SR




THES!S

ZCo|

This is to certify that the

dissertation entitled

CHROMIUM SPECIATION AND MOBILITY IN
CONTAMINATED SOILS, SAULT STE. MARIE, MI

presented by

Gary Allen Icopini

has been accepted towards fulfillment
of the requirements for

Ph.D. degreein _Geological Sciences

6%@[/2%%k

Major professor

oue L0/ 5 /00

MSU is an Affirmative Action/Equal Opportunity Institution 0-127

LIBRARY
Michigan State
University




PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

2007
SEPy %2 ‘a7

1100 c/CIRC/DateDue.p85-p.14




CHROMIUM SPECIATION AND MOBILITY IN CONTAMINATED SOILS,
SAULT STE. MARIE, MI

By

Gary Allen Icopini

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Geological Sciences

2000



ABSTRACT

CHROMIUM SPECIATION AND MOBILITY IN CONTAMINATED SOILS,
SAULT STE. MARIE, MI

By

Gary Allen Icopini

The fate and mobility of chromium in a wetland area was studied using both field
and laboratory techniques. Wetlands have been used as sinks for chromium because in
reducing wetland environments chromium will exist as Cr(III) which is a less toxic form
of chromium and inorganic Cr(III) solids are very insoluble. However, there is very little
information concerning the mobility of chromium in organic rich environments like
wetlands. Chromium speciation in the soils was investigated using sequential chemical
extractions. Chromium speciation in the aqueous samples was investigated using solid
phase extraction resins that removed the cationic, anionic, and hydrophobic organic
species from solution. The mobility of chromium in these soils was assessed using intact
soil core microcosms. The microcosms were treated with solutions to simulate acid rain
deposition and the influx of nitrate and potassium.

The speciation work indicated that chromium was associated with both inorganic
and organic components of the system. The results from the soil speciation studies
showed that the solid phase chromium was primarily extracted by the acidic moderately
reducible (MR) and basic oxidizable extractions. These results indicate that the solid
forms of chromium in these environments will be either a chromium hydroxide or

associated with the soil organic matter, with chromium hydroxide becoming more



dominant at higher total concentrations of chromium in the soils. The aqueous phase
chromium concentrations in the surface and pore waters at this site are higher than would
be predicted by inorganic thermodynamic calculations. No Cr(VI) was observed in these
samples. The aqueous chromium in the field samples was found to be slightly correlated
with dissolved organic carbon (R?=0.66). The results of the solid phase extraction
performed on the aqueous field samples show that aqueous chromium in field samples
exists primarily as an anion in these waters (96%). It is concluded that the solubility and
mobility of chromium is controlled, at least in part, by complexation with dissolved
organic carbon and that this may be a thermodynamically driven process.

Intact soil core microcosms were used to investigate the mobility of chromium in
laboratory studies. The data from the microcosm experiments also indicated that the
aqueous chromium existed as an organically complexed anion. The results of the
microcosm experiments indicate that the solubility of chromium may also be increased if
the soils experience periods of cyclic saturation and unsaturation. There also may be an

increased solubility of chromium if the degradation of soil organic matter is increased.
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I. INTRODUCTION

1.1 The Problem

The purpose of this study was to investigate the fate and mobility of chromium in
a wetland area contaminated with tannery waste. This study was part of a larger project
that was designed to address two primary goals. The first goal was to define the current
state of chromium in the soil and aqueous phases of the site. The second goal was to
evaluate the stability of the chromium in the soil and assess the potential for mobilization
of chromium from these soils. This project was the result of a collaboration between
personnel with the Center for Microbial Ecology and the Geological Sciences
Department at Michigan State University. The focus of the study presented here is the
geochemical aspects of the project.

The biogeochemistry of chromium is complicated by its redox chemistry; in the
environment chromium can exist as Cr(III) or Cr(VI) (Rai et al., 1989). Chromium (VI)
is known to be toxic, mutagenic, and carcinogenic (Palmer and Puls, 1994) and Cr(VI) is
also highly mobile in many soil environments (Rai et al., 1989). However, almost any
naturally occurring reductant can reduce Cr(VI) to Cr(III) (Rai et al., 1989; Palmer and
Puls, 1994) and chromium in tannery effluent is likely to be in the Cr(III) form (Walsh
and O’Halloran, 1996a; Kotas and Stasicka, 2000). Chromium (III), in comparison to
Cr(VI), is relatively immobile within a pH range of 5 to 12 (Sass and Rai 1987) and has a
relatively low toxicity (Palmer and Puls, 1994). Chromium (III) also bonds with organic

compounds (James and Barlett, 1983a and b; Walsh and O’Halloran, 1996a and b; Kotas



and Stasicka, 2000). The nature of chromium speciation in soil and groundwater
environments is complex. Processes that control chromium speciation include redox
transformations, precipitation/dissolution reactions, and adsorption/desorption reactions.
The environmental chemistry of chromium has received much attention,
especially in the last twenty years (Rai et al., 1989; Richard and Bourg 1994; Losi et al.,
1994a; Fendorf, 1995; Kotas and Stasicka 2000). This research includes laboratory
investigations of the reactivity and mobility of chromium in simple systems with limited
components (Rai et al., 1987; Eary and Rai, 1987; Fendorf et al., 1993; Wittebrodt and
Palmer, 1996a and b; Buerge and Hug, 1998; Zhang and Bartlett, 1999) and complex
systems involving natural materials, such as soils and aquifer material (Bartlett and
Kimble, 1976a and b; Bartlett and James, 1979; Bartlett and James, 1983a, b, and c;
Zachara et al., 1989; Saleh et al., 1989; Milacic and Stupar, 1995; and Cifuentes et al.,
1996). There have also been a number of field-based studies dealing with chromium
mobility and reactivity (Davis et al., 1994; Kent et al., 1994; Armienta and Quere, 1995;
Walsh and O’Halloran, 1996). The majority of the field studies deal with the
development of remedial options for Cr(VI) in ground-water environments (Davis and
Olsen, 1995; Palmer and Puls, 1994). Common remedial approaches to Cr(VI)
contamination involve reducing the chromium to Cr(IIl) in situ (Hanson et al., 1993;
Powell et al., 1995; and Blowes et al., 1997). The rational for this approach is based on
the assumption that inorganic Cr(III) solids are very insoluble and Cr(III) is not
considered to be toxic (Palmer and Puls, 1994). However, there is very little information
concerning the speciation or mobility of chromium in organic rich environments like

wetlands.



Natural and constructed wetlands have been proposed as treatment options for
heavy-metal (including chromium) contaminated water because wetlands have been
demonstrated to act as sinks for metals (Makos and Hrncir, 1995; Polprasert et al., 1996;
Scholes et al., 1998; Barbosa and Hvitved-Jacobsen, 1999). However, natural wetlands
are often host to complex webs of physical and biogeochemical cycles that may influence
metal mobility. An example of one such cycle is the oxidation of Cr(III) to Cr(VI) by
manganese oxides in water-surface films as described by Masscheleyn et al. (1992). In
laboratory experiments, they observed the formation of Cr(VI) in stagnant water above
wetland sediment. It was suggested that dissolved Cr(III) interacts with manganese in
iron and manganese oxide films at the water surface and is oxidized to Cr(VI). The films
were assumed to be primarily organic material upon which iron and manganese oxides
precipitate as reduced dissolved iron and manganese interacts with oxygen from the
atmosphere. The reduced iron and manganese came from the reduction of iron and
manganese oxides in the sediment, which subsequently diffuses into the water column.
This study demonstrates the need to examine the biogeochemistry of chromium in
wetland environments.

Mattuck and Nikolaidis (1996) studied the mobility of chromium in a wetland
using both field and laboratory methods. This study was similar to the work presented
here. Dialysis membrane samplers were used to sample pore water. They reported
aqueous chromium concentrations of 0 to 406 pg/L in the pore waters but no Cr(VI).
Although they reported relatively high aqueous chromium concentrations, they gave no
explanation for these elevated chromium concentrations. Sequential chemical extractions

performed on the sediments indicated that 60 to 90% of the chromium was bound in the



Fe/Mn-oxide and residual fractions, which was interpreted as sediment bound chromium.
However, sodium pyrophosphate, which is not very aggressive (Chao, 1984), was used as
the organic matter extractant. According to Chao (1984) sodium pyrophosphate extracts
the organic matter by chelating and stripping the metals that bind the organic matter
together. A combination of nitric acid and hydrogen peroxide, which oxidizes organic
carbon and are often used as organic matter extractants (Chao, 1984; Tessier et al., 1979;
Belzile et al., 1989; Schulmeister 1993; and Fielder et al., 1994), was used as the residual
extraction. It is possible that much of the chromium that Mattuck and Nikolaidis (1996)
have assigned as sediment bound may actually be organically bound chromium released
by the residual extraction. Mattuck and Nikolaidis (1996) also performed stirred, batch,
leaching experiments to simulate acid rain deposition or acidic groundwater influx. The
leaching experiments were conducted at pH 3, 4, and 5. The most chromium was
released increased as the pH of the slurry decreased, with the highest chromium
concentrations of approximately 20 pug/g at pH 3. They suggest that the mobility of
chromium in wetlands is controlled by the formation of relatively insoluble chromium
hydroxide solids. This study will add to the understanding of the fate and mobility of
chromium in wetland environments.
1.2 Approach

The first goal was to define the current state of chromium in the soil and aqueous
phases. In order to understand how chromium may become mobile at this site, it was
necessary to determine the state of chromium in the soil and aqueous phases that
developed over the past fifty years. The primary hypothesis was that chromium is

associated with soil organic matter as Cr(III) and that dissolved chromium will be



associated with dissolved organic mater. The most likely alternative to this hypothesis is
that the chromium sequestered by these soils is in the form of a (Crx,Fe;.x)(OH); solid,
which has a very low solubility (Rai et al., 1989). To test this hypothesis, soil samples
were collected from three depths at 80 locations, which spanned the range of chromium
concentrations and vegetative types. Selective chemical extractions were used to
determine the partitioning of chromium in different environmentally reactive phases of
the soil or sediment sample. Selective chemical extractions are designed to target
specific solid phases within the sediment (Tessier et al., 1979; Belzile et al., 1989; Yong
etal., 1993). Organic carbon, iron and manganese-oxides appear to be the major controls
on chromium redox chemistry and mobility, therefore the selective extractions targeted
these phases.

Along with the selective chemical extractions, pore water samples were collected
and a new field sampling procedure was established to further investigate the
biogeochemistry of chromium. Solid phase extraction media were used in the field in
order to remove anion, cations, and hydrophobic organic compounds from aqueous
samples in separate reactions. Solid-phase extractions (SPEs) were developed as
separation media for liquid chromatography. Solid-phase extractions have also been used
to investigate various aspects of aqueous geochemistry. SPEs have also been used for
isolating dissolved organic matter (DOM) (Leenheer, 1981; Mills and Quinn, 1981; Mills
et al., 1987) and metal-organic complexes from natural waters (Mills et al., 1982; Mills
and Quinn, 1984; Mills et al., 1987; Mills et al., 1989; Paulson et al., 1994; Elbaz-
Poulichet et al., 1994; Martin et al., 1994; Donat et al., 1997). The majority of these

workers used Sep-Pak columns (Waters Associates) which are selective for the



hydrophobic fraction of DOM. This study also used Sep-Pak columns to perform this
separation. SPEs have also been used to remove cations from aqueous environmental
samples (Pai and Fang, 1990; Davis et al., 1994; Kaplan et al., 1994). Chelex-100 resin
in the sodium form (BIORAD Inc.) was used in this study to remove cations from
solution and replace them with sodium. Relatively fewer investigators report the use of
anion exchange resins to investigate speciation in environmental samples (Leenheer,
1981; Kaplan et al., 1994). AG anion exchange resins in the fluoride form (BIORAD
Inc.) were used in this study to separate anions, in particular organic anions, from the
bulk sample.

The second goal of the project was to evaluate the stability of the chromium in the
soil and assess to the potential for mobilization of chromium from these soils. A
secondary hypothesis is that the mobility of chromium in these soils is controlled by the
stability of the organic matter to which it is bound. Experiments were conducted in the
laboratory using intact soil microcosms to assess mobility. The design and data
collection involved in the microcosm experiments were the result of collaboration with
the microbiologists working on the project. During these experiments treatment fluids
were pumped through a soil core and allowed to react for a period of at least one week.
The objective of these experiments was to determine the biogeochemical conditions in
which chromium may become mobile. Conditions that were tested included: addition of
nutrients (nitrate, phosphate, and potassium), the addition of an alternate terminal
electron acceptor (nitrate), and changes in pH. The biogeochemical conditions were
monitored during the experiments and total extractions were performed on the soils

before the experimentation.



The criteria for the selection of treatments was limited to simulating possible
events that could occur at this site that may change the mobility of chromium. If the
chromium is predominantly present as a (Crx,Fe;x)(OH); species the concentration of
chromium in solution will be controlled by the solubility of this solid. The first treatment
chosen for the microcosm experiments was the simulation of the acidification of the pore
water at the site due to acid rain. An acid rain treatment was chosen because it was
thought to be the most likely acidification event at this site. An amount of fluid
equivalent to approximately five years of acidic precipitation was pumped through the
microcosms during the experiment.

Other treatments were developed to further test the hypothesis that the mobility of
chromium in these soils is controlled by the stability of the organic matter to which it is
bound. If chromium is associated with soil organic matter, the degradation of the organic
matter may release chromium to solution as an organically complexed species.
Therefore, the amount of chromium in solution would be proportional to the amount of
organic matter degraded. The treatments for the second round of microcosm experiments
were designed to determine if chromium could be mobilized from the soils by changes in
microbial processes. The treatments for the second set of microcosm experiments were
designed to simulate the possible addition of nutrients. One of these treatments attempted
to maximize the efficiency of the microbial community by altering the redox state to a
higher level. In this treatment 90 mg/L nitrate was added to a simulated rain solution.
Another treatment attempted to simulate an overall increase in the nutrient level of the
pore water. The objective of this treatment was to add nutrients to the system that were

lacking and thereby potentially increasing the microbial degradation of organic matter.



In this treatment nitrate and phosphate were both added in concentrations of 25 mg/L and

2 mg/L respectively to a simulated rain solution.



II. BACKGROUND

2.1 Study Site
The study site was in Sault Ste. Marie, MI and borders the St. Mary’s River
(Figure 1-site map). The site supports abundant plant life and much of the site is
considered to be a wetland. The soils and subsurface geology are complex and
heterogeneous across the site. The dark, near-surface soils contain abundant organic
matter and in some areas the soils have been characterized as peat (Cannelton, 1992).
Almost all parts of the site are covered by fill. The fill consists of materials such as scrap

leather, hair, bricks, concrete, scrap wood, scrap metal, glass, and cans. The fill was

Bl Wooded Wetland Running Water
Grassy Wetland Pond
Swampy/Cattails %To Be Removed
Bl woodiand
g Grass
D Beach

0 400ft

Figure 1. A map of the study site, showing type of vegetative surface coverings.
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deposited on discontinuous layers of sands and gravels, with the predominant texture of a
silty sand (Cannelton, 1992). Depth to bedrock, which is reported to be Jacobsville
Sandstone, ranges from 30 to 60 feet (Cannelton, 1992).

This research was initiated as the result a practical need for scientific information
concerning the mobility of chromium at the site. The study site is a wetland that received
tannery waste discharge from the late 1890’s until approximately 1958. During the
tanning process an acidic Cr(III) solution is used to bind collagen fibers of the skin and
make the leather resistant to degradation (O’Flaherty et al., 1958; Walsh and O’Halloran,
1996b). This solution is provided in excess and there is a large amount of waste fluid
produced. Today tannery waste is regulated but during the time when the tannery at the
site operated there were few regulations and liquid waste was disposed of through pipes
and ditches that drained toward the river. As a result of this activity, there are areas at
this site which have concentrations of chromium in the soil which exceed 200,000 mg/kg.
The primary discharge areas that have the highest concentrations of chromium will be
removed.

2.2 Geochemistry of Chromium

In aqueous environments Cr(III) forms strong complexes with OH" and exhibits
amphoteric behavior (Baes and Mesmer, 1976). In the pH range of most natural waters
(pH 6-8) it exists primarily as a Cr(OH); solid (Rai et al., 1989). The solubility of the
Cr(OH); solid is very low (Baes and Mesmer, 1976) and if Fe* is present Cr(III)
preferentially forms (Cry,Fe;.x)(OH); (Sass and Rai, 1987). The (Cry,Fe,.x)(OH); solid is
highly insoluble and since iron is present in geologic environments the solubility of

Cr(I1I) in most natural systems is very low (Rai et al., 1989). Chromium (III) is also
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known to bind to soil organic matter (Bartlett and Kimble, 1976b; Palmer and Puls,
1994). Likewise, Cr(III) can be complexed by dissolved organic matter, thereby
increasing the solubility of Cr(III) in soil environments (James and Bartlett, 1983a,b;
Davis et al., 1994; Walsh and O’Halloran, 1994 a and b). Davis et al. (1994) studied the
mobility of chromium and arsenic in an aquifer at a site contaminated by tannery
operations similar to the study site. They found aqueous Cr(III) concentrations much
higher than expected from equilibrium with solid phases. The increase in solubility was
attributed to complexation with dissolved organic matter. Walsh and O’Halloran (1994b)
in studying chromium speciation in an estuary receiving tannery effluent also found high
Cr(III) concentrations and attributed these concentrations to complexation with dissolved
organic matter. Overall however, the solubility of Cr(III) in most natural systems is very
low.

The redox potential of the Cr(VI)/Cr(III) couple is very high and because of this
there are few oxidants present in natural systems that are capable of oxidizing Cr(III) to
Cr(VI) (Rai et al., 1989). Dissolved oxygen and manganese oxides (MnQO,) are the only
two oxidants in the environment that are known to oxidize Cr(III) to Cr(VI) in the pH
range of most natural waters (Palmer and Puls, 1994). The oxidation of Cr(III) by
dissolved oxygen has been shown to be a very slow reaction (Schroeder and Lee, 1975)
and in some studies no oxidation was observed (Eary and Rai, 1987; Bartlett and Kimble,
1976a). Oxidation of Cr(III) to Cr(VI) by Mn-oxides has been demonstrated in a number
of studies (Schroeder and Lee, 1975; Bartlett and James, 1979; Takacs, 1988; Eary and
Rai, 1987). This reaction is much more rapid than the oxidation Cr(III) by dissolved

oxygen and is likely to be more important in groundwater and soil systems.
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Chromium (VI) exists in aqueous solutions as monomeric ions H,CrO,°, HCrOx',
and CrO,%, or as the dimeric ion Cr,0;> (Palmer and Puls, 1994). Chromium (VI) is
relatively more mobile than Cr(III) in subsurface environments. The solubility of Cr(VI)
is controlled by the formation of the Ba(Cr,S)O4 solid solution in environments that
contain BaSO4 (Rai et al., 1989). When BaSOj, solids are not present in the system,
Cr(VI) solubility will be controlled by adsorption/desorption reactions under acidic to
slightly basic conditions (Rai et al., 1989). It has been shown that Cr(VI) is adsorbed by
iron oxides, aluminum oxides, and kaolinite (Davis and Leckie, 1980; Zachara et al.,
1989; Rai et al., 1989). Adsorption to these solid phases is inversely proportional to pH,
adsorption decreases with increasing pH. Under acidic to slightly basic conditions iron
oxides are the dominant adsorbents in the environment (Zachara et al., 1989; Rai et al.,
1989).

Since Cr(VI) is a strong oxidant it can be reduced by many reducing agents found
in natural systems. Ferrous iron as aqueous Fe** (Eary and Rai, 1988) or derived from
oxide or silicate minerals (Eary and Rai, 1989; White and Hochella, 1989) has been
shown to rapidly reduce Cr(VI) to Cr(III), which can lead to the formation of a (Cry,Fe;.
x)(OH); precipitate. Microbial reduction of Cr(VI) to Cr(III) has also been documented
(Llovera et al., 1993; Shen and Wang, 1994). Reduction of Cr(VI) by soil organic matter
has also been documented (Schroeder and Lee, 1975; Bartlett and Kimble, 1976b). The
Cr(III) may hydrolyze and precipitate as a chromium -hydroxide or it may bind to the
remaining soil organic matter (Palmer and Puls, 1994). Reduced sulfur is another
naturally occurring reducing agent that has been found to reduce Cr(VI) (Smilie et al.,

1981; Palmer and Puls, 1994). Rai et al. (1989) conclude that since ferrous iron and
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organic matter are ubiquitous in soil and groundwater, Cr(VI) will be reduced to Cr(III)

in many natural systems.
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III. METHODS

This chapter is divided into three sections. The first section describes the methods
used for collection and analysis of solid samples, which includes soils and sediments.
The second section describes the methods used for collection and analysis of liquid
samples. The third section describes the experimental design and sampling for the

microcosm experiments. Images presented in this dissertation are presented in color.

3.1 Solid samples

3.1.1 - Sample Grid Development, Surveying, and Site Locations

The first step in the sampling program was to develop an unbiased sampling grid
that covered the entire site. A basic GIS analysis was performed on a preexisting data set
(Cannelton, 1992; Cannelton, 1995) to identify possible trends in chromium
concentrations across the site, identify areas of data need, and determine the spacing
between sampling locations. This analysis led to the development of the sampling grid
used in this study. There were several factors considered in the grid development
including, sampling from areas that represented the full range of concentrations, and
equally spaced sampling locations to reduce sampling bias.

An existing local datum was used as the starting point for the grid. The sampling
locations were then established by measuring distances with surveying equipment and a
200-ft. steel tape from known positions. Each sampling location was marked with a
wooden stake, which could then be used to site other locations. The grid showing labeled

sampling locations is illustrated in Figure 2.
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Figure 2. A map of the study site, showing the locations of the sampling sites.

3.1.2 — Sample Collection

Soil cores were collected with an AMS™ stainless steel, split spoon, coring
device, with two-inch diameter, plastic core liners to contain the sample. Initially,
samples were collected from three depths at each site. Sampling intervals below land
surface were 0 to 0.5 feet, 1.0 to 1.5 feet, and 3.0 to 3.5 feet. An AMS™ hand auger was
used to remove intervening material between the sampling depths. Some sampling
difficulties arose when rocks, wood, or other impenetrable objects were encountered at
depth. Thus it was not always possible to obtain three samples at every location.
Samples were collected in acid-washed plastic core liners, the ends were capped and

taped to eliminate further exposure to the atmosphere, and stored on ice in the field. The
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sample location and core descriptions are presented in Appendix A. Samples were frozen

within 8 hours after collection and stored at approximately —20°C.

3.1.3 - Sequential Chemical Extractions

Selective chemical extractions were used to determine the partitioning of
chromium in different environmentally reactive phases or hydromorphic phases of the
soil or sediment sample. Selective chemical extractions are designed to target specific
solid phases within the sediment. Organic carbon, iron and manganese-oxides appear to
be the major controls on chromium redox chemistry and mobility, therefore the selective
extractions targeted these phases. The use of these methods has been questioned because
of the non-specific nature of the extractions and possible post-extraction readsorption
occurring between extractions (Gruebel et al., 1988; Rapin et al., 1986; Rauret et al.,
1989; and Tipping et al., 1985). However, there appears to be a consensus that these
methods can be used to gain useful information concerning metal partitioning within
sediments as long as the limitations are recognized (Gephart, 1982, Chao, 1984, Martin et
al., 1987, Belzile et al., 1989, Schulmeister, 1993, and Fielder et al., 1994).

One approach to the use of selective chemical extractions is to use them in
sequence. The chemical extractants are applied to a soil sample in sequence starting with
the least aggressive extractant. Upon completion of each reaction, solutions are
centrifuged and the supernatants extracted for analysis. A summary of selected
sequential extraction procedures is presented in Table 1. The hydromorphic fractions
generally targeted include exchangeable (metals bound to exchange sites on clays), easily
acid soluble (metals associated with carbonates), easily reducible (metals associated with

Mn-oxides), moderately reducible (metals associated with Fe-oxides), oxidizable (metals
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associated with organic matter and sulfides), and residual (metals associated with

chemically resistant mineral phases).

The procedure used in this study is a modification of the procedure used by

Belzile et al. (1989) with additions to better characterize the organic and possible sulfide

mineral phases. The modification consisted of inserting a 5% NaOCI (pH 9.5) extraction

between the 0.04M hydroxyamine HCI extraction and the 30% H,0, (pH 2) extraction.

The NaOCl should dissolve organic carbon and liberate metals associated with it, while

having little impact on the sulfide phases present (Papp et al., 1991). The procedure used

is listed in Table 2 and a detailed description of the procedure is outlined in Appendix B.

Table 2. Summary of the sequential extraction procedure used in this study (modified

after Bezile et al., 1989).

Target Extraction Phase Extraction Extraction
Substrate Solution* Conditions
Exchange Sites Exchangeable 1.0M MgCl,, pH 7 20°C, 1 hour
(EX) 10 mL
Carbonates Weakly Acid 1.0M NaOAc, pH 5 20°C, 5 hours
Soluble (WAS) 10 mL
Reactive Fe-Oxides | Easily Reducible 0.1IM NH,OHHCIl 25° C, 5 hours
and Mn- Oxides (ER) in 0.1IM HNO; 25 mL
Crystalline Fe- Moderately 0.04M NH,OHHCL 96° C, 6 hours
Oxides Reducible (MR) v/v 25%HOAc20 mL
Organic Matter Basic Oxidizable NaOCl, pH 9.5 96° C, 15 min.
(0X1) 3 times, 6 mL each
then 3.2M NH4,OAcS mL | 25°C, 1 hour
Sulfides Acid Oxidizable 0.02M HNO3, 3 mL 85° C, 5 hours
(0Xx2) 30% H20., pH 2, 8mL
then 3.2M NH4OAc, 5SmL | 25°C, 1 hour
then add DDW to 25mL
3.1.4 - Total Extractions

Total extractions were performed on samples taken from the top and bottom of

cores used in the microcosm experiments. The total extraction method used in this study

18




was based on that of Hewitt and Reynolds (1990). The extraction was conducted in
CEM™ PTFE, microwave digestion vessels. The extraction consisted of placing
approximately 0.5 g of dry soil in a digestion vessel, adding 10 mL of trace-metal grade
nitric acid, and then sealing the vessel before heating in a microwave. The digestion
vessels were then allowed to depressurize and then the sample was diluted to 100 mL

with distilled-deionized water.
3.1.5 - Solid Phase Organic Carbon Content

Organic carbon content of soils was determined by a loss on ignition method.
Organic matter content was determined using sub-splits of homogenized soil taken prior
to the sequential chemical extractions. The method was modified after a procedure
developed by researchers from the Department of Soil Science at the University of
Wisconsin, Madison, WI (Shulte et al., 1991). Analyses were done in the Plant and Soil

Testing Lab at Michigan State University.
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3.2 Aqueous Samples
3.2.1 - Sample Collection

This section provides a brief description of the sample collection approach. A
more detailed description of the sampling collection procedures can be found in
Appendix C. Sampling of the pore waters was accomplished with two types of dialysis
membrane samplers. The first type (Figure 3) is a solid block of acrylic (3’ x 24” x4 or
6”), called a peeper, in which hollow ports have been drilled. Peepers with two different
sizes of ports were used during the sampling. Each port contained approximately 15 or
40 mL of water. The ports on the peeper were filled with de-aerated distilled, deionized
water (DDDW). A semi-permeable membrane (0.2 um pore diameter Biodyne B™

Front View 3-D View
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——“ Dialysis Membrane
oXe) ;}‘ ——— Face Plate
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Figure 3. Schematic diagram of a “peeper” sampler used to collect pore-water samples.
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nylon membrane, Pall Corp.) was placed across the filled peeper ports (while expelling
all gas bubbles) and held in place by an acrylic face plate which was secured with nylon
SCTEWS.

The second type of dialysis membrane sampler (‘barrel’ sampler; Figure 4) was
originally designed as a component of a multi-level sampling apparatus for water wells
(U.S. Filter/Johnson Screens Corp.). A barrel consists of a polyethylene tube (1”
diameter x 3” long) with caps that screw onto each end of the tube. Each barrel contained
approximately 45 mL of water. The barrel samplers are designed with disposable, nylon,
dialysis membranes (0.2 um), which were fitted in to screw cap ends of the barrel. The
barrels were filled with de-aerated distilled, deionized water and capped with the

membrane screw caps such that no gas bubbles were present inside the barrel.

3D View

End cap
Membrane screw cover

0.2 pm nylon filter membrane

Side View

DIV JWAd0

Figure 4. Schematic diagram of a “barrel” sampler used to collect pore-water samples.
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The membrane allows exchange of solutes between the distilled water and the
surrounding pore waters of a saturated porous medium (Hesslein, 1976; Carignan et al.,
1985; and Tessier et al., 1996). The peepers and barrels were installed below the land
surface in saturated areas. The samplers were left in place for at least two weeks to allow
biogeochemical equilibration to occur between the sampler and the pore water (Hesslein,
1976; Carignan et al., 1985: Tessier et al., 1996). In order to obtain sufficient fluid for
analysis, four to six adjacent peeper ports were sampled to make up one sample. Three
barrels bound together constituted one sample when using barrel samplers.

Aqueous field sampling was conducted during the summer and fall of 1997 and
1998. During the latest field-sampling season, samples were also taken from the surface
waters at the site. The surface water sampled was primarily shallow, standing water less
than six inches deep but samples of springs and deeper water were also obtained. The
sampling of surface waters was accomplished with a battery operated peristaltic pump,
which was used to pump water through a 0.45 pm filter. The filtered water was collected
in a 1 L, acid-washed, polypropylene bottle and filled to allow minimal or no headspace.
Splits were then taken from the 1 L bottle for the various analyses that were performed,

as described in the following section.
3.2.2 - Analytical Measurements

Field measurements that were made included temperature, pH, Eh, S, Cr(VI),
Fe?*, and alkalinity. Laboratory measurements included dissolved organic carbon
(DOC), NH*, CH,, anions (CI', Br, NO3, NO,, SO4%), and metals (Cr, Fe, Ca>*, Mg®*,
Na*, K*, Mn). Eh and pH were determined with electrodes. Sulfide was determined

using sulfide vacu-vials (Chemetrics Inc.). Cr(VI) was determined using a
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diphenylcarbazide colorimetric method (Fishman and Friedman, 1989). Fe(II) was
determined using a phenantholine colorimetric method (APHA, 1992). Alkalinity was
determined by titration with sulfuric acid (APHA, 1992). Anions were analyzed by
capillary electrophoresis (APHA, 1998) using an Applied Biosystems model 270HT
capillary electrophoresis instrument. Cations were acidified to below pH 2 with
Optima™ nitric acid and refrigerated until analysis. Cation concentrations in the field
samples and the fluids from the total extractions were quantified using inductively
coupled plasma mass spectroscopy (ICP-MS; VG-Elemental Plasma Quadl or
Micromass Platform). Cation concentrations that were in the high mg/L range and the
fluids from the sequential extractions were quantified using atomic absorption
spectroscopy (AAS; Perkin-Elmer model 5100PC), depending on concentration and the
matrix of the samples. Multiple measurements were taken for each cation analysis (for
both AAS and ICP-MS) and all the data satisfied the precision requirement of being
within 10% RSD. Methane samples were analyzed by headspace extraction and
quantified on a gas chromatograph. DOC samples were frozen immediately on dry ice

and analyzed with a TOC 5000 Shimadzu carbon analyzer.
3.2.3 - Solid Phase Extraction Media

Chromium speciation was estimated by utilizing three different solid phase
extraction resins in the field. Aqueous samples were brought into contact with these
resins which removed different dissolved species in the sample. Chelex-100 resin in the
sodium form (BIORAD Inc.) was used to remove cations from solution and replace them
with sodium. The reaction was conducted as a batch reaction. Approximately one gram

of resin was allowed to react with 8 to 10 mL of sample for at least one hour, as described
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in the product literature (BIORAD Inc.). The sample was then filtered through an acid-
washed, poly-carbonate, 0.4 pm nucleopore filter and acidified to a pH less than 2 with
Optima™ nitric acid. The chromium remaining in solution after the reaction should have
a negative or neutral charge.

One of the main goals for this research was to explore the role organic complexes
has on chromium mobility. The anionic exchange resins were selected with the
separation of organic molecules in mind, as they are among the suspected complexing
agents of chromium. In the pH range of these waters, most of the functional groups on
dissolved organic matter will be negatively charged (McBride, 1994). The AG 1 and AG
MP resins (BIORAD Inc.) are strong anion exchange resins. AG-1 and AG MP are
essentially the same resin except that AG-1 is for small molecules (molecular weights
less than 2700) and AG MP is for large molecules (molecular weights up to 100,000 and
higher). The AG MP resin was deemed necessary because the size of organic molecules
could not be determined but was assumed to vary greatly with some being quite large.
The resins were loaded into 10 cm glass columns with a 1 cm inner diameter. The lower
half (outlet) of the column was filled with the AG-1 resin and the upper half (inlet) was
filled with the AG MP resin. This insured that all sizes of anions could be removed.

The AG resins were purchased in the chloride form. The form (indicating the
exchange ion that is liberated from a resin upon reaction with sample fluids) can be
changed depending on the needs of the application (BIORAD Inc.). Different ions have
different affinities for a particular resin. A resin with the most easily replaced ion
attached is said to be in the most reactive form. The most reactive form for these resins is

the hydroxide form and the most reactive form of the resin was desirable for this study.
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However, the hydroxide form was undesirable because chromium is a pH sensitive
element. The fluoride form is the next most reactive form of the resin. Since fluoride
should not influence the pH of the water or the chemistry of chromium, these resins were
used in the fluoride form.

The form of the resin was changed in two steps (as described in the product
literature, BIORAD Inc.). First, the resins were converted from the Cl form to the
hydroxide form by slowly (approximately 3 mL/min.) pumping 200 mL of 1.0 M NaOH
through the column. Second, the resins were converted to the fluoride form by slowly
(approximately 3 mL/min.) pumping 200 mL of 0.85 M NaF through the column. The
conversion to the fluoride form was monitored by measuring the pH of the effluent
during the process to insure that the pH returned to a neutral value. The volumes of
NaOH and NaF solutions used to perform the conversions exceeded the recommended
maximum volumes suggested for the conversion of these resins (BIORAD Inc.). Finally,
150 mL of deionized, distilled water (DDW) was passed through the column as rinse and
to replace the pore water in the column with DDW. The columns were sealed with
parafilm™ and stored upright until their use. The conversion was performed 2-5 days
prior to use.

Along with being negatively charged, natural DOC may also exist as an
uncharged hydrophobic species, which may also be complexed with metals such as
chromium (McBride, 1994; Mills et al., 1987; Paulson et al., 1994; Elbaz-Poulichet et al.,
1994; Martin et al., 1994; Donat et al., 1997). Sep—Pz:nl\:TM (Waters Associates) columns
were used to remove the organic-hydrophobic species from solution, along with the

metals bound to them, from the samples. The Sep-Pak columns were conditioned prior to
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sample processing using the method of Mills et al. (1987). Conditioning consisted of
successively rinsing with 10 mL methanol, 10 mL 0.3 mM HCI, 10 mL methanol and
then 20 mL of DDW. The columns were then stored in plastic bags until use. The
conditioning was performed 2-5 days prior to use.

Field sampling using these columns consisted of filling a 60 mL syringe with
approximately 70 mL of filtered sample from which split samples were taken for the
various treatments. One split was taken as the control (approximately 10 mL), which was
bottled and acidified with Optima™ nitric acid immediately. One split was taken for
DOC analysis (approximately 10 mL) and was frozen immediately. One split was added
to the Chelex-100 resin (approximately 10 mL) in a batch reaction and allowed to react
for at least one hour prior to being refiltered and acidified. The graduated syringe was
then used to inject 20 mL of sample into the column containing the AG resin. After the
sample was injected into the AG column another 50 mL of DDW was passed through the
column as a rinse. Fluid coming from the column was contained in a 100 mL volumetric
flask, which was diluted to 100 mL with DDW when the rinse was completed (total
dilution of 1:5). The sample was then transferred to a bottle and acidified. The syringe
was then used to inject 20 mL of sample into the Sep-Pak column. The sample was then
passed through the Sep-Pak resin and diluted by the same procedure as that described

above for the AG resin split.
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3.3 Microcosm Design and Sampling

Intact soil-core microcosms have been effectively used in the laboratory to assess
the potential for in situ bioremediation (Dolan and McCarty, 1995; EPA, 1989) and are
the approved testing procedure of the EPA for the determination of the potential fate and
ecological effects of contaminants in terrestrial ecosystems (EPA, 1996). Intact-core
microcosms have an advantage over other designs as the sediment core undergoes
minimal disruption and does not require the sample to be sieved, repacked or rewetted
(EPA, 1996). The complex physical, geochemical, and ecological structure of the soil
matrix and associated microbial communities are therefore better preserved for laboratory
study. Although the results of microcosm studies are influenced by the nature of the
geological material studied and microcosm design, the ability to replicate in the
laboratory the geochemical and physical properties of the site coupled with a defined
sampling strategy afford many advantages over other methods (Wiedemeier et al., 1995).

The design of and data collection involved with the microcosm experiments was
the result of a collaborative effort with personnel in the Center for Microbial Ecology at
Michigan State University. The design of the intact core microcosm is presented in
Figure 5. The intact core was recapped at each end with PVC fittings with o-rings that fit
snugly to the interior walls of the core tube and accommodate HDPE -NPT male pipe
adapters suitable for connecting Tygon tubing on the outer ends. Sediment removed to
make space for the PVC fittings was analyzed for total chromium. The bottoms of the
microcosms were fitted with a mesh (polypropylene SpectraMesh, mesh size 1mm) on

the interior between the PVC bushing and the soil to retain the soil core. The soil core
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was held vertically with fluid flow entering the bottom of the microcosm. Treatment
solutions were supplied to the microcosm by pumping solution with a peristaltic pump.
The effluent was collected from the top for analyses. The microcosm was fitted with a
0.22 um nylon filter at the inflow to isolate the microbial community within the
microcosm; the filter was used to prevent non-native microorganisms from entering the
microcosms system; and possibly affecting the experimentation. An inlet purge system
was used to flush the inlet tubing of stagnant fluid prior to pumping fluid through the
microcosm. Both the treatment solution and the effluent samples were kept under argon
to limit the amount of dissolved oxygen in the treatment fluid and reduce the possibility
of oxidation reactions occurring in the sample fluid. All microcosm components were

acid washed (10% HCI) prior to assembly to remove trace metals.

Artficial

Figure 5. This diagram shows the design of the intact core microcosms. The red
arrows show the flow direction of the water. The entire apparatus was maintained at
14°C in an incubation chamber. Al fittings were non-metallic, all caps were Teflon®

and the tubing was Tygon.®.
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A sampling and treatment scheme of non-continuous pumping was devised. A
non-continuous pumping scheme was employed because a continuous pumping scheme
has the potential of stripping the microbial community from the soil. The physical act of
pumping treatment fluids through a microcosm was termed an exchange. The amount of
water pumped through a soil core for each exchange was in part determined by the
volume of water that an empty core tube could contain (i.e., 250 mL). Since the porosity
of the sediments in a core is significantly less than 100%, 250 mL clearly should exceed
the amount of water necessary to completely replace the pore waters in the core.
However, even with this amount of water, it is well known that because of heterogeneity
within soils it is difficult to get complete replacement of water with just a single pore-
water exchange. Therefore, the approximate amount of water necessary for pore-water
replacement was estimated from a breakthrough curve study.

For this study, a bromide tracer (added as KBr) was continuously pumped through

a fully assembled microcosm and

the effluent was collected in 30
mL aliquots. The Br concentration

in the aliquots was determined by

Br (mg/L)
<]

specific ion electrode. The
concentration of bromide in the

treatment fluid was 11.4 mg/L.

The data are presented in Figure 6

Exchange Vol. (mL)

and show that Br begins to reach a
Figure 6. Breakthrough curve for Br tracer

steady state concentration after test in a soil core from site P25.
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approximately 250 mL of solution had been pumped through the soil and is nearly at
steady state by 500 mL (double the empty core volume). Thus, SO0 mL was chosen as
the treatment volume for subsequent microcosm studies.

As previously stated, the physical act of pumping treatment fluids through a
microcosm is termed an exchange. During an exchange, the fluid obtained for the
geochemical and microbial analysis was the first 120 mL of effluent from the microcosm.
These samples represent the fluid that remained in the cores for the incubation period.
The next 130 mL aliquot was saved in order to get enough material to be able to
standardize and/or optimize the protocols used for microbial community analysis. The
remaining 250 mL of exchange solution was discarded. At this point the addition of the
input treatment solution was halted and the microcosm incubated at 13°C for one week or
one month.

The duration of the incubation periods was determined by logistical and microbial
concerns. An exchange could not be conducted every day because that would not allow
enough time to prepare for the next exchange. The solution also needed enough time to
react with the soil and the microbial community. A one week incubation time was
established, because it was thought that this was sufficient time to allow the microbial
community to adjust to the treatment and also allow for preparation for the next
microcosm exchange. Toward the end of each experiment the incubation time was
extended to determine if the duration of the incubation time was influencing the evolution

of chromium from the microcosm.
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IV. SPECIATION OF CHROMIUM IN THE SOILS

4.1 General Observations
The distributions of chromium and organic carbon in the soil samples are shown
in Figure 7. The log concentrations of total leachable chromium and organic carbon
concentrations are presented to allow for a full representation of the entire data sets.
Total leachable metal concentrations reported in this section represent a summation of the
concentrations from the sequential extraction procedure. The sequential extraction data
for chromium are presented in Appendix D. The soil organic carbon concentrations are

presented in Appendix E.
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Figure 7. Frequency histograms of the log;o concentrations of total chromium and
organic carbon in the soil. Total chromium concentrations were determined by
summing the concentrations of the sequential extractions.

The concentrations of chromium ranged from 1 to 260,000 mg/kg. The
distribution of chromium concentrations indicates that there may be several populations.
Jeong (1994) found pre-industrial age chromium concentrations in Lake Superior
sediments to range from 50-80 mg/kg. Based on this information, the population of

chromium concentrations from 0 to 100 mg/kg was considered to represent background
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values for chromium in this area. Therefore, concentrations greater than 100 mg/kg are
considered to be the result of human activity.

The distribution of soil organic carbon concentrations shows three separate
populations. These populations represent different locations or depths from which the
samples were collected. Samples from upland areas of the site and deeper samples that
consisted primarily of silty sand dominate the population with the lowest concentrations.
Samples from upper soil horizons of the upland areas and some samples from the wetland
areas define the population between 10,000 and 100,000 mg/kg organic carbon. Those
samples with greater than 100,000 mg/kg organic carbon were from the wetland areas.

The relationship between organic carbon and chromium in the sediments is shown
in Figure 8. There is a positive correlation demonstrating the association of chromium
with organic carbon, as might be expected at a former tannery site. The R? values for the
correlation between log organic carbon and log chromium for soils comprising the entire
database is 0.65. The R? for soils that are considered to have background concentrations

of chromium is 0.32, while for soils with chromium > 100 mg/L it is 0.71. The
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soil samples.
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correlation for the latter is relatively high which indicates that chromium may be

associated with organic matter to a certain extent. However, the scatter in the plot

demonstrates that other factors may be influencing chromium speciation in the soils.
4.2 Results of the Sequential Extractions

A summary of chromium partitioning or speciation among the various
operationally defined sediment phases (see Section 3.1.3) is shown in Figure 9. Very
little chromium was found to be associated with the exchangeable (EX) and acid
oxidizable (OX2) phases. In terms of the entire data set (Figure 9a), chromium is slightly
more associated with the moderately reducible (MR) phase (49.03%) than the basic
oxidizable (OX1) phase (41.12%). To a much lesser extent chromium is associated with
the easily reducible (ER) and weakly acid soluble (WAS) phases, 6.47% and 3.21%,
respectively.

The relative amounts of chromium in both the MR and OX1 phases are almost
equal (= 44%) in samples with chromium concentrations less than 100 mg/kg (Figure 9b).
Again, to a much lesser extent chromium is associated with the ER and WAS phases,
7.89% and 4.65%, respectively. For samples with chromium concentrations greater than
100 mg/kg (Figure 9c), the MR phase (56.42%) is the most dominant in sequestering
chromium. The OX1 phase accounts for 37.48% of chromium concentrations while the
ER and WAS phases only account for only a minor portion (< 6% combined).

The samples with chromium concentrations greater than 1000 mg/kg show an
increased dominance of the MR extraction, with 65.45% of total leachable chromium

coming from this extraction. The amount of chromium associated with the OX1
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Figure 9. A summary of the sequential extraction data represented as average percent
of Cr extracted in each extraction. The EX and OX2 extraction percentages are too

small to appear on most of the pie diagrams.



and ER extractions were 28.46% and 4.55%, respectively. The WAS and OX2
extractions accounted for approximately 1.5% of the total leachable chromium.

The trend of increasing percentages of chromium leached from MR extraction
continues with the subset of samples with concentrations greater than 10,000 mg/kg and
greater than 50,000 mg/kg total chromium. The MR extraction accounted for 72.33% of
chromium extracted from samples with greater than 10,000 mg/kg chromium and 83.52%
of chromium extracted from samples with greater than 50,000 mg/kg chromium. The
percentage of chromium leached from OX1 extraction also decreased with increasing
chromium content to 22.84% for samples greater than 10,000 and 12.89% for samples
greater than 10,000 mg/kg. The WAS, ER, and OX2 extractions accounted for less than
5% collectively in both cases.

The MR and OX1 extractions remove the most chromium from the samples in all
cases. The MR extraction removed increasingly more of the total leachable chromium
from the samples than the other extractions as the total concentration of chromium
increased. The EX, WAS, ER, and OX2 extractions contribute only minor amounts of
chromium. The association of chromium with the moderately reducible and oxidizable
extractions was expected and has been found in river sediments (Gephart, 1982; Rauret et
al., 1989; Lopez-Sanchez et al., 1993; Rezabek, 1988), aquifer material (Asikainen and
Nikolaidis, 1994), and black shales (Schulmeister, 1993). Chromium has been shown to
strongly associate with organic matter (Krajnc et al., 1995) (the OX1 extraction) and iron
oxy-hydroxides (the MR extraction). Past work could not be found which demonstrates
that chromium forms sulfide minerals (the OX2 extraction) as a result of environmental

contamination. Chromium (III) can be adsorbed to Mn oxides (the ER extraction), but is
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rapidly oxidized to Cr(VI) and desorbed (Takacs, 1988; Rai et al., 1989). Chromium also
does not commonly occupy exchange sites on clay minerals (McBride, 1994). Thus, the
sequential extraction data indicate that the two most important phases sequestering
chromium in the soils are iron oxides and organic material.

Although this interpretation of the results appears to be straight forward,
understanding the association of chromium with the MR (and ER) phases is not. The
problem is in the nature of the selective chemical extractions. These extractions were
designed for oxic systems i.e., systems exposed to oxygen (Tessier, 1979). In these
systems, redox sensitive elements such as iron and manganese exist in their oxidized
forms and precipitate out from solution as oxy-hydroxides (Baes and Mesmer, 1976).
However, under anoxic conditions (lack of oxygen), iron and manganese oxy-hydroxides
are thermodynamically unstable. There is debate as to the role of abiotic and biotic
processes in the reduction of the oxy-hydroxides, but it is assumed that Fe/Mn oxy-
hydroxides do not exist under anoxic conditions. Thus, it is unclear what phase of the
sediment the ER and MR extractions are leaching.

The geochemical behavior of chromium in aqueous systems affords some insight
into this problem and perhaps also to the nature of chromium speciation patterns in the
soils at this site. In systems such as those that exist at this site, the abundance of organic
matter and lack of manganese oxy-hydroxides [one of the few naturally occurring
oxidants that can oxidize Cr(III) to Cr(VI)], are likely to create a biogeochemical
environment in which the most common form of chromium will be in the Cr(III) state
(Palmer and Puls, 1994). In the pH range of the most natural waters Cr(IlII) is not very

soluble and may precipitate out of solution as Cr(OH); and if Fe(III) is present it will
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preferentially form (CrsFe;.x)(OH)3 (Bartlett and Kimble, 1976; Palmer and Puls, 1994;
Rai et al., 1989). The solubility of these minerals or amorphous compounds increases
with decreasing pH and at very low pHs they are very soluble. The pH of the MR
extraction solution is less than one. Therefore the chromium that the MR extraction
removes from the soil is most likely chromium hydroxide. The presence of these Cr
mineral phases was investigated with X-ray diffraction analysis (Ellis, 1999), but no
identifiable Cr mineral phases were present, which indicates an amorphous phase.

The results of the speciation study indicate that chromium is mainly associated
with the operationally defined MR and OX1 phases in the soils. The association of
chromium with the OX1 phase is consistent with the correlation of chromium with soil
organic carbon (Figure 8). The increasing dominance of chromium in the MR extraction
with increasing chromium concentrations may indicate that there is a limitation to the
amount of chromium that can associate with natural organic matter. Considering the
results of the sequential extraction data for chromium, the chemistry of the solutions used
in the selective chemical attacks, and knowledge of the biogeochemistry of chromium,; it
is concluded that the dominant forms of particle-bound chromium in these soils are a
Cr(OH); mineral/amorphous solid and chromium associated with organic matter. This
hypothesis is consistent with observations of chromium in various aquatic (e.g., rivers,

lakes) systems (Gephart, 1982; Rezabek, 1988; McKee et al., 1989).
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V. AQUEOUS PHASE SPECIATION OF CHROMIUM

5.1 Pore-Water Data and Thermodynamic Modeling
The géochemical modeling code PHREEQC (Parkhurst, 1995) with the MINTEQ

database (Allison et al., 1991) was used to assess the thermodynamic state of the surface-
water and pore-water chemistry at the study site (aqueous field data is presented in
Appendix F). The thermodynamic data for chromium in the MINTEQ database were
updated using recent values from Ball and Nordstrom (1999). Geochemical modeling
was used to determine if the solutions were in equilibrium, under saturated, or super
saturated with respect to chromium solid (amorphous or mineral) phase(s). The
geochemical modeling also computed the aqueous speciation based on the inorganic
thermodynamic data.

Chromium hydroxides are the most likely inorganic solids that would be present
in this environment (Rai et al., 1989; Richard and Bourg, 1991; Palmer and Puls, 1994).
The most soluble of these hydroxide forms is Cr(OH),, (Rai et al., 1989). The solubility
of chromium in the pore waters was compared to the solubility of Cr(OH),n, to determine
if the concentration of chromium in solution is controlled by the inorganic chemistry of
chromium. The solubility of Cr(OH)., was determined using PHREEQC by simulating
an equilibrium experiment at different pH values in pure water. The data presented here
are the results of a simulation with a temperature of 25°C. Simulations were also

conducted at lower temperatures (down to 10°C), which resulted in slightly lower

38



predicted equilibrium concentrations, but the differences in concentrations did not exceed
2 percent.

The results of the comparison between the pore waters and surface waters
chromium concentrations and the solubility of Cr(OH),n, are illustrated in Figure 10. The
figure shows that most of the samples plot above the solubility curve for Cr(OH)am,
which indicates that the dissolved chromium is in excess of equilibrium concentrations
with Cr(OH);,m. Surface-water samples were collected to assess the possibility of Cr(III)
oxidation to Cr(V1) in surface waters as described by Masscheleyn et al. (1992).
Although the surface samples had the highest concentrations of chromium, Cr(VI) was
not detected in any of the field samples. This means that either the solutions are out of
thermodynamic equilibrium with respect to Cr(OH);,m or there are forms of dissolved
chromium species in solution that were not accounted for in the geochemical modeling.
The possibility of the solutions being out of equilibrium was initially investigated by

examining the aqueous speciation as predicted by PHREEQC.
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The dominant inorganic aqueous chromium species as computed by PHREEQC
are presented in graphical form in Figure 11 for selected samples. The samples in the

figure were chosen because they represent a range of chromium concentrations and pH
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values observed at the site. The dominant species is pH dependent. At near neutral pH
values, Cr(OH)3aqueous is the dominant form of chromium in solution, while at the lower
pHs Cr(OH)*? is the dominant form of chromium . In the pH range of these waters, the
thermodynamic models suggest that the dominant inorganic form of chromium will be
either positively or neutrally charged.

3.2 Chromium and DOC

One/ Sample Cluster

Cr(ugh)
O Cr(OH),
B Cr(OH)p+
[ | Cr(OH);

pH

Figure 11. Graphical representation of the species computed by PHREEQC for
selected water samples that represent the range of pH and chromium concentrations
observed at the site. Each cluster represents the aqueous speciation for one sample.

There appears to be a relationship between aqueous chromium concentrations and
dissolved organic carbon (DOC) in the field samples. Figure 12a shows a plot of all the
aqueous chromium concentrations versus DOC in the field samples. It is not surprising
the relationship is not highly correlated when the entire data set is plotted, because of the
organic rich nature of the environment from which the samples were taken. It is

conceivable that a sample could have high DOC and yet have very little chromium.
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However a trend seems apparent for the samples with higher chromium concentrations.
The samples with chromium concentrations greater than 30 pg/L are shown in Figure
12b. This subset of the data shows a slight correlation between aqueous chromium and
DOC with a R? of 0.66. Although this is not a strong correlation, there does appear to be
a correlation between chromium and DOC at higher chromium concentrations. This
indicates that DOC may influence the concentrations of chromium in these waters. This
relationship was further investigated by using solid phase extraction media to identify
aqueous chromium species.

5.3 Solid Phase Extraction Data

70 : Cr>30ug/
oile y = 0.039x + 9.97 4 :g
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Figure 12a and 12b. Correlation of chromium vs DOC in the surface and pore water
at this site. Figure 12b is a subset of the entire data set shown in Figure 12a consisting
of those samples with chromium concentrations greater than 30 pg/L.

The first solid-phase-extraction media used was the Chelex-100 resin, which
removes the cations from solution. The chromium remaining in solution after reaction
should have a negative or neutral charge. Positively charged chromium species, such as
those presented in Figure 11, should be removed with this extraction. The results of the
solid phase extraction with the Chelex-100 resin are shown in Figure 13 (data for this and
the other solid phase extractions is in Appendix G). Crchelex is the concentration of
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chromium in solution after the reaction with the Chelex resin and therefore represents
negatively charged or neutral aqueous chromium. Figure 13 clearly shows a one to one
relationship (slope of 1.007 with a R? 0f 0.997). This indicates that the aqueous
chromium in these samples exists as either a negatively charged or neutral species, with
little or no cationic chromium.

The results of the solid phase extraction with the Sep-Pak resin are shown in
Figure 14. This resin removes the hydrophobic fraction of the DOC and metals bound to
this fraction. The non-hydrophobic fraction is the concentration of chromium in the

effluent from the Sep-Pak column. There is strong relationship (R? of 0.995) between
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total aqueous chromium concentrations and the non-hydrophobic form of chromium. The
slope of the line is 0.88, which indicates that approximately 12 percent of the aqueous
chromium is associated with the hydrophobic fraction of the DOC.

The results of the solid phase extraction with the AG resins are shown in Figure
15. This resin removes the negatively charged species from solution and replaces them
with fluoride. The concentration of chromium in the anionic form was estimated by
subtracting the concentration of chromium in the column effluent from the concentration
of chromium in the control split. There is a strong relationship between chromium and
anionic chromium (R? of 0.995). The slope of the line is 0.96, which indicates that 96
percent of the aqueous chromium exists as an anion. Inorganic anion species of
chromium that have been reported in environmental samples include only Cr(VI) species
(Rai et al., 1989; Richard and Bourg, 1991, Kotas and Stasicka, 2000), however Cr(VI)
was not detected in any of these samples. This indicates that chromium that is behaving
as an anion in these waters is not an inorganic species, which suggests thgt this chromium

exists as an anionic Cr(III)-DOC complex.
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The possibility of a Cr(III)-DOC complex was further examined by plotting the
concentration of chromium remaining in solution after reaction with the AG resins on the
same concentration of chromium versus pH as previously shown in Figure 10. This
comparison is shown in Figure 16. The surface-water and pore-water data cluster around
the solubility curve for Cr(OH);. This indicates that the non-negatively charged
chromium species in solution are very near or below the solubility of Cr(OH)34m, which

suggests that these species are in near equilibrium with chromium hydroxides.
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The results of the solid phase extractions indicate that aqueous chromium exists
primarily as an anion in the pore waters and surface waters of this wetland. Since no
Cr(VI) was observed in these samples, this anion is most probably a complex of Cr(III)
with some form of DOC, which is consistent with the findings of other researchers (Davis
et al., 1994; Walsh and O’Halloran, 1996). In the pH range of these waters (near neutral)
most of the functional groups on natural dissolved organic matter will have a negative
charge (McBride, 1994). This characteristic is consistent with the assumption that the
chromium exists as a Cr(III)-DOC complex. Further, the linear relationships of the SPE

data and the non-anionic data plotting near the solubility of chromium hydroxide suggests
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that there may be a thermodynamic control on the solubility of dissolved chromium
involving both the dissolution of chromium hydroxide and complexation with dissolved
organic carbon.

There is an apparent contradiction in the interpretation of the results from the
anion extraction and the hydrophobic extraction. The anion extraction indicates that 96
percent of the chromium is associated with an anionic species, however the hydrophobic
extraction indicates that 12 percent of the chromium is associated with hydrophobic
compounds. The contradiction arises from the fact that these two extractions combined
exceed 100 percent, but if one takes into account the nature and complexity of natural
organic matter the significance of this contradiction is diminished. It is completely
plausible for organic compound to have both a hydrophobic component and a hydrophilic
component (anionic). Soap is an example of such a compound (Cram and Cram, 1978).
It is likely that all or most of the hydrophobic fraction is also part of the fraction removed
by the anionic extraction. Another possibility is that the remaining 4 percent of the
anionic extraction may be composed of neutral chromium species not associated with
DOC, such as Cr(OH)3. However, the majority of the aqueous chromium exists as an

anion, which is most likely a Cr(III)-DOC complex.
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VI. SELECTION OF MICROCOSM SITES

6.1 Rational

The goal of the study was to investigate the fate and mobility of chromium in a
complex wetland environment. The nature of the microcosm experiments required that a
small subset of sites were used for these experiments and so the variability of the study
site had to be reduced to a small group of samples which represent the range of
conditions at the site. This chapter describes the process by which sampling sites were
chosen for the collection of soil used in the microcosm experiments. At the study site
there exists a diverse assemblage of chemical and physical conditions. The sites were
chosen primarily because they were representative of the range of biogeochemical and
physical conditions present at the study site. The criteria used to select these sites were
based on statistical analysis of the sequential extraction data; the sequential extraction

data; preliminary pore water data; and physical observations of the sites.

6.2 Statistical Analysis

6.2.1 - Factor Analysis

The selection of sites from which microcosm samples were collected was largely
based on statistical analysis of the sequential chemical extraction data. Two types of
factor analysis were used to identify differences in the sample population. Factor
analysis is a multivariate statistical technique that is designed to reduce the number of
variables describing the variance of a system. This analysis not only reduces the number

of variables that can be used to describe the variance, but combines variables that behave
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similarly into “factors”. The analysis provides insight to physical, chemical, or biological
parameters that control a system. The two types of factor analyses were done for this
study were Q-mode and R-mode. The analyses were done using Statistical Analysis
System (SAS™) on the IBM (3090200J vm/cms) main frame computer at Michigan State
University. The techniques follow those outlined by Davis (1986) and are similar to

those that we have used previously (Long et al., 1992).

6.2.2 — Q-Mode Factor Analysis

The purpose of Q-mode factor analysis is to analyze a data set by dividing
samples into groups that are similar in terms of their variables. The samples in this study
are the individual soil samples from the entire database. The nine variables considered
were Corg, Crwas, Crer, Crmr, Creox, Fer, Mnr, Cur, and Znt. The subscript T indicates
the total soil concentration, which is the summation of the sequential extraction data for
iron, copper, zinc, and manganese (these data are presented in Appendices H through K
respectively). The variables were logarithmically transformed prior to analysis to
account for their log-normality. The data matrix used for the Q-mode factor analysis had
the samples as columns and variables as rows. The matrix was row normalized prior to
factor analysis using the methodology given in Davis (1986). Factor scores, which are
used to estimate the relative importance of the variables in defining the populations, were
calculated via a FORTRAN program (Davis, 1986). The number of factors that can be
used to define the data set are interpreted from the relative importance of the eigenvalues
describing the data set. Each eigenvalue describes a certain portion of the variance found
in the data. The first eigenvalue is the most important in describing the variance. Each

successive eigenvalue describes decreasingly less of the variance. One then chooses how
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many eigenvalues are needed to describe a certain percentage of the variance of the data
set. As an example, if the data set had ten variables, then there would be ten eigenvalues
describing the variance. Perhaps the first three eigenvalues describe 95% of the data
while the remaining seven only 5%. A choice can be made then that of the ten variables,
only three are needed to describe the data. These first three eigenvalues become the three
new factors describing the data. So the number of variables describing the data set is
reduced from ten to three. The choice of the cut off percentage (95%), as in the example,
is the decision of the investigator.

The Q-mode factor analysis revealed five factors that described the data set
(>97%). Factors 1 and 2 account for 75% and 17% of the variability. The remaining
three factors account for 4%, 2%, and 1%, respectively. The factor scores (Table 3)
allow for insight into the variables influencing the individual factors. The relative
importance of a variable on a factor was subjectively determined by examining the values
of a variable along a row and choosing its highest value(s). Variables that are interpreted
to be important in controlling the factors are shown in italics, and a negative sign denotes
there is an inverse relationship between the variable and the factor. Thus, the five factors
can be described by the variables listed after the factor at the bottom of Table 3.

These five factors can now be thought of as sub-populations or end members of
the entire data set. The most important population is essentially the one dominated by
chromium with an association with iron (factor 1). The other factors show Fer, Mnr, and
Corg to be important to varying degrees. The association in factor 5 of chromium and
Corg is consistent with what we know about the biogeochemistry of chromium and its

association with Corg at the site (Figure 8).
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Table 3. Factor scores for the Q-mode factor analysis on the entire soil data base. The
italicized scores indicate the variables important in controlling the five factors. The
important variables for each factor are also listed at the bottom of the table.

Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Variable
0.17830 | 0.05847 | -0.06442 | 0.21115| 0.46783 | Crorc
0.23424 | -0.19757 | -0.21821 | -0.02355 | -0.14185 [ Crwas
0.31321]-0.15900 | -0.17377 | -0.19729 | -0.18841 Crgr
0.47056 | 0.08799 | 0.00280 | 0.06028 | -0.21961 | Crmr
0.41989 | 0.02340| 0.02932 | 0.14259 [ 0.28045 | Crox
0.48944 | 0.85147 | 0.59985 | 0.10901 [ 0.24556 Fer
0.22847 | 0.37017 | 0.16065 | -0.92477 | 0.46903 Mnt
0.21122 | 0.07678 | 0.06728 [ 0.09316 | 0.49842 Cur
0.28486 | 0.23681 | -0.72595 | 0.12734 | 0.26448 Zny

Factor 1 -- Fet, Crmr, Croxi, Crer, Znt, Crwas
Factor 2 -- Fer, Mnrt, Znt

Factor 3 -- -Znr, Fer

Factor 4 -- -Mnr, Crorg,

Factor 5 -- Cur, Mnr, Cora, Croxi, Znt

We also experimented with describing the data set with only three factors (>95%)
and found similar grouping (i.e., chromium factor, Fe/Mn factor, and Corg factor). These
associations were also found for the R-mode analysis as will be discussed in the next
section. Five factors for the Q-mode analysis are presented here instead of the three
factor model only because the results show slightly more detail in the nature of the data
set. The relative importance of a factor in describing a sample (loadings) were calculated

using SAS.

6.2.3 — R-Mode Factor Analysis

The purpose of R-mode factor analysis is to analyze a data set to divide variables
rather than samples into groups that are similar. The samples used for the R-mode

analysis were the soil samples that had chromium concentrations greater than 100 mg/L.
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R-mode analysis was only done on this sub set of the entire database because a) the
histogram of total leachable chromium (Figure 7) in the soils indicated that potentially
more than one population of data exist, b), R-mode factor analysis is most robust when it
is done on single populations, and c) these samples are those of greatest concern from an
environmental risk perspective.

The eleven variables considered were Corg, Crwas, Crgr, Crmr, Crpox, Crr, Fer,
Mnr, Fewas, Fegr, and Fepmgr. The variables were logarithmically transformed prior to
analysis to account for their log-normality. The data matrix used for the R-mode factor
analysis had the samples as rows and variables as columns. Eigenvalues are used to
determine the number of factors that can be used to describe the data set.

The results of the R-mode analysis are shown on Table 4. Only four factors were
needed to define 100% of the variance of the data. The relative amounts of data
variance that are explained by the factors are shown in the Table 4. The relative
importance of the variables in characterizing a factor are also shown in Table 4. Using
the same method as for the Q-mode analysis, variable associations for a factor were
chosen and are shown in italics. The resulting factors are shown at the bottom of the

table.

6.2.4 -- Summary of Factor Analyses

Both the Q- and R-mode factor analyses give similar associations among the
variables. Thus, both types of analyses give similar information that lends internal
consistency to this analysis. Both show that factors accounting for a) chromium, b)
chromium associations with iron, c) chromium associations with Corg, and d) Fe/Mn

associations needed to be considered in the selection of the samples for microcosm work.
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Table 4. Results of R-mode factor analysis on soils from the site with chromium
concentrations greater than 100 mg/kg. At the top of the table are the eigenvalues and
proportion of the variance explained by each factor. The center of the table shows the
loadings of the variables on the factors. The variables that comprise each factor are listed
at the bottom of the table.

Eigenvalue | 5.2032 2.3071 0.9609 0.6729
Proportion | 0.5712 0.2533 0.1055 0.0739
Cumulative | 0.5712 0.8244 0.9299 1.0038
Factor 1 Factor 2 Factor 3 Factor 4
Corg 0.11020 0.09804 0.01048 0.80894
Crwas 0.92122 0.01296 -0.03864 0.05836
Crer 0.90999 0.06141 0.16508 -0.13067
Crmr 0.96324 -0.03619 0.06896 -0.01967
Croxi 0.70413 0.07705 -0.13267 0.42263
Crr 0.93055 -0.00410 0.03029 0.09736
Fewas 0.21911 -0.15359 0.87103 -0.14426
Fegr -0.13122 0.27324 0.71044 0.23827
Femr 0.12011 0.95872 -0.18235 0.01573
Fer -0.05622 0.67127 0.35798 0.20560
Mnt -0.02807 0.73363 0.00737 -0.49265
Variance explained by each factor eliminating other factors
Factor1 Factor2 Factor3 Factor4
3.071545 1.522758 1.199903 0.821770
Factor 1 -- Crwas, Crgr, Crmr, Croxi, Crr
Factor 2 -- Femr, Fer, Mnt
Factor 3 -- -Fewas, Fegr
Factor 4 -- Corg, Croxi,

6.3 Criteria Used for Selection of Soil Samples

Initially, a preliminary list of criteria for site selection was developed based on the
speciation studies and general observations presented in Chapter 4 and factor analysis.
The criteria, rationale and proposed sites for the preliminary list are summarized in Table

5. The speciation studies show that the MR phase and OX1 phase are most important in
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sequestering chromium. Therefore sites were selected that exhibited a dominance in
either phase. The general observations indicated that there was an association of
chromium and organic matter and therefore sites were chosen that had both high and low
organic matter concentrations. Sites were also chosen based on the grouping of samples
by the factor analysis.

Table 5. A listing of the initially proposed microcosm sites and the rational and criteria
associated with their selection.

# Criteria Rationale Sites
1 Speciation The speciation studies show that the J23 0-0.5
Cr: MR > BOX MR phase and BOX phase are most or J231-15
important in sequestering Cr. This
criterion examines the case in which

the MR phase is dominant.
2. Speciation Opposite of 1. P25 0-0.5
Cr: BOX > MR or L27:0-0.5
3. General This examines the effect of high K28: 0-0.5
low Crr and high amounts of Corg on low concentrations
Corg of Cr. This case would be of lower
priority for this study
4. General Opposite of 3. 022:3-3.5
high Crr and low
Corg
5. Factor analysis This is the most common association of | K22: 0-0.5

high R loadings on | factors for the sub data set that
factors 1,2, 3,4 comprises soils with Cr > 100 mg/L.

6. | Factor analysis This is a common association. S26: 0-0.5
high R loadings on or J19: 0-0.5
factors 1,2,4 only

7. Factor analysis This is a common association. 022: 3-3.5
high R loadings on or Q26: 0-0.5
factor 3 only

8. Factor analysis This is a common association. K22: 1-1.5
high R loadings on

factors 2, 3, 4 only

Once this preliminary list was developed, field sampling of the pore waters was

conducted at these sites, along with more detailed field observations. The additional data
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gained from the field work included an estimation of oxidation-reduction state (redox)
and possible terminal electron acceptor processes (TEAP) as indicated by various
biogeochemical indicators such as Fe*?, S, and CH,4 (Lovely and Goodwin, 1988). Also
the additional field work provided for a distinction between sites based on the physical
conditions at the site such as the saturation history and basic soil characteristics.

The results from the pore water analysis (Appendix F) showed that, as expected,
various degrees of anoxia exist throughout the study area. All major TEAP variables
could be measured to some degree. Some sites had very high amounts of dissolved CHy,
Fe?*, or S¥. This is suggestive of various types of microbial activity such as
methanogenesis, iron reduction, and sulfate reduction. Most sites had negative to very
negative Eh measurements, which indicates reducing conditions and is consistent with the
anoxia indicated by the TEAP variables.

The saturation history became an important observation as a result of the pore
water sampling. When a peeper was installed at P25 in June 1997, there was
approximately 5 inches of standing water at the surface. However, when the peeper was
retrieved from this site three weeks later, there was no longer any surface water and the
top ports were partially exposed to air. This caused the oxic conditions in several inches
of soil near the surface, as evidenced by red iron oxide coatings on the peeper upon
retrieval. Similar changes in saturation were also observed at N23. The history of
changing saturation states at these sites created a new criterion for selection.

The sites selected for the microcosm studies are listed Table 6, with the criteria
used to select them. Only sites with high chromium were chosen for the microcosm

experiment because those samples are of the highest environmental concern. Based on
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logistical constraints, only six sites could be chosen to represent the diversity of the site.

Each of the chosen sites represents a group of sites defined by their physical nature or

biogeochemistry, which spans the range of possible conditions at the site.

Table 6. A summary of the physical and chemical characteristics of the sample sites
selected for the microcosm work.

Site: | Sequential Factor Redox/ | Saturation Soil Soils
Depth | Extraction Analysis TEAP State Organic
(ft) (% of MR Matter
and OX1) (% OM)
J23: | MR-85.8 | Rloading on highly running 74.4 dark
0-0.5 | OX1-13.0 | factors 1 and anoxic water at brown
4; Qloading | high CHs, the organic
on factor 1 high S** surface rich
P25: | MR -36.7 | R loadings on oxic to variable 62.1 dark
0-0.5 | OX1-62.5 | factors 3 and anoxic saturation brown
4; Q loading | high NH,*, | conditions organic
on factor 1 high CH,4 rich
K22: | MR-60.4 | Rloadingson | weakly standing 76.5 dark
0-0.5 | OX1-37.6 | factors 1,2, 3 anoxic water brown
and 4; Q low CHa, organic
loading on | high SO4* rich
factor 1
J19: | MR-79.3 | Rloadings on | No data usually 65.3 dark
0-0.5 [ OX1-19.7 | factors 1,2 dry brown
and 4; Q organic
loading on rich silty
factor 1 sand
N23: | MR-51.5 | R loadings on anoxic variable 77.3 dark
0-0.5 | OX1-45.6 | factors3and | very high | saturation brown
4; Q loading | CHs, very | conditions organic
on factor 1 | high Fe?*, rich
high Mnr,
high Cry
022: | MR-84.8 | R loading on anoxic dry at 69.9 grey silty
3-3.5 | OX1-14.5| factor3;Q | high NHs*, | surface, sand
loadings on | high SO wet at
factors 1 and depth
2; high Crr
and low Corg
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VII. ACID RAIN MICROCOSMS

7.1 Rational

The first treatment chosen for the microcosm experiments was the simulation of
the acidification of the pore water at the site due to acid rain. One likely source for acid
input to the soils at this site is atmospheric precipitation. Acidic conditions may cause
the dissolution of chromium hydroxide solids resulting in the possible liberation of
chromium to the environment (Rai et al., 1989; Mattuck and Nikolaidis, 1996). The
solubility of chromium hydroxide reaches a minimum at pHs between 6 and 11 (Rai et
al., 1989). In this pH range, the dominant form of chromium in solution is as the
neutrally-charged species, Cr(OH);° (Figure 11). At pHs below 6 Cr(III) solubility
increases rapidly with decreasing pH (Figure 10). Thus, lowering of the pH should
liberate chromium from these soils.

Soil cores from the six microcosm sites were treated with a synthetic acid rain
solution. The composition for the synthetic acid-rain water is listed in Appendix L and
was based on published data for acid rain in the northeastern United States (Galloway et
al., 1976). The resultant pH of this acid water was 3.86. Duplicate samples from the six
microcosm sites were treated with a non-acidic control solution. The control solution
was prepared by substituting sodium salts for the acids used in making the artificial-rain
solution. Sodium salts with the same counter anion as the acid were used to make the

simulated control-rain solution. Both solutions were autoclaved prior to use in an
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exchange. This chapter presents the results of these microcosm experiments. The data

for the microcosm experiments is presented in Appendix M.

7.2 Dissolved Chromium versus DOC Results

Similar to the results from the field data, there appears to be a relationship
between aqueous chromium concentrations in some of the microcosm samples and
dissolved organic carbon (DOC) (Figures 17a and 17b). Figure 17b is an expanded view
showing the lower concentration data in Figure 17a. These figures show all of the
chromium versus DOC data collected during the six-month experimental period. The
data is presented by the site from which the cores were collected and includes data from
both the acid rain and the control microcosms. Samples from microcosms J19, P25, N23,
and K22 showed strong positive correlations between dissolved chromium and DOC.
Samples from microcosms J23 and 022 show very weak correlations between dissolved
chromium and DOC. The correlation for the J23 data is strongly influenced by the J23

control microcosm, which had very high concentrations of DOC in the initial samples
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Figures 17a and 17b. Correlation of chromium versus DOC in the acid-rain and
control microcosm effluent (R? values for the groups are; K22 = 0.68, N23 =0.71,
P23=0.71,J23 = 0.19, 022 = 0.26, J19 = 0.78). The samples are grouped by site and
include both the acid rain treated and the control samples from each site.
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from the microcosm (shown in light blue on Figure 17b). The chromium data from 022
microcosms were not highly correlated with DOC. The 022 microcosms consisted
primarily of gray, silty sand with very little organic carbon (Table 6; Appendix A) and
was significantly different in this respect to the rest of microcosms. The majority of the
data indicates that there is an association between chromium and DOC.
7.3 Solid Phase Extraction Results

There was not enough fluid in the microcosm samples to use the three resins that
were used in the field samples, but the chelex 100 resin was used with the microcosm
samples to aid in identifying the aqueous speciation of chromium. The data from the
chelex 100 reaction are plotted in Figure 18. Similar to the previous graphs showing
chelex data, Crcpelex represents that concentration of chromium remaining in solution after
the reaction with chelex resin, which should represent negatively charged or neutral
chromium. There is a strong relationship (R? of 0.98) between total aqueous chromium
concentrations and Crcheiex- These results indicate that dissolved chromium exists as a

negatively charged or neutral species. Since both the chelex and DOC data are similar to
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the field data, it can be d that the hromium probably exists as an anionic,

q

chromium-organic complex.
7.4 Changes in pH Over Time

Over the duration of the experiment the pH values approached the pH ranges that
were observed in the field samples (Figure 19). The range of pH values in the field
samples associated with the sites where cores were taken for the microcosms are also
shown as vertical lines to the right of the plot. The first samples were collected
differently than the method outlined in section 3.3 and were collected at the end of the
initial 500 mL exchange of fluid, which replaced the pore water that was in the core
originally. All other samples consisted of the first 120 mL of effluent water coming from
the microcosm during an exchange as described in section 3.3.

The pHs of the first several exch lutions are g Ily higher for each

microcosm than they are in the pore water at their respective field sites. The initial high
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Figure 19. Changes in the pH of fluids in the microcosms as function of time. The
range of pH values observed in the pore-waters at these sites are represented by the
vertical lines to the right of the concentration profiles.
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pH values may reflect conditions that developed within each microcosm during the
holding period between soil collection and the initiation of the experimentation. Also,
there is very little difference in the pHs of the microcosm effluent between the acid and
control microcosms from the same site. After the second or third week most of the pHs
in the pore waters of the microcosms decrease and appear to stabilize at levels near the
field measurements. The one exception to these general observations are the 022
microcosms, in which the pH values remain much higher than the field data through the
experiment. The cause of the pH behavior in the 022 sample is not clear, but may be
related to the composition of the soil (e.g., sandy, low organic matter).

The mobilization of chromium from these microcosms is not likely to be the
result of acid-driven dissolution. The fact that the acid-rain microcosm pH values were
similar to control microcosm pH values indicates the buffering capacity of the soil
neutralized the effects of acid rain during the course of the experiment. This was
apparent even though the amount of treatment water pumped through the microcosms
was the equivalent of approximately 5 years of rain, assuming an average rain fall of 31.5
inches (NOAA, 1993). This calculation was based on the amount of water that would
pass the surface of the cylinder and also assumes that all the rain infiltrates flows through
soil. It is unlikely that in an actual rain event all of the rain will pass vertically through
the soil, for this reason the calculation should be considered as a maximum exposure. If
the acid rain simulation had a significant effect on the pore water of the microcosms a
much greater decrease of the pH in the exchange water would be expected. Therefore the
buffering capacity of the soil exceeds the amount of acid that was applied to the

microcosm.
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7.5 _Changes in Chromium Concentrations Over Time

In general, chromium concentrations in the microcosm effluent tended to decrease
over time as shown in Figure 20 for all the microcosms and in Figure 21 showing those
microcosms with lower concentrations of chromium. The range of chromium
concentrations in the field samples associated with the sites where cores were taken for
the microcosms are also shown in Figure 21 as vertical lines to the right of the plot.
Hexavalent chromium was not detected in any of microcosms exchange solutions. The
first samples taken for analysis from the microcosm were at the end of the initial
exchange of 500 mL. These samples would represent the mostly new fluid in the
microcosm, as most of the original fluid would have been flushed out. These data are
plotted at time zero on Figures 20 and 21. Each subsequent sample was taken at the
beginning of the exchange, as described in the methods section and represents fluid in the

microcosm for the previous week or month depending on the incubation period.
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Figure 20. Chromium concentrations in the exchange soutions.
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Figure 21. This figure is similar to Figure 20, although sample J19 was not included.
Also, the vertical lines, to the right of the concentration profiles, represent the ranges of
chromium concentrations observed in the pore-waters at these sites.

In general, chromium concentration trends in the exchange water are similar for
both the acid and control microcosms from a given site. Chromium concentrations in the
exchange water of all the microcosms decreased over the time during the initial one week
incubation periods. When the incubation period was extended to one month the
concentration of chromium increased in all microcosms except the 022 microcosms.

This implies that the mechanism causing the release of chromium was allowed to develop
more fully during a month incubation period. The incubation period appears to have a
significant influence on the release behavior of chromium.

The dissolved chromium concentrations in the microcosm effluents are similar to
the measured concentrations in the field pore-water samples (Figure 21). The majority of
the chromium concentrations fall within the range of concentrations for the

corresponding field pore waters for all sites except 022, which were generally lower than
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the field concentrations. The site at J19 was usually unsaturated and therefore pore water
was not available for comparison. The acid and control exchange solutions do not appear
to mobilize the chromium to dissolved concentrations that are higher than what are
normally found in the pore water at the site (Figure 21). This indicates that the simulated
acid-rain treatment did not mobilize chromium to a greater extent than the conditions
currently at the site and also demonstrates that the microcosms were successful in
replicating the conditions observed in the field.

Dissolved chromium concentrations in the exchange water from microcosms J19,
P25, and N23 are higher than the rest of the microcosms. Sites J19, P25, and N23 are all
sites that experience unsaturated field conditions at least part of the year. Site J19isin a
small upland area that is usually unsaturated. The water table is more than 3 feet below
the surface at this site. Site P25, and to a lesser extent site N23, are in areas that have an
observed history of periods of saturation and unsaturation. The rest of the sites are in
areas that are continually saturated with water. Considering only the sites that experience
unsaturated field conditions, concentrations in the exchange water are highest in J19 and
lowest in N23. J19 site is also experiences unsaturated conditions more than the N23
site, which may suggest that the duration that a site is saturated or unsaturated may have
an effect on the mobility of chromium.

The amount of chromium released from the microcosms did not appear to be
related to the total concentration of chromium in the soil (Table 7). Chromium
concentrations were determined on soil removed from the ends of the cores during
construction of the microcosms. The totals were determined using the method described

in section 3.1.4. The data are arranged on Table 7 in order of decreasing amounts of
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chromium in the microcosm effluent. In many of the cores there was a large difference in
the solid phase chromium concentrations between the top and the bottom. The highest
soil concentrations were observed in the microcosms from J19, which also had the
highest concentration of chromium in the exchange water. The microcosms from P25
released the second most chromium in the microcosm experiments, but the soils had
relatively low chromium concentrations. The microcosms from the K22 sites contain the
second highest concentrations of chromium in the soil, but very little chromium was
eluted from these microcosms (Figure 21). There appears to be no relationship between
the amount of chromium in the effluent and the amount of chromium in the soil of a
particular microcosm.

Table 7. A summary of the concentration of chromium in the microcosm soils presented
in order of decreasing chromium concentrations in the microcosm effluent.

Sample Location Cr Conc. Sample Location Cr Conc.
in core | (mg/kg dry wt.) in core | (mg/kg dry wt.)
J19 Acid Top 15942 K22 Acid Top 12327
Bottom 88877 Bottom 1201
J19 Neutral Top 6132 K22 Neutral Top 8430
Bottom 71693 Bottom 1299
P25 Acid Top 6108 J23 Acid Top 12135
Bottom 3127 Bottom 54988
P25 Neutral Top 7573 J23 Neutral Top 1676
Bottom 2777 Bottom 78188
N23 Acid Top 14298 022 Acid Top 6382
Bottom 21073 Bottom 368
N23 Neutral Top 10673 022 Neutral Top No Sample
Bottom 8626 Bottom 5541

One possible explanation for the decreasing chromium concentrations in the
microcosm effluent is that chromium is being liberated as a by-product of microbial

degradation of the natural organic matter. In this scenario the chromium is bound to
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organic matter which is being utilized by microorganisms and chromium is released as a
Cr(III)-DOC complex by-product of that reaction. The positive correlation of chromium
with DOC in the microcosm samples and the solid phase extraction data strongly indicate
a connection between chromium and DOC, which supports this theory. This could also
account for the trend in chromium concentrations over time in the microcosm effluent. In
this situation, the one-week incubation period did not allow enough degradation of
organic matter to create high concentrations of a Cr(III)-DOC complex. A one-month
incubation did allow for a large amount of Cr(III)-DOC to be produced, which resulted in
higher concentrations. This may also explain the observation that the sites that are
usually drier release more chromium. Sites that are unsaturated allow for oxygenated
conditions. Oxygen respiration is the most efficient metabolic approach to degrade
organic matter and therefore Cr(III)-DOC complexes could build up in the soil. These
complexes could then be mobilized with the subsequent influx of water. If these
complexes existed in the soil prior to the initiation of the experiment they may have been
slowly released over the course of the experiment, which would explain the decrease in
chromium concentrations over time.

Another possible explanation for microcosm data is that chromium is being
liberated as a Cr(IIT)-DOC complex that is the result of a thermodynamic, equilibrium
reaction. In this scenario chromium is coming into solution in an effort to reach an
equilibrium state with a solid phase, which for chromium in this system would likely be
Cr(OH)3am. This chromium hydroxide may be dissolving to form Cr(OH)x*’ aqueous
species, as illustrated in Figure 11, that could then react with the dissolved organic matter

to form Cr(IITI)-DOC complexes. The DOC and solid-phase extraction data also support



this explanation, which could also account for the trend in chromium concentrations over
time in the microcosm effluent. In this situation, the one-week incubation period did not
allow enough time for the reaction to proceed toward equilibrium. While a one-month
incubation did allow for the react to proceed further, which resulted in higher
concentrations. Also, if the final concentration was influenced or determined by the
availability of organic ligands produced by microbial activity then this may explain the
increased chromium concentrations with the one-month incubation period as a result of
increased microbial activity due to the longer incubation period. This process is
consistent with the conclusions of a thermodynamically driven equilibrium process
controlling the chromium concentrations that was suggested for the field data.

It is not possible to determine the exact process by which chromium is entering
solution with these data. However, it is apparent that organic ligands play a major role in
the solubilization of chromium in these soils. Microorganisms in the soil control the type
and abundance of organic ligands in soil pore waters. For these reasons, the second
round of microcosm experiments was focused on influencing the microbial processes in

the soil cores.

65



VIII. NUTRIENT MICROCOSMS

8.1 Rational

The results from the preceding work indicate that a significant portion of the
chromium in the soils and pore waters is associated with organic matter. If true, changes
in the types or rates of degradation of organic matter could influence chromium behavior
at the site. The mobilization of chromium could occur as a by-product of the degradation
or an increased availability of ligands in solution which complex with inorganic dissolved
chromium. A likely method for disturbing the soil organic matter would be the natural
microbial degradation of the soil organic matter. During this process natural plant
material is broken down into smaller fragments and eventually converted to carbon
dioxide and/or methane. The treatments for the second round of microcosm experiments
were designed to increase the degradation of soil organic matter by stimulating the
microbial community. The hypothesis was that if the degradation of soil organic matter
increased the concentration of chromium would increase in the pore water of the
microcosms.

One of these treatments attempted to maximize the efficiency of the microbial
community by altering the redox state to a higher level. The field data indicated the pore
waters were in a reduced (oxygen deficient) state, as expected for an organic rich wetland
area, and the microbial degradation of cellulose based plant material is inhibited under
reduced conditions (Atlas and Bartha, 1993). Microbial communities use a variety of

energy sources or terminal electron acceptors and communities that utilize oxygen as
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their predominant terminal electron acceptor are the most efficient at degrading soil
organic matter because it is the most energetic terminal electron accepting process
(Lovley and Goodwin, 1988; Atlas and Bartha, 1993). However, for the purposes of this
experiment oxygen could not be used because it has a very low solubility and it was
thought that the amount of oxygen that could be injected with the water would be quickly
utilized leaving the remainder of the week to develop anoxic conditions again. The next
most energetic TEAP is the reduction of nitrate (Lovley and Goodwin, 1988; Atlas and
Bartha, 1993; Lovley et al., 1994). Since nitrate is soluble in water, it was added to the
artificial rain solution to make a final concentration of 90 mg/L nitrate.

Another treatment attempted to stimulate microbial processes by increasing the
overall nutrient level of the pore water. The objective of this treatment was to add
nutrients to the system that were lacking and thereby increase the microbial potential to
degrade the soil organic matter. In this treatment nitrate and phosphate were both added
in concentrations of 25 mg/L and 2 mg/L respectively to the simulated rain solution. The
third treatment was the artificial rain solution, as a control, that was used in the previous
microcosm experiments.

Soil cores for these microcosm experiments were collected in the spring of 1998
from the same six locations as the first microcosm experiments. From each site, three
soil cores were collected, one core for each treatment, resulting in a total of 18
microcosms. The sampling protocols, microcosm design, and sampling strategies for the
microcosms were essentially the same as in the first microcosm experiments. The only
differences were that 1) the first sample collected was the first 120 mL of fluid that eluted

from the core during the first exchange, and 2) all treatment fluids were de-aerated by
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bubbling argon gas through the solutions for one hour prior to pumping them into the
microcosms.
8.2 Dissolved Chromium versus DOC Results
The relationship between aqueous chromium concentrations and DOC appears to
be more ambiguous for the nutrient-microcosm samples than either the field or the acid-
rain microcosm data. The data are presented on four separate plots (Figures 22 a, b, c,

and d). When looking at the entire data (Figure 22a) the data are not highly correlated
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Figure 22. Correlation of chromium versus DOC in the nutrient microcosm effluents.
Figure 22a includes the samples from all three treatments (N, N&P, and control) from
each site. Figure 22b shows data from the microcosms treated with 90 mg/L nitrate.
Figure 22c shows data from the microcosms treated with 25 mg/L nitrate and 2 mg/L
phosphate. Figure 22d shows data from the control microcosms treated with the
simulated rain solution.
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(R?=0.25). The poor correlation appears to be primarily the result of a group of samples
with high DOC concentrations. However the majority of these data plots in a trend with
a slope of between 0.04 and 0.08, which is similar the trends that were observed in the
field and acid-microcosm data (Figures 12 and 17).

The data for the 90 mg/L nitrate (N) treatment (Figure 22b) shows a very poor
correlation (R?=0.051), but a trend similar to the trends observed in the field and acid-
microcosm data is still apparent. The data for the 25 mg/L nitrate and 2 mg/L phosphate
(N&P) treatment (Figure 22c) shows a much better correlation (R2=O.78), which is
similar to the field and acid-rain microcosm data. The data for the control treatment
(Figure 22d) also shows a much better correlation (R2=O.78), however, the correlation is
highly dependant on the samples above 150 mg/L chromium. These samples all come
from the J19 control microcosm and have DOC concentrations that are much higher as a
group than the rest of the data. The control samples below 20 mg/L chromium (Figure
22d) appear to have a linear trend similar to that of Figure 22c.

The treatments were designed to enhance microbial degradation of organic matter
and it is likely that this would also impact the concentration and nature of the DOC. This
may result in the relationship between dissolved chromium and DOC becoming less clear
as seen in the microcosms treated with 90 mg/L nitrate. The relationship may be
impacted by a production of ligands faster than the reaction with available chromium can
occur. Even though the relationship between chromium and DOC may have become less
obvious, all of the figures for the nutrient microcosms show a trend similar to that

observed in the field and acid-rain microcosms to a certain extent. By analogy, this
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indicates there is a relationship between chromium and DOC in the nutrient microcosm
samples.
8.3 Solid Phase Extraction Results

The chelex 100 resin was also used on the nutrient-microcosm samples to aid in
identifying the aqueous speciation of chromium. Similar to the previous graphs showing
chelex data (Figures 13 and 19), Crcheiex represents that concentration of chromium
remaining in solution after the reaction with chelex resin which should represent
negatively charged or neutral chromium. The results of this extraction on the nutrient
samples (Figure 23) are similar to previous results using this extraction medium (Figures
13 and 18). The data are highly correlated (R*=0.996) with a slope near one
(slope=0.998), which indicate that the dissolved chromium exists as a negatively charged

or neutral species and by analogy with the field data is probably a Cr(II)-DOC compiex.
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8.4 Changes in Nitrate and Sulfate Concentrations over Time

The concentrations of nitrate and sulfate were monitored to assess whether the
treatments were affecting microbial processes. Phosphate was also monitored, but the
concentrations were consistently too low to quantify. Nitrate and sulfate are both used as

terminal electron acceptors by microbes and their concentrations may give an indication
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of the TEAP conditions of the system (Lovley and Goodwin, 1988; Lovley et al., 1994).
Sulfate and nitrate were components of the simulated-rain solution and were present in all
the treatment solutions used in the microcosm experiments (Appendix L). The
concentrations of nitrate and sulfate in the simulated-rain solution were 2.4 mg/L nitrate
and 5.6 mg/L sulfate. Also, nitrate was monitored because it was added to both of the
nutrient treatments.

The nitrate concentrations from the microcosms treated with 90 mg/L nitrate (N)
showed two different trends during first ten weeks of the experiment (Figure 24). The
most common trend was that the concentrations tended toward a relatively constant
concentration. The microcosms from sites J19, P25, K22 and 022 all showed this trend,
with concentrations for the different microcosms ranging between 20 and 40 mg/L. The
J19 microcosm core was not saturated with water when collected and the initial sample
from that microcosm had a high concentration because it was primarily composed of the
incoming treatment water. The other trend consisted of a general increase in
concentration from the beginning of the experiment until week ten. The microcosms
from sites J23 and N23 showed this trend, with maximum concentrations near 30 mg/L.
These trends indicate that nitrate was being utilized by the microbial community to
varying degrees in all cores. The concentrations of nitrate decreased dramatically for all
microcosms in the last two exchanges for the N treatment microcosms. This may
indicate a change in the microbial community to allow for a greater utilization of nitrate
that was added.

The nitrate concentrations from the microcosms treated with 25 mg/L nitrate and

2 mg/L phosphate (N&P) showed two different trends during first ten weeks of the
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Figure 24. Nitrate concentrations in the effluent of the nutrient microcosms over time
for the six microcosm sites. The concentration range is not the same for each graph.
N represents the microcosms treated with 90 mg/L nitrate. N&P represents the
microcosms treated with 25 mg/L nitrate and 2 mg/L phosphate. Control represents
the microcosms treated with the simulated rain solution.

experiment as well (Figure 24). The nitrate concentration trends from microcosms J19,
P25, and J23 are all near zero with no concentrations greater than 3 mg/L. This indicates

that the microbial community in these microcosms utilized the nitrate almost completely.
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The concentration trends from microcosms K22, N23, and 022 tend toward constant
concentrations ranging in concentration from 8 to 12 mg/L. These trends indicate that the
microbial community was utilizing the added nitrate to a certain extent. As with the N
treatment, the concentrations of nitrate decreased dramatically for all microcosms in the
last two exchanges for the N&P treatment microcosms. This may indicate a change in
the microbial community to allow for a greater utilization of nitrate that was added. The
concentrations of nitrate in the control microcosms remained near or below the input
concentration of 2.4 mg/L for all microcosms (Figure 24). The nitrate data indicates that
the microbial community was utilizing the nitrate added to the system.

The trends in sulfate concentrations in the amended microcosms may be used to
support the indication that nitrate was being utilized by the microbial community.
Microbes can get a higher energy yield when using nitrate as a terminal electron acceptor
as opposed to sulfate (Lovley and Goodwin, 1988; Atlas and Bartha, 1993). When nitrate
reduction is the dominant TEAP sulfate can exist in the pore water at higher
concentrations than when sulfate reduction is the dominant TEAP (Lovley and Goodwin,
1988; Lovley et al., 1994). Therefore high concentrations of sulfate may indicate that
nitrate reduction is the dominant TEAP. Also, the production of sulfate in the
microcosms would not occur if the strongly reducing conditions prevailed. The
concentration of sulfate in all of the treatment solutions was 5.6 mg/L (Appendix L).

The sulfate concentration trends from microcosms that were treated with 90 mg/L
nitrate reduction indicate that nitrate may have been the dominant TEAP in these
microcosms (Figure 25). The general trend of sulfate concentrations for these

microcosms show a gradual increase in the first ten weeks and then a sharp increase in
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Figure 25. Sulfate concentrations in the effluent of the nutrient microcosms over time
for the six microcosm sites. The concentration range is not the same for each graph.

N represents the microcosms treated with 90 mg/L nitrate. N&P represents the
microcosms treated with 25 mg/L nitrate and 2 mg/L phosph Control
the microcosms treated with the simulated rain solution.

P

concentration for the last two exchanges. There are two exceptions to this trend. First,
concentrations of sulfate in the J19 microcosm initially decrease and level off before

increasing in the last two exchanges. Second, the last exchange for the N23 microcosm
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decreased significantly from the previous concentrations and may have been an errant
data point. In general however, the elevated sulfate concentrations show that the redox
state of these microcosms was at least oxidizing enough to allow for the formation of
sulfate. The rapid increase in sulfate in the last two exchanges corresponds well with
decrease in nitrate for the same exchanges.

Sulfate concentration trends for the first ten weeks were similar in both the N&P
and control microcosms. The concentrations were relatively constant with values ranging
between 2 and 4 mg/L, except for 022 which were from 8 to 12 mg/L. Concentrations
less than 5 indicate that sulfate is being consumed by the microbial community. This
indicates that nitrate reduction may not be the dominant TEAP in these microcosms.
Concentrations of sulfate in the last two exchanges increased in all of the N&P
microcosms, indicating a major shift of the redox state in these microcosms. This
corresponds well with the nitrate data, which decreased in these exchanges. Except for
the last two exchanges and microcosm 022, sulfate was not forming in these
microcosms, which suggests that these microcosms were more reduced than the N
microcosms.

The nitrate and sulfate data indicate that microbial processes were influenced by
the treatments. One of the goals was to produce a higher redox potential (or TEAP) in
the N microcosms and it appears that this was achieved. It also appears that the microbial
community utilized the nitrate and phosphate in the N&P treatment fluids and therefore

the treatment objective for this treatment was also achieved.

75



8.5 Changes in Chromium Concentrations over Time

In comparing the trends of chromium concentrations from the acid-rain
microcosm experiments to those in the nutrient microcosm experiments, it should be
noted that information from the first samples taken are not directly comparable between
the two microcosm studies. This is because in the nutrient microcosm experiments the
first sample is the first 120 mL of water from the microcosm during the first exchange.
In the acid rain microcosms, the first sample was the final 120 mL of water from the
microcosm during the first exchange. The nutrient microcosm experiments were
conducted for 14 weeks with a normal incubation of one week and a 3-week incubation
period between the last two samples. It should also be noted that the first sample for the
J19 microcosms consisted primarily of the incoming treatment fluid, because the cores
were collected from unsaturated soils.

The level of chromium concentrations in the effluent from the nutrient
microcosms (Figure 26) is similar to the level of chromium concentrations from acid-rain
microcosms (Figures 20 and 21). The relative level of chromium concentrations among
the sites was also similar to what was found in the simulated acid rain experiments and
followed the order J19 > P25 > N23 > J23 > K22 > 022. In general, the chromium
mobilized from the soils increased after the initial exchange and also after the longer
incubation period, with the exception of the 022 microcosms (Figure 26). The results of
the chromium concentration data from the nutrient microcosms shown in Figure 26 are
summarized in Table 8. The chromium concentrations for the nutrient microcosms are

compared against the control microcosms and each other for each site. The table also
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Figure 26. Chromium concentrations in the effluent of the nutrient microcosms over
time for the six microcosm sites. The concentration range is not the same for each
graph. N represents the microcosms treated with 90 mg/L nitrate. N&P represents the
microcosms treated with 25 mg/L nitrate and 2 mg/L phosph Control

the microcosms treated with the simulated rain solution.
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includes the change in chromium released after the sample interacted with the treatment

solution for the three-week period.

Table 8. Summary comparison of chromium in the effluent from nutrient
microcosm experiments.

Comparison Soil Sampling Site
J19 P25 N23 J23 022 K22

N vs. Control similar > > > < >
N&P vs. Control > similar | similar > < <

N vs. N&P < > > similar | similar >

N last sample higher | similar | higher | higher | similar | higher
N&P last sample higher | slightly > | similar | similar | similar | higher
Control last sample | higher | slightly < | similar | similar | lower | higher

Explanation: N = treatment with 90 mg/L NO3;, N&P =25 mg/L NO; and 2
mg/L POy; similar means N treatment and control or N&P treatment have
similar chromium concentrations; > means N treatment chromium values are
greater than control or N&P treatment values; < means treatment chromium
values are less than control or N&P treatment values. The last three rows
depict the change in the concentration of chromium in the effluent after
remaining in the microcosm for 3 weeks.

The microcosms from site J19 showed the N&P treatment liberated the most
chromium, while there was very little difference in the chromium concentration of the
effluent between the N and control treatments. Concentrations of chromium in the
effluent initially increased from the first samples taken in both treatments and in control
samples and then decreased over time. Concentrations of chromium in the effluent
increased after the three-week interaction time.

The microcosms from sites P25 and N23 show the N&P and control treatments
had similar chromium concentrations, while the highest chromium concentrations were
from the N treatment microcosms. Concentrations of chromium decreased in samples
from the P25 site and little change in chromium concentrations was found after the three-

week incubation time. The N23 microcosms had chromium concentrations in both the N
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and N&P treatment samples and the control samples that increased to relatively constant
concentrations. Except of the N treatment, concentrations of chromium in the effluent
after the three-week incubation period did not change. Concentrations in the N treatment
after this time were higher for the N23 microcosm.

The microcosms from J23 show concentrations in the control samples were
different from those in the treatment samples. The concentrations and trend of
concentrations for chromium in the N and N&P treatments were similar for the J23
microcosms, but higher than those from the control microcosm. In both treatment and
control microcosms the chromium concentrations increased to relatively constant values.
The concentration of chromium in the N treatment samples was higher after the three-
week period. No change was found in the other samples after this period.

The N treatment liberated the most chromium at site K22 followed by the control
and then the N&P. Concentrations increased to relatively constant values. There were
slight increases of chromium in the leachate in all three types of fluids after the three-
week interaction period.

The microcosms from 022 show that the concentrations and trend of chromium
concentrations for the N and N&P treatments were also similar, but lower than those
from control. Samples from this site were the only ones to show a decrease in chromium
concentrations over time including after the three-week interaction time. These cores
were composed of silty sand with very little organic matter and thus were very different
compositionally from the rest of the cores, which included large percentage of organic

matter.
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The amount of chromium released from the microcosms does not appear to be
related to the amount of chromium in the soil. Table 9 lists the concentration of
chromium in soil samples taken from material that was removed from the ends of the
microcosm cores during construction. The totals were determined using the method
described in section 3.1.4. In many of the cores there was a large difference in the
concentrations at the top and those at the bottom of the microcosm core. The highest
concentrations were observed in the microcosms from J19, which also had the highest
concentration of chromium in the exchange water. However, there are no other apparent
relationships between the concentrations in the soil and the amount of chromium released

from them, similar to the acid-rain microcosms.

Table 9. A summary of the concentration of chromium in the microcosm soils

Sample Location Cr Conc. Sample Location Cr Conc.
in core | (mg/kg dry wt.) in core | (mg/kg dry wt.)
JION Top 3067 K22 N Top 9665
Bottom 59957 Bottom 1667
J19 N&P Top 3953 K22 N&P Top 8266
Bottom 62348 Bottom 16873
J19 Control Top No Sample K22 Control Top 10434
Bottom 84988 Bottom No Sample
P25 N Top 5084 J23N Top 21371
Bottom 4780 Bottom 6298
P25 N&P Top 8229 J23 N&P Top 6637
Bottom 9395 Bottom 67336
P25 Control Top 2141 J23 Control Top 9241
Bottom 4802 Bottom 38377
N23 N Top 4865 O22N Top 287
Bottom 9362 Bottom 720
N23 N&P Top 5322 022 N&P Top 564
Bottom 16064 Bottom 927
N23 Control Top 20187 022 Control Top 4107
Bottom 6731 Bottom 1520
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The hypothesis driving the nutrient amended microcosms was that chromium
concentrations in the pore water would increase if the degradation of soil organic matter
increased. The additions of an alternative terminal electron acceptor and supplemental
nutrients did appear to be utilized by the microbial community and should have allowed
for greater degradation of organic matter. However, a clear relationship between the
effluent chromium concentrations and the treatments applied is not apparent. The
microcosm treatment that released the most chromium was usually a N or N&P
treatment. This was true for all sites except 022, which as discussed earlier is composed
to silty sand and is compositionally different from the rest of the microcosms. The fact
that either the N or N&P treatments released the most chromium supports the hypothesis
that increased microbial degradation of the soil organic matter may increase the dissolved
chromium in the pore water. The inconsistent behavior may be a function of
heterogeneity in the soil composition or microbial communities at each site, which result
in different responses. It may also be that the time span or incubation period of these
experiments did not allow enough time significantly alter the composition of the
dissolved organic carbon. Although the fact that the N or N&P microcosms released the
most chromium supports this hypothesis, the results are equivocal and can not be used as

a predictive tool due to the lack of consistent trends.
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IX. SUMMARY AND CONCLUSIONS

9.1 Summary

Chromium appears to be predominantly associated with two phases in these soils.
The comparison of chromium and organic matter in the soil indicates that there is an
association between chromium and soil organic matter. This is also supported by the
sequential extraction data that show chromium is mainly associated with the moderately
reducible (MR) and basic oxidizable (OX1) phases in these soils. The association of
chromium with the OX1 phase is consistent with the relationship of chromium to organic
matter. The proportion of chromium associated with the MR phase increased as the total
amount of chromium in the soil increased. The increasing dominance of the MR
extraction with increasing chromium concentrations may indicate that there is a limitation
to the amount of chromium that can associate with natural organic matter. Considering
the results of the sequential extraction data for chromium, the chemistry of the solutions
used in the selective chemical attacks, and knowledge of the biogeochemistry of
chromium, it is concluded that the dominant forms of chromium in the soils at this
wetland are a Cr(OH); mineral/amorphous solid and chromium associated with soil
organic matter.

The concentrations of chromium in the surface and pore waters of this site are
usually higher than would be expected by inorganic thermodynamic modeling. There
was no measurable Cr(VI) observed in any of the samples collected. There was a

positive correlation between chromium and dissolved organic carbon, which suggests that
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chromium is associated with dissolved organic carbon in these waters. Solid phase
extractions performed on the aqueous field samples showed that 96 percent of the
chromium acted as anion, 12 percent of the chromium was associated with the
hydrophobic organic fraction, and no measurable chromium acted as a cation. The
results of the solid phase extractions show that aqueous chromium exists primarily as an
anion in these waters. Since no Cr(VI) was observed in these samples, this anion is most
probably a complex of chromium with DOC. In the pH range of these waters (near
neutral) most of the functional groups on natural dissolved organic matter will have a
negative charge. This characteristic supports the assumption that the chromium exists as
a Cr(III)-DOC complex.

There is an apparent contradiction between the anion and hydrophobic extraction
data. The anion extraction indicates that 96 percent of the chromium is associated with
an anionic species, however the hydrophobic extraction indicates that 12 percent of the
chromium is associated with hydrophobic compounds. The contradiction arises from the
fact that these two extractions combined exceed 100 percent, but if one takes into account
the nature and complexity of natural organic matter the significance of this contradiction
is diminished. It is completely plausible for organic compound to have both a
hydrophobic component and a hydrophilic component (anionic). Another possibility is
that the remaining 4 percent of the anionic extraction may be composed of neutral
chromium species not associated with DOC, such as Cr(OH);. However, the majority of
the aqueous chromium exists as an anion, which is most likely a Cr(III)-DOC complex.

The concentrations of chromium and pH values in the exchange water from the

control soil samples in the microcosm studies were similar to those found in the native
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soil pore waters. This indicates that the microcosms for this study reproduced field
conditions and therefore it can be assumed that the microcosm experiments were
adequate surrogates for field conditions.

Chromium in the microcosm exchange water was found to be associated with
dissolved organic matter, similar to field observations. Also, there was no measurable
chromium that existed as a cation. The concentrations of chromium released from the
treatment soils in the microcosm studies were also similar to those found in the soil pore
waters. These observations suggest that chromium in the microcosm exchange fluid is
behaving similarly to chromium in the field samples and therefore likely to be a Cr(III)-
DOC complex. This also indicates that the treatments chosen for this study did not
enhance the mobility of chromium above the conditions currently found at the site.

The results of the microcosms involving the acid-rain simulations indicate that the
buffering capacity of the soil neutralized the acid in the acid-rain solution. Thus,
enhanced chromium mobility because of acidification did not take place, during the
course of the experiment. The results of the microcosms involving acid rain also indicate
that cyclic saturation and unsaturation of the soils may mobilize chromium.

There appears to be no relationship between the amount of chromium in the
effluent and the amount of chromium in the soil of a particular microcosm. There
appears to be a relationship between the saturation history of a site and the amount of
chromium released from a microcosm from that site. Microcosms from sites that were
normally wet released the least amount of chromium, despite the fact that some cores
contained much more chromium than other microcosms that released more chromium.

Microcosms from sites that were variably or cyclically saturated released more chromium
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than those continually saturated. The one site that was continually dry released the most
chromium.

There are several possible explanations for the behavior of chromium in these
waters. One possible explanation for microcosm data is that chromium is being liberated
as a by-product of microbial degradation of the natural organic matter. In this scenario
the chromium is bound to organic matter which is being utilized by microorganisms and
that chromium is released as a Cr(IlI)-DOC complex as by-product of that reaction.
Another possible explanation for microcosm data is that chromium is being liberated as a
Cr(IIT)-DOC complex that is the result of a chemical-equilibrium reaction. In this
scenario chromium is coming into solution in effort to reach an equilibrium state. One
possible solid phase for chromium would be Cr(OH)3;, which may be dissolving to form
inorganic species that can be complexed with DOC. The complexation of chromium with
DOC would then allow for more Cr(OH); to dissolve. Further research is necessary to
determine which of these processes are controlling chromium mobility. It is possible that
both processes are occurring in these soils.

The results of the microcosms involving changes in nutrient concentrations (i.e.,
phosphorus and nitrogen) indicate that chromium mobility in the soils will be affected by
changing nutrient concentrations. However, a clear relationship between the effluent
chromium concentrations and the treatments applied is not apparent. The microcosm
treatment that released the most chromium was usually an N or N&P treatment.
However, the fact that the N or N&P treatments consistently released more chromium
supports the hypothesis that increased microbial degradation of the soil organic matter

may increase the dissolved chromium in the pore water. The inconsistent behavior may
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be a function of different limiting conditions or microbial communities at each site,
which result in different responses. Although some of the data support this hypothesis,
the results are equivocal and can not be used as a predictive tool due to the lack of
consistent trends.

The effects are complex and somewhat dependent on soil type. The N and the
N&P treatments affected the soils differently. In turn, the soils responded differently to
the treatment. The treatments did impact the dissolved organic carbon in solution as
evidenced by a low correlation between chromium and dissolved organic carbon in the
microcosms treated with 90 mg/L nitrate, but some of the data appeared to be correlated
to a certain extent. However, chromium concentrations in the microcosm studies were not
significantly greater than what was found in the soil pore waters.

The release of chromium from the nutrient microcosms was similar to the release
observed for the acid-rain microcosms. The relative amounts of chromium leached from
the nutrient microcosms were similar to the relative amounts leached found in the acid-
rain microcosm. In other words, those soils that tended to leach higher amounts of
chromium in the acid-rain simulations were the same soils that leached the higher
amounts of chromium the nutrient experiments. Also as in the case of the acid-rain
microcosm experiments, the amount of chromium leached was not directly related to the

total amount of chromium in the soils.
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9.2 Conclusions

Inorganic and organic processes influence the fate and mobility of chromium in
wetland environments. The primary hypotheses of this research were that chromium is
associated with soil organic matter as Cr(III) and that dissolved chromium will be
associated with dissolved organic matter. The results indicate that the solid forms of
chromium in these environments will be either a chromium hydroxide or bound to the
soil organic matter. Although both chromium hydroxides and soil organic matter appear
to sequester chromium, chromium hydroxide is the dominant form at higher
concentrations of chromium and so in that respect the hypothesis was not supported as far
as the solids are concerned. The dissolved chromium concentrations are higher than
would be predicted by inorganic thermodynamic calculations and the dissolved
chromium is strongly associated with dissolved organic carbon, which supports the
hypothesis. The relationship between chromium and DOC was observed in both the field
and laboratory experiments, even though the DOC was not speciated. Aqueous
chromium exists as an anion, which is probably a Cr(III)-DOC complex. It appears that
the solubility of chromium is controlled by thermodynamic equilibrium processes
involving both the solubility of Cr(OH)3.m and the availability of organic ligands to
complex with chromium.

A secondary hypothesis was that the mobility of chromium in these soils is
controlled by the stability of the organic matter to which it is bound. This hypothesis was
tested with the microcosm experiments and is not strongly supported by the microcosm
results or the speciation results. The sequential extraction data indicates that the

organically bound chromium is not dominant form of chromium in the soil, which does
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not support the hypothesis, however a small fraction can have a large influence on
solubility. The results of the microcosm experiments show that the solubility of
chromium may also be increased if the soils experience periods cyclic saturation and
unsaturation. The results of the nutrient amended microcosms were equivocal, but
indicated that there also may be an increased solubility of chromium if the degradation of
soil organic matter is increased. The microcosm data showed trends in the chromium
versus DOC and chromium versus the negatively charged or neutral chromium species
that were similar to those observed for the field data. This indicates that the aqueous
speciation of chromium in both the field and laboratory data is similar and that the
processes controlling the solubility of chromium in both settings is the same. Therefore,
it appears that the solubility of chromium is more likely to be controlled by the
availability of organic ligands in solution than the stability of the organic matter to which

it may be bound.
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Appendix B
Sequential Chemical Extraction Procedure

Soil cores were frozen (-20°C) until just prior to beginning the sequential
extraction procedure. After the cores were thawed, they were placed in a glove bag,
which was then evacuated and purged twice with N3 (g) or Ar (g) to ensure an inert
atmosphere. A Teflon police man was used to transfer about 50 grams of soil from the
bottom of each core into acid washed 120mL plastic vials for homogenization. Large
objects, such as roots, wood, rocks, and urban waste, were excluded from the material
that was homogenized. After homogenization, five grams (+ 0.5g) of wet soil were
weighed out on an acid washed watch glass for wet weight/ dry weight determination. A
separate one gram (+ 0.2 g) aliquot was placed into an acid washed 30 ml centrifuge tube
for sequential chemical extractions. The remaining homogenized soil was saved for
organic carbon determination by loss on combustion. Once the weighing was completed
in the glove bag the watch glasses were placed in a convection oven for 24 hours at 50°C
to dry the soils.

Each sequential chemical extraction step began with the addition of a chemical
reagent under an inert atmosphere, followed by agitation of the tightly secured centrifuge
tubes to completely mix the soil/chemical mixture. Each chemical addition reacts with
the soil to strip off the bound metals from targeted solid phases. After each prescribed
reaction time the leachate was separated from the soil by centrifugation at 15,000 rpm for
20 minutes. Leachate fluids were siphoned off or decanted into acid washed 30 ml
syringes, then filtered through 0.4um acid washed Nucleopore membrane filters into acid

washed Nalgene™ polypropylene bottles and acidified to pH< 2 to prevent adsorption to
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the container walls and precipitation of metals from solution. Samples were stored in a
dark 4°C refrigerator until analysis. A copy of the detailed procedure, which was adapted

from Matty (1992), is on the following two pages.
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Procedure for the Sequential Chemical Extraction of Metals
(modified from Matty,1992)

From each homogenous sample remove two aliquots.
Aliquot 1: place on tared watch glass; dry in oven at 50°C for 24 hours; reweigh

and record percent water; perform HNO; microwave digestion.

Aliquot 2: place in tared centrifuge tube; perform sequential chemical extractions

under N using the following procedures:

I. Exchangeable Fraction

1.
2.

3.
4.

5.

Place 1.0 g wet sediment into acid-washed tared centrifuge tube.

To each sample, SRM, and blank, add 10 mL 1.0M MgCl, (pH 7); with wrist
action shaker agitate continuously for 1 hour at 20°C.

Centrifuge for 20 minutes at 15,000 rpm.

Remove leachate with a syringe and filter through 0.4um Nuclepore filter into
an acid-washed 8 or 30 mL bottle. Acidify to pH<2 with optima HNOs.
Rinse sediment with 10 mL DDW in vortex mixer; centrifuge for 20 minutes
at 15,000 revolutions per minute (rpm); remove supernatant and discard.

II. Weak-Acid Soluble Fraction

1.
4.
5. Remove leachate with a syringe and filter through 0.4um Nuclepore filter into

6.

To sediment from (I) add 10 mL of 1.0M NaOAc (pH 5 with HOAc) and
agitate with shaker for 5 hours at 20°C.
Centrifuge for 20 minutes at 15,000 rpm.

an acid-washed 8 or 30 mL bottle. Acidify to pH<2 with optima HNO;.
Rinse sediment with 10 mL DDW in vortex mixer; centrifuge for 20 minutes
at 15,000 rpm; remove supernatant and discard.

III. Easily Reducible Fraction

1.

N

To sediment from (IT) add 25 mL of 0.1M NH;OH-HCl in 0.01N HNO; and
agitate in shaker for 0.5 hours at 20°C.

Centrifuge for 20 minutes at 15,000 rpm.

Remove leachate with a syringe and filter through 0.4pum Nuclepore filter into
an acid-washed 30 mL bottle.

Rinse sediment with 10 mL DDW in vortex mixer; centrifuge for 20 minutes
at 15,000 rpm; remove supernatant and discard.
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IV. Moderately Reducible Fraction

1.

To sediment from (III) add 20 mL of 0.04M NH,OH-HCl in 25% (v/v) HOAc.
Place sample in a water bath at 96°C for 6 hours; agitate every 30 minutes.
Centrifuge for 20 minutes at 15,000 rpm.

Remove leachate with a syringe and filter through 0.4pm Nuclepore filter into
an acid-washed 30 mL bottle.

Rinse sediment with 10 mL DDW in vortex mixer; centrifuge for 20 minutes
at 15,000 rpm; remove supernatant and discard.

V. Oxidizable Fraction I (not done under N3)

L.

To sediment from (IV) add 6 mL of NaOCI (pH 9.5 with HCl just prior to
use). Place sample in a water bath at 96°C for 15 minutes.

Centrifuge for 20 minutes at 15,000 rpm.

Remove leachate with a syringe and filter through 0.4um Nuclepore filter into
an acid-washed 30 mL bottle.

Repeat steps 1 through 3 two more times (except for the third step of the third
addition), using the vortex mixer to resuspend the sample after each addition
of NaOCl.

Add 5 mL of 3.2M NH;4OAc to the solution-sample mixture of the last NaOCl
addition. Agitate with shaker for 1 hour at 20°C.

Centrifuge for 20 minutes at 15,000 rpm.

Remove leachate with a syringe and filter through 0.4um Nuclepore filter into
an acid-washed 30 mL bottle.

Rinse sediment with 10 mL DDW in vortex mixer; centrifuge for 20 minutes
at 15,000 rpm; remove supernatant and discard.

V1. Oxidizable Fraction II (not done under N;)

1.

wN

bl

To sediment from (V) add 3 mL of 0.02N HNO; and 8 mL of 30% H,0O, (pH
2 with HNO3) in 500 pL aliquots; agitate every 30 minutes for 5 hours in a
water bath heated to 85°C; leave caps unscrewed.

Place samples in Wrist Action Shaker to cool.

Add 5 mL of 3.2M NH4OAc (pH 2 with HNOs). Agitate with shaker for 1
hour at 20°C.

Centrifuge for 20 minutes at 15,000 rpm.

Remove leachate with a syringe, empty the syringe into an acid-washed 25
mL volumetric flask and dilute up to 25 mL with DDW. Filter the diluted
solution through a 0.4pum Nuclepore filter. Transfer solution to an acid
washed 30 mL bottle.

Rinse sediment with 10 mL DDW in vortex mixer; centrifuge for 20 minutes
at 15,000 rpm; remove supernatant and discard.
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APPENDIX C
Field Aqueous Sampling

The material the peepers and barrels are made from has the capacity to adsorb O,
and therefore needs to be de-oxygenated prior to emplacement in anoxic systems. The
de-oxygenation was accomplished by submerging the samplers in DDDW and bubbling
with N; or Argon gas for a minimum of three days. The samplers were maintained in
DDDW until they were installed. All components of the samplers, including the dialysis
membranes, were acid washed with 10% HCI prior to assembly.

The peepers and barrels were installed below the land surface in saturated areas.
The samplers were left in place for at least two weeks to allow biogeochemical
equilibration to occur between the sampler and the pore water (Hesslein 1976; Carignan
et al., 1985: Tessier et al. 1996). In order to obtain sufficient fluid for analysis, four to
six adjacent peeper ports were sampled to make up one sample. An example of the

sampling scheme is presented in Figure A2.1.

Peeper Sampling Scheme

Fe2+
Alkalimty Amons
Cations
DOC

R
( edox ) C Chelex

Figure C 1. A schematic diagram showing the ports from which fluid was taken for
the various parameters.
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The sampling of the peepers was conducted in the field at site the where the
peeper was installed. The peepers were removed from the ground and the outside of the
membranes were rinsed with DDDW. The peeper was then placed on a portable table
and samples were taken for the various analyses. Samples were obtained by puncturing
the membrane with a plastic pipette tip and withdrawing a sample with a pipettor or a
syringe fitted with a plastic pipette tip. Methane samples were collected by
simultaneously piercing the nylon mebrane of a sampler and the butyl rubber septum of
an evacuated, 30 ml, glass bottle. This allowed the collection of a sample with a
headspace that has not come into contact with the air.

The most redox sensitive parameters were sampled and/or analyzed first.
Aliquots for CHs, NH,*, S%, and Fe?* were taken first. This included preservation or
treatment of these redox sensitive parameters. When the redox sensitive parameters were
stabilized or preserved, aliquots for cations, anions, pH, alkalinity, and DOC were
obtained. Usually the complete sampling was achieved within ten minutes by a team of
three to four personnel. After all the samples were obtained, the quantification of those
parameters measured in the field was performed. Parameters measured in the field
included temperature, pH, Eh, S%, Cr(VI), Fe?*, and alkalinity.

Sampling of the barrels required a slightly different approach. Three barrels
bound together constituted one sample and a diagram of the sampling scheme is
presented in Figure A2.2. When the barrels were removed from the ground they were
rinsed off with DDDW. Snap on caps were fitted to the ends of the barrels and they were
transported to a central location in an argon filled plastic bag. Transportation to the

central location was generally accomplished with in five minutes. Once at the central
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location, the membranes were punctured and the samples extracted. The barrel from
which the redox sensitive samples were taken was processed in an argon filled bag. As
with the peepers, the actual splitting of samples for the various parameters generally took

less than ten minutes.

Barrel Sampling Scheme

H,S
CH, Figure C 2. A schematic
Redox Sampled | diagram showing the barrels

under Argon| from which fluid was taken for
the various parameters.

F e2+

cr* DOC
Alkalinity, pH NH,*
Anions Chelex

Cations
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Appendix E
Table E-1. Soil Organic Matter Content

Sample ID | %OM |SampleID [ %OM [SampleID | %OM -
B3a0-0.5 2.2 B31-1.5 5.2 |B33-35 1.0
B50-0.5 0.8 B51-1.5 0.7 |B53-3.5 1.1
B70-0.5 0.6 B71-1.5 0.6 |B73-3.5 0.3
B9a0-0.5 2.4 B91-1.5 2.8 |B93-3.5 0.3
B110-0.5 NA |[B111-1.5 0.8 |B113-3.5 0.9
B130-0.5 2.3 Bl13al-1.5 1.8 |B133-3.5 0.5
B150-0.5 5.3 B151-1.5 15.2 |B153-3.5 35.8
B170-0.5 5.5 B171-1.5 0.6 |B173-3.5 21.5
C20-0.5 2.3 C21-1.5 03 |C23-3.5 0.3
C40-0.5 2.3 C41-1.5 1.1 C43-3.5 0.6
C60-0.5 04 [C61-1.5 1.0 |C63-3.5 0.1
C80-0.5 4.2 C81-1.5 0.7 |C83-3.5 0.9
C100-0.5 2.1 C101-1.5 1.3 C103-3.5 2.0
C120-0.5 2.9 Cl121-1.5 04 |C123-3.5 0.2
C140-0.5 5.2 Cl41-1.5 0.3 |C143-3.5 0.4
C160-0.5 1.8 Cl161-1.5 NA |C163-3.5 NA
D50-0.5 1.8 D51-1.5 1.1 D53-3.5 0.7
D70-0.5 4.2 D71-1.5 04 |D73-3.5 0.7
D90-0.5 3.7 D91-1.5 0.7 |[D9a3-3.5 0.6
D110-0.5 0.7 D111-1.5 03 |D113-3.5 0.2
D130-0.5 3.7 D131-1.5 0.5 D133-3.5 0.6
D150-0.5 2.1 D151-1.5 1.8 [D153-3.5 0.8
D170-0.5 32.1 |[D171-1.5 30.6 |[D173-3.5 4.3
D190-0.5 19.2 |D191-1.5 71.0 |D193-3.5 18.8
E140-0.5 1.9 E141-1.5 3.5 |E143-35 0.4
E160-0.5 28.2 |E161-1.5 49.8 |[E163-3.5 35.8
E180-0.5 34,5 |E181-1.5 55.7 |E183-3.5 NA
E200-0.5 2.2 E201-1.5 1.8 |E203-3.5 NA
F130-0.5 1.8 |F131-1.5 09 |F133-3.5 0.3
F150-0.5 20.7 |F151-1.5 20.4 |F153-3.5 0.3
F170-0.5 5.5 F171-1.5 0.6 |F17a3-3.5 0.2
F190-0.5 5.4 F191-1.5 1.4 [F193-3.5 0.5
F210-0.5 0.7 |F211-1.5 0.6 |F213-3.5 0.8
G140-0.5 7 Gl41-1.5 4.5 G143-3.5 0.6
G160-0.5 65.8 |Gl61-1.5 8 G163-3.5 6.4
G180-0.5 49 |GI81-1.5 0.6 |G183-3.5 0.3
G200-0.5 2.8 [G201-1.5 0.8 |G203-3.5 0.3
G220-0.5 1.9 |G221-1.5 2.3 [G223-3.5 0.4
H150-0.5 14.8 |[HI51-1.5 59 |[H153-3.5 15.8
H170-0.5 342 |H171-1.5 56.7 |[H173-3.5 5.8
H190-0.5 229 |HI191-1.5 23.1 [H193-3.5 70.2
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Table E-1. Organic Matter Content (continued)

Sample ID.| %OM |SampleID| %OM |SampleID| %0M

H210-0.5 0.2 |H211-1.5 8.5 |H213-3.5 04
H23a0-0.5 2 H231-1.5 0.5 |H233-3.5 0.2
1200-0.5 48.9 [1201-1.5 794 11203-3.5 66.6
1220-0.5 65.3 |I1221-1.5 74.5 [1223-3.5 04
1240-0.5 3 1241-1.5 03  [I243-3.5 03
1260-0.5 16.7 [I26al-1.5 5.1 |1263-3.5 NA
J19a0-0.5 65.3 |J191-1.5 76.3 |J193-3.5 92.1
J210-0.5 26 |J211-1.5 1.2 J213-3.5 NA
J230-0.5 744 |J231-1.5 70.7  |J233-3.5 04
J250-0.5 23.8 |J251-1.5 96  [J253-3.5 23
J270-0.5 9.6 |J271-1.5 0.5 |J273-3.5 NA
K200-0.5 81.3 [K201-1.5 NA  |K203-3.5 3
K220-0.5 76.5 |K221-1.5 81.7 |K223-3.5 0.2
K240-0.5 72.2  |K241-1.5 77.7  |K243-3.5 1.1
K260-0.5 4.7 |K261-1.5 60.3 |K263-3.5 30.1
K280-0.5 25.8 |K281-1.5 35.8 |K28-3.5 NA
L210-0.5 2.1 |L211-1.5 29 [L213-3.5 NA
L230-0.5 77.3 |L231-1.5 86.6 |L233-3.5 1.2
L250-0.5 2.1  |L251-1.5 76.1 |L25a3-3.5 49.5
L270-0.5 77.5 |L271-1.5 12.8 [L273-3.5 0.3

M200-0.5 2.7  [M201-1.5 222 |M203-3.5 NA

M220-0.5 12.5 [M221-1.5 13.5 |M223-3.5 2.1

M240-0.5 25.0 [M241-1.5 75.0 |M243-3.5 0.2

M260-0.5 353 [M261-1.5 50.0 [M263-3.5 NA

M280-0.5 19.3 |M281-1.5 15.2 [M283-3.5 0.6

N210-0.5 68.4 |N211-1.5 58.0 [N213-3.5 NA

N230-0.5 77.3 [N231-1.5 2.2 [N233-3.5 4.6

N250-0.5 3.4 |N251-1.5 349 [N253-3.5 3.7

0220-0.5 69.9 1022al-1.5 38.1 ]0223-3.5 4.5

0240-0.5 543 10241-1.5 18.8 10243-3.5 3.2
P230-0.5 619 |P231-1.5 2.1  |P23a3-3.5 8.4
P250-0.5 62.1 [P251-1.5 582 [P253-3.5 44
Q240-0.5 544 [|Q24al-1.5 25.0 1Q243-3.5 344
Q260-0.5 15.7 |Q261-1.5 NA  |Q263-3.5 NA
R250-0.5 51.5 |R251-1.5 174  |R253-3.5 2.7
R270-0.5 37.2 |R271-1.5 594 |R273-3.5 51.2
S260-0.5 35.8 |S261-1.5 66.1  [S263-3.5 NA
T270-0.5 46.7 |T271-1.5 60.3 |T273-3.5 NA
U260-0.5 1.0 [U261-1.5 5.6  |U263-3.5 3.1

NA - indicates that no sample was taken for that interval
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Appendix F Aqueous Field Samples

Appendix F-1: Pore water data for samples taken on 7/26/97.

that the samples were taken on a peeper.
Samples with spring or surface in the name were samples collected
at the surface.

Two dashes (--) indicates a parameter that was not measured and
bd indicates that the amount in the sample was below detection.
Samples with top or bottom in the name indicate the relative depth

. : " (Alkalinity [ | S
Temp. o _ |asHCOy | €I | Br | SO* | NOy:| -S*- -
Sample. | (C) | pH | Eh | (mg/L) |[(mg/L)|[@mg/L)| (mg/L).| (mg/L) (mg/L)
123 top 17.5 | 6.49 [-1000] 202.60 | 41.60 | bd 1.60 bd 1.45
J23bottom | -- | 6.85 |-1480] 173.93 | 39.60 | bd 0.70 bd 1.44
K22top | 140 | 697 | -150 | 32493 [3740| bd bd bd 0.19
K22bottom | -- | 7.06 | -22.0 | 16437 | 3290 | bd 6.20 bd 0.19
N23top | 165 | 6.54 | -51.0 | 277.14 | 19.10 | bd 1.70 bd [ 023
N23bottom | -- | 658 | 480 | 24465 | 2370 | bd 0.60 bd 0.24
P25 top 175 | 732 [ 1500 [ 9174 [21.00 [ bd 240 | 086 | 021
P25 bottom | - - [ -350] 22171 [1950 | bd bd bd 0.21
%2 ['DOCTL: CHy |"NHy | Fe(total) | Fe*| K- .| 'Na > ["Ca .|° Mg
Sample . |(mg/L) | (ng/L) [(mg/L) | (mg/L) | (mg/L) | (mg/L)| (mg/L) | (mg/L):|:(mg/L)-
123 top - | 867 | 013 126 | 120 | 12.60 | 21.06 | 4550 | 225
123bottom | -- | 258 | 043 132 [ 120 [ 1245 ] 1991 | 43.00 [ 3.92
K22 top - [ 337 [ 038 | 832 | 390 [1435] 1846 | 5750 | 2.87
K22bottom | -- [ 031 | 013 | 332 [ 3.00 | 1123 | 1921 | 40.00 | 2.01
N23 top - | 1161 [ 046 | 47.40 | 50.00 | 1437 | 1454 | 6550 | 2.02
N23bottom | -- [2032 [ 130 | 3636 | 34.80 | 13.50 | 1600 | 58.50 | 1.67
P25 top - bd | 012 | 708 | 215 | 655 | 1402 | 2550 | 1.22
P2Sbottom | - [ 1226 [ 411 | 972 [ 9.10 [ 672 | 1420 | 30.00 | 136
ST o A o 6] T I 7 Sl VT S T
. Sainple .| (ue/M): | (ug ag/): | ugh). .. | (ug/): | e/
123 top ~ | 042 | 046 | 1154 |156.86] 3.65
123bottom | -- | 050 | 1.83 | 84.84 | 54.85 | 3.16
K22 top - 1044 | bd | 4488 [496.22] 1.06
K22bottom | -- [ 020 | bd 29.82  [245.34| 0.84
N23 top - | 148 | 078 | 137.60 [973.35] 7.27
N23bottom | - | 068 | bd | 16430 [645.66| 2.99
P25 top - 1023 [ 087 | 1920 [19.59 | 225
P25bottom | -- | 094 | 005 | 7000 [464.08] 3.07
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Appendix F-2
Pore water data for samples taken on 8/13/97.

, o JAmalinigy| T B ]t
| Temp. . -l |'asHCOs Cl Brf‘--;* so4 | NOs [ .. 8F ¢
. Sample | (C) | pH | Eh | (mg/l). (mg/L) (mg'/L) (mg&) - (mg/L)¢|: (mg/L)

122barrel | 7.1 | 7.08 | -140 | 160.55 - - 0.79
J23barel | 139 | 6.57 | -152 | 168.20 - - - - 2.67
K28 barrel | 104 | 659 | -101 | 179.67 - - - - 0.44
L27barrel | 119 | 681 | -52 | 374.62 - - - - 0.24
M28barrel | 12.5 | 641 | -45 | 324.93 - - - - 0.32
N2Sbarrel | 157 | 66 | -71 | 217.89 - - - - 0.41
Q26 barrel | 134 | 6.65 | -27 | 237.01 - - - - 0.17
S26barrel | 148 | 75 | -10 [ 202.60 - -- - - 0.14

- ... . | DOC | CHs | NH; | Fe(total) | Fe** " K [ Na | Ca "[ Mg
Sample | (mg/L)|(mg/L) |(mg/L)| (mg/L) |(mg/L)|(mglL)| (mg/L) | (mg/L):| (mg/L):|

' 122 barrel 235 | 027 | L1l 1.49 143 | 11.84 | 19.19 42.50 2.26

J23 barrel 674 | 1149 | 1.52 0.71 0.69 | 12.48 | 23.50 47.00 3.70

K28 barrel 557 1 013 | 091 5.00 5.02 | 15.76 | 22.16 48.00 3.14

L27 barrel 7.09 15.3 1.14 2.63 2.88 | 31.60 | 24.39 72.50 1.91

M28 barrel | 10.27 | 31.02 | 5.07 29.67 3062 | 1544 | 1594 59.50 3.85

N25 barrel 7.17 | 243 1.05 5.14 4.80 | 14.75 19.24 61.00 1.38

Q26 barrel | 31.32 | 16.82 | 6.11 17.06 17.49 | 1232 | 13.49 58.50 5.54

S26 barrel 6.05 | 4.21 1.45 1.62 144 | 8.05 6.83 57.00 1.57

"

T . |ed [ Co | Ca | CFr° [ Ma | M |

_Sample | Gueny | g |'uem | g | gl | | g, |
122 barrel 0.22 2.08 25.12 0.03 3.33 - -- --
J23 barrel -- 0.21 1.68 11.40 0.09 3.99 -- - --
K28 barrel -- 0.52 0.48 2.02 0.15 2.70 -- -- -
L27 barrel -- 0.48 0.13 3.04 0.51 3.33 -- -- -
M28 barrel - 0.31 1.10 40.96 1.20 345 - - -
N25 barrel - 0.29 1.22 6.64 0.21 3.09 -- - -
Q26 barrel - 1.45 5.17 5.72 3.18 3.11 - - -
S26 barrel - 0.49 0.88 22.60 541 1.96 -- - -
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Appendix F-3
Pore water data for samples collected 10/8/97

: ‘ [ Alkalinity: |-
i |Temp.| - |- |asHCOy | Cr ,SO’fj' No3 ‘_y
, Sample | (€) | pH | Eh | (mgL) |(mgL) | (mgL) | (mg/L) | (mg/L)|:
123t0p | 95 | 651 | -105 | 15673 | 48.80 | 0.60 bd .
123bottom | 9.5 | 67 | -125 | 13762 | 4840 | 0.80 bd
K22w0p | 99 | 676 | -188 | 21025 | 2220 | 0.60 bd
K22bottom| 99 | 699 | -157 | 12997 | 37.40 [ 5.60 bd
N23 11 | 624 | 6 17584 | 21.10 | 0.80 bd
022 117 | 702 | -160 | 42432 | 11.00 | 1.60 bd
P2Stop | 124 | 637 | 19 9174 | 31.80 | bd bd
P25bottom| 124 | 6.15 | 21 126.15 | 2200 | bd bd
P25 Surf. | - - - - 3480 | 1.60 | 168
Q26 barrel | 152 | 671 | -95 137.62 | 2930 | 0.80 bd
U26a | 1590 | 7.15 [ 9500 | 84.10 350 | 3.10 bd
U26b 7.52 25 00| 13762 | 410 | 370 bd
. .. |poc]| cH, | Fe(total) | Fe* | K | Na | Ca. ' Mg .
. Sample |(mg/L) (mg&L_(_E/L) (mg/L) | (mg/L) | (mg/L) | (mg/L) ~(mg/LaL4;(EE(L)_
123t0p | 1132 ] 301 | 026 0.64 045 | 492 [ 25.00 | 41.00 | 13.00
123 bottom | 647 | 2.25 | 0.62 0.84 069 | 332 | 25.00 [ 42.00 | 12.50
K22top | 833 | 634 | 055 3.56 341 | 453 | 1400 | 4000 | 11.00
K22bottom| 3.35 | bd | 058 3.56 331 | 323 | 2050 | 5000 | 14.50
N23 14.86 | 9.86 | 0.82 11.44 954 | 120 | 1350 | 3250 | 9.00
022 11.33 | 19.61 | 20.42 0.8 061 | 039 [ 550 [13500] 250
P25top | 2686 | bd | 0.86 7.64 954 | 195 | 19.00 | 2650 | 7.50
P25 bottom | 11.95 | 4.61 | 3.20 9.36 1053 | 141 | 1500 | 2550 | 6.50
P25Surf. | 2772 | - - 16.04 - 037 | 19.50 | 30.50 | 7.00
Q26 barrel | 1245 | bd | 244 11.36 796 | 232 | 12,00 | 3250 | 8.50
U26a 0.18 bd 054 | 250 | 2300 | 350
_U26b 0.22 bd 124 | 300 | 4050 | 5.00
" “Cr . Ma [ Ni [ "Pb Zm [ S'm
“123t0p | S7. . . 1643 | 7019 | 214 | 170 | 243 | 187.61
J23bottom | 5147 | 0.16 | 336 | 4067 | 3224 | 239 [ 091 [ 12.14 | 189.41
K22tp [111.90] 020 | 508 | 63.69 [27077 | 190 | 003 | 5561 | 161.48
K22 bottom[ 127.04| 0.18 | 654 | 2652 [39547 [ 199 [ 0.09 [ 93.63 | 201.89
N23  [13259] 035 | 853 | 9614 | 40294 | 267 | 198 | 15068 | 67.88
022 [1403.05] 039 | 440 | 4336 [ 270.15| 978 | 050 | 162.19 | 187.82
P25Stop | 6290 | 0.85 | 876 | 14466 | 36196 | 3.74 | 184 [ 242.62 [ 70.34
P25bottom | 54.48 | 1.26 | 1.70 | 16790 [302.84 | 467 | 083 | 217.78 | 59.31
P25 Surf. |109.05] 1.77 | 520 | 44205 [391.70 [ 356 [ 282 [ 2171 | 62.32
Q26 barrel | 68.18 | 0.61 [ 2.27 1047 [1410.10] 232 | 372 | 14.40 | 130.39
U26a | 3231 | 042 [ 1547 370 39128 314 | 148 | 563 | 4457
U26b | 41.09 | 034 | 4.43 431 680.85 | 2.23 bd 079 | 70.53
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Appendix F-4
Pore Water Data Collected on 11/20/97

DEREE S Temp B e e : .HCO; I -Cr | SO&- | NOs | 'S* .| Cr
~.Sample | (C): -} -pH |  Eh. | (mg/lL): (m'g&)_’ | (mg/L) | (mg/L). |

J23 barrel -- 6.8 -82 156.73 49.20 12.94 bd .

K22 barrel | 2.7 6.75 58 141.44 26.30 5.23 bd

N23barrel 1.8 6.43 47 141.44 24.00 0.66 bd

022 barrel | 5.6 7.19 -17 428.14 12.60 5.72 bd

P25 peeper 665 | 13.00 | 99.39 31.50 bd bd

P25 barrel 1.5 6.57 42 122.33 31.00 bd bd

P25 surface - - - -- - - - - o
i |.DOC’| CHy ‘| NH; | Fe(total) | Fe* | K | Na | Ca sl Mgl
 Sample | (mg/L)| (mg/l) |(mg/L)| (mg/L) .| (mg/L) | (mg/Ly| (mg) | mg/L) |. (ng/L).|

J23 barrel | 4.81 0.07 0.61 0.32 0.21 4.16 26.50 | 43.50 13.00
K22 barrel | 4.85 1.98 0.61 1.98 1.59 4.34 18.00 | 44.00 14.00

N23barrel | 12.36 1.75 0.22 13.66 1243 0.69 16.50 | 34.50 9.50
022 barrel | 7.98 8.48 12.99 1.56 1.49 0.45 7.00 134.50 4.00
P25 peeper | 28.64 | 0.71 1.65 33.48 27.19 0.82 18.00 | 35.00 7.00
P25 barrel | 19.11 1.17 1.09 7.44 7.09 2.72 14.00 | 26.50 7.00
P25 surface [ 19.99 -- -- 12 90 11.86 1.29 13.50 | 26.00 6.00
Sample [ Ba” | Co | Cu | Cr | Ma | Ni | Pb | Za | SE %

J23 barrel | 48. 59 0.11 5.35 3.83 73.48 2.11 0.64 10.82 197.32
K22 barrel | 11048 | 0.22 344 35.88 392.61 1.60 bd 14.05 179.09
N23barrel | 120.04 | 0.42 4.44 124.19 517.20 | 1.88 0.32 83.51 68.80
022 barrel | 990.85| 0.31 9.16 41.16 404.66 1.72 0.73 2.34 215.58
P25 peeper | 106.31 | 2.19 4.31 327.91 59245 | 3.31 0.32 18.25 65.35
P25 barrel | 56.60 [ 0.63 1.99 122.54 350.16 | 2.27 1.46 17.87 68.29
P25 surface | 90.24 1.68 1.46 314.23 512.15 | 3.36 0.42 15.11 54.37
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Appendix F-§
Pore water data for samples collected 6/9/98

— T T T AR T T T TR
o fTempi| .0 | . |asHCOy | CE | Br | SO | NOs [ 8%
Sa’nmli i (C)i- . Bh | (mg/L). - (mg/l#)» (mg/L) | (mg/L).|(mg/L)- |*(mg/L)<
K22 11 . 118 | 28295 | 4407 | 260 | 139 | 57.16 | 0.024
123 83 | 715 | S0 | 13457 | 4956 | 141 | bd bd_ | 0.036
N23 94 | 635 | 20 | 31918 | 2140 | bd bd bd_| 0.107
P25 11 | 647 | 25 89.71 | 2457 | bd bd bd bd
022 73 | 722 | 71 | 51759 | 1326 | 066 | bd bd | 0092
L22 1 135 | 698 | 40 | 13112 | 3539 | 364 | bd | bd
surface —
. - [.pOC.| CH; [ NH; | Fetota) | Fe* | K | Na | Ca | Mg
.. Sample - | (mg/L) (mg&)_ (mg/L)|. (mng/L). | (mg/L) | (mg/L) | (mg/L) (mg/L) . (mg/L)|
K22 | 14.53 - 1499 | 1608 | 843 | 21.69 | 6530 | 17.70
123 147 | - - 0.25 0.14 | 756 | 2003 | 3846 | 12.14
N23_ | 878 | - - 1931 | 2294 | 357 | 13.90 | 4584 | 13.51
P25 | 1307 | - - 4.49 219 | 216 | 1613 | 2148 | 549
022 | 1020 | - ~ 0.51 146 | 406 | 7.414 | 15379 | 1.89
L22 1990 | - | - 147 | 088 | 500 | 1944 | 3300 | 1003
surface _ ‘

f o o Ba fCo f Cu [T CET N Ma
_Sample |(ug/L). |'(ug/L).|-(ug/L) | -(ug/L): | -(ug/L) | .

K22 | 23825| 028] 030 5383 139701] 154 053] 3.3 29464

123 4662 0.16] 082 358|159 1.19] 058] 767 17335

N23 | 112.66] 026] 0.3 6536 404.11] 108 041] 3.14] 10521

P25 5439 045 109 6150 308.85| 125 2.14] 22.17] 5645

022 | 866.56] 042] 057 2032 18293| 639  1.67] 27.50] 27820

L22 1 y7902] 06| 030 2642 15134] 186 085 703 13472
surface
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Appendix F-6
Pore water data for samples collected 8/22/98

-

§ | Alkalinity [ . R .
Y | Temp. | [ ) asnco3 [ er | Br -"so’*‘ © NOs™ |
.Sample | .(C). | pH. | Eh | (mgl) |(mgL) (mj/L) (mg/L) | .(mg/L):
H2lspring | 85 | 83 | 354 140 | 39.00 14.54 | 332
122 pipe 154 | 713 | 549 | 157 2694 | bd | 105 | bd
peeper

122spring | 93 | 695 | 2325 | 128 3872 | bd | 1642 | 5.8
J19 pit 143 | 685 |-2526 314 65.72 | 1.41 | 24.61

peeper

K20 surface| 173 | 905 | 1798 | 140 | 3668 | bd | 1201

K22 surface | 134 | 635 | 477 | 126 3817 | bd | 630

L21 peeper | 167 | 6.13 | 86 156 | 3457 | bd | 5.76

L21 surface | 168 | 6.38 | 1658 | 191 3949 | 040 | 2.39

N23 peeper | 15.7 | 6.37 | -387 | 280 | 2671 | 112 | 131

N23 surface | 184 | 637 | 1307 | 707 | 1036 | bd | 194

P25 surface | 17 | 668 | 53 174 | 4078 | bd | 127

0 I poc” cHy | NH; | Fe(total) [ Fe* | K °| Na**| Cali["M
| Sample | (mg/L) (mg/L) (mg/L) | ) .| (og/L) | (mg/L) | (mg/L) |G

H21 spring | 4.74 - 0207 T 020 | 222 T 2022

122 pipe 814 | -- - 3408 | 3286 | 626 | 13.90

peeper

122spring | 247 | - - 0202 | 024 | 252 | 2001

“9ppe‘r‘ 1549 | - . 0419 | 032 | 239 | 3476

K20 surface | 1581 | - = 0.188 | 014 | 372 | 24.03

K22 surface | 7.66 | - - 1884 | 175 | 417 | 1935

121 peeper | 9.62 | -- - 1055 | 084 | 226 | 20.10

L21 surface | 11.77 -- - 0418 0.37 3.49 21.56

N23 peeper | 8.68 | - - 3312 | 43.10 | 183 | 1741

N23 surface | 31.08 | - - 0399 | 051 | 643 | 487

P25 surface | 842 | -- — | 0198 | 022 | 344 | 2093

FR et - v B el
b. Sample . | (g/L)..|.(ug/L) | (ug/L). ~-(H8/L)an WL);} o (Ug/L): | (Ug/L)s |s(ug/L):;
H2l spring | 64.25 | 0.14 | 015 | 1015 | 4248 | 05 | 0.2

122 Ppe 21953 190 | 028 | ou8 | s9632 | 224 | 063

122 spring | 47.12 | 011 | 122 | 435 265 | 088 | 029

J9pit 6443|025 | 027 | 4605 | 8972 | 14 | 032

peeper

K20 surface | 450.89 | 0.17 | 0.65 | 7879 | 131.13 | 038 | 0.74

K22 surface | 93.68 | 0.15 | 0.12 | 1059 | 6295 | 055 | 0.7

L21 pecper | 273.58] 0.16 | 026 | 2803 | 193.03 | 043 | 039

L21 surface | 312.24] 021 | 024 | 3002 | 3215 | 058 | 034

N23 peeper | 196.73| 021 | 0.17 | 7174 | 40529 | 097 | 0.55

N23 surface | 2591 | 027 | 0 887 | 16445 | 075 | 023

P25 surface | 7722 | 0.16 | 0 429 | 7489 | 118 | 022
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Appendix F-7
Pore water data for samples collected 10/10/98

- Temp [ | [ Alkalinityas-[T cr |7 Be [:s027 [ Noy [ 87
Sample | (C). | .pH | En |HCOy.(mg/L)| (mg/L) | (mg/L) | mg/L) [i(mg/L): |- (@a/L).
H2lpipe | g8 | 651 | -877 182 2209 | bd | bd | bd | bd
peeper

H2lpipe | g6 | 702 | -547 184 3580 | bd | 811 | bd bd
surface

122 surface | 89 | 695 | -41.7 160 3758 | bd | 1150 | bd bd
19 peeper | 7.5 | 6.8 | -2003 241 5672 | bd | 213 | 598 | 3937
J19 surface | 10.1 | 6.26 | -50.6 133 3651 | bd |11604]| bd bd
19 peeper | 7.5 | 6.76 | -1926 261 5880 | bd | 491 | 262 | 2946
K22 surface| 7.9 | 643 | 358 118 3931 | bd | 1565 | 163 | bd
L21 peeper | 8.1 | 6.68 | -1433 152 3800 | bd | 076 | bd

M22 surface| 14.5 | 655 | 2.8 130 3900 | bd | 581 | bd

N23 peeper | 8.1 | 6.28 | -506 331 2746 | bd | 110 | bd

024 surface | 6.13 | 6.13 | -17.3 174 3865 | bd | 055 | bd

P25 surface | 9.7 | 549 | 129.3 239 5759 | bd | 2125 | bd

~ _|'poc | CHy | NH;'|. Fetota) | Fe* | K | Na [ ca [
Sample | (mg/L) | (mg/L) | (mg/L)| gLy " :|.(mg/L) | (mg/L) |.(mg/L)|

H2lpipe | ;580 | . - 27.68 34.885 | 3.619 | 9.359

peeper

Halpipe | goa0| - | - 9.75 1442 | 1325 | 4899 | 1.77
surface

122 surface | 3.04 | - | - 4.94 3804 | 1887 | 42.55 | 1241
719 peeper | 8.18 | - - 0.30 1.741 | 58.84 | 71.41 | 14.80
119 surface | 20.81 | - | - 0.47 4517 | 2588 | 4139 | 27.08
19 peeper | 929 | — | - 0.32 1818 | 6408 | 5670 | 12.47
K22 surface | 440 | — | - 0.50 2368 | 19.50 | 3498 | 10.86
L21 peeper | 1115 | — | - 147 4368 | 21.78 | 3403 | 11.94
M22 surface] 530 | — | - 0.65 249 | 1566 | 3532 | 1.02
N23 peeper | 11.83 | — | - 38.25 1499 | 1475 | 57.84 | 15.46
024 surface | 985 | — | - 4.27 3958 | 20.65 | 99.64 | 29.13

1.63

122 surface | 80.75 | 0.21 | 2.29 1.30 41343 | 1.13 0.16 4.01 177.89
J19 peeper | 106.51} 0.20 | 4.30 48.56 73.02 1.91 0.70 | 60.02 | 99.97
J19 surface | 335.02| 0.61 1.25 304.28 100.17 | 2.71 | 27.67 | 61390 | 73.37
J19 peeper | 134.07| 0.19 | 2.87 58.44 61.43 2.21 026 | 31.50 | 98.52
K22 surface | 58.93 | 0.06 bd 3.74 15.90 0.06 0.19 1.39 | 151.97
L21 peeper | 791.85] 0.10 | 0.06 79.95 432.16 | 0.90 0.21 | 303.55 | 106.56
M22 surface| 124.61 | 0.08 bd 11.52 117.20 bd 0.22 0.75 | 139.75
N23 peeper | 21043 | 0.36 | 0.12 107.98 57542 | 2.25 0.44 | 325.13 | 109.55
024 surface | 87.60 | 0.17 | 1.65 19.13 21591 1.22 0.24 8.19 | 170.89
P25 surface | 75.55 | 0.77 | 2.41 228.71 24693 | 1.03 094 | 13694 | 49.94
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Appendix G
Appendix G -1: Solid Phase Extraction Data — Chromium

Chelex Cr is the amount of chromium in solution after reaction with the Chelex resin.
Sep-Pak Cr is the amount of chromium in solution after reaction with the Sep-Pak resin.
AG Cr is the amount of chromium in solution after reaction with the AG resin.

Cr [Chelex Cr| Sep-Pak | AGCr

Sample L) | @gn) |crugn)| mgn)
Samples collected on during the 8/98 sampling trip
H21 Spring 11.77 10.53 9.75 2.3
122 Pipe 9.7 14.68 6.7 2.35
122 Spring 3.45 3.77 1.8 0.7
J19 Pit 52.87 53.03 49.25 3.5
K20 Surface 93.03 89.23 84.15 4.35
K22 Surface 13.71 14.74 10.55 1.45
L21 33.07 32.52 27.8 34
L21 Surface 35.91 35.59 28.85 0.95
N23 89.49 89.7 59.2 5.6
N23 Surface 3.55 3.75 2.6 1.6
P25 Surface 5.96 6.57 5.25 1.95
Samples collected on during the 10/98 sampling trip
H21 Pipe Surface 15.61 13.81 10.8 7.2
H21 Pipe 6.09 5.99 4.3 2.75
122 Surface 1.39 0.94 5 0
J19 Surface 304.28 304.32 264.75 9
J19 Upper 53.94 52.21 52.95 9.4
J19 Lower 39.98 40.82 36.95 11.85
K22 Surface 5.49 4.58 3.6 7.05
L21 88.35 90.46 77.3 27.65
M22 Surface 11.52 11.9 9.55 4
N23 130.72 141.75 112.55 14.25
024 Surface 19.13 19.46 14.3 4.8
P25 Surface 228.71 230.78 205.15 12.7
Samples collected on during the 6/98 sampling trip
J23 3.58 3.04
K22 53.83 49.03
L21 26.42 27.31
N23 65.36 54.94
022 29.32 31.86
P25 61.59 71.31
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Appendix G -2: Solid Phase Extraction Data — Manganese

Chelex Mn is the amount of manganese in solution after reaction with the Chelex resin.
Sep-Pak Mn is the amount of manganese in solution after reaction with the Sep-Pak resin.
AG Mn is the amount of manganese in solution after reaction with the AG resin.

Sample Mn [Chelex Mn| Sep-Pak | AG Mn
wgh) | gl) [Mn@eL)| @gL)
Samples collected on during the 8/98 sampling trip
H21 Spring 44.81 0.29 44.75 45.95
122 Pipe 648.33 4.32 633.5 649.5
122 Spring 1.57 0.14 1.4 2.65
J19 Pit 85.17 0.61 89.8 90.6
K20 Surface 143.74 0.6 138.3 150.6
K22 Surface 67.4 0.62 64.25 69.9
L21 291.36 1.64 294.05 290.1
L21 Surface 344.25 1.37 333.45 317.35
N23 512.7 2.88 474.2 538.7
N23 Surface 167.27 1.87 152.05 167.55
P25 Surface 82.28 0.38 76.55 79.95

Samples collected on during the 10/98 sampling trip

H21 Pipe Surface 632.82 38.32 617.1 545.65
H21 Pipe 578.25 106.99 561.5 446.05
122 Surface 413.43 31.46 412.55 351.85
J19 Surface 100.17 1.51 97.55 86.45
J19 Upper 64.65 2.55 65.6 56.1
J19 Lower 83.14 443 89.25 79.35
K22 Surface 15.9 1.77 16.1 22.9
L21 342.41 12.57 338.45 285.3
M?22 Surface 117.2 13.6 116.3 104.15
N23 819.87 5.87 847.2 816.7
024 Surface 215.91 11.61 219.65 186.4
P25 Surface 246.93 20.96 247.75 206.95
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Appendix L
Table L-1. Chemical Compositions of the Treatment Water

Compound or Concentration Microcosms Microcosms
Element from Galloway et | Acidic Conditions | ‘Natural’ Conditions
al., (1976) (uM) uM) uM)
H* (as pH) 3.84 3.86 ** 5.61 **
Na* 1.2 1.2 135.8
K* * 0.26 233 233
Ca* 6.5 6.5 6.5
Mg™ 1.5 1.5 1.5
NH,* 294 29.4 294
Cr 19.2 19.2 19.2
Br * 0.0 142.7 142.7
NO5y 452 45.2 45.2
SO~ 58.4 58.4 58.4

*  KBr was added to the exchange solution to serve as a tracer.
** These pHs are the average of all pH values for the actual exchange solutions.
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