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ABSTRACT

ESTIMATION OF THE GARCH MODEL: IMPROVING THE NORMAL

QUASI—MLE BY AUGMENTED GMM

By

' Yi-Yi Chen

The standard estimator for ARCH models is the normal quasi maximum

likelihood estimator (NQMLE). We interpret the NQMLE as a GMM esti-

mator whose moment conditions are the normal score function, and we seek

to improve it by adding more moment conditions based on autocorrelations

of squares and on the score function for a rescaled t distribution. These aug-

mented GMM estimators are asymptotically more efficient than the NQMLE

when the data are non-normal. We evaluate the efficiency gain and find that

it can be large, especially when the data are skewed. Simulations indicate

that achieving these gains in practice will require a rather large sample size,

such as 1,000 or more. Finally, we estimate a model for the DM/$ ex-

change rates, and find that the augmented GMM estimator performs largely

as asymptotic theory and our simulations would predict.



ACKNOWLEDGEMENTS

Life is unpredictable. During these years of pursuing the Ph.D. degree,

I have experienced some of the most dramatic moments in my life. Thank

God for giving me the strength and courage to walk through them. I’ll

always remember my mother as a kind and loving woman who dedicated

all her life to the family. I only wish she could share the enjoyment of my

accomplishment with me.

For the completion of this dissertation, first I would like to thank my

advisor Professor Peter Schmidt. The breadth of his research experience and

the depth of his knowledge in economics have provided me with tremendous

help throughout the course of writing this dissertation. His financial sup-

port in the last year and the editing on the dissertation are also gratefully

acknowledged. I also thank Professor Jeffery Wooldridge who gave insight-

ful comments on the dissertation and clarified some assumptions used in

this work. The part of empirical work uses the data provided by Professors

Richard Baillie, Tim Bollerslev and Charles Goodhart. This dissertation

cannot be finished without their assistances. A

Throughout these years of studying in the States, I never confronted

financial problems. For this I sincerely thank my parents-in-law for their

financial supports. My father’s encouragement, both on the emotional and

iii



spiritual sides, are powerful support to me. In addition, I thank my sisters,

Fang-Yi, Ang—Yi and Chu-En, for their unconditional love.

I would also like to thank my fellow classmates and friends for helping

me in different ways. I specially thank Bih-Shiow, Te—Fen, Chiung—Ying, and

Chung-Jung for sharing the happiness and life experiences with me, and also

for driving me to shOpping. At last, I thank my husband Hung-Jen; without

his love and support, I cannot complete this dissertation.

iv



TABLE OF CONTENTS

LIST OF TABLES ................................................. vii

CHAPTER 1

ARCH-TYPE MODELS AND ESTIMATION METHODS .......... 1

1.1 Introduction ................................................. 1

1.2 ARCH and GARCH Models .................................. 2

1.3 MLE for the GARCH Process ................................ 8

1.4 QMLE for the GARCH Process ............................. 10

1.5 Improved Normal QMLE and Motivation .................... 16

1.6 Plan of the Thesis .......................................... 18

Appendix 1 ..................................................... 20

CHAPTER 2

EXTRA MOMENT CONDITIONS

AND ASYMPTOTIC ANALYSIS .................................. 24

2.1 Introduction ................................................ 24

2.2 Moment Conditions Based on Autocorrelation of e? .......... 24

2.3 Moment Conditions Based on the Score Function from

the Rescaled Student’s Distribution ......................... 27

2.4 Asymptotic Variance for the Augmented-GMM Estimator . . . 28

2.5 Evaluation and Comparison of Asymptotic Variances ....... 29

2.6 Conclusion .................................................. 33

CHAPTER 3

FINITE—SAMPLE PROPERTIES .................................. 40

3.1 Introduction ................................................ 40

3.2 Design of the Experiment ................................... 41

3.3 Results of the Experiments .................................. 43

3.3.1 Different Distributions ................................ 43

3.3.2 Different Values of Sample Size ....................... 46

3.3.3 w Doesn’t Matter ..................................... 47



3.3.4 Effects of Changing a and fl .......................... 48

3.3.5 Accuracy of Inference ................................. 49

3.4 Conclusion ........ _ .......................................... 50

CHAPTER 4

AN EMPIRICAL STUDY ........................................ 62

4.1 Introduction ................................................ 62

4.2 Estimation of the GARCH(1,1) Model ...................... 63

4.3 Diagnostics ................................................. 65

4.4 Conclusion .................................................. 68

CHAPTER 5

CONCLUDING REMARKS ....................................... 75

Bibliography ........................................................ 78

vi



LIST OF TABLES

CHAPTER 1

Table A.1: Test for the expected value of the score function of the

standardized chi-square distribution ........................ 23

CHAPTER 2

Table 2.1: m2 + 2afl + 62 ............................................. 35

Table 2.2: Asymptotic standard error, w = 1.5, a = 0.15, 6 = 0.7 ........ 36

Table 2.3: Asymptotic standard error, w = 1.5, a = 0.1, fl = 0.75 ........ 37

Table 2.4: Asymptotic standard error, w = 1.0, a = 0.1, ,8 = 0.8 ......... 38

Table 2.5: Asymptotic standard error, w = 2.0, a = 0.2, fl = 0.6 ......... 39

CHAPTER 3

Table 3.1: Monte Carlo simulation result, standard normal distribution

T = 2000, R = 500,w = 1.5,a = 0.15, 3 = 0.7 ................ 51

Table 3.2: Monte Carlo simulation result, standardized t5 distribution

T = 2000, R = 500,w = 1.5,a = 0.15, H = 0.7 ................ 52

Table 3.3: Monte Carlo simulation result, standardized x3 distribution

T = 2000, R = 500,w = 15,01 = 0.15, [3 = 0.7 ............... 53

Table 3.4: Monte Carlo simulation result, standardized gamma(2)

distribution T = 2000, R = 500,w = 1.5, a = 0.15, 6 = 0.7.. . 54

Table 3.5: Monte Carlo simulation result, standardized t5 distribution

T = 500, R = 500,w = 15,01 = 015,6 = 0.7 ................. 55

Table 3.6: Monte Carlo simulation result, standardized t5 distribution

T = 1000, R = 500,w = 1.5, a = 0.15,,8 = 0.7 ................ 56

Table 3.7: Monte Carlo simulation result, standardized t5 distribution

T = 2000, R = 500,w = 0.15,a = 0.15, 6 = 0.7 ............... 57

Table 3.8: Monte Carlo simulation result, standardized t5 distribution

T = 2000, R = 500,w = 1.5,a = 0.1,5 = 0.75 ................ 58

Table 3.9: Monte Carlo simulation result, standardized t5 distribution

T = 2000, R = 500,w = 1.0, a = 0.1, fl = 0.8 ................. 59

Table 3.10: Monte Carlo simulation result, standardized t5 distribution

T = 2000, R = 500,w = 2.0, a = 0.2, fl = 0.6 ................. 60

vii



Table 3.11: Size of the 5% Wald test ................................... 61

CHAPTER 4

Table 4.1: The first four unconditional moments of the distribution of 6? 70

Table 4.2: Estimation result of DM/$ exchange rate .................... 71

Table 4.3: The conditional distribution of 6th,—”2 ...................... 72

Table 4.4: SACF and ACF ............................................ 73

Table 4.5: Overidentification test and conditional moment test .......... 74

viii



Chapter 1

ARCH-TYPE MODELS AND ESTIMATION METHODS

1. Introduction

It is an empirical regularity that many data, such as stock returns, commodity prices,

and foreign exchange rates, exhibit ”volatility clustering” — periods of low volatility

(variance) tend to cluster together followed by periods of high volatility. For example,

French et a1. (1987) show that in the period between 1928 and 1990, daily capital

gains have a larger variance during the 1930’s than during the 1960’s. In the case

of the Deutschmark/US. Dollar exchange rate during the period of 1981 to 1992,

Baillie and Bollerslev (1989) also show that the daily exchange rates have periods of

turbulence followed by periods of tranquillity.

This volatility clustering property was first documented by Mandelbrot (1963) and

Fama (1965), and was modeled econometrically by Engle (1982) as an Autoregressive

Conditional Heteroskedasticity (ARCH) process. The idea of ARCH modeling is

to allow the conditional variance depend on the history of the series. This is very

different from the traditional model in which the conditional variance is assumed to

be independent of the past information.

The modeling of time varying variances has important implications for dynamic

economic theory and modern finance theory. Recognizing the temporal pattern of

time-varying heteroskedasticity can help to impose the accuracy of forecasts and of

econometric inference. Furthermore, because risk and uncertainty play importance



roles in finance theory, the ARCH model is useful to incorporate risk and uncertainty,

as measured by variances and covariances, into the analysis of asset and option pricing.

2. ARCH and GARCH Models

Suppose that Q, t = 1,2,...,T is an observable series with E(et) = 0 and unconditional

variance Var(et) = 02. Define \Ilt as the information set at time t. We assert that

E(et|\Ilt_1) = 0. The conditional variance, ht, can be expressed as Var(et|\IIt_1). How

to model this conditional variance is what we are interested in.

The basic model of ARCH type is

6; = hi/z - ut, with at iid D(0,1), (1)

where D is a specified distribution, such as the standard normal distribution or the

standardized t distribution with a certain number of degrees of freedom, etc. The

information set can be expressed as

‘Ilt : {Eta 6t—l, €t-21 ' ' ' ; ht) ht—l) ° ° '}i

or in principle just as

‘Ijt = {61) Ct-—la €t-2, ° ° '}’

since ht ultimately is a function of past observations.

It may be noted that the representation in equation (1) is stronger than some pos-

sible definitions of an ARCH model. For example, we could define the model simply

by the assumptions that E(et|\Ilt_1) = 0, and Var(c,|\IIt_1) = ht. The representation



in equation (1) implies these results for the first two conditional moments, but also

places restrictions on the higher conditional moments. Specifically, it implies that

E(ef|\Ilt_1) = lit/2m, where pk E E(uf). The results in this thesis generally require

the validity of the representation in equation (1), not just the correctness of the first

two conditional moment assumptions.

Different specific models are defined depending on how ht is related to \Ilt_1. We

discuss a number of the formulations below.

A. ARCH

A.1 First-order linear ARCH

In the simplest ARCH model, ARCH(1), which was introduced by Engle (1982),

the conditional variance depends only on the latest past squared innovation,

ht =w+a1£f_1, w > 0,011 2 0.

If a, = 0, 6; would be white noise. Otherwise, e, will be dependent through higher

order moments.

A.2 General ARCH (ARCH(q))

The qth-order linear ARCH model is

IL, 2 w + iaicffl. = w + a(L)ef, with w > 0, oz,- 2 0 for each i,

i=1

where L is the lag operator so that Let = 6,4 and a(L) = 3:1 aiL‘. If and only

if the sum of the a,- is less than one, the process is covariance stationary, in which

case the unconditional variance is a2 = w/(1 — a1 — a2 — - - - — aq). Engle (1982) uses

this specification to model the uncertainty of the inflation rate. Bodurtha and Mark



(1991) employ the ARCH(3) specification to model monthly NYSE stock returns,

and the same formulation is adopted by Attanasio (1991) to model monthly excess

returns on the S&P 500 index.

Although the ARCH model does imply volatility clustering, there are some dif-

ficulties in empirical applications. For example, without the restrictions on the lag

structure, estimation may result in negative parameter estimates and fail the non-

negative constraints. Also, one may need a large value of q in ht in order to model

the conditional variance correctly.

To avoid these two problems, Bollerslev (1986) proposed the Generalized Autore-

gressive Conditional Heteroskedasticity model, or GARCH model.

B. GARCH(p, q)

The GARCH process modifies the ARCH process by extending the AR process

for c? to an ARMA process, potentially permitting a more parsimonious pararneteri—

zation.

In the GARCH(p, q) model of Bollerslev (1986), ht is defined as follows:

a :2

ht = w + Z (156:4 + Z ,Biht-i, (2)

i=1 i=1

where

p20,q>m

w> 0, (1,20, 2': 1,...,q, 6,- 20, i=1,...,p.

The GARCH(p, q) process is covariance stationary if and only if 2le a¢+Zf=1 6.- <

1, in which case the unconditional variance is 02 = w/ (1 — 3:10“- — 2le 3,). For

p = 0 the process reduces to the ARCH(q) process.

4



The leading case of the GARCH model is the GARCH(1,1) model, with p = q = 1.

The conditional variance for the GARCH(1,1) model is given by

ht = w + (1634+ flht_1,

where w > 0, a 2 0, fl 2 0. This model is covariance stationary if and only if

a+fl<L

Many researchers have found that the GARCH(1,1) model performs well with

high frequency data (Diebold, 1987). For example, Baillie and Bollerslev (1989)

conclude ”the conditional heteroskedasticity in daily spot rates is well represented by

a GARCH(1,1) process with near unit roots” and the GARCH effects remain very

significant for weekly data. Also, Hsieh (1988) demonstrates that the GARCH(1,1)

model is suitable to describe daily data on nominal US. dollar return rates.

C. EGARCH

In the GARCH(p, q) model, the conditional variance only depends on the size

of the past innovations and not their sign. Nelson (1991) points out that such a

model cannot capture the ”leverage effect” (the tendency for changes in stock prices

to be negatively correlated with changes in stock volatility) which was first observed

by Black (1976). Nelson (1991) proposed the Exponential GARCH(p, q) model, or

EGARCH(p, q), which is related to the log-GARCH model proposed by Pantula

(1986) and Geweke (1986). In the EGARCH model, ht depends on both the sign

and the magnitude of at :

q P

111024) = (.0 + z a,(¢ut_,- + Vllut—il — E|ut_.-I]) + Z flgln(ht_,~).

i=1 i=1



There are no restrictions needed on a,- and 6,- to ensure the nonnegativity of the

conditional variance. If u, is assumed iid normal, then 6: is covariance stationary if

5:16,- < 1. Empirical evidence for stock returns supports this specification with

0,45 < 0, which implies that the conditional variance tends to increase (decrease)

when €t_,' is negative (positive), see Nelson (1991).

D. NARCH

As another variant of the ARCH family, Higgins and Bera (1992) pr0pose the

non-linear ARCH (NARCH) model:

q p

h? = w + Z oz;(ef_,~)7 + Z fi,h;’_,-,

i=1 i=1

where w 2 0, a.- Z 0, 6.- _>_ 0, and '7 > 0. The reason for proposing a nonlinear form

for the conditional variance is that this specification is more flexible than the linear

GARCH model. This formulation is equivalent to the general GARCH(p, q) model

when '7 = 1. With 7 = 1/2, the conditional stande deviation hi/z is a distributed

lag of absolute residuals as proposed by Taylor (1986) and Schwert (1989). Higgins

and Bera (1992) suggest that the NARCH model does better for modeling the weekly

exchange rate series than the linear GARCH model.

E. TARCH

The threshold ARCH model, or TARCH, is designed to take into account that

the market’s responses to good and bad news may be asymmetric. The conditional

variance is defined as

q p

h,”2 = w + £10? I(et_,- > 0)|6t_.-|7 + a,— I(e¢_,- g 0)|ct_,-|7] + Z ahifi,

z=l i=1



where I(.) is the indicator function. Zakoian (1990) uses the model with 7 = 1.

Glosten, Jagannathan and Runkle (1993) use this model with '7 == 2 for describing

the nominal excess return on stocks. The model is attractive because it allows for

more flexible responses of volatility to shocks of different signs and magnitude.

F. ARCH in mean

Consider a stochastic process, say yt, where

y. = f(‘I’t—1; b) + ft,

and f(\Ilt_1; b) is a function of \Ilt_1 and the parameter vector b.

In the ARCH-in-mean model, or ARCH-M, which was introduced by Engle, Lilien,

and Robins (1987), the conditional mean is an explicit function of the conditional

variance,

Ht = fort—l, ht; b),

where at is the mean of the stochastic process yt. Some finance theories predict a

tradeoff between the expected returns and the variance, or the covariance among the

returns. This model is capable of explaining the relation between the conditional

variance and the conditional mean provided the sign of the first derivative of f(ht, b)

with respect to ht is positive. The ARCH-M model has been applied to different

stock index returns, such as the daily S&P index by French, Schwert, and Stambaugh

(1987), and quarterly US. stock indices by Friedman and Kuttner (1988).

G. IGARCH

The Integrated GARCH model, or IGARCH, proposed by Engle and Bollerslev

(1986), is the special case of the general GARCH(p, q) model in (2) with 2le a +

7



5:1 = 1. It has the property that shocks to the conditional variance in the

model persist permanently, so sometimes it is also characterized as having ”persistent

variance” or ”integrated variance”.

The unconditional variance for the IGARCH(p, q) model does not exist, since

f=1a+ 2le ,6 = 1. In the IGARCH model, the process is not covariance stationary,

but Nelson (1990) shows that it is strictly stationary and ergodic.

3. MLE for the GARCH Process

To discuss maximum likelihood estimation, we presume that the distribution of u, in

equation (1) is known. That is, we presume that the distributional assumption made

for u, is correct. Let f(ut) denote the density function for u, E et/hi/z, normalized

to have mean zero and variance one. For the general model given in equation ( 1), the

log likelihood function can be written as

LT(0) = ‘21 l,(6), (3)

where the contribution of the tth observation is:

me) = —§log [n.(0)1+log {mm}. (4)

Here the notation ht(0) indicates that h, depends on some parameters 0, so that

ut(0) = ct/h,(0)1/2, but for simplicity we will hereafter just use the notation h, and ut.

The MLE of 0 is obtained by maximizing LT(0), as given in equation (3), with respect

to 0. For example, in the GARCH(p,q) model, 0 = (w, 01, a2, - - ~ , (1,1, [31, fig, - - - , flp)’.



Now consider the commonly-assumed case in which the distribution of ut is stan-

dard normal. Then the log-density function for the tth observation, apart from an

irrelevant constant, is

“(0) = —-2—log ht —‘ —€t2ht—l. (5)

The first and the second derivatives with respect to 6 are

(91 1 16h

Qu(€ 9): t‘ t(£—t - 1),

60 211—, 60 h,

021; _ (6? 1)_6_[1 1 6m] 1 1 6h, 8h, 6?

60’8660’ _ ' Eh—gfafih—g

(6)

ht 2ht06

where

6 = (60,611 ' ' 'aét)"

In addition, if we consider the GARCH(p,q) model, we have:

6h; aht——i

g—“ Z: + gfli—B—O— ,

where zt=(1, et_1, - ,c?_q,ht_1,---,ht_p).

Following Weiss ( 1986), the maximum likelihood estimators 01,“,E of the parame-

ters are consistent and asymptotically normal with mean 00 (the subscript 0 represents

the vector of true parameters) and covariance matrix A“, where

A = —E[021,/6069'] = E[(az./aa)(az,/ae)].

This covariance matrix equals the Cramer—Rao lower bound.

It is difficult to establish asymptotic theory for the estimation of the IGARCH

model. Hong (1987) provides Monte Carlo evidence for the IGARCH(1,1) model,



and suggests that the sample size must be very large (m 5,000 observations) for the

asymptotic distributions to be good approximations. On the other hand, Lumsdaine

(1996) proves that the Normal MLE of the parameters in the IGARCH(1,1) model is

still consistent and asymptotically normal.

An interesting sidelight, not previously noted in the literature, is that the MLE

will not be consistent for certain distributions of ut. For example, let u, be standard

chi-square with u degrees of freedom, so that at = (11, — (1)/J2; where 11, is xfi. Then

i2, 2 0 is equivalent to u, 2 -V/\/$ and at _>_ —h:/2u/\/21;, so that the range of 6;

depends on 0 ( through h,). This violates one of the standard regularity conditions

for the consistency of the MLE. More detail is given in Section A of Appendix 1.

For an example of an article that misses this point, see Engle and Gonzalez-Rivera

(1991).

4. QMLE for the GARCH Process

The likelihood function basedon a distributional assumption provides a criterion

function whose maximization defines an estimator. In the case that the distribu-

tional assumption is not correct, this estimator is called a quasi-maximum likelihood

estimator, or QMLE. For example, the normal QMLE is simply the estimator that

maximizes the normal log likelihood function.

The properties of the QMLE will depend upon the ”assumed” distribution, which

dictates the form of the estimator, and the ”true” distribution, which is a character-

istic of the data generating process. In general, when the assumed distribution is not

10



the same as the true distribution, the QMLE will be inconsistent. However, for some

assumed distributions, notably the normal, the QMLE is consistent and asymptoti-

cally normal, so long as the true distribution satisfies some regularity conditions. We

now discuss two important types of QMLE.

A. Normal QMLE

The Normal QMLE was investigated by Weiss (1986) and Bollerslev and Wooldridge

(1992). Bollerslev and Wooldridge use it in estimating a multivariate GARCH model.

They find that even if normal distributional assumption does not hold, estimates

based on the normal log-likelihood function are still consistent and asymptotically

normal, provided that both the mean and variance equations are correctly specified

and that some regularity conditions are satisfied.

The consistency and asymptotic normality of the Normal QMLE are given in the

following theorem, which is proved by Bollerslev and Wooldridge (1992):

THEOREM(B&W) : If (1) The regularity conditions in Section B of Appendix 1

are satisfied, and (2) For some 0 6 int 9, E(yt|‘Il¢_1) = pt(00) and Var(y,|\Ilt_1) =

Qt(00), then

(A‘lBA"1)‘1/2\/T(§T — 00) —> N(0, I),

where RT is the QMLE

T

B = T—1 : E[3t(00)3t(00)’]i

i=1

3,090) is the score function of lt(0),

1. = -1/210g|0¢(9)|- 1/2 (y. - u(9))'9¢(9)“1(yt— 749)),

11



and

T

A = T‘1 Z: E[dt(00)], dt(00) is the hessian function of lt(0),

t=l

In addition,

AT—A—w and BT—B—>0,

where

T T .. .. ’

AT = T_1 2 dt(6T), and BT = T-1 Z 3t(0T)3t(0T) .

t=lt=l

The matrix AFBTAF is the robust covariance matrix of White (1982). If the true

distribution is normal, (or, more generally, if the third conditional moment is zero and

the fourth conditional moment is three times the square of the conditional variance;

that is, the first four conditional moments are the same as for the normal distribution),

A = B, and therefore the asymptotic covariance matrix of the QMLE is simply A“.

In the GARCH(1,1) case, the (3 x 1) score function, q1t(e, 0), can be represented

as in equation (6), with 0 = (w,a, 6),. The conditional expected value of the score

function, E(qlt|‘IIt_1), is zero when the first two conditional moments are correctly

specified as

E(€t|‘Ilt_1)-_—' 0,

VGT(€t|‘IIt_1) = ht = w + (16:1 + flht_1.

Lumsdaine (1996) provides different regularity conditions to prove asymptotic nor-

mality for the normal QMLE of the GARCH(1,1) model. There are two assumptions

12



for the true parameters and the distribution of at made by Lumsdaine (1996); see

Section C of Appendix 1.

B. Non-Gaussian QMLE

Non-Gaussian densities have become increasingly pOpular for the estimation of

GARCH models. Examples include the student’s t (Bollerslev (1987)) and the ex-

ponential power distribution (Nelson (1991)). The consistency and asymptotic nor-

mality of the QMLE based on non-Gaussian distributions has been investigated by

Newey and Steigerwald (1997). Newey and Steigerwald show that consistency holds

when a particular identification condition is satisfied. The identification condition

is that there exists a unique maximum of the quasi-likelihood function at the true

conditional mean and relative scale parameters. This condition is essential for the

consistency of the QMLE. Newey and Steigerwald (1997) conclude that the identi-

fication condition holds if the conditional mean is identically zero, or a symmetry

condition (the true and assumed densities are both unimodal and symmetric around

zero) is satisfied. When the symmetry condition does not hold, one additional location

parameter should be included to establish the identification condition for consistency.

According to Newey and Steigerwald’s setup, the basic model can be represented

e, = 11,1”(7 + am), (7)

where 'y is the location of the innovation distribution and a, is the scale parameter

for the density of at. The conditional variance H, is rescaled by a constant term. For

example, in the GARCH(p, q) model, H, is h, in equation (2) rescaled by the constant
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term, w. That is, h, = wH, and correspondingly

H,(0) =‘ 1 + i (3)534 + 2?: 5.11.-.. (8)
i=1 i=1

where (g),- is the relative scale parameter and 0 = ((3)1, (3)2, - - - , (5h, 61, 62, - - - , fip, <p’)’,

where cp is the parameter vector in mean function.

Thus we hope for consistent estimation of (a/w)i and ,B,, as opposed to the entire

set of parameters (w, 01,-, 6,). In particular, we generally do not obtain a consistent

estimate of scale (w).

Given the assumed density a(ut,u) with :1 representing nuisance parameters in

the density (e.g. degrees of freedom), the non-Gaussian QMLE is the value of 6 =

(0', 7,03,11)’ that maximizes the log-likelihood function,

T

mow-12246). (9)
t=l

where lt(6) is given by:

1

1,05) = —In a, — 5111 H, + 1n a([a,H,1/2(9)]-1[y, — f,(0) — val/2(0)], u),

where ft(0) is the mean function. Notice that the additional parameter 7 enters the

conditional mean but not the conditional variance.

The identification condition for consistency as given by Newey and Steigerwald

( 1997) is stated in the following theorems. The first theorem applies to the case where

the additional location parameter does not need to be included. The log-likelihood

function is the same as equation (9) but with 7 E 0 and at = fig/208m. The second

theorem applies to the case where the location parameter is added to the model.
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THEOREM (N&S, 1) : If Assumptions 1, 2, 3 in Section D of Appendix 1 are satisfied,

and either Assumption 4 is satisfied or the conditional mean equals zero, then the

expected log-likelihood L(6) = E[lt(6)] has a unique maximum at some 3 with 6 = 00.

THEOREM (N&S, 2) : If Assumptions 1, 5, 6 in Section D of Appendix 1 are satisfied,

then the expected log-likelihood L(6) = E[lt(6)] has a unique maximum at some 5

Also, for the ARCH and GARCH models, they prove that there is no asymptotic

efficiency loss for the QMLE even if the location parameter is included in the case

where the symmetry condition holds.

As previously stated, when the conditional mean is identically zero, the identifica-

tion condition is satisfied without imposing the symmetry condition or the additional

location parameter. The martingale-GARCH(1,1) model we used in this dissertation

satisfies the condition that the conditional mean equals zero. Thus, the symmetry

condition is not an issue in our model. The rescaled conditional variance of the

GARCH(1,1) process, H,, has the form of

a 2
Ht = 1 + a€t_1 + flHt_1.

We will consider cases in which the student’s t density is used. Many researchers

find that the thick tail property of the student’s t distribution describes financial data

relatively well. The student’s t QMLE, following the setup of Newey and Steigerwald
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(1997), is the value of 6 = (0,, g, [3) that maximizes equation (9), where lt(6) is

))-ln(I‘(g—))—-;-ln(7r(u—2))—ln 0,—é—ln Ht—V—‘2i11n(1+Hta,:;_ 2) ).

(10)

u+1

2

 M6) = ln(I‘( 

Here u, the number of degrees of freedom, is taken as given.

The score functions of the likelihood function contributions for observation t in

equation (10) with respect to 0,, g, and H are

sac.) = -1— ("“ ' ””3“ ‘ 2’), (11) 

  

 

0, 6% + Ht0§(u — 2)

T 9- .. ll— aHt V6? — Ht0'3(l/ — 2)

3’ (w) — 2Ht0(g) (a? + Ht0§(u — 2) ’ (12)

T _ ILBHt V6? — Ht0§(u — 2)

3’ (fl) — 2 H, 83 e? + Ht0§(u — 2) ’ (13)

where

6H; 2 6H¢_1

“—0— = 6 — + HT,
5(5 t 1 0(;)

6H; aIft—l

53—:Ht-l+fl 6,6 .
 

5. Improved Normal QMLE and Motivation

Although the Normal QMLE provides consistency and the asymptotic normality, its

efficiency property is in doubt when the true distribution is far from normality. Engle

and Gonzalez-Rivera (1991) show that the efficiency of NQMLE is low when the true

density follows the student’s t distribution with degree of freedom less than 12. One

way to improve efficiency is to try to discover the true distribution of the innovations
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u, and use the MLE based on this true distribution. However, this procedure runs

the risk of inconsistency if we get the ”true” distribution wrong. So, instead, we may

wish to improve upon the efficiency of the normal QMLE, but in such a way that we

retain its robustness property.

The contribution of this thesis is to propose an augmented GMM estimator to

improve the efficiency of the NQMLE. We interpret the normal QMLE as a GMM

estimator, where the moment conditions it uses simply state that the score of the

normal quasi-likelihood has expected value zero. Thus, the first-order conditions

from the normal log—likelihood function are the base set of moment conditions with

which we start. We then find other moment conditions to add on to the base set

of moment conditions. In doing so we rely on the general result that adding extra

valid moment conditions can never decrease the asymptotic efficiency of estimation.

Of course, if the true density is Gaussian, the extra moments will be redundant.

However, these extra moment conditions will generally improve efficiency if the true

density is non-Gaussian.

There are two sets of extra moment conditions which we are particularly interested

in. The first set of extra moments is derived from the relationship between the sample

autocorrelations and the population autocorrelations of the squared observations. The

use of such moments has been proposed by Baillie and Chung (1999). The second set

of extra moment conditions is from the score of a non—Gaussian quasi log-likelihood

function. Specifically, we consider the score function from the student’s t quasi-

likelihood function.
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6. Plan of the Thesis

The thesis is organized as follows. Chapter 2 discusses in details the two extra sets

of moment conditions that we will use. Combining all moment conditions, we show

how to calculate the asymptotic variance of the augmented GMM estimators. To see

the asymptotic efficiency gains from adding these extra moment conditions, we report

asymptotic variances for specific parameter values and different assumptions on the

true distribution. The results show that the augmented GMM estimators improve on

the efficiency of the normal QMLE in a non-trivial way when the true density is far

from normality.

Chapter 3 gives Monte Carlo simulation results for finite samples to investigate the

finite sample pr0perties of the normal QMLE and the augmented GMM estimators.

We wish to see whether the asymptotic efficiency gains identified in Chapter 2 can

actually be attained in reasonable sized samples. We find that rather large sample

sizes, say T = 2,000, are required to do so. We also investigate the finite sample

reliability of inferences based on asymptotic theory for the NQMLE and augmented

GMM estimators.

Chapter 4 presents an empirical application to the high frequency data using the

GARCH(1,1) model. The data we analyzed is the hourly exchange rate of the West

German Deutschmark versus the US. dollar (DM/$) from 0:00 am. January 2, 1986

through 11:00 am. July 15, 1986. The same data has previously been analyzed

by Baillie and Bollerslev (1990). Compared to the normal QMLE, the augmented

GMM estimates appear to be considerably more precise, with conventionally calcu-
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lated standard errors reduced by a factor of about two.

Chapter 5 gives our concluding remarks.
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Appendix 1

A. MLE under Asymmetric distribution

Suppose that ii, follows a x2 distribution with degrees of freedom 11:

 

m» = .2.) Greatmem — Em 2 0,
2

This X2 variable has mean u and variance 21/. Now we standardize a, to obtain

at with mean zero and variance one: u, = (fit — V) /\/ 21/. After this standardization,

the density of u, is

K—

m.) = “fin—(r) ”em [—527 2 — 5
|
“

Y

Transforming to the conditional distribution of e, (e, = Ill/2m),

($57 2A,...) %‘1’..p(_ ;( 2%,”),
f(€tl'¢/}t—1) = ht? ht

where 6; 2 —T;5h%’

We note that the natural constraint ii, 2 0 corresponds to at 2 —1//J27 and

e, Z —h:/2u/\/2—u. Thus the range of 6, depends on the parameter 0, because ht

depends on 0. This dependence of the range of at on 0 violates one of the standard

regularity conditions for the consistency and asymptotic normality of the MLE1,and

suggests that the MLE will be inconsistent.

More specially, let sT(e,0) = 9%}91 be the score function. The fundamental

condition for the consistency of the MLE is that E[3T(e,00)] = 0, where 00 is the

 

1The conditions for asymptotic normality of MLE are stated as Theorem 5.2 of Wooldridge

(1994).
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true value of 0. This condition fails for the case that u, is standardized x2. In Table

A.1 we evaluate the expected value of the score function, with T =2,000 and r 5

number of replications = 500, for the xf and xg cases and two different parameter

values. In each case the mean appears to be nonzero. More formally, the hypothesis

of zero mean is rejected by the usual asymptotic t test, where the standard error is

calculated with the usual Newey-West formula with m = number of lags = 50.

B. Regularity Conditions -— Bollerslev and Wooldridge

1. 6 is compact and has a nonempty interior.

2. The conditional mean and the conditional variance are measurable for all 0 and

twice continuously diflerentiable on 9.

3. (a){lt(et, 6),t = 1, 2, ...} satisfies the uniform weak law of large numbers. (b) 60

is the identifiably unique .maximizer of E[Z,T:11t(0)].

4. (a) 612/6660 and E[61?/60' 60] satisfy the uniform weak law of large numbers.

(b) A = T‘1 231:1 E[at(00)] is uniform positive definite.

5. st(0)st(0)' satisfies the uniform weak law of large numbers.

6. (a) B = T‘1 2;, E[s¢(00)st(00)'] is uniformly positive definite.

(b) B-1/2T-1/2 23:13.09) —+ N(0, I).

C. Regularity Conditions — Lumsdaine

1. The true parameter vector 00 is in the interior of O, a compact, convex pa-

rameter space. For any vector (02,0,6) E O, assume that m s w s M,
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m g a S (1 — m), and m g 6 S (1 — m) for some constant m > 0, and

0104—3030-

2. utis iid drawn from a symmetric, unimodal density, bounded in a neighborhood

of 0, with mean 0, variance 1, and E(uf’2) < 00. In addition, assume that ho, is

independent of {u,,u¢+1, . - }.

D. Identification conditions for consistency - Newey and Steigerwald

1. E[|l¢(6)|] < 00 for all 9 E <I>, V 6 N and 0, > 0, where <I> and N are feasible sets

for 6 and V respectively.

2. The function Htl/2(60) > 0, and if 6 7é 60 then either Htl/2(0)/H,1/2(00) is not

constant or P[ft(0) 7e ft(60)] > 0.

3. The function Q(0,, V) = —ln 0, + E[In 0(030ut/0s, V)] has a unique maximum

at some0, andVover0,>0andV€N.

4. The innovation at is symmetrically distributed around zero with unimodal den-

sity k(u) satisfying k(u1) S k(u2) for lull 2 lugl. For each V, a(u, V) is symmet-

ric around zero and a(u1, V) < 0(u2, V) for |u1| > |u2|.

5. The function 113/790) > 0, and if a ,4 00 then either H,’/2(0)/H,’/2(00) or

[ft(9) — ft(00)]/Htl/2(00) is not constant.

6. The function Q(7,0,,V) = —ln 0, + E[ln a((0,0ut + 7)/0,,V)] has a unique

maximum in (7, 0,, V)’.
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Table A1

Test for the expected value of the score function of the standardized chi-square distribution

T=2,000, r = 500

a) = 0.2, a = 0.15, 6 = 0.65

True distribution: Standardized chi-square with d ree of freedom 1
 

 

 

  
 

 

 

   
 

I mean I s.e.( m = 50) t-value I

to -0.54 0.18 -2.93

a I -0.30 0.10 -3.06

[3 -0.46 0.15 -3.04

True distribution: Standardized chi-square with degree of freedom 5

I mean I s.e.(m = 50) t-value I

a) -0.35 0.1 1 -3.27

a I -0.25 0.09 -2.88

B -0.32 0.1 1 -2.78

T=2,000, r = 500

co=0.1, a=0.1, B=0.8

True distribution: Standardized chi-square with degree of freedom 1
 

 

(o

a

[3    
 

 

 

I mean I s.e.( m = 50) I t-value I

-Q.96 0.33 -2.87

-0.56 0.18 -3.06

-0.81 0.27 -3.02

True distribution: Standardized chi-square with degree of freedom 5

I mean I s.e.(m = 50) I t-value I

-0.60 0.23 -2.59

-0.46 0.16 -2.90

-0.55 0.20 -2.76

0)

0.

l3 -  
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Chapter 2

EXTRA MOMENT CONDITIONS AND ASYMPTOTIC

ANALYSIS

1. Introduction

The normal QMLE is widely used in estimating ARCH type models. As we mentioned

in chapter 1, the normal QMLE is consistent and asymptotically normal, but the loss

in efficiency may be large when the true distribution is far from normality. The

normal QMLE is a GMM estimator, based on the fact that the expectation of the

score function of the normal log likelihood equals zero, whether the true distribution

of the innovations is normal or not. We want to improve the normal QMLE by adding

other moment conditions that also do not require normality to be valid.

In this chapter we give details of two extra sets of moment conditions; one is

based on the autocorrelations of 6? and the other is based on the rescaled student’s

t distribution. Then we show how to calculate the asymptotic variance of the aug-

mented GMM estimator. The asymptotic variances for specific parameter values and

different true distributions are reported and compared to see how much efficiency we

can gain from adding these extra moment conditions.

2. Moment Conditions Based on Autocorrelations of 5?

Baillie and Chung (1999) apply a Minimum Distance Estimator (MDE) to the GARCH

model. This estimator minimizes the distance between the population and sample
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autocorrelations of the squared observation (6?). They perform Monte Carlo simu-

lations and find that for non-normal innovations, especially in the asymmetric case,

the MDE can be more efficient than the normal QMLE.

The MDE is defined by solving the following minimization problem:

Min [f2 — p(9)]'W[/5 — 10(9)]. (1)

where W is a positive definite weighting matrix, and 6 and p(0) are (9 x 1) vectors,

which contain 9 sample autocorrelations and 9 population autocorrelations respec-

tively. We briefly explain how to calculate the three components in the objective

function, 6, p(9), and W. First, the sample autocorrelation 6b}: = 1, - - - , g, is de-

fined by

T _ _ T _

in. = Z (6? -«52)(62"_;c -€’)/ 2 (6? -62)’,
t=k+1 t=k+l

where 6—2 is the sample mean of the 6?. Second, the population autocorrelation func-

tion of 6?, p09), depends on the model used in describing the series. We will consider

the case of the GARCH(1,1) model. For this case an explicit formula for the au-

tocorrelations is available. Specifically, the autocorrelation function of 6? for the

GARCH(1,1) process has been derived by Bollerslev (1988) and Ding and Granger

(1996). If 01+ 6 < 1 and the fourth moment of e, existsz, the autocorrelation function

for the GARCH(1,1) process is.

026

p1=(a+1_2afl_fl2),
 

and

 

2That is, m2 + 206 + 62 < 1, where n is 3 plus the coefficient of excess. In the normal case, n

is equal to 3.
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026

1 - 206 — 62

Finally, the optimal weighting matrix W is the inverse of the asymptotic covariance

 pl, 2 (a + )(a + 6)"—1, for k 2 2.

matrix of 6, a result given by Chiang (1965) and Ferguson (1958).

Because we want to use standard GMM results to evaluate potential efficiency

gains, we want to consider a GMM estimator rather than a MDE estimator. To do

so, we note that

7'

T1/2(fi-p(0)) = T‘“ Z Zt/WO,
t=g+1

where

- T

”in = T’1 Z (6? - 602.

t=k+1

(6i - {Ski-1 — 6—2) - P1(9)(€i — 6—02

Zt = 5 - (2)

(e: — 32x0. — £2) — pg(0)(€? — 6'2)?

Thus the MDE should be asymptotically equivalent to a GMM estimator based on

the moment conditions E(Zt) = 0.

The augmented GMM estimator combines these moment conditions with those

based on the score of the normal likelihood. Explicitly, it is based on the moment

conditions: E[q¢(00)] = 0, where

0(0) = [qtt(9)'. (12t(9)']'. (3)

where q1¢(0) is given in equation (6) of chapter 1, and where q2t(0) = Z, as in equation

(2) above.
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A standard result ofGMM estimation is that adding more valid moment conditions

cannot decrease the asymptotic efficiency of estimation. Thus the augmented GMM

estimator is asymptotically at least as efficient as the normal quasi-MLE. If the data

are normal, the moment conditions based on qgt must be redundant, whereas otherwise

the augmented GMM estimator would be expected to be strictly more efl‘icient than

the normal quasi-MLE.

A relevant detail of estimation is that, whereas qu is uncorrelated over t, qgt is

correlated over different t. The estimation (or evaluation) of the weighting matrix

needs to recognize this fact. Thus we would use a Newey-West type estimator:

Fj )1 (4)

where P,- = %:tQt(é)qt_j(é)’, .where 6 is an initial consistent estimator of 0 , and

where m grows with T at a suitable rate. Then W = fl“.

3. Moment Conditions Based on the Score Function from the

Rescaled Student’s t Distribution

In section 4B of Chapter 1, we discussed the fact, proved by Newey and Steigerwald

(1997), that the QMLE based on the rescaled student’s t distribution yields a con-

sistent estimator for the parameters (0,, a/w, 6) of the GARCH model. Since we are

interested in the parameters (a, 6,w) in the natural GARCH parameterization, we

simply will use the two moment conditions that correspond to the scores with respect

to 01/02 and 6. That is, we conSider

(1349) = [Sad/w). 3l(fi)]', (5)
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where sfla/w) and 3316) are given in equations (12) and (13) of chapter 1. Then our

set of extra moment conditions is :EIq3¢(00)] = 0. We can then use these conditions to

augment the moment conditions based on the score of the normal likelihood function.

4. Asymptotic Variance for the Augmented-GMM Estimator

Putting together the moment conditions based on the score functions from NQMLE,

the autocorrelations of 6?, and the score functions from the rescaled t distribution,

there are 9 + 5 moment conditions, where g is the number of autocorrelations of 6?

that are considered. Explicitly, we have

Qlt(90)

E [qt(00)] :- E [( (12.090) )1 = 0- (6)

‘ Qatwo)

Here qu, qgt and q3t, are as defined in the preceding two sections.

A

The augmented-GMM estimator, 0, minimizes

qT(0)’WqT(0)a

where 07(0) 2 T’1 2, qt(0) and W is the weighting matrix. Under some standard

regularity conditions, 0 is consistent and has the following asymptotic distribution:

Tia} — 0) —> N[0, (D’WD)‘lD’WQWD(D’WD)‘1],

where D = EI6qt(c,0)/60’I and x/Tquo) —> N(0, (2) Since qgt is correlated over

time, (2 not only includes the expected square of qt(9), but also involves the cross

products over time of qt(0). Thus

n = Tlgn Var(\/Tq‘T) = [‘0 + 2m + 1‘2),

00 l=1

28



where I}, = EIqt(6)q¢(6)'], and I‘; = E[qt(6)qt_;(6)'I.

The optimal GMM estimator is obtained when W is a consistent estimator of Q“ ,

as shown in Hansen (1982). In this, the asymptotic variance simplifies to (DR-ID)“.

In practice, given an initial consistent estimator 6, D can be consistently estimated

by

T

D = T-1 Z aq.(e, wank, .

t=1

Q can be consistently estimated by the method of Newey and West (1987), as in

equation (4) above.

5. Evaluation and Comparison of Asymptotic Variances

In order to assess the relative asymptotic efficiency gain of the augmented-GMM

estimator over the normal QMLE, we simply wish to calculate and compare the

asymptotic variances of the estimators. These depend on expectations that we cannot

take analytically. Thus, we will rely on simulation to give us numerical results. That

is, the asymptotic variance is of the form (DR—ID)“, and we use simulation to

evaluate D and Q. We stress that this is still an evaluation of the asymptotic variance

of the estimates. We do not calculate any estimates of 6; we simply use simulation to

replace the expectations in the definitions of D and (2 (evaluated at the ”true value”

60).

The model is a GARCH(1,1) process,

ft = héut,
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where u, is drawn from a distribution with mean 0 and variance 1. Thus

ht=w+0c?_1+6ht_1, t=1,...,T,

where w > 0, 0 2 0, 6 2 0. For sample size equal to T and number of replications

equal to R, the asymptotic variance is evaluated as (DD-ID)“, where

_1 6q('a’((e, 6)

63.25——
Hrzl t=l

and

(1 — —)(r, +r;)], with

r=1[ l=1

_X;(1t(7‘)((60)q(')(6, 0”)

=2 gm. 0)q§:’(eo),
t=l+1

where r = 1,2, - - -,R, and t = 1,2, - . - ,T. All evaluations are for 6 = 60.

For large R and T, and for m picked suitably, (D'Q—1D)-1 should be close to

the asymptotic variance (D'QTIDYI. We calculate our results with R = 500 and

T = 2, 000, so that we are averaging over 1,000,000 different observations to evaluate

D and 9. After some experimentation, we picked m = 50 as the number of lags to

use in evaluating Q.

The parameter values we choose satisfy the following constraints. For stationarity

of the process, 0 + 6 < 1 must hold. In addition, the fourth-order moment of 5, must

exist in order for asymptotic theory to hold for the moment conditions based on the

autocorrelations of cf. In Table 2.1, we tabulate the value of n02 + 206 + 62, which

must be less than one for the fourth moment to exist, for various values of n, 0 and 6.
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Since different distributions have difl'erent 19, Table 2.1 shows all the cases which we

will analyze in this paper. The variance of the unconditional density, 01/ (1 — 0 — 6), is

chosen to equal to 10. Also, to minimize the effect of startup problems, we generate

a sample of size equal to T+ 200, and discard the first 200 data points; the remaining

T data points are then used in simulation.

We first report the results with 0 = 0.15 and 6 = 0.7, in Table 2.2. We compare

results from five different GMM estimators based on different sets of moment con-

ditions. The NQMLE uses the moment conditions Qit, the score from the normal

log-likelihood function. The MDE is based on the moment conditions (121, which

equate sample and population autocorrelations of 6?. The estimator using moment

conditions qu and q2t is called GMMl. GMM2 refers to the estimator that uses

the moment conditions qu and (13¢, Where q3t is based on the score for the rescaled

student’s t distribution. Finally, GMM3 uses all g + 5 moment conditions: qu, qgt,

and 43t-

When the true distribution is normal, the asymptotic standard errors are reported

in column 1 of Table 2.2. The NQMLE is the MLE in this case and is therefore

efficient. Adding more moment conditions should not improve efficiency. The MDE

should be inefficient relative to NQMLE, and it is. All of the other GMM estimators

(GMM2 and all variants of GMMl and GMM3) should have asymptotic standard

errors equal to that of the NQMLE, and this is a check on the accuracy of the

calculations. There are only very minor differences, usually no more than 3%, and

this indicates that our calculations are reasonably accurate.
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Column 2 of Table 2.2 gives the asymptotic standard errors when the true distri-

bution is a standardized student’s t distribution with the degree of freedom 5. We

consider the same estimators as before, but we also consider the MLE based on the t5

distribution (TMLE), which should be efficient. The asymptotic standard errors for

NQMLE are larger than those for TMLE by about 50%. The MDE still has larger

asymptotic standard errors than those of NQMLE, even for g as large as 20. For

GMMl with g = 5, the asymptotic standard error of 0 is smaller than for NQMLE

by about 20%, but there are only very small differences for w and 6. Increasing g

reduces the asymptotic standard errors in all three parameters, with larger decreases

for w and 6 than for 0. With g = 20, the GMMl asymptotic standard errors are about

20% smaller for 0 and about 10% smaller for w and 6, compared to NQMLE. The

efficiency gains from GMM2 are of comparable magnitude. It is perhaps surprising

that GMM2 is not more efficient, since it uses the score function from the rescaled

student’s t distribution; but it uses only two moment conditions based on student’s

t, not three. Finally, GMM3 results in further efficiency gains. For estimation of 0 it

essentially reaches the TMLE lower bound, whereas for w and 6 its standard errors

are roughly midway between those for NQMLE and TMLE.

The results for the x2 distribution with two degrees of freedom are given in column

3 of Table 2.2. The MDE does better here than previously. For MDE with g = 10, the

asymptotic standard error of 0 is smaller than that of NQMLE, and when g increases

to 20, the asymptotic standard error of 6 is close to that of NQMLE. For GMMl,

the asymptotic standard error of 0 is almost 30% less than that of NQMLE. The
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improvements for w and 6 are. still minor. For GMM2, the efficiency improvement

for 0 is comparable to those for GMM], while for 6 and w the results are similar to

those for GMMl with g = 5 but not as good as for GMMl with g larger. GMM3 is

not much better than GMMl.

In column 4 of Table 2.2, the true distribution is the standardized gamma distri-

bution with two degrees of freedom . These numbers show roughly the same pattern

as the standardized t distribution with the degree of freedom 5.

We also analyze three different sets of values for 0 and 6. Tables 2.3, 2.4 and 2.5

correspond to { 0 = 0.1, 6 = 0.75 }, {0 = 0.1, 6 = 0.8 } and { 0 = 0.2, 6 = 0.6}

respectively. We will not discuss these results in detail because they are fairly similar

to those in Table 2.2. The augmented GMM estimators improve on the NQMLE, in

terms of asymptotic standard error, by an amount that varies over parameters and

distributions, but is perhaps typically in the range of 10% ~ 20%.

6. Conclusions

When the true distribution is Gaussian, using the first set of moment conditions qu

based on the normal score function is enough to obtain the Cramer-Rao lower bound.

The extra two sets of moment conditions are redundant. The augmented GMM has

no gain in efficiency when the data series actually follows the normal distribution.

When the true distributionis non-Gaussian, such as student’s t distribution, X2

distribution, or gamma distribution, we gain asymptotic efficiency by using extra

moment conditions. GMMl uses g moment conditions based on the autocorrelations
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of the 6?, while GMM2 uses the score for the rescaled student’s t distribution. GMM3

uses all of these and must be most efficient. The efficiency gains that are achieved

typically amount to reduction of the asymptotic standard error by 10% ~ 20%.

This benefit does not come without some costs. The augmented GMM estimators

are computationally more complicated than the NQMLE. Furthermore, GMMl and

GMM3 especially are potentially heavily overidentified and there may be worries

about their finite-sample properties. We will present Monte Carlo evidence on this

point in the next chapter.
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Table 2.1

K02+206+I32

(1: = "degree of excess" plus 3. Fourth moment exists if x02+206+8 2< I).

K=3

standard normal distribution

a

 

 

 

 

 

 

0.1 0.15 0.2 0.25 0.3 0.35

0.4 0.2700 0.3475 0.4400 0.5475 0.6700 0.8075

0.45 0.3225 0.4050 0.5025 0.6150 0.7425 0.8850

0.5 0.3800 0.4675 0.5700 0.6875 0.8200 0.9675

0.55 0.4425 0.5350 0.6425 0.7650 0.9025 1.0550

8 0.6 0.5100 0.6075 0.7200 0.8475 0.9900 1.1475

0.65 0.5825 0.6850 0.8025 0.9350 1.0825 1.2450

0.7 0.6600 0.7675 0.8900 1.0275 1.1800 1.3475

0.75 0.7425 0.8550 0.9825 1.1250 1.2825 1.4550

0.8 0.8300 0.9475 1 .0800 1 .2275 1 .3900 1 .5675

K = 6

standardized gamma distribution with degree of freedom 2

a

0.1 0.15 0.2 0.25 0.3 0.35

0.4 0.3000 0.4150 0.5600 0.7350 0.9400 1.1750

0.45 0.3525 0.4725 0.6225 0.8025 1.0125 1.2525

0.5 0.4100 0.5350 0.6900 0.8750 1.0900 1.3350

0.55 0.4725 0.6025 0.7625 0.9525 1.1725 1.4225

[3 0.6 0.5400 0.6750 0.8400 1.0350 1.2600 1.5150

0.65 0.6125 0.7525 0.9225 1.1225 1.3525 1.6125

0.7 0.6900 0.8350 1.0100 1.2150 1.4500 1.7150

0.75 0.7725 0.9225 1.1025 1.3125 1.5525 1.8225

0.8 0.8600 1.0150 1.2000 1.4150 1.6600 1.9350

1: = 9

standardized twith degme of freedom 5

standardized chisquare with degree of freedom 2

a

0.1 0.15 0.2 0.25 0.3 0.35

0.4 0.3300 0.4825 0.6800 0.9225 1 .2100 1.5425

0.45 0.3825 0.5400 0.7425 0.9900 1.2825 - 1.6200

0.5 0.4400 0.6025 0.8100 1.0625 1 .3600 1.7025

0.55 0.5025 0.6700 0.8825 1.1400 1.4425 1.7900

[3 0.6 0.5700 0.7425 0.9600 1.2225 1.5300 1.8825

0.65 0.6425 0.8200 1.0425 1.3100 1.6225 1.9800

0.7 0.7200 0.9025 1 .1300 1.4025 1 .7200 2.0825

0.75 0.8025 0.9900 1 .2225 1.5000 1 .8225 2.1900

0.8 0.8900 1 .0825 1 .3200 1 .6025 1 .9300 2.3025

Note:

standard normal distribution , rc = 3

standardized twith degree of freedom v1, x=( 6/(ol—4)) + 3

standardized chisquare with degree of freedom v2, 1: = (12/62) +3

standardized gamma distribution with degree of freedom v3, 1: = (6/03) +3
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Chapter 3

FINITE—SAMPLE PROPERTIES

1. Introduction

In Chapter 2 we found that, for cases in which the true distribution is far away from

the gaussian, augmented GMM gives a non-trivial gain in asymptotic efficiency. The

gains were on the order of 10% ~ 20% for 0 and smaller percentages for w and 6

in terms of asymptotic standard error. In this section, we try to investigate whether

these efficiency gains can be realized in finite samples.

An issue of concern in finite samples is the problem of weak instruments. Some

studies find that when the instruments are weak, i.e. the partial correlation between

the instruments and the included endogenous variable is low, the conventional asymp-

totic results fail even if the sample size is quite large. In applications of two—stage

least squares (2SLS), Nelson and Startz (1990) and Bound, Jaeger and Baker (1995)

find that the 2SLS estimator is biased away from the true value and in the direction

of the ordinary least squares (OLS) estimator. Also, the asymptotic distribution is a

poor approximation to the true distribution in finite samples when the instruments

are weak, so that inference based on asymptotics is inaccurate.

Since some of the augmented GMM estimators employ many moment conditions,

we have a high degree of overidentification. A highly overidentified problem is par-

ticularly vulnerable to the problem of weak instruments. In such cases, the estimates

may be biased and the asymptotic standard errors may be overly optimistic in finite

samples. Correspondingly the efficiency gain may not be as large as it is asymptoti-
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cally, and in fact may not even exist. Moreover, inference may not be accurate, e.g.

t tests may overreject the null hypothesis. Monte Carlo experiments will be carried

out to check the quality of the asymptotic approximation to the finite sample distri-

butions, and to see whether augmented GMM is really better than the normal QMLE

in finite samples.

2. Design of the Experiment

We generate data from the GARCH(1,1) model in the same way as in section 2.5.

An experiment is defined by a choice of the sample size (T), the parameter value (0),

0, 6), and the true distribution (e.g. normal, t5). For each experiment, we estimate

the model by NQMLE, MDE, GMM1, GMM2 and GMM3. There are three sets of

results for MDE, GMM1, and GMM3 corresponding to g = 5, 10, 20. In addition, the

non-Gaussian MLE based on the true distribution will be reported when the MLE is

available.

For the estimators other than NQMLE, we use the estimated weighting matrix

proposed by Newey and West (1987), with the lag length determined by an automatic-

lag selection criterion suggested by Newey and West (1994)3. We use NQMLE as the

initial consistent estimator for estimation of the weighting matrix. I

For each experiment and estimator, we obtain the following statistics; mean, stan-

dard error, root mean square error (RMSE) and the average estimated asymptotic

 

3m = 0T5, where 0 = 1.1447{§<1)/§(°>}2/3,§<1> = 22);, j0,,.i<°> = 0., + 2222,11,, and

n = [4(T/100)2/9] . fl; is defined as equation (4) in chapter 2.
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standard error (using the usual GMM formula)‘. We want to check (i) whether the

bias is significant, (ii) whether the standard error and RMSE are lower for the aug-

mented GMM estimators than for the NQMLE, and (iii) how large is the difference

between the finite sample standard error and the average estimated asymptotic stan-

dard error.

The Monte Carlo simulations are performed using Gauss (Windows version 3.2.32)

on a Pentium II 350 PC. We use the CML (Constrained Maximum Likelihood) and

CO (Constrained Optimization) modules to do the optimization. The NEWTON

(Newton-Raphson) method is the main optimization algorithm, but in a few cases

we also used the BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm because of

convergence problems using NEWTON. We use 500 replications (R = 500).

We organize our experiments around a ”base case” with T = 2,000, 0 = 0.15,

6 = 0.7, unconditional variance = 10, and data generated from the t5 distribution.

We then perform four sets of experiments. First, holding all other features of the DGP

constant, we consider different distributions: standard normal, student’s t distribution

with five degrees of freedom, standardized chi-square with two degrees of freedom,

and standardized gamma with two degrees of freedom5. In the optimization process,

we found that some replications did not satisfy the constraint that 0 must be greater

than or equal to zero. Such results would cause the asymptotic standard error to be

incorrectly calculated. This happens only in the smallest sample size (T = 500), and

 

‘For each replication, we apply asymptotic theory to calculate the standard error evaluated at

the parameter estimates. These standard errors are then averaged over all replications.

5The density of the standardized gamma distribution, at, with V degrees of freedom is f(at) =

[(V/2)1/2/F(V/2)I - ((V/2)1/2ut + V/2)("’2)/2 - ezp(-(V/2)1/2ut - V/2), where u; > -(V/2)1/2. Its

mean and variance are equal to V.
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happens in less than 10 out of every 500 replications. We discard these replications.

Keeping them would have little effect on bias or RMSE. Second, again holding all

other features of the DGP as in the base case, we vary T: we consider T = 500 and

1,000 in addition to the base value of 2,000. Third, we verify that changing 0) does

not change the results, in a sense to be made precise later. Fourth, again holding all

other features of the GDP as in the base case, we vary 0 and 6.

3. Results of the Experiments

3.1 Different Distributions

In this set of experiments we consider different distributions. In all cases we use the

base case parameter values: T = 2, 000, 0 = 0.15, 6 = 0.7, unconditional variance 2

10 (w 21.5).

A. The 'Due Distribution is Gaussian

Table 3.1 shows the results for the case in which the true distribution is standard

normal. Asymptotically, augmentation makes no difference but intuition suggests

that redundant moment conditions may be harmful in finite samples, so that NQMLE

might be best. This is generally true but the differences are not too large. The results

for GMM2 are very similar in all respects to those for NQMLE. The GMM1 estimates

of w are severely biased. Apart from that, however, GMM2 and GMM3 show some

bias but not very much, and their RMSE is larger but not much larger than that

of NQMLE. The main disadvantage of GMM1 and GMM3 is that the asymptotic
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standard errors understate the finite sample standard errors, especially when g is

large.

B. The 'Due Distribution is Standardized t5

For the student’s t distribution with V degrees of freedom, the mean is zero and the

variance is V/ (V — 2) for V > 2. The fourth moment is equal to 3V2I(V — 2)(V — 4)]-1

for V > 4. When V = 5, the degree of excess6 equals 6, which indicates that the t

distribution has a thicker tail than the normal distribution (whose degree of excess

equals zero).

Table 3.2 provides the Monte Carlo simulation results when the true distribution

is student’s t with five degrees of freedom. We first note that the NQMLE performs

adequately, in the sense that there is little bias and the average asymptotic standard

error is only a little smaller than the finite sample standard error. GMM2 also shows

little bias, and its RMSE is considerably smaller than that of the NQMLE, for w

and 6 at least. So GMM2 does achieve finite sample efficiency gains over NQMLE.

However, its asymptotic standard errors are somewhat less reliable than NQMLE’s.

The highly overidentified estimators (MDE, GMM1, and GMM3) all have noticeable

bias for at least some of the parameters, and their asymptotic standard errors are

not very reliable, especially when g is large. However, GMM3 does have smaller MSE

than NQMLE, and the' differences are non-trivial, especially when g is not too large.

TMLE is the MLE with the standardized student’s t likelihood function. The

6The degree of excess is measured by the fourth central moment normalized by the squared

variance minus 3.
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RMSE for all three parameters is quite small: The RMSE of NQMLE is more than

35% larger than that of TMLE. So, if the true distribution were known, there would

be a fairly large efficiency gain from using the true MLE.

C. The True Distribution is Standardized xg

The x2 distribution with V degree of freedom is asymmetric, and from Patel, Kapadia,

and Owen (1976) the mean and the variance are equal to V and 2V. Its coefficient of

skewness and coeflicient of excess are equal to 23/2/1/1/2 and 12/V, respectively. The

x3 distribution has a fat tail and a ”long tail” in the right direction; this is seen from

the fact that the coefficient of excess (6) and the coefficient of skewness (2) are both

larger than zero.

Table 3.3 presents the Monte Carlo simulation results when the true distribu-

tion follows the standardized xg distribution. These results show many of the same

patterns as in the case of the standardized t5 distribution, but they are much more

favorable for the augmented GMM estimators. The NQMLE performs adequately in

the same sense as before — little bias, and relatively reliable asymptotic standard er-

rors. In terms of RMSE, GMM2 and GMM3 are better than NQMLE, while GMM1

and even MDE are sometimes better. MDE, GMM1 and GMM3 give biased esti-

mates, especially of 0, but GMM2 is essentially unbiased. Its asymptotic standard

errors are somewhat less reliable than those of NQMLE, but much more reliable than

those of GMM1 and GMM3. Overall, GMM2 seems best, since it achieves consid-

erable finite sample efficiency gains relative to NQMLE, without being badly biased
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and without having very unreliable asymptotic standard errors.

As mentioned before, MLE is not valid in this case. The efficiency loss of the

NQMLE cannot be shown through the comparison with the x3 MLE.

D. The True Distribution is Standardized Gamma Distribution with Two

Degrees of freedom

The gamma distribution with V degrees of freedom has mean and variance both equal

to V, while the coefficient of skewness equals 2V”2 and the coefficient of excess is 6/V.

With two degrees of freedom, the gamma distribution has coefficient of skewness equal

to 1.414, and coefficient of excess equal to 3. This means that the gamma distribution

has a fat tail and is asymmetric.

The Monte Carlo simulation results for this distribution are shown in Table 3.4.

We will not discuss these results in detail because they are relatively similar to those

for the xg case. Both NQMLE and GMM2 are essentially unbiased, and both have

fairly reliable asymptotic standard errors, but GMM2 is better in the sense of smaller

RMSE. GMM1 and GMM3 are generally good in terms of RMSE, but they are biased

and their asymptotic standard errors are not reliable, especially when g is large.

Overall GMM2 seems like the best choice.

3.2 Different Values of Sample Size

We now consider the effects of changing the sample size (T). Our base case (Table

3.2) had T = 2, 000, with the standardized t5 distribution and with 0 = 0.15, 6 = 0.7,

w = 1.5. We now give results for the same parameter values and distribution, but for

46



T = 500 (Table 3.5) and T = l, 000 (Table 3.6). We wish to check our intuition that

the augmented GMM estimators will do better relative to NQMLE when T is larger,

and worse when it is smaller.

This intuition is supported by our results. When T = 500, GMM2 offers little

efficiency gain over NQMLE, while it is more biased and its asymptotic standard errors

are less reliable. GMM1 and GMM3 do ofl'er reductions in RMSE over NQMLE, but

their asymptotic standard errors are quite unreliable. When T = 1, 000, the results

are (unsurprisingly) between those for T = 500 and T = 2, 000, and in particular the

comparison between NQMLE and GMM2 depends on which parameter (0, 6 or w)

you look at.

3.3. (.0 Doesn’t Matter

Up to now, we assume the unconditional variance is equal to 10. In this section we

verify that its value does not affect any of our substantive results (e.g. comparisons

of estimators).

In fact, a change in the unconditional variance only rescales the whole series.

That is, the series with the unconditional variance (1) is the same as the series with

the unconditional variance 1 times J3, if the same basic random numbers are used.

Since these two data series are identical in the above sense, the simulation results for

estimates of 0 and 6 should be the same. For 02, the estimates (and their standard

errors and RMSE) should all change by the proportion 4).

Table 3.7 gives the results for a case that is the same as the base case except that
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the unconditional variance equals 1 (w = 0.15) instead of 10 (w = 1.5). Comparing

these results to those for the base case (Table 3.2), we see that the results do match

in the sense described above: for 0 and 6 the results are the same, while for 0) they

decrease by a factor of 10. This correspondence is exact (to the number of decimal

places reported) for NQMLE, TMLE and GMM1, while there are some very minor

differences for GMM2 and GMM3. Apart from these minor computational differences,

the results verify that the choice of 0) doesn’t matter.

3.4 Effects of Changing 0 and 6

We have assumed 0 = 0.15 and 6 = 0.7 in the previous sections. In this section, we

analyze the effects of changing the parameter values of 0 and 6 while we maintain

the assumptions that T = 2, 000, and that the true distribution is a student’s t

distribution with 5 degrees of freedom.

Table 3.8, 3.9 and 3.10 give the results when {0 = 0.1, 6 = 0.75}, {0 = 0.1,

6 = 0.8} and {0 = 0.2, 6 = 0.6} respectively. If we compare these results to those

for the base case {0 = 0.15, 6 = 0.7} in Table 3.2, we see that the new results are

broadly similar. NQMLE and GMM2 are fairly similar, but GMM2 generally has

smaller RMSE. The more highly overidentified estimators often are reasonably good

in terms of RMSE, but bad in terms of bias and the reliability of their asymptotic

standard errors.
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3.5 Accuracy of Inference

In previous sections we have compared the finite sample standard error to the aver-

age estimated asymptotic standard error, to see whether the estimated asymptotic

standard errors are reliable. For example, when the asymptotic standard error is on

average smaller than the finite sample standard error, we would expect that tests

based on the asymptotic standard errors would overreject. In this section we pro-

vide direct evidence on this point, by giving the rejection frequency (true size) of the

normal 5% Wald tests of the hypotheses that w, 0 and 6 equal their true values.

These results are given in Table 3.11. We assume the base case except that we

consider four different choices of the true distribution, as in section 3.1 above.

For the NQMLE, the simulation size is less than 0.05 when the true distribution

is standard normal; for the other (non-Gaussian) cases the simulation size is larger

than 0.05. For GMM2, the size for w and 6 are below 0.05, while the size for 0 is

over 0.05 for all distributions. Size is roughly in the range from 0.02 to 0.10. In that

sense inference is relatively reliable.

For the MDE, GMM1, and GMM3 estimators, the size distortions are quite seri-

ous, especially for 0. The frequency of rejection for 0 is often over 30%. The over-

rejection problem is generally worst for the highly overidentified estimators (MDE,

GMM1 and GMM3 with large values of g). This pattern is exactly what we would

expect from our earlier comparisons of finite sample and asymptotic stande errors.
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4. Conclusions

Recall that the results in Chapter 2 indicate that, in large samples, the augmented

GMM estimators provide an asymptotic efficiency gain when the distribution of the

innovations is not normal, and the only price to pay for this gain is computational

time and efl'ort. In this chapter, we turn our attention to the finite sample properties

of NQMLE, MDE and the augmented GMM estimators, to see whether an efficiency

gain can be realized in samples of reasonable size.

The simulation results show that, although for some estimators there is an ef-

ficiency gain in terms of smaller MSE, the gain comes with non-trivial cost: the

estimates may be biased, and inference based on the asymptotic distribution of the

estimates may be very inaccurate. These problems are particularly serious for MDE,

GMM1, and GMM3, even for rather large sample sizes. Therefore, doubts can be

raised regarding these estimators’ usefulness in empirical studies. Fortunately, not

all of the augmented GMM estimators perform badly. GMM2 does not sufler from a

serious bias problem, and inference based on its asymptotic distribution is reasonably

reliable if the sample size is large enough. Also, if the sample size is large enough,

GMM2 does provide non-trivial efficiency gains over NQMLE. This is especially true

when the data are asymmetric. 4

In practice, our results support the use of GMM2 if the sample size is as large as

1,000 and there is evidence of asymmetry, or if the sample size is as large as 2,000 and

the data are symmetric but with fat tails. For smaller sample sizes, NQMLE would

remain the preferred method.
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Chapter 4

AN EMPIRICAL STUDY

1 Introduction

In this chapter, we apply the augmented GMM estimators to a GARCH(1,1) model

of the the hourly foreign exchange rate series of the West German deutschmark versus

US. dollar (DM/$). The hourly data cover a six-month period in 1986, from 0:00

am. January 2, 1986 through 11:00 am. July 15, 1986. The data set contains a total

of 3,190 trading hours. The exchange rate is taken from the average of the last five

bid rates recorded at the end of each hour by the fifty largest banks in the foreign

exchange market; for additional information, see Baillie and Bollerslev (1990).

This data set has been analyzed in a number of studies, including Baillie and

Bollerslev (1990). They test the null hypothesis of a unit root in the logarithm of the

exchange rate series, based on the methodology of Phillips (1987) and Phillips and

Perron (1988), and find that it cannot be rejected. Therefore, our estimation is based

on the first difl'erence of the exchange rate,

5; = 100 - [ln‘(st) — ln(st_1)], t = 2, 3, ..., 3189.

where s, is the exchange rate before the transformation.

We calculate the first four unconditional moments and the correlogram of the se-

ries, 8,, as shown in Table 4.1. The mean is -0.004 and the variance is 0.035. The

skewness and the kurtosis are, respectively, 0.171 and 10.027. The normal distri-

bution would have skewness equal to zero and kurtosis equal to three. The series
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is clearly non-normal; it is an asymmetric distribution with thick tails. These are

features of the unconditional distribution of the series, whereas the potential advan-

tages of augmented GMM derive from non-normality of the conditional distribution.

Nevertheless, the clear non-normality of the series should make the augmented GMM

estimators potentially useful.

2. Estimation of the GARCH(1,1) Model

Before we begin estimation, we first ask what kind of model specification is suitable

for this series. The correlogram in Table 4.1 shows that there is no linear correlation

in the mean, but there is linear correlation in the second moments. Therefore an

ARCH-type model would seem appropriate. Baillie and Bollerslev (1990) analyzed

these hourly exchange rates using an MA(1)-GARCH(1,1) model. They found that

the variables in the conditional variance of the GARCH(1,1) model were significant

but the MA(1) coefficient was insignificant. This result, and the lack of correlation

in the levels of the variable which we found in Table 4.1, suggest that the martingale-

GARCH(1,1) model is appropriate. This is the specification later adopted by Baillie

and Chung (1999). On the other hand, unlike Baillie and Bollerslev (1990), Baillie

and Chung (1999) do not include hourly dummy variables and vacation day dummy

variables in the model. We follow Baillie and Chung (1999) and adopt a martingale-

GARCH(1,1) model without hourly or vacation dummy variables.

The model to be estimated is

EiI‘I’i—i N D“), ht),
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ht = w "1" a€§_1 + ,Bht_1.

NQMLE, MDE, and three types of augmented GMM estimators are used. The

augmented GMM estimators are GMM1, GMM2 and GMM3 as previously defined

in chapters 2 and 3. The estimation was performed using the CML and CO pro-

cedures in GAUSS for Optimization. The NEWTON (Newton-Raphson) method is

the optimization algorithm. The weighting matrix has the specification suggested by

Newey and West (1987), with the lag length selected with the automatic-lag selection

criterion of Newey and West (1994). For NQMLE, we tried different initial values

for the optimization, and obtained the same results. The initial values used in the

estimation of the augmented GMM estimators are from the results of NQMLE.

Table 4.2 shows the estimation results. For NQMLE, the estimates of w, 0 and 6

are significant and the sum of 0 and 6 is less than one. There is no evidence of inte-

grability in variance. For MDE with at least 10 autocorrelations of 8?, the estimates

of 6 are close to those of NQMLE but with smaller standard errors. However, MDE

gives a smaller estimate of 0. For GMM1, the estimate of 0 is still less than those

of NQMLE, while the estimates of w and 6 are close to those of NQMLE. For all of

the parameters, the GMM1 standard errors are smaller than those of NQMLE. For

GMM2, all estimates are close to the results of NQMLE, but with smaller standard

errors. For GMM3, the estimate of 0 is less than the NQMLE estimate, while the

estimate of 6 is slightly larger than for NQMLE, and again the standard errors are

smaller.

In conclusion, NQMLE and GMM2 are similar in terms of parameter estimates
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and standard errors. For MDE, GMM1, and GMM3, we get smaller estimates of 0;

there is no clear pattern on 6. The various augmented procedures do give smaller

standard errors. For example, the t-statistic of the estimated 0 is 4.74 for NQMLE

but is 8.88 for GMM3 with g = 20.

3. Diagnostics

It is interesting to check the sample moments of the conditional distribution of the

/2, which are reported in Table 4.3. The innovations are skewedinnovation at = cthfl

and have severe excess kurtosis. Thus the conditions for possible efficiency gains from

augmented GMM appear to exist.

Table 4.4 gives the sample autocorrelations of 6? and the theoretical (p0pulation)

autocorrelations evaluated at the various estimates of 0 and 6. The NQMLE and

GMM2 values for the theoretical autocorrelations do not match the sample values very

well. For MDE, GMM1 and GMM3, we should have closer agreement because the

criterion minimized by the estimator includes the distance between the theoretical

and sample autocorrelations. Still the discrepancies seem fairly large. This casts

doubt on the validity of the model.

A formal test of the model can be carried out using the overidentification test of

Hansen (1982). Since the augmented GMM estimators are overidentified (the number

of moment conditions is larger than the number of parameters), the over-identifying

restrictions can be tested to examine the validity of the moment restrictions. The
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test statistic is the minimized value of the GMM criterion function:

0(9)’W0T(67). (7)

where 6 and W are valued at the corresponding augmented GMM estimates. This

statistic asymptotically has a x2 distribution with degrees of freedom equal to the

number of moment conditions minus the number of parameters. Table 4.5 gives the

values of the test statistic. For MDE, GMM2, GMM1, and GMM3 with g up to

10, we cannot reject the null hypotheses. For GMM1 and GMM3 with g = 20, the

statistic exceeds the 5% critical value for the relevant x2 distribution. Thus, in these

two cases, the null hypothesis that all moment conditions are satisfied is rejected.

We next apply the conditional moment test of Newey (1985). This test assumes

the validity of one set of moment conditions, say qu, and tests the validity of a second

set, say qzt. In our case qlt is the score function from the normal log likelihood and

qgt is the extra set of moment conditions for augmented GMM.

Suppose that the optimal GMM estimate 6 is obtained using the first set of mo-

ment conditions, qu. Suppose also that 6 is a GMM estimate by adding the extra

moments q2t. The test statistic proposed by Newey (1985) is

mT = HirQ_1HT,

where HT 2 02T(6) — figléfilq-IT(6), and Q is the asymptotic covariance matrix of

mT, which can be consistently estimated by

{222 — 0210:1162” ‘1' (D2 — QQIQI—IIDI)(D’1QBID1)(D2 — 62191-11130,.
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Here 0 and D are as defined in chapter 2, and D1, Dgfinfilg and (222 are the ap-

propriate submatrices. Asymptotically mT is distributed as chi-squared with degrees

of freedom equal to the number of moment conditions being tested. In our case, this

is the same as the degree of overidentification (total number of moment conditions

for augmented GMM, minus the number of parameters). Note that in our case the

added conditions ”qgt” above can include the moment conditions called qgt (GMM1),

q3t (GMM2) or both (GMM3) in chapter 2 and 3.

In our case, the reason why this is an interesting test to consider is that the

extra moment conditions used by the augmented GMM estimators rely on stronger

assumptions than the moment conditions used by the NQMLE. The validity of the

NQMLE moment conditions requires only that the first two conditional moments be

specified correctly (plus some regularity conditions). However, the validity of the

extra moment conditions requires the representation (1) of chapter 1, which implies

restrictions on the higher conditional moments. So, we are interested in testing these

extra restrictions.

The test results are shown in Table 4.5. For GMM1 and GMM2, the values of

mT do not exceed the chi-squared critical value, and the hypothesis that EquT] 2 0

cannot be rejected. For GMM3, this hypothesis is rejected no matter how many

moments based on autocorrelations of 8? are included.

Thus, for our empirical study, both types of specification test (overidentification

test and conditional moment test) give mixed results. There is some doubt about the

model but it is not decisively rejected. Perhaps adding the dummy variables used by
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Baillie and Bollerslev (1990) would help to improve the model’s conformance to the

data.

4. Conclusions

We applied our augmented GMM estimators to a GARCH(1,1) model for the hourly

DM/$ exchange rate. Using GMM2, the model passes our diagnostic tests, but both

the estimates and their standard errors are very similar to NQMLE. The similarity

is so strong that there is not very much point in using GMM2 instead of NQMLE.

For GMM1 and GMM3, the results of the diagnostic tests are mixed. The estimates

are only modestly different from the NQMLE estimates, but the standard errors are

considerably smaller. For example, for GMM3 with g = 20, the asymptotic standard

errors are about half as large as for NQMLE.

This raises the question of whether these efficiency gains are genuine, or just a

reflection of an unreliably small asymptotic standard error. The simulations of chapter

3 give evidence on this point. In our empirical example we have T = 3, 190, 0 = 0.18,

6 = 0.55, and innovations that are slightly skewed and that have approximately the

same degree of kurtosis as a t distribution with 5 degrees of freedom. The closest

match in our simulations is in Table 3.10, where we have T = 2,000, 0 = 0.2,

6 = 0.6, and the t5 distribution. Here it was also true that GMM1 and GMM3

with large values of g had asymptotic standard errors that were about half as big

as for NQMLE. The finite-sample (simulation) standard errors for GMM3 were also

smaller than for NQMLE, but only 10 ~ 20% smaller. Thus we might guess that, for
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our empirical example, the GMM1 or GMM3 estimates really are more precise than

the NQMLE estimates, but not by as much as the asymptotic standard errors would

indicate.
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Model:

NQMLE

MDE

$5

g=10

g=20

GMM1

g=5

g=10

g=20

GMM2

GMM3

9%

g=10

g=20

Semiparametric

Table 4.2

Estimation result of DMI$ exchange rate

Y! = 8!! a(I‘I't-‘I ~ 0(0, ht)

hr"'¢°"’¢1€1-12"'phi-1

 

0) a B
 

 

estimate

0.01028

0.00990

0.01130

0.01112

0.01056

0.01035

0.01024

0.00997

0.00937

0.00943

0.00942

0.00995

0.00262

nla

nla

nla

0.00167

0.00137

0.00125

0.00253

0.00138

0.00119

0.00114

estimate

0.17711

0.08783

0.13056

0.13662

0.13868

0.15292

0.15935

0.17852

0.14727

0.14417

0.15514

0.17147 

8.6.

0.03736

0.02476

0.02424

0.02270

0.02322

0.02208

0.02073

0.03499

0.01916

0.01835

0.01748

 

estimate

0.54582

0.62687

0.54372

0.54286

0.54825

0.53549

0.53085

0.55343

0.57000

0.55819

0.55852

0.55626

0.09157

0.09514

0.05659

0.04909

0.05507

0.04498

0.04119

0.08598

0.04896

0.04138

0.03904

 

GMM1-the score from Normal distribution 8 MDE

GMM2— the scores from Normal distribution 8 rescaled t distribution

GMM3- the scores from Normal distribution 8 rescaled 1 distribution and MDE
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Table 4.3

The conditional distribution of an.“

 

 

mean variance skewness kurtosis

NQMLE -0.023 0.999 0.189 10.932

MDE

g = 5 -0.022 0.989 0.183 10.416

9 = 10 -0.023 1.008 0.177 10.652

9 = 20 -0.023 1.012 0.178 10.692

GMM1

g = 5 -0.023 1.036 0.181 10.728

9 = 10 -0.024 1.058 0.183 10.830

9 = 20 -0.024 1.066 0.183 10.877

GMM2 -0.023 1.001 0.192 10.952

GMM3

g = 5 -0.024 1.060 0.191 10.824

9 = 10 -0.024 1.092 0.188 10.821

9 = 20 -0.024 1.071 0.191 10.877    
skewness -- E8903

kurtosis - Eq‘lo‘ .

GMM1—the score from Norrnai distribution 8 MDE

GMM2— the scores from Normal distribution 8 rescaled t distribution

GMM3- the scores from Normal distribution 8 rescaled t distribution and MDE
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Chapter 5

CONCLUDING REMARKS

The normal quasi maximum likelihood estimator (NQMLE) is the MLE under

the assumption of normality, but this assumption is likely to be violated in empirical

data. Although in such cases the NQMLE is still consistent and asymptotically

normal, it is inefficient. Therefore it is worthwhile to find more efficient estimators.

We suggest augmented GMM estimators to improve the efficiency of the NQMLE

under non-normality. We interpret the NQMLE as a GMM estimator, where the

moment conditions represent the normal score function, and then we augment this

set of moment conditions with other moment conditions that also do not depend on

the validity of any particular distributional assumption.

We consider two sets of extra moments to augment the GMM (NQMLE) estimator.

The first set of extra moments is from the autocorrelations of the squared innovations.

The second set of extra moments is from the rescaled student’s t distribution. The

student’s t distribution is of particular interests because its property of leptokurtosis

(fat tail) is consistent with many empirical financial data sets. We consider three

combinations of these extra moments, and the resulting augmented GMM estimators

are called GMM1, GMM2, and GMM3.

We compare the performance of these difl'erent estimators by calculating and com-

paring the asymptotic standard errors. When the true density is mon-Gaussian, our

results show that the augmented GMM estimators have moderate improvements in
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efficiency compared with NQMLE. The efficiency gain is mostly in estimation of the

parameter 0; for w and 6 there is very little improvement.

Monte Carlo results show that the augmented GMM estimators have an efficiency

gain over the NQMLE when the true distribution is non-Gaussian, but this requires a

rather large sample size, such as T = 2, 000. For smaller sample sizes, adding moment

conditions from the autocorrelations of is? helps, especially for 0, but extra moments

from the rescaled t distribution do not seem to improve efficiency when the sample

size is small (e.g. 500). The GMM3 estimator, which uses both extra sets of moment

conditions, shows more of a gain in efficiency for all of sample sizes we consider.

Our simulation results show that the augmented GMM estimators that use a large

number of moment conditions (GMM1 and GMM3) can be biased in finite samples,

even when the sample size is rather large (e.g. T = 2, 000), and inference based on

the asymptotic distribution can be inaccurate. For example, tests suffer serious size

distortions. GMM2 does not suffer from these problems. One possible reason for the

poor finite-sample performance of GMM1 and GMM3 is that some of the moment

conditions based on the autocorrelations of the squared data may be ”irrelevant” (or

nearly irrelevant), as discussed by Hall and Peixe (1999). They show that including

irrelevant moment conditions may lead to bias and size distortions.

We give an empirical application to the DM/$ exchange rate to illustrate the use

of the augmented GMM estimators and to compare the results with those of NQMLE.

GMM2 is not very different from NQMLE, while for GMM1 and GMM3 the estimate

of 0 is somewhat smaller and the standard errors are smaller.
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A promising line of future research would be to investigate the use of moment

conditions from rescaled asymmetric distributions. This is motivated by the fact that

many financial data are asymmetric as well as fat-tailed.
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