
FINDING OPTIMIZED BOUNDING BOXES OF POLYTOPES IN D-DIMENSIONAL
SPACE AND THEIR PROPERTIES IN K-DIMENSIONAL PROJECTIONS

By

Salman Shahid

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science–Doctor of Philosophy

2014

ABSTRACT

FINDING OPTIMIZED BOUNDING BOXES OF POLYTOPES IN
D-DIMENSIONAL SPACE AND THEIR PROPERTIES IN

K-DIMENSIONAL PROJECTIONS

By

Salman Shahid

Using minimal bounding boxes to encapsulate or approximate a set of points in d-

dimensional space is a non-trivial problem that has applications in a variety of fields including

collision detection, object rendering, high dimensional databases and statistical analysis to

name a few. While a significant amount of work has been done on the three dimensional

variant of the problem (i.e. finding the minimum volume bounding box of a set of points in

three dimensions), it is difficult to find a simple method to do the same for higher dimensions.

Even in three dimensions existing methods suffer from either high time complexity or subop-

timal results with a speed up in execution time. In this thesis we present a new approach to

find the optimized minimum bounding boxes of a set of points defining convex polytopes in

d-dimensional space. The solution also gives the optimal bounding box in three dimensions

with a much simpler implementation while significantly speeding up the execution time for a

large number of vertices. The basis of the proposed approach is a series of unique properties

of the k-dimensional projections that are leveraged into an algorithm. This algorithm works

by constructing the convex hulls of a given set of points and optimizing the projections of

those hulls in two dimensional space using the new concept of Simultaneous Local Optimal.

We show that the proposed algorithm provides significantly better performances than those

of the current state of the art approach on the basis of time and accuracy. To illustrate the

importance of the result in terms of a real world application, the optimized bounding box

algorithm is used to develop a method for carrying out range queries in high dimensional

databases. This method uses data transformation techniques in conjunction with a set of

heuristics to provide significant performance improvement.

For Rabeel, Ashhad & Hashir

iv

ACKNOWLEDGMENTS

I’m grateful to my wife for her continuous support and help throughout my PhD without

which all of this would not have been possible. I’d also like to thank Dr. Sakti Pramanik

for his kindness, advice and continuous help in guiding me through this process. I’m also

indebted to Dr. Charles Owen for his help in giving key parts of my work direction as well

as the International Institute of Education, New York for the Fulbright Grant that made

this work possible. Finally, I’m deeply obliged and thankful to my parents for the love and

prayers that helped me through this and every other part of my academic career.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF ALGORITHMS . xiii

Chapter 1 Introduction . 1
1.1 Motivation . 1

1.1.1 Minimum Bounding Box For 3-Dimensional Cross-Polytopes 2
1.1.2 Minimum Bounding Box For Arbitrary D-Dimensional Polytopes . . . 3
1.1.3 Querying And Indexing High-Dimensional Databases 4

1.2 Basic Concepts . 5
1.2.1 Definitions . 6

1.3 Contributions & Structure . 7

Chapter 2 Related Work . 9
2.1 Finding Bounding Boxes in 2-Dimensions . 9
2.2 Finding Bounding Boxes in 3-Dimensions . 10
2.3 Finding Bounding Boxes in d-Dimensions . 12
2.4 Querying And Indexing Techniques in High Dimensions 13

2.4.1 Collision Detection Using Bounding Boxes 16

Chapter 3 Minimum Bounding Box of a Three Dimensional Cross-Polytope 18
3.1 Two Edges Flush . 18
3.2 One Face Flush . 20

3.2.1 Case - I: Angle Between Adjacent Edges is 90 Degrees: . . . 20
3.2.2 Case - II: Angle Between Adjacent Edges is 60 Degrees 22

3.3 Bounding Box Under Projection . 28
3.3.1 Minimality of Projected Bounding Box 28

3.4 Cross-Polytope under Projection . 30
3.4.1 Definitions . 30
3.4.2 Projected Polygons . 32

3.5 Minimal Bounding Box by Optimal Projections 33
3.5.1 Unique Simultaneous Local Optimality 33
3.5.2 Simultaneous Local Optimal By Combination Reduction 36

3.6 Summary . 38

Chapter 4 Optimized Bounding Box of Arbitrary D-Dimensional Polytope 40
4.1 Minimizing Bounding Box Based On Locally Optimal Projections 43

vi

4.1.1 Definitions . 43
4.1.2 Minimality of Projected Bounding Box 44
4.1.3 Edges Flush in d-Dimensions . 45
4.1.4 Existence of Simultaneous Local Optimal For All d-Dimensional Poly-

topes . 47
4.1.5 Minimality of D-Dimensional Bounding Box 47
4.1.6 Convergence of Projections . 48
4.1.7 Period of Projected Bounding Box in 2D 55

4.2 Optimized Bounding Box Algorithm . 60
4.2.1 The Simultaneous Local Optimal Algorithm 62
4.2.2 The Minimum Bounding Box Candidate Algorithm - Exhaustive Ap-

proach . 66
4.2.3 Minimum Bounding Box Candidate Algorithm - Heuristic Approach . 70

4.2.3.1 Heuristic 1 . 73
4.2.3.2 Heusristic 2 . 73
4.2.3.3 Heuristic 3 . 74

4.2.4 Local Optimal Clustering . 75
4.2.5 Minimum Bounding Box Candidate Algorithm - Grid Based Clustering 77

4.2.5.1 Optimizations to Algorithm . 78
4.2.6 The Clustered Simultaneous Local Optimal Algorithm) 80

4.3 Experimental Results . 80
4.3.1 Experimental Setup . 82
4.3.2 Theoretical Analysis . 84

4.3.2.1 Optimized Bounding Box - SLO 84
4.3.2.2 Optimized Bounding Box - MBBC(Exhaustive) 84
4.3.2.3 Optimized Bounding Box - MBBC(Heuristic) 85

4.3.3 Minimum Bounding Boxes For 3-Dimensional Polytopes 85
4.3.3.1 Effect of Varying Heuristics . 86
4.3.3.2 Effect of Increasing Vertices . 87
4.3.3.3 Effect of Increasing Granularity 88

4.3.4 Minimum Bounding Boxes For d-dimensional Polytopes 89
4.3.4.1 Effect of Increasing Granularity 93
4.3.4.2 Effect of Increasing Dimensions 93
4.3.4.3 Effect of Increasing Vertices . 96
4.3.4.4 Effect of Varying Heuristics . 97

4.4 Summary & Conclusion . 98

Chapter 5 Range Query In High Dimensional Databases Using Topolog-
ical Transformation . 100

5.1 Motivation . 101
5.2 Methodology . 102
5.3 Topological Transformation in Multi-Dimensional Space 104

5.3.1 Topological Transformation For d ≤ 3 . 105
5.3.2 Topological Transformation for d > 3 Using SLO 107

5.3.2.1 Tranformation Property . 110

vii

5.3.2.2 Transformation Heuristic . 111
5.3.3 Performance Evaluation . 113

5.3.3.1 Experimental Setup . 113
5.3.3.2 Effect of Increasing Dimensions 113
5.3.3.3 Effect of Increasing Ranges . 115
5.3.3.4 Effect of Increasing Database Size 115
5.3.3.5 I/O Optimization . 116

5.4 Summary & Conclusion . 117

Chapter 6 Conclusion . 118

BIBLIOGRAPHY . 121

viii

LIST OF TABLES

Table 4.1 Cluster Statistics With Varying Dimensions 77

Table 4.2 Standard Deviation of Volume With Varying Vertices & Granularity
in % for 3D . 80

Table 4.3 Standard Deviation of Volume With Varying Vertices & Granularity
in % for 4D . 80

Table 4.4 Effects of Heuristics in 3D - 10V . 90

Table 4.5 Effect of Heuristics in 3D - 50V . 90

Table 4.6 Effect of Heuristics in 3D - 100V . 90

Table 4.7 Effect of Heuristics on 3D - 200V . 91

Table 4.8 Effect of Heuristics in 3D - 500V . 91

Table 4.9 Comparison of Optimization For Polytopes in d-dimensions 95

Table 4.10 Optimization With Changing Heuristics in 4D 97

Table 4.11 Optimization of Volume With Changing Heuristics in 5D 98

Table 4.12 Volume Optimization with Changing Heuristics in 6D 98

Table 5.1 Volume Optimization for Bounding Box for Unit Hyper-Diamond . . 112

Table 5.2 Run Time in Seconds with Increasing Dimensions for a Range of 0.1 . 114

Table 5.3 Run Time in Seconds with Increasing Dimensions For a Range of 0.2 114

Table 5.4 Run Time in Seconds with Increasing Dimensions For a Range of 0.3 115

Table 5.5 Run Time in Seconds with Increasing Dimensions For a Range of 0.4 115

ix

Table 5.6 Execution Time With Increase in Database Size 116

x

LIST OF FIGURES

Figure 3.1 Projection of the Octahedron on the X-Y Plane 21

Figure 3.2 Volume of the MBR as a function of θ 21

Figure 3.3 Position of Octahedron Against the Adjacent Faces of MBB for Case-I 22

Figure 3.4 Position of Octahedron Against the Adjacent Faces of MBB for Case-II 23

Figure 3.5 Local Maxima of X . 27

Figure 3.6 Local Maxima of Y . 28

Figure 3.7 Local Maxima of Z . 28

Figure 3.8 3D-diamond in upright position . 30

Figure 3.9 Projection of 3D-diamond on XY-plane 31

Figure 4.1 Examples of Clusters for a Random Polytope 77

Figure 4.2 Examples of Random Polytopes Tested 82

Figure 4.3 Execution Time for SLO With High Number of Vertices 89

Figure 4.4 Execution Time for SLO and ORourke 89

Figure 4.5 % Accuracy of SLO for Different Granularities 92

Figure 4.6 % Accuracy of SLO & PCA for Increasing No. of Vertices 92

Figure 4.7 % Error of Polytopes Not Matching ORourke 92

Figure 4.8 %Volume Optimization For a 4D-Polytope using SLO 94

Figure 4.9 %Volume Optimization For a 5D-Polytope using SLO 94

xi

Figure 4.10 %Volume Optimization For a 6D-Polytope using SLO 94

Figure 4.11 %Execution Time For D-Dimensions With A Granularity of 1 95

Figure 4.12 %Optimization in d-dimensions using SLO 96

Figure 4.13 %Execution Time in 4D With Varying Vertices 97

Figure 5.1 Transformation of Range Query . 105

Figure 5.2 3D-diamond in upright position . 107

Figure 5.3 Time Optimization With Increasing Range 116

Figure 5.4 Comparison of I/O Optimization . 117

xii

LIST OF ALGORITHMS

Algorithm 4.1 Algorithm-SLO: Simultaneously Local Optimal Algorithm 65

Algorithm 4.2 Algorithm-MBC: Minimum Bounding Box Candidates - Exhaustive 68

Algorithm 4.3 Algorithm-MBC: Minimum Bounding Box Candidates - Heuristic . 72

Algorithm 4.4 Algorithm-MBC: Minimum Bounding Box Candidates - Clustering 81

xiii

Chapter 1

Introduction

1.1 Motivation

Using boxes as abstractions to represent an object or a region of space encompassing a given

set of points is a common technique that has been used extensively in a variety of applications.

The objective is usually to simplify the calculations involved and provide an improved method

of describing the abstracted object/point’s interaction with its environment.

To exemplify, bounding boxes in d-dimensions form the basis of many spatial and data

indexing schemes such as R-Trees, R*-Tress, Box-Trees amongst others. These methods use

the bounding box abstraction to subdivide space/data to facilitate analysis and queries on

the data space.

They also form an integral part of a number of problems in computational geometry and

computer graphics such as ray tracing, frustum culling, collision detection and hidden object

detection amongst others.

Interference and collision detection are fundamental problems in a variety of application

domains, such as physically-based modeling, robotics, animation, computer-aided design,

manufacturing, and computer simulated environments.

The tightness of the bounding box used to approximate the underlying abstraction or

object is an important performance constraint in these applications. Thus, having a min-

imum axis-aligned bounding box results in an automatic improvement in the performance

1

achieved irrespective of the application. Extensive work has also been done on detecting

interpenetration of objects in static and dynamic environments using oriented bounding box

hierarchies.

The approach presented in our work has interesting implications for these techniques

since it presents a fast mechanism to produce minimized bounding boxes and thus tighter

fitting OBB-Trees.

These specific problems solved using the techniques presented here are now discussed in

detail.

1.1.1 Minimum Bounding Box For 3-Dimensional Cross-Polytopes

The ability to determine the minimum bounding box of a regular octahedron simply and

accurately has significant implications for a variety of applications. Minimum bounding

boxes in three dimensions are used among other things to hierarchically partition a given

set of points. Creating and maintaining these partitions is an integral part of applications

like collision detection and scene rendering in computer graphics. Furthermore, statistical

applications like storing and performing range queries on large databases utilize these con-

structs to a large extent to optimally partition and look-up data. The are also extensively

used in collision detection algorithms in three dimensional graphic rendering applications.

They are good approximations for the component polyhedrons used as building blocks in

these techniques and also lend themselves well to the indexing structures they utilize. We

focus on a particular aspect of this problem, namely the determination of minimum volume

bounding boxes for sets of points that define regular, uniform octahedrons in three dimen-

sional space. Given that the set of points to be partitioned in time-sensitive applications

like database range-search queries define octahedrons in three-dimensional space, optimizing

2

minimum bounding box calculation for such constructs becomes rather important. We prove

the existence of a constraining condition that makes it quite simple to determine the bound-

ing boxes of regular cross-polytopes. Furthermore, we also show how finding a minimum box

in higher dimensions guarantees minimum bounding boxes in lower dimensions. At the end

we prove that for three dimensions, the minimum bounding boxes for the projections of the

encapsulated points in two dimensions, can be used to find the minimum volume bounding

box for those points in three dimensions. We also provide proof of the forms the convex hulls

of the projected points take in two dimensions.

1.1.2 Minimum Bounding Box For Arbitrary D-Dimensional Poly-

topes

There exists a significant body of work focusing primarily on the three dimensional variant

of the problem. These methods suffer from drawbacks such as inefficient performance in

terms of time when the maxim volume optimization is obtained to sub-optimal results when

performance is improved. However, there hasn’t been a lot work done on the d-dimensional

variant of the problem. To the best of our knowledge excepting the theoretical technique

using diameter estimation defined in [1] and the possible extension of PCA to estimate

the bounding box, there does not exist a simple algorithm to find the optimized bounding

bounding box of a set of points defining convex polytopes in d-dimensional space. As men-

tioned previously having an optimized bounding box in d-dimension can have interesting

implications for database indexing and computer graphic algorithms. The tightness of the

bounding box encapsulating a set of data objects in d-dimensional space in these applications

is an important factor in the improving querying processing and intersection determination

3

respectively.

The results used to determine the minimum bounding box of a three dimensional cross

polytope as well the properties if their d-1 dimensional projections of these polytopes can

be generalized to some extent to d-dimensional arbitrary polytopes and projections in k

dimensional subspace where k < d. To determine the optimized bounding boxes of such

polytopes additional proofs and results are presented here that show that the bounding box

of a d-dimensional polytope can be defined in terms of their simultaneously local projections

in d dimensions. Combining these results we present a general method to find the optimized

bounding box for such polytopes.

The techniques presented here could be considered to lie in the class of exhaustive search

in the the d-dimensional rotation group SO(d) with specific heuristics such that the search

space is minimized. SO(d) is the group of all rotations about the origin of d-dimensional

space Rd. The heuristic utilized limits the time of execution by a constant factor while

giving the exact optimal for all cases tested in three dimensions. Furthermore, it extends

very easily to higher dimensions providing optimized bounding boxes again with tightly

controlled execution time. It decomposes the d-dimensional problem to a two dimensional

one, minimizing in 2d for the solution like certain variants of PCA. However, it is not

dependent on a provided or calculated direction like those variants and thus escapes the

associated drawbacks.

1.1.3 Querying And Indexing High-Dimensional Databases

For most large scale databases returning data points lying within a specified range efficiently

is extremely important. Range queries or similarity queries based on L1 distance are used

commonly in large scale multimedia databases containing sets of feature vectors. This chap-

4

ter focuses on a method to improve this functionality for queries in d-dimensional L1 space.

Using the L1 distance measure to carry out the range query results in an interesting side

effect. The range query forms a convex cross-polytope in d-dimensional space. For three

dimensions this a regular octahedron.

To achieve the targeted aim of improved efficiency in terms of improved I/O and execution

time, the range query is approximated with a minimal bounding box query using a topological

transformation base on the optimization approach for d-dimensional bounding boxes. This

query in conjunction with some heuristics is used to return equivalent results while achieving

the stated objectives.

For efficient execution of range queries in very large databases, usually a multi-dimensional

index is created and queries are implemented using this index. The effectiveness of an index

for implementing the range query is determined by the number of pages (amount of I/O)

accessed in the index tree and the time taken to return the data matching the query given.

The application methodology presented here to solve the range query problem provides

simple isometric transformations based on minimized bounding boxes in d-dimensional space

that offers significant performance improvement in terms of CPU time expended while uti-

lizing a simple heuristic to match or improve upon the page accesses necessary. We also

show how the improvements remain stable with increase in database size.

1.2 Basic Concepts

In the following sections the terms octahedron, cross-polytope and hyper-diamond refer to

regular octahedrons or cross-polytopes unless stated otherwise. Similarly, a polytope is a

geometric object with flat sides defined by a set of points in d-dimensions

5

1.2.1 Definitions

We first define some terminologies and definitions, which will serve as the basis of our

discussion.

Definition 1.2.1 (Axis Aligned Bounding Box). An axis aligned bounding box of a d-

dimensional polytope P is defined as the box whose body diagonal is delimited by the

minimum and maximum axial coordinate values of P .

The edges of an axis aligned bounding box are parallel to the axes of the coordinate

space.

Definition 1.2.2 (Oriented Bounding Box). An oriented bounding box of a d-dimensional

polytope P is a tightly fitting rectangular bounding box of an arbitrary orientation in the

d-dimensional space.

The edges of an oriented bounding box may not be parallel to the axes.

Definition 1.2.3 (Orientation in d-Dimensions). Given an arbitrary polytope P in d-

dimensions, all orientations of P can be obtained by rotating P in parallel with one or

more of the axial planes in the d-dimensional space while the vertex coordinates of the axes

that are not involved in the rotation remain fixed.

Definition 1.2.4. For a given k (0 ≤ k ≤) and d, if the axis-aligned bounding box of a

d−k dimensional projection of a d-dimensional polytope is its arbitrarily oriented minimum

bounding box, then the projection is said to be locally optimal.

6

1.3 Contributions & Structure

In this work we present algorithms that attempt to provide a solution to the problems just

discussed. While significant work has been done to solve the three dimensional variant of

the problem including one that guarantees an exact minimum bounding box, each set of

methods has a few problems that we attempt to address through the solution presented

here. The exact minimum bounding algorithm is quite difficult to implement and exponen-

tial in terms of the number of vertices of the polytope being bounded. In practice it rapidly

becomes infeasible to utilize in real world applications for polytopes having more than a

few tens of vertices. The fastest set of methods are based on using versions of PCA which

has been proven to be unbounded in the worst case and significantly sub-optimal in most.

Other techniques provide approximation bounds that isolate the optimal only up to certain

level of accuracy and could miss the exact optimal in most cases. Still others require several

runs to isolate an approximately optimal solution, which affects the feasibility of their use

in real-time applications. Applications like range queries in high dimensional multimedia

databases and collision detection in static and dynamic environments utilize bounding boxes

to implement the functionality required. Having a fast, simple method to optimize bound-

ing boxes in d dimensional space has interesting implications for these applications. In the

thesis we investigate initially a specific aspect of the problem, namely finding the minimum

bounding boxes of three dimensional regular cross-polytopes. We present additional theo-

rems on the nature of the projections of these bounding boxes in lower dimensions. We then

show how some of these results can be generalized to arbitrary d-dimensional polytopes and

provide additional theoretical results that can leveraged into a algorithm to find optimized

bounding boxes in d-dimensional space. To illustrate the implications in terms of real world

7

applications we discuss range queries in high dimensional data bases using topological trans-

formations based on the algorithm. We show how these transformations in conjunction with

some interesting heuristics significantly improve performance over existing state of the art.

8

Chapter 2

Related Work

Using boxes as abstractions to represent an object or a region of space encompassing a given

set of points is a common technique that has been used extensively in a variety of applications.

The objective is usually to simplify the calculations involved and provide an improved method

of describing the abstracted object/point’s interaction with its environment.

Other methods use constructs like a prism [2], the simplex [3], sphere [4] or cones [5] to

encapsulate points. However, these constructs do not lend themselves as well to optimized

partitioning as axis aligned minimum volume bounding boxes. In most cases the applicability

of the bounding abstractions in real world applications is limited compared to axis aligned

boxes.

There exist several methods in literature that present ways to determine a box bounding

of a given set of points. However, finding the exact minimum bounding boxes for set of

points in d-dimensions is an extant problem that has proved difficult to solve in practice.

2.1 Finding Bounding Boxes in 2-Dimensions

The simplest method for finding the bounding box of a given set of points is to use the

maximum range in each dimension to create an axis-aligned bounding box. The R-Tree [6],

packed R-Tree [7], and R*-Trees [8] are common methods used in database indexing that

utilize two dimensional versions of these measure for hierarchical partitioning. An optimal

9

solution to the problem does exist in two dimensions. This solution, known as the rotating

callipers was proposed by Godfried Toussaint in [9] based on an idea first presented by [10].

This algorithm constructs the convex hull of the point set given, and checks to see which

edge of the convex hull when coincident with an edge of a bounding box gives the smallest

area. It executes in linear time ϑ(n) for the number of vertices/points and being simple to

implement provides an effective solution to the problem.

2.2 Finding Bounding Boxes in 3-Dimensions

Given that most practical applications involve minimum bounding boxes for three dimen-

sional objects, the greatest amount of significant work has been done on the three dimen-

sional variant of the problem. The problem of finding minimal volume boxes circumscribing

a given set of three-dimensional points was investigated by O’Rourke in [11]. This work

demonstrated that for a three dimensional polyhedron defined by such a set of points, a

minimum volume bounding box would necessarily have two faces flush with two adjacent

edges of the enclosed polyhedron. It is the current best exact algorithm for the three di-

mensional problem, having a time complexity of ϑ(n3) in the number of vertices/points of

the convex hull. This algorithm is quite difficult to implement and as evinced by its time

complexity slows down considerably as the number of vertices increases. [12] [13].

All remaining algorithms attempting to solve this problem use approximation techniques

based on various heuristics. The primary objective in most cases is to speed up execution

while maintaining an acceptable level of accuracy. According to [14], these approaches can

classified into two main categories. The first one is based on brute force search using certain

heuristics to minimize the search space. These heuristics can involve sampling the search

10

space based on a uniform distribution as in [13] or formulating the search as an optimization

problem over the space of rotation matrices as in [14]. A combination of genetic algorithms

is then used to minimize the space searched. These methods provide bounding boxes in

three dimensions that can be quite accurate. However, the accuracy achieved is dependent on

running the algorithms multiple times to converge to an optimal result. For a given execution,

due to the randomness inherent to the genetic algorithms used the results produced can be

sub-optimal. Other methods use geometrical characteristics such as coincidence of edges or

faces of the convex hull with the faces of the bounding box as in [11], [15]. Another example

of this class of algorithms is [16] which uses directions defined by pairs of points to indicate

the two dimensional projection to be optimized for minimum bounding box. Variations of

this method are further elaborated upon in [12] to obtain minimum bounding boxes with a

given approximation factor. [17] gives the approximated bounding box in three dimensions

by solving the associated 2D problem. However, the space optimization obtained is sub-

optimal as it is based on the based on the assumption that solving the 2D problem in a

single instance in (SO)3 is sufficient to obtain the minimum bounding box . This limits the

search space significantly causing it to miss the optimal orientation in most instances. The

problem with most of these algorithms is the lack of accuracy (space optimization) that goes

hand in hand with the speed up obtained. Furthermore, if the heuristic used is not accurate

or good enough to sufficiently restrict the search space the gain in speed can be reduced and

even reversed.

The second category involves algorithms using principle component analysis (PCA) to

estimate the minimum bounding box. PCA is applied on the vertices to determine principle

axes of the frame. All or some of these axes can then be used to build up a bounding box.

Variants of this technique have been used in works like [18] [19]. However, it has been

11

shown in recent work [20] [21] [22] that the difference between the actual optimal and the

calculated optimal in variants of this method could be infinitely large. Thus, not only would

the global optimal be missed in most cases but the volume optimization obtained could be

negligible.

2.3 Finding Bounding Boxes in d-Dimensions

In d-dimensions other than axis aligned boxes, the only other unique method used aimed at

finding an optimized bounding box is presented in [16] [1] as a theoretical proof. It leverages

a technique to estimate the diameter of the given points set first proposed in [23] and uses

that as a constant factor to approximate the bounding box. This method is based on work

originally done by [24]. However, approximating the diameter using this method provides a

relatively rough metric for estimating the minimum bounding box with the result that the

optimization obtained is diminished. It proposes a bound of 2dd!V ol(Bopt(P)) for the final

volume of the bounding box where d is the number of dimensions and Bopt is the theoretical

minimum bounding box of a d-dimensional polytope P . This being a very large bound it

can result in significantly sub-optimal bounding boxes.

The minimized bounding boxes obtained from the the approach presented here can have

important implications like medical imaging and treatment [25], multimedia [26], [27], [28]

and computer graphics [29] [30] amongst others. For high dimensional multimedia databases,

there exists a significant amount of work on querying and indexing techniques. As the

optimized bounding boxes presented in this work have a direct application for carrying out

queries on indexed high dimensional data bases we present an overview of existing work in

the field.

12

2.4 Querying And Indexing Techniques in High Di-

mensions

A lot of work has been done on carrying out range queries and nearest neighbor queries

using database indexes. k-NN (k-Nearest neighbor) queries can be considered a special

case of range queries which only return the set of k records that are most similar to query

record. A k-NN query can be implemented by keeping track of distance dk of current kth

neighbor [31,32]. Any data node whose index bounding box is farther than dk can be safely

removed from consideration. Conceptually, this is equivalent to carrying out a range query

with a range dk. As the query is executed, the range decreases. [33, 34] present a detailed

survey of these querying techniques.

There has been a lot of work on executing range queries and nearest neighbor queries us-

ing database indexes. A detailed discussion on these topics can be found in [35] [36]. Most

of the existing work executes range queries by measuring distance of the query center from

the minimum bounding rectangle (MBR) at each subtree and expanding a subtree only when

certain distance criterion is satisfied [37] [6] [38] [39]. Other techniques utilize a distance met-

ric distance or similar approximations integrated with the index structure [40] [41] [42] [43].

Box queries are executed by testing if the query box overlaps with the minimum bound-

ing rectangle of a subtree in the index [44]. There a variety of high dimensional indexing

techniques in dimensions that use a tree structure to organize the d-dimensional data. Tech-

niques like the Box Tree [45] and the R-Tree [46] can be used to arrange the data into an

index, which can then be used to return data matching specified range queries. [47] present

algorithms to produce trees with small worst case complexity. Also a method is provided

to convert Box Trees to R-Trees such that the query complexity is optimized. Other tree

13

based mechanisms include the STAR-Tree [48], the SS+-Tree [49], the HYBRID Tree [50],

the X-Tree [51], G-Tree [52] and VA-File [53]. Any of these methods can used to carry range

queries. The search space can be reduced whenever the distance between a given data page

and the center of the query does not match the range criterion given. Some schemes try

to incorporate distance metric (or other distance statistics) directly into the index structure

itself. [54], [26] and [?, 55–57].

These methods remove nodes by first trying to determine the maximum distance of any

data point in database being indexed from the from the subtree rooted at the node under

consideration. The nodes not satisfying the distance metric are dropped.

In addition to indexing, query processing methods have also utilized transformation of

data from one reference space to another to provide performance enhancement. An overview

of these methods is provided in [58]. Those methods can be divided into two main categories,

first one being those methods which map high-dimensional data down to lower dimensions

before carrying out the range queries. These include techniques which map the d-dimensional

data to one dimension using space filling curves such as z-curve [59] or hilbert curve [60].

For mapping to dimensions greater than one, [61–64] propose transformations that focus on

reducing dimensionality in general rather targeting reduction to a specific dimension. These

works use methods like Principal Component Analysis (PCA) or Singular Value Decomposi-

tion (SVD) to achieve the dimension reduction thus avoiding the curse of dimensionality [65]

and reducing redundancy.

The second category consists of methods which map polyhedrons or polygons to high

dimensions. After the transformation has been affected then an established point access

method such as the grid file [66] can be used to carry out the queries. The use of Z-curves

to implement box queries has also been proposed in methods like [67, 68].

14

An interesting data space transformation based approach presented in [69, 70] as way to

carry out approximate range queries and k−NN. This approach is based on the premise that

the distances of similar data objects in the database from a specified set of reference points

(reference objects) according to the specified distance metric will also be similar. Using

this principle, the ranks of data objects can be used as an abstraction rather than storing

the objects themselves. They discuss several heuristics to improve I/O and accuracy. This

approach can used simultaneously with several different distance metrics such as Spearman

Footrule distance, Kendall Tau distance and Spearman rho distance [70, 71]. The main

drawback to these techniques is that they are sensitive to the statistical characteristics of the

database and the determination of certain runtime parameters might require a data analysis

affecting the complexity and accuracy. Additionally, the number of data objects needed for

the determination of rank increases with increasing database size which the feasibility of

using this method for dynamic databases.

Linear transformation in d-dimensional space is an integral part of linear algebra [72].

The application of these transformation with respect to their applications to database queries

has not been extensively explored. To the best of our knowledge, other than the work in [73]

,there is no other work on mapping of range queries to box queries using data transforma-

tion. However, the transformation used there is inefficient in terms of the the amount of false

positives in d-dimensions. The work focuses on using linear transformation within the frame-

work of existing dynamic database indexes for improving page accesses for range queries. It

also guarantees recall and scalability with increasing database size thus overcoming some

of the disadvantages of prior work. The same set of transformations can have important

implications for collision detection algorithms used in computer graphics to model object

interaction in static and dynamic environments. An overview of existing work in this field

15

is provided in the next section.

2.4.1 Collision Detection Using Bounding Boxes

Interference and collision detection are fundamental problems in a variety of application

domains, such as physically-based modeling, robotics, animation, computer-aided design,

manufacturing, and computer simulated environments. CAD/CAM systems, for instance,

use collision detection for clearance verification in an assembly [74], [75] and robot systems

use collision detection for path planning [76] and, in computer graphics, collision detection

works in conjunction with collision response to make animation appear more realistic and

believable [77], [78] and [79].

Several different approximations for the objects within a given environment are possi-

ble [80], [79], [78]. However, due to the simplicity of calculation and shape, calculating

intersecting bounding boxes is always more efficient than calculating intersecting objects. In

addition to collision detection bounding boxes are also utilized for visible surface determi-

nation, re-projected pixel imaging [81] and view frustum culling [82]. [83] provides a good

overview of some of the ways bounding boxes can be used in computer graphics. Modeling

algorithms use bounding boxes to define complex shapes as combinations of simpler ones

as well as to determine the minimum amount of space require to package components in

an assembly [17]. Animation techniques used bounding boxes to approximate objects when

simulating physical based motion [84]. However, he use of bounding boxes in collision de-

tection is representative of its use in other algorithms [83]. The tightness of the bounding

box used to approximate the underlying abstraction or object is an important performance

constraint in these applications.

Extensive work has also been done on detecting interpenetration of objects in static and

16

dynamic environments using oriented bounding box hierarchies. OBB-Trees [19] were the

first the propose to a hierarchical representation of models using tight fitting oriented bound-

ing box trees. A runtime traversal of these trees tests for overlap between oriented bounding

boxes in any two to determine collision. Other works [85], [86] [87] [88] [89] improve upon

the OBB Trees presented here by using additional bounding volume abstractions and com-

ponent decomposition respectively. Later works [90], [91]try to improve collision detection

by improving upon the metrics and methods used to calculate the bounding box. However,

the oriented bounding boxes used to approximate models in the constructed tree are sub-

optimal in most cases. The standard method involves using PCA to find an orientation of

bounding box of a model such that its volume is minimized. As discussed in [20] and [22]

this technique while fast can result in bounding boxes that are significantly sub-optimal.

Most of these applications utilize the three dimensional variant of the problem, how-

ever [83] and [81] show that collision detection in Rd can also be carried out using d-

dimensional bounding boxes. They provide bounds on the ratio of the box intersections

and the object intersections. Furthermore, the bounds derived are shown be better applica-

ble for convex polytopes in d-dimensional space. The minimization of the bounding boxes

used to encapsulate these polytopes has a direct effect on the bounds proposed as tighter

bounding boxes result in fewer intersections.

17

Chapter 3

Minimum Bounding Box of a Three

Dimensional Cross-Polytope

The ability to minimize the time required for the determination of the minimum bounding

box of a regular octahedron has significant implications for a variety of applications. Min-

imum bounding boxes in three dimensions are used to hierarchically partition a given set

of points. Creating and maintaining these partitions is an integral part of applications like

collision detection and scene rendering in computer graphics. Furthermore, statistical appli-

cations like storing and performing range queries on large databases utilize these constructs

to a large extent to optimally partition and look-up data. We focus on a particular as-

pect of this problem, namely the determination of minimum volume bounding boxes for sets

of points that define regular, uniform octahedrons in three dimensional space. Given that

the set of points to be partitioned in time-sensitive applications like database range-search

queries define octahedrons in three-dimensional space, optimizing minimum bounding box

calculation for such constructs becomes rather important.

3.1 Two Edges Flush

The problem of finding minimal volume boxes circumscribing a given set of three-dimensional

points was investigated by O’Rourke in [11]. This work demonstrated that for a three di-

18

mensional polyhedron defined by such a set of points, a minimum volume bounding box

would necessarily have two faces flush with two adjacent edges of the enclosed polyhedron.

Given this condition we state the following theorem for the special case where the convex

hull of a set of points in three dimensional space defines a regular octahedron.

Theorem 1:

Every minimal volume bounding box of a set of points describing a regular uniform octahe-

dron in three dimensional space must have at least two faces flush with two adjacent edges

of the enclosed octahedron.

Proof:: The proof follows from O’Rourkes Theorem and is detailed in [Rourke84]. ∎

Using this result we can develop an algorithm to determine the minimum volume bounding

box for a regular octahedron. Such an algorithm would search through all possible combina-

tions of adjacent edges in the octahedron, creating a bounding box for each pair, calculating

its volume and isolating the one which has gives the smallest value. However, we can signif-

icantly improve upon this technique by leveraging one of the unique structural properties of

a regular octahedron. This property is stated in the following lemma:

Lemma:Any two adjacent edges of a uniform regular octahedron are separated by an angle

of either 90 or 60 degrees

This suggests that there can only be two possible unique combinations of adjacent edges

with which the faces of a bounding box can be flushed. As the the octahedron is uniform,

every other combination would be a reflection of these two. Utilizing this observation, we

propose an additional necessary condition for the minimal volume bounding box of a regular

octahedron that is significantly stricter than the one discussed above.

19

3.2 One Face Flush

In this section we further constrain the possible orientation of a minimum volume bounding

box enclosing a cross polytope, by observing that for the special case of a regular octahedron

the minimum volume bounding box would have one face flush with a face of the convex hull

in addition to having two face flush with two adjacent edges of the enclosed octahedron.

Theorem 2:

A minimal volume bounding box must have at least one face flush with a face of the enclosed

regular octahedron as well as having two flush with two adjacent edges.

Proof: We consider two cases, one in which the angle between adjacent edges is 90° and the

other when the angle between the two is 60° as discussed earlier. Based on the geometry of

the regular octahedron (the length of all edges being equal), all pairs of adjacent edges in the

octahedron not bounding the same face of the octahedron, define three mutually orthogonal

squares. Therefore, the angle between all such pairs of edges would be 90°. Conversely, in

the case where two adjacent edges are at an angle of 60° , according to the geometry of

the regular octahedron (the length of all edges being equal), every face of the octahedron is

an equilateral triangle. Since the angle between two edges of such a triangle is always 60°,

all pairs of adjacent edges bounding a face of the octahedron would have an angle of 60°

between them.

3.2.1 Case - I: Angle Between Adjacent Edges is 90 Degrees:

In the first case, for simplicity we assume that the octahedron (or the 3D hyper-diamond) is

rotated in such a way that one of the edges is flush with the X-Y plane and the other edge

is flush with Z-X plane. Figure 1 shows the projection of the octahedron on the X-Y plane.

20

Figure 3.1: Projection of the Octahedron on the X-Y Plane

0 10 20 30 40 50 60 70 80 90
Theta(degrees)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

M
BR

 V
ol

um
e

fo
r u

ni
t r

an
ge

 q
ue

ry

Figure 3.2: Volume of the MBR as a function of θ

Initially, the octahedron is positioned so as to have line OA parallel to the Z-X plane. Let θ

be the angle by which the figure is rotated. As can be seen from the figure, the length l of

the minimum volume bounding box for the octahedron is the projection of CA on to X-axis

and its height h is equal to the projection of BD on to Y-axis. The breadth b of the box

remains constant irrespective of θ. Hence, volume of the box can be calculated as V = lbh.

As the polytope rotates Figure 2 shows volume of the MBR as a function of θ for 0 ≤ θ ≤ 90.

Cases for other values of theta are similar to these with slight changes in the orientation,

and are omitted hence. It can be seen that the function is discontinuous at two points which

also happen to be the points of minimum volume. This is illustrated by the graph in fig. 2.

It can be shown using trigonometry that these two points correspond to the angles θ =

φ and θ = 90−φ,whereφ = 35.264○. As the orientation of the cross polytope at each of these

21

two points ensures that two parallel faces of the octahedron are flush with the two parallel

faces of the MBR, it follows that if the bounding box is oriented around any two adjacent

edges with an angle of 90 between them, minimal volume can only be achieved when one of

its faces is flush with a face of the octahedron.

3.2.2 Case - II: Angle Between Adjacent Edges is 60 Degrees

The starting condition is the same in this case. An axis-aligned bounding box is constructed

with two adjacent edges of a regular octahedron having an angle of 60 between them flushed

with two adjacent faces as shown in Fig.4. For simplicity we assume that this bounding box

is placed at the origin with the octahedron oriented as shown in the figure (the face defined

by vertices V 1, V 2andV 3 has the two edges with an angle of 60 between them).

Figure 3.3: Position of Octahedron Against the Adjacent Faces of MBB for Case-I

Due to the constraint just mentioned (two edges need to be flushed with two adjacent

faces), the only possible rotation of the cross-polytope will result in the movement of the

vertice V 1 on the Y-Axis, V 3 on the Z-Axis and the edge V 1 − V 2 over the face of the

bounding box. The distance from origin of this point is taken as a. Thus a varies over a

finite range for the possible rotation.

22

In its initial position (as shown in Fig. 4), the three vertices coincident with faces of the

bounding box are given by the following coordinates.

V1 = (0, a,0)

V2 = (x2, y2,0)

V3 = (0,0, z3)

Based on the fixed distance D between the vertices V1, V2 and V3,we derive the following

equations,

D2 = (x2)2 + (y2 − a)2

D2 = (x2)2 + (y2)2 + (z3)2

D2 = a2 + (z3)2

where D is the length of a side of the cross-polytope.

Figure 3.4: Position of Octahedron Against the Adjacent Faces of MBB for Case-II

Solving for x2, y2 and z3, we can thus define each vertex in terms of a as given below,

23

V 1 = (0, a,0)

V 2 = (
√

a2 − (2a
2 −D2

2a
)2, 2a

2 −D2

2a
,0)

V 3 = (0,0,
√
D2 − a2)

Using the fixed distances between the vertices of the cross-polytope, we can develop

similar equations in terms of a and D. Solving for the variable a we obtain the following

values for the coordinates of vertices V 4,V 5 and V 6

V 4 = (−(
√
−a2+d2(a3−ad2+

√
2

√
−a2(4a4−5a2d2+d4))

3(a3−ad2)),

(

√
4d2−d4

a2
(4a3−ad2+

√
2

√
−a2(4a4−5a2d2+d4))

12a3−3ad2) ,

(4a3−ad2−
√
2

√
−4a6+5a4d2−a2d4)
3a2

)

V 5 = (
√
−a2+d2(2a3−2ad2−

√
2

√
−a2(4a4−5a2d2+d4))

3(a3−ad2) ,

2a3+ad2−2
√
2

√
−4a6+5a4d2−a2d4
6a2

,

4d2−d4/a2√(−4a3+ad2+2
√
2

√
−a2(4a4−5a2d2+d4))

24a3−6ad2)

V 6 = (
√
−a2+d2(2a3−2ad2−

√
2

√
−a2(4a4−5a2d2+d4))

3(a3−ad2) ,

a3−ad2+
√
2

√
−a2(4a4−5a2d2+d4)
3a2

,
√
4d2−d4/a2(4a3−ad2+

√
2

√
−a2(4a4−5a2d2+d4])

12a3−3ad2)

Given that every coordinate of each vertex is a function of a, we can generalize the

equation of a vertex of the cross polytope as,

Vi = (fxi(a), fyi(a), fzi(a)) (3.1)

24

where i= 1,2,...,6 and fxi,fyi and fzi are the functions defining the x,y and z coordinates

respectively for each vertex.

The length of each dimension of the minimum bounding box is given by the minimum

of the maximum values attained by the coordinates of each vertex. From above it is clear

that the orientation of the octahedron is determined by the range over which a fluctuates.

Based on the fact that V1 has to remain on Y-Axis, the edge (V1, V2) on the XY-plane and

assuming a unit octahedron for simplicity, we find the value of a has to be between 1√
2

and
√
3

2
Utilizing basic trigonometry and the structural properties of the octahedron. The

minimum of the maximum value attained by a coordinate in each dimension is thus given

by,

LengthofMBBx =min1≤i≤6(max
1√
2
≤a≤
√
3

2

(fxi(a))) (3.2)

LengthofMBBy =min1≤i≤6(max
1√
2
≤a≤
√
3

2

(fyi(a)) (3.3)

LengthofMBBZ =min1≤i≤6(max
1√
2
≤a≤
√
3

2

(fzi(a))) (3.4)

where i = 1,2,...6.

To isolate the limits of the range of rotation of the polyhedron, we assume a unit poly-

hedron. Once the limits of the possible movement of the octahedron along its single degree

of freedom are identified, specified in terms of the variable used as frame of reference i.e. a,

we can obtain results for equations 2-4 above. This is done by finding first the local max-

ima and than the global minima of the coordinate equations for each vertex. After finding

the local maxima for each dimension for every vertex we found that along the X-dimension

only the equations for the x-coordinates of vertices V 2 and V 6 are differentiable and display

25

monotone convergence as functions of a over the given range. The x-coordinate equation for

V 5 is also differentiable, it retains a lesser range of values over the given range and thus is

irrelevant when considering local maxima. While the function for the x-coordinate of V 2 is

monotonically increasing, the value of the function for the x-coordinate of the other vertex

is monotonically decreasing. Thus, over the given interval the global minima would be point

of convergence. The equations are,

x2 =
√
(a2 − ((2a2 − d2)/(2a))2)

x6 =
√
−a2 + d2(2a3 − 2ad2 −√2

√
−a2(4a4 − 5a2d2 + d4))

3(a3 − ad2)

However for the y-coordinate equations, no such convergence occurs. Here we determine

the local maxima for the y-coordinate of V 4, providing a measure of the height of the

minimum bounding box by the following equation.

y4 =

√
4d2 − d4

a2
(4a3 − ad2 +√2

√
−a2(4a4 − 5a2d2 + d4))

12a3 − 3ad2)

Similarly, the z coordinate equations for vertices V 4 and V 3 taken as a function of a are

monotonically increasing and monotonically decreasing over the given range respectively.

Thus, these functions are differentiable everywhere on the given interval allowing us to

determine the global minima in the next step. Also, as these two functions converge to the

same point over the given interval the global minima would be the point of convergence.

Hence, we find that the length of the minimum bounding box in Z-dimension is given by

the following equations.

26

z4 = (4a
3 − ad2 −√2

√
−4a6 + 5a4d2 − a2d4)
3a2

z3 =
√
(d2 − a2)

Figure 3.5: Local Maxima of X

The properties discussed above are easily verified by plotting the coordinate equations of

each vertex as a function of a over the range of rotation identified as shown in figures 5-7.

These three extremities give the minimum volume bounding box since V olumeofMBB =

Length ∗ Breadth ∗ Height. Minimizing the value of the x,y and z-coordinates over the

given range, we find the orientation of the octahedron (given by the value of a at point of

global minima) inside the minimum bounding box. This minimization results identifying the

orientation with a =
√
3

2
as the point of global minimum. As we can see from Fig. 3, this

orientation corresponds to the previous case where the angle θ = φ and θ = 90 − φ, where

φ = 35.264○ and two parallel faces of the octahedron are flush with two parallel faces of the

bounding box. Thus it follows that if the bounding box is oriented around any two adjacent

edges with an angle of 60 degrees between them, minimal volume can only be achieved when

one of its faces is flush with a face of the octahedron. ∎

27

Figure 3.6: Local Maxima of Y

Figure 3.7: Local Maxima of Z

3.3 Bounding Box Under Projection

We now have a trivial method to determine the bounding box of a three dimensional cross

polytope. In the following section we postulate about the characteristics of a three dimen-

sional cross-polytope under projection when encapsulated with such a bounding box. The

discussion is made with the assumption that the cross-polytope has already been optimally

oriented such that its axis aligned bounding box is also the arbitrarily oriented minimum

bounding box.

3.3.1 Minimality of Projected Bounding Box

If the bounding box of a three dimensional regular cross polytope is minimal, then we pos-

tulate about the nature of its projections in lower dimensions as follows,

Theorem 3:

28

Given an optimally oriented convex 3-polytope P and its axis-aligned minimum bounding box

B, any projection p : R3 → R2 of B will also be a minimum bounding box for the correspond-

ing projection of P.

Proof: By way of contradiction, assume there exists a three dimensional cross polytope

P and a rotation R which when applied to P results in its axis-aligned minimum bounding

box B also becoming its minimum arbitrarily oriented minimum bounding box. Assume

there exists a projection p’ of P such that p′ belongs to the space R2 and the bounding box

b’ (corresponding to the projection of B along the same dimensions)is not an arbitrarily

oriented minimum bounding box of the projection p’ of P rotated by R. Then there exists

an arbitrarily oriented minimum bounding box b” of the projection p’ which is different from

b’. Let R′ be the rotation that rotates b′′ such that it is an axis-aligned bounding box. The

area of the bounding box is the product of the ranges in each dimension. Since projection

discards dimensions not subject to the projection, any rotation of the projection does not

change the dimensions of the axis not subject to projection for an axis aligned bounding

box. However, there does now exist a rotation of the projection such that an axis aligned

bounding box is smaller than b′. Hence, the composition of R and R′ is a rotation that will

rotate the cross-polytope P such that a smaller axis-aligned minimum bounding box exists.

This contradicts our earlier assumption of the optimality of the three dimensional bounding

box and hence is not possible. ∎

29

3.4 Cross-Polytope under Projection

The theorems just discussed confirm that if the bounding box in three dimensions is optimal

then the bounding boxes of the two dimensional projections are also optimal. This also leads

us to a modified definition of the local optimality of the projection of a cross-polytope. This

is stated as:

3.4.1 Definitions

Local Optimality:If the axis-aligned bounding box of a two-dimensional projection of a

3-dimensional cross-polytope (where k = 1..2) is it’s arbitrarily oriented minimum bounding

box requiring no rotation of the projection to make it smaller, then the projection is said to

be locally optimal. For example, the diamond ABCD of fig.3.9 is the 2D-projection in XY

Figure 3.8: 3D-diamond in upright position

plane of the 3D-regular octahedron of 5.2. Projection ABCD is not locally optimal because

the axis aligned bounding box for this projection is A’B’C’D’ as shown by the dotted line in

the figure, which is not the smallest bounding box of the projection. We get this optimal axis

aligned bounding box by rotating the projection ABCD by an angle of 45°. Note that we are

not rotating the 3D diamond, instead, we are just rotating the projection if it’s bounding

box is not already optimal.

30

A’

B’

C

A

DB

D’

C’

X

Y
bounding box for ABCD

Figure 3.9: Projection of 3D-diamond on XY-plane

On the other hand, if the 3D-regular diamond itself is rotated from it’s upright position

of fig.5.2 by a 45°parallel to the XY- plane, the XY-projection of this newly oriented 3D-

diamond is a square and bounding box of a square is the square itself. Thus, this projection

is locally optimal. Using this definition we can further elaborate on the situations where

multiple projections of the same cross-polytope exhibit local optimality at the same time.

Thus:

Simultaneous Local Optimality:If the two-dimensional projections of the 3-dimensional

cross-polytope in each coordinate plane are locally optimal then it is said to have simultane-

ous locally optimal projections.

From Theorem 3, we see that minimum bounding boxes of each two-dimensional projection

of the 3-dimensional optimally oriented cross-polytope, corresponds to the two-dimensional

projections of the minimum bounding box of the object in the corresponding planes. This,

therefore, leads to the following corollary:

Corollary: Given a convex three dimensional cross-polytope P, there exists at least one set

of simultaneously locally optimal two- dimensional projections.

31

3.4.2 Projected Polygons

In the case of a three dimensional cross-polytope, we can make additional statements about

the nature of the projections of the polytope in two dimensions. The first of these statements

is given the subsequent theorem,

Theorem 5:

Given a convex three dimensional cross-polytope P the convex hull of any projection p :

Rd → Rd1 , 1 < d1 < 3 of P will either be a hexagon, a rhombus or a rectangle.

Proof: The structural properties of a regular octahedron ensure that only two vertices of

the polytope can be collinear at one time. Given this property, a vertex first projection onto

one of the axial planes for any orientation of the octahedron would require that either one

pair of vertices, two pairs of vertices or no pair of vertices be simultaneously coincident in

the same planar projection.

Case - I: One Vertex Pair Coincident - The point formed from the projected pair

would be bound by the convex hull of the remaining four and the planar projection obtained

is rectangular.

Case - II: Two Vertex Pairs Coincident - The two pairs needs must lie on two

parallel edges of the polytope thus forming two opposite points on the planar projection.

The remaining two vertices are also opposite to each other and thus when projected onto

the plane, form two more opposing points creating a rhombus.

Case - III: Three Vertex Pairs Coincident - Each vertice is projected as a point onto

the plane forming a hexagonal envelope. ∎

32

3.5 Minimal Bounding Box by Optimal Projections

Utilizing the unique characteristics of the two dimensional projections of a three-dimensional

cross-polytope just discussed, a method can be developed to isolate the minimum bounding

box of the cross-polytope by identifying the corresponding combination of locally optimal

projections. The first step is to determine the constraints on the simultaneous local optimal

projections possible, as is discussed in the subsequent section.

3.5.1 Unique Simultaneous Local Optimality

We can use the result of the theorem just discussed and Theorem-3 to define the optimal

orientation of the three dimensional cross-polytope in terms of simultaneously locally optimal

projections. This can be stated as:

Theorem 6:

Given a three dimensional cross-polytope P centered at the origin with each of its vertices

lying on a coordinate axis, there exists only one combination of two dimensional projections

in the coordinate planes that are simultaneously locally optimal, corresponding to the optimal

orientation of the polytope.

Proof: Case - I: No Two Adjacent Edges Flush(Object Orientation is Sub-

Optimal) :

For this scenario we assume that no two adjacent edges of the object P are flush with two

adjacent faces of the bounding box B. This implies that the orientation of P is sub-optimal

and the bounding box B of P is not minimal. From Theorem-5 we see that the convex hulls

of the two dimensional projections in the coordinate planes are a combination of rhombuses,

hexagons and rectangles. We now consider each projected shape in turn and determine the

33

conditions under which they become locally optimal.

Rhombus: Consider a projection p’ of P on the XY -plane which forms a rhombus. For

p’ to be locally optimal, one of its edges must be coincident with one of the axes. However,

we see that rotating p’ to obtain the required orientation corresponds to rotating P such that

one of its faces is coincident with a face of B. By Theorem-1 this corresponds to the optimal

orientation of the object, contradicting our starting assumption that no two adjacent edges

are flush with adjacent faces of B. Therefore, any combination of two dimensional projections

containing a rhombus cannot be simultaneously locally optimal.

Hexagon: Consider a projection q’ of of P on the XZ -plane which forms a hexagon.

For q’ to be locally optimal, at least two of its edges also need to be parallel with one of the

axes and at least one must be coincident. Applying the rotation required to make the edges

parallel, results in a corresponding change in the orientation of P such that the edges of P

projected onto the XZ-plane to give the edges of q’ being made parallel, become coincident

with opposing faces of B. Due to the structure of P, any such pair of edges are joined with an

adjacent edge that becomes coincident with an adjacent face of B contradicting our starting

assumption. This precludes the possibility of a locally optimal hexagonal projection under

the given conditions.

Rectangle: Proving the non-existence of simultaneous local optimality in all cases where

the combination of projections on the coordinate planes contain a hexagon or a rhombus,

leaves us with a single scenario where all of the projections are rectangles. A rectangular

projection requires two pairs of adjacent edges forming a closed ring such that the angle

between each pair is 90 degrees. Due to the structure of the octahedron, at no point in

time can there be more than one such ring for any orientation of the polytope. Therefore, a

combination of three rectangular projections is not possible.

34

Hence, there is no possibility of a simultaneously locally optimal combination of projec-

tions occurring when no two adjacent edges of the cross-polytope are flushed with the faces

of the bounding box.

Case - II: Two Adjacent Edges Flush: Object Orientation May Be Optimal:

As discussed earlier, any two adjacent edges of the polytope will have an angle of either 60°

or 90° between them. Assume that the polytope is oriented such that two edges with an

angle of 60° between them are flush with adjacent faces of the bounding box. A projection P

of the object on the XY-plane forms a hexagon, given that no two vertices of the polytope

have the same coordinates in the plane. For this hexagon to be locally optimal, it needs to

have at least two edges parallel to one of the axes, with one being coincident to it. Since this

is not the case here, it is not locally optimal. From the orientation of the polytope and from

Theorem-1, the range of rotation of the polytope is limited such that for the given range, the

projection of the polytope on the XY-plane remains a non-locally optimal hexagon except at

the boundary where it becomes a rhombus. At this boundary the projection is optimal. For

all other orientations it is sub-optimal, meaning that the combination of projections cannot

be simultaneously locally optimal.

Now, for the case where two adjacent edges with an angle of 90° between them are flush

with two adjacent faces of the bounding box. As we see from Fig.2, the projection of the

polytope on the XY-plane is a rhombus for the entire range of possible rotations. For the

rhombus to be locally optimal, one of its edges must be coincident with one of the axes. From

the discussion above, this is only possible for the optimal orientation of the polytope. This

precludes the existence of a simultaneous local optimal combination of projections for all

possible orientations of the polytope under the given conditions (the rhombus is sub-optimal

for all these orientations).

35

Therefore, we see that there can only exist a single unique combination of two projections

that is simultaneously locally optimal. ∎

3.5.2 Simultaneous Local Optimal By Combination Reduction

The uniqueness of the simultaneous local optimal projections possible for the three-dimensional

cross-polytope combined with the limitations on the polygonal characteristics of those pro-

jections can now be leveraged into a process for isolating the combination of projections that

correspond to the minimum bounding box.

From the previous theorem we know that there are three possible polygonal convex hulls

for the two dimensional axial planar projections of the octahedron namely a hexagon (H), a

rhombus (diamond)(D) and a rectangle(R). Since were only looking for a unique combination

of projections that can occur simultaneously on the three coordinate planes, the order in

which they occur is not important and we need only consider the possible combinations of

these projections occurring simultaneously on the three coordinate planes xy,yz and zx. This

leaves us with the following possible combinations that could correspond to the simultaneous

local optimal,

HHH HHR HHD HRH HRR HRD HDD RRR RRD RDD DDD

Now, we try to remove all projections that are not possible due to the structural con-

straints of the octahedron. In the set of combinations just listed, there are several with

multiple rectangular projections. However, if there are two rectangular axial planar projec-

tions, the projection in the third plane has to be rectangular too since the coordinate values

it shares with the other planes would result in equivalent parallel edges in the plane. This

is obviously not possible as a combination of three rectangular projections would result in a

cube in three dimensions. Thus, removing all combinations with multiple rectangles:

36

HHH HHR HHD HRD HDD RDD DDD

For the octahedron to be optimally oriented, it must have at least two edges flush with

two adjacent faces of the axis aligned minimum bounding box. This implies that the angle

between any two dimensional projection of these edges would be 90° . Thus, the projected

shape containing these two edges would need to have an internal angle of 90° w.r.t to the

coordinate plane in which it exists.Hence, we only consider combinations with rectangular

projections. Thus we have,

HHR HRD RDD

From Theorem 1, we know that if the three dimensional object is optimally oriented each

projection has at least one edge flush with an edge of its axis aligned minimum bounding

box. Given the structural constraints of an optimally oriented octahedron, if a diamond

has one edge flush on one plane and the rectangle is locally optimal on another then the

third projection cannot be a diamond without disturbing the optimality of the other two

projections. Thus we are left with,

HHR HRD

Similarly, any orientation which has a hexagonal projection occurring simultaneously

with a rectangle, such that both of them have at least one edge flush with one of the axes,

cannot have a hexagonal projection in the third plane without compromising the optimality

of the other two. This leaves only one combination of two dimensional projections that can

correspond to an optimally oriented octahedron which is:

HRD.

This leads us to the following result,

Corollary: Given a convex three dimensional uniform regular octahedron P, any simul-

37

taneous locally optimal projections pi : R
d → Rd1 , 1 < d1 < 3, 0 < i < 4 of P will consist of a

hexagon, a rectangle and a rhombus.

Proof: The proof follows from Theorems 5 and 6 and the process just discussed. ∎

Thus the minimum bounding box of a three dimensional cross-polytope can be identified by

projecting the polytope onto the coordinate planes and orienting the polytope such that the

combination of those projection satisfy the constraints on the structure of their convex hulls.

3.6 Summary

To summarize, this chapter provides a discussion of methods to determine the minimum

bounding box of a three dimensional cross polytope as well the discussing the characteristics

of the two dimensional projections of these polytopes when encapsulated with a minimum

bounding box. Identifying a minimum bounding box on the basis of face coincidence results

in a significant speed up in the calculation of minimum volume bounded boxes. Given that

three-dimensional boxes which enclose sets of points are used for maintaining hierarchical

partitioning of sets of points. These data structures have important applications in computer

graphics (e.g., for fast rendering of a scene or for collision detection) and statistics (for

storing and performing range-search queries on a large database of samples). We focus on a

particular aspect of this problem, namely the determination of minimum volume bounding

boxes for sets of points that define regular octahedrons in three dimensional space. Given

that the set of points to be partitioned in time-sensitive applications like database range-

search queries define octahedrons in three-dimensional space, optimizing minimum bounding

box calculation for such constructs becomes rather important.

38

In the next chapter we try to generalize some of the characteristics identified here for

arbitrary n-dimensional polytopes. We try to postulate about the nature of the projections

of such a polytope in d-k dimensions. We will then leverage those results to find a simulta-

neously locally optimal combination of projections corresponding to the optimal orientation

of the polytope, such that finding the minimum bounding box of such polytopes becomes

an exercise in finding a simultaneously locally optimal combination of projections in two di-

mensions. These results could have significant usage in statistical analysis, high dimensional

databases and computational geometry.

39

Chapter 4

Optimized Bounding Box of Arbitrary

D-Dimensional Polytope

Using minimal bounding boxes to encapsulate or approximate a set of points in d-dimensional

space is a non-trivial problem that has applications in variety of fields including collision

detection, object rendering, high dimensional databases and statistical analysis to name a

few. While a significant amount of work has been done on the three dimensional variant

of the problem (i.e. finding the minimum volume bounding box of a set of points in three

dimensions), it is difficult to find a simple method to do the same for higher dimensions.

Even in three dimensions existing methods suffer from either high time complexity or results

which can be significantly suboptimal when approximation is used to speed up in execution

time. In this chapter a new approach to find the optimized minimum bounding boxes of

a set of points in d-dimensional space is presented. The solution also gives the optimal

bounding box in three dimensions with a much simpler implementation while significantly

speeding up the execution time for a large number of vertices. The proposed approach works

by constructing the convex hulls of a given set of points and optimizing the projections of

those hulls in two dimensional space using the new concept of Simultaneous Local Optimal.

Finding minimum bounding boxes in d- dimensional space is important for a variety of

applications. The three dimensional variant or subset of the problem has greater utilization,

40

as illustrated by [14] which provides an excellent listing of the many applications of having

an optimal method to find minimum bounding boxes in three dimensions. It mentions the

importance of finding a solution to this problem in applications like querying and indexing

high-dimensional databases [92], collision detection [93] [94] [95] [19], rendering scenes

quickly [96]or mesh reparameterization [97]. In most of these cases the bounding box

is used as an approximation of convex objects, as its regularity lends itself well to fast

computations compared to an object’s convex hull. While other bounding shapes can also

be used, such as bounding spheres [4], bounding cylinders and cones [5] all of which have

their own drawbacks and advantages [13], none lends itself as well to approximation or has

the optimization advantages as a axis-aligned minimum bounding box.

Applications for optimized bounding boxes in higher dimensions are more sparse. How-

ever,recent work [98], illustrates the significant advantages to be obtained in querying and

indexing high dimensional/multimedia databases by using a bounding box (in conjunction

with some heuristics) to represent a range query in high dimensions, thereby reducing over-

lap and significantly improving upon the I/O cost. Initial experiments indicate that using

optimized bounding boxes for such an application results in significant improvement in CPU

time and I/O over standard range queries and the work mentioned.

Finding optimized bounding boxes for a set of points in a d-dimensional space has gen-

erally involved making an estimate of the diameter of the points provided in each dimension

and using that estimate to create a tightly fitting axis aligned bounding box. Axis aligned

bounding boxes (taking the maximum range in each dimension and using the points thus

obtained to define the corners of the bounding box) provide the simplest solution to the

problem. However, as is obvious they are significantly sub-optimal. While a solution to the

three dimensional variant of the problem exists [11], the version that guarantees an optimal

41

bounding box is quite slow and non-trivial to implement. Other methods use heuristics to

approximate an optimal bounding box while speeding up the execution time. In most, this

unfortunately results in an appreciable decrease in the accuracy of the optimized bounding

box obtained. The objective of the presented technique is to find a solution to the prob-

lem of finding the optimized minimum-volume oriented bounding box of a finite set of P

points in d-dimensions defined by P ⊂ Rd. In this chapter it is shown how the orientation

of an optimal bounding box in d-dimensions can be computed by an optimization algorithm

that minimizes the two dimensional projections of the convex hull of P . Using experimen-

tal results we also show empirically how, for the three dimensional variant of the problem,

the optimized minimum bounding boxes obtained correspond to the optimal (minimum)

bounding boxes.

In the subsequent section discussion on the optimality of the projections of a cross-

polytope when encapsulated within a minimum bounding box discussed in the previous

chapter is extended to the general case of an arbitrary d-dimensional polytope. It, therefore,

also applies to the special case of arbitrary three dimensional polytopes and their bounding

boxes. The discussion is made with the assumption that the polytope has already been

optimally oriented such that its axis aligned bounding box is also the arbitrarily oriented

minimum bounding box. We also provide certain definitions based on that result which we

utilize in subsequent sections. We then define the formulation of the problem in terms of the

optimization of two dimensional projections. Our Simultaneous Local Optimal Algorithm is

then defined and described. In the final section we discuss its implementation and compar-

ison with existing methods. We conclude by discussing further optimizations and possible

applications that show promise based on initial investigation.

42

4.1 Minimizing Bounding Box Based On Locally Op-

timal Projections

In the following section the theorems postulated discuss the characteristics of a polytope

under projection when encapsulated within a minimum bounding box . The result presented

is applicable to arbitrary d-dimensional polytopes and their bounding boxes. The discussion

is made with the assumption that the polytope has already been optimally oriented such

that its axis aligned bounding box is also the arbitrarily oriented minimum bounding box.

In order to facilitate this discussion, the following definitions and axioms are provided to

illustrate the primary concepts involved.

4.1.1 Definitions

Definition 4.1.1. Tightly Fitting Bounding Box: A Tightly Fitting Bounding Box (TFBB)

of a d-dimensional polytope P is defined as having at least one vertex of P coincident with

each of its faces.

Definition 4.1.2. Axis Aligned Bounding Box:An Axis Aligned Bounding Box (AABB) of

a d-dimensional polytope P is defined as the box whose body diagonal is delimited by the

minimum and maximum axial coordinate values of P.

Definition 4.1.3. Oriented Bounding Box:AnOriented Bounding Box (OBB) of a d-dimensional

polytope P is a tightly fitting rectangular bounding box of arbitrary orientation in d-

dimensional space

Definition 4.1.4. Orientation in d-Dimensions:Given an arbitrary polytope P in d-dimensions,

all orientations of P can be obtained by rotating P parallel to one or more of the axial planes

43

(vertex coordinates for all axes involved in the rotation remaining fixed) in d-dimensional

space.

Definition 4.1.5. Local Optimal: For a given k, 0 ≤ k ≤ d-1, if the axis-aligned bounding

box of a d-k dimensional projection of a d-dimensional polytope is its arbitrarily oriented

minimum bounding box (requiring no rotation of the projection to make it smaller), then

the projection is said to be local optimal.

Using this definition we can further elaborate on the situations where multiple projections

of the same polytope exhibit local optimality at the same time. Thus:

Definition 4.1.6. Simultaneously Local Optimal: For a given k, 0 ≤ k ≤ d-1, if the d-k

dimensional projections of the d-dimensional -polytope in each d-k dimensional plane are

locally optimal then the projections are simultaneously local optimal.

4.1.2 Minimality of Projected Bounding Box

If the bounding box of a d-dimensional polytope is minimal, then we postulate about the

nature of its projections in lower dimensions by the following theorem.

Theorem 4.1.1. Given an optimally oriented convex d-polytope P and a given k, 0 ≤ k ≤

d−1, projections of the object P in d-k dimensional subspaces are simultaneously local optimal.

Proof: By way of contradiction, assume there exists a d-polytope P and rotation R such

that an axis-aligned minimum bounding box B of P is also its minimum arbitrarily oriented

minimum bounding box. Assume that the projections of the object P , rotated by R, in all

(permutations) of d − k dimensions for a given k, 0 ≤ k ≤ d − 1, are not simultaneously local

optimal. Thus, there exists a projection p’ of P in d − k dimensions rotated by R such that

44

the bounding box b’ (corresponding to the projection of B along the same d−k dimensions)is

not an arbitrarily oriented minimum bounding box of the projection p’ of P rotated by R.

Then there exists an arbitrarily oriented minimum bounding box b” of the projection p’ of

P rotated by R which is different from b′. Let R′ be the rotation that rotates b′′ such that it

is an axis-aligned minimum bounding box. The volume of the bounding box is the product

of the ranges in each dimension. Since projection discards dimensions not subject to the

projection, any rotation of the projection does not change the range values on the axes in

the orthogonal dimensions that are not subject to projection for an axis aligned bounding

box. However, there does now exist a rotation of the projection such that an axis aligned

bounding box for p′ is smaller than b′. Hence, the composition of R and R′ is a rotation

that will rotate the d-polytope P such that a smaller axis-aligned minimum bounding box

exists. This contradicts our earlier assumption of the optimality of the bounding box of

the d-polytope. Hence, the projections of P in d − k dimensions are simultaneously locally

optimal.

The necessity of an optimally oriented d-dimensional polytope having simultaneously lo-

cally optimal projections can be leveraged to further elucidate and identify the characteristics

and conditions of the polytope in that orientation as discussed subsequently.

4.1.3 Edges Flush in d-Dimensions

Using the result just obtained we can come up with a necessary condition for the minimum

bounding box of an n-dimensional cross polytope. This condition is stated by the following

theorem:

Theorem 4.1.2. Given a convex d-dimensional polytope P and an arbitrarily aligned min-

45

imum bounding box B, at least d-1 edges must be flush with d-1 orthogonal faces of B.

Proof: Without loss of generality, assume P and B are rotated such that B is an axis-

aligned minimum bounding box. By the previous theorem, any 2d projection of B must

also be a minimum bounding box of the 2d projection of P . By a previous theorem [9], at

least one edge of the 2d projection of P must be flush with one edge of the 2d projection

of B. Such an edge will have identical values for each of the dimensions corresponding to

the bounding box edge and the values must be either the minimum or maximum values of

that dimension. Otherwise the bounding box would not be minimum since some value in

one dimension is beyond the range of the bounding box. An edge that is flush with the edge

of the bounding box in a 2d projection is also flush with the corresponding face of B, since

the values in that dimension are equal for both edges of the edge and are the minimum or

maximum value in that dimension. Hence, for every possible pair of dimensions an edge

must exist that is flush with a face of B for one of those dimensions. It is possible for an

edge to serve as the flush edge for more than one 2d projection involving a given dimension

d. The edge will always have the minimum or maximum value for dimension d for every

2d projection that includes that dimension. The minimum number of edges that can satisfy

this constraint for all possible pairs of dimensions is d. Assume it is less than d, then there

exist two dimensions for which a flush edge does not exist. Hence, the 2d projection would

not have a flush edge and we have a contradiction.

46

4.1.4 Existence of Simultaneous Local Optimal For All d-Dimensional

Polytopes

Theorem 4.1.1 confirms that if the bounding box in dimension d is optimal then the bounding

boxes of the projections in lower dimensions are also optimal. From Theorem 4.1.2, we also

see that minimum bounding boxes of each d-k dimensional projection of the d-dimensional

optimally oriented object, correspond to the d-k dimensional projections of the minimum

bounding box of the object in the corresponding planes. This, therefore, leads to the following

corollary:

Corollary. Given a convex d-polytope P, and a given k, 0 ≤ k ≤ d-1, there exists at least

one combination of simultaneously local optimal d-k dimensional projections.

Proof: This follows from 4.1.1, since the d-k dimensional projections corresponding to the

global optimal orientation of the convex d-polytope P are simultaneously locally optimal and

there exists a global optimal orientation for P such that the volume of its bounding box is

minimized there exists at least one combination of simultaneously local d − k dimensional

projections for P .

4.1.5 Minimality of D-Dimensional Bounding Box

We leverage the result of the 4.1.1 to define the optimal orientation of a d-dimensional

polytope in terms of simultaneously local optimal projections in two dimensions. This can

be described by the following proposition:

Proposition 4.1.3. Given a d-dimensional polytope P and a given k, 0 ≤ k ≤ d−1 ∣ d−k = 2,

for all orientations of P having its d − k projections in the axial planes simultaneously local

47

optimal, the bounding boxes of P defined by bounding boxes of its locally optimal projections

form the candidate set for the global minimum volume bounding box.

Proof. By Theorem1, if the object’s orientation is globally optimal then projections of the

object on the axial planes are simultaneously local optimal. This implies that any orientation

of P with simultaneous local optimal projections has the possibility of corresponding to the

global optimal. Thus, those orientations of the object whose projections are simultaneously

locally optimal are candidates for the global optimal orientation.

This proposition implies that if a method could be found to isolate all orientations of

an arbitrary d-dimensional polytope that satisfy the simultaneous local optimal condition in

its projections, the orientation corresponding to the bounding box with the minimal volume

(the bounding box of each orientation being constructed from the bounding boxes of the

projections) would be the global optimal. With that in mind we show how starting from

any orientation of a d-dimensional polytope, the d − k axial projections can be optimized to

converge to a simultaneous local optimal.

4.1.6 Convergence of Projections

Theorem 4.1.4. Given an d-dimensional polytope P and its k dimensional parallel axial

projections pi : Rd → Rk , 1 < k < d, 1 ≤ i ≤ m where m = C(dk), orienting P to mini-

mize volume V of the bounding box B by rotating it successively around each k-dimensional

projection according to the projected minimum in that subspace, causes these projections to

converge to a simultaneous local optimal.

Proof: Let B be the volume of an axis-aligned bounding box (AABB) of the convex hull of

48

a given set of points defining a polytope in d -dimensional space, where

B ≥ Bopt > 0

and Bopt is volume of the minimum volume bounding box of P or in other words the volume

of B at the optimal orientation of P . Assume that the polytope P is projected into m

k-dimensional contiguous subspaces bound by the axes of the dimensions involved in the

projection where m = C(dk) [99]. Given that P can be rotated around a given k-dimensional

subspace, let the volume of the bounding box of the i-th k-dimensional projection of P be,

V j
i where 1 ≤ i ≤m and m = C(dk) [99] at rotation j and,

Bj = V j
i ∗ ∏

p∈(d−ki)
lp (4.1)

where Bj is the volume of the bounding box of P after rotation j and ki defines the set

of the lengths of the dimensions of the bounding box involved in projection i. A rotation is

defined as rotating P around a single k-dimensional subspace such that the bounding box

of the projection of P is minimized. For example,V 0
1 is the volume of the bounding box

of the first k-dimensional projection at rotation 0 i.e. at the starting orientation of P. The

volume of the bounding box of the projection in the contiguous subspace 2 would be V 0
1.

Similarly, V 1
1 would indicate the volume of the bounding box of the projection in subspace

1 after the first rotation and so on. One iteration consists of successively rotating in each

k-dimensional subspace once. Thus, one iteration consists of m rotations. Thus, V 1
2 would

indicate the volume of the bounding box of the projection in subspace 2 around which P is

rotated in the subsequent rotation.

Projecting P onto the first k-dimensional subspace and rotating the projection by a

49

rotation r1 such that it is minimized to its local optimal,

(V1opt = V 1
1 ≤ V 0

1)

⇒ 0 < V 1
1 ≤ V 0

1

⇒ 0 < (V 1
1/V 0

1) ≤ 1

Applying this rotation back toP results in changing the volume of B. This is obvious since

rotating around the k-dimensional subspace has no effect in the remaining d − k dimensions

which retain their original values. Thus volume of the bounding box after the first rotation

would be given by,

B1 = V 1
1 ∗ ∏

p∈(d−k1)
lp

⇒ B1 = V
1
1

V 0
1

B0 ∵ ∏
p∈(d−k1)

lp = B0

V 0
1

given that the lengths of the d−k1 remaining dimensions are unchanged.Projecting P in

the next k-dimensional subspace in sequence and rotating it to make it locally optimal,

(V2opt = V 2
2 ≤ V 1

2)

⇒ 0 < V 2
2 ≤ V 1

2

⇒ 0 < (V 2
2/V 1

2) ≤ 1

50

and the corresponding volume of the bounding box would be,

B2 = V 2
2 ∗ ∏

p∈(d−k2)
lp

⇒ B2 = V
2
2

V 1
2

B1 ∵ ∏
p∈d−k2

lp = B1

V 1
2

⇒ B2 = V
2
2

V 1
2

V 1
1

V 0
1

B0 ∵B1 = V 1
1

V 0
1

B0

Successively rotating through each k-dimensional subspace, minimizing in that subspace

only while letting the other dimensions remain unchanged, we can generalize the inequality

defining the local optimal for the m-th rotation as,

0 < Vm
m

V m−1
m
≤ 1 (4.2)

and define the volume of the bounding box of P after m rotations or one complete

sequence of rotations around each k-dimensional subspace by the following equation,

Bm = Vm
m

V m−1
m
Bm−1

From ?? and 4.1.6 it’s also obvious that the Bm can also be defined in terms of the volume

B0 of P at the starting orientation. This is done by successively composing the volume of

P at each orientation at each rotation j in terms of rotation j − 1. Thus,

Bm = V 1
1

V 0
1

∗ V 22
V 1

2

∗ ∗ Vm
m

V m−1
m
B0 (4.3)

where,

51

0 < V
1
1

V 0
1

∗ V 22
V 1

2

∗ ∗ V m
m

Vm−1
m
≤ 1

from 4.2.

This can also be generalized for a random number of rotations j to,

0 < V j
i

V j−1
i

≤ 1

and,

Bj = V j
i

V j−1
i

Bj−1

and q = 1,2, Furthermore, by definition each V j
i is the local optimal for projection i at

the corresponding orientation defined by rotation j.

Also,

Bj = V
1
1

V 0
1

∗ V 22
V 1

2

∗ ∗ V j
i

V j−1
i

B0 (4.4)

where,

0 < V
1
1

V 0
1

∗ V 22
V 1

2

∗ ∗ V j
i

V j−1
i

≤ 1

from 4.2.

where i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

j j ≤m

j − qm j > qm
Repeating the above process for a finite number of rotations n, eq. 4.4 can be generalized

52

to,

Bn = V
n−m+1

1

V n−m
1

∗ V
n −m + 22
V n−m+1

2

∗ ∗ V n
m

V n−1
m
Bn−m (4.5)

⇒ Bn = ∏
m,n
s=1,r=n−m+1 V

r
s

∏m,n−1
s=1,r=n−m V r−1

s

Bn−m (4.6)

and,

0 < ∏
m,n
s=1,r=n−m+1 V

r
s

∏m,n−1
s=1,r=n−m V r−1

s

≤ 1

Assume,

∏m,n
s=1,r=n−m+1 V

r
s

∏m,n−1
s=1,r=n−m V r−1

s

=Vn

Thus, the above equation becomes,

Bn =VnB
n−m (4.7)

In the above equation Vn = 1 only if each V j
i = V j−1

i for a given subspace i, i.e. the

volume of the projections in each subspace does not change after a finite number of rotations

n −m. Otherwise, from the inequality above 0 <Vn < 1. Therefore,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Bn = Bn−m ifVn = 1

Bn ≠ Bn−m if0 <Vn < 1

53

Thus, the volume of a bounding box converges to a local optimal corresponding to a

simultaneous local optimal of its projections only if Vn = 1. If there does not exist a value

of n such that this condition holds true then it is always the case that 0 < Vn < 1 and the

volume does not converge. For an infinite number of rotations this would mean that’

lim
n→∞Bn = lim

n→∞(VnB
n−m)

= lim
n→∞(VnVn−1Vn−2.....V1B

0)

= B0 lim
n→∞(VnVn−1Vn−2.....V1)

= B0 ∗ 0 = 0

This contradicts our starting assumption that B ≥ Bopt > 0, which is not possible. Hence,

there exists a finite number of rotations j such that Vn = 1 for n > j and the volume of the

bounding box of each k-dimensional subspace converges to a local optimal.

In practice minimizing k-dimensional projections by rotating around the corresponding

k-dimensional subspace is non-trivial for k > 3. For k ≤ 3, algorithms exist that can be used

to find the exact minimum bounding boxes of projections in the lower dimensions. However,

the only algorithm that guarantees an exact minimum bounding in three dimensions is quite

difficult to implement as well as being quite slow for a large number of vertices. Minimization

in two dimensions, in contrast, is relatively simple to implement and quite fast. Furthermore,

any d-dimensional rotation can be decomposed to two dimensional planar rotations lending

itself well to generalization. Thus for the specific case of projections where k = 2, it can be

stated that,

Corollary. Given an d-dimensional polytope P and its 2-dimensional parallel axial projec-

54

tions pi : Rd → R2 , , 1 ≤ i ≤ m where m = C(d
2
), orienting P to minimize volume V of the

bounding box B by rotating it successively around each 2-dimensional projection according to

the projected minimum in that plane, causes these projections to converge to a simultaneous

local optimal.

Proof. The proof follows from the 4.1.4 for the case where k = 2.

In the next section we show how combining the result of the above theorem for the special

case of k = 2 with the earlier proofs, results in a simple method for finding minimum volume

bounding boxes in d-dimensions. Prior to this we discuss some additional characteristics of

the case where k = 2, that can be leveraged to optimize the algorithm proposed.

4.1.7 Period of Projected Bounding Box in 2D

For a given 2-dimensional projection, rotating it a round its center results in changing the

dimensions and area of its axis-aligned bounding box. This change, in the case of the lengths

of the bounding box, is quantified by the following theorem

Theorem 4.1.5. Given an arbitrary two-dimensional parallel axial projection pi of d- dimen-

sional polytope P such that pi : Rd → R2 , 1 ≤ i ≤m where m = C(d
2
), and its corresponding

2-dimensional bounding box Bi having length li and breadth bi, rotating Bi around its center

to minimize its area results in the values of li and bi repeating regularly by a period of π.

Proof: Let X,Y be the set of 2-dimensional vertices defining an arbitrary 2-dimensional

projection with (a, b) the center of its axis-aligned bounding box. The values of length

li and breadth bi are the difference between the maximum and minimum values of their

corresponding axial coordinates. This also implies that the value of li and bi would be the

55

same irrespective of where the center (a,b) is. Hence, the projection can be rotated around

the origin instead of (a,b) without affecting the changing values of li and bi. Thus,

li = Ymax − Ymin = (Y − b)max − (Y − b)min (4.8)

bi = Xmax −Xmin = (X − a)max − (X − a)min (4.9)

Since we are now rotating the projection around the origin, this rotation for an angle θ

can now be given by,

X ′, Y ′ = X,Y

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cosθ sinθ

−sinθ cosθ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

= Xcosθ − Y sinθ,Xsinθ + Y cosθ,

where X ′, Y ′ are the set of points of the new projection after rotation. Let liθ and biθ

be the functions of θ, representing the value of li and bi respectively after rotation θ. Then,

li(θ) = Y ′max − Y ′min

= (Xsinθ + Y cosθ)max − (Xsinθ + Y cosθ)min

bi(θ) = X ′max −X ′min

= (Xcosθ − Y sinθ)max − (Xcosθ − Y sinθ)min

56

li(θ + π) = (Xsin(θ + π) + Y cos(θ + π)0max − (Xsin(θ + π) + Y cos(θ + π))min

= (−Xsinθ − Y cosθ)max − (−Xsinθ − Y cosθ)min

= (−(Xsinθ + Y cosθ))max − (−(Xsinθ + Y cosθ))min

= −(Xsinθ + Y cosθ)min + (Xsinθ + Y cosθ)max

= (Xsinθ + Y cosθ)max − (Xsinθ + Y cosθ)min

= li(θ)

Similarly, for bi,

bi(θ + π) = (Xcos(θ + π) − Y sin(θ + π))max − (Xcos(θ + π) − Y sin(θ + π))min

= (−Xcosθ − Y sinθ)max − (−Xcosθ − Y sinθ)min

= (−(Xcosθ − Y sinθ))max − (−(Xcosθ − Y sinθ))min

= −(Xcosθ − Y sinθ)min + (Xcosθ − Y sinθ)max

= (Xcosθ − Y sinθ)max − (Xcosθ − Y sinθ)min

= bi(θ)

Hence proved.

Based on the result above, we can also postulate about the period with which the length

of the bounding box in a given projection plane lags behind the breadth, when rotating P

around that plane.

Theorem 4.1.6. Given an arbitrary two-dimensional parallel axial projection pi of d- dimen-

57

sional polytope P such that pi : Rd → R2 , 1 ≤ i ≤m where m = C(d
2
), and its corresponding

2-dimensional bounding box Bi having length li and breadth bi, rotating Bi around its center

to minimize its area results in the values of bi will lag behind the value of li by a period of

π/2.

Proof:

li(θ + π

2
)) = (Xsin(θ + π

2
) + Y cos(θ + π

2
))max − (Xsin(θ + π

2
) + Y cos(θ + π

2
))min

= (Xcosθ − Y sinθ)max − (Xcosθ − Y sinθ)min

= bi(θ)

By substituting θ = ϕ − π
2
,we get

li(ϕ) = bi(ϕ − π
2
)

Combining these two results, it can be determined that the area of the bounding box of

a given projection pi also repeats in a regular manner, as P is rotated around plane i. This

can be stated formally as,

Theorem 4.1.7. Theorem:

Given an arbitrary two-dimensional parallel axial projection pi of d-dimensional polytope P

such that pi : Rd → R2 , 1 ≤ i ≤ m where m = C(d
2
), and its corresponding 2-dimensional

bounding box Bi having length li and breadth bi, rotating Bi around its center to minimize

its area results in the area repeating regularly by a period of π
2
.

58

Proof:

A(θ) = li(θ)bi(θ)

A(θ + π

2
)) = li(θ + π2))bi[(θ + π) −

π

2
]

= li[(θ + π)bi(θ)

= li(θ)bi(θ)

Since the bounding box of pi corresponds to the projection of the bounding box of P on

plane i, the the result presented above provides an interesting insight into the repeatability

of the bounding box volume of P given by the following corollary,

Corollary. Given an arbitrary d-dimensional polytope P,its axis aligned bounding box B and

a given projection pi of P such that pi : Rd → R2, rotating P in the two dimensional axial

plane of the projection results in the volume of B repeating by a period of π
2

.

Proof. The volume of the bounding box of the polytope is given by,

B = Ai ∗ ∏
j∈(d−dpi)

lj

where lj defines the set of the lengths of the dimensions not involved in projection pi and Ai

is the area of the bounding box of pi. Rotating P by an angle θ in the plane of pi corresponds

59

to rotating pi by θ, the volume of B is given by,

B(θ) = Ai(θ) ∗ ∏
j∈(d−dpi)

lj

and,

B(θ + π
2
) = Ai(θ + π2) ∗ ∏

j∈(d−dpi)
lj

From 4.1.7, Ai(θ + π
2
) = Ai(θ), thus

B(θ + π
2
) = Ai(θ) ∗ ∏

j∈(d−dpi)
lj

B(θ + π

2
) = B(θ)

All the results discussed in this section point towards to a method to isolate optimized

bounding for polytopes in d-dimensions based optimizing their projections in k dimensions

where k = 1,2, ..., d−1. Optimizing projections in two dimensions offers the simplest method

to leverage these results into a viable optimization algorithm in d-dimensions.

4.2 Optimized Bounding Box Algorithm

4.1.1 shows that an optimally oriented d -dimensional polytope will also have simultaneously

local optimal d-k -dimensional projections, where k = 1,2,d − 1. Proposition 4.1.3 gives

the candidate set for the globally optimal orientations of a d -dimensional polytope, using si-

multaneously local optimal projections to isolate each candidate orientation. Corollary-4.1.4

60

proves that iteratively optimizing the orientation of a d -dimensional polytope by minimiz-

ing its two dimensional axial planar projections causes those projections to converge to a

simultaneous local optimal.

Leveraging these results we can come up with a way to build up a candidate set for the

global minimum bounding box by selectively sampling the space of starting orientations for

a given d-dimensional polytope. For each of these orientations successive optimization of

the axial projections results in convergence to a candidate orientation corresponding to a

simultaneous local optimal. Thus the optimization performed on the projection results in

optimizing the orientation of the d-dimensional polytope such that volume of the axis aligned

bounding box at that point is locally minimal. We devise an algorithm to determine the

minimum bounding box for a set of points defining a convex polytope in d-dimensions.

As mentioned previously, optimization methods are non-trivial for k > 3 (a motivation

for the current algorithm), therefore optimization in the subspace where k = 2 is used. Given

that any d -dimensional rotation can be defined in terms of a composition of two dimensional

planar rotations [100] [99] as well as the simplicity of finding minimum bounding boxes for

points in two dimensions, we use two dimensional axial planar projections as the basis for d -

dimensional rotations. This can be accomplished with Givens rotations, which allow for the

annihilation of arbitrary elements of a matrix via a 22 rotation matrix. The implication is

that starting with a rotation matrix, a diagonal matrix can be obtained via Givens rotations.

But, since orthogonality of a matrix is preserved by multiplication with another orthogonal

matrix, this means that the diagonal matrix must be orthogonal, and hence, must contain

only 1’s and -1’s. Additional rotations then reduce this matrix to the identity. We use the

general matrix presented in [101] based on the projections of d-dimensional data coordinate

axes. For the rotation of the d-dimensional polytope around a plane (say, x− y plane) by an

61

angle θ, the corresponding rotation matrix is given by,

Ra,b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri,j = cos(θ) i = x, j = x

ri,j = cos(θ) i = y, j = y

ri,j = −sin(θ) i = x, j = y

ri,j = sin(θ) y, j = x

rj,j = 1 j ≠ x, j ≠ y

ri,j = 0 elsewhere

We now discuss the details of the algorithm utilization the two dimensional rotations just

discussed to obtain the simultaneous local optimal corresponding to an arbitrary starting

orientation for a d-dimensional polytope.

4.2.1 The Simultaneous Local Optimal Algorithm

The Simultaneous Local Optimal Algorithm or Algorithm-SLO leverages the result proved

in Theorem-4.1.4 and the method used to do so to determine the locally optimal volume for

the d-dimensional polytope. Algorithm-SLO sequentially projects the vertices of polytope P

into each plane i where i = 1,2, ..,m constructing the convex hull of each projection pi. For

a given plane i, unless it is already locally optimal, pi is rotated by angle θi such that its

axis-aligned bounding box becomes its minimum bounding box. Thus,

B(pi(θi)) = Boptpi

62

This transformation is applied back to P by rotating the entire polytope by θi around the

same plane i. This results creates a new orientation of the polytope from which it is projected

into the next plane i + 1 in the sequence and the process repeated.

From Theorem-4.1.7 we see that the area of the bounding box of a given two dimensional

projection repeats with a period of π
2
. This leads to the following proposition,

Proposition 4.2.1. For each local optimal (specific to the plane in which the rotation takes

place) obtained during an intermediate rotation of P , there exist at least three more orien-

tations of the polytope that would give the same optimal area in the projected plane.

Since the repeatability of the local optimal by the given period corresponds in essence to

a realignment of the axis with which the relevant edge of the projection is flush, the convex

hulls of the projections in the remaining planes would also be repeated for each optimal.

However, the specific axial plane in which they occur would change. Choosing the planes

with the same projection with the same sequence as in the original local optimal would

lead to the same simultaneous local optimal. This shows that for each local optimal in an

intermediate orientation at least three more orientations of P lead to the same SLO.

This indicates that for a given starting orientation k, the actual orientations of P that

lead to the same simultaneous local optimal can be given by,

S = Pk ∩ I ∩ I′ ∩ SLOk

where Pk is the orientation of P at k, I is set of intermediate orientations of P leading to

the SLO and I’ the is set of matching orientations of P resulting in the same local optimals

63

for a given pi. The number of these orientations is given by,

∣Sk ∣ = 4n + 2 (4.10)

and n is the number of orientations P goes through before reaching the orientation giving

the simultaneous local optimal.

This process is repeated iteratively for all the m two dimensional projections, wrapping

around until all the projections are locally optimal at the same time indicated by all the

check variables being equivalent to one (according to 4.1.4 there exist a finite number of

iterations for which the projections will converge to a simultaneous local optimal).

At this point Algorithm-SLO returns the volume of the axis aligned bounding box as the

local minimum and the corresponding orientation of the d-dimensional polytope defined by

the rotation matrix Orientation. The pseudocode for the algorithm is given in ??

This algorithm provides a way to find a locally minimal volume and corresponding

orientation that satisfy the necessary condition for the minimum bounding box of the d-

dimensional polytope. We now need a method to isolate the set of all such orientations. The

fact that every such orientation is associated with a specific starting orientation indicates

that by selectively sampling the space of the starting orientations of the d-dimensional poly-

tope we can obtain a set of locally optimal volumes the minimum of which is the absolute

minimum or close to the absolute minimum bounding box of the polytope.

We first discuss the general case where the entire space of starting orientation is sampled

exhaustively using a grid-based technique such that the distance between the grid points

dictates the number of points that need to be sampled. We then discuss a series of heuris-

tics that can be used to reduce the number of starting points that need to be sampled

64

Algorithm 4.1 Algorithm-SLO: Simultaneously Local Optimal Algorithm

Input: Data points in d-dimensions.
P ←Datapoints

Proj ← All 2D projections of P
n←NumberofProjections

Initialize all check[i] to 0. ▷ Until All Projections Are Optimal
while check[1] ∗ check[2] ∗ ∗ check[n] ≠ 1 do

for i = 1→ n) do
if IsOptimal(Proj[i] then

check[i]← 1
else

R ← RotatingCallipers(Proj[i]). ▷ Minimize Each 2D Plane
Apply R to P .
Proj ← All 2D projections of P
check[i]← 0

end if
end for

end while
FinalV olume← Volume of P.
Orientation← Optimal Rotation of P.
Output: FinalV olume, Orientation

(thus improving efficiency) while still maintaining an accurate level of optimization. These

heuristics are based on the characteristics of the starting orientations and orientations that

correspond to the simultaneous local optimal. The paradigm followed in each version is

similar though, as the algorithm successively rotates the polytope in each k dimensional

subspace where k = 1,2, ..., d − 1, building up the set of candidate orientations for the global

optimal by taking its k dimensional projections and finding the simultaneous local optimal

for those projections. The orientation giving the lowest volume from the entire candidate

set is taken as the globally optimized value. In case of multiple orientations corresponding

to the same volume value, any one can be used to define the global optimal. The accuracy

and speed of the algorithm can be controlled by controlling the granularity of the rotation

in the k-dimensional subspace. The granularity in essence controls the number of starting

orientations that are sampled to build up the candidate set. In each case, the algorithm is

65

independent of the method used to optimize the projection in the subspace. So another op-

timization algorithm can be used to replace the SLO for subspace optimization if necessary,

say for example of the optimization is being carried out in three dimensions instead of two.

4.2.2 The Minimum Bounding Box Candidate Algorithm - Ex-

haustive Approach

From Theorem-4.1.4 we see that for given starting orientation of an arbitrary d-dimensional

polytope P , there exists a corresponding orientation P ′ at which the volume of its bounding

box is locally minimal. Quantifying the space of all possible starting orientations for P ,

therefore provides a method to quantify the the set of locally optimal orientations the lowest

of which. Since any orientation or rotation of a polytope in d-dimensional space can be

defined in terms of a series of rotations around m = C(d
2
) axial planes [99], the polytope P

at orientation o defined by angle θ is given by,

P (θ) = P ∗∏Riθi) (4.11)

where Ri(θi) defines the rotation in the ith two dimensional plane where i = 1,2, ..,m.

The product of these rotations is equivalent to rotating P by θ in d-dimensional space.

From 4.11, the entire space of orientations can now be defined in terms of the rotations

of P around each of its two dimensional planes. Expanding on this idea the first part of the

algorithm involves building up an exhaustive set of starting orientations for the d-dimensional

object using a grid based decomposition of the m-dimensional orientation space Rm where

each axis represents the set of rotations in a single two dimensional axial plane. The set of

starting orientations of P given by,

66

SO = SO1 × SO2 × SO3 × × SOm (4.12)

where SOi is the set of orientations obtained by the two dimensional rotation of P around

plane i stepped by a granularity g. Each grid point corresponds to a unique orientation of

P and is given by,

Po = (θ1, θ2,θm)

The orientations are obtained by doing a complete 360 degree rotation of the object

around each of the C(d
2
) two dimensional axial planes. The number of unique isolated

orientations and therefore, the corresponding coverage of orientation space is dependent

upon g with which the rotation is stepped. This granularity defines the distance between

each grid point. Let O be the set consisting of all possible orientations of P and O′ be the

set of starting orientations for the MBB-Candidate algorithm . Then it could be said that,

O′(g) = 360
m

g

lim
g→0

O′(g) =O

This granularity is set at the start of the algorithm and can be used to control the

overall speed and accuracy. This is, in essence, a discretization of the space of starting

rotations. For example, in three-dimensional space, there are 360×360×360 distinct starting

orientations (corresponding a complete rotation in the first plane times a complete rotation

in the second plane and then the third) when the rotation is stepped with a granularity of 1

degree. If the granularity is changed to 0.1 the number of distinct starting rotations becomes

3600 ∗ 3600 ∗ 3600.

67

Algorithm 4.2 Algorithm-MBC: Minimum Bounding Box Candidates - Exhaustive

Input: Enter d-dimensional data points.
Input: Granularity. ▷ Interval for rotation
D ← Datapoints

G← Granularity

i← 1
for all Axial Planes (Starting With An Orthogonal Plane) do ▷ Rotate each plane
through 360 degrees

j ← 1
for θ = 0→ 360 and θ ← θ +G do

R ← rotmatrix(θ)
Rotate D by R

[V olume,Orientation] ← SLO(D)
MinV olCand[j]← V olume ▷ Store min. volume for each orientation
MinOCand[j] ← Orientation ▷ Store corresponding orientation
j ← j + 1

end for
[MinV olP lane[i], In] ←MinV ol(MinV olCand) ▷ Find minimum volume for

current planar rotation
MinOPlane[i] ←MinOCand[In] ▷ Use index to find corresponding orientation
i← i + 1

end for
[MinimumV olume, Index] ←MinV ol(MinV olP lane) ▷ Fined minimum volume for all
planar rotations
MinimumOrientation ←MinOPlane[Index]
▷ Get corresponding orientation Output: MinimumV olume,MinimumOrientation

function rotmatrix(angle)
Rotation ← Calculate Rotation for Current Plane Output: Rotation

end function

68

Thus, the granularity becomes a major factor in determining the execution time and

accuracy. Decreasing the granularity makes the likelihood of finding the global optimal

greater (since coverage of the starting orientation space increases) but takes more time and

vice versa. This has the added advantage that increasing the number of vertices becomes a

linear factor on the time complexity (affecting only the determination of the local optimal

in rotating callipers), while the number of starting points tested (themselves linear with

increasing granularity) determine the time required to isolate the global optimal. This means

that the MBB−Candidate is independent of the number of vertices present in the polytope.

However, as we will show in the subsequent section the granularity can be manipulated to

provide a significant speed-up while still maintaining close to 100% accuracy.

The rotation of the polytope around a plane (say, x − y plane) by an angle θ is defined

by the rotation matrix,

Ra,b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri,j = cos(θ) i = x, j = x

ri,j = cos(θ) i = y, j = y

ri,j = −sin(θ) i = x, j = y

ri,j = sin(θ) y, j = x

rj,j = 1 j ≠ x, j ≠ y

ri,j = 0 elsewhere

The pseudocode for the algorithm is defined in Algorithm 0.

Each orientation obtained in this manner is passed to the simultaneous local optimal

algorithm. For each starting orientation, the corresponding local minimum volume and the

orientation(in terms of a series of planar rotations in each two dimensional plane) returned

by SLO are stored. After the object has been rotated around each axial plane, the minimum

69

of all the local minimum volumes returned by the Algorithm-SLO is obtained along with the

rotation matrix defining the corresponding orientation. This gives the globally optimized

minimum volume bounding box for the d-dimensional points.

4.2.3 Minimum Bounding Box Candidate Algorithm - Heuristic

Approach

The exhaustive approach provides a good way to cover as much of the starting orientation

space as possible, thus building up as complete a set of candidate locally optimal orienta-

tions from the the SLO-Algorithm for the final isolation of the globally optimized volume.

However, as is clear from the manner in which it selects those orientations, it is exponential

in the number of planes as the number of dimensions increases. Experimentally, we find that

this method while efficient enough for d ≤ 4 becomes prohibitively expensive as d goes beyond

that point. To counter this effect we try to come up with a way to selectively sample the

space of starting orientations while still trying to ensure that the bounding box is sufficiently

optimized. This sampling is based on the following propositions,

Proposition 4.2.2. If S is the set of all starting orientations of P and O is the set of all

locally optimal orientations of P, then O ⊆ S and ∣O∣≪ ∣S∣

The proposition stated above follows from the eq.4.10,Theorem-?? and the fact that every

locally optimal orientation corresponds to a starting orientation itself.

Extrapolating from Theorem-4.1.4 we can come up with way of uniformly sampling start-

ing orientations of P across d-dimensions. Instead of using the cartesian product of the sets

of possible axial planar rotations of P to generate the set of starting orientations, we instead

utilize a union of these sets i.e.,

70

SO = SO1 ∪ SO2 ∪ SO3 ∪ ∪ SOm

where SOi is the set of the two dimensional rotations of P around plane i stepped by

granularity g. The members of this set thus define m-mutually orthogonal lines passing

through the origin of orientation space Rm providing the basis of a uniform distribution of

sampling points in the orientation space.

In addition to the results of Theorem-4.1.7, eq.4.10 and Proposition-4.2.2, this sampling

method also provides adequate coverage of the rotation space by the leveraging the fact

that for a fixed value of rotation in one plane, rotating in the second orthogonal plane is

sufficient to cover the the set of starting orientations obtained from rotating in the third

plane since both would lead to the same local optimal if the starting projection optimized

for the SLO −Algorithm is in the second plane.

Using the optimization just mentioned for three dimensional space,for example, we need

only check 360 × 360 points to cover the entire space. This indicates that the choice of the

starting plane for the SLO-Algorithm becomes an important consideration in controlling

the uniformity of the distribution of orientations sample as well the region and amount

orientation space covered, resulting in a further decrease in the number of distinct starting

orientations that need to be tested while maintaining the same coverage. The pseudocode

for the algorithm is provided in 0.

Based on the choice of the starting plane in the SLO-Algorithm we can define a series of

heuristics that result in changing the distribution and sampling region in Rm of the starting

orientations covered for the given set candidate locally optimal orientations obtained.

71

Algorithm 4.3 Algorithm-MBC: Minimum Bounding Box Candidates - Heuristic

Input: Enter d-dimensional data points.
Input: Granularity. ▷ Interval for rotation
D ← Datapoints

G← Granularity

i← 1
for all Axial Planes (Starting With An Orthogonal Plane) do ▷ Rotate each plane
through 360 degrees

j ← 1
for θ = 0→ 360 and θ ← θ +G do

R ← rotmatrix(θ)
Rotate D by R

[V olume,Orientation] ← SLO(D)
MinV olCand[j]← V olume ▷ Store min. volume for each orientation
MinOCand[j] ← Orientation ▷ Store corresponding orientation
j ← j + 1

end for
[MinV olP lane[i], In] ←MinV ol(MinV olCand) ▷ Find minimum volume for

current planar rotation
MinOPlane[i] ←MinOCand[In] ▷ Use index to find corresponding orientation
i← i + 1

end for
[MinimumV olume, Index] ←MinV ol(MinV olP lane) ▷ Fined minimum volume for all
planar rotations
MinimumOrientation ←MinOPlane[Index]
▷ Get corresponding orientation Output: MinimumV olume,MinimumOrientation

function rotmatrix(angle)
Rotation ← Calculate Rotation for Current Plane Output: Rotation

end function

72

4.2.3.1 Heuristic 1

The first heuristic proposes that for each two dimensional plane i where 1 ≤ i ≤ m around

which P is rotated by an angle θ to determine a starting orientation, the plane chosen

in the SLO-Algorithm to start the optimization process is always the same corresponding

to the first or the xy-plane. The set of starting orientations sampled under this heuristic

would therefore consist of planes in the starting orientation space Rm (defined by axes

Θ1,Θ2,....,Θm), with at least one axis being defined by the set of rotations of P around

plane-1. This is given by,

SOH1 =
m

⋃
i=1

Θ1i

where Θ1i represents the set of orientations of P in the plane of rotations in Rm defined by

the axes θ1 (corresponding to rotations around the first or xy-plane) and θi (corresponding

to rotations around the ith plane). The actual coverage of the Rm provided by SOH1

is augmented by the optimization discussed in the previous section combined with result

from proposition-4.2.1. For each orientation, the other steps to isolate the global minimal

bounding box remain the same as discussed on the previously.

4.2.3.2 Heusristic 2

The second heuristic proposes that for each two dimensional plane i where 1 ≤ i ≤m around

which P is rotated by an angle θ to determine a starting orientation, the plane chosen in

the SLO-Algorithm to start the optimization process is selected randomly. However, the

selection is restricted by the constraint that the plane be orthogonal to the plane of the

starting orientation and repeated with the only condition being that a particular plane does

not repeat more than a given number of times t. The set of starting orientations sampled

73

under this heuristic would therefore consist of planes in the starting orientation space Rm

(defined by axes Θ1,Θ2,....,Θm), with each axis being defined by the set of rotations of P

around planes-i and j. This is given by,

SOH2 =
m

⋃
i=1
j∈m

Θij

where Θij represents the set of orientations of P in the plane of rotations in Rm defined

by the axes θi and θj . In this case i ≠ j and j does not repeat more than m − 1 times.

4.2.3.3 Heuristic 3

The third heuristic proposes that for each two dimensional plane i where 1 ≤ i ≤ m around

which P is rotated by an angle θ to determine a starting orientation, the plane chosen in

the SLO-Algorithm to start the optimization process is orthogonal and disjoint in the sense

that it is not repeated as a choice for any of the other starting planes. The set of starting

orientations sampled under this heuristic would therefore consist of planes in the starting

orientation space Rm (defined by axes Θ1,Θ2,....,Θm), with each axis being defined by the

set of rotations of P around planes-i and j where,

SOH3 =
m

⋃
i=1
j∈m

Θij

where Θij represents the set of orientations of P in the plane of rotations in Rm defined

by the axes θi and θj . In this case i ≠ j and j does not repeat at all. In other words, the set

Θij is unique and has no overlap or intersection with any other axes or plane of rotation in

Rm.

74

This heuristic provides the greatest coverage and uniformly spread sampling of Rm.

Each unique combination of planar rotations covers an independent region of space, with no

overlap with any other sampled region. The number of points sampled being the same as

the previous two heuristics this ensures that the likelihood of finding distinct candidates for

the optimized orientation of P from the SLO-Algorithm is increased. In consequence the

optimization on the volume of the bounding box of the polytope is also increased.

4.2.4 Local Optimal Clustering

Empirical observation also provided an additional characteristic of the locally optimal ori-

entations. Experimental results show that these orientatins tend to occur contiguously in

clusters. An example of the type of clusters occurring for individual shapes as well as the

example shape used for three dimensions is shown in figure 4.1. Starting orientations close

to each other lead to the same cluster. It is observed that the number of clusters detected

increases with the decrease in the granularity of the minimum bounding box candidate al-

gorithm utilized. However, this increase is bounded by an upper limit in the fineness of

the granularity (specific to each d-dimensional shape) which when reached results in an an

increase the members of individual clusters rather than further increase in the number of

clusters themselves. As we can see in the figures, the clusters are not very tight but spread

out in space with lots of scattering. The scattering is indicated by the presence of singletons

that occur in random portions of the d-dimensional angular space. However, the no of sin-

gletons is much less than the total number of SLOs covered by the larger clusters. Again,

this scattering an be decreased to an extent by decreasing the granularity. The clusters were

observed for polytopes in higher dimensional space as well and exhibit properties along the

same line as discussed above. Some statistics defining clusters formed for random polytopes

75

in 3, 4 and 5 dimensions are provided in table 4.1. The table defines the number of clusters

observed for a given number of vertices in a specific dimension. The maximum deviation

of volume of the minimum bounding boxes corresponding to the SLOs within the clusters

from the observed minimum is also noted as well as the threshold value of granularity be-

yond which the number of clusters stop increasing. The decrease in deviation with increase

in dimensions is in part due to the method used for generating random polytopes. As we

increase dimensions, the polytope generated gets closer and closer to a d-dimensional sphere

which means that the bounding boxes for the SLOs isolated shall have smaller differences

between their volumes.

The occurrence of clusters could be explained in terms of the optimization of two dimen-

sional planes used as the primary basis of the overall volume minimization. For a given set

of adjacent starting orientations, the two dimensional projection of a given d-dimensional

polytope in a specific plane provides a set of similarly shaped two dimensional polygons

(same or similar number of edges with similar angles between them), therefore the likeli-

hood of each polygon in the set converging to a local optimal that varies only slightly from

others in the group is increased. The same principle applied to each of the two dimensional

projections used in the optimization process could result in the final orientation of the corre-

sponding d-dimensional local optimals to be quite close to each other resulting in clusters in

m = C(d
2
)-dimensional angular orientation space. These clusters can be leveraged to create

another version of the MBB-Candidate algorithm focused on isolating the global optimal

from clusters of local optimals which we now discuss.

76

Figure 4.1: Examples of Clusters for a Random Polytope

Table 4.1: Cluster Statistics With Varying Dimensions

Vertices Dim Points Clusters Vol. Dev. From Min. Threshold

35 3 2160 61 1.79 0.65
35 4 2880 69 1.67 0.80
35 5 3600 85 1.64 0.95

4.2.5 Minimum Bounding Box Candidate Algorithm - Grid Based

Clustering

The primary motivation behind this version of the algorithm is the empirically observed

characteristic that is presented in the following proposition.

Proposition 4.2.3. Given an orientation Pk any orientation within a distance ∆ of the Pk

leads to the same cluster of locally optimal orientations.

Since the locally optimal orientations occur in clusters a coarse grained version of the

MBB-Algorithm utilizing any one of the heuristics can be used to identify the initial set

of simultaneous local optimals in conjunction with SLO-algorithm. A clustering algorithm

can then be applied to the points obtained to isolate regions where further locally optimal

orientations can occur. Using the boundaries of these regions as limits for isolating corre-

sponding starting points, a fine grained version of the same MBB-Algorithm can be used

to identify candidate locally optimal orientations.

77

For a given set of starting points in d-dimensional angular space the corresponding set

of simultaneous local optimals forms a cluster in the same set of dimensions. The number of

clusters is fixed and as the granularity gets smaller and smaller the clusters stop increasing

after a specific threshold and the number of simultaneous local optimals within each cluster

starts to increase. However, depending upon the granularity used there do exist a set of

singleton simultaneous local optimals that manifest in the d-dimensional angular space.

It is observed that the number of unique singletons decreases as the granularity utilized

for starting the candidate algorithm is decreased. However, as the number of singletons

observed is very small compared to the total number of simultaneous local optimals, the

likelihood of the global optimals occurring within those singletons is commensurately low.

Furthermore, the bounding volumes corresponding to these singletons are very close to the

bounding volumes for the simultaneous local optimals lying within specific clusters in terms of

absolute values. The standard deviation of the values for bounding volumes of corresponding

to simultaneous local optimals lying within clusters for a specific data set is presented in the

table.The deviation from the value of the minimum volume bounding box observed is for 3

and 4 dimensional objects each having 10 − 30 vertices as indicated in Table 4.2 and in 4.3

. It can be seen from the values presented, within each cluster the variation in the values of

the bounding volumes is low.

4.2.5.1 Optimizations to Algorithm

An important factor in the efficiency of this method is the clustering method used. If the

clusters obtained manage to encompass most of the local optimal orientations identified in

the first phase then the likelihood of obtaining the global optimal is increased and vice versa.

On the other hand any clustering technique which is exhaustive enough to cover all the data

78

points identified takes significantly longer to run thus reducing the efficiency in comparison

with other methods. Balancing these two constraints becomes an important factor in this

version of the candidate algorithm.

The clustering technique utilized after isolation of the simultaneous local optimals plays

a major part in determining the time required to actually isolate the global optimal. The

starting points can be selected using either of the two approaches mentioned earlier. Using

the heuristic based method method is preferable since the one to one correspondence between

the the starting points and SLOs means that the heuristic approach would have a fewer

number of points to cluster. The algorithm can be optimized to obtain a balance between the

time required to carry out a detailed clustering of the simultaneous local optimals obtained

for a given granularity (thus resulting in greater accuracy) and the time required to do the

clustering process. The following two clustering techniques were tested:

• Agglomerative Clustering

• Hierarchical Clustering

Based on the time taken and accuracy of the clustering methods considered , the SLOs

are obtained using an agglomerative clustering algorithm using the normalized weighted

distance between the simultaneous local points in the d-dimensional space being used as a

metric to determine their membership in a given cluster. The primary objective of using this

algorithm is the fact that it does not require either cluster size or number of clusters as a

metric while carrying out clustering. The only metric required and provided is the threshold

distance necessary for identifying cluster membership based on proximity.

79

4.2.6 The Clustered Simultaneous Local Optimal Algorithm)

The basic process is similar to the methods discussed earlier. The heuristic based candidate

algorithm combined with the simultaneous local optimal algorithm is used with a mid level

granularity to isolate an initial set of simultaneous local optimals. These local optimals

are clustered using the clustering method discussed earlier. For each cluster obtained the

starting points corresponding to the outliers of each observed cluster are identified and the

heuristic based candidate algorithm is used again within each set of starting points with fine

granularity. The lowest bounding volume from the set of volumes corresponding to the local

optimals thus obtained is the minimized bounding box. The pseudocode for the algorithm

is provided in 0.

Table 4.2: Standard Deviation of Volume With Varying Vertices & Granularity in % for 3D

Granularity 0.5 1 2 5

10 1.62 1.83 1.97 2.22
20 1.81 1.82 1.93 2.17
30 1.75 1.87 2.1 2.35

Table 4.3: Standard Deviation of Volume With Varying Vertices & Granularity in % for 4D

Granularity 0.5 1 2 5

10 1.71 1.88 1.72 1.98
20 1.64 1.75 1.91 2.32
30 1.68 1.79 1.98 2.57

4.3 Experimental Results

In this section we present experimental results that demonstrate the efficacy of using the

Simultaneous Local Optimal algorithm to find the minimum volume bounding boxes of

80

Algorithm 4.4 Algorithm-MBC: Minimum Bounding Box Candidates - Clustering

Input: Enter d-dimensional data points.
Input: Granularity. ▷ Interval for rotation
D ← Datapoints

G← Granularity

i← 1
for all Axial Planes (Starting With An Orthogonal Plane) do ▷ Rotate each plane
through 360 degrees

j ← 1
for θ = 0→ 360 and θ ← θ +G do

R ← rotmatrix(θ)
Rotate D by R

[V olume,Orientation] ← SLO(D)
MinV olCand[j]← V olume ▷ Store min. volume for each orientation
MinOCand[j] ← Orientation ▷ Store corresponding orientation
j ← j + 1

end for
[MinV olP lane[i], In] ←MinV ol(MinV olCand) ▷ Find minimum volume for

current planar rotation
MinOPlane[i] ←MinOCand[In] ▷ Use index to find corresponding orientation
i← i + 1

end for
ClusterMinV olPLane ▷ Cluster the SLOs obtained
IsolateClusterOutliers

SP ← StartingPointsCorrespondingtoOutliers

for all Starting Points Ranges in SP do
RepeatMBC −Heuristicwithfinergranularity ▷ Isolate new set of simultaneous

local optimals
end for
[MinimumV olume, Index] ←MinV ol(MinV olP lane) ▷ Find minimum volume for all
planar rotations
MinimumOrientation ←MinOPlane[Index]
▷ Get corresponding orientation Output: MinimumV olume,MinimumOrientation

function rotmatrix(angle)
Rotation ← Calculate Rotation for Current Plane Output: Rotation

end function

81

Figure 4.2: Examples of Random Polytopes Tested

general d -dimensional polytopes. We first discuss the experimental setup involved in running

the experiments, followed by a description of the experimental paradigm. This is followed by

a runtime analysis of the SLO-Algorithm and the different versions of the MBB-Candidate

algorithm. We then discuss the application of this paradigm to randomly generated three

dimensional vertices and compare the results obtained with the only known method that

guarantees a minimum bounding box for polytopes in three dimensions as. This is followed

by a discussion of the paradigm as applied to four to twenty dimensional convex polytopes

and the advantages obtained therein in the optimization of volume compared to standard axis

aligned bounding boxes and the estimation method presented in [?] to solve this problem.

Next the effect of each of the three heuristics on the quality of optimization obtained is

elaborated upon and we see how, specially in the higher dimensions choosing the correct

heuristic can have an appreciable effect on the optimization obtained.

4.3.1 Experimental Setup

In order to test the algorithms exhaustively, we randomly generated sets of convex d-

dimensional points with variable number of vertices. The primary constraint for the points

comprising each test case was that they describe a convex polytope in d-dimensional space.

82

Some examples of the polytopes generated are shown in Figure.4.2.

For tests in three dimensions (for the purpose of comparison with other algorithms), we

generated a hundred convex polytopes each for a given number of vertices , with the number

of vertices ranging from eight to five hundred. In addition data sets consisting of polytopes

of up to 10,000 vertices were also generated to test execution times of the optimization

algorithm and effect of granularity on the volume optimization obtained.

For tests in four to eight dimensions we similarly generated ten tests cases each with

number of vertices varying from ten to fifty. As the primary object of the experiments

in higher dimensions was to illustrate the effectiveness of the approach when applied to d-

dimensions (significant minimization of bounded volume) compared to axis aligned bounding

boxes rather than a comparison with existing methods (as in the three dimensional case)

the number of test cases generated are much less. However, they are sufficient to indicate

the minimization trend that occurs with the increase in dimensions. Additionally, for all

experiments we used the rotating callipers algorithm [9] to minimize the two dimensional

projections of the polytope within the SLO. This algorithm is quite simple to implement

and has the added advantage of giving the minimum bounding box of a two dimensional

polygons in linear time. Depending upon the nature of the polytopes being optimized this

algorithm can be replaced by other algorithms to improve the execution time if required.

All computations and experiments have been carried out using Matlab R○7.14.0 (R2012a)

on a Dual-Core Intel R○CoreTM i5-2410M 2.30 GHz with 6GB RAM. We measure all results

with a precision of 10−4.

83

4.3.2 Theoretical Analysis

4.3.2.1 Optimized Bounding Box - SLO

The simultaneous local optimal algorithm uses the optimization of two dimensional projec-

tions as the mechanism to isolate the locally optimal orientation of the d-dimensional poly-

tope. The optimization method used therefore becomes the primary driving factor behind

the run time of the SLO-Algorithm. We utilize the rotating callipers algorithm presented

in [9] to find the minimum bounding box of the projection of the polytope in a given two

dimensional plane. Since the rotating callipers is O(n) in the number of vertices projected

onto the two dimensional plane, for a finite number of rotations r required by SLO to con-

verge to a simultaneous local optimal the run time would be given by O(r∗n). This indicates

that SLO is linear in terms of the number of vertices of the polytope. O(n ∗ r) where n is

number of vertices required for constructing a convex hull during rotating callipers and r is

the number of intermediate rotations.

4.3.2.2 Optimized Bounding Box - MBBC(Exhaustive)

For the exhaustive MBB-Candidate algorithm, the number of orientations selected is depen-

dant on the dimension d and the granularity g of the grid. Since the objective is to sample

every starting orientation for a given g, this requires a complete rotation around each plane

i times the next plane and so on till plane m stepped by g . Therefore, the runtime for

the algorithm can be given by O(2π/g)m or O(1/g)m, indicating that the key factor for the

algorithm is granularity chosen. Decreasing it increases run time and vice versa.

84

4.3.2.3 Optimized Bounding Box - MBBC(Heuristic)

For the heuristic based MBB-Candidate algorithm, the number of orientations selected is

again dependant on the dimension d and the granularity g of the grid. However, since

the orientation space is sampled selectively in this case, with the sampling being based a

series of strategically placed orientation planes in space it only requires a single complete

rotation around each plane i independently stepped by granularity g. The number of starting

orientation planes chosen for each of the heuristics mentioned is similar so the run time

in each case would be the same. Therefore, the runtime for the algorithm can be given

by O(2πm/g) or O(1/g)m. The key factor is again the granularity, however as is clear

the number of orientations sampled is now linear in the number of the planes rather than

exponential as was the case for the exhaustive approach.

4.3.3 Minimum Bounding Boxes For 3-Dimensional Polytopes

In three dimensions, the optimized bounding box algorithm was run initially on randomly

generated convex polytopes with 8 to 500 vertices. For a given number of vertices, the

algorithm was applied to a 100 test cases (i.e. generating 100 sets of the same number of

vertices). In each case it was found that for any given orientation of the polytope (defined by

its rotation around each of the axial planes) the SLO converged to a simultaneous local opti-

mal within a maximum of ten iterations through the axial planes at most and three iterations

in general. The minimum value of the volumes defined by the multiple simultaneous local

optimals was taken as the global optimal. To check the accuracy of the optimized bound-

ing boxes thus obtained we compared them to the results obtained by applying ORourke’s

Algorithm [11] to the same test cases. This is the only algorithm that is known to give

85

a guaranteed minimum bounding box in three dimensions. The version utilized was imple-

mented in Matlab and provided in [14]. Furthermore, a comparison was also performed

with the commonly used PCA method for finding the optimized bounding box to see how

SLO fares in comparison to the fastest prevalent method. Given the significant increase in

execution time for O’Rourke’s method with increasing number of vertices, the first ten test

cases for each vertex group were compared. The results of this comparison are discussed in

detail below.

4.3.3.1 Effect of Varying Heuristics

The heuristics discussed are focused on maximizing the space covered and optimally selecting

the starting orientations of a given polytope. In three dimensions, only three two dimensional

planes are available to make choices for the orthogonal starting plane of the SLO. Given

the orientation space is thus quite small and the space coverage optimization provided by

the intermediate SLO orientations still holds, the optimal is arrived at with little effect from

the choice of the starting plane. As shown in previous sections, in three dimensions the

granularity is key factor in determining whether the minimum bounding box is isolated or

not. The optimized values of the volume of arbitrary three dimensional polytopes having

10−500 vertices are compared against each other, keeping the granularity fixed at 0.5. From

the Tables 4.4, 4.5, 4.6 and 4.7, 4.8 we see that while heuristic 3 is better than 1 at times

where the optimized bounding box does not match the global optimal, the improvement

is fractional. In most cases both the heuristics match the global optimal as shown. The

improvement of optimization produced by the heuristics discussed is more apparent in higher

dimensions where the choices available for the starting orientation and the hence the space

to be covered is greater.

86

4.3.3.2 Effect of Increasing Vertices

Increasing the number of vertices in the convex polytopes to be optimized, has slightly

contrasting effects on the SLO and ORourke’s algorithms. For SLO the most important

factor is the general increase in the number of edges of the convex polytope defined by the

vertices (data points). Since the candidate orientations in the first part of the algorithm

and the number of planes to be optimized is constant across any number of vertices for a

given granularity, the only variable is the general increase in the number of edges in the two

dimensional projections being optimized using the rotating callipers.

Since this algorithm gives results in linear time with respect to the number of vertices, we

see a more or less linear increase in the execution time for SLO as the number of vertices are

increased as illustrated in Figure.4.4. However, this increase is regulated by the orientation

of the vertices. Since the points for the test cases are randomly generated, the additional

vertices for each successive set of test cases might not cause an increase in the number of

edges. If the additional vertices are oriented such that a larger number of data points lie on

the same boundaries, they might decrease the number projected edges. Hence the decrease

in execution time for some of the test cases with larger number of vertices (exemplified by

the test cases for 100 and 200 vertices in Figure. 4.4).

ORourke’s algorithm runs in cubic time with respect to the number of vertices and as

we can see the execution time increases significantly with increase in the number of vertices.

The execution times for ORourkes and SLO with a granularity of 0.5 are comparable for

a low number of vertices but for polytopes with vertices greater than 50, SLO has a clear

advantage. An advantage that gets better considerably as the number of points gets larger

and larger. In contrast, while PCA remains quite fast with increasing vertices comparable to

87

the fastest version of SLO, its performance in terms of accuracy is extremely weak, matching

the global optimal less than 30% of the time in some cases and hovering much below that

for most as shown in Figure. 4.6.

The linearity of execution time is quite visible from fig.4.3 where polytopes bounded by

thousands vertices are tested. As can be seen the time required to calculate the minimum

bounding box of each polytope increases slowly even with a large increase in the number of

vertices.

4.3.3.3 Effect of Increasing Granularity

The number of candidate orientations are controlled by granularity (interval of rotation)

around each axial plane. The smaller the granularity the greater the number of candidate

starting orientations and thus the greater the likelihood of arriving at the optimal minimum

bounding box. However, this results in a corresponding increase in the execution time as

the SLO has to be run for every candidate orientation. The objective is to achieve a good

balance between accuracy and speed by controlling the granularity. From Figure.4.5 we can

see that SLO with a granularity of 0.1 gives the optimal bounding box a hundred percent

of the time for all test cases. Its execution time, on the other hand, for vertex sets less

than 150 vertices while still linear is more than ORourke’s as shown in Figure.4.4. Above

150 as the execution time for ORourke increases enormously its linearity allows it to post

a significant advantage. Conversely, increasing the granularity to 1.5 and above cuts the

execution time by a factor (360)/G where G is the granularity as illustrated in Figure4.4.

Based on experimental results, a granularity of 0.5 provides the best balance between speed

and accuracy. It matches the exact optimal 95 to 100 percent for all sets of polytopes with

a specified number of vertices and its execution time while slightly slower than O’Rourke’s

88

for vertices ≤ 30, is much faster for vertices ≥ 50 (Figure.4.4). However, it is interesting to

note that for all granularities great than 0.1, the average % error by volume for test cases

not matching the optimal is extremely low as illustrated in Figure.4.7. In fact, excepting

three or four datapoints, all other non-matching test cases display an average %error of less

than 0.007%. Thus, for a chosen granularity of 0.5 and a given vertice set the 5% − 10% of

times the result does not match the exact optimal, it differs only in third or fourth decimal

point.

Figure 4.3: Execution Time for SLO With High Number of Vertices

Figure 4.4: Execution Time for SLO and ORourke

4.3.4 Minimum Bounding Boxes For d-dimensional Polytopes

In higher dimensions, the SLO was run initially on randomly generated convex polytopes

with 10,15,20 and 50 vertices. These tests were run for 4,5,6,7 and 8 dimensions to determine

the general trends for execution time and optimization with increasing number of dimensions.

89

Table 4.4: Effects of Heuristics in 3D - 10V

Instances ORourke SLO-H1 SLO-H3

1 2.13716 2.13716 2.13716
2 1.545414 1.545414 1.545414
3 2.861554 2.861554 2.861554
4 2.95988 2.95988 2.95988
5 1.980998 1.980998 1.980998
6 1.81546 1.81546 1.81546
7 2.552137 2.552137 2.552137
8 2.456895 2.456895 2.456895
9 2.724014 2.724062 2.724062
10 2.653667 2.653667 2.653667

Table 4.5: Effect of Heuristics in 3D - 50V

Instances ORourke SLO-H1 SLO-H3

1 5.90747 5.90747 6.483248
2 5.912747 5.912747 6.659173
3 5.546646 5.546646 6.857865
4 5.857574 5.857574 6.686615
5 5.807628 5.807628 6.251951
6 6.105782 6.105782 6.757059
7 5.870182 5.870182 6.735433
8 5.892193 5.892193 6.429091
9 5.796868 5.796868 6.827371
10 5.845011 5.845011 6.678335

Table 4.6: Effect of Heuristics in 3D - 100V

Instances ORourke SLO-H1 SLO-H3

1 6.483248 6.483248 6.483248
2 6.659173 6.659177 6.659284
3 6.857865 6.857904 6.857866
4 6.686615 6.686615 6.686615
5 6.251951 6.251951 6.251951
6 6.757059 6.757059 6.757059
7 6.735433 6.735433 6.735433
8 6.429091 6.429091 6.429091
9 6.827371 6.827371 6.827371
10 6.678335 6.678335 6.678335

90

Table 4.7: Effect of Heuristics on 3D - 200V

Instances ORourke SLO-H1 SLO-H3

1 7.134995 7.134995 7.631631
2 6.875339 6.875339 7.636308
3 7.141376 7.141376 7.666846
4 7.098962 7.098962 7.603187
5 7.236272 7.23627 7.593752
6 7.260731 7.260731 7.535476
7 7.123031 7.123031 7.66344
8 7.236821 7.236809 7.545288
9 7.28961 7.28961 7.61791
10 7.206606 7.206606 7.622973

Table 4.8: Effect of Heuristics in 3D - 500V

Instances ORourke SLO-H1 SLO-H3

1 7.631631 7.631631 7.631631
2 7.636308 7.636309 7.636318
3 7.666846 7.666846 7.666846
4 7.603187 7.603187 7.603187
5 7.593752 7.593752 7.593752
6 7.535476 7.535476 7.535476
7 7.66344 7.66344 7.66344
8 7.545288 7.545287 7.545288
9 7.61791 7.617916 7.61791
10 7.622973 7.622973 7.622973

91

Figure 4.5: % Accuracy of SLO for Different Granularities

Figure 4.6: % Accuracy of SLO & PCA for Increasing No. of Vertices

Figure 4.7: % Error of Polytopes Not Matching ORourke

For a given number of vertices, the algorithm was applied to ten test cases. The smaller

number of test cases is sufficient to display the trend of the optimization obtained over axis

aligned bounding boxes for d-dimensional polytopes. To study the effect of varying heuristics

sets of randomly generated polytopes with vertices varying between 10−20 vertices are used

while keeping the granularity set at 1. The optimized volume obtained is compared with

the volume of the axis-aligned bounding in d-dimensions and the optimized volume obtained

from the technique based on diameter estimation provided in [?]. As can be seen the

92

optimization obtained from this method is much less than the optimization obtained from

the Optimized Bounding Box Algorithm.

4.3.4.1 Effect of Increasing Granularity

Granularity also plays an important part in high dimensions in controlling the optimization

obtained. In fact, the control provided by the granularity could be more useful in higher

dimensions in predicting the absolute global optimal by providing an asymptotic mechanism

to define the point at which optimization obtained cannot be improved upon. We show the

effect of changing granularity in figures. 4.8 to 4.10.

Each figure shows the decrease in volume for a particular d-dimensional polytope with

decreasing granularity. The range of granularities chosen is much larger in order to indicate

the trend of the volume optimization. For granularity smaller than 0.5 the optimization

remains constant or only changes fractionally which can allow us to predict the absolute

global optimal for the given polytope with a high level of accuracy. The lowest volume can

also be isolated earlier as seen from fig. 4.10 if the SLO defining the grid point corresponds to

a starting orientation that is part of the set of orientations generated with a larger granularity.

In general, the volume of the bounding box tends to be higher for a larger granularity, since

the number of starting orientations sampled are much smaller.

4.3.4.2 Effect of Increasing Dimensions

As we increase the number of dimensions, the number of two dimensional axial projections

also increases. For a d dimensional polytope the number of 2D parallel axial projections are

given by m = C(d
2
). Thus, in addition to the number of vertices, m also becomes a factor in

the increasing execution time. While SLO still gives the optimized bounding box the time

93

Figure 4.8: %Volume Optimization For a 4D-Polytope using SLO

Figure 4.9: %Volume Optimization For a 5D-Polytope using SLO

Figure 4.10: %Volume Optimization For a 6D-Polytope using SLO

taken to isolate the minimal volume could increase quickly with an increase in dimensions.

This can be seen from fig.4.11 Therefore, for dimensions greater than 6 larger sizes of the

94

granularity can be used to reduce the time taken to arrive at an optimal volume. Given the

scale of optimization obtained for d > 3 as shown in fig. this could be considered an acceptable

choice. If maximizing the decrease in the volume is the objective for a particular application,

then the granularity could be reduced further to achieve the required optimization.

As the number of dimensions are increased, there is a commensurate increase in the

optimization obtained. This means that for higher dimensions, the decrease in volume of the

optimized bounding is very large when compared to the axis aligned bounding box. Thus

for applications where a high dimensional bounding box is used to encapsulate a given set of

points (querying multimedia databases), utilizing this transformation could have significant

impact. The optimization obtained is illustrated by Figure.4.12. The comparison between

optimization obtained for instances of 4 − 10 dimensional polytopes is shown in Table 4.9.

Figure 4.11: %Execution Time For D-Dimensions With A Granularity of 1

Table 4.9: Comparison of Optimization For Polytopes in d-dimensions

Dim 4 5 6 7 8 10

AABB 36824.027 133542.736 465692.231 12219776.7 72234570.73 22621605161
SLO 9815.319 39616.433 59063.183 175240.158 990024.990 376762123.4
DE 35240.594 124996.001 440079.159 11498809.9 69561891.61 21083336010

%OptS 73.34 70.33 87.31 98.56 98.62 98.33
%OptD 4.3 6.4 5.5 5.9 3.7 6.8

95

Figure 4.12: %Optimization in d-dimensions using SLO

4.3.4.3 Effect of Increasing Vertices

Increasing the number of vertices increases the execution time slightly in a manner similar

to the three dimensional case. The same reasoning applies here as the increased edges lead

to increased edge combinations that rotating callipers needs to check to obtain minimum

bounding boxes for the two dimensional projections. Effect of increase in execution time is

indicated 4.13 where we use the four dimensional case as an exemplar for higher dimensions.

However, the optimization obtained starts to decrease slightly as the vertices are increased.

This can be explained by the method used to generate the random collection of points in

higher dimensions. As the number of vertices increases it becomes more likely that the points

settle into an annulus yielding a fairly sphere like convex d-dimensional polytope that starts

becoming too symmetric for significant optimization to be obtained. For a specific shape,

say the d-dimensional hyper-diamond the optimization remains in the same average range

with increasing number of vertices on the convex hull.

96

Figure 4.13: %Execution Time in 4D With Varying Vertices

4.3.4.4 Effect of Varying Heuristics

For dimensions greater than 3, the effect of the choice of the starting plane of the simultaneous

local optimal comes into play. Increasing the number of dimensions increases this effect.

From the tables for instances of 4−6 dimensional polytopes we can see that Heuristic-3 gives

the best result for a given d-dimensional polytope. In each table the leftmost corner value

is always the lowest corresponding to the sampling with lowest granularity using Heuristic

3. The results also show how the optimization obtained increases with the increase in the

number of dimensions. Since the coverage given by Heuristic-3 is the most the result reflects

the advantage in optimization that it provides.

Table 4.10: Optimization With Changing Heuristics in 4D

Granularity 1 2 3 5 7 10

H1 10097.65079 10109.55 10109.43 10138.59 10127.59 10157.65
H2 10097.65079 10109.55 10109.43 10138.59 10127.59 10127.47
H3 10097.41194 10097.96 10097.96 10116.7 10097.96 10097.96

97

Table 4.11: Optimization of Volume With Changing Heuristics in 5D

Gran 0.5 1 2 3 5 7 10

H1 31397.74 31363.2137 31523.82 31499.76 31702.63 31910.11 31974.85
H2 31272.73 31256.6369 31403.46 31484.57 31516.01 31981.42 31621.43
H3 31256.64 31242.1895 31425.57 31450.79 31484.57 31981.42 31750.63

Table 4.12: Volume Optimization with Changing Heuristics in 6D

Granularity 1 2 3 5 7 10

H1 88284.1377 87723.4354 89272.9911 90902.5557 911327.313 94307.3415
H2 87723.4354 91005.1063 87723.4354 85014.6478 89805.4971 94187.9184
H3 84321.2178 85014.6478 84321.2178 83179.8467 86327.4354 87723.4354

4.4 Summary & Conclusion

In this chapter we postulate about the the properties of the minimum bounding box a d-

dimensional polytope under projection. The properties of these k-dimensional projections

specially the Simulatneous Local Optimal and the convergence of optimized projections to

a local optimal in the associated higher dimension can be leveraged into a novel technique

for finding the optimized bounding boxes of points defining arbitrary convex polytopes in d-

dimensional space. The details of this method are provided and discussed. We also proposed

heuristics that could be used to significantly improve the execution time of the algorithm

proposed while maintaining a very high level of optimization. The comparison of these

results of the method in three dimensions with the only known algorithm that guarantees a

absolute minimum as well as the fastest approximation method used to generate bounding

boxes with an adequate level of accuracy shows the optimization is obtained matches the

maximum level possible in most cases while providing an enormous amount of speed up in

execution time. Individual factors affecting the performance of the algorithm were isolated

and discussed for both threes and higher dimensions, and appropriate values for these were

98

proposed that provide a good balance between accuracy and speed. The discussion on

applying this technique for polytopes in higher dimensions show how the advantages obtained

their are significantly more than for three dimensions. While optimization methods exist in

3D, no significant work has been done to solve this problem in d-dimensions excepting an

approximation technique based on diameter estimation that does not improve significantly

over the volume of the axis aligned boudning box for each polytope. Therefore, the technique

presented fills an important gap literature whereby applications utilizing high dimensional

constructs could take advantage of the approximation presented.

99

Chapter 5

Range Query In High Dimensional

Databases Using Topological

Transformation

The ability to construct minimized bounding boxes for a set of points in d-dimensional space

could have important implications in a number of applications. To prove the efficacy of

the optimization method propose and illustrate its importance in an application domain, we

discuss in this chapter how optimized bounding boxes obtained by the algorithm presented in

the previous chapter can be used to carry out range queries on high-dimensional databases.

The results of also show how the technique presented improves upon existing state of the

art methods in terms of the I/O and execution time.

For most large scale databases returning data points lying within a specified range ef-

ficiently is extremely important. Range queries or similarity queries based on L1 distance

are used commonly in large scale multimedia databases containing sets of feature vectors.

This chapter focuses on a method to improve this functionality for queries in d-dimensional

L1 space. To achieve the targeted aim of improved efficiency in terms of improved I/O and

execution time, the range query is approximated with a minimal bounding box query. This

query in conjunction with some heuristics is used to return equivalent results while achieving

100

the stated objectives.

5.1 Motivation

Extensive work has been done to carrying out range queries on high dimensional databases

using a variety of indexing technique.Approximating range queries by box queries, however,

and using them in conjunction with bounding box indexing techniques was recently proposed

in [98]. The primary objective there is to to take advantage of the alignment of the edges

of the box queries with the bounding rectangles used to index data in techniques like the R-

Tree [46] and R*-Tree [102]. It takes advantage of the fact the range query in two dimensional

L1-space describes a regular diamond and rotating it by 45deg results in an exact box

which can then be applied to the data points in the database which have been similarly

transformed. For higher dimensions the data was decomposed into a series of disjoint two

dimensional planes on which the same 45deg transformation was applied and dimensions not

divisible by 2 left as is. The resulting querying process provides a significant improvement

in I/O time over existing state of the art methods used to carry out standard range queries.

However, while the transformation is exact in the two dimensions, for d > 2 the bounding box

constructed using disjoint planar rotations is quite inefficient in terms of the empty space

encapsulating the actual range query points. This empty space can be removed by heuristics

proposed in [98] such that the effect on the I/O is minimized. But the performance of the

algorithm in terms of the execution time is significantly affected by the amount of empty

space/false positives that have to be removed. Since this space increases exponentially with

increase in dimensions, minimizing it such that the improvement in I/O is still maintained

becomes a major issue.

101

In this chapter we show how using a Minimum Bounding Box (MBB) transformation

instead of the the disjoint planar rotation transformation presented in [98] to implement

range queries in d-dimensional space can result in significant performance optimization in

terms of execution time while matching or slightly improving upon the I/O optimization

over standard range queries.

5.2 Methodology

For a set of d-dimensional feature vector or data records the range query with a given radius

r at centered at a point p can be formally given by,

R(p) = {q∣q ∈D ∧ d(p, q) ≤ r} (5.1)

where, d(p, q) is the distance function that serves as the measure of dissimilarity between

the points. In the case of the application under discussion this function is the L1 distance

measure which is formally defined as,

d(p, q) = L1(p, q) = ∣q1 − p1∣ +⋯+ ∣qd − pd∣ (5.2)

where, pi(1 ≤ i ≤ d) is ith dimension of point p.

Using the L1 distance measure to carry out the range query results in an interesting side

effect. The range query forms a convex cross-polytope in d-dimensional space. For three

dimensions this a regular octahedron as shown in fig.5.2. From [98] we can extrapolate that

using axis aligned bounding boxes to represent range queries minimizes collision with the

102

similarly axially aligned bounding boxes of the index nodes of an indexing technique such

as the R*-Tree.

As mentioned previously to execute queries efficiently in large databases, the data present

is referenced by a multidimensional index. Queries are then applied to the index rather than

the data itself. This index can be created using a variety of techniques depending upon

the requirement and application. A common indexing technique used for high-dimensional

database querying is the R-Tree [46] based indexing method the R*-Tree [102]. This method

utilizes d-dimensional bounding boxes to efficiently index d-dimensional data points. The

efficiency of an indexing technique like the one just mentioned is measured in terms of the

number of data pages (amount of IO) accessed in the index tree during the execution of a

given query as well the time it takes to return the data satisfying the given range.

The bounding boxes for arbitrary d-dimensional polytopes returned by the simultaneous

local optimal algorithm are axis-aligned and provide a very high level of optimization in terms

of reducing the empty space (false positives in case of a range query) as shown. Therefore,

using the SLO-Algorithm we can come up with a transformation T for a d-dimensional range

query such that its axis-aligned bounding box is minimal. This bounding box when applied as

a query to an indexed d-dimensional database (the contents of which have also been rotated

by T) results in significant performance optimization. For d dimensions this minimized

bounding box query (MBB) with range ri = [mini,maxi] in dimension i encapsulating a

range query R with radius r is given by,

103

B(ri, r2, ..., rd) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q

RRRRRRRRRRRRRRRRRRRRRRRRRR

q ∈D

∧

mini ≤ qi ≤maxi for 1 ≤ i ≤ d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

where D is the set of all d-dimensional data points in the database.

The false positives still present after the optimal transformation can be removed by

heuristics similar to the ones proposed in [98] as shall be discussed subsequently.

5.3 Topological Transformation in Multi-Dimensional

Space

Using bounding box queries in lieu of range queries, requires transformation of both the data

space and the range queries themselves. The space transformation is performed offline on

the entire data set in the database, before constructing the index. The query transformation

is performed on the fly as each range query is submitted. The key factor determining

the validity of this transformation is the satisfaction of the property that the result of the

transformed query over the transformed database is either equal to, or at the least a superset

of, the result of the original query over the original database. It should not miss any results

which could have been returned by the original. In this regard using the minimal bounding

box query is a direct extrapolation, since by definition it encapsulates the entire polytope

that a submitted range query defines in d dimensions. Using the bounding does introduce

false positives (i.e., the points that do not satisfy the original query but do satisfy the

transformed query). However, as long as there are no false negatives (i.e, the points that are

104

in the original query but are not in the transformed query) the validity of the transformation

is maintained.

As mentioned previously, using the disjoint planar rotational transformation for dimen-

sions greater than two results in bounding boxes that have a large amount of empty space

acting as false positives. The amount of extra space increases as the dimensionality increases,

leading to the requirement of more CPU time to prune the extra space. This space is re-

moved using a set of heuristics that while ensuring the improvement in I/O cause an increase

in the CPU time expended. The time taken is directly proportional to the amount of false

positives present. The greater the space the greater the amount of CPU time expended

in determining how much of the transformed data intersects with the bounding rectangles

of the index. In this section, we introduce a topological transformation algorithm utilizing

the simultaneous local optimal algorithm to minimize the bounding box querying time for

d-dimensional range queries, for d > 2.

⇔

Figure 5.1: Transformation of Range Query

5.3.1 Topological Transformation For d ≤ 3

In the two dimensional case presented in [98], the transformation obtained is exact in the

sense that after application of the transformation the range query is exactly mapped to

105

the box query with no extra space.false positives that need to be removed. This can be

exemplified by the example given in fig.5.1 [98].

The edges of the range query follow the line vectors ⟨1,1⟩ and ⟨−1,1⟩. If we align the

query space’s axes to align with these vectors ⟨1,1⟩ and ⟨1,−1⟩ instead of the unit vectors

⟨1,0⟩ and ⟨0,1⟩, the query space is transformed into the space shown in ??. The minimum

bounding box given by the box query-2, 2-2, 2 precisely defines the original range query in

5.1 [98].

The in-exactness comes into play for dimensions greater than two. Finding an exact

transformation that would result in an axis aligned bounding box for the cross-polytope

representing a range query is non-trivial and results in a dimensional blow-up which is

infeasible for building efficient indices. Therefore, to decrease overlap with the bounding

boxes of the index an axis aligned bounding box can be used to encapsulate the range query.

For d > 3 there exist methods [15], [11] for finding the exact minimum bounding box of

a cross-polytope.

For example, the 3D regular diamond shown in 5.2 is in the up-right position (centered

at the origin with each of its vertices on the coordinate planes), said vertices being i.e.

(1,0,0), (-1,0,0), (0,1,0), (0, -1,0), (0,0,1) and (0,0,-1) The optimal bounding box for this 3D

cross-polytope can be obtained by rotating parallel to the XY-plane by 45°and then rotating

clockwise by 54.7327°parallel to the YZ-plane [15]. However, when d > 3, there are no such

algorithms for finding optimal bounding boxes in prior literature. Thus, for d > 3 SLO can

used to find an optimal bounding box. We discuss the transformations and the steps involved

in this process subsequently. In the d-dimensional case, the query is a d-dimensional cross-

polytope and if it is optimally oriented then, from Theorem.4.1.1 all of it’s 2-D projections

are simultaneous local optimal. We use this property in the SLO-Algorithm to to compute

106

Figure 5.2: 3D-diamond in upright position

an optimized bounding box. In this section, we present an algorithm that computes an

optimized axis aligned bounding box for a d-dimensional cross polytopes.

5.3.2 Topological Transformation for d > 3 Using SLO

For dimensions greater than three, SLO can be used to determine the minimal bounding

box, which can be used as the querying construct instead of the standard range query.

Mathematically, Rp1, p2, ..., pd denotes the set of all the points that are within a speci-

fied range r based on L1 distance from the point q = (q1, q2, ..., qd) where the query is

centered and qi gives the coordinate in the i-th dimension. Geometrically, all the points

in Rp1, p2, ..., pd form a cross-polytope or hyper-diamond with 2n points: (p1 + r, p2, ..., pd),

(p1−r, p2, ..., pd),(p1, p2+r, ..., pd), (p1, p2−r, ..., pd),......., (p1, p2, ..., pd+r), (p1, p2, ..., pd−r).

Given this range query, its associated axis aligned bounding box with 2d endpoints forming

the corresponding box query is given by,

BQ = R(min1 ∶max1,min2 ∶max2,,mind ∶maxd). (5.4)

which gives the range in each dimension for the set of points defined by Rp1, p2, ..., pd.

107

Using the SLO-Algorithm we can isolate a transformation T d that when applied to R(pi)

results in its axis aligned bounding box becoming minimal. To simplify the extraction of the

transformation for a dimensions d, the initial orientation of the d-dimensional cross-polytope

corresponding to Rp1, p2, ..., pd can be given by the 2d × d matrix R. After applying SLO

to R, the final optimal orientation of R will be given by the matrix R′. Based on the final

orientation of the polyhedron given by the algorithm, we can obtain the transformation

matrix, which then can be applied directly to transform the corresponding d-dimensional

space. Formally for a given dimension, the topological transformation matrix T d is given by

T d = (R)(R′−1) (5.5)

where the matrix T d gives the transformation in dimension d.

Since for a dimension d every range query forms a cross polytope with the same initial

orientation, the transformation need only be calculated once. Once calculated it is then

applied to the entire database offline and an index built up from the transformed data.

Thus, for a given d-dimensional query RQ in the original space the corresponding optimal

orientation RQ′ will be given by RQ′ = RQ ∗ T d. The bounding box for this orientation

can be calculated using 5.4. From this it is also obvious that T d is invertible. The inverse

transformation T d(−1) can then be used return data values returned from the query on the

fly.

This is exemplified by taking the unit three dimensional range query given by,

108

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−1 0 0

0 1 0

0 −1 0

0 0 1

0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

optimizing it using SLO. From 5.5, the transformation matrix would be,

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4082 −0.7071 −0.5774

0.8165 −0.0000 −0.5774

0.4082 −0.7071 0.5774

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and applied to P giving the final orientation of the polyhedron given by,

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4082 −0.7071 −0.5774

0.4082 0.7071 0.5774

0.8165 −0.0000 −0.5774

−0.8165 0.0000 0.5774

0.4082 −0.7071 0.5774

−0.4082 0.7071 −0.5774

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding minimal bounding box for this query,

MBBQ = -0.8165:0.8165, -0.7071:0.7071, -0.5774:0.5774

equivalent to the range in each dimension is used as a box query applied to the data set

that has been rotated by the same transformation.

109

We have computed the volumes of optimized bounding box for a simple d-dimensional

cross-polytope where the polytope is centered at the origin and has a unit radius in L1 norm.

Table. 5.1 compares the volumes of the bounding boxes for d-dimensional cross-polytope for

the the standard range query, the method using DPR and the method using SLO. The table

shows that SLO provides enormous optimization with increasing dimensions up to 99.99%

better than the bounding box volume over the bounding box constructed using the DPR

approach in 16 dimensions. This corresponds to an equivalent optimization in the amount

of false positives that need removal.

5.3.2.1 Tranformation Property

Proposition 5.3.1. For any two points in d-dimensional space p(d1, d2, ..., dd) and q(d1, d2, ..., dd)

if D(p, q) measures is the function defining their distance in original space then D(p, q) =

D(T d(p), T d(q)) where D(T d(p), T d(q)) defines the distance in the transformed space where

T d is the transformation in dimension d.

Proof. The proof follows from the fact that all the transformations involved in the SLO

process are rotations. Each rotation in the m 2D-planes being an isometry, the distance

between any two points in the database being transformed would be maintained before

and after the transformations. Since the final transformation T d is a composition of these

rotations [101], T d would also be distance preserving.

This property can leveraged into a modified version of the heuristic proposed in [98] to

remove the false positives still present after the minimization obtained through the SLO.

110

5.3.2.2 Transformation Heuristic

The heuristic proposed takes advantage of the observation that if the distance between the

range query center and a bounding hyper-rectangle of the index tree can be estimated,

the branches of the tree that do not contain any actual matches can be removed from

consideration.

Proposition 5.3.2. Heuristic: Given an index bounding box B overlapping with the query

box Q with range r and query center q, if the distance between q and the closest point p in

B is greater than r then B is removed from consideration.

The closest point for any bounding box would lie on its boundary. Since boundary

information for a specific bounding rectangle is provided in the in the corresponding index

node, it could be checked without increasing the I/O. Assuming that b is the closest point in

the in the overlapping index bounding box B to query center qc. Using the above heuristic,

we now formally the define minimal bounding box query (MBBQ) with range r as,

MBBQ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

q ∈D

∧ (mini ≤ qi ≤maxi

for 1 ≤ i ≤ d) ∧

D(p,q) ≤ r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

Including this heuristic as part of the query removes the false positives present while

resulting in greater efficiency for query execution. The efficiency is only valid as long as

we ensure that no point satisfying the range query is removed from consideration after

transformation T .

111

Theorem 5.3.3. For every d-dimensional data point p that satisfies the range query R(q1, q2, ..., qd),

p is also satisfies the minimized bounding box query B(T d(q1, q2..., qd))contained in the result

of the PBQ.

Proof. Assume that range query R with range r is centered at point q = (q1, q2..., qd) in L1

space. Also, there exists a point p such that, p ∈ R(q) but p′ is not contained in the box

query b, where p′ = T d(p).

This holds true only if the index bounding box B′ containing p′ was removed by the

minimum bounding box query at some point due to the specified heuristic, i.e. the estimated

distance between B′ and q′ (q′ = T d(q)) was greater than r. Let s′ = T d(s) be the closest

point in B′ to q′. This implies that while s′ was the closest point to q′ in the transformed

domain, s was not the closest point to q in the original data domain. This contradicts the

distance preservation property defined in proposition 5.3.1. Hence, such a point p does not

exist. In other words, result set returned by the MBBQ contains all the points from the

one returned by the original range query.

Using the optimized orientation of the d-dimensional cross-polytopes and the associated

transformation we carried out range queries on the test databases. Each range query was

implemented as a MBBQ by using its axis-aligned bounding box as the querying construct.

Table 5.1: Volume Optimization for Bounding Box for Unit Hyper-Diamond

Dim 4 6 8 10 12 16
RQ 16 64 256 1024 4096 32768
DPR 4 8 16 32 64 256
SLO 1.005 0.9473 0.3076 0.1354 0.0435 0.0022

SLO-DPR(%) 74.875 88.1575 98.0775 99.57688 99.93203 99.99914

112

5.3.3 Performance Evaluation

5.3.3.1 Experimental Setup

The experiments were conducted on uniformly distributed synthetic datasets. The data

points were normalized to unit (hyper)cube. The page size of for the index nodes was 4K

bytes. All results presented here are based on averaging the I/O of one hundred random

queries. Similarly, the run time is measured for a set of one hundred queries with equivalent

ranges for each method. All the experiments were run on AMD Opteron 2.2 GHz systems

running GNU/Linux. In the experiments discussed here the R*-tree [8] is used. However,

other indexing schemes may also be used for these experiments with the caveat that they used

axis-aligned bounding boxes. R*-tree index nodes contain minimum bounding rectangles for

the child nodes and both range and bounding box queries can be implemented using this

index structure.The labels used for various methods in the figures and tables are as follows:

RQ - traditional range query on an R*-Tree, PBQ - Pruning Box Query on R*-Tree and

MBBQ - Minimized Bounding Box Query.

5.3.3.2 Effect of Increasing Dimensions

Tables-5.2,5.3, 5.4 and 5.5 show the run time performance of range queries, for query ranges

varying from 0.1 through 0.4. The queries are made using standard range queries(RQ),

the pruning bounding box (PBQ) query using the DPR presented in [98] and the minimized

bounding box query (MBBQ) of the SLO algorithm. For the data presented the database size

is fixed at 1 million feature vectors. From the tables it is clear the performance in terms of

run time increases significantly with the increase in the number of dimensions in comparison

to the PBQ as well as the standard range query. This is explained by the fact that amount of

113

false positives increases exponentially with the increasing dimensions if the DPR are used to

derive the optimizing transformation as shown in table.5.1. Removing these false positives

increase CPU time expended as the heuristics utilized perform inverse transformations and

comparisons for all points satisfying the box query. Since the number of false positives are

minimized in the MBBQ and it does not need to do an inverse transformation to apply

the heuristic involved, it takes less time to run while providing the same results. The

improvement in time of the PBQ over RQ is explained by the improvement in I/O which

improvement is matched by the MBBQ. From the table it can seen that this improvement

is about 33% for 20 dimensions.

Table 5.2: Run Time in Seconds with Increasing Dimensions for a Range of 0.1

Dimensions RQ PBQ MBBQ %Opt MBBQ over PBQ

4 6.253 5.337 4.979 6.707888327
8 22.845 19.978 17.8003 10.90049054
12 60.694 47.13 39.683 15.80097602
15 144.703 108.96 83.899 23.00018355
16 174.184 137.428 104.72 23.80009896
20 359.472 226.924 152.294 32.88766283

Table 5.3: Run Time in Seconds with Increasing Dimensions For a Range of 0.2

Dimensions RQ PBQ MBBQ %Opt MBBQ over PBQ

4 31.06 28.425 26.406 7.102902375
8 129.91 116.291 103.4989 11.00007739
12 225.259 188.384 160.711 14.68967641
15 380.213 309.939 236.864 23.57722003
16 327.556 312.873 237.47 24.10019401
20 507.16 389.854 264.71 32.10022213

114

Table 5.4: Run Time in Seconds with Increasing Dimensions For a Range of 0.3

Dimensions RQ PBQ MBBQ %Opt MBBQ over PBQ

4 69.058 65.498 60.978 6.900974076
8 168.735 177.676 157.634 11.28008285
12 255.748 248.304 209.071 15.80038984
15 340.951 332.459 256.392 22.88011454
16 328.724 334.064 254.222 23.90021074
20 507.803 543.857 363.04 33.24715872

Table 5.5: Run Time in Seconds with Increasing Dimensions For a Range of 0.4

Dimensions RQ PBQ MBBQ %Opt MBBQ over PBQ

4 108.212 97.213 90.116 7.30046393
8 181.111 204.418 181.727 11.10029449
12 254.755 272.036 226.605 16.70036319
15 308.778 331.397 255.6727 22.8500258
16 330.628 319.763 242.7 24.10003659
20 507.859 514.618 341.706 33.6000684

5.3.3.3 Effect of Increasing Ranges

For a changing values of range the improvement obtained is shown in the fig.The database

size is still fixed at 1 million feature vectors and the number of dimensions is fixed. The

figure show that the improvement over PBQ remains more or less constant with increasing

range size. This can explained by the fact that the MBB optimization is dependant on the

orientation of the cross-polytope defining the query and not its size. For a comparable size

the false positive optimization of MBBQ over PBQ remains constant. Thus, this indicates

that this improvement percentage is independent of the values of query ranges.

5.3.3.4 Effect of Increasing Database Size

5.6 gives the performance improvement of Minimized Bounding Box (MBBQ) queries due

to SLO over the the Pruning Box Queries (PBQ) due to DPR with increasing database size.

115

Figure 5.3: Time Optimization With Increasing Range

In this set of experiments the query range was fixed at 0.2 and the number of dimensions

was set at 10. The performance of range query (RQ) in the original space is also included

in the table for the purpose of comparison. We observe that the performance improvement

of SLO over DPR is stable as the database size increases.

Table 5.6: Execution Time With Increase in Database Size

DB Size 0.5M 1M 2M 5M 10M

RQ 134.737 225.694 441.884 949.814 2165.921
DPR 101.1 188.384 299.31 670.336 1416.086
SLO 90.322 163.705 256.807 571.796 1192.486

5.3.3.5 I/O Optimization

The optimization obtained in terms of I/O is shown in fig.5.4. The queries are run by varying

their ranges from 0.1 to 0.4 fora each type over a fixed database size of 1 million feature

vectors. In terms of optimization obtained MBBQ matches the optimization obtained for the

PBQ over the standard RQ. The primary I/O cost in terms of page accesses comes in to play

after the application of heuristics for the removal of false positives. Both PBQ and MBBQ

remove all the false postives before accessing the leaf nodes of the index tree to retrieve the

116

matching data points. Thus, the page accesses for both would be similar as shown in fig.5.4

and significantly better than those of range query RQ.

Figure 5.4: Comparison of I/O Optimization

5.4 Summary & Conclusion

In this chapter an efficient method to carry out range queries in d-dimensions is presented.

The minimal bounding box queries presented here can implemented pretty quickly for ap-

plications like content based audio database indexing. For a specific dimension the trans-

formation required need only be calculated once. Combined with the fact that the distance

preserving nature of the rotational transformation prevents the need for the calculation of

inverse transformations during false positive removal. This has an additional impact on the

performance improvement to add to the significant optimization obtained from the removal

of false positives during the SLO process. All of these results illustrate the interesting impact

and implications of using optimized bounding boxes obtained from the simultaneous local

algorithm in real world applications.

117

Chapter 6

Conclusion

In this thesis we identify a number of interesting properties for arbitrary d-dimensional

polytopes and their projections. We prove the existence of the face coincidence property

as an additional constraint for the existence of a minimum volume bounding box for a

regular cross-polytope in three dimensions. We also discuss the characteristics of the d-

1 dimensional projections of these polytopes when encapsulated by a minimum bounding

box. Based on these characteristics and the structural symmetry of the cross-polytope, we

postulate about the forms the convex hulls of those projections. These results are then used

to isolate the unique set of two dimensional projections that correspond to the orientation of

the cross-polytope in three dimensions. This in conjunction with the other results proved the

optimal orientation of a three dimensional polytope can be isolated in terms of its projections.

Furthermore, these techniques can also be applied to identify the bounding boxes of other

three dimensional polytopes such as icosahedrons or dodecahedrons. Using the reduction

process with projections in two dimensions for optimization means that the calculations and

determination of projections involved are relatively simple and the process can be completed

quickly.

We subsequently discuss the properties of the minimum bounding box of a d-dimensional

polytope under projection. The properties of these k-dimensional projections specially the

Simulatneous Local Optimal and the convergence of optimized projections to a local optimal

in the associated higher dimension can be leveraged into a novel technique for finding the

118

optimized bounding boxes of points defining arbitrary convex polytopes in d-dimensional

space. The details of this method are provided and discussed. We also proposed heuristics

that could be used to significantly improve the execution time of the algorithm proposed while

maintaining a very high level of optimization. The comparison of these results of the method

in three dimensions with the only known algorithm that guarantees a absolute minimum as

well as the fastest approximation method used to generate bounding boxes with an adequate

level of accuracy shows the optimization is obtained matches the maximum level possible in

most cases while providing an enormous amount of speed up in execution time. Individual

factors affecting the performance of the algorithm were isolated and discussed for both threes

and higher dimensions, and appropriate values for these were proposed that provide a good

balance between accuracy and speed. The discussion on applying this technique for polytopes

in higher dimensions show how the advantages obtained their are significantly more than for

three dimensions. While optimization methods exist in 3D, no significant work has been

done to solve this problem in d-dimensions excepting an approximation technique based on

diameter estimation that does not improve significantly over the volume of the axis aligned

bounding box for each polytope. Therefore, the technique presented fills an important gap

literature whereby applications utilizing high dimensional constructs could take advantage

of the approximation presented.

While the discussion focuses on polytopes, the results are applicable to any set of points

in d-dimensions. Bounding boxes for points defining curves or spheres in d dimensional space

can also be obtained using a similar methodology. The only differentiating factor would be

the choice of the optimizing algorithm in two dimensions. This algorithm would replace the

rotating callipers used here to find the exact minimum bounding box in 2D.

As discussed earlier these results could have significant usage in high dimensional database

119

indexing and computational geometry. An implementation of the algorithm to range queries

in high dimensional database indexing is given. The topological transformation presented

based on the optimization algorithm (in addition to the interesting heuristics utiized) is

shown to provide significant performance improvement over the existing state of the art

technique used to carry out range queries on high dimensional indexes. The minimal bound-

ing box queries presented here can implemented pretty quickly for applications like content

based audio database indexing. For a specific dimension the transformation required need

only be calculated once. Combined with the fact that the distance preserving nature of the

rotational transformation prevents the need for the calculation of inverse transformations

during false positive removal. This has an additional impact on the performance improve-

ment to add to the significant optimization obtained from the removal of false positives

during the SLO process

Since bounding boxes are inherent to a number of other applications such as collision de-

tection algorithms, physically-based modeling, robotics, animation, computer-aided design,

manufacturing, and computer simulated environments, the optimized transformation could

also be applied in such applications to provide a commensurate performance improvement.

The tightness of the bounding box used to approximate the underlying abstraction or ob-

ject is an important performance constraint in these applications. Thus, having a minimum

axis-aligned bounding box results in an automatic improvement in the performance achieved

irrespective of the application.

120

BIBLIOGRAPHY

121

BIBLIOGRAPHY

[1] S. Har-Peled, Geometric approximation algorithms, vol. 173. Amer Mathematical So-
ciety, 2011.

[2] O. D. Faugeras and J. Ponce, “Prism trees: a hierarchical representation for 3-d ob-
jects,” in Proceedings of the Eighth international joint conference on Artificial in-
telligence - Volume 2, (San Francisco, CA, USA), pp. 982–988, Morgan Kaufmann
Publishers Inc., 1983.

[3] Y. Zhou and S. Suri, “Algorithms for a minimum volume enclosing simplex in three
dimensions,” SIAM J. Comput., vol. 31, pp. 1339–1357, May 2002.

[4] P. M. Hubbard, “Collision detection for interactive graphics applications,” IEEE
Transactions on Visualization and Computer Graphics, vol. 1, pp. 218–230, 1995.

[5] H. Samet, Foundations of multidimensional and metric data structures. The Mor-
gan Kaufmann series in computer graphics and geometric modeling, Elsevier/Morgan
Kaufmann, 2006.

[6] A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in Proceedings
of the 1984 ACM SIGMOD international conference on Management of data, SIGMOD
’84, (New York, NY, USA), pp. 47–57, ACM, 1984.

[7] N. Roussopoulos and D. Leifker, “Direct spatial search on pictorial databases using
packed r-trees,” in Proceedings of the 1985 ACM SIGMOD international conference on
Management of data, SIGMOD ’85, (New York, NY, USA), pp. 17–31, ACM, 1985.

[8] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: an efficient
and robust access method for points and rectangles,” in Proceedings of the 1990 ACM
SIGMOD international conference on Management of data, SIGMOD ’90, (New York,
NY, USA), pp. 322–331, ACM, 1990.

[9] G. Toussaint, “Solving geometric problems with the rotating calipers,” 1983.

[10] F. P. Preparata and M. I. Shamos.

122

[11] J. O’Rourke, “Finding minimal enclosing boxes,” International Journal of Parallel
Programming, vol. 14, pp. 183–199, 1985. 10.1007/BF00991005.

[12] G. Barequet and S. Har-Peled, “Efficiently approximating the minimum-volume bound-
ing box of a point set in three dimensions,” in Proceedings of the tenth annual ACM-
SIAM symposium on Discrete algorithms, SODA ’99, 1999.

[13] C. Ericson, Real-Time Collision Detection. No. v. 1 in Morgan Kaufmann Series in
Interactive 3D Technology, Elsevier, 2005.

[14] C.-T. Chang, B. Gorissen, and S. Melchior, “Fast oriented bounding box optimization
on the rotation group so(3,ℝ),” ACM Trans. Graph., vol. 30, pp. 122:1–122:16,
Oct. 2011.

[15] S. Shahid, S. Pramanik, and C. B. Owen, “Minimum bounding boxes for regular cross-
polytopes,” in Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, (New York, NY, USA), pp. 879–884, ACM, 2012.

[16] G. Barequet and S. Har-Peled, “Efficiently approximating the minimum-volume bound-
ing box of a point set in three dimensions,” J. Algorithms, vol. 38, no. 1, pp. 91–109,
2001.

[17] C. Chan and T. S.T., “Determination of the minimum bounding box an iterative
approach,” Computers and Structures, vol. 15, pp. 1433–1449, 2000.

[18] G. Barequet, B. Chazelle, L. J. Guibas, J. S. Mitchell, and A. Tal, “Boxtree: A
hierarchical representation for surfaces in 3d,” Computer Graphics Forum, vol. 15,
no. 3, pp. 387–396, 1996.

[19] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: a hierarchical structure for rapid
interference detection,” in Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’96, (New York, NY, USA), pp. 171–
180, ACM, 1996.

[20] D. Dimitrov, C. Knauer, K. Kriegel, and G. Rote, “Bounds on the quality of the pca
bounding boxes,” Comput. Geom. Theory Appl., vol. 42, pp. 772–789, Oct. 2009.

[21] D. Dimitrov, C. Knauer, K. Kriegel, and G. Rote, “On the bounding boxes obtained
by principal component analysis,” 2006.

[22] D. Dimitrov, C. Knauer, K. Kriegel, and G. Rote, “Bounds on the quality of the pca
bounding boxes,” Comput. Geom. Theory Appl., vol. 42, pp. 772–789, Oct. 2009.

123

[23] S. Har-Peled, “A practical approach for computing the diameter of a point set,” in
Proceedings of the seventeenth annual symposium on Computational geometry, pp. 177–
186, ACM, 2001.

[24] A. M. Macbeath, “A compactness theorem for affine equivalence-classes of convex
regions,” J. Maths, vol. 3, no. 1, pp. 54–61, 1951.

[25] M. Lahanas, T. Kemmerer, T. Kemmerer, N. Milickovic, D. Baltas, K. Karouzakis,
D. Baltas, N. Zamboglou, O. Germany, M. Lahanas, and K. Offenbach, “Optimized
bounding boxes for three-dimensional treatment planning in brachytherapy,” 2000.

[26] P. Ciaccia, “Multimedia data indexing,” pp. 1804–1808.

[27] Y. Sakurai, M. Yoshikawa, and S. Uemura, “Spatial indexing by virtual bounding
rectangles for high-dimensional data,” in Information Organization and Databases
(K. Tanaka, S. Ghandeharizadeh, and Y. Kambayashi, eds.), vol. 579 of The Springer
International Series in Engineering and Computer Science, pp. 267–279, Springer US,
2000.

[28] I. Kamel, “Indexing, hilbert r-tree, spatial indexing, multimedia indexing,” pp. 507–
512.

[29] T. Koziara and N. Biani, “Bounding box collision detection,” in In Proceedings of the
13th ACME Conference, 2005.

[30] S. Suri, P. M. Hubbard, and J. F. Hughes, “Analyzing bounding boxes for object
intersection,” ACM Trans. Graph., vol. 18, pp. 257–277, July 1999.

[31] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,” ACM Trans.
Database Syst., vol. 24, pp. 265–318, June 1999.

[32] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,” in Proceedings
of the 1995 ACM SIGMOD international conference on Management of data, SIGMOD
’95, (New York, NY, USA), pp. 71–79, ACM, 1995.

[33] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query processing
techniques in relational database systems,” ACM Comput. Surv., vol. 40, no. 4, pp. 1–
58, 2008.

[34] G. R. Hjaltason and H. Samet, “Index-driven similarity search in metric spaces (survey
article),” ACM Trans. Database Syst., vol. 28, no. 4, pp. 517–580, 2003.

124

[35] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top- k query processing
techniques in relational database systems,” ACM Computing Surveys, vol. 40, no. 4,
pp. 1–58, 2008.

[36] G. R. Hjaltason and H. Samet, “Index-driven similarity search in metric spaces (survey
article),” ACM Trans. Database Syst., vol. 28, pp. 517–580, December 2003.

[37] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The x-tree: An index structure for high-
dimensional data,” in Proceedings of the 22th International Conference on Very Large
Data Bases, VLDB ’96, (San Francisco, CA, USA), pp. 28–39, Morgan Kaufmann
Publishers Inc., 1996.

[38] A. Kumar, “G-tree: A new data structure for organizing multidimensional data,” IEEE
Trans. on Knowl. and Data Eng., vol. 6, pp. 341–347, April 1994.

[39] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces,” in Proceedings of the 24rd
International Conference on Very Large Data Bases, VLDB ’98, (San Francisco, CA,
USA), pp. 194–205, Morgan Kaufmann Publishers Inc., 1998.

[40] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method for similarity
search in metric spaces.,” in VLDB’97, pp. 426–435, 1997.

[41] D. A. White and R. Jain, Similarity indexing with the SS-tree, pp. 516–523. IEEE
Comput. Soc. Press, 1996.

[42] N. Katayama and S. Satoh, The SR-tree: An Index Structure for High-Dimensional
Nearest Neighbor Queries, pp. 369–380. ACM Press, 1997.

[43] J. K. Uhlmann, “Satisfying general proximity/similarity queries with metric trees.,”
Inf. Process. Lett.

[44] J. T. Robinson, “The k-d-b-tree: a search structure for large multidimensional dy-
namic indexes,” in Proceedings of the 1981 ACM SIGMOD international conference
on Management of data, SIGMOD ’81, (New York, NY, USA), pp. 10–18, ACM, 1981.

[45] Agarwal, de Berg, Gudmundsson, M. Hammar, , and H. J. Haverkort, “Box-trees and
r-trees with near-optimal query time,” Discrete and Computational Geometry, vol. 28,
pp. 291–312, 2002. 10.1007/s00454-002-2817-1.

[46] A. Guttman, “R-trees: a dynamic index structure for spatial searching,” Proceedings
of ACM SIGMOD, pp. 47–57, 1984.

125

[47] P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, and H. J. Haverkort,
“Box-trees and r-trees with near-optimal query time,” in Proceedings of the seven-
teenth annual symposium on Computational geometry, SCG ’01, (New York, NY, USA),
pp. 124–133, ACM, 2001.

[48] C. Procopiuc, P. Agarwal, and S. Har-Peled, “Star-tree: An efficient self-adjusting
index for moving objects,” in Algorithm Engineering and Experiments (D. Mount and
C. Stein, eds.), vol. 2409 of Lecture Notes in Computer Science, pp. 178–193, Springer
Berlin Heidelberg, 2002.

[49] R. Kurniawati, J. S. Jin, and J. A. Shepard, “Ss+ tree: an improved index structure
for similarity searches in a high-dimensional feature space,” pp. 110–120, 1997.

[50] K. Chakrabarti and S. Mehrotra, “The hybrid tree: an index structure for high dimen-
sional feature spaces,” in Data Engineering, 1999. Proceedings., 15th International
Conference on, pp. 440–447, 1999.

[51] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The X-tree: An index structure for high-
dimensional data,” in VLDB ’96: Proceedings of the 22th International Conference on
Very Large Data Bases, (San Francisco, CA, USA), pp. 28–39, Morgan Kaufmann
Publishers Inc., 1996.

[52] A. Kumar, “G-Tree: A new data structure for organizing multidimensional data,”
IEEE Trans. on Knowl. and Data Eng., vol. 6, no. 2, pp. 341–347, 1994.

[53] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces,” in Proceedings of the 24rd
International Conference on Very Large Data Bases, (San Francisco, CA, USA),
pp. 194–205, Morgan Kaufmann Publishers Inc., 1998.

[54] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi, “The priority r-tree: a practically
efficient and worst-case optimal r-tree,” in Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, SIGMOD ’04, (New York, NY, USA),
pp. 347–358, ACM, 2004.

[55] N. Katayama and S. Satoh, “The SR-tree: an index structure for high-dimensional
nearest neighbor queries,” in SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD
international conference on Management of data, (New York, NY, USA), pp. 369–380,
ACM, 1997.

[56] J. K. Uhlmann, “Satisfying general proximity/similarity queries with metric trees.,”
Inf. Process. Lett., vol. 40, no. 4, pp. 175–179, 1991.

126

[57] D. A. White and R. Jain, “Similarity indexing with the SS-tree,” in Proceedings of the
12th International Conference on Data Engineering, (Washington, DC, USA), pp. 516–
523, IEEE Computer Society, 1996.

[58] V. Gaede and O. Günther, “Multidimensional access methods,” ACM Comput. Surv.,
vol. 30, pp. 170–231, June 1998.

[59] G. M. Morton, “A computer oriented geodetic data base and a new technique in file
sequencing,” Technical report, 1966.

[60] D. Hilbert, “Über die stetige abbildung einer linie auf ein flächenstück,” vol. 38,
p. 459460, 1890.

[61] C. C. Aggarwal, “On the effects of dimensionality reduction on high dimensional sim-
ilarity search,” in PODS ’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, (New York, NY, USA),
pp. 256–266, ACM, 2001.

[62] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, “Locally adaptive dimension-
ality reduction for indexing large time series databases,” ACM Trans. Database Syst.,
vol. 27, no. 2, pp. 188–228, 2002.

[63] K. V. Ravi Kanth, D. Agrawal, and A. Singh, “Dimensionality reduction for similarity
searching in dynamic databases,” SIGMOD Rec., vol. 27, no. 2, pp. 166–176, 1998.

[64] K. Vu, K. A. Hua, H. Cheng, and S.-D. Lang, “A non-linear dimensionality-reduction
technique for fast similarity search in large databases,” in SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD international conference on Management of data, (New
York, NY, USA), pp. 527–538, ACM, 2006.

[65] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton University Press,
1961.

[66] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The grid file: An adaptable, sym-
metric multikey file structure,” ACM Trans. Database Syst., vol. 9, pp. 38–71, March
1984.

[67] J. Orenstein, “A comparison of spatial query processing techniques for native and
parameter spaces,” SIGMOD Rec., vol. 19, pp. 343–352, May 1990.

[68] H. Tropf and H. Herzog, “Multidimensional range search in dynamically balanced
trees,” Applied Informatics, pp. 71–77, 1981.

127

[69] G. Amato and P. Savino, “Approximate similarity search in metric spaces using in-
verted files,” in Proceedings of the 3rd international conference on Scalable information
systems, InfoScale ’08, (ICST, Brussels, Belgium, Belgium), pp. 28:1–28:10, 2008.

[70] E. Chavez Gonzalez, K. Figueroa, and G. Navarro, “Effective proximity retrieval by
ordering permutations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, pp. 1647–
1658, September 2008.

[71] C. Gennaro, G. Amato, P. Bolettieri, and P. Savino, “An approach to content-based im-
age retrieval based on the lucene search engine library,” in Proceedings of the 14th Euro-
pean conference on Research and Advanced Technology for Digital Libraries, ECDL’10,
(Berlin, Heidelberg), pp. 55–66, Springer-Verlag, 2010.

[72] S. Lang, Linear Algebra. New York: Springer-Verlag, 1987.

[73] S. Pramanik, A. Watve, C. R. Meiners, and A. Liu, “Transforming Range Queries To
Equivalent Box Queries To Optimize Page Access,” Proceedings of the 36th Interna-
tional Conference on VLDB, pp. 409–416, 2010.

[74] A. Garcia-Alonso, N. Serrano, and J. Flaquer, “Solving the collision detection prob-
lem,” IEEE Comput. Graph. Appl., vol. 14, pp. 36–43, May 1994.

[75] C. M. Hoffmann, Geometric and solid modeling: an introduction. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1989.

[76] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer Academic Pub-
lishers, 1991.

[77] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-collide: an interactive and
exact collision detection system for large-scale environments,” in Proceedings of the
1995 symposium on Interactive 3D graphics, I3D ’95, (New York, NY, USA), pp. 189–
ff., ACM, 1995.

[78] M. Held, J. T. Klosowski, and J. S. B. Mitchell, “Real-time collision detection for
motion simulation within complex environments,” in ACM SIGGRAPH 96 Visual
Proceedings: The art and interdisciplinary programs of SIGGRAPH ’96, SIGGRAPH
’96, (New York, NY, USA), pp. 151–, ACM, 1996.

[79] M. Moore and J. Wilhelms, “Collision detection and response for computer animation,”
in Proceedings of the 15th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’88, (New York, NY, USA), pp. 289–298, ACM, 1988.

128

[80] P. M. Hubbard, “Collision detection for interactive graphics applications,” IEEE
Transactions on Visualization and Computer Graphics, vol. 1, pp. 218–230, Sept. 1995.

[81] S. Suri, P. M. Hubbard, and J. F. Hughes, “Collision detection in aspect and scale
bounded polyhedra,” in Proceedings of the ninth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’98, (Philadelphia, PA, USA), pp. 127–136, Society for
Industrial and Applied Mathematics, 1998.

[82] A. Iones, S. Zhukov, and A. Krupkin, “On optimality of obbs for visibility tests for
frustum culling, ray shooting and collision detection,” in Computer Graphics Interna-
tional, 1998. Proceedings, pp. 256–263, IEEE, 1998.

[83] Y. Zhou and S. Suri, “Collision detection using bounding boxes: Convexity helps,” in
In 8th Annual European Symposium on Algorithms (ESA 2000, pp. 437–448, Yunhong,
2000.

[84] L. McMillan, Jr., An image-based approach to three-dimensional computer graphics.
PhD thesis, Chapel Hill, NC, USA, 1997. UMI Order No. GAX97-30561.

[85] J.-W. Chang, W. Wang, and M.-S. Kim, “Efficient collision detection using a dual
bounding volume hierarchy,” in Advances in Geometric Modeling and Processing
(F. Chen and B. Jttler, eds.), vol. 4975 of Lecture Notes in Computer Science, pp. 143–
154, Springer Berlin Heidelberg, 2008.

[86] L. Yi, W. Yi, and X. Changqing, “Efficient collision detection based on component
technique using obb trees in virtual assembly,” in Industrial Mechatronics and Au-
tomation, 2009. ICIMA 2009. International Conference on, pp. 41–44, 2009.

[87] S. Redon, A. Kheddar, and S. Coquillart, “Fast continuous collision detection between
rigid bodies,” in Computer graphics forum, vol. 21, pp. 279–287, Wiley Online Library,
2002.

[88] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha, “Fast continuous collision detection
for articulated models,” in Proceedings of the ninth ACM symposium on Solid modeling
and applications, pp. 145–156, Eurographics Association, 2004.

[89] A. Gregory, M. C. Lin, S. Gottschalk, and R. Taylor, “A framework for fast and
accurate collision detection for haptic interaction,” in ACM SIGGRAPH 2005 Courses,
p. 34, ACM, 2005.

[90] S. Hu and L. Yu, “Optimization of collision detection algorithm based on obb,” in Pro-
ceedings of the 2010 International Conference on Measuring Technology and Mecha-

129

tronics Automation - Volume 02, ICMTMA ’10, (Washington, DC, USA), pp. 853–855,
IEEE Computer Society, 2010.

[91] E. Ramrez, H. Navarro, R. Carmona, and J. D. Ramos, “Optimizing collision detection
based on obb trees generated with a genetic algorithm,” 2011.

[92] A. Iones, S. Zhukov, and A. Krupkin, “On optimality of obbs for visibility tests for
frustum culling, ray shooting and collision detection,” in Computer Graphics Interna-
tional, 1998. Proceedings, pp. 256 –263, jun 1998.

[93] J. J. Jiménez and R. J. Segura, “Collision detection between complex polyhedra,”
Comput. Graph., vol. 32, pp. 402–411, Aug. 2008.

[94] A. Garcia-Alonso, N. Serrano, and J. Flaquer, “Solving the collision detection prob-
lem,” IEEE Comput. Graph. Appl., vol. 14, pp. 36–43, May 1994.

[95] P. Jimnez, F. Thomas, and C. Torras, “3d collision detection: A survey,” Computers
and Graphics, vol. 25, pp. 269–285, 2000.

[96] U. Assarsson and T. Mller, “Optimized view frustum culling algorithms,” tech. rep.,
1999.

[97] J.-F. Remacle, C. Geuzaine, G. Compre, and E. Marchandise, “High-quality surface
remeshing using harmonic maps,” International Journal for Numerical Methods in
Engineering, vol. 83, no. 4, pp. 403–425, 2010.

[98] S. Pramanik, A. Watve, C. R. Meiners, and A. X. Liu, “Transforming range queries to
equivalent box queries to optimize page access,” PVLDB, vol. 3, no. 1, pp. 409–416,
2010.

[99] A. A. Ricardo and R. Prez-aguila, “General n-dimensional rotations,” 2004.

[100] A. M. Noll, “A computer technique for displaying n-dimensional hyperobjects,” Com-
mun. ACM, vol. 10, pp. 469–473, Aug. 1967.

[101] K. L. Duffin and W. A. Barrett, “Spiders: A new user interface for rotation and
visualization of n-dimensional point sets,” in In Proceedings of the Conference on Vi-
sualization (Los Alamitos, pp. 205–211, IEEE Computer Society Press, 1994.

130

[102] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-Tree: an efficient
and robust access method for points and rectangles,” SIGMOD Rec., vol. 19, no. 2,
pp. 322–331, 1990.

131

