typically trained by providing it with sam-

ple objects (or concepts) for which the correct classification is already known. These

training samples, as well as the objects to be classified later, are generally represented

as a list of features. For a diagnosis system, a patient might be represented by such

features as height, weight, age, sex, and the results of various clinical tests. For an

OCR system, features might include the length of the longest straight line segment

in a character, or the presence or absence of a closed loop.

In designing a classification system for a particular task, it is often not known

in advance which features will prove useful for classification, and which will contain

redundant or even misleading information. Several areas of investigation, includ-

ing feature subset selection and feature extraction, have come about to address this

difficulty.

Feature selection is the problem of finding the subset of all the available features

that best satisfies some classification-related criteria. Usually the goal is to find a
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small subset of features that provides good classification accuracy. It is generally

impossible to exhaustively search all feature subsets, since the number of such sub-

sets grows rapidly as d increases. For a fixed subset size, n, the number of subsets

that must be searched is (3). When n is not fixed, there are 2" possible subsets to

investigate. AS a result, heuristic and suboptimal search methods are often employed

to find a feature subset that performs well, but cannot be guaranteed to be optimal.

Feature extraction goes a step further and computes new features based on the

original feature set. For example, if a classifier were attempting to distinguish sports

cars from other vehicle types, and engine horsepower and total vehicle mass were two

of the available features, a feature extraction method might find that (horsepower+

mass) was a useful new feature, computed from the original features.

Feature selection and extraction can provide a number of benefits to a pattern

recognition system. Limiting the number of features to be considered generally pro-

vides a reduction in the overall cost of a classifier by reducing the time, effort, and

equipment involved in feature measurement and processing. Furthermore, the compu-

tational efficiency of many classification methods is improved by lowering the number

of features to consider. Even the accuracy of a classifier can be improved by limiting

the input data to a minimal set of salient features.

In addition to these direct benefits, the use of feature selection and extraction in

conjunction with traditional pattern recognition can allow many traditional classi-

fiers to be employed for data mining—the identification and analysis of interesting

trends in large data sets. By identifying the particular features that are useful for
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separating natural classes in large data sets, feature selection and extraction can aid

in understanding the interrelationships between the features and the classes in the

data. With the low cost and relatively high Speed of modern magnetic storage, and

the growing use of computational techniques for collection and analysis of data from

all areas of science, engineering, and industry, the idea of mining interesting data

from large data sets has become a topic of much experimentation and study recently.

This dissertation describes a feature selection and extraction method based on

evolutionary computing, a parameter optimization method based on the dynamics

of natural selection and the Darwinian model of evolution. The two evolutionary

techniques employed, genetic algorithms (GAS) and evolutionary programming (EP),

have been shOwn to be effective search and optimization methods for a broad array

of problems (Fogel, 1998; Holland, 1975; Goldberg, 1989; Back and Schwefel, 1993,

1996; Fogel et al., 1966; Koza, 1992). The EC-based feature selection and extraction

algorithms developed here are utilized to optimize the performance of several different

classifiers, including traditional algorithms such as nearest-neighbor classification and

the Bayes classifier, and several novel methods derived from the Bayes classifier.

The resulting hybrid algorithms are shown to outperform various traditional pattern

recognition techniques alone and in conjunction with commonly-used feature selection

methods on a variety of artificial and real-world data sets. In addition, the data-

mining capabilities of the EC-hybrid classifiers are explored in the analysis of an

important problem from biochemistry—understanding the features determining the

sites of water binding at protein surfaces.
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1.2.2 Understanding Protein-Water Interactions

Extensive application of the EC-hybrid classifiers was made in the study of an im-

portant and difficult problem in biochemistry—understanding protein—water binding.

Much of the current research in biochemistry is targeted at understanding proteins—

their structure, function, and interactions with other molecules. Most pharmaceutical

drug design efforts are directed at producing drugs that bind to and inhibit the func-

tion of proteins. It is well known that the water molecules that surround most proteins

play an important role in protein folding, structural stability, and binding to other

molecules, such as drugs. Unfortunately, correct treatment of water molecules in drug

design, protein folding studies, and many other areas of study in protein structure

and function has proven to be a difficult task, because the state of hydration of the

protein changes during these processes.

The hybrid EC-classifiers described here have been applied to a database of protein

structures to produce a classifier that is capable of predicting protein water-binding

sites and their conservation upon binding other molecules. The feature selection and

extraction capabilities of this classifier have been employed to analyze the determi-

nants of water binding, which has contributed to a more complete understanding of

the interactions between proteins, the molecules they bind, and water molecules.
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Chapter 2

Background and Synopsis of Literature

2.1 Pattern Classification

2.1.1 The Pattern Recognition Task

Modern advances in computer hardware and software technology have allowed many

previously intractable problems from various fields of scientific inquiry to be analyzed,

simulated, or otherwise addressed using computational techniques. One of the most

broadly applicable and potentially profitable of these techniques is computational

pattern recognition. For humans, the ability to identify patterns is vital to many of

our intellectual faculties, including: our ability to abstract from examples, to reason

by analogy, and to learn by induction. Yet the actual mechanisms by which these

processes are effected remains a subject for debate and empirical experimentation.

AS such, advances in the realm of computational pattern recognition bear potential

benefits in many areas, including improvement of data analysis methods for the phys-

7
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ical sciences, advancement of machine perception and vision, and eventually further

understanding of human perception and cognition.

While the large quantity and variety of pattern recognition algorithms and tech-

niques prevent the construction of a universal model for all pattern recognition tasks,

it is possible to consider a simple model which captures the essential features of many

classification systems. Figure 2.1 illustrates a model of a generic pattern recognition

 

 

 

   

system.

Raw Feature

{> Data - Values F Classifier ClaSSIficatIon >

Subject "

Pattern Classes
 

Supervisor

Figure 2.1: A general model for classical supervised pattern classification systems.

 

In this model, the object of classification may be a physical object or a concept.

The task is to assign the object to one of several prespecified categories. Initially,

the Object is observed, yielding a collection of unprocessed, raw data. The nature

of this observation can vary greatly according to the type of object being classified.

For physical objects, cameras, sensors, or other transducers are often used to record

various physical and visual properties of the object. For classification of concepts,

fi

‘observation” may be more abstract. For a medical diagnosis system, for example,
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the data is Often a combination of clinical test results and a description of symptoms

provided by the patient. While it is possible to use all of the unprocessed data to

classify the object, it is usually beneficial to reduce this raw data to a set Of features or

properties related to the classification categories. Visual information collected with

a camera, for example, might be summarized into a set of features describing the

average color, general shape, and approximate size of the classification object.

In general, the goal of feature selection is to reduce the input data to a parsi-

monious and salient representation for the classification subject: a vector of feature

values. This feature vector then serves as the input for the classifier, which is respon-

sible for determining which category each subject belongs to according to the values

of its features. The feature vector associated with a particular classification subject

is often called a pattern, and the category associated with the subject may be referred

to as that pattern’s class.

Many classical pattern recognition methods are operated in two stages. The train-

ing stage is distinguished by the presence of a supervisory agent that has knowledge

of the true class for each pattern. During training, the supervisor provides this class

information to the classifier as each pattern is observed, allowing the classifier to learn

the distinctions among classes. During the testing stage, the class input is removed,

and the performance of the classifier is observed. The training and testing stages need

not be completely disjoint. In some handwriting recognition systems, for example,

the user can correct misclassified letters while the system is in normal Operation.
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2.1.2 The Bayes Classifier

Consider the task of assigning a sample to one of C classes, {021, wg, ...wc}, based on

the d-dimensional Observed feature vector 55'. Let p(:i:'|w,-) be the probability density

function for the feature vector, :i’, when the true class of the sample is tug. Also, let

P(w,-) be the relative frequency of occurrence class 02,- in the samples. If no feature

information is available, the probability that a new sample will be of class 0),- is

P(w.-)—this probability is referred to as the a priori or prior probability, and is the

best estimate that a sample will belong to a particular class prior to observation of

any feature values. Once the feature values are obtained, we can combine the prior -

probability with the class-conditional probability for the feature vector, p(:i:‘|w,-), to

obtain the a posteriori probability that a pattern belongs to a particular class. This

combination is done using Bayes rule (Bayes, 1763):

P(fle)P(wJ-)

Zic=1p(ilwi)P
(wg)

(2'1)
 

P(w,-|5c‘) =

Once the posterior probability is obtained for each class, classification is a simple

matter of assigning the pattern to the class with the highest posterior probability——

the resulting decision rule is Bayes decision rule:

given 53’, decide w,- if

P(w.~l5:‘) >P(wjlf) v]-

10
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When the class-conditional probability density for the feature vector and the prior

probabilities for each class are known, the Bayes classifier can be shown to be optimal

in the sense that no other decision rule will yield a lower error rate (Duda and Hart,

1973, pp. 10—17). Of course, these probability distributions (both a priori and a pos-

teriorz') are rarely known during classifier design, and must instead be estimated from

training data. Class-conditional probabilities for the feature values can be estimated

from the training data using either a parametric or a non-parametric approach. A

parametric method assumes that the feature values follow a particular probability

distribution for each class and estimate the parameters for the distribution from the

training data. For example, a common parametric method is to assume a Gaussian

distribution of the feature values, and then estimate the parameters It,- and a; for each

class, w,, from the training data. The parametric method can simplify the problem

of estimating the class-conditional feature distributions, but can also result in poor

classification if the assumed probability distribution does not fit the actual distribu-

tion of feature values. A non-parametric approach usually involves construction of

a histogram from the training data to approximate the class-conditional distribution

of the feature values. Several decisions in the construction of this histogram, such

as the number of bins and the size of each, are critical in obtainng good classifica-

tion performance. The lack of a standard procedure for constructing a distribution

histogram is a primary weakness in the non-parametric sampling approach.

Once the distribution of the feature values has been approximated for each class,

the question remains how to combine the individual class—conditional probability den-

11



 

5in in

ity der

assume

Th.

to perl

is not

probat

literati

relative

prior p

l0r all I

2.1.3

Estima,

Slficatig

(high a

\Hlues’ l

1511951“:



sity functions for each feature, p(x1|w,-), p(:r:2|w,-)...p(:rd|w,-) to determine the probabil-

ity density function for the entire feature vector: p(:i:’|w,). A common method is to

assume that the feature values are statistically independent:

Plflwi) = P($1lwi) X P($2lwil X >< P($dlwi) (2-2)

The resulting classifier, often called the naive Bayes classifier has been shown

to perform well on a variety of data sets, even when the independence assumption

is not strictly satisfied (Domingos and Pazzani, 1996). The selection of the prior

probabilities for the various categories has been the subject of a substantial body of

literature (Jaynes, 1968). One of the most common methods is to Simply estimate the

relative frequency for each class from the training data and use these values for the

prior probabilities. An alternate method is to Simply assume equal prior probabilities

for all categories by setting P(w,~) = %, i = 1...C.

2.1.3 Nearest Neighbors Classification

Estimation of the class-conditional distribution of the feature values in Bayesian clas-

sification is a potential source of classification error. An alternative approach is to

design a classifier that does not require an estimate of the distribution of the feature

values, but instead memorizes the feature values for every training sample. In this

way, no training information is lost in parameter estimation. One such classifier is the

k-nearest-neighbors (knn) classifier (Cover and Hart, 1967). The operation of the knn

12
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classifier during training is quite simple—the feature values for each training sample

are stored in their entirety. To classify a new testing sample, the training samples are

considered in a d—dimensional space, where each of the orthogonal coordinate axes

corresponds to one classification feature. The test sample is plotted into this feature-

space, and the k nearest neighbors, for some small constant k, are found. Figure 2.2

demonstrates the behavior of a 3-class, 5-nearest-neighbors classifier where d = 2.

 

 

   

t3 Class1

D o 0 Class 2

g A Class 3

g D U 0 ? Test pattern

u- A ‘ A

  
Feature 1

Figure 2.2: A three class, 5-nearest-neighbors classifier. The training samples are

plotted in a two—dimensional feature space. Three of the five nearest neighbors of the

test sample are of class 2, so the test sample will be classified as belonging to class 2.

 

Any distance metric can be used to calculate the neighbors—Euclidean distance

and Mahalanobis distance1 are the two metrics most commonly employed. The classes

of these k neighbors are tallied, and the most commonly represented class becomes the

predicted class for the test sample. Several tie breaking schemes are possible when a

single majority class is not present among the near neighbors. The most common, and

the method used here, is to choose the class of the closest neighbor. Other methods

 

1Euclidean distance is defined as d2 = (552 — fl)T (552 — :51). Mahalanobis distance

is defined as d2 = (:32 — f1)T 2‘1 (f2 - 51), where E is the d x d covariance matrix

of the d-dimensional training data.

13
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include scaling each vote by the distance from the current test sample, choosing the

most common class from the training data, and choosing the class with the greatest

misclassification cost. Feature values are usually normalized prior to computing the

distances to prevent the scale of each feature from biasing the prediction. It can be

shown that the asymptotic error probability (that is, the error rate as the number

of training samples approaches infinity) of the nearest neighbor classification rule is

bounded by twice the Bayes error probability(Duda and Hart, 1973, p. 101); i.e.

711,190 Pe(Bayes) 5 "lane Pe(NN) 5 2 a: "159° Pe(Bayes) (2.3)

A drawback to the knn classifier is the computational expense of computing the

distance between the testing sample and each of the training samples. A branch-

and-bound approach to near-neighbor search (Fukunaga and Narendra, 1975) can

significantly reduce this overhead for large training sets.

Many variants of the knn classifier have been proposed and explored. The con-

densed nearest neighbor rule (Hart, 1968) and the reduced nearest neighbor rule

(Gates, 1972) seek to reduce the number of training patterns that must be stored and

tested for each near-neighbor search, while maintaining the same decision boundaries

as the nearest neighbor rule. The reduced nearest neighbor rule, in particular, ex-

pends considerable computation effort to find the minimal consistent subset of the

training patters in order to reduce the computation time needed later to find near

neighbors during on—line classification. The edited nearest neighbor rule (Wilson,

14
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1972) smoothes the decision surface by removing “outlier” training samples—that is,

samples belonging to a certain class that fall in an area of the feature Space domi-

nated by another class. The resulting decision rule is less sensitive than the nearest

neighbor rule to erroneous feature measurement and anomalous training data.

For values of k larger than 1, a measure Of classification confidence can be Obtained

from the number of nearest neighbors belonging to the majority class. This measure of

confidence can be used to define a reject option for the k nearest neighbor rule, which

can result in a reduction in the error rate for those samples that are not rejected.

The use of majority votes as a confidence measure is discussed further in Chapter 3.

The well-known statistical classifiers can be partitioned into parametric and non-

parametric methods. As described previously, the Bayes classifier can be implemented

using either approach. The parametric methods assume that the form of the class-

conditional density function of the features is known in advance. A common as-

sumption is that the feature values follow a multivariate Gaussian distribution. The

training data are then used to estimate the parameters of these class-conditional

densities (e.g. the mean vector, p, and the covariance matrix, a, for the Gaussian

distribution) and these estimated densities are are then used to classify new patterns.

The non-parametric methods, including Parzen window density estimation (Parzen,

1962) and the nearest-neighbor methods (Cover and Hart, 1967), make no assump-

tions about the class-conditional distribution of feature values. Rather, the form of

the density function is either fitted to the training data, as in the Parzen window

method, or dealt with implicitly, as in the nearest neighbor rule.

15
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2.2 Feature Selection and Extraction

2.2.1 Feature Costs and the Curse of Dimensionality

The selection of features to measure and include in the feature vector can have a

profound impact on the accuracy of the resulting classifier, regardless of what specific

classification rule is implemented. A common approach is to have human experts

describe as many features as possible that are readily measurable and likely to be

related to the classification categories. Unfortunately, there are several disadvantages

to evaluating a profuse number of features in classification. First, each additional

feature to be considered Often incurs an additional cost in terms of measurement

time, equipment costs,” and storage space. In addition, the computational complexity

of classification grows with each additional feature. For some classifiers the cost of

each additional feature in computational complexity can be significant. The nearest-

neighbor classification, for example, has a complexity that is 0(n2), where n is the

combined size of the training and testing data sets. In addition, the inclusion of

spurious features (features unrelated to the classification categories) is likely to re-

duce classification accuracy. In fact, it is sometimes the case that the inclusion of

features that do, in fact, contain information relevant to classification can result in

reduced accuracy when the number of training samples is fixed. This phenomenon

is sometimes referred to as the curse of dimensionality (Jain and Chandrasekaran,

1982).

At the root of the problem of high-dimensionality lies the fact that in real-world

16
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classifiers the class-conditional densities are not known, and must be estimated from

a finite number of training samples. This fact is easily seen when considering a

classification task involving two classes, where the feature vector for each class follows

a multivariate Gaussian distribution. AS each new feature, xi, is added to the pattern

vector, additional information is made available for classification, as long as the mean

of the feature, n,- is not identical to that of some other feature. However, in addition

to providing new information, the inclusion of the new feature introduces additional

parameters which must be estimated to characterize the class-conditional distribution

of the feature vector. In the case of a Gaussian distribution, an additional mean

value is added to [i and the covariance matrix 0 changes from a d x d matrix to a

(d + 1) x (d + 1) matrix. Since the covariance matrix is symmetric, the number of

parameters which must be estimated increases by (d + 2) for each additional feature.

Clearly, the geometric growth in the number of parameters to be estimated has the

potential to deteriorate the value of additional features to the classifier, even when the

new features contain additional information. This effect was illustrated for a specific

two-class problem with Gaussian distribution of feature values by Thunk (1979).

2.2.2 Feature Selection

A number of techniques have been developed to address the problem of dimensional-

ity, including feature selection and feature extraction. The main purpose of feature

selection is to reduce the number of features used in classification while maintain-

ing an acceptable classification accuracy. Less discriminatory features are eliminated,

17
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leaving a subset of the original features which retains sufficient information to discrim-

inate well among classes. For most problems the brute-force approach is prohibitively

expensive in terms of computation time. Cover and Campenhout (1977) have shown

that to find an Optimal subset of size n from the original d features, it is necessary to

evaluate all (3) possible subsets when the statistical dependencies among the features

are not known. Furthermore, when the size of the feature subset is not specified in

advance, each of the (2“) subsets of the original d features must be evaluated. In

the special case where the addition of a new feature always improves performance,

it is possible to significantly reduce the number of subsets that must be evaluated

using a branch and bound search technique (Narendra and Fukunaga, 1977). Unfor-

tunately, this sort of monotonic decrease in the error rate as new features are added

is often not found in real-world classification problems due to the effects of the curse

of dimensionality and finite training sample sizes.

Various heuristic methods have been prOposed to search for near-Optimal feature

subsets. Sequential methods involve the addition or removal of a single feature at

each step. Sequential forward selection (Whitney, 1971) begins with the single fea-

ture which provides the best classification performance. At each iteration, the feature

which provides the best performance in combination with the current subset of fea-

tures is added, until a subset of the desired size is generated. Once a feature is added,

it cannot be removed. Sequential backwards selection operates similarly, but begins

with all features included, removing a Single feature at each iteration. “Plus 1 — take

away 1'” selection combines these two methods by alternately enlarging and reducing

18



the feature subset repeatedly. The sequential floating forward selection algorithm

(SFFS) Of Pudil et at. (1994) is a further generalization of the plus I, take away r

methods, where l and r are not fixed, but rather are allowed to “float” to approximate

the Optimal solution as much as possible. The algorithm basically executes as follows:

0 Let X), = 131...:Ck be a set of It features

0 Let J() be a criterion function (e.g. classification accuracy)

0 Let the significance Of the feature 27,- in the set Xk, be Sk_1(xj) = J(Xk) '-

J(Xk — (Ej)

0 Let the significance Of the feature :12,- 9! Xk, be Sk+1(:r,-) = J(X,c + 133-) — J(Xk)

0 Beginning with an initial set Of It features, Xk...

1. Using the sequential forward selection method, find XHI.

2. Find the least significant feature in Xk+1. If 55,,“ is the least Significant

feature, then set k = k + 1 and go to step 1.

3. If x,,1 S r g k is the least Significant feature in XHI, then exclude 1:,

from Xk+1 to form a new feature set X;.

4. If J(xp > J(Xk):

— If k = 2 then set Xk = X}, and go to step 1.

— Otherwise continue conditional exclusion by returning to step 2.

In a recent study of current feature selection techniques, Jain and Zongker (1997)

evaluated the performance Of fifteen feature selection algorithms in terms Of classifica-

19
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tion error and run time on a 2-class, 20—dimensional, multivariate Gaussian data set.

Their findings demonstrated that the SFFS algorithm dominated the other methods

for this data, Obtaining feature selection results comparable to the Optimal branch-

and-bound algorithm while requiring less computation time. Further tests of the

SFFS technique in combination with a knn classifier were conducted to Observe the

behavior Of the knn classification rule as additional features were provided to the

classifier. The results showed that classification accuracy was initially improved as

additional features were introduced, but eventually reached a maximal value and be-

gan to decline with the introduction Of further features. Because Of this unimodal

behavior, selection Of an Optimal number Of features is straightforward when using

the SFFS method in combination with a knn classifier.

When classification is being performed using neural networks, node pruning tech-

niques can be used for dimensionality reduction (Mao et al., 1994). After training for

a number of epochs, nodes are removed from the neural network in such a manner that

the increase in squared error is minimized. When an input node is pruned, the feature

associated with that done is no longer considered by the classifier. Similar methods

have been employed in the use of fuzzy systems for pattern recognition through the

generation of fuzzy if—then rules (Nozaki et al., 1996; Ishibuchi et al., 1995). Some

traditional pattern classification techniques, while not Specifically addressed to the

problem ofdimensionality reduction, can provide feature selection capability. Tree

classifiers (Quinlan, 1986b), for example, typically partition the training data based

on a single feature at each tree node. If a particular feature is not tested at any
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node of the decision tree, it is effectively eliminated from classification. Additionally,

simplification Of the final tree can provide further feature selection (Quinlan, 1987).

2.2.3 Feature Extraction

Feature extraction, a superset of feature selection, involves transforming the origi-

nal set of features to provide a new set of features, where the transformed feature

set usually consists Of fewer features than the original set. While both linear and

non-linear transformations have been explored, most of the classical feature extrac-

tion techniques involve linear transformations Of the original features. Formally, the

Objective for linear feature extraction techniques can be stated as follows:

Given an n x d pattern matrix .A (n points in a d—dimensional space),

derive an n x m pattern matrix B, m < d, where B = AH and ’H is a

d x m transformation matrix.

According to this formalization, many common methods for linear feature extrac-

tion can be specified according to the method of deriving the transformation matrix,

”H. For unsupervised linear feature extraction, the most common technique is prin-

cipal component analysis (Duda and Hart, 1973). For this method, the columns of

”H consist of the eigenvectors of the d x d covariance matrix of the given patterns. It

can be shown that the new features produced by principal component analysis are

uncorrelated and maximize the variance retained from the original feature set (Duda
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and Hart, 1973). The corresponding supervised technique is linear discriminant anal-

ysis. In this case, the columns Of ’H are the eigenvectors corresponding to the nonzero

eigenvalues Of the matrix «SQ/183, where SW is the within-class scatter matrix and

SB is the between-class scatter matrix for the given set of patterns. Deriving ’H in

this way maximizes the separation between class means relative to the covariance of

the classes (Duda and Hart, 1973). In the general case, the matrix ’H is chosen to

maximize some criteria, typically related to class separation or classification accuracy

for a specific classifier. In this view, feature selection is a special case of linear feature

extraction, where the Off-diagonal entries Of ’H are zero, and the diagonal entries are

either zero or one.

Feature selection and extraction can enhance pattern recognition in a number Of

different ways. AS discussed previously, these techniques can reduce the cost of fea-

ture measurement and storage, as well as providing improved classification accuracy.

Additionally, feature selection and extraction can help to reveal the relationships

between the features available to a classifier and the classification categories. By

identifying minimal sets of features that are sufficient for accurate classification, fea-

ture selection and extraction can aid researchers in understandng which features are

related to the categories in the data. This function is closely related to the problem

Of data mining, and can be a useful tool for analysis of large data sets.
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2.3 Evolutionary Computation

Dimensionality reduction is well suited to formulation as an Optimization problem,

thus making it available to the diverse array of computational techniques that have

been developed and explored in this area. Some of these methods have been devel-

oped by Observation and modeling Of the process Of Darwinian evolution and natural

selection. Such methods, collectively termed evolutionary computation, have been

developed and studied from various viewpoints, leading to a number Of different tech-

niques and Specific algorithms (Fraser, 1957; Crosby, 1967; Bremermann et al., 1966;

Reed et al., 1967; Fogel, 1998).

2.3.1 Genetic Algorithms

Genetic Algorithms comprise a subset of evolutionary computation focusing on the

application Of selection, mutation, and recombination to a population of competing

problem solutions (Holland, 1975; Goldberg, 1989). Figure 2.3 shows a general model

of a simple GA. Problem solutions are encoded as strings Of information, or chro-

mosomes. A population of competing solutions is maintained and sorted according

to the application-specific fitness of each solution. Each generation, a stochastic se-

lection process is employed to choose individuals to advance to the next generation.

Individuals with higher fitness values are more likely to be chosen, but the stochastic

nature of the selection process allows for the selection Of any individual in the popula-

tion. Various selection methods have been employed, including fitness proportionate
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selection (Holland, 1975), tournament selection, rank selection, and others. From the

individuals that do advance to the next generation, some are chosen at random as

parent individuals for recombination. The process of recombination combines traits

Of the parent individuals to form a new child individual. Again, various techniques

are possible, including one- and two-point crossover, uniform crossover, and others

(Goldberg, 1989; Mitchell, 1996). It has been proposed that the learning power of

the genetic algorithm is largely derived from the interaction of recombination and

selection, which together isolate “building blocks”, or Short motifs common to highly

fit chromosomes. Such motifs can then combine to form new chromosomes of even

higher fitness (Holland, 1975; Goldberg, 1989). Finally, random mutation is employed

to introduce a controlled amount of noise into the chromosomes, which in turn main-

tains diversity in the population and helps to avoid premature convergence of the

population at local extrema. Genetic algorithms have been shown to be a useful tool

in computer optimization problems from a broad range of scientific disciplines.
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Figure 2.3: A general model Of a simple Genetic Algorithm.

 

24



01



2.3.2 Evolution Strategies and Evolutionary Programming

The popularity of the GA as an Optimization tool is largely due to its ability to avoid

local Optima by maintaining a diverse population Of competing problem solutions.

Unfortunately, the mechanisms Of recombination and selection are not the most ap-

propriate tools for fine-tuning nearly-Optimal problem solutions. As a result, genetic

algorithms are more powerful for the early stages of Optimization, when general areas

of high fitness are sought, than for later stages where solutions in these areas are be-

ing refined toward a global Optimum. Some researchers have concluded that GAS are,

in fact, not an appropriate technique for real-valued function Optimization (De Jong,

1992)

Evolutionary programming (Fogel et al., 1966), and evolution strategies (ES;

Rechenberg, 1973; Schwefel, 1977), two subsets Of the EC family of methods, are

Often considered more suited to real-valued function Optimization and refinement of

nearly-optimal problem solutions. Like GAS, EP and ES algorithms are parallel, it-

erative Optimizers. Also like GAS, EP and ES maintain a population Of competing

problem solutions which are evaluated in terms Of a fitness function and subjected to

a selection function for inclusion in successive generations. Unlike GAS, however, EP

and ES do not emphasize recombination as a primary method for Optimization. In-

stead, these techniques generally rely on various forms of mutation as the key means

of learning. For EP, which is often employed for real-valued function Optimization,

one Of the most common mutation Operators involves the addition of a Gaussian de-

viate to the current value of a field on the chromosome. The Gaussian deviate is
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generally chosen from a distribution with a mean of zero and a variance that is either

computed based on the degree of convergence of the current population or stored and

evolved with each individual chromosome (Back and Schwefel, 1996). The specific

selection method used by EP is Slightly different from those commonly used in GAS

as well. A typical method is to compete each individual in a fixed number Of “tourna-

ments”, in which its fitness is compared with a random member of the population to

determine a winner. After each individual has competed in the requisite number Of

tournaments, the entire population is sorted according to the number of tournament

wins, and the upper half of this sorted population is allowed to advance to the next

generation. As with GA selection methods, many variations on this basic method

have been explored.

2.4 Evolutionary Computation in Feature Selec-

tion and Extraction

A direct approach to using GAS for feature selection was introduced by Siedlecki

and Sklansky (1989). In their work, a GA is used to find an Optimal binary vector,

where each bit is associated with a feature (Figure 2.4). If the it” hit of this vector

equals 1, then the i‘” feature is allowed to participate in classification; if the bit is

a 0, then the corresponding feature does not participate. Each resulting subset of

features is evaluated according to its classification accuracy on a set Of testing data

using a nearest-neighbor classifier.
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, §------ Feature 2 is included in the classifier.

3 ------------- Feature 1 is not included in the classifier.

Figure 2.4: A d—dimensional binary vector, comprising a Single member Of the GA

population for GA-based feature selection.

 

This technique was later expanded to allow linear feature extraction, by Punch

et al. (1993) and independently by Kelly and Davis (1991). The single bit associ-

ated with each feature is expanded to a real-valued coefficient, allowing independent

linear scaling of each feature, while maintaining the ability to remove features from

consideration by assigning a weight of zero. Given a set Of feature vectors of the

form X = {3:1, 2:2, Herd}, the GA produces a transformed set of vectors of the form

X’ = {112111, wgzg...wd:rd} where w,- is a weight associated with feature i. Each fea-

ture value is first normalized, then scaled by the associated weight prior to training,

testing, and classification. This linear scaling of features prior to classification allows

a classifier to discriminate more finely along feature axes with larger scale factors.

A knn classifier is used to evaluate each set Of feature weights. The effects Of linear

feature weighting on the knn classification rule are visualized in Figure 2.5. Patterns

plotted in feature space are spread out along feature axes with higher weight values,

and compressed along features with lower weight values. The value Of k for the knn

classifier is fixed and determined empirically prior to feature extraction.

In a similar approach, Yang and Honavar (1998) use a simple GA for feature subset
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Figure 2.5: Effect of scaling feature axes on k-nearest-neighbor classification. (a)

original data; (b) scaled data. Extension of the scale Of the horizontal axis increases

the distance between patterns which differ in feature 1, allowing the knn to discrimi-

nate more finely along this dimension. Here, the prediction Of the unknown changes

from class 2 to class 3 as a result of scaling.
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selection in conjunction with DistAl, a neural network-based pattern classifier (Yang

et al., 1998). As in other GA-based feature selectors, a simple binary representation

was used where each bit corresponds to a single feature. The use Of the GA for feature

subset selection improved the accuracy of the DistAl classifier for nearly all Of the data

sets explored, while simultaneously reducing the number of features considered. Their

hybrid classifier, GADistAI, outperformed a number Of modern classification methods

on the various data sets presented.

Vafaie and De Jong (1998) describe a hybrid technique in which EC methods

are employed for both feature selection and extraction2 in conjunction with the C4.5

decision tree classifier system (Quinlan, 1986a). Again, a binary representation is

used for feature subset selection using traditional GA techniques. In this system,

however, the features seen by the classifier are functions Of the original features

composed of simple arithmetic operations. For example, one such feature might be

{(Fl - F2) x (F2 - F4)}, where F1, F2, and F4 represent values from the original

feature set. These functions for constructing new features are represented as trees, in

much the same way as commonly seen in the genetic programming (GP; Koza, 1992)

literature. GP subtree crossover is used for recombination of these function trees,

while traditional GA—style mutation and crossover are used for the feature selection

chromosome. In this system, feature selection and extraction are not simultaneous.

Rather, feature selection, feature extraction, and classifier construction are performed

serially each generation. The resulting system was shown to outperform the decision

 

2The authors use the term “feature construction”.
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tree classifier using the original feature set, while reducing the number Of features

considerably, for human facial image recognition. Additionally, the hybrid system

was shown to outperform several contemporary classifiers on three diverse data sets.
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Chapter 3

Feature Selection and Extraction using

the K-Nearest-Neighbors Classifier in

Combination with Evolution-based

Learning

3.1 Methods

3.1.1 Branch and Bound Near-Neighbor Searching

The k-nearest—neighbors classifier has several features that make it a good choice for

use with feature selection and extraction algorithms. The nonparametric nature Of

the nearest neighbors rule allows the classifier to be applied to a broad range of data

sets, including those where the form of the class-conditional distribution of feature

values is completely unknown. When used with a Euclidean distance metric, the knn
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decision rule is sensitive tO scaling of the feature values, which forms the basis for

the feature extraction technique applied here. Many classifiers based on the class-

conditional distribution Of feature values, including the Bayes classifier, are invariant

to scaling Of the feature values.

The primary drawback of the knn classifier is the computational complexity of

the near neighbor search. The search for the neighbors Of a single test pattern takes

0(n * d) time where n is the number of training samples, and d is the number Of

features being considered. Thus, the evaluation Of a test set Of m samples takes

0(n * m * d) time, which can quickly become prohibitively expensive for large training

and testing set Size and large numbers Of features. TO reduce the computational cost

of the near neighbor search, the branch and bound search algorithm of Fukunaga and

Narendra (1975) was incorporated into the knn classifier. The resulting branch and

bound knn (bbknn) classifier scales more efficiently with the number Of samples in

the knn training set.

3.1.2 The Hybrid GA/knn Classifier

The basis for the hybrid nearest neighbor classification technique is the weighted

nearest neighbors classifier of Punch et al. (1993). As described in Section 2.4, a

genetic algorithm is used to Optimize a vector Of weight values, {201,102, ...wd}, where

each weight is used as a linear scaling factor for one of the features considered by the

classifier. The feature values are normalized over a common range prior to scaling.

For the work described here the normalized feature values ranged from 1.0 to 10.0.
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The formalism for linear feature extraction described in Section 2.2.3 states that

the Objective is a d x m transformation matrix, ”H, where d is the number Of original

features and m is the number of transformed features. The GA-weighted knn classifier

fits this framework, where the GA produces the diagonal elements Of the transfor-

mation matrix, ’H, and all the Off-diagonal elements are zero. Figure 3.1 Shows a

schematic overview of a GA-based linear feature extractor in combination with a knn

classifier. For the sake Of efficiency, only the weight vector itself (that is, the diagonal

elements of the transformation matrix, ’H) need be passed to the knn. Since the value

Of k (the number of nearest neighbors to consider) is closely related to the scaling of

the feature dimensions, the value of It was also included on the GA chromosome for

co—optimization with the weight vector.
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Figure 3.1: A GA-based feature extractor using an Objective function based on classi-

fication accuracy. Each transformation matrix from the GA is used to transform the

input patterns, which are then passed to a knn classifier. The fitness of a particular

transformation matrix is based on the classification accuracy of the knn using the

transformed patterns.
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The GA Cost Function

As each weight vector and k value is sent to the knn classifier for evaluation, a cost

(or inverse fitness) score is computed, based primarily on the accuracy Obtained by

the knn in classifying a set of samples Of known class. Since the genetic algorithm

seeks to minimize the cost score, the formulation of the cost function is a key element

in determining the quality Of the resulting classifier. AS such, several trade-offs must

be considered in the design of the Objective function:

Feature subset size versus classification accuracy — Up to a certain point,

inclusion of meaningful features will generally increase the accuracy of a classi-

fier. Thus, reducing the size of the feature set and obtaining classification accu-

racy are Often mutually exclusive goals. The importance Of feature set reduction

relative to overall accuracy can be controlled through the fitness function.

Measures of classification accuracy — All types Of classification errors do not

necessarily incur equal costs. In a two-class system, for example, the cost Of

misclassification for one class might differ from the other. The most commonly

employed measure of accuracy is the classification rate, usually defined as the

number Of correct classifications divided by the number of test samples. This

simple metric may not suffice for problems with differing objectives. Consider

a test set consisting of n samples, {551,552, ...:E‘,,}, belonging to c classes. For

a given classifier let R be the number Of patterns from the test set that were

correctly predicted to belong to class i. Let U, be the number Of patterns falsely
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predicted as class i (that is, predicted as class i, but Observed to belong to class

j,i # j). Similarly, let 0, be the number Of patterns belonging to class i, but

mispredicted as belonging to some other class; and let N,- be the number Of

patterns in the testing set neither observed nor predicted as belonging to class

i. Using these four variables, we can establish several measures Of classification

accuracy that emphasize different aspects of the classification task.

i:

C P

0 Classification rate: Acc = —-—1—1

This common measure Of accuracy emphasizes correct prediction of as

many testing samples as possible, regardless of their class distribution.

While overall accuracy is generally desirable, it can be a somewhat short-

sighted measure of classifier quality when used alone. For example, for a

two-class problem where the test set consists of many samples from class

1 and only a few from class 2, a good classification rate might be achieved

by always predicting class 1. Class balance metrics can be combined with

classification rate to mitigate this effect. Classification rate is also often

expressed as error rate, Err = 1.0 — Acc.

 

C P

0 Average class accuracy: ACA = ( ’ ) /c

f; 0.- + P,-

Average class accuracy helps to insure class balance by computing the

classification rate for each class, and then taking the mean over all classes.

  oCl bl ~Bt—°(P‘ ) main P1ass a ance. a — max 0‘ + B j=l 03- + P]-

This direct measure Of class balance can be combined with the classification

rate to penalize for class bias.
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Sometimes called “hit rate”, PBA is defined on a per-class basis. For a

o Prediction-based Accuracy: PBA(i) = 

given class, i, PBA(i) is the proportion Of all the predictions for class

i that are correct. For example, if 100 samples are predicted to belong

to class 1, and 85 Of them are observed to actually belong to class one,

then PBA(1) = 0.85. This measure explicitly penalizes for overpredic-

tion of each class, while AC‘A penalizes for underprediction. Average

prediction-based accuracy (APBA) can be computed for the entire testing

i=1
set: APBA(i) = c (Fl—:43) /c

0 Matthews coefficient (Matthews, 1975):

I); * N,“ — U5 * 05

(I); + Ui) * (Pi + 0;)* (Ni-i” U,) * (Ni + 0.)

Like PBA, the Matthews coefficient is defined on a per-class basis. The

Cm(i) =
 

Matthews coefficients for each class can be averaged to produce an overall

measure of accuracy and class balance. When the testing set is extremely

unbalanced, Cm can have small values even when the accuracy for each

class is high. Cm for a particular class is undefined when none of the

training samples are predicted to belong to that class.

Objective function smoothness -— For the knn classifier an Objective function

based largely on classification accuracy can have an unnecessarily rough, step-

wise character. By smoothing this function we can provide more fine-grained

feedback to the GA, enabling more efficient Optimization. One way tO achieve

this is to consider the individual near neighbors and their classes. Consider a
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two-class knn classifier with k = 7, and a weight vector that results in mis-

classification Of a particular test sample. Further suppose that the test sample

belongs tO class two, but all the near neighbors of the test sample are of class one

when scaled by the weight vector. If the weight vector undergoes mutation or

crossover and the resulting set of near neighbors contains two members Of class

two, then the classifier is closer to a correct classification of this test sample,

but the fitness value Of the weight vector does not change because the sample is

still misclassified. By adding a penalty for each incorrect near-neighbor “vote”

to the cost function, we can reward an individual weight vector each time an

additional vote is cast for the correct class. This additional feedback to the

GA can guide the search toward new correct classifications, providing a more

efficient search.

Coefficients are associated with each term in the GA cost function that allow

control of each run. The following cost function is computed by the knn classifier for

each individual (consisting of a weight vector and k value):

cost(u7, k) 2 Cam x Err(tii, k)

+ 0pm x nonzero(tii)

+ Cum x incorrect-votes(tii, k)

+ Cm, x Bal(tii, k) (3.1)
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Where Err is the error rate, as defined above; nonzero(tU) is the number Of nonzero

weights in the weight vector iii; incorrect_votes(u'i, k) is the total number Of incorrect

near neighbor votes cast during classification with the weight vector 11'} and neighbor

count 1:; and Bal is the balance function, also defined above. Additionally, Cm,

0,0,,1, Cw“, and CM are coefficients for each Of these terms, respectively. The

coefficients determine the relative contribution Of each part Of the fitness function in

guiding the GA search for the Optimal weight vector and I: value. The values for the

cost function coefficients were determined empirically in a set of initial experiments for

each data set. Typical values for these coefficients are given in Table 3.1. Deviations

from these values for particular GA runs or data sets will be specifically noted in

subsequent discussion.

 

Table 3.1: Typical values for the GA cost function coefficients.

Coefficient Typical value
 

Cm 20.0

0,... 1.0

Cvote 2-0

CW 10.0

 

Representation Issues and Masking

The representation Of the feature weights and I: value on the chromosome is fairly

direct—a 32 bit integer is used to represent each weight value. The resulting gene

 

lPars is short for parsimony, indicating the importance Of the nonzero term in

Obtaining a minimal feature set.
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on the GA chromosome yields an unsigned value over the range [0, 232 — 1]. This

value is then scaled by division to yield a real value over [0.0, 100.0]. The value Of k

is represented as a 6-bit unsigned integer, but is constrained to values between 1 and

50. For two-class problems, the I: value is set to k = (ham,n * 2) + 1, where kchmm is

the k-value from the GA chromosome. This constrains the value Of k to Odd integers,

eliminating the need for a tie-breaking scheme in the knn classifier.

While the cost function encourages parsimony by penalizing a weight vector for

each nonzero feature weight, a simple real-valued representation for the weights them-

selves does not provide an easy means for the GA to reduce feature weights to zero.

Since the GA mutation Operator tends to produce a small change in a single weight

value, numerous mutations Of the same feature weight are Often required to yield a

value at or near zero. Several methods were tested to aid the search for a minimal

feature set, including reducing weight values below a predefined threshold value to

zero, and including a penalty term in the cost function for higher weight values. The

method that proved most effective, however, was a hybrid representation that incor-

porates both the GA feature selection technique Of Siedlecki and Sklansky (1989) and

the feature weighting techniques Of Punch et at. (1993) and Kelly and Davis (1991).

The weights and k value are represented directly on the chromosome, as described

above. Additionally, a mask field is assigned to each feature. The contents Of the

mask field determine whether the feature is included in the classifier (see Figure 3.2).

In the initial implementation, a Single mask bit was stored on the chromosome for

each feature. If the value of this bit was 1, then the feature was weighted and included
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in classification. If, on the other hand, the mask bit for a feature was set to 0, then

the feature weight was treated effectively as zero, eliminating the feature from con-

sideration by the classifier. Since the masking fields comprised a very Small section Of

the chromosome relative to the feature weights and I: value, the number Of mask bits

associated with each feature was later increased to five. This increase had the effect

Of increasing the probability that a single bit mutation in a random location would

affect the masking region of the chromosome. The interpretation of multiple mask

bits is a Simple generalization Of the single bit case. When the majority of the mask

bit values for a field are 1, then the field is weighted and included in classification.

Otherwise, the field weight is reduced to 0, removing the feature from consideration

by the knn. The number of mask bits is always Odd so there is no possibility of a

tie. Figure 3.2 shows a typical GA chromosome for the hybrid GA/knn classifier with

masking.

 

 

          
 

l— 32-bit L— S-bIt masking

feature field

weight 6-bit k-value

Figure 3.2: An example Of a GA/knn chromosome with masking for a 4-dimensional

feature set.

 

The use Of a masking field on the chromosome allows a more efficient search

for a minimal subset Of features that provides good classification accuracy, while

simultaneously searching for the Optimal weights for the non-masked features. A

single mutation can allow a feature to be tentatively included or removed from a

40



specific feature set without the loss Of the partially-Optimized weight value for that

feature. Without masking, a weight value must be reduced to zero (or below a fixed

threshold) to remove a feature from the current feature set. If the feature is later

reintroduced, its weight value must be re-Optimized from scratch.

GA Optimization Details

Several GA engines were employed to search for the Optimal set Of feature weights and

I: value, including the GAUCSD algorithm (Schraudolph and Grefenstette, 1992) and

GALOPPS (Goodman, 1996). GA run parameters were determined empirically via a

set Of initial experiments. Table 3.2 summarizes the GA parameters for a typical run.

Where specific runs have parameters that differ from these values in the subsequent

discussion, this fact will be explicitly noted. Most runs used fitness proportionate

selection, which requires an explicit scaling of the fitness of each individual in the

GA population prior to selection. The specific scaling method used has a significant

impact on the selection pressure applied by the GA during the subsequent search. For

runs described here, the sigma scaling method Of the GAUCSD algorithm was used.

Several sigma scaling factors were tested, with the most common value being 3.0, as

noted in the table. Further details on sigma scaling and the significance Of the sigma

scaling factor can be found in Schraudolph and Grefenstette (1992).
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Table 3.2: Typical values for the GA run parameters.

 

GA Run Parameter Typcial value

Population size 200

Crossover rate 0.8 per individual

Mutation rate 0.001 per bit

Max number Of generations 200

Sigma scaling factor 3.00

 

3.1.3 EP Optimization with the Knn Classifier

Evolutionary programming was also tested as a method for Optimizing feature weights

and I: value for the knn classifier. An EP framework based on SGA-C (Smith et al.,

1991; Goldberg, 1989) was adapted to suit the feature selection and extraction prob-

lem. In order to facilitate efficient sampling of feature subsets, the usual EP operators

were augmented with a recombination Operator, and a hybrid representation Similar

to that of the masking GA/knn was used for the EP chromosome. AS in the GA

Optimizer, the EP chromosome consisted Of a single real—valued weight for each fea-

ture, an integer value for k, and a masking field consisting Of one or more mask bits

for each feature. Unlike the GA, however, the distinct regions Of the EP chromo-

some were subjected to different operators. The real-valued feature weights and the

k value underwent only Gaussian mutation, while the masking fields were modified

by GA-style bitwise mutation and Single-point crossover. Figure 3.3 illustrates the

dichotomy Of the chromosome used for EP/GA hybrid Optimization.

As mentioned in Section 2.3.2, EP is commonly employed for the tuning of real-

valued function parameters, but lacks a standard mechanism for dealing with binary
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Figure 3.3: An example of an EP/GA hybrid chromosome with masking for a 4-

dimensional feature set.

 

fields such as the masking region Of the chromosome. The Objective of the EP/GA

hybrid approach was to explore the real-valued parameter Optimization capability Of

the EP for tuning the feature weights, while exploiting the known ability Of tradi-

tional GA operators to search binary alphabets (Holland, 1975; Goldberg, 1989) in

Optimizing the mask bits.

The EP framework employed, like most EP-based real-valued parameter Optimiz-

ers, utilizes a mutation Operator that varies each parameter according to a Gaussian

distribution. The standard deviation for this distribution is an adaptive parameter

in the sense that it is stored with the individual as a vector of a-values, one for each

parameter. Each parameter, an, is mutated to produce 2:: as follows:

1:; = 11:,- + N(0, 0,) (3.2)

The standard deviations themselves are randomly perturbed according to a log-

normal distribution to promote a diversity of individuals with differing Optimization

strategies within the population. Each generation, the vector of standard deviations
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for each individual is updated according to:

a; = 0,- ~erp(T - N(O,1) + 7" - N,(0,1)) (3.3)

where N(,u, a) is a single normally distributed random variable, and N,(0, 1) is the

it” element of a vector Of standard normal deviates Of a length equal to the number

of parameters to mutate (Angeline, 1995). The values Of r and 1" are compile time

parameters Of the EP engine. Here, these parameter are set according to guidelines

suggested by Back and Schwefel (1996).

The rest of the EP run parameters, like those of the GA, were tuned empirically.

Table 3.3 Shows the run parameters for a typical EP/knn experiment.

 

Table 3.3: Run parameters for a typical EP/knn experiment. (1 is the number of

parameters to be Optimized (i.e. the dimensionality of the problem).

 

EP Run Parameter Typical value

Population size 200

Mask field crossover rate 0.8 per individual

Mask field mutation rate 0.001 per hit

Max number of generations 200

T’ (ml-1
-1

T ( 2V2

 

3.1.4 Bayes and KNN Classifiers

For many experiments, results of an unweighted knn classifier and a naive Bayes

classifier are presented for comparison. The naive Bayes classifier, described in Sec-
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tion 2.1.2, is nonparametric in the sense that the class conditional distributions of

the feature values are estimated by constructing a histogram for each feature based

on the training data. The bin size of this histogram is a run-time parameter of the

classifier. Unless otherwise noted, 20 bins for each feature were used for the experi-

ments described here. In addition, a Gaussian smoothing factor is applied in order to

mitigate sampling anomalies that might introduce classification bias. Given a feature

value, 23,-, for feature i, and a class to], then let bwj(x,) be the bin that x,- occupies

in the histogram for class wj. When the Gaussian smoothing is applied, the effec-

tive marginal probability p(:c,-|wj) depends on the histogram value Of bin bwj (23,-), as

well as the histogram values Of neighboring bins. Let hwj(bwj(a:,-)) be the histogram

value for bin bwj (z,)——that is, the proportion Of the training samples Of class wj that

have values for feature i that belong in the bin bu]. (93,-)—then the effective marginal

probability for feature value x,- is:

+0

ptalw.) = Z (60:, a) x haunts) + k)) (3.4)
k=—a

where G(k, a) is the mass density function for the Gaussian distribution at u = 0.0,

with variance 02:

G(k, a) = e-%(%)2 (3.5) 

The value Of 0, also a run-time parameter, determines the number Of bins that

will contribute to each effective marginal probability value. Figure 3.4 illustrates the

effect of Gaussian smoothing on the effective marginal probability for a particular
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Figure 3.4: Effects of Gaussian smoothing on the computation of effective marginal

probabilities. Assuming that the current feature value falls in the center bin (black

rectangle), and assuming 0‘ = 2, then the two surrounding bins on either side (grey

rectangles) also contribute to the effective marginal probability for the current feature.

  

 

The unweighted knn classifier, also employed for comparison with the hybrid clas-

sification results, uses a Euclidean distance metric to find nearest neighbors. When

there is a tie in determining the most frequent class among the near neighbors, the

class of the nearest neighbor is used as a tie breaker.

3.1.5 Data Sets

Artificially Generated Data

The GA/knn and EP/knn hybrid classifiers were trained and tested against a variety

of artificially constructed data sets to evaluate their error rates and feature selection
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and extraction capability under a variety Of classification conditions. These data sets

were constructed with a varying number Of features Of the following types:

Univariate Gaussian: 001,0) — A random Gaussian deviate selected from the

distribution with mean u and variance 02.

Uniform: U(min, max) — A random real value selected from a uniform random

distribution over the range [min, max].

Uniform integer: UI(min, max) — A random integer selected from a uniform

random distribution over the range [min, max].

Computed fields — Field values can be computed from the results of other field

values in combination with basic arithmetic Operations and/or any Of the pre-

viously mentioned types Of random variables. For example, a data field might

consist Of twice the value of the first data field, plus a uniform random value

from 1 to 10: 2 * fl + U(1,10).

Based on these basic types of field values, a number Of two-class data sets were

generated for use in testing various aspects of the GA and EP—based feature selection

and extraction methods in combination with the knn classifier. The Specific data sets

generated include:

Name: G10,1

Number of Features: 10

Class 1 specifier: G(5,2), G(5, 2), ...G(5,2)
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Class 2 specifier: G(lO, 2), C(10, 2), ...G(10, 2)

This simple 10—dimensional data set consists of independent Gaussian distributed fea-

tures. The two classes are generally linearly separable, and weighting of the features

is not likely to improve classification accuracy. This data set serves as a baseline for

classification performance.

Name: 010,2

Number of Features: 10

Class 1 specifier: G(7, 2), G(7, 2), ...G(7, 2)

Class 2 specifier: G(lO, 2), G(lO, 2), ...G(10, 2)

This data set is similar in construction to 010,1, but the means for the two classes are

closer, and thus the data is slightly more overlapped. See Figure 3.5 for a comparison

bCLWCOIl 010,1 and 010,2.

Name: G's

Number of Features: 5

Class 1 specifier: G(5,2), G(5,2), 0(5), 2), G(5,2), G(5,2)

Class 2 specifier: . G(10, 2), G(9, 2), G(8,2), G(7, 2), G(6, 2)

This 5-dimensional data set again consists Of independent features selected from Gaus-

sian distributions. However, the distance between the class means is reduced by one

for each feature after the first, SO feature weighting is more likely to be useful for

this data set. Furthermore, since inappropriate feature selection should now prove

detrimental to classification accuracy, this is the first data set that will provide a test

of the feature selection capability Of each method.
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Name: 05

Number of Features: 6

Class 1 specifier: G(5,2), G(5,2), G(5,2), G(5,2), G(5,2), G(5,2)

Class 2 specifier: G(lO,2), G(9,2), G(8,2), G(7,2), G(6,2), G(5, 2)

This data set is identical to G5, but an additional feature, feature 6, is included. The

mean and variance Of feature 6 are identical for both classes. This feature Should

provide no useful classification information and is included to further test the feature

selection capability Of each method.

Name: M6

Number of Features: 6

Class 1 specifier: G(5,2), G(2,1), G(5,3), G(2,2), U(1,5), UI(1,5)

Class 2 specifier: G(7,2), G(3,1), G(7,3), G(3,2), U(3, 7), UI(3, 7)

This is a mixed data set consisting Of features drawn from Overlapping Gaussian and

uniform distributions. Various levels of overlap between classes are exhibited by the

different features. Both continuous and discrete uniformly-distributed features are

included.

Name: N5

Number of Features: 5

Class 1 specifier: G(5,2), G(5,2) + U(1,2), G(5,2) + U(1,3),

G(5, 2) + U(1, 4), G(5, 2) + U(1, 5)

Class 2 specifier: G(7, 2), G(7, 2) + U(1, 2), G(7, 2) + U(1, 3),

G(7, 2) + U(1,4), G(7, 2) + U(1, 5)
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This data set is designed to evaluate the ability of each method to deal with increasing

noise in each feature. The first feature consists Of a Gaussian random deviate with

moderately overlapped distribution between classes. Each subsequent feature is a

Similar Gaussian deviate, but with an increasing level Of uniform random noise added.

Name: N10

Number of Features: 10

Class 1 specifier: G(5,2), G(5,3), G(5,4), G(5, 5), G(5, 6), G(5,6),

G(5,6), G(5, 6), G(5,6), G(5,6)

Class 2 specifier: G(7,2), G(7,3), G(7,4), G(7, 5), G(7, 6), C(7, 6),

G(7, 6), G(7, 6), G(7, 6), G(7, 6)

Another data set designed to test the ability Of each method to deal with noisy

features, this set includes a large number Of features with extremely overlapped dis-

tribution between the two classes.

Medical, Biochemical and Other Data

Several data sets were selected from the UCI machine learning repository (Blake and.

Merz, 1998) in order to test the capability Of the EC/knn classifier methods on real-

world problems, and to facilitate comparison with other EC—based hybrid classification

methods. The specific data sets tested were chosen to allow comparison with the

GADistAI technique of Yang and Honavar (1998) and the EC feature construction

and selection methods of Vafaie and De Jong (1998), and included the following:
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Figure 3.5: A two-dimensional projection of the data sets G10,1 (a), and 010.2 (b)

onto the first two feature axes. 010,2 exhibits much more overlap between classes than

610,1-
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Hepatitis — This data consists Of 19 descriptive and clinical test result values for

155 hepatitis patients (Diaconis and Efron, 1983; Cestnik et al., 1987). The

two classes, survivors and patients for whom the hepatitis proved terminal, are

strongly unbalanced—123 samples belong to the survivor class while 32 belong

to the terminal class. The data includes qualitative, as well as both continuous

and discrete-valued quantitative features. There are missing values, the number

Of which varies largely by feature. Many features have no missing values, while

others have as many as 67 missing values out Of 155 samples. The small sample

size and incompleteness Of this data set are typical Of many medical classification

problems.

Pima — Diabetes diagnosis information for native American women Of the Pima

heritage, aged 21 or over (Smith et al., 1988). This data consists diagnostic

information for 768 women; 268 of these patients tested positive for diabetes,

while 500 tested negative. Six of the eight features are quantitative and contin-

uous, consisting Of various clinical test results. The remaining two features, age

in years and number of times pregnant, are quantitative and discrete. There are

no missing feature values in the data. The completeness and moderate dimen-

sionality Of this data set make it suitable for testing the ability Of a classifier and

feature extractor to maintain or increase classification accuracy while reducing

dimensionality when there are fewer features to work with.

Wine — This data set consists Of the results of a chemical analysis Of wines derived

from three different cultivars (Aeberhard et al., 1992a,b). There are 13 continu-
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ous features, with no missing values. There are 59, 71, and 48 members Of each

Of the three classes, respectively. The three classes are nearly linearly separa-

ble, and linear discriminant analysis can Obtain 98.9% accuracy over all three

classes. This data set is thus better for evaluating feature selection capability

than classifier accuracy.

Ionosphere — The 34 continuous features in this data set are derived from the signals

read by a phased array Of 16 high-frequency antennas in Goose Bay, Labrador

(Sigillito et al., 1989). These radar signals are designed to recognize structure

in the ionosphere. Each reading consists Of 17 pulses, with two attributes per

pulse resulting in 34 features. There are 351 samples in this data set—225 are

considered “good” readings, for which some structure in the ionosphere was

detected, while 126 readings Showed no structure. There are no missing feature

values in this data. This data set was selected for evaluation of feature selection

capability for higher-dimensionality data sets.

Two additional data sets, also selected from the UCI repository, were employed by

Weiss and Kapouleas (1989, 1990) in a comparative study of classification methods

from statistical pattern recognition, neural networks, and machine learning. These

two medical data sets, thyroid and appendicitis, are included here to facilitate

comparison with these results. The thyroid data consists Of 21 clinical test results

for a set of patients tested for thyroid dysfunction (Quinlan et al., 1986)—-15 of these

features are binary-valued, while the other 6 are continuous. The training data consist

Of 3772 cases from the year 1985, while the testing data consist Of 3428 cases from
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the following year. The data are grouped into two classes, consisting Of the patients

that were/were not diagnosed as having certain categories Of hypothyroid disorder.

The two classes are highly unbalanced: the training data consist Of 3487 negative

diagnoses and 284 positive, while the testing data consist Of 3177 negative samples

and 250 positive. The appendicitis data consists Of seven laboratory tests to confirm

the diagnosis Of acute appendicitis (Marchand et al., 1983). All seven features are

continuous. This data set consists Of only 106 samples in two classes. 85 patients had

confirmed appendicitis while 21 did not.

In addition, extensive experimentation was conducted on a large biochemical data

set dealing with the binding Of water molecules to protein surfaces. The features and

biological significance of this data, as well as the classification and feature selection

results for the GA/knn, EP/knn and other classifiers and feature selection and ex-

traction methods are detailed in Chapter 5—Identifying the Determinants of Solvent

Binding in Proteins.

3.1.6 Testing and Error Rate Estimation

Various techniques were used to estimate the error rate Of the trained EC/knn hybrid

classifier. For data sets from the UCI machine learning data repository (i.e. the

hepatitis, Pima, wine, and ionosphere data sets) the testing methods were similar

to those Of Yang and Honavar (1998) in order to facilitate comparison with these

results. Several minor differences were introduced to avoid problems with overfitting

small training and testing sets. Two types Of experiments were conducted on the



 

UCI data sets, depending on the number Of training and testing samples available

for each class in the data set. Where ample training and testing data (at least 100

samples) were available for each class, hold-out tuning experiments were conducted

as follows. First, the available data are partitioned into three sets, training, tuning,

and testing, with an equal number of samples Of each class in each set. Thus, the size

Of these three sets is limited by the number of samples in the least numerous class.

The first set (training) is used to populate the feature Space for the knn classifier.

Next, the EC is employed to Optimize the k-value and feature weights. As previously

described in Section 3.1.2, the EC cost function is based on classification accuracy

for a set of samples Of known class. The second set Of samples (tuning) is used for

this purpose. Finally, after the k-value and feature weights have been Optimized, the

resulting classifier is evaluated using the final data set (testing) to Obtain an estimate

of the error rate. This estimate is then averaged over 5 independent runs of the EC

using the same partitioning into training, testing, and tuning sets. Finally, the entire

process is repeated 10 times with 10 different partitionings Of the data, resulting in

an error rate estimate averaged over 50 EC experiments.

When the number of samples for one or more classes is extremely limited (less than

100 samples), this procedure is modified slightly. In this case, the data are partitioned

into only two sets (training and testing), and leave-one-out tuning experiments are

conducted. ‘In these experiments, the training and tuning sets are identical. When

evaluating the EC cost function, each sample is temporarily removed from the training

set and evaluated as a tuning set of Size one. The cost function is then computed
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based on the average classification accuracy over all the training samples. After EC

Optimization Of the feature weights and k-value, the error rate of the resulting classifier

is estimated using the testing set, exactly as in the hold-out tuning experiments.

Again, 5 independent EC runs are performed for each Of 10 partitionings Of the data,

and the error estimates are averaged over all 50 experiments.

This method was simplified for the artificially generated data sets, Since the num-

ber of potential independent samples is infinite for this data. Here, experiments were

conducted for each classifier using large, independent training, tuning, and testing

sets (1000 samples each). For GA and EP experiments, 5 independent experiments

were conducted and the accuracy for the best result is reported.

Bootstrap Testing

For other data sets, including the appendicitis, thyroid, and protein—water binding

data, a variant of the bootstrap test method (Jain et al., 1987; Efron, 1979, 1982) is

employed in order tO Obtain both an error rate estimate and a simple measure Of the

variance of this estimate. Traditional bootstrap measures require that a classifier be

retrained and tested on a number Of bootstrap testing sets selected with replacement

from the available data (Jain et al., 1987). Since the training of the hybrid EC/knn

classifier is an iterative, computationally-intensive, Offiine process, a modified boot-

strap method was employed to obtain an error estimate for the trained and tuned

hybrid classifier.

AS with the previously described methods, the available data are partitioned into
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three sets, training, tuning, and testing. Within each Of these sets, the number Of

samples Of each class is equal. The training and tuning sets are used during each EC

experiment in the same manner described above: the training set is used to pOpulate

the knn feature space, while the tuning set is used to evaluate a particular set Of

feature weights and k-value in terms of classification error, providing feedback tO the

EC Optimizer. Once the feature weights and k-value are optimized, the testing set

is randomly sampled with replacement tO form n bootstrap test sets. The accuracy

of the classifier (or any other performance measure to be estimated) is evaluated on

each of these bootstrap test sets using the final weight set and k value produced by

the EC experiment. Finally, the mean and standard deviation of the error rates for

all n external test sets are computed and used as an estimator of the true error rate

for the optimized classifier.

During the bootstrap tests, the same data set is used for training the knn classifier

as during the EC experiment. Since the feature weights, k value, and training data

cOOperatively define the decision boundary for the final classifier, it would place an

undue negative bias on the error rate estimation procedure to test the final classifier

using a knn training set other than the one used during the EC experiment that

produced that classifier. Figure 3.6 Shows a schematic of the data sets used for

training, tuning, and testing during a single EC experiment using the bootstrap-

based testing method.
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Figure 3.6: Division Of training, testing, and tuning data during a single EC experi-

ment (a), and error rate estimation of the tuned classifier (b). The cost score in (a)

is based on the performance Of the knn on the tuning set for a particular weight set

and k value. The same knn training data is used for the entire EC experiment and

during external testing.
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3.2 Results

3.2.1 Classification of Artificial Data Sets

Independent Gaussian Features

Three of the artificially generated data sets were constructed entirely Of features

drawn from independent Gaussian distributions, 010,1, 610,2, and G5. The set (310,1

is linearly separable, and a naive Bayes classifier is able to achieve 100% prediction

accuracy using all 10 features. The set G103 is not as easily classified, but like G'10,1,

the features are all drawn from identical independent distributions, so there is no

feature weighting that can Obtain better performance than that Of the unweighted

classifiers. Like 010,1 and 610,2, the data set G5 is not difficult to classify—a naive

Bayes classifier can discriminate between the two classes with ~ 96% accuracy—

but the features are not drawn from identical distributions, so feature weighting

can potentially have a positive effect on classification accuracy. For these data, the

primary goal is to reduce the number Of features used, while reducing classification

accuracy as little as possible. For comparison, a naive Bayes classifier was trained

and tested on each data set, as well as a knn classifier using Odd values for h from

1 to 100. AS described in Section 3.1.6, 5 independent experiments were conducted

for each EC-based method, and the best It value and weight set were then tested on

independent data. These results are summarized in Table 3.4.

The results for 010,1 and G103 verify the ability Of the GA and the EP to perform

feature selection. Since all the features in these two data sets are drawn from identical
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Table 3.4: Apparent accuracy and bootstrap accuracy rates for the Bayes classifier,

the knn classifier, and the EC/knn hybrid classifiers for artificially generated data sets

consisting Of independent, Gaussian distributed features. For the Bayes classifier,

accuracy is shown for re-classifying the training data (Train), and for classifying

the independent testing data (Test). For the knn classifier, experiments were run

using Odd values Of k ranging from 3 to 101 using the same independent training

and tuning set for all experiments. The best accuracy on the tuning set (Tune)

and the corresponding k value are reported. The best It value was then evaluated by

reclassifying the training data Chain), and by classifying a new, independent test set

(Test). For the EC/knn hybrid classifiers, five EC experiments were conducted using

the same data sets but differing initial random starting conditions, and the best result

is reported. The I: value for the best result, the accuracy on reclassification Of the knn

training data ('Ih'ain), the accuracy when reclassifying the EC tuning data (Time),

and the accuracy when classifying an independent test set (Test) are provided along

with the number Of non-zero feature weights (Features).

(310,1 k 'Ii'ain Tune Test Features
 

 

 

Bayes -— 100 — 100 10

Knn 3 100 100 100 10

GA/knn 3 98.9 100 99.4 4

EP/knn 3 100 100 100 4

G103 k 'ITain Tune Test Features

Bayes — 92.9 —— 91.5 10

Knn 67 94.1 94.2 93.3 10

GA/knn 25 94.2 94.8 93.1 10

EP/knn 19 94.6 93.8 93.1 10

G5 k 'Ih'ain Tune Test Features

Bayes — 96.0 — 95.6 5

Knn 79 95.8 97.7 96.5 5

GA/knn 33 94.7 97.2 95.7 3

EP/knn 35 95.8 97.2 96.2 3
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distributions, the feature weights produced by the hybrid classifiers are valueless. For

010,1, the class conditional distributions of feature values are well enough separated

that 6 Of the 10 features can be removed without a Significant adverse effect on

classification accuracy. For G103, the EC Optimizers were unable to remove any

features while maintaining maximal classification performance. Results for G5 are

slightly more interesting. Since the distributions for the two classes have different

degrees Of overlap for each feature, the quality of the feature weighting provided by

the EC optimizers should have a bearing on the classification accuracy. For this

data, both the GA and the EC were able to remove 2 of 5 features while maintaining

classification accuracies near to that Of the knn using all 5 features. In all cases,

the EP/knn was able to Obtain slightly better overall accuracy than the GA/knn,

probably due to the EP’S ability to fine tune the final feature weights during the later

phases of the Optimization run.

Mixed Multivariate Data

Several of the artificially-constructed data sets contained a mixture of Gaussian and

uniformly distributed random feature values. As described in Section 3.1.5, M6 con-

sists of Gaussian deviates, discrete uniform random values, and continuous uniform

random values. This data set provides a test Of the hybrid classifiers’ ability to main-

tain recognition accuracy through feature weighting while reducing the number of

features to consider. The set N5 consists of five features with increasing levels of

random noise, and is designed to test the feature selection capability of the two EC
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methods, and the effect Of feature selection on classification accuracy. The test meth-

ods for these data sets were identical tO those described for the previous artificially

constructed data sets. The results are summarized in Table 3.5.

 

Table 3.5: Apparent accuracy and bootstrap accuracy rates for the Bayes classifier,

the knn classifier, and the EC/knn hybrid classifiers for artificially generated data sets

consisting of features with a mixture Of random distributions. For the Bayes classifier,

accuracy is shown for re—classifying the training data (Train), and for classifying the

independent testing data (Test). For the knn classifier, experiments were run using

Odd values of k ranging from 3 to 101 using the same independent training and

tuning set for all experiments. The best accuracy on the tuning set (Tune) and

the corresponding k value are reported. The best I: value was then evaluated by

reclassifying the training data ('Ih'ain), and by classifying a new, independent test

set (Test). For the EC/knn hybrid classifiers, five EC experiments were conducted

using the same data sets but differing initial random starting conditions, and the best

result is reported. The I: value for the best result, the accuracy on reclassification

of the knn training data (Train), the accuracy when reclassifying the EC tuning

data (Time), and the accuracy when classifying an independent test set (Test) are

provided along with the number of non-zero feature weights (Features).

 

 

M3 k 'D'ain Tune Test Features

Bayes —— 89.5 — 87.7 6

Knn 29 91.6 92.4 91.2 6

GA/knn 19 92.4 93.6 90.8 5

EP/knn 25 90.8 92.2 89.0 4

N5 k Thain Tune Test Features

Bayes — 94.4 — 81.6 5

Knn 9 86.5 86.8 82.8

GA/knn 11 85.1 86.2 80.9

EP/knn 7 85.6 85.8 79.3 A
B
C
”

 

Again, the hybrid methods were able to reduce the feature set size by one or more

features with a minimal reduction in classification accuracy for these data sets. For all

data sets discussed thus far, the EP and GA classifiers have produced similar values
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for I: (having a difference Of 6 or less).

3.2.2 Classification Of Data from the UCI Repository

Four data sets—Pima, wine, ionosphere, and hepatitis—were selected for com-

parison with the GADistAI iterative feature selection and construction method of

Yang and Honavar (1998). As described previously, the testing and error rate esti-

mation for these data sets were performed in a manner Similar to that Of Yang and

Honavar to facilitate direct comparison. Classification and feature selection results

for this data, averaged over 50 EC/knn experiments, are summarized in Table 3.6.

Unfortunately, the error rates reported for GADistAI were Obtained using the same

data set used by the GA to tune feature subsets and weights. This is essentially

equivalent to the “Train/Tune” accuracy provided in Table 3.6 for the EC-hybrid

classifiers. Since no external or bootstrap testing was done, it remains to be seen how

the GADistAI algorithm generalizes to new data, and no comparison to the “Test”

accuracy Obtained by the EC/knn hybrid classifiers can be made.

In all four data sets the bootstrap test accuracy of the EC-hybrid classifiers are

comparable to the best accuracy achieved by any classifier. For wine and pima,

the best test results were, in fact, Obtained by the EC/knn hybrids. Additionally,

both hybrid classifiers were able to achieve a significant reduction in the number Of

features considered for all four data sets. The GA/knn hybrid classifier used the lowest

mean number of features in classification of all the feature selection and classification

methods presented. For the four data sets examined here, the GA/knn consistently

63



 

 

Table 3.6: Results Of the hybrid EC/knn classifiers and the GADistAI algorithm on

various data sets from the UCI Machine Learning data set repository, averaged over

50 runs. 'Irain/Tune refers to the accuracy Obtained when reclassifying the data

used by the EC in tuning (Optimizing) feature subsets and weights. Test refers to the

accuracy obtained on an independent test set for each experiment, disjoint from the

training and tuning sets. Features is the number Of features with nonzero weights in

the best performing weight set for each run; the mean value over all 50 runs is shown.

Hepatitis 'lh'ain/Tune Test Features
 

 

 

 

Bayes 85.3 65.7 19

Knn 87.1 73.4 19

GADistAI 97.1 — 9.2

GA/knn 86.0 69.6 8.1

EP/knn 87.2 73.1 8.9

Wine Train/Tune Test Features

Bayes 98.8 94.7 13

Knn 94.9 94.3 13

GADistAI 99.4 — 6.7

GA/knn 99.7 94.8 6.0

EP/knn 99.5 93.2 6.2

Ionosphere Train/Tune Test Features

Bayes 93.0 90.1 34

Knn 83.4 93.2 34

GADistAI 98.6 — 17.3

GA/knn 95.0 91.9 8.5

EP/knn 93.2 92.3 13.5

Pima Thain/Tune Test Features

Bayes 76.1 64.6 8

Knn 73.5 71.5 8

GADistAI 79.5 -— 3.8

GA/knn 80.0 72.1 3.1

EP/knn 79.1 72.9 3.9
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reduced the number Of features considered tO roughly one-half the original number Of

features.

Another important factor to consider when comparing the results Of the EC/knn

hybrid classifiers to classical methods and other feature selection and classification

techniques is the balance between the prediction accuracies among the various classes.

That is, depending on the class distribution Of the training data, some classifiers

can perform very well on some classes at the expense of others. The cost function

that drives the optimization process for the EC/knn hybrid classifiers penalizes for

disparity in the prediction accuracies among classes. In some cases, this will cause

the EC to reject weight sets that lead to higher overall prediction accuracy in favor

Of those that lead to a better balance in prediction accuracy among classes. Table 3.7

summarizes the balance in predictive accuracy, as defined in Section 3.1.2, Of the

various classifiers on the four UCI data sets. The EC/knn hybrid classifiers Obtained

the best balance in all cases when reclassifying the GA tuning data. For the Hepatitis

and Pima data sets, the GA/knn classifier was able to achieve significantly better

balance than the traditional classifiers. The drop in balance between the tuning

data and the bootstrap testing data for the Wine data set may indicate that some

overfitting Of the tuning data has occurred. NO information regarding balance in

predictive accuracy was provided for GADistAI.
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Table 3.7: Balance in predictive accuracy among classes for various classifiers. The

maximum accuracy, (Max), and the minimum accuracy, (Min), among the various

classes are Shown for each classifier, along with the difference between the two values

(Bal). Lower values for Bal, indicating a smaller difference between the minimum and

maximum predictive accuracies, are preferred. Train/Test results refer to accuracies

for reclassifying the training data for the Bayes and Knn classifier, and for reclassifying

the EC tuning data set for the GA/knn and EP/knn classifiers. Test refers to the

accuracy when classifying an independent test set. The knn classifier was tested for

Odd values of h from 1 to 101, and the best results are shown.

 

  

 

  

 

 
 

Thain/Tune Test

Hepatitis Min Max Bal Min Max Bal

KNN 34.5 97.6 63.1 30.8 95.7 64.8

Bayes 17.5 98.8 81.3 6.7 96.5 89.9

GA/knn 67.3 89.7 22.5 45.4 82.2 36.8

EP/knn 81.9 88.3 6.4 48.7 85.9 37.2

Train/Thine Test

Pima Min Max Bal Min Max Bal

KNN 68.5 78.4 9.9 62.8 73.4 10.6

Bayes 68.1 84.1 16.0 62.0 75.7 13.7

GA/knn 79.8 80.1 0.3 72.1 72.4 0.3

EP/knn 78.9 79.3 0.4 72.5 74.6 2.2

Thain/Tune Test

Ionosphere Min Max Bal Min Max Bal

KNN 68.8 97.9 29.1 72.3 97.5 25.2

Bayes 92.4 93.6 1.2 88.6 96.9 8.3

GA/knn 94.6 95.4 0.8 80.7 94.2 13.5

EP/knn 91.5 94.9 3.4 83.6 94.1 10.5

Train/Tune Test

Wine Min Max Bal Min Max Bal

KNN 84.8 100.0 15.3 89.4 100.0 10.6

Bayes 97.8 98.8 1.0 93.2 94.8 1.7

GA/knn 99.3 100.0 0.7 90.6 99.4 8.8

EP/knn 99.1 99.8 0.7 88.3 98.6 10.4  
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3.2.3 Classification Of Medical Data

The thyroid and appendicitis data sets were selected for comparison with a broader

study encompassing several traditional classification methods (Weiss and Kapouleas,

1989, 1990), including the linear and quadratic discriminant functions, the 1-nearest

neighbor classifier, a neural network classifier trained using the backprOpagation

method, the CART tree classifier (Breiman et al., 1984), the naive Bayes classifier,

and a 2nd order Bayes classifier. Error rates for these data sets were evaluated using

the bootstrap testing method described in Section 3.1.6. Five independent experi-

ments were conducted, and the best weight set and to value for each experiment were

subjected to 100 bootstrap tests. Weiss and Kapouleas report two accuracy estimates

for each classifier. The first, training accuracy, is the accuracy Obtained when reclas-

sifying the training samples. Since training Of the EC/knn hybrid classifiers is a two

step process, Weiss’ training accuracy is best compared to the accuracy obtained by

the hybrid classifier when reclassifying the tuning set. Weiss also reports a less biased

estimate Of accuracy based on an independent testing set, this measure is best com-

pared to the bootstrap accuracy Obtained by the hybrid classifiers. Tables 3.8 and

3.9 compare the results reported by Weiss and Kapouleas with those of the GA/knn

hybrid classifier on the thyroid and appendicitis data sets, respectively.

Comparison with SFFS

The sequential floating forward selection (SFFS) algorithm of Pudil et al. (1994) has

been shown to be a powerful technique for feature subset selection (Jain and Zongker,
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Table 3.8: Results Of various classifiers on hypothyroid data, as reported by Weiss,

in comparison with that Of the EC/knn hybrid classifiers. Train/tune refers to the

accuracy Obtained when reclassifying the training data, in the case Of Weiss’ results,

or the tuning data, in the case Of the EC/knn hybrid classifiers. Testing refers to

the accuracy Obtained on an independent test set for Weiss, and to the bootstrap

accuracy estimate for the hybrid classifiers.

 

Method Accuracy Accuracy

(train/tune) (testing)

GA/knn 98.5% 98.4%

Linear Discriminant 93.8% 93.8%

Quadratic Discriminant 89.7% 88.4%

Nearest Neighbor 100% 95.3%

Bayes (independent) 97.1% 96.1%

Bayes (2nd order) 97.7% 92.4%

Neural Net (Back prop) 99.5% 98.5%

Predictive Value Max. 99.8% 99.3%

CART Tree 99.8% 99.4%

 

 

Table 3.9: Results Of various classifiers on the appendicitis data, as reported by Weiss,

in comparison with that Of the EC/knn hybrid classifiers. As in the previous table,

rain/tune refers to the accuracy Obtained when reclassifying the training data, in the

case Of Weiss’ results, or the tuning data, in the case Of the EC/knn hybrid classifiers.

Testing again refers to the accuracy Obtained on an independent test set for Weiss,

and to the bootstrap accuracy estimate for the hybrid classifiers.

 

Method Accuracy Accuracy

(train/tune) (testing)

GA/knn 90.4% 90.6%

Linear Discriminant 88.7% 86.8%

Quadratic Discriminant 79.3% 73.6%

Nearest Neighbor 100% 82.1%

Bayes (independent) 88.7% 83.0%

Bayes (2nd order) 95.3% 81.1%

Neural Net (Back prop) 90.0% 85.8%

Predictive Value Max. 91.5% 89.6%

CART Thee 90.0% 84.9%
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1997). For comparison with the EC feature selection and extraction methods, SFFS

was tested in conjunction with a knn classifier using Odd values Of k between 1 and 101

for the two medical data sets. For the thyroid data, the sequential floating forward

selection method achieved good classification results. The best accuracy Obtained

by the SFFS/knn algorithm during feature selection was 97.99%, using 6 of the 21

available features. A mean bootstrap accuracy of 98.06%, with a standard deviation

Of 0.6032%, was Obtained over 100 bootstrap tests on this feature set. This accuracy is

similar to those Obtained by the various methods reported by Weiss. The GA feature

extractor combined with a knn classifier Obtained a similar accuracy, 98.48%, using

only 3 Of the available 21 features, and a k-value Of 87. 100 bootstrap tests for this

set Of feature weights yielded a mean bootstrap accuracy Of 98.40%, with a standard

deviation Of 0.6256%.

For the appendicitis data, the best result was Obtained for k = 7. The best

predictive accuracy during selection was 88.46% using 3 of the 7 available features.

Bootstrap testing for 100 trials using the best feature set found by SFFS yielded a

mean predictive accuracy Of 91.44% with a standard deviation Of 3.94%. The GA

feature extractor achieved a slightly higher accuracy than SFFS during extraction:

90.38% using 2 Of 7 weighted features and k = 7. In bootstrap testing, however, the

mean bootstrap accuracy over 100 trials proved to be similar to that Of SFFS—90.60%

with a standard deviation Of 4.21%.
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3.2.4 Classification Of Protein Solvation Sites

The most extensive set Of experiments was conducted on a sizeable set Of biochemical

data. These data, comprising the physical and chemical environments Of 5542 protein—

bound water molecules, were examined in light of two distinct Objectives. The first

goal of these experiments was tO Obtain good pattern recognition performance on

various classes Of water molecules, while the second Objective was to identify the

Specific features which were consistently associated with membership in each class.

The methods and results for these experiments are discussed in detail in Chapter 5—

Identifying the Determinants Of Solvent Binding in Proteins.

3.3 Discussion

In all of the data sets examined, the EC/knn hybrid classifiers exhibited an ability to

reduce the number Of features considered by the classifier significantly, while main-

taining or Slightly improving predictive accuracy, as compared to a non-weighted knn

classifier using all available features. The overall predictive accuracy of the EC/knn

classifiers was comparable to those of the best classifier tested for each data set ex-

amined, and in many cases the best accuracy was achieved by one of the EC/knn

hybrids.

In terms of feature selection, the EC feature selection and extraction techniques

equaled or exceeded the ability of other methods examined to reduce the number Of

features considered by the classifier, while maintaining Similar or improved classifica-
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tion accuracy. For the medical data sets, the EC methods were able to meet or exceed

the accuracy Obtained using a knn classifier in conjunction with SFFS (Pudil et al.,

1994), which is generally considered the most effective of the commonly-used feature

selection methods (Jain and Zongker, 1997), while further reducing the number of

features considered.

In addition, the parameterized nature Of the cost function which drives EC Opti-

mization allows the EC methods the ability to consider factors other than the apparent

error rate in tuning the feature set and weights. One such factor is the balance in pre-

dictive accuracy among classes. On many data sets where the classical methods result

in strong disparity Of predictive accuracy among classes, the EC-hybrid methods are

able to Obtain better balance while maintaining overall accuracy.
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Chapter 4

Variations on the Bayes Classifier using

Evolutionary Computation-Based

Learning

4.1 Methods

4.1.1 Bayesian Discriminant Functions

The Bayesian classifier has a computational advantage over the knn classifier in that

the training data are summarized, rather than stored. The comparison of each test

sample with every known training sample to find nearest neighbors during knn clas-

sification is a computationally expensive process, even when efficient search methods

are employed (Fukunaga and Narendra, 1975). In contrast, finding the marginal prob-

ability associated with a particular feature value is computationally efficient for both
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the parametric and nonparametric forms Of the Bayesian classifier. Since EC-based

hybrid classifiers require many classifications to be performed during feature selec-

tion and extraction,’ the use Of a computationally efficient classifier such as a Bayes

classifier is expedient.

Unfortunately, the direct application of the Bayes classifier to the problem is not

effective, because the Bayes decision rule is invariant to linear scaling of the feature

space. In other words, multiplying the feature values for a given feature by a constant

has no effect on the class-conditional probabilities considered by the classifier, as

illustrated in Figure 4.1. Direct scaling Of the marginal probabilities is also ineffective

for the naive Bayes classifier, Since the joint class-conditional probabilities are simply

the products Of the marginal probability values.

There are, nevertheless, several aspects Of the Bayesian classifier that, when Op-

timized, can yield better classification performance. One such area is is the manner

in which the marginal probabilities for each feature will be combined into the multi-

variate class-conditional probability densities. AS noted previously (see Section 2.1.2,

the most common approach is to assume that all features are independent. For the

resulting naive Bayes classifier, the class-conditional probability is the product of

the marginal probabilities for each feature. A more general approach would be to

encode the entire d x d covariance matrix describing the interrelationships between

 

1The actual number of classifications to be performed is typically 0(npt) where

n is the number Of generations for the EC experiment, p is the number Of individual

solutions in the EC population, and t is the number Of samples in the EC tuning set.

If all-neighbors search is conducted for each classification, the number of distance

comparisons is 0(npts), where s is the number Of samples in the knn training set.
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Figure 4.1: The Bayes decision rule is invariant to linear transformations Of the feature

space. For the feature shown here, the raw feature values (a) have been multiplied

by 10 in (b). Using a nonparametric Bayes classifier, we find that the original feature

value falls in the bin 14-16 (black rectangle) in the original histogram. The scaled

feature falls in the equivalent bin Of histogram b, and the histogram values (marginal

probabilities) of the two bins are identical, so the scaling has no bearing on the

classification results.
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all the features being considered, and allow an EC-based Optimizer to search for the

covariance matrix which best describes the true multivariate distribution of the train-

ing data. Unfortunately, the search space involved in finding this covariance matrix

grows as 2d2, even if the elements Of the covariance matrix are binary-valued. For real

valued matrix elements, the search Space quickly becomes intractable, even for small

problems.

We can simplify the problem somewhat by looking at the Bayesian classifier as a

discriminant function. As outlined in Section 2.1.2, the Bayes decision rule can be

written as follows:

given :75, decide u),- if

P(w.-lf) >P(wj|5:') to (4.1)

This rule can be rewritten as a discriminant function—a function g Of the feature

vector 53'. Consider, by way Of example, a two-class decision problem. The Bayes

discriminant function can be written as:

9(5) = lellf) - P(w2|f) (4-2)

Here, we would decide class 1 if 9(5) > 0, and class 2 if 9(5) < 0. The classification

when g(:i:') = 0 is arbitrary. The discriminant function, then, is uniquely associated

with a particular classifier, mapping an input feature vector to a value associated

with a particular class. According to Duda and Hart:
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We can always multiply the discriminant functions by a positive constant

or bias them by an additive constant without influencing the decision.

More generally, if we replace every g,(x) by f (g,(x)), where f is a monoton-

ically increasing function, the resulting classification is unchanged. (Duda

and Hart, 1973, pp. 17—18).

Thus, we can design a parameterized classifier based on the concept of the discrim-

inant function. We begin with a discriminant function based on the Bayes decision

rule. Using this function as a model, we can design similar functions which clas-

sify well, but are more easily parameterizable for hybridization with EC Optimization

methods. After designng such a discriminant function and identifying the tunable pa-

rameters, we can use an EC to Optimize these parameters with regard to a particular

set Of training and tuning data.

Two distinct techniques were designed and tested using this method. The first is

a simple nonlinear weighting of the Bayes discriminant function, while the second is a

novel discriminant function based on the summation of the class-conditional marginal

probabilities.
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4.1.2 Nonlinear Weighting Of the Bayes Discriminant Func-

tion

Consider the Bayes discriminant function,

9(53') = P(w1lf)-P(w2|5)

= P(a':'|w1) X P(LJ1) — P(f'UJ2) X P(W2) (43)

Z P(:i:'|w,~) X P(w,-)

i=1

 

The denominator can be eliminated, since it does not affect the Sign of 9(5), and thus

does not affect the resulting classification. Since a > b => log(a) > log(b), we can

apply the log function to the a posteriori probabilities without changing the resulting

classification. Thus, the following discriminant function is equivalent to the naive

Bayes discriminant:

9(5) = log(P(flw1) >< P(w1))-103(P(5I'lw2) >< P(w2)) (4-4)

= (log(P(flw1))+10s(P(w1)))

- (108(P(5='|w2)) + 103 WM)» (45)

where

108(P(i"lwt)) = log(P($1|w.-))+10g(P($2|w.-))+---+10g(P($alw.-)) (4-6)

Finally, we can parameterize this discriminant function, while maintaining a similar

level of classification accuracy, by adding coefficients to each Of the marginal proba-
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bilities.

P‘(n‘c‘|w,-) = Cllog(P(a:1|w,-))+Czlog(P(a:2|w,-))+...

+ Cd log (P(zd|w,-)) + log (P(w,~)) (4.7)

The values for the coefficients, Chd, are supplied by an EC Optimizer. The effect

Of these coefficients is to apply a nonlinear weighting to each of the marginal prob-

abilities, which are then combined to produce a confidence value, P‘, for each class.

While P‘(§:’|w,-) is no longer a joint probability distribution, the discriminant function

is equivalent to the naive Bayes discriminant function when 01 = Cg = = 0,; = 1.

Furthermore, the new function has several desirable features for hybridization with

an EC Optimizer. When a particular coefficient, Cj, is reduced to zero, the associated

feature value, xj, is effectively eliminated from consideration by the classifier. This

allows us to perform feature selection in conjunction with classifier tuning. Further-

more, when the value Of a coefficient, 01- is increased, the marginal probability value

for the associated feature, 3,, has an increased influence on the value Of the confidence

value, P*(:i:’|w,-), for each class.

GA Optimization Of the Nonlinear Discriminant Coefficients

The implementation for this discriminant function was based on the previously de-

scribed nonparametric naive Bayes classifier. The marginal probability distributions

for each feature were approximated using histograms with 20 bins each. Gaus-

sian smoothing was used to mitigate sampling anomalies, as described earlier, with
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a = 2.0. The GA cost function was identical to that described in section 3.1.2, with

the exception that there is no voting involved in classification using the discriminant

function classifier, SO there was no corresponding incorrectwotes term in the fitness

function. The coefficient values, except for Cvotesa were set identically to those shown

in Table 3.1.

The EC chromosome was also similar to that designed for the GA/knn hybrid

classifier, although there is no It value included. Each coefficient is represented as a

32-bit integer scaled by division to produce a real value over the range [0.0, 100.0].

Masking was used to aid feature selection, with 5 mask bits for each coefficient.

An example Of the EC chromosome for Optimization Of the nonlinear discriminant

coefficients is shown in Figure 4.2. CA and EP run parameters were set identically

to those used in the corresponding hybrid knn classifiers, as shown in Tables 3.2 and

3.3.

 

PIGIMI) = C1log(P(x1|wJ-))+C2log(P(x2|wj))

+ 00. + C4 log(P (x4le)) +log(P (wj))

 

 

  
W1 W2W3II’4MIM2M3M4

       

Figure 4.2: An example Of the EC chromosome for Optimization of the nonlinear

discriminant coefficients. A four-dimensional problem is shown. Each coefficient, Cg,

in the discriminant function is determined by the chromosome weight, W,, and the

masking field, Mi.
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4.1.3 A New Discriminant Function Based on Summation Of

the Class-Conditional Marginal Probabilities

In the process Of developing the nonlinear discriminant function, several alternatives,

also derived from the Bayes discriminant function, were formulated. Of these al-

ternatives, a discriminant function based on a linear combination Of the marginal

probability values showed initial promise in combination with EC coefficient opti-

mization. As with the nonlinear discriminant, this sum-based discriminant function

assigns a confidence value, P“(:ii|w,-), to each class, 02,. In this case, however, the value

of P“ is simply a weighted sum Of the marginal probabilities for each feature value.

That is,

P”(:I:'|w,~) = 01P(.’131 I02.) + CgP(a:2|w,-) + + CdP(a'd|w,-) (4.8)

Again, the marginal probabilities, P(:r1|w,)...P(:rd|w,-), were estimated using a

histogram consisting Of 20 bins. Gaussian smoothing was also employed with o =

2.0. Additionally, the representation of the coefficients on the chromosome, EC cost

function, and EC parameter settings were identical to those detailed above for the

Bayes-derived nonlinear discriminant function.

4.2 Results

A GA was employed to optimize the parameters Of each Of the discriminant function

based classifiers. The two resulting hybrid classifiers were then tested on the same
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artificial and real-world data sets as the EC/knn hybrid classifiers, under identical

training and testing conditions. Based on the Similarity Of the results for the GA

and the EP Optimizers when hybridized with a weighted knn classifier, only the GA

Optimizer was tested in conjunction with the discriminant function classifiers.

4.2.1 Artificial Data Sets

Results of the two parameterized discriminant function classifiers on data sets con-

sisting of independent, Gaussian-distributed features are summarized in Table 4.1.

Performance on these Simple data sets is similar to that of the EC/knn hybrid classi-

fiers, but the computation time is significantly less since all-pairs neighbor searching

is no longer required. The nonlinear discriminant function seems to Show slightly

better feature selection performance than the other classifiers, as it is the only clas-

sifier to reduce the feature set for 010,1 down to 3 features, and G103 down to 9

features. There is, however, a performance penalty associated with this reduction in

features—the EC/knn hybrid classifiers Obtained better accuracy than the nonlinear

discriminant on both Of these data sets. When the number Of features used is equal,

as in the G5 data set, the performance of the nonlinear discriminant is similar to that

Of the EC/knn hybrid classifiers.

Table 4.2 summarizes the results for data sets consisting Of feature values drawn

from a mixture Of uniform random and Gaussian distributions. These experiments

were conducted identically to the previous set, and the results were similar. The

nonlinear discriminant function outperformed all other classifiers for the data set
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Table 4.1: Performance Of the nonlinear discriminant function (Nonlinear) and the

summation-based discriminant function (Sum) on artificially-generated data sets con-

sisting of feature values drawn from independent Gaussian distributions. For both

discriminant functions, five GA experiments were conducted using the same data

sets but differing initial random starting conditions, and the best result is reported.

The accuracy on reclassification of the training data ('Ii'ain), the accuracy when

reclassifying the GA tuning data (Tune), and the accuracy when classifying an in-

dependent test set (Test) are provided along with the number of non-zero feature

weights (Features). The results for the naive Bayes classifier (Bayes), and the two

EC/knn hybrid classifiers are reproduced here from Table 3.4 for comparison.

 

 

 

G10,1 'Ii'ain Tune Test Features

Bayes 100 — 100 10

Nonlinear 99.0 99.6 99.1 3

Sum 99.1 99.6 98.9 4

GA/knn 98.9 100 99.4 4

EP/knn 100 100 100 4

G10; 'Ih'ain Tune Test Features

Bayes 92.9 —— 91.5 10

Nonlinear 91.3 92.5 89.9 9

Sum 88.6 90.2 87.7 10

GA/knn 94.2 94.8 93.1 10

EP/knn 94.6 93.8 93.1 10

G5 Train Tune Test Features

Bayes 96.0 — 95.6 5

Nonlinear 94.8 96.2 95.1 3

Sum 91.5 94.7 93.3 3

GA/knn 94.7 97.2 95.7 3

EP/knn 95.8 97.2 96.2 3
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N5, but was outperformed by the EC/knn hybrids for M6. The summation-based

discriminant function found a unique solution for the N5 data set. Although the

accuracy for this solution was considerably lower than that Of the other classifiers,

the data set was classified using only a single feature.

 

Table 4.2: Performance Of the nonlinear discriminant function (Nonlinear) and the

summation-based discriminant function (Sum) on artificially-generated data sets con-

sisting of features with a mixture Of random distributions. For both discriminant

functions, five GA experiments were conducted using the same data sets but differing

initial random starting conditions, and the best result is reported. The accuracy on

reclassification Of the training data (Train), the accuracy when reclassifying the GA

tuning data (Tune), and the accuracy when classifying an independent test set (Test)

are provided along with the number Of non-zero feature weights (Features). The re-

sults for the naive Bayes classifier (Bayes), and the two EC/knn hybrid classifiers

are reproduced here from Table 3.5 for comparison.

 

 

M3 Train Tune Test Features

Bayes 89.5 — 87.7 6

Nonlinear 89.2 89.0 88.1 5

Sum 88.2 88.1 87.6 6

GA/knn 92.4 93.6 90.8 5

EP/knn 90.8 92.2 89.0 4

N5 'Ihain Tune Test Features

Bayes 94.4 — 81.6 5

Nonlinear 81.4 83.7 81.5 4

Sum 69.1 71.0 66.5 1

GA/knn 85.1 86.2 80.9 4

EP/knn 85.6 85.8 79.3 4

 

Once again, the balance in predictive accuracy among classes is an important

factor to consider when comparing the results of the various EC—hybrid classifiers with

that of the Bayes classifier. Since the EC cost function is biased to favor solutions

with good balance in accuracy between classes, it will prefer such solutions tO those
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with disparity among the classes, possibly at the cost Of overall prediction accuracy.

Table 4.3 summarizes the predictive balance Obtained by the various classifiers for

the M6 and N5 data sets. All the EC-hybrid methods except the EP/knn classifier

outperform the naive Bayes classifier in terms Of class balance.

 

Table 4.3: Balance in predictive accuracy among classes for the various EC/hybrid

classifiers on the data sets M6 and N5. Predictive accuracy on the independent test

set is shown for each class. Balance is defined as the difference in predictive accuracy

between class 1 and class 2, as described in Section 3.1.2.

 

 

M5 Class 1 Class 2 Overall Balance

Bayes 91.80 84.40 88.10 7.4

Nonlinear 89.40 85.80 87.60 3.6

Sum 93.20 88.40 90.80 4.8

GA/knn 92.00 86.00 89.00 6.0

EP/knn 93.00 82.40 87.70 10.6

N5 Class 1 Class 2 Overall Balance

Bayes 76.60 86.40 81.50 9.8

Nonlinear 62.20 70.80 66.50 8.6

Sum 79.20 82.40 80.80 3.2

GA/knn 78.60 80.00 79.30 1.4

EP/knn 72.20 91.00 81.60 18.8

 

4.2.2 Classification Of the UCI Data Sets

Classification Of real-world data from the UCI machine learning data set repository

not only allows a more realistic assessment Of the performance Of the various classi-

fiers on data with erroneous and missing feature values, but also allows the classifiers

to be tested on data sets with larger numbers Of features than the artificially con-

structed data sets described above. Table 4.4 compares the classification and feature
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selection performance Of the two discriminant-function-based classifiers with that Of

the EC/knn hybrid classifiers and the naive Bayes classifier.

The most evident aspect Of the results on these four data sets is the feature

selection capability demonstrated by the nonlinear discriminant function. For three

of the four data sets, the minimum number Of features used in classification was found

by the nonlinear discriminant function in conjunction with the GA. Additionally,

for the hepatitis data, the test accuracy Obtained by the two discriminant function

classifiers surpassed the other classifiers tested. For the other three data sets the

accuracies Obtained by the discriminant methods were similar to those Obtained by

other methods tested. The notable difference between Tune and Test results for the

hepatitis and ionosphere data sets suggest that the discriminant classifiers may be

more prone to overfitting of the training and tuning data than the other classifiers.

Examination Of the run times for the UCI data sets illustrates the advantage

held by the discriminant-function-based classifiers over the EC/knn hybrid classifiers

in terms Of computational efficiency. Table 4.5 compares the execution times for

200 generations Of GA optimization in conjunction with the nonlinear discriminant

function and the knn classifier. In all cases the nonlinear discriminant classifier is

significantly faster than the GA/knn—in the case of the Pima Indian diabetes data

set the difference is nearly tenfold.
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Table 4.4: Results of the nonlinear-weighted discriminant function (Nonlinear) and

the discriminant function based on summation of the marginal probabilities (Sum)

on various data sets from the UCI Machine Learning data set repository, averaged

over 50 runs. 'I‘rain/Tune refers to the accuracy Obtained when reclassifying the

data used by the EC in tuning (Optimizing) feature subsets and weights. Test refers

to the accuracy Obtained on an independent test set for each experiment, disjoint

from the training and tuning sets. The number of features is the mean number of

features used in classification over all 50 runs. Performance for the EC/knn classifiers

is repeated here from Table 3.6 for comparison.

Hepatitis Train/Tune Test Features
 

 

 

 

Bayes 85.3 65.7 19

Nonlinear 95.4 79.4 6.5

Sum 91.4 79.4 8.2

GA/knn 86.0 69.6 8.1

EP/knn 87.2 73.1 8.9

Wine 'Ih'ain/Tune Test Features

Bayes 98.8 94.7 13

Nonlinear 97.8 91.3 4.5

Sum 99.0 92.3 7.6

GA/knn 99.7 94.8 6.0

EP/knn 99.5 93.2 6.2

Ionosphere 'ITain/Tune Test Features

Bayes 93.0 90.1 34

Nonlinear 97.6 87.5 8.5

Sum 93.8 84.2 11.2

GA/knn 95.0 91.9 8.5

EP/knn 93.2 92.3 13.5

Pima 'Irain/Tune Test Features

Bayes 76.1 64.6 8

Nonlinear 76.2 70.4 3.9

Sum 74.0 70.8 3.4

GA/knn 80.0 72.1 3.1

EP/knn 79.1 72.9 3.9
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Table 4.5: Execution times (wall clock time) for 200 generations Of GA Optimization

Of the knn and nonlinear discriminant function classifiers. For each data set, the

number Of features (d), the number of classes (C), the combined training and tuning

set size (n), and the mean execution time (hourszminuteszseconds) over 50 runs are

shown. Each run was executed on a Single 250MHz UltraSPARC-II cpu of a six-cpu

Sun Ultra-Enterprise system with 768 MB Of system RAM. Runs were executed in

sets Of 5 with no other user processes present on the system.

 

Data set d C n knn nonlinear

Pima 8 2 400 1:40:13 0:10:52

Hepatitis 19 2 240 1:05:48 0:24:42

Ionosphere 34 2 400 2:02:25 0:43:37

Wine 13 3 240 0:23:59 0:14:39

 

4.2.3 Classification Of Medical Data

For the thyroid and appendicitis data, the two discriminant function—based classi-

fiers were trained and tested in the same manner as the EC-hybrid classifiers (Sec-

tion 3.2.3). For each data set, five experiments were conducted for each classifier.

The appendicitis data set was re-partitioned into disjoint training/tuning and testing

sets for each experiment. The much larger thyroid data set was pre—partitioned into

training and testing sets in the UCI database (Quinlan et al., 1986). For this data,

only the initial random GA population was changed for each experiment. The results

of these experiments are summarized in Table 4.6.

Both the discriminant function based classifiers performed well on the hypothyroid

diagnosis data. The nonlinear classifier utilized a smaller feature set than the GA/knn

on this data, at a slight cost in bootstrap test accuracy. Both discriminant function

classifiers seem to exhibit overfitting of the tuning data for the appendicitis data set.
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Table 4.6: Accuracy Of various classifiers on the hypothyroid and appendicitis diag-

nosis data sets. Results for the discriminant function classifiers are averaged over five

GA experiments. Results for the GA/knn classifier represent the best Of five exper-

iments. 'D'ain/Tune refers to the accuracy Obtained in reclassifying the GA tuning

set; Test refers to bootstrap accuracy over 100 bootstrap sets.

 

 

Thyroid Train/Tune Test Features

GA/knn 98.5 98.4 3

Nonlinear 97.7 97.2 2.7

Sum 97.8 97.4 4.2

Appendicitis Train/Tune Test Features

GA/knn 90.4 90.6 2

Nonlinear 80.4 67.0 2.6

Sum 83.0 74.2 2.2

 

This behavior, along with the previous results for the hepatitis and ionosphere data

sets, suggests that the discriminant function classifiers may be prone to overfitting

when presented with small (< 50 samples Of each class) data sets for training, tuning,

and testing.

4.3 Discussion

A key advantage Of the discriminant function classifiers over the nearest neighbor

methods is the gain in computational efficiency Obtained by estimating the class-

conditional feature value distributions based on the training data, rather than stor-

ing every training sample and performing an all-pairs search for near neighbors for

each test sample. While the experiments here were all executed for a fixed number

of EC generations, it would be worthwhile to run several experiments constrained
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instead by wall-clock time. In this way, the efficiency advantage Of the discrimi-

nant function-based classifiers might be translated into further gains in classification

accuracy relative to the near-neighbor methods.

The nonlinear discriminant function classifier, in conjunction with the GA feature

extraction method, seems to exhibit the best feature selection capability Of all the

classifiers evaluated. In several cases, however, the additional reduction in the number

Of features, as compared to the GA/knn classifier, incurred a slight cost in terms of

classification accuracy.

The promise exhibited by the discriminant function-based classifiers suggests sev-

eral avenues for further investigation. One possible improvement would be to include

the prior probabilities for each class on the EC chromosome for Optimization. Intu-

itively, this might allow the hybrid classifier more ability to maintain more control

over the balance in predictive accuracy among classes, even when there is disparity

in the number Of training and tuning samples available for each class. Initial exper-

imentation in this area, however, suggested that inclusion Of the prior probabilities

on the chromosome can exacerbate the problem of overfitting the training and tuning

data, resulting in poor performance on independent test data.

Since the capabilities of the Bayes classifier have been well explored in the lit-

erature, an alternate approach would be to avoid direct modification Of the Bayes

discriminant function. Instead, the independence assumption Of the naive Bayes clas-

sifier might be abandoned, and the relationship among the various distributions of

feature values encoded on the EC chromosome as a covariance matrix, or some sub-
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set thereof. Essentially, this approach would allow the EC to estimate the covariance

matrix for each class based on both the training and tuning data provided. In con-

junction with the previously proposed technique Of including the a priori probabilities

for each class on the chromosome, all the parameters of a traditional Bayes classifier

might be Optimized by the EC for a particular data set and error cost function.
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Chapter 5

Identifying the Determinants Of Solvent

Binding in Proteins

5.1 Introduction

The most extensive application and testing of the various EC-based feature selection

and extraction methods described here has been performed in the field Of biochemistry.

The specific problem area investigated was that of evaluating and understanding

protein-water interactions. Understanding the nature of protein solvation (water

binding) is a Significant outstanding problem in structural biochemistry, and has been

the subject Of numerous studies, yielding a substantial body Of literature (Palma et al.,

1993; Westhof, 1993; Ladbury, 1995; Karplus and Faerman, 1994; Levitt and Park,

1 993). Elucidation of the nature Of protein-water interactions would be a Significant

Contribution to a broad range Of biochemical endeavors, including de novo drug design,

database screening for drug leads, ligand docking, understanding Of protein structure
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and function, and even the grand challenge “protein folding” problem.

5.1.1 An Overview of the Protein-Water Problem

Proteins are macromolecules consisting Of linear (non-branching) chains of amino

acids. The twenty common amino acids are joined covalently during protein syn-

thesis tO form the protein “main chain” or “backbone”. A particular protein can

be completely specified by the order of the different amino acids that form its main

chain. After synthesis, a protein will fold into a particular three-dimensional struc-

ture (Figure 5.1). Since this structure is generally a compact globule, folded, soluble

proteins are occasionally referred to as “globular” proteins. In the context of a living

organism, numerous water molecules will be bound, via hydrogen bonds, steric, and

other interactions, to the surface of the protein in its globular form.

 

 

Figure 5.1: A particular sequence of amino acids will consistently fold into the same

three-dimensional, “globular” structure. Each Of the 20 common amino acids is iden-

tifiGd by a one-letter code. The linear protein chain (left) folds into its globular

Structure (right) after synthesis. Water molecules, shown here as spheres, bind to the

SUPface Of the protein via hydrogen bonds.

\

While proteins have many functions in the context Of a living organism, most
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proteins bind to a specific molecule (or set of molecules) and perform some action

upon that molecule, such as transportation, cleavage, or catalysis of other chemical

reactions. The particular molecule that a protein binds in this manner is called the

ligand, and the area Where the ligand binds is referred tO as the protein’s active

site. Like the rest Of the protein surface, the residues in the active site will typically

bind water molecules. When a protein binds to a particular ligand, some of the

water molecules in the active site will be displaced by the ligand, while some will

remain in the area of the interface between the protein and the ligand. Those water

molecules that remain in the interface will Often form hydrogen bonds to both the

protein and the ligand, thus helping the protein to bind to the ligand by forming a

water-mediated “bridge” between the two molecules (Raymer et al., 1997; Poornima

and Dean, 1995c). One study Of 20 protein/ligand complexes found that the average

protein/ligand interface includes 10 water molecules and 17 water-mediated bridges

between the protein and ligand (A. Cayemberg & L. A. Kuhn, unpublished results).

In the process Of designing a ligand to bind to a particular active site, such as a

pharmaceutical drug, water molecules that are not displaced from the active site upon

ligand binding must be considered, as they form an essential part of the protein surface

(Poornima and Dean, 1995a). Unfortunately, during ligand design it is generally

unknown which water molecules will remain bound upon ligand binding, and which

Will be displaced. If the sites of interfacial water binding were known, this information

Collld be used to improve the chemical and shape complementarity of the ligand in

the design process.
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The primary goal in analyzing protein-water interactions is to isolate the determi-

nants of water binding—the physical and chemical features of a local protein environ-

ment that determine whether or not the site is conducive to water binding. In terms

of classification, it is desirable to categorize areas near a protein surface into one of

three classes: sites that are unlikely to bind water molecules, “weak” solvation sites

that bind water molecules but are not likely to be conserved during ligand binding,

and “strong” solvation sites that are likely to be conserved between the ligand-bound

and unbound forms of a protein (Ringe, 1995).

5.1.2 State of the Art in Predicting Protein Solvation

X-ray Crystallographic Data Collection

The input for most algorithms that predict protein solvation consists of the three-

dimensional structure of the protein, usually represented as the Cartesian coordi-

nates of each heavy (non-hydrogen) atom in the protein. This structure is generally

obtained via X-ray crystallography. In this process, a protein is first purified and

dissolved in an aqueous solvent. From this solution, microscopic crystals (with edges

on the order of tenths of millimeters) are grown. These crystals consist of roughly

equal amounts of the protein, arranged in a lattice, and interstitial water molecules.

The crystals are then suspended in small capillaries, and exposed to a beam of X-ray

radiation. The electrons in the protein crystal difl'ract the X-rays, and the diffrac-

tion pattern is captured in two dimensions by exposing X-ray sensitive film or an

electronic detector to the diffracted X-rays. The diffraction pattern on the exposed
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film can then be digitized and subjected to a Fourier transformation, resulting in a

three-dimensional map of the electron density in the crystal. This electron density

map is equivalent to a time-averaged and space-averaged1 snapshot of the locations

of the electrons in the protein crystal. From this information, the three-dimensional

structure of the protein can be deduced.

The result of an X-ray crystallographic experiment—often referred to as a crys-

tallographic structure—contains several other pieces of information along with the

coordinates of the atoms. Each atom is assigned a crystallographic temperature fac-

tor, or B-value, which provides a relative measure of the thermal mobility of the

atom. A related measurement, the occupancy of the atom, provides an estimate of

the percentage of time that a site is occupied by a given atom type over the experi-

ment time and throughout the various copies of the protein in the crystal. Generally,

the information used for training and testing in empirical solvent-site prediction al-

gorithms is calculated from the atomic coordinates, thermal mobility, and occupancy

data obtained via crystallography. Occasionally, raw electron density data is also con—

sidered. From the crystallographic coordinates, other physical and chemical features

of each protein atom can be calculated. Phrther details and examples are provided

in Section 5.2.3.

 

1The electron density map is space-averaged in the sense that the average electron

density over all the copies of the protein in the crystal is measured.
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Current Approaches to Solvent Site Prediction

Current algorithms for predicting the locations of bound water molecules can be di-

vided into two classes. Theoretical approaches, such as GRID (Wade et al., 1993), use

a potential energy function to evaluate the favorability of a probe site. For GRID, the

potential energy function includes terms for Lennard-Jones interactions, electrostatic

interactions, and a detailed evaluation of potential hydrogen bonds. For all theoreti-

cal approaches, the relative contribution of the terms in the potential energy function

must be determined before solvation sites can be predicted. In contrast, empirical

methods determine the favorability of a solvation site by analogy with known sites. A

site is evaluated and compared to a database of known solvation sites and non-solvated

sites, and predicted as being more similar to one than the other. A set of features to

observe and compare between solvation sites and non-solvated sites must be selected

prior to classification. Several empirical methods for prediction of protein-bound wa-

ter molecule locations have been developed. AQUARIUS2 (Pitt et al., 1993) uses

a knowledge base of the distributions of water molecules around polar atoms at the

protein surface. A “likelihood” value is assigned to a putative water molecule location

based on its geometric relationship to nearby polar protein atoms. If the site lies in a

region highly occupied by water molecules in the knowledge base and has significant

electron density, as determined by X-ray crystallography, it receives a higher score.

The highest scoring positions in a 3-dimensional matrix surrounding the protein are

selected as likely water molecule locations. AUTO-SOL (Vedani and Huhta, 1991)

predicts water sites based on the directionality of hydrogen bonds. A database of
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small-molecule crystal structures was analyzed to find the distribution of hydrogen-

bond lengths and directions, and possible solvent sites are evaluated by AUTO-SOL

according to how well their hydrogen-bond geometry matches this database. Cur-

rent methods can reproduce ~70% of crystallographically observed solvent molecules

within 1.5 A of the experimental locations (Vedani and Huhta, 1991). There remains,

however, a tendency for many current methods to produce false positives, predicting

solvation sites where none are observed in the crystal structure.

Both empirical and theoretical methods require the evaluation of a set of fea-

tures describing the environment of the site. Commonly-used features include hydro-

gen bond geometry, electrostatic interactions, local thermal mobility, protein surface

shape, solvent accessibility, and the packing geometry, atom type, and residue type

of neighboring protein atoms. Several studies have evaluated the correlation between

individual features and water binding. For instance, in a study of 56 high-resolution

crystallographic structures, a strong relationship was found between local surface

shape and water binding (Kuhn et al., 1992). Deep grooves in the solvent-accessible

surface bound three times as many water molecules as non-groove surface areas. Re-

sults obtained later also showed that deep surface grooves were the preferred sites for

tightly-bound water molecules, which were unlikely to be displaced by ligand binding

(Poornima and Dean, 1995b). Furthermore, conserved polar contacts between water

molecules and the protein were found to be associated with solvation-site conservation

(Poornima and Dean, 1995c).

As noted in previously, X-ray crystallographic assignment is an imperfect source of
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information for known water sites, resulting in both false-positive and false-negative

sites in any database based on crystallographic data. One method for identifying

reliable water molecule positions is to utilize solvation sites conserved in multiple

crystallographic structures. In a study of eighteen crystallographically independent

structures representing ten unique crystal forms of T4 lysozyme, it was found that

~79% of the 20 most frequently occupied sites were conserved in all structures when

allowing for potential steric interference induced by the crystal lattice (Zhang and

Matthews, 1994). A recent study of conserved solvation sites in thrombin, trypsin

and bovine pancreatic trypsin inhibitor (BPTI) found that 19% of unique water sites

in 10 superimposed thrombin structures were conserved in at least half of the struc-

tures, while 77% of the unique sites in three superimposed trypsin structures were

conserved in at least two of the three structures (Sanschagrin and Kuhn, 1998). In

perhaps the most extreme change in crystallization conditions, the structure of subtil-

isin Carlsberg was solved in an organic solvent, anhydrous acetonitrile, and compared

with the structure solved in an aqueous environment (Fitzpatrick et al., 1993). Of

the 119 bound water sites observed in the aqueous structure, 99 were conserved in the

acetonitrile structure. Together, these studies show that one-half or more of bound

water sites are typically conserved in independent structures of a protein solved under

diverse conditions.

A slightly different approach was taken by Gschwend and Karplus (1991) in their

study of features correlating with increasing electron density of water sites in glu-

tathione reductase. The water molecules in a 1.54 A resolution structure were ranked
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in order of electron density in the final 2F0 — FC map. Eight parameters were mea-

sured for each water molecule, weighted, and correlated with the electron density

rankings; they included the energy from XPLOR refinement, solvent accessibility,

strong hydrogen bonds to protein atoms and to other water molecules (donor to ac-

ceptor bond length between 2.5 and 3.2 A), weak hydrogen bonds (bond length less

than 2.5 A or from 3.2 to 3.5 A) to protein atoms and water molecules, the aver-

age temperature factor of hydrogen-bonding partners of the water molecule, and the

average occupancies of hydrogen-bonding partners. The parameters that correlated

best with increasing electron density included decreasing average temperature factor

of hydrogen-bonding partners of the water molecule, decreasing solvent accessibility

of the water, and increasing the number of strong hydrogen bonds to protein atoms.

The linear correlation coefficient between this set of features and the density ranking

was 0.8.

An experimental approach was taken by Ringe (1995) to investigate the char-

acteristics of ligand—binding sites on the protein surface. Crystals of elastase were

grown in aqueous mother liquor, then transferred to an organic solvent. A shell of

bound water molecules remained, even after the organic solvent was exchanged several

times, though some organic solvent molecules also bound. The features associated

with binding sites for the polar organic solvent molecules included the local surface

shape, exposure of hydrophobic groups, and the presence of water molecules bound

to polar groups near the site.

The approach presented here is a hybrid between prediction of bound water 10-
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cation and characterization of features favorable for water binding. Three classes

of protein sites were studied: non-solvated sites, sites that were solvated in a sin-

gle crystallographic structure of a protein, and solvation sites that were conserved

in two crystallographically independent structures. The hybrid genetic algorithm/k-

nearest-neighbors (GAknn) classifier was provided with a set of features representing

each site, and trained to distinguish between the classes of sites.

Motivation and Experimental Design

Unfortunately, one of the steps in the crystallographic determination of protein struc-

tures, the assignment of water molecule locations based on the electron density data

from an X-ray crystallographic experiment, is an imperfect process. The resulting

3-dimensional structure may include false sites via noise in the electron density, and

omit many sites due to limited resolution. Additionally, the structure of the crystal

lattice may produce favorable environments for bound water molecules where none

were present in the soluble form of the protein. By applying the feature selection

and extraction methods described here to protein crystallography data sets, we h0pe

to improve water assignment by identifying the physical and chemical features as-

sociated with water-binding sites, and by producing a classifier that is capable of

distinguishing solvation sites from non-solvated sites near the protein surface.

In order to train such a classifier, however, the current, imperfect information

about protein-water binding available from X-ray crystallographic structures must be

used. To mitigate the effect of noisy water coordinate data, we can superimpose mul-
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tiple crystallographic structures of the same protein and examine the water-binding

sites that are conserved between them. In this way we can identify the physical and

chemical features associated with the most reliable water binding sites available—

those that are conserved among multiple, independently-solved structures of the same

protein. Finally, by using this information during the assignment of water molecules

in future structures, we can improve the reliability of crystallographic water assign-

ment by considering not only the electron density information obtained from the

X-ray experiment, but also the physical and chemical features of the local protein

environment in determining whether or not to assign a water molecule to a particular

location near the protein surface. While the electron density is the experimental ob-

servable and the most important criterion, evaluating the likelihood of a given protein

environment for water binding gives us insight into the protein-water recognition pro-

cess and also can help identify missing or extraneous water sites in crystallographic

structures.

In pursuit of this goal of understanding protein-water interactions more com-

pletely, the classification and feature selection and extraction methods described in

earlier chapters were applied to two distinct classification problems:

Prediction of salvation sites: Given a location near the surface of a protein, de-

termine whether the site is likely to be a water-binding site or a non-solvated

site.

Prediction of solvent-site conservation: Given a known solvent site from a non-

ligand—bound protein, determine whether the water molecule will be conserved
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(remain bound) in the protein-ligand complex.

For each of these problems, two subproblems related to understanding protein-

water binding were investigated. The first was to develop and train a classifier capable

of distinguishing between the two classes of sites: solvated vs. non-solvated, and

conserved vs. non-conserved, respectively. The second objective was to utilize the

feature selection and data mining capabilities of the EC-hybrid classifiers to identify

the features of protein bound water molecules that are associated with solvent binding,

and with conservation of solvent sites between structures.

5.2 Methods

5.2.1 Compilation of a Protein Solvation Database

The task of understanding protein-water interactions was undertaken in two stages.

The objective of the first stage was to design a hybrid EC/knn classifier capable of

distinguishing water molecules from non-solvated sites on the surface of a protein,

and to use the feature selection capabilities of this classifier to identify the physi-

cal and chemical features associated with solvation sites. The second goal was to

further classify the water sites into those likely to be conserved between a ligand-

bound and an unbound structure of a protein, and those likely to be non-conserved

(displaced). Again, once this classification was made, the data mining and feature

selection capabilities of the classifier were utilized to identify the determinants of

solvent conservation between ligand-bound and unbound structures.
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Prerequisite to any of these experiments it was necessary to establish a database

of conserved and non-conserved water molecules as well as non-solvated sites near

protein surfaces to serve as training and tuning data for the GA/knn hybrid classi-

fier. To this end, 60 protein structures were selected in pairs from the Brookhaven

Protein Databank (Abola et al., 1987; Bernstein et al., 1977). Each pair consisted

of the crystallographic structure of a protein bound to a ligand and the correspond-

ing structure of the unbound protein. Protein pairs were selected based on several

criteria. First, all proteins included in the database were non-homologous2 (Hobohm

et al., 1992). In addition, high resolution (5 2.0 A) structures were preferred, and

structures exhibiting significant conformational changes upon ligand binding were

excluded, since the concept of conserved water is no longer well-defined in this case.

Pairs of structures with a root-mean-squared positional deviation (RMSD) of S 2.0 A

upon superposition of main-chain atoms were also preferred. The 30 pairs of proteins

selected for the database are detailed in Table 5.1.

 

2Homology, in this case, refers to proteins composed of similar sequences of amino

acids. Inclusion of homologous proteins in the database can introduce redundant

information, which can lead to unnecessary bias in the training and tuning data. No

two proteins included in the database described here had > 25% amino acid sequence

identity when the linear sequence of amino acids comprising each protein were aligned.
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Table 5.1: 30 protein pairs included in the database.

PDB Code1 Protein / Ligand

Complex

Res(A)2 Waters RMSD3

 

lahc/lahb

lapm/latp

1bia/1bib

lbsa/1brn

1ca2/1bcd

1cgf/1hfc

lcgt/lcgu

1chp/1xtc

1dr2/1dr3

lgta/lgtb

lhel/lmlc

1hb/1fic

1nsb/1nsc

1poa/1pob

lsyc/lsyd

1thm/2tec

a-momorcharin / formycin

5’-mon0phosphate

CAMP-dependent protein

kinase / MnATP

bira bifunctional protein /

biotinylated lysine

barnase / D(CGAC)

carbonic anhydrase II /

trifluoromethane

sulphonamide

fibroblast collagenase /

HAP4

cyclodextrin

glycosyltransferase /

glucose

cholera toxin 5 pentamer /

polypeptide chain

dihydrofolate reductase /

biopterin

glutathione S-transferase /

praziquantel

hen egg-white lysozyme /

monoclonal antibody Fab

D441

adipocyte lipid-binding

protein /

hexadecanesulfonic acid

neuraminidase / N-acetyl

neuraminic acid

phospholipase A2 /

transition-state analogue

staphylococcal nuclease /

2’-deoxy-3’-5’-

diphosphothymidine

thermitase / eglin-C
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210/252

:10/252

223/213

2.0/1.76

120/14)

2.1/1.56

:20/215

:20/224

223/243

124/215

1.7/21.

1.7/113

:22/1J7

1.5/21)

1.8/137

1.37/1.98

163/80

207/103

43/19

258/229

167/215

181/88

588/478

248/138

73/110

118/84

185/210

89/68

446/506

151/242

69/83

193/224

0.23

0.35

0.48

0.55

0.20

0.39

0.34

0.93

0.12

0.20

0.49

0.32

0.12

0.72

0.41

0.24



Table 5.1 (cont.)
 

 

PDB Code1 Protein / Ligand ResGI)2 Waters RMSD3

Complex

ludg/ludh uracil-DNA glycosylase / 1.75/ 1.75 121/94 0.19

uracil

2act/1aec actinidin / 13645 1.7/ 1.86 272/268 0.11

2apr/3apr acid proteinase / reduced 1.8/1.8 373/344 0.13

peptide inhibitor

2cla/3cla chloramphenicol 2.35/ 1.75 104/204 0.41

acetyltransferase /

chloramphenicol

2ctv/5cna concanavalin A / a-methyl- 1.95/2.0 146/533 0.42

D-mannopyranoside

2sga/5sga proteinase A / tetrapeptide 1.5/ 1.8 220/185 0.08

Ace-Pro-Ala—Pro—Tyr

2wrp/1tro Trp repressor / synthetic 1.65/1.9 170/572 2.18

operator

3cox/1coy cholesterol oxidase / 3-6- 1.8/1.8 453/424 0.24

hydroxy-5-androsten-17-one

3dni/2dnj deoxyribonuclease I / DNA 2.0/2.0 375/252 0.37

3enl/5enl enolase / 2.25/22 353/355 0.21 '

2-phospho—D-glyceric acid

3grs/1gra glutathione reductase / 1.54/2.0 523/530 0.12

glutathione disulfide

3tln/3tmn thermolysin / Val-Trp 1.6/1.7 173/173 0.10

5cpa/6cpa carboxypeptidase A / 1.54/2.0 315/148 0.36

phosphonate

See note 6 RTEM-l fi-lactamase / 1.7/1.7 182/189 0.22

penicillin G

1 Ligand-free/ligand-bound

2Resolution of the crystallographic structures in Angstroms.

3Main-chain root-mean-squared positional deviation from superposition of

the ligand-bound and free structures.

4HAP is (N-(2-hydroxamatemethylene-4-methyl-pentoyl)phenylalanyl)

methyl amine.

5E64 is

[N-(l-3-trans-carboxyoxirane—2-carbonyl)-l-leucyl]-amido(4-guanido)butane.

6Provided by Drs. Natalie Strynadka and Michael James, University of

Alberta, Edmonton.

 

The water molecules from the unbound structures were used to construct the

training and tuning database. The ligand-bound structures were used only to label
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the water molecules from the unbound structures as conserved or displaced. To ob-

tain this labeling, the main-chain atoms of the ligand-bound and unbound structures

were superimposed using the rigid-body superimposition algorithm of the InsightII

molecular graphics software (Molecular Simulations, Inc., San Diego, CA). Each water

molecule in the unbound structure was then compared with the superimposed ligand-

bound structure—if a corresponding water molecule was found in the ligand-bound

structure within 1.2 A (Zhang and Matthews, 1994) of the water from the unbound

structure, the water was labeled as conserved. Water molecules from the unbound

structure with no corresponding water molecule in the superimposed ligand-bound

structure were labeled as non-conserved. Only first-shell water molecules from the

unbound structures were included in the database, where the first shell is defined

as the set of water molecules within hydrogen bonding distance (3.6 A) of a protein

surface atom.

5.2.2 Generation of Non-Solvated Probe Sites

For distinguishing solvation sites from non-solvated sites near the protein surface, it

was necessary to generate a collection of non-solvated probe sites near the surface of

each of the 30 non-ligand—bound proteins selected for the database. To generate these

probe sites, the solvent accessible molecular surface for each of the non-ligand-bound

structures in Table 5.1 was generated using the Molecular Surface (MS) software from

Connolly (1983). A probe radius of 1.2 A was used, with a surface density of 1 dot/A2

and unit normals generated at each surface dot. For each protein, the minimum
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distance of any crystallographically observed water molecule from the protein surface,

dmin, and the maximum distance, dmx were determined. For each surface point, a

probe-site was generated and placed at a distance along the surface normal, selected

at random over the range of distances from dmin to dmu. Any non-sites overlapping

crystallographic water sites or other non-sites (with positions within 1.2 A) were

removed. Finally, the same number of non-sites were selected for each protein as there

were crystallographic water sites. This selection was done so that the distribution of

distances of non-sites from the protein surface matched the distribution of distances

for observed water molecules for that protein.

5.2.3 Feature Identification and Measurement

Once a database of non-solvated sites, non-conserved water-binding sites, and con-

served solvation sites had been established, the next step was to identify and measure

a collection of features to represent each water binding site or non-solvated site for

purposes of classification. For each site, six physical and chemical features of the

local protein environment were computed from the crystallographic coordinates. For

conserved and non-conserved solvation sites, two additional features describing the

thermal mobility of the water molecule in the crystal structure were included. The

eight features included in the waters database are included in Table 5.2.
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Table 5.2: The physical and chemical features used to represent protein-bound water

molecules and protein surface sites. BVAL and MOB were only measured for con-

served and non-conserved molecules, as the concept of thermal mobility is not defined

for non-solvated probe sites.

Tag Feature Description

ADN Atomic density The number of protein atom neighbors

within 3.6 A of the water molecule. This

feature correlates with the local protein

topography. Water molecules bound in

deep grooves will have high ADN val-

ues, while those bound to protrusions will

have low ADN values (Kuhn et al., 1992).

AHP Atomic hydrophilicity The hydrophilicity of the neighborhood

of the water molecule is based on the fre-

quency of hydration for each atom type

in 56 high-resolution protein structures

(Kuhn et al., 1995). Each water molecule

is assigned an AHP value equal to the

sum of the atomic hydrophilicity values

of all atom neighbors within 3.6 A of the

water molecule.

 

BVAL B-value The crystallographic temperature factor

from PDB file of the crystal structure.

.This feature measures the thermal mo-

bility of the water molecule.

HBDP Hydrogen bonds to The number of hydrogen bonds between

protein the water molecule and neighboring pro-

tein atoms. Each donor or acceptor atom

within 3.5 A is considered a potential hy-

drogen bond.

HBDW Hydrogen bonds to The number of hydrogen bonds between

water the water molecule and other water

molecules in the ligand-free protein struc-

ture, based on S 3.5 A distance between

oxygen atoms in the two water molecules.
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Table 5.2 (cont.)
 

Tag Feature Description
 

MOB Mobility

ABVAL Average B-value of

protein atom neighbors

NBVAL Net B-value of protein

atom neighbors

A normalized measure of thermal mobil-

ity, defined in terms of the B-value and

occupancy, two measures of the thermal

mobility of the water molecule provided

in the crystallogra hic structure of the

protein. MOB = Bw/B) / (Doc/DE).

Where B and B are the B~value of the

water molecule and the average Evalue

of all the water molecules in the pro-

tein respectively. Similarly, Dec and m

are the occupancy of the water molecule

(from the PDB file) and the average oc-

cupancy of all water molecules in the pro-

tein structure (Craig et al., 1998).

The average (mean) temperature factor

of all protein atoms within 3.6 A of the

water molecule.

The sum of the B-values of all protein

atoms within 3.6 A of the water molecule.
 

The eight features described in Table 5.2 comprise most of the factors currently

believed to be related to protein/water binding, as discussed in Section 5.1.2. These

features do not, unfortunately, establish a well-separated or easily classified data

space. Figure 5.2 shows 800 waters selected randomly from the conserved and non-

conserved protein-bound water molecule data set, plotted according to their first two

principal components. This plot demonstrates the high degree of overlap between

the two classes. This overlap is further evidenced by the poor classification results

obtained by linear discriminant analysis (Fisher, 1936), which obtains a classification

accuracy of only ~50% (equivalent to random prediction) in distinguishing between

conserved and non-conserved solvation sites based upon this data set.
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Figure 5.2: Conserved and non-conserved water molecules plotted according to the

first two principal components of the eight-feature water binding data set. Eight

hundred randomly-selected water molecules from the data set are plotted. Non-

conserved water molecules are plotted as 1’s, conserved water molecules are plotted

as 2’s. The first principal component is composed primarily of the features HBDP,

ADN, and AHP (with coefficients 0.63, 0.52, and 0.38, respectively). The second

principal component is composed primarily of the three features based on temperature

factor: ABVAL, BVAL, and NBVAL. (The respective coefficients are —0.54, —0.53,

and —0.44.) There is no clear separation between the two classes in this feature space.
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5.2.4 Distinguishing Solvation Sites from Non-Solvated Sites

Near the Protein Surface

The training and tuning data for distinguishing solvation sites from non-solvated

regions of the protein surface consisted of all the first-shell water molecules from

the non-ligand-bound structures in Table 5.1, a total of 5542 water molecules, and

an equal number of non-solvated probe sites, for a total of 11,084 samples. The

non-solvated sites were generated from the same 30 non-ligand-bound structures, as

described in Section 5.2.2. The six features from Table 5.2 not related to thermal

mobility were used to represent each sample, and the patterns were labeled “class 1”

for non-solvated probe sites and “class 2” for solvation sites.

For each GA/knn experiment, 1000 patterns of each class were selected at random

from the database to serve as the training set. Likewise, the tuning data consisted

of 1000 patterns of each class. After the GA/knn experiment, bootstrap testing was

performed as described in Section 3.1.6 to test the predictive accuracy of the best

weight set and 16 value found by the GA. The bootstrap testing pool consisted of the

3542 samples from each class not included in the training or tuning data. Individual

test sets of size 500 were drawn from this pool during the bootstrap testing.

The GA run parameters and the cost function coefficients for these experiments

were identical to those detailed in Tables 3.1 and 3.2.

111



5.2.5 Distinguishing Conserved Salvation Sites from Sites

not Conserved Between Ligand-Bound and Unbound

Protein Structures

The training and tuning data for classifying conserved salvation sites between ligand-

bound and unbound protein structures consisted of the 5324 first-shell water molecules

from the 30 non-ligand-bound structures in Table 5.1. Of these water molecules, the

2137 non-conserved water molecules were labeled “class 1”, and the 3405 conserved

water molecules were labeled “class 2”. All eight features described in Table 5.2 were

used to represent each sample.

Training and testing data were compiled in a similar manner to the previous set

of experiments, but due to the smaller size of this data set, the training and testing

data consisted of 400 patterns of each class. The remaining 2605 conserved and 1337

non-conserved water molecules composed the pool of samples for bootstrap testing.

Again, the bootstrap test set size was 500 samples.

As with the previous set of experiments, the GA run parameters and the cost

function coefficients were set as described in Tables 3.1 and 3.2.
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5.3 Results

5.3.1 Differentiation of Salvation Sites from Nan-Salvated

Sites

The protein salvation site and non-solvated site experiments were conducted with sev-

eral objectives. In addition to optimizing classification accuracy, the feature weights

produced by the GA were analyzed to determine if a subset of the available features

was consistently selected for inclusion in the highest performance weight sets. Fifteen

GA/knn experiments were conducted with differing initial random populations. 100

bootstrap test experiments were then conducted on the best 6 resulting weight sets.

Descriptive statistics were calculated for each set of bootstrap tests, and the results

are summarized in Table 5.3, sorted according to mean bootstrap accuracy.

In spite of randomized initial conditions for each GA experiment, the top perform-

ing runs for distinguishing protein salvation sites from non-sites (refer to Table 5.3)

exhibited notable consistency in feature subset selection across runs. Although we

cannot assume that this consistency is indicative of finding a globally optimal set of

feature weights for classifying this data, we can conclude that the features that are

consistently included in the optimized weight sets are a sufficient set to predict, with

~68% accuracy, water binding sites at the protein surface. In this respect, then, these

features can be concluded to be associated with water binding.

For distinguishing observed salvation sites from pseudo—water sites, the number

of hydrogen bonds to protein atoms (HBDP) was the most common highly-weighted
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Table 5.3: Bootstrap test results, k-values, and weight sets from the top six GA

experiments for distinguishing crystallographically-observed salvation sites from non-

sites. Bootstrap testing accuracy is given as a percentage for observed salvation sites

(Site), non-solvated sites (Nan), and both classes together (Tat). Balance (Bal) is

the average difference between solvated-site and non-solvated-site prediction accuracy

(%) over all bootstrap runs. Features with no weights were masked by the GA; i.e.

their feature weights were zero, and they did not participate in classification. The

feature weights for all six features are normalized to sum to 1.00 for each experiment.

Bootstrap % Feature Weights

 

  

Site Nan Tat Bal K ADN AHP HBDP HBDW ABVAL NBVAL

68.60 67.75 68.18 3.50 23 0.284 0.524 0.193

66.87 68.74 67.81 3.50 75 0.545 0.235 0.219

65.93 65.93 65.93 3.20 53 0.530 0.197 0.274

65.21 70.44 67.83 5.49 45 0.194 0.721 0.086

' 66.19 69.40 67.79 4.39 35 0.332 0.643 0.024

67.32 67.74 67.53 3.52 61 0.651 0.289 0.060

 

feature, followed closely by atomic density (ADN). Some measure of the temperature

factor of neighboring protein atoms was also included in each of the top weight sets.

For half of the runs the average temperature factor (ABVAL) was included, while

the sum of the temperature factors (NBVAL) was included in the other half. The

local atomic hydrophilicity (AHP) and the number of hydrogen bonds to other water

molecules (HBDW) were not included in any of the highest-performance weight sets.

The average weights for each feature across the top fifteen weight sets are shown in

Figure 5.3.

These results correspond well with several other studies of conserved salvation

sites in specific protein structures. In a study of conserved salvation sites in throm-

bin, trypsin, and bovine pancreatic trypsin inhibitor (BPTI), various features of the

local protein environment were correlated with the degree of conservation of solva-
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Figure 5.3: Average normalized weight of each feature in the top fifteen weight sets for

distinguishing crystallographically- observed salvation sites from non-salvation sites.

 

tion sites across multiple superimposed structures for each protein (Sanschagrin and

Kuhn, 1998). The three features which demonstrated the strongest correlation with

water site conservation were hydrogen bonds to neighboring protein atoms, atomic

hydrophilicity, and atomic density. Two of these features, hydrogen bonds to protein

atoms and atomic density, were highly weighted by the GA in all of the weight sets

reported in Table 5.3. A possible explanation for the GA’s failure to include atomic

hydrophilicity in any of these weight sets is the strong correlation between atomic

density and atomic hydrophilicity. Since both of these features are strongly depen-

dent on the number of protein atoms neighboring a given water molecule, the two

values are correlated (r = 0.642).

Even more closely related to features found by the GA are those found to be related

to water electron density rankings by Gschwend and Karplus (1991)—average tem-

perature factor of hydrogen bonding partners, solvent accessibility, and the number
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of strong hydrogen bonds to protein atoms. The hydrogen bonding and tempera-

ture factor features were selected by both methods, while the atomic density feature

used by the GA is closely related to the solvent accessibility term used in Gschwend

and Karplus’s density correlations. Water molecules bound in deep grooves will have

low solvent accessibility and higher atomic density values, while the reverse holds for

waters bound to protein surface protrusions.

Studies conducted by Kuhn et al. (1992) and Poornima and Dean (1995b) both

demonstrated a relationship between water binding and local surface shape. The

GA results identify the same relationship, as atomic density is included in all of the

top performing weight sets; high density of protein atoms surrounding a water site

correlates with groove-like topography.

5.3.2 Distinguishing Between Conserved and Non-

Canserved Salvation Sites

The problem of identifying salvation sites likely to be conserved between ligand-bound

and unbound structures of a protein was one of the first applications of the GA/knn

hybrid classifier. As such, significantly more experiments have been conducted for this

data set than for any of the other data sets presented here. The top 21 weight sets

from all such experiments were selected for bootstrap testing. Again, 100 bootstrap

tests were conducted for each weight set. Accuracy and balance results for each weight

set and k value tested are summarized in Table 5.4.
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Table 5.4: Bootstrap results of the best 21 weight sets for identifying conserved

salvation sites. Mean bootstrap testing accuracy is given as a percentage (Acc).

Mean balance (Bal) is the average difference between conserved and non-conserved

prediction accuracy (%) over all bootstrap runs. Features with no weights were

masked by the GA; i.e. their feature weights were zero, and they did not participate

in classification. The feature weights for all eight features are normalized to sum to

1.00 for each experiment.

Feature Weights

 

Acc Bal K ADN AHP BVAL HBDP HBDW MOB ABVAL NBVAL

64.20 3.88 65 0.413 0.135 0.137 0.315

63.62 3.80 29 0.667 0.333

63.16 5.35 25 0.463 0.323 0.214

63.11 4.15. 37 0.891 0.109

63.00 3.52 77 0.308 0.163 0.225 0.304

62.87 5.36 17 0.841 0.159

62.47 7.74 97 0.459 0.291 0.250

62.36 3.27 27 0.371 0.629

62.16 3.79 23 0.372 0.240 0.203 0.184

62.15 3.50 7 0.571 0.156 0.273

62.02 4.26 87 0.118 0.558 0.323

61.72 4.14 17 0.252 0.352 0.397

61.70 4.20 67 0.421 0.579

61.58 3.58 13 0.018 0.388 0.441 0.153

61.46 3.84 63 0.227 0.773

61.42 3.18 19 0.051 0.417 0.058 0.474

61.36 3.39 15 0.392 0.293 0.207 0.108

61.16 7.14 19 1.000

60.62 4.58 57 0.881 0.119

60.30 2.78 75 0.317 0.683

60.25 3.40 69 0.336 0.664 
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In applying the feature selection and extraction capabilities of the EC-hybrid clas-

sifiers for data mining and analysis, consistency in feature weighting across multiple

runs is a desirable result. While it is never possible to guarantee that the EC has

found an optimal or near-optimal set of feature weights, features that are consistently

included in weight sets that provide high classification accuracy are likely to be as-

sociated with the natural classes in the data. For the water conservation data, the

two features related to thermal mobility—B-value (BVAL) and mobility (MOB)—are

included in all of the top 6 performing weight sets. Features such as atomic density

(ADN), number of hydrogen bonds to other water molecules (HBDW) and average

B-value of neighboring protein atoms (ABVAL), which are included in very few of

the top 21 weight sets, are likely to be omitted either because they are not as closely

associated with water binding, or because they are closely related to another included

feature, and thus providing redundant information. Because the EC cost function pe-

nalizes for each feature included in the classification, the EC search is directed towards

a minimal feature set that provides good classification accuracy. It is interesting to

note that atomic hydrophilicity (AHP) and mobility are nearly mutually exclusive,

suggesting that some information needed for classification may be provided by both

of these features. The linear correlation coefficient for AHP and MOB is r = —0.374.

It is not surprising that the features that indicate conserved salvation across multi-

ple structures differ somewhat from those that identify likely salvation sites in a single

structure. Since both conserved and non-conserved water molecules are present in at

least one crystallographic structure, they might be expected to have similar values for
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the features associated with bound water molecules in a single crystallographic struc-

ture. Although the task appears to be more difficult than identifying water-binding

sites, the GA/knn classifier obtained a set of features which further distinguishes

those sites that are likely to be conserved across multiple structures. The features

thus identified include B-value (BVAL), which appeared in 19 of the top 21 weight

sets, and was the highest-weighted feature in 15 of these, and mobility (MOB), ap-

pearing in 11 weight sets, always as the first or second most strongly-weighted feature.

Also selected in 9 weight sets, including the set which obtained the best overall ac-

curacy in bootstrap testing, was the number of hydrogen bonds to protein atoms.

The best performing weight set included these three features as well as the number

of hydrogen bonds to other water molecules.

The best bootstrap accuracy obtained by the GA/knn was 64.2%, with a mean

bootstrap balance (difference in predictive accuracy between conserved and non-

conserved salvation sites) of 3.88%. This accuracy is a notable improvement over

the near random classification obtained by linear discriminant analysis. Further im-

provement in accuracy can be obtained by using the k-nearest-neighbors vote tally

as a measure of classification confidence. Intuitively, one would expect that a site

for which the knn vote was definitive (say, 38 votes for conserved and 1 vote for

non-conserved) was more likely to be correctly classified than one for which the vote

was more evenly split (for example, 20 votes for conserved and 19 for non-conserved),

and this intuition was supported by knn voting results. A weighted knn classifier was

used with the top weight set from Table 5.4 to classify as conserved or non-conserved
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all water-binding sites from the data set that were not selected as training or tun-

ing sites for this GA run. A total of 3942 salvation sites were tested. Figure 5.4

shows the relationship between number of votes in the majority category, m, and the

predictive accuracy for all test sites where the number of votes cast in the majority

was 2 m. The correlation coefficient between m and cumulative predictive accuracy

was r = 0.905. As demonstrated by the figure, the knn classifier exhibits a strong

tendency toward more accurate classification of sites for which the voting consensus is

more definitive. Greater predictive accuracy can thus be obtained by allowing “don’t

know” classifications when the number of majority votes does not exceed a specified

cutoff value, and the prediction is thus less likely to be correct. Also shown in the

figure is the number of test sites for which the number of majority votes meets or

exceeds each value of m. For example, by classifying only sites where 43 or more

votes were cast for the same class we can classify 1344 of the 3942 test sites with a

predictive accuracy of 70.46%. While some sites are eliminated from classification,

those that remain are classified with greater accuracy.

5.4 Discussion

In distinguishing salvation sites from non-solvated sites near the protein surface, the

classification accuracy of the GA/knn hybrid classifier is comparable to other contem-

porary methods for solvent-site prediction, but the GA/knn does not have a tendency

to overpredict salvation—a feature common to other techniques. For the problem of

distinguishing conserved from non-conserved water-binding sites, the accuracy of the
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Figure 5.4: Relationship between majority votes and accuracy. For each possible

number of majority votes, m, (x-axis) the solid line shows the cumulative predictive

accuracy for all test sites for which m or more votes were cast in the majority. This

accuracy value corresponds to the scale on the right y-axis. The outlined rectangles

show the actual number of sites for which m or more votes were cast in the majority,

corresponding to the scale on the left y-axis. Since the k-value for the weight set

tested was 65, the number of majority votes ranges from 33 (the smallest possible

majority) to 65.
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GA/knn surpassed that of other classical classification techniques tested. In addi-

tion, the consistency in feature weighting exhibited for both problems provides some

insight into the determinants of water binding and water conservation in crystallo-

graphic protein structures. In the case of predicting salvation sites, the determinants

identified by the GA/knn experiments correspond well with other computational and

experimental results.

Taken together, the results of both sets of experiments paint a general picture of

the physical and chemical features related to water binding and conservation. From

these results, we can envision a continuum of water binding favorability based on var-

ious features. Local atomic hydrOphilicity, atomic density, and the hydrogen bonding

potential of local protein atoms are good indicators of likely salvation sites. Of those

sites that do bind water molecules, a low crystallographic temperature factor, high oc-

cupancy, and a large number of hydrogen bonds to neighboring protein atoms indicate

that the water molecule is likely to be conserved between independently determined

structures.
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