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ABSTRACT
GOING PUBLIC:
THE DEVELOPMENT OF A TEACHER EDUCATOR’S
PEDAGOGICAL CONTENT KNOWLEDGE
By

Jeffrey Joe Wanko

When Lee Shulman and his colleagues introduced pedagogical content knowledge
(PCK) to the education lexicon in the 1980s, they gave teachers and teacher educators
some technical language that could be used for talking about the knowledge needed for
work that they do in classrooms, thereby helping to establish teaching as a profession.
Since that time, the PCK of classroom teachers has been studied and documented across
various content areas. But the PCK of teacher educators has remained a largely
unexamined area of research, especially in the providing experiences in helping
preservice teachers develop their own PCK. This study examines this issue more fully.
Specifically, “Can pedagogical content knowledge be a useful framework for a teacher
educator in designing and teaching a mathematics content course for preservice teachers
and if so in what ways?”

In this study, I use my own teaching and classroom of prospective elementary
teachers as the site for investigation. I examine the ways in which my own PCK as a
teacher educator influenced and was influenced by my work with students. Data for the
study are provided by my teaching journal, lesson and units plans, student work, and

audiotapes of class proceedings.



In conclusion, I present three major findings of this study. First, this study
highlights and problematizes Shulman’s notion of representation that is used in defining
pedagogical content knowledge. In mathematics there are mathematical and empirical
representations—classifications which do not map easily onto Shulman’s use of
representation. This study exposes some of those inherent distinctions and seeks to make
Shulman’s work more applicable to the field of mathematics. Second, this study describes
the importance of task design—a process that is particularly essential in teaching
mathematics—and finds that Shulman’s notions of PCK and the pedagogical reasoning
and action cycle miss or obscure its significance. And third, this study introduces the
notion of shared reflection to Shulman’s model for pedagogical reasoning and action
when it is applied to teacher education. It also finds that the act of going public with
one’s ideas through shared reflection can be a useful tool for teacher educators in the

development of their pedagogical content knowledge.
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CHAPTER 1

INTRODUCTION TO THE STUDY

Introduction

The preparation of elementary school teachers of mathematics has traditionally
been viewed as having two distinctly separate components—pedagogy and content.
Preservice teachers are a part of teacher education programs in which students might take
courses on child development, educational psychology, teaching methods, and other
matters that are pedagogical in nature. The focus in these courses is learning how to
teach—sometimes with respect to specific subject matter, but often from a generalist
standpoint. On the other hand, prospective teachers are expected to learn and understand
mathematics by taking courses often taught by instructors in a mathematics department.
These courses vary in both content and rigor, but invariably the focus remains on learning
mathematics.

A problem arises, however, when preservice teachers become practicing teachers
and they attempt to cross this divide—when they search for ways to make their
experiences in understanding mathematics useful tools for teaching children and, in turn,
helping them to understand some more mathematics themselves (Brown & Borko, 1992;
Copes, 1996). It is one thing for a teacher to learn some mathematics him- or herself, but
it is quite another for a teacher to take that knowledge and apply it to ways for helping
students learn and understand some mathematics. Replicating the teachers’ experiences is

obviously not the answer for a number of reasons: the content being addressed can be



quite different, children may approach the mathematics in very different ways, the
children’s experiences are likely to be quite different from the teacher’s and from those of
other students, and the teacher has to think about the mathematics from a teaching
perspective rather than from a learning perspective. With such a large curriculum of
study—in both content and pedagogy—it is not surprising to hear stories of novice
teachers having limited knowledge in mathematics. For example, while preservice
teachers may get to learn some mathematics in their content courses, that mathematics
typically lacks connectedness, a look at multiple perspectives, work beyond studying
basic ideas, and attention to what content is taught across grade levels (Ma, 1999).
Suffice it to say, the separation of content and pedagogy in a teacher preparation program
has often not served preservice teachers well when they begin teaching (Becher, 1989).
An important skill for teachers is the ability to transform one’s own knowledge
into something that can be understood by one’s students. Successful teaching is much
more than demonstrating one’s own knowledge; it involves leading others to know—and
believe—things that they didn’t before (Hansen, 1995). This happens when a teacher
recognizes how students can best experience the acquisition of that knowledge—using
various strategies, representations, and problems to move students toward a desired goal.
An understanding of the mathematics is central to the transformation process, but it
involves much more than processing content—it recognizes that children learn in
different ways and that teachers need a multitude of strategies fo; helping their students
to learn mathematics. Thus it is unclear where preservice teachers can and should begin

to attend to transforming their mathematical knowledge—as a part of a course on

pedagogy or in content.



The transformative process became recognized as an essential element of a
teacher’s knowledge through the work of Lee Shulman and his colleagues in the mid-

1980s. Here I describe the essence of their work as well as how it is applied to my study.

Pedagogical Content Knowledge: A Brief Historical Perspective

Within cognitive psychological research, schema theory developed as a model for
ways in which people organize abstract thoughts into various collections and
representations of those ideas (Anderson, 1984). When Shulman and others applied
schema theory to teaching (Shulman & Grossman, 1988; Wilson, Shulman, & Richert,
1987), they theorized that teachers draw upon seven different domains of knowledge as
they teach: knowledge of subject matter, pedagogical content knowledge, knowledge of
other content, knowledge of the curriculum, knowledge of learners, knowledge of
educational aims, and general pedagogical knowledge.

When pedagogical content knowledge (PCK) was first introduced to the
educational community (Shulman, 1986), it was described as a domain of knowledge that
was different from both knowledge of the content and general knowledge of teaching.
PCK was portrayed as a specialized knowledge for teachers, one which recognizes the
subject matter needed for teachers as it differs from that as understood by other content
specialists. Shulman’s work was actually a continuation of some of the work done by
progressive educators (Dewey, 1902) and theorists (Bruner, 1960), but he was the first to

label and define PCK as such.'

! Some have argued that by giving a name to pedagogical content knowledge, Shulman was also working
to establish his domain of educational research as a legitimate area of study when compared with other
long-standing areas of research.



In analyzing successful teaching, Shulman (1987) described the process as one in
which the teacher transforms content knowledge into forms that are pedagogically
powerful and adaptive to particular groups of students—ones which draw upon a
teacher’s pedagogical content knowledge. To this end, he employed the framework of
pedagogical reasoning and action, detailing a cycle of comprehension, transformation,

instruction, assessment?, reflection, and new comprehension (Table 1 and Figure 1).

Table 1: A Model of Pedagogical Reasoning and Action

Comprehension
Of purposes, subject matter structures, ideas within and outside the discipline

Transformation

Preparation: critical interpretation and analysis of texts, structuring and segmenting, development of a
curricular repertoire, and clarification of purposes

Representation: use of a representational repertoire which includes analogies, metaphors, examples,
demonstrations, explanations, etc.

Selection: choice from among an instructional repertoire which includes modes of teaching, organizing,
managing, and arranging

Adaptation and Tailoring to Student Characteristics: consideration of conceptions, preconceptions,
misconceptions, and difficulties, language, culture, and motivations, social class, gender, age, ability,
aptitude, interests, self concepts, and attention

Instruction
Management, presentations, interactions, group work, discipline, humor, questioning, and other aspects
of active teaching, discovery or inquiry instruction, and the observable forms of classroom teaching

Assessment
Checking for student understanding during interactive teaching
Testing student understanding at the end of lessons or units
Assessing one’s own performance, and adjusting for experiences

Reflection
Reviewing, reconstructing, reenacting and critically analyzing one’s own and the class’s performance,
and grounding explanations in evidence

New Comprehension
Of purposes, subject matter, students, teaching, and self
Consolidation of new understandings, and learning from experiences

2 Shulman used evaluation instead of assessment. I have chosen to replace Shulman’s terminology with
one that is more accepted today to indicate Shulman’s original intent. Lesh and Lamon (1992) made this
distinction by defining evaluating as “assigning a value to testing” and assessing as *“describing a current
state—probably with reference to some conceptual, or procedural or developing landmarks” (p. 7).



Comprehension

Transformation (of subject matter)

1. Preparation

2. Representation
3. Selection

4. Adaptation

Reflection

Instruction

Assessment (of students' understanding and teacher’s performance)
Figure 1: Shulman’s Cycle of Pedagogical Reasoning and Action

Each phase of the process is an important one and while the phases can occur in a
slightly different sequence, one fact remains constant—the process begins and ends with
comprehension. As Shulman states, “To teach is first to understand” (Shulman, 1987, p.
14). Research evidence indicates that pedagogical reasoning is underdeveloped in novice
teachers (Brown & Borko, 1992). At any number of places in the pedagogical reasoning
and action cycle, novice teachers experience difficulties. The transformation phase of the
process is perhaps one of the most critical—for ideas that are comprehended by the
teacher must be transformed in some way if they are to be taught to and understood by

the students—and one of the most difficult for novice teachers (Geddis & Wood, 1997).

What Do Preservice Teachers Need to Know for Teaching?

The preparation of elementary school teachers needs to address their content
knowledge of the subject matter as well as how to teach it. But there also needs to be
some focus on preservice teachers’ pedagogical content knowledge. The dilemma comes

in finding an appropriate place in the teacher preparation program for it. PCK enables



teachers to make connections between their knowledge of teaching and their knowledge
of subject matter—connections that are critical for teaching effectiveness (Cochran,
DeRuiter, & King, 1993). With PCK such an essential part of a teacher’s knowledge
base, it makes sense that they begin to develop their own PCK even as preservice
teachers. It also makes sense that PCK development occurs not only in teaching methods
courses, but in content courses as well. Since PCK involves understanding ways to
transform one’s own understanding of subject matter, a sensible place to learn about this

process would be within the context of studying that subject matter itself.

In this study, I suggest an approach to the development of preservice teachers’
PCK within a mathematics content course. In Chapter 2, I detail the evolution of my
research question and study. Initially, I was interested in what a mathematics content
course might look like when the instructor is also attending to issues around teaching the
mathematics to elementary school students. As the study progressed, my focus shifted to
how, as an instructor, a closer look at my own PCK development is helpful in designing
and teaching the course. Little research has been done around the subject of a teacher
educator’s PCK development (for an example, see Fernandez-Balboa & Stiehl, 1995),
much less around teaching such a course designed around a content area. In this study, I
look at some specific ways in which PCK can be considered an area of study for teacher
educators as well as their students within the domain of mathematics—by looking at the
role of representations (Chapter 3) and the process of task design (Chapter 4).

This is a study in which the researcher and the subject are one and the same. In

the field of qualitative educational research, the first-person perspective has emerged as a



relatively new genre and one that is useful in some very specific cases—where the
researcher is interested in studying in-depth some element of his or her practice as it
pertains to the larger research community.

This study is done from the first-person perspective by necessity as well as by
design. Since mathematics content courses are often taught by professors, graduate
students, and instructors well-versed in the subject matter but lacking a background in the
study of pedagogy, it was a matter of necessity that I had to study my own practice
around this question. I was the only mathematics instructor in the department at the time
who was interested in the question of looking at what PCK preservice teachers could
learn in a content course, much less researching what PCK was important for a teacher of
preservice teachers. But there are also issues of design which necessitated that this be a
self study. Much of what I was interested in centered around the decisions that a teacher
educator makes when attending to issues of PCK. Since I was the course instructor, I
have particular insight to the decision making process I used in the design of the course.

" These decisions were based on my cumulative experiences in classrooms and all of these
experience became an important part of my story and my study. As the researcher, I had
access to my own experiences in ways that would have been much more difficult—and
potentially less enlightening—if I had studied someone else’s practice. In Chapter 2,
describe some of these experiences and how they contributed to the development of both
the course and the study.

Recently, questions have been raised within the mathematics education
community as to how useful the idea of pedagogical content knowledge is when applied

specifically to mathematics. In this study, I set out to look at ways in which Shulman’s



construct of PCK was useful to me in teaching content to preservice teachers. I found
places where the model was insufficient in describing aspects of mathematics
teaching—places which were revealed as critical when I reflected on my own teaching
and when I shared my reflections with my students. These deficiencies are described in

the findings of my study in Chapter 5.



CHAPTER 2

METHODOLOGY

Introduction: Designing the Course and Study

In Chapter 1, I described this study as one in which I look more closely at my own
teaching. In particular, I look at the decisions I made in teaching a mathematics course
for preservice teachers where issues of pedagogical content knowledge are also
addressed. This is, then, a qualitative study in the field of “inquiry in teaching,” but also
one in which I am both researcher and subject. Thus I am using what Lampert called “the
perspective of practice” (Lampert, 1998; Ball, 2000) to examine teaching from the inside.

The MTH 202 course that I taught evolved over a three-year period and was based
on ideas I learned from teaching previous sections as well as discussions I had about the
course design with some of my colleagues in mathematics education. For the purposes of
this study, it culminated in the course that I taught in the spring of 1999. In this chapter, I
describe some of the aspects of the course in its final iteration and the design of the study
I conducted around my teaching of the course.

In this chapter, I also describe the evolution of my study—from one that centered
around identifying and including PCK ideas in a course for preservice teachers to one that

focused on the development of my own PCK as a teacher educator.



Forming An Initial Question

As a teacher educator, I was both aware of and intrigued by the interplay between
teaching mathematics content and teaching pedagogy. There is much to cover in each
domain, and the instructors of teacher education and instructors of mathematics can be
extremely proprietary of their subject matter. At times, the situation plays itself out as a
choice between extremes—forsake the pedagogy to focus solely on the mathematics or
give too little attention to the content so that students could learn about teaching.
Between these two extremes, however, lies an expansive continuum of possibilities for
design of courses in teacher preparation programs.

When given the chance to teach a mathematics course for preservice elementary
teachers, I looked forward to creating a content course designed to meet the needs of a
specific population of students. Because the students were all future teachers, I saw it as a
unique opportunity to incorporate some issues of pedagogy within the study of
mathematics. In particular, I wondered what a mathematics content course might look
like when the instructor wants to attend to issues that relate to the teaching of that content
to K-8 students?

As I considered this question, I realized there were a number of issues that needed
to be addressed. For example: What would the mathematics content be of such a course?
What pedagogical issues would be addressed and in what ways? How would decisions
about the content and design of the course be made and on what experiences would they
be based? How could pedagogical concerns be addressed without taking away from the

mathematics experiences expected of the course?
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Background: Why Did This Interest Me?

My reasons for wanting to design and study my teaching of such a course were
threefold. First, it grew out of my experiences teaching teacher education courses and
mathematics courses for preservice teachers. I was frustrated by time constraints as well
as the convention of separating the learning of subject matter from learning how to teach
that subject matter. Second, I drew upon my own experiences teaching children. As a
novice middle school teacher, I was often unable to replicate in my classroom for my
students the kinds of rich learning experiences I had as a preservice teacher. I felt as if
there was something missing in my undergraduate experience in moving from my
understanding the mathematics to helping students understand the content. I wanted to
find out how to make that transition smoother and more explicit for future teachers.
Third, there was a growing recognition in the field that developing a teacher’s PCK was
critical in the shaping of his or her practice. The vast majority of the research, however,
was centered around the development of PCK in teacher education courses. I began to
consider whether attention to preservice teachers’ PCK development in a mathematics

content course might be possible and even desirable.

Learning About and Teaching Preservice Teachers
From the fall of 1994 through the spring of 1999, I taught several different
courses for students in the elementary education program at Michigan State University. I

began teaching a course for interns' and eventually I shifted my focus to teaching a

! At Michigan State University, teacher education is a five-year program. After four years of study,
students graduate from the university with a baccalaureate degree. The program requires a fifth year
internship for certification. During this fifth year, interns are placed in a public school for two semesters
with a collaborating teacher and over time take the lead teaching role. As a part of the internship,
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content course in the mathematics department for preservice teachers—the site for this
research. What follows is a description of how I grew to reconceptualize the content
course through my experiences as an instructor in teacher education with a growing
awareness of the theory of pedagogical reasoning, and as an instructor in the mathematics
department.

Teaching in the Teacher Education Department. For two years, I taught courses in
the “Reflection and Inquiry in Teaching Practice” sequence—TE 802 and TE 804 (Table
2). These courses were designed to work in support of the internship placement as a
second round of methods courses. In their senior years, students were placed in
elementary classrooms for 4 hours per week. As interns, they spent most of a school year
in a classroom, working closely with a collaborating teacher and taking increased
responsibility for the daily and long-term planning, teaching, and assessment. The course
I taught was designed to take up issues that students weren’t ready to grapple with as
seniors. As they took more of the lead teaching responsibility in the elementary
classrooms, the students were faced with needing to think about curriculum and unit
planning, learning about what sense their elementary students were making of the subject

matter, and making instructional decisions based on assessment of student learning.

Table 2: Senior and Intern Methods Courses with Classroom Placements

Course Year Elementary Classroom Placement
TE 401 Senior 2 hours, 2 days/week
TE 802 Intern, 1st semester Typically 4 days/week
TE 804 | Intern, 2nd semester Typically 4 days/week

students also take two master’s level courses each semester. These four courses can count toward the
university’s Master of Arts in Curriculum and Teaching.
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In the first semester course, I taught mathematics methods to groups of about 20
interns at a time for five-week periods, using measurement as the mathematical context
for the pedagogical seminar. For the second semester course, I worked with the two
dozen interns who selected mathematics as a focus area, and I used geometry as the site
for further developing their practice as mathematics teachers. In each course, the
mathematics served as a launching point for discussing important pedagogical issues that
were critical for interns to be thinking about as novice teachers. For example, interns used
their schools’ curricular guidelines for their grade level placement to develop plans for
teaching geometry and measurement units. They worked with various curriculum
materials and made informed decisions about the appropriateness of the materials based
on district and state curriculum guidelines and national standards. In addition, interns
assessed not only their student’s understanding of the content, but they assessed their own
knowledge about and teaching of the content as well. These issues were central to the
courses and its main goal of developing reflective educators who use inquiry of their own
practice to grow as professionals.

I enjoyed working with the interns as they began their teaching careers. But at the
same time, I experienced some frustration with not having the opportunity to focus more
directly on establishing a strong subject matter base for these novice teachers. By the
time they were interns, they were moving beyond the mathematics content and were
focusing on applying that knowledge to their teaching. But I was bothered by how weak
that content knowledge was—particularly in geometry and measurement.

One of the goals of teaching interns in the teacher education department was to

use their classroom placements as sites for studying and developing their teaching
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practices. This involved helping preservice teachers work through the transformation
process—selecting appropriate lessons and adapting those lessons to meet the needs of
their students. And yet it is impossible for teachers to move to the transformation phase
effectively if comprehension is weak, as was the case with some of the interns I taught.
Their lack of mathematical understanding became evident as they struggled to create
lesson and unit plans, and they typically had to rely on lessons presented in a textbook
which did not draw upon any understanding of what their students knew and didn’t know.

This served to underscore the importance of focusing on preservice teachers’
understanding of the mathematics content.

Teaching in the Mathematics Department with the Connected Mathematics
Project. After teaching in the teacher education department for two years, I shifted my
focus to teach a course in the mathematics department. I eventually concentrated my
efforts primarily on MTH 202, the geometry course for preservice elementary educators.

In late 1996, I was asked by Glenda Lappan if I would be interested in co-
teaching MTH 202 with her in the spring of 1997. Not only was I intrigued by teaching a
mathematics content course, but Glenda was using some of the Connected Mathematics
Project materials in the course as well and I was interested in seeing what preservice
teachers could learn from these materials.

The Connected Mathematics Project (CMP) is a middle school (grades 6-8)
mathematics curriculum project funded by the National Science Foundation and was

based at Michigan State University. Glenda was one of the authors of the project and I
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was in my second year as a graduate assistant for the project.” Glenda explained that she
was planning to use some of the CMP units as a part of the content for the section of
MTH 202 that she was teaching.

I was surprised to hear that Glenda wanted to use middle school materials in a
course for preservice teachers. These would be twenty-year-olds, not the early teenagers
for whom the units were written. I wondered if the students would feel as if they were
being taught a watered-down version of the MTH 202 course material and if it would be
challenging enough to them. Glenda assured me that the course that we were going to
teach would be thought-provoking and mathematically challenging for the students. She
also suggested that there were other ways that the CMP materials could be useful in a
teacher preparation course. For example, she described a course in which the
mathematics would be the focus, but in which the curriculum materials (specifically the
teacher editions) would give students a chance to experience some of the complexities of
making instructional decisions about what students need to know. She also explained that
she viewed CMP as a curriculum that was being written to help teach mathematics to
kids, but even more she viewed it as a curriculum to help teach some mathematics to
teachers. If that mathematics could be taught to teachers before they entered the teaching
profession, then all the better.

As I taught MTH 202 over the next few years, I tried to capitalize on some of

these ways in which the materials might be useful and I began to develop a different kind

2 The CMP materials had gone through five years of development, writing, field-testing, revision, and
subsequent publication. In the spring of 1997, the project focus was shifting from the initial development
phase to an implementation phase, but there were still a few eighth grade units to be finalized.
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of course, one that kept the mathematics front and center, but also included some rich,

embedded pedagogical discussions.

Learning About and Teaching Middle School Students

Before teaching preservice teachers, I graduated with a teaching degree in
secondary mathematics education and taught middle school mathematics in southwest
Ohio for six years. As a part of my undergraduate program, I took two methods courses
in teacher education and over a dozen content courses in mathematics and statistics. All
of the content courses were taught by mathematics professors and those of us majoring in
education were mixed in with students of other majors. Understandably, these courses
focused solely on mathematics content.

The first methods course, “Instructional Procedures in Secondary School
Mathematics” (EDT 335), was taught by a professor in mathematics teacher education.
The course focused on preparing preservice mathematics teachers for teaching middle
school; the second methods course in the sequence concentrated on issues of teaching
high school. Although EDT 335 was based in the department of teacher education and
was centered around learning to teach mathematics, content was an integral part of our
work. Pedagogical ideas were typically framed around mathematical investigations, and
the mathematical topics studied—rational numbers, number theory, computation,
informal geometry, measurement, and algebra—were linked to some of the core ideas in
upper elementary and middle school mathematics curricula.

Although I don’t remember it being stated as such, some of the mathematical

content of EDT 335 was centered around several big mathematical problems (Figure 2).
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These problems were often open-ended tasks designed to build on preservice teachers’
existing mathematical knowledge and although I was fairly adept at a wide range of

mathematics, I was invariably challenged by the content of these problems.

Construct an organized chart showing all of the proper fractions (one-half, one-third, two-
thirds, one-fourth, two-fourths, etc.) through twelfths. Include an exact decimal for each.
By studying these and other examples as necessary, develop hypotheses to answer these
questions:

e What about a fraction determines the nature of its decimal? [i.e., What determines
whether it repeats or terminates, how long its repetend is, how many places it has,
when is it a decimal that repeats but not at first, ... ?]

e How can we predict the nature of a fraction’s decimal?

e What fractions turn out to produce cyclic permutations of the same digits for their
decimals?

e Ina/b, what is the worst possible decimal?

Figure 2: Sample Problem from EDT 335
In retrospect, I think that all of the problems posed in EDT 335 were designed to
push at preservice teachers’ mathematics deeper understanding of topics taught in middle
school. The problems also provided access to understanding some of the underlying
structure of the mathematics beyond what middle schoolers need to know. For example,
the problem in Figure 1 asks preservice teachers to investigate patterns of decimal
equivalents of fractions. Middle school students typically work with a lot of fractions and

decimals. And although middle schoolers do not usually need to understand a great deal
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behind the patterns that emerge when looking at decimal equivalents for groups of
fractions, it can be helpful for the middle school teacher to have an understanding of the
structure of our number system that causes those patterns to emerge.

When [ started teaching middle school, I wanted to recapture some of the
investigative nature of the problems I worked on in EDT 335. For me, the problems were
challenging and interesting, and they provided access to exciting mathematical
discoveries. I thought that middle schoolers would be able to learn in much the same
ways I did from these problems and I wanted to find ways to incorporate some of the
problems into the classes I was teaching. But while I understood that many of the
problems would need to be altered in ways to make them accessible to middle school
students, I found that what I lacked was an understanding of ways to do this.

As a novice teacher, I tried to recreate some of the lessons and experiences that I
had as a preservice teacher, only to find that I was unable to initiate the same learning
situations that I remembered as a student. For example, I recall working as a preservice
teacher on the well-known Locker Problem® and having a lively, informative
conversation about what we, as students, learned from the problem. However, when I
tried to use the problem with my seventh grade students, I was unable to provide the

kinds of learning experiences for my students I thought were possible. With my seventh

? The Locker Problem is used in many curricula today, but it is first attributed to George Pélya, often
thought of as the father of today’s problem solving heuristics. The Locker Problem (Pé6lya, 1957) lends
itself to using a number of problem solving techniques and the solution is surprising until some simple
number theory is applied to its understanding.

One version of the Locker Problem is as follows: In a school of 1,000 students there are lockers
numbered from 1 to 1,000. One the first day of school, students line up outside of the building with all of
the lockers starting out closed. Student #1 goes through and opens every locker. Student #2 goes through
and closed every second locker, starting with locker #2. Student #3 goes through and reverses every third
locker, starting with locker #3—that is, if a locker is closed, he opens it, if a locker is open, he closes it.
Student #4 goes through and reverses every fourth locker, starting with locker #4. Student #5 goes
through and reverses every fifth locker, starting with locker #5. This continues until all 1,000 students
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graders, the problem degenerated into an exercise in looking for patterns® and the
students failed to make the connections between important mathematical concepts.” It
was a lack of understanding of this set of necessary prerequisite skills that kept me from
moving my students to making an important mathematical discovery.

After thinking about examples like this, I decided that one important piece was
missing. When I was an undergraduate student, my professor presented the problem and
lead us through a discussion of the mathematics, but we were not given any insight about
what he did when presenting the problem or leading the discussion. I viewed his work
from a student’s limited perspective and I was unable to play the part of the teacher in the
lesson when I tried to do so. I gave minimal consideration to the fact that I would be
working with seventh graders who had more limited mathematical backgrounds. I did not
provide the right mathematical scaffolding for their learning, leaving out some important
prior knowledge—Ilike square numbers and factor pairs—that are integral to

understanding the solution.

have gone through the building, reversing their appropriate lockers. After all students are done, which
lockers are left open and why?

Upon looking at a simpler version of the problem (with 20 to 30 lockers), students quickly found an
interesting pattern of open lockers emerging: lockers 1, 4, 9, 16, and 25 are left open. Some students
noticed that the open locker numbers increase by consecutive odd numbers (1 +3 =4,4 + 5§ =9,
9+7=16, 16 +9 =25, etc.), other students noticed that the lockers that are left open are the square
numbers. Either way, students may end up focusing more on the patterns than on the underlying
mathematical reason for why these are the lockers that are left open. The patterns are important, but they
can actually serve to illuminate the deeper reasons for the patterns and give students access to higher-
powered mathematics.

After finding the pattern of lockers that are left open, the question of why they are the square numbers
was raised, challenging the students to access the underlying mathematics. An important idea comes
from realizing that each locker is touched by the students whose numbers are the factors of the locker
number. For example, locker 20 is touched by students 1, 2, 4, 5, 10, and 20—all of the factors of 20. The
lockers that are left open, then, are those that are touched by an odd number of students (since the first
student to touch the locker opens it, the second one closes it, the third opens it, etc.). Once this is
established, students think about which numbers have an odd number of factors. From their work with
factor pairs, they recall that the square numbers have an odd number of factors and are therefore the
lockers that are left open. With my students, however, I didn’t assess for any of the necessary
background knowledge, and my students were not ready to talk about factors, factor pairs, or special
properties of square numbers.
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When planning for teaching a mathematics content course, I recalled the
experiences of trying to use problems from EDT 335 in teaching middle school students.
Preservice teachers need rich mathematical experiences as students, but I also felt that
learning about these problems should also include learning about how to create
appropriate learning experiences around these or other challenging problems for

elementary and middle school students.

Learning About Sources for Pedagogical Content Knowledge

While I was teaching MTH 202, I became aware of a field of educational research
that received a fair amount of attention in the late 1980s and early 1990s which also
looked at the ways that pedagogy and subject matter were linked—the study of
pedagogical content knowledge.

Shulman writes about the development of a teacher’s pedagogical content
knowledge (PCK)—an area of knowledge that is actually different from both the content
and pedagogy. In fact, PCK is a knowledge base that is truly unique to the teaching
profession in that it involves the teacher’s developing understanding of the content and
the ways in which the teacher transforms his or her understanding of the content to make
it understandable to students (Shulman, 1986, 1987).

Pedagogical content knowledge builds on the content knowledge but looks at how
it is affected by what the students learn and how they learn it. This is what makes
pedagogical content knowledge a unique category of knowledge for teachers—it is one in
which the focus begins with what the teacher knows and how that knowledge is

transformed into ways in which is it learnable for students. In short, it is for teachers, a
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“special form of professional understanding” (Shulman, 1987). Educational researchers
have come to realize that students learn concepts in a variety of ways and that students’
understandings are built upon previous knowledge. Pedagogical content knowledge

- consists of learning how to represent specific topics in ways that are appropriate for and
make sense to the diverse abilities and interests of the students (Borko et al., 1993). In
describing the importance of pedagogical content knowledge, Grossman (1991) wrote, “If
teachers are to guide students in their journey in to unfamiliar territories, they will need to
know the terrain well. Both knowledge of the content and knowledge of the best way to
teach that content to students help teachers construct meaningful representations,
representations that reflect both the nature of the subject matter and the realities of
students’ prior knowledge and skills” (p. 203).

The transformation of subject matter for teaching occurs when the teacher reflects
on and interprets the subject matter (Cochran, DeRuiter, & King, 1993), adapting it to
meet the students’ needs and tailoring the material to those students. Gudmundsdottir
(1987) recognized this constant restructuring of the subject matter to meet the students’
constantly changing needs and ‘Buchmann (1984) discussed this need of a flexible
understanding of the subject matter knowledge as crucial to the success of the instruction,
thus validating the importance of connected subject matter knowledge for teachers.

For preservice teachers, pedagogical content knowledge is of particular
importance. While it may be argued that knowledge of how to teach may best be learned
throug'h experience, teacher education programs have long held that meaningful
pedagogical knowledge can be learned as a preservice teacher. How that pedagogy can be

played out within a specific subject matter is an area ripe for study as perspective
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teachers learn about the subject matter. Brown and Borko (1992) reported that novice
teachers are especially weak in their pedagogical content knowledge and that university
courses should make pedagogical content knowledge a priority. Grossman (1988, 1991)
also believed that pedagogical content knowledge can and should be taught to preservice
teachers, stating that teachers must have pedagogical maps of content as well as an
understanding of the subject matter to help students toward new conceptions of
mathematics.

I wondered if my MTH 202 course could be a source for looking at preservice
teachers’ PCK development, for here was a place in which I wanted to introduce
pedagogical concerns in a content course. Teachers develop PCK through teaching
content to students, but I wondered how PCK could begin to be developed during the
preservice period—when teachers’ ideas and impressions of the profession are being
fostered in a college setting.

Grossman (1990) suggested that there are four possible sources for PCK
development—apprenticeship of observation, subject matter knowledge, teacher
education, and classroom (teaching) experience (Figure 3). In Grossman’s model, the
most important and influential source is a teacher’s teaching experience (the bottom
triangle which appears separately from the other three sources). I, on the other hand, was

interested in how teachers develop PCK through their teacher education experiences.
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Figure 3: Sources for a Teacher’s PCK Development
But most of what Grossman and other researchers refer to as teacher education
sources for PCK are methods courses taught in departments of teacher education. My
interest lay in considering how PCK might be developed in the context of a content
course in which pedagogical ideas were also addressed and studied. What I was

beginning to think about was how a mathematics content course—such as MTH
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202—might provide a particularly useful site for PCK development, especially when

taught by an instructor with a background in teacher education (Figure 4).

/ / Teacher \“ ~\: ‘‘‘‘‘
Education = =
Content
Courses

Figure 4: Sources for a Teacher’s PCK with Focus on Content
This appeared as a relatively untapped area of research—the study of PCK
development in a content course for preservice teachers. It also addressed many of the
concerns I experienced working with preservice teachers in trying to find an effective
way to combine teaching content with teaching pedagogy and concerns as a middle
school teacher working with children in understanding ways to transform meaningful

learning experiences for me into ones that carried much the same impact for students.

The Course
When making plans for teaching MTH 202, I was given the opportunity to
develop my own curriculum—as long as it focused primarily on geometry and

measurement ideas for preservice teachers. An implicit expectation of the mathematics
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department was that the course needed to remain focused on the mathematics content.®
The mathematics department chair had full knowledge of my interest in using the CMP
materials to teach MTH 202 and he expressed his confidence in my ability to design a

course that was appropriate and challenging for students.

Mathematics Content

Good teaching involves an understanding of the major topics in a domain of
mathematics and having the ability to make connections between these ideas (Schifter,
1999). To model this thinking for students, I decided to construct my sections of MTH
202 around what I perceived as some of the important mathematical topics in geometry
and measurement. By looking at the recommended text for the course and by talking to
my colleagues who were also teaching sections of the course, I identified those ideas as
perimeter and area, similarity, volume and surface area, the Pythagorean Theorem,
symmetry, and transformational geometry. These ideas were chosen based on my work
with CMP and what I had observed as critical areas of misconceptions and partial
understandings held by preservice teachers.

The first semester that I taught MTH 202, I attempted to cover all of these topics,
but I found that I was not able to give adequate time to each one. In each iteration of the
course I taught over the next two years, I chose some subset of the mathematical topics
listed above, based on the work done by students in previous semesters. These topics

aligned with the CMP curriculum as indicated in Table 3.

® This is a salient point, in that I was a doctoral student in teacher education—unlike almost every other
graduate student teaching MTH 201 and MTH 202 who were graduate students in mathematics.
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Table 3: Important Geometry and Measurement Topics and Alignment in CMP

Mathematical Topic(s) CMP Unit(s)
Perimeter and Area Covering and Surrounding
Similarity Stretching and Shrinking
Volume and Surface Area Filling and Wrapping
The Pythagorean Theorem Looking for Pythagoras

Model for Learning and Classroom Environment

I wanted students to experience the mathematics content by investigating
questions that I posed and that grew out of class discussions. To that end, I worked to
create a classroom environment that encouraged group and individual investigations,
writing and talking about mathematics, and using manipulatives to enhance learning. I
also made use of a teaching model that enabled many of these ideas to be incorporated
into the daily classroom routine.

Mathematical Investigations. The mathematics of the course was problem-
centered—that is, the mathematics was developed through the introduction of sequenced
problems that encouraged students to employ appropriate mathematics and problem
solving strategies. This approach differs from other, more traditional models in that the
problems provide the impetus for learning and the mathematics is utilized as a tool for
solving the problems. This is in contrast to a “traditional” classroom, in which skills are
taught and then problem are (sometimes) introduced as applications of the skills.

Students were assigned to small groups (2 or 3 students) and were typically given
time to work individually and in their groups on problems. This recognizes that there is
often more to be learned working with others, utilizing each individual’s respective

strengths, than by oneself.
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Writing and Talking About Mathematics. Writing has become an important part
of every subject matter in schools. Children are often given opportunities to write about
what they have learned and the process of writing is recognized as a critical element of
the learning process (Rose, 1989)‘, Since the publication of the NCTM Standards (1989),
there has been a renewed interest in helping students communicate about
mathematics—and writing is one important aspect of communication.

In MTH 202, I regularly asked students to write about the mathematics—directing
them to think as much about the why behind the answer as the answer itself. On formal
assessments, students were asked to explain their answers, an indication that writing
about the mathematics was necessary. In addition, students were regularly given writing
prompts as a part of their student learning logs. These are described in more detail on
page 42.

Closely connected to group investigation and writing is the subject of meaningful
student discourse. The NCTM Professional Standards (1991) describe the importance of
establishing good classroom discourse, comparing it to a piece of music as it “has themes
that pull together to create a whole that has meaning” (NCTM, 1991, p. 35). In
establishing good classroom discourse, the teacher plays the pivotal role, establishing
norms for discussion, agreement, and disagreement; valuing various opinions and ideas;
and conveying messages about who is able to contribute and who has status in the
classroom (Cazden, 1988).

Using Manipulatives for L earning. Most of the problems and investigations that
were a part of MTH 202 utilized some kind of manipulative to enhance the learning.

When mathematical manipulatives became a popular component of many elementary
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curricula in the 1980s, many teachers embraced using manipulatives as a panacea for
alleviating students’ difficulties in understanding mathematics. Instead, manipulatives
should be used when developmentally appropriate and when they can effectively
contribute to the learning process. Manipulatives need to be used when they offer
something new and relevant to the learning, not used just for the sake of giving students
something to play with. Nor should it be assumed that the use of manipulatives will
automatically provide insight to mathematical knowledge (Ball, 1992).

In MTH 202, students investigated problems using a variety of concrete materials.
In understanding the concepts of perimeter, area, surface area, and volume, they utilized
square grid paper, square dot paper, isometric dot paper, transparency paper, square tiles,
cubes, string, clay, and rice. The square dot paper also proved to be particularly useful in
understanding notions of similarity and the Pythagorean Theorem. Students also used a
variety of tools in working with these manipulatives throughout the course, including
scissors, calculators, rulers, and angle rulers. For specific problems, I provided students
with labsheets that had drawings, figures, diagrams, and/or data that I found useful.

Instructional Model. In the CMP curriculum, problems and lessons are built

around a specific instructional model that I have also found useful in my teaching MTH
202. With this model, lessons are organized around three phases of instruction—the
launch, explore, and summarize phases. In the launch phase, the teacher introduces the
problem—establishing baseline knowledge for the entire class, introducing new terms or
ideas, and issuing the problem’s challenge to the students. In the explore phase, students
work alone, in pairs, or in small groups on the problem, employing new ideas or utilizing

mathematics or strategies from previous lessons. Also during the explore phase, the
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teacher works as a facilitator as he or she works between individuals and
groups—answering questions, keeping students on-task and on-track, posing questions
that can help students get unstuck, and providing additional questions and extra
challenges for students. During the final phase, the teacher typically brings the class
together again and the class works together to summarize the mathematics that has been
learned, the strategies that have been used, and the answer(s) to the problem(s). During
this summary phase, the teacher keeps classroom diséourse and activity focused on the
problem, its solution, and the underlying mathematics.

Through my work with CMP, I had a reasonable amount of experience in
designing lessons around this instructional model and in facilitating lessons using it.
Many of the other aspects of the course—mathematical investigations, group and
individual discovery, writing about mathematics, student discourse, and using
manipulatives for learning—are embedded in the instructional model. Students responded
well to this model and midway through the course, they were able to describe every

aspect of it in detail, before it was ever made explicit to them.

Pedagogical Content and PCK

The knowledge base for teaching is far from being fixed and final. In fact, the
systematic study of teaching as an enterprise is relatively new and largely uncharted
(Shulman, 1987). The transmission of knowledge to preservice teachers thus becomes a
grossly inefficient model for teacher education, and one that is frustrating for novice
teachers as they encounter situations for which they feel unprepared. As argued by

Fenstermacher (1978, 1986), the goal for teacher education is “not to indoctrinate or train
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teachers to behave in prescribed ways, but to educate teachers to reason soundly about
their teaching as well as to perform skillfully.” In this model, the teacher’s knowledge
base must be flexible and under constant development. Teachers must also be able to use
their knowledge base to make reasoned decisions. In this view, teaching becomes a
process, rather than an endpoint. A teacher takes an idea and works to place it in his or
her existing framework. Then the teacher begins to mold and shape the idea in new ways
that will enable his or her students to better understand the idea. In this respect, teaching
focuses on the teacher’s interaction with ideas and how they can be transformed in ways
that students can understand them—more simply, by giving attention to the teacher’s
pedagogical content knowledge.

When I began the course, I wasn’t completely sure what the pedagogical content
of the course would be, nor to what extent the course would focus on matters of teaching.
In general, I hoped that I could use the mathematical conversations and investigations of
the course to address some pedagogical issues, such as assessing student learning and
making day-to-day and long-term curriculum decisions.

I was also not exactly clear what I thought pedagogical content knowledge was.
When I was planning for the course, I turned to Shulman’s definition and description of

PCK for some initial guidance:

Pedagogical content knowledge embodies the aspects of content most germane to its teachability.
Within the category of pedagogical content knowledge I include, for the most regularly taught
topics in one’s subject area, the most useful forms of representation of those ideas, the most
powerful analogies, illustrations, examples, explanations, and demonstrations—in a word, the
ways of representing and formulating the subject that make it comprehensible to others.... [It] also
includes an understanding of what makes the learning of specific concepts easy or difficult: the
conceptions and preconceptions that students of different ages and backgrounds bring with them to
the learning. (Shulman, 1986, p. 9)

My initial understanding of PCK centered around the fact that it differed from

subject matter knowledge and knowledge about teaching. I viewed it as “more than just a
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marriage of pedagogy and content. [I]t is another type of knowledge and it is one which
teachers must draw upon extensively in order to teach” (Personal Teaching Journal,
December 1998). As I taught the course and tried to identify the places in which
pedagogical content and PCK were appropriate (see Appendix A), I found that I was
mostly focusing on ideas of representation and task development (which provided the
basis for the analytic framework in my study), discourse, writing, and teacher
professionalism—all of which are part of a knowledge base that is unique to the teaching

field.

The Participants

The class met two days a week for an hour and twenty minutes a class session.
The class was comprised of thirty-four students—thirty-one females and three males—all
majoring in elementary education. One female student dropped the course about two-
thirds of the way into the semester due to a family crisis. The other thirty-three students

completed the course in its entirety.

Assessment and Grading

Formal assessment of the students consisted of the following: five quizzes (one of
which was a group quiz), three tests, responses to ten learning log prompts (see p. 42 and
Appendix F), a project and a final cumulative exam. A description of the grading policy
that was given to the students is included as Appendix B. Students were regularly
assigned homework problems which provided extra practice and further investigation of

content that was covered that day in class and which extended the discussions from class.
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Influences from Research Literature

The course was focused on students learning meaningful mathematics using a
problem-centered curriculum with an emphasis on students’ constructing their
mathematics, situated cognition, and connections. In addition to the mathematics content,
students were exposed to ideas about transforming the content they learned into
appropriate mathematics for elementary and middle school students. I approached the
teaching of the course primarily as a reflective practitioner—reflecting on my teaching
and the students’ learning, and involving students in the process.

The current movement of using problems as the framework for a mathematics
curriculum can be traced back to John Dewey in The Child and the Curriculum and
Jerome Bruner in The Process of Education—both of whom recognized the ways
students learn by applying preexisting knowledge to new problem situations. The value
of building a classroom and a curriculum around the investigation of problems has been
documented by educators and mathematicians alike (Lo, Gaddis, & Henderson 1996,
Schoenfeld, 1996, Fellows, 1992). In describing a mathematics classroom where
investigations grow out of interesting problems, Larry Copes advocated that students do
“real mathematics”—the kinds of work that mathematicians do (Copes, 1996). In

preparing teachers to teach in a problem-centered classroom, he stressed that:

Teachers should know ways that they can teach mathematical investigations. When the emphasis
in on discovering processes rather than reading answers from Tablets in the Sky, teachers need not
be able to read those tablets themselves. They need not know all of the answers to engage students
in investigating. (Copes 1996 pg. 273)

The bottom-up approach to curriculum design (in which problems form the
foundation) was recommended in Everybody Counts (National Research Council, 1989)

and the Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989). In
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the Standards, NCTM envisioned “classrooms as places where interesting problems are
regularly explored using important mathematical ideas. ... What a student learns depends
to a great degree on how he or she has learned it” (NCTM, 1989, p. 5). Brown, Collins,
and Duguid (1989) took it even further, describing this type of learning as social
construction, where the learning outcomes become inseparably associated with the
learning process. The current push by some curriculum developers for using “authentic
problem situations” recognizes the influence of situated cognition. When students interact
with problems that have meaning for them, they learn concepts within problem solving
contexts. This helps to create a web of “connected mathematics” for each learner in
which the knowledge can be easily accessed in new problem situations. This act of
situated cognition also conceives mathematics learning as an “essentially constructive
activity instead of an absorptive one” (Schoenfeld, 1992). This theory has yielded the
current wave of mathematics literature around constructivism, which focuses education
on the learner and his or her efforts to construct meaning around problems (Davis, Maher,
& Noddings, 1990; Hiebert & Carpenter, 1992).

The theory of constructivism applies to teaching as well. The teacher’s role is to
find and adapt tasks which set up learning situations for students. Just as social
interactions between students are critical to knowledge construction, so are the
interactions between students and the teacher (Koehler & Grouws, 1992). The teacher
plays a critical role in what students learn and understand—not only in task design, but in
choosing representations, interacting with students, assessing their understanding, etc.
Shulman’s (1987) description of successful teaching using the model of pedagogical

reasoning and action demonstrates how important a role the teacher plays in developing
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student understanding. One critical phase of Shulman’s model is reflection—the process
of critically analyzing one’s own efforts—as well as those of the students. Yet teachers
often see themselves as sources of knowledge—confident in their understanding of the
content as well as the pedagogy. Unless challenged, teaching is therefore not a practice
that naturally engenders self-reflection (Schén, 1987). But reflection is the very action
that enables teachers to learn from their experience and become better teachers (Brown &

Borko, 1992).

The Study
In this study, I set out to find ways to construct a course for preservice teachers
that covered both mathematics content and pedagogical content knowledge. I was
interested in finding ways in which PCK could be an embedded, natural part of the
curriculum, much as constructivist teachers want mathematical understanding to grow out
of experiences their students have. To increase my understanding of this goal, a focal
question and several sub-questions were developed to guide the study and the analysis.
The focal research question was:
e What does a mathematics content course look like when the instructor also
wants to attend to issues related to teaching that content to K-8 students?
Sub-questions included:
e What do I, as an instructor of my course, do to address what preservice
teachers need to know about geometry and measurement to teach it to

elementary level students?
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e What do preservice teachers need to know about ways of transforming what
they know about geometry and measurement for the purposes of teaching it to
elementary students and how do I attend to those needs as an instructor?

e In what ways and to what extent is the course contributing to the development
of preservice teachers’ content knowledge and pedagogical content

knowledge?

Studying One’s Own Practice

This study is an example of a relatively new field of research—one in which the
researcher studies his or her own practice. There is a long tradition of teachers writing
about their own practice (e.g., Parker, 1993; Tsuruda, 1994), but the first-person
perspective has only become accepted as a viable form of educational research in the past
fifteen years (Richardson, 1996). Through the work done by some of the early advocates
of first-person educational research (e.g., Lampert, 1986; Lensmire, 1991; Heaton, 1994;
Simon, 1995), this method of inquiry has developed into one which is distinctive from
other case study research in two critical ways—through design and subject (Ball, 2000).

The first issue of design is critical in that with first-person research, it begins with
the identification of an issue and then a context is designed in which the issue can be
examined. That is, the context grows out of the study, instead of the other way around.
This places the emphasis more on the study itself, for without it, the phenomenon that is
being studied wouldn’t necessarily exist (Ball, 2000).

It could be argued that the version of MTH 202 I was studying was simply the

result of a natural progression of previous sections I taught. To some degree, this is true.
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But in many ways, the course was designed not only because of what I learned from
teaching other sections, but because I was studying this iteration of the course.

For example, I was aware that geometric formulas were becoming a larger focus
of the MTH 202 course each time I taught it. I saw how preservice teachers struggled
with formulas and ways to validate them and I wondered if there were some “geometric
proofs” which were more helpful, more convincing, and generally more powerful than
others in establishing this understanding. I tried various ways to engage students in
looking at these geometric proofs and it is clear to me that whether I was conducting a
study of my teaching this version of MTH 202 or not, formulas would have continued to
play an important role. However, in thinking about what I wanted to study, I began to
focus on the development of PCK in preservice teachers. When I saw that Shulman’s
definition of PCK includes the phrase “the most useful forms of representation of those
ideas” (Shulman, 1986), I was struck with the realization that formulas and their
geometric proofs are two forms of representation, and that there was the potential for
using these representations as the basis for part of my study (in fact, it provided the
framework for my analysis in Chapter 3). So because the study was an integral part of the
design of the course, the language of “representations” became a regular part of my
vocabulary.

Not only did I develop better ways of talking about what I wanted to look at, but I
also began to focus more on representations in my teaching journal. For example, in
reflecting on a class discussion on the development of formulas for volume and surface

area of rectangular solids, I wrote:

I explained that in middle school, we “don’t stop until we get to variables”... and I pushed them to
write down a representation for the surface area of that rectangular solid. Three different forms
were presented and we were able to have a rich conversation about these forms and their
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equivalence. ... I feel a lot better about taking the time to talk about the flat patterns and the
development of the surface area formulas than when I did this last year and didn’t focus on the flat
patterns. They really are a critical step in [my students’] understanding surface area. (Personal
Teaching Journal, 3/16/99)

In thinking about the design of the study and reflecting on my teaching, important issues,
such as the role that representations play in the development of PCK, were raised and
attended to. The course that I taught—and which became an important part of my
study—would not have existed in this form had I not been conducting this research.

The second critical difference between first-person research and other forms of
case study is the subject and the relationship between the subject and the researcher.
Since, in first-person research, these are one and the same, it is apparent that the
researcher has access to special insight on his or her subject. Ideas, memories, attitudes,
impressions—all of these can be easier to address in a self-study than in even the closest
third-person participant observation.

But this also raises a valid concern about maintaining an appropriate distance
between researcher and subject. When analyzing data, the researcher needs to stay
outside of the experience, remaining an objective observer of events and phenomena. But
when the researcher is himself an integral part of these events, that separation can be
difficult. On the other hand, distancing himself too far from the events can negate some
of the unique insight that can be gained from doing first-person research. It’s important to
find a middle ground within these two extremes.

In teaching MTH 202, I was constantly struggling with posing good questions. I
often had an idea that I was trying to move students toward, much like Martin Simon’s
“hypothetical learning trajectory” (Simon, 1995), but I experienced difficulties in

wording my questions to get at the ideas I wanted to address. This issue of task writing
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was often on my mind as I prepared for class—as when writing good test questions that
would cover all of the important mathematical concepts in a unit but would be concise
enough that students could complete in one class period, or when asking questions in the
course of a lesson that would move students toward an intended goal without giving away
too much of the discovery process. These concerns over the development of good
questions, problems, and tasks surfaccid frequently in my personal reflections as in the

following:

I think I need to look harder at the questions that I ask and how I can open up the floor for better
discussion. It seems like some of my questions are too directed and not open enough (“Anyone
know anything about the history of the standard measurement system?”) and I need to pay better
attention to how I ask these questions. (Personal Teaching Journal, 1/26/99).

Yet many of these concerns that I had would not have been apparent to an outside
observer. These were issues that I thought about in practically every stage of course
design and development—in planning lessons, in writing assessment questions, in
interacting with students in class, through e-mail, and in my office, and in reflecting on
the class and my teaching. This theme emerged because the study was about my own
teaching and I had much broader insight to the issues I was struggling with as a teacher.
The developing attention to task design—an issue that was not an explicit part of my
original research design—thus grew to be an important aspect of my study and provided
the framework for my analysis in Chapter 4.

I was able to keep an objective perspective on my task analysis because much of
the analysis was taking place long after the fact. As I explained to the students in MTH
202, I worked to make sure that the study would not add work to or detract my attention
from the course in which they were enrolled. The actual analysis of classroom

interactions, teacher reflections, and student work (for the purpose of the study) would
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not occur until after the course was over. This was to ensure students that they would
have my undivided attention during the semester as students—not as participants in a

study. It was also my attempt to separate the subject from the researcher.’

Informing Students

As this was a study of my own teaching involving college students, I wanted to
make sure that they understood the separation between the course and the study I was
conducting. And although I was the actual subject of the study, I thought it was important
to infarm the students throughout the process since they would be participants in the
study and their work would be a part of my data. I obtained a preliminary class list and on
January 5, 1999—one week before the first class meeting—I sent the students an e-mail
to describe the course and the study I was conducting (Appendix C). I wanted students to
know how this section of MTH 202 would be different from others and to allow them the
opportunity to choose another section if they desired. In the e-mail, I explained that
students in the class could choose to be a participant in the study or not. This decision
would be made at the end of the course and I would not know who granted permission
until after the grades were submitted to the university.

On the first day of class, students received the course syllabus which outlined the
mathematics content, expectations, and grading policy. Students also received copies of

the Consent for Documentation Form (Appendix D) which described the documentation

7 Heaton took an even more novel approach when attending to issues of distance (Heaton 1994). In her
doctoral dissertation, she referred to herself as Ruth 1, Ruth 2, and Ruth 3—identities that situated her in
different time periods with relation to the data (Ruth 1 was the teacher teaching a class, Ruth 2 was the
teacher reflecting during the same year but some time later, and Ruth 3 was the teacher looking back 3
years later on her work). Not only did I want to avoid talking about myself in the third person, but since
some of my data actually goes back to work I did as an undergraduate student, I wanted to avoid
referring to myself with non-positive subscripts.
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process I was using and the Informed Consent Form (Appendix E). I explained that the
documentation I would be doing (audiotaping, collecting student work, etc.) would be a
part of the study, but it was also part of the practice of good teaching. Students were
asked to read and sign the Consent for Documentation—either that day or as soon as they
wished. I explained that I was giving them a copy of the Informed Consent Form to them
on the first day so that they would know what they were going to agree or not agree to at
the end of the course.

On the final day of class, students were given another copy of the Informed
Consent Form. I again explained the process and that their decisions whether to grant
consent would not have any repercussions on their grades. While I was out of the room,
students filled out their forms and handed them to one classmate who kept the completed
forms until after I submitted the course grades to the university. At that time, I obtained
the completed forms from the student and found that all granted permission for their work

to be included in the study.

Documentation

There were two types of documentation used for the study—artifacts from the
course (data that was a regular part of the course, but collected for the study), and data
that was designed and/or collected specifically for the purposes of the study. Artifacts
included the lesson and unit plans I made for the course, my teaching journal, the texts
that students and I used, and students’ written work on both instructional and assessment
tasks—including students’ “learning logs.” For the purposes of the study, I collected

audiotapes of all class proceedings, pre- and post-course concept maps showing students’
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understanding of geometry, and pre- and post-course surveys of students’ attitudes
toward geometry.

Lesson and Unit Plans. Since this study is centered around my planning and
teaching of MTH 202, it was clear that my own thoughts and decisions about the makeup
of the course would be important data. Before the course began and as it progressed, I
kept written records of what I planned to teach. My plans included outlines and
mathematical work that I did to prepare for class (working out homework problems,
planning for assessments, investigating ideas that had been raised in class, etc.). These
plans always included notes about mathematical content and tasks I planned to use,
problems that arose in other students’ work that I wanted to use in class discussion, and
ideas for homework assignments. At times, the plans contained notes about aspects of
PCK I wanted to include in class. The lesson and unit plans were kept in a binder and
were helpful in maintaining an ongoing written account of how I envisioned the content
of the course.

The unit plans focused on the mathematical topics I identified in geometry and
measurement and that I planned to use as the basis for the course. My mathematical goals
for the course included in-depth investigation of these mathematical topics (outlined for
the semester in Appendix A) as well as:

e Giving students opportunities to read and write about the mathematics and to

engage in thoughtful discourse about the mathematical content.

e Making students aware of additional resources that are available to teachers,

such as professional journals, the NCTM Standards, Internet resources, and

multiple elementary and middle school curricula.
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e Highlighting and encouraging students to find connections between different
mathematical ideas.
e Connecting the mathematics of the course to other subjects taught in
elementary school, such as literature, social studies, and science.
e Identifying preconceptions about what geometry is and giving students a set
of positive experiences around the mathematics content of the course.
Teaching Journal. Each day after class, I immediately returned to my office where
I sat down for two or three hours, thinking about what had happened in class that day and
recording my thoughts into a teaching journal. The teaching journal afforded me the
opportunity to reflect on my teaching and what had just transpired in the classroom.
When teaching in a middle school or two back-to-back college courses, my teaching
schedule often did not afford me the time to reflect—especially this soon after the
event—and this resulted in some missed opportunities for me and my students. But when
I was able to block out time immediately after teaching MTH 202, I was able to recall
important, but small, events which might have been forgotten, I was able to attribute
particular insights to students who had made them, and I was able to make better plans on
where to pick up for the next class session. The teaching journal was also helpful in that it
provided me with a record of my thoughts and ideas which was a rich source of data.
Textbooks. The texts for the course were student editions (SE’s) and teacher
editions (TE’s) of the following CMP units: Covering and Surrounding (SE only),
Stretching and Shrinking (SE and TE), Filling and Wrapping (SE and TE), and Looking

for Pythagoras (SE and TE).
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The other instructors of MTH 202 used a college geometry text in their sections
(Geometry: An Investigative Approach by O’Daffer and Clemens). The O’Daffer text did
a nice job presenting problems for preservice teachers to solve and making some
connections from the mathematics to teaching the mathematics. But the text fell short in
preparing teachers to make curricular decisions—which topics to cover, what topics are
appropriate for students at various levels, how to engage students in the mathematics, etc.
Russell (1997) suggested that elementary and middle school curriculum materials might
be more appropriate for teaching preservice teachers the mathematics content and ways to
teach it. Bright (1999) reviewed some current reform curricula with this purpose in
mind—of teaching preservice teachers content using student and teacher texts. He
suggested that those teacher texts which contained “dialogue boxes”® to have the most
potential in teaching preservice teachers.

For two years prior to this study, students in my sections of MTH 202 purchased
and used various student and teacher editions of geometry and measurement CMP texts.
Initially, I had students use SE’s for all of the units and TE’s for only one of the units. I
did this for several reasons. First, I thought that if students had the answer keys to some
of the homework questions, it would decrease the amount of time spent in class going
over answers to problems. This would leave more time for discussion of the mathematics
embedded in the problems, applications of these ideas to teaching elementary school, and
investigations of new ideas. Second, I reasoned that since many of the problems and their

solutions involved geometric diagrams, it would be easier if students could refer to an

* The dialogue boxes appeared in teacher editions and were used to give evidence of student reasoning on
problems, strategies that students often utilized, and suggestions for teaching the mathematical content to
students.
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answer key with figures drawn more accurately than those that I might be able to
reproduce in class.

As I taught the course, however, I found that by giving students access to more of
the TE’s we began to talk about other issues as well. The CMP TE’s contain more than
just correct answers to student problems. They are developed through interacting with
dozens of experienced teachers who used the materials as they were being developed and
so they reflect lessons learned by those teachers and suggestions that they made. The
TE’s contain multiple answers (when appropriate) and various examples of strategies that
middle school students may use when working on problems. They also push teachers to
understand the content at a much deeper level than that of their students, encouraging
them to know more about the why behind the mathematics they encounter.

By having access to the TE’s, the preservice teachers were being exposed to a
number of concepts that are often talked about in teacher education courses but may be
difficult to comprehend when not placed in a mathematics context—things like
discussions on various strategies that middle school students could use in solving
problems and possible ways to engage students in the mathematics that is being studied.
As a result of this exposure, students initiated class conversations about lesson planning,
connections between mathematical ideas, assessment, curriculum design, and other
pedagogical concerns.

For example, a large part of one class session midway through the course centered
around my asking the students to “describe the typical mathematics lesson” from MTH
202. The students were writing their own grade-level specific unit plans or lesson plans

for a topic in elementary school geometry. In preparing to write their own lessons, I
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wanted them to think about the normal mathematics class they remembered from their

school experiences as compared to what I typically did in MTH 202. Some of the

students’ responses were:

“You start by bringing out our background knowledge for a certain
mathematical idea.”

“Without telling us what we are going to find, you let us explore first.”
“You use ‘guided experimenting’... You set up the situations for us to go in
specific directions.”

It’s very hands-on. I learn from touching something—to be able to move the
tiles or to wrap the yarn around my foot.”

“(After we get back together as a class), you go back and talk about each
group’s answers and how they are different, (with a goal of) finding the most
accurate or the most efficient method.”

“At the end, you tie everything into the big picture, how it all relates to each

other.”

Some students simply picked up on these ideas after being a student in the class

for eight weeks while other students explained that the TE’s were helpful in seeing what I

was doing when teaching the class. At this point, we talked about phases of instruction

and an instructional model (see p. 28) that are explicit in the TE’s, and how this model

for learning differed from what was experienced in other mathematics classes. Students

commented that this conversation served as a helpful analysis of teaching and learning

mathematics as they prepared their own lesson plans. I think that fewer students would
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have been able to participate in this classroom analysis had they not used TE’s on a
regular basis.

Students’ Written Work. I collected and photocopied many pieces of student
work. These included quizzes, tests, the final exam, and responses to learning log
prompts. All students consented to the use of their work in the study.

This is primarily a study that looks at what I did to plan for and teach a
mathematics content course for preservice teachers that gave attention to issues related to
teaching that content to children. However, I found it helpful to use evidence of student
work in looking at the impact of what I did on what students learned. Students were often
encouraged to supply reasons and show work for their answers. This evidence supports
not only what they learned, but it also provides support of claims I make about how the
design of the course has an impact on the learners.

One of the richest sources of data around student work was the student learning
logs. As part of the course, I required each student to supply a small notebook that I
called a learning log. The learning logs were used for students to reply to designated
prompts throughout the semester (a total of ten different prompts). I regularly collected,
read, evaluated and orchestrated class discussions about their responses. The learning log
prompts were designed, in part, to give students some experience in writing about
mathematics. Many elementary teachers are asking students to keep mathematics journals
to record their thoughts, insights, methods, and attitudes. I wanted preservice teachers to
have some experience in writing about mathematics as well, just as they might ask their
students to do. In addition, the learning log prompts were written in conjunction with the

learning goals I had for the class and were designed to:
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Establish a base-level understanding of what students understood about a
concept before it was addressed in class. In the first prompt, I asked students
to “write down the first three geometry formulas you think of and tell what
they are the formulas for.... Describe some of the pros and cons for using
mathematical formulas. What do you think about using formulas with
elementary school students?”’

Address some of their preconceived ideas and attitudes about geometry. It has
been my experience that some preservice elementary teachers view geometry
only through the lens of their high school geometry course—positively and/or
negatively. In one prompt I asked students to “describe in detail an event from
your high school geometry course which is particularly memorable to you.
Why do you think this event sticks with you?”

Give students a mathematical task in addition to what was done in class. I
used this opportunity to pose more open-ended tasks. This gave me some rich
data on how students could write about mathematics and on their
mathematical thinking. In one prompt I asked, “When the midpoints of the
sides of a quadrilateral are connected in order, another quadrilateral is
formed on the inside. ... What kinds of quadrilaterals can be formed on the
inside? Which original quadrilaterals produce which types of quadrilaterals
on the inside?..."”

Raise other pedagogical issues. After the class discussion on how some of the

geometry ideas in the course connect to other areas of mathematics (number,

algebra, data analysis, etc.), I included a learning log prompt asking students
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to “...give examples of some of the ways in which geometry and measurement
connect to other school subjects (possibly including science, social studies,
language arts, music, etc.).”

e Have students reflect on the MTH 202 course. Since I was interested in how
the design of the course had an impact on my students’ understanding and
attitudes, I included one prompt in which I asked them to “describe in detail
one event from your MTH 202 course which is particularly memorable to you.
Why do you think this event sticks with you?”

A complete list of learning log prompts that I used in the course are given in

Appendix F.

Audiotapes of Class Proceedings. At the start of each class session, I turned on a

small cassette recorder that was placed at the front of the classroom and recorded the
entire class session. All students were made aware that this type of data would be
collected and they granted consent for their voices to be recorded. The tape recorder was
near me and it did a good job picking up my voice throughout. Some parts of student
conversations were harder to hear.

Although I did not use the recordings while teaching the course (finding the time
to listen to class sessions and review what was said might have been helpful but
extremely time-consuming), they provided a relatively thorough record of class
proceedings and discussions. I used the teaching journal and the lesson and unit plans to
identify critical events in the course and was then able to turn to the audiotapes for a

more detailed account which I transcribed.
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Other Data. Two additional pieces of data were collected in the course and were
designed to help me look at student growth in knowledge and disposition. The first was a
set of students’ concept maps that were drawn at two different times in the course. After a
brief discussion on making concept maps early in the course, I asked students to place the
word “geometry” in the center of a blank piece of paper. Students then constructed their
own concept maps of how they thought about the content of geometry, naming big and
small ideas and connecting them as a representation of their thinking. These maps were
collected and redistributed on the last day of class. Students were then given the same
task—to construct a concept map of how they thought about the content of
geometry—and asked to make those maps on the backside of their initial ones. Students
were then asked to compare their two maps with the hope of their seeing how much their
understanding of the domain grew.

The second was a set of student responses to an attitude survey about geometry
and measurement. As with the concept maps, these surveys were administered at both the
beginning and at the end of the course. In the case of the surveys, however, students were
not given access to their earlier responses and so could not use them to make a self-
assessment about any changes in attitude or disposition.

As the analysis of the data progressed, I didn’t find the concept maps very helpful
in the study, so they were not used. A few of the student responses to the attitude survey
helped shed some light on their dispositions toward learning geometry and thus became a

part of the study.
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Data Analysis
This was a study of what I did as a teacher educator to attend to issues of
pedagogical content knowledge in a content course. To that end, I used coding methods
to find themes that surfaced in my teaching of MTH 202—reading my personal accounts
of the course in my teaching journal and lesson and units plans, listening to and
transcribing episodes of class discussions, and analyzing student work. Data is drawn
from thirty class sessions, my writings in preparing for those sessions, and my writings in

reflecting after those sessions and after the course was completed.

The Emergence of Two Themes

After the course was completed and all students agreed to be participants in the
study, I began the work of analysis by reading—and rereading—my teaching journal. I
had almost four months of reflections and observations that were recorded and I wanted
to refamiliarize myself with what I wrote over the course of the semester. In particular, I
was looking for trends or recurrent themes in my writing—ideas which could potentially
develop as themes for analysis.

Formulas and Other Representations. One of the most prevalent themes that
emerged came as no surprise to me—that of geometric formulas. As my MTH 202 course
evolved over a three-year period, I found myself constantly coming back to issues
concerning formulas—understanding where they come from, helping students make
sense of them, finding ways to remember them, etc. Many of the problems and
investigations I developed and that I used from the CMP curriculum involved areas and

perimeters of shapes and volumes and surface areas of solids, topics that often led to
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discussions around understanding formulas used to calculate those measures. I
recognized early on that formulas would be a possible theme for analysis and I made a
conscious effort to pinpoint places in my teaching journal where discussions around
formulas occurred.

The importance of understanding representations has not been lost on the
mathematics education community. Mathematics has long concerned itself with various
categories of representations (e.g., symbolic, spatial, and language) as well as specific
types of representations that are particularly useful in mathematics (e.g., graphs, tables,
diagrams, and formulas). These mathematical representations are established models in
the world of mathematics. Recently, the National Council of Teachers of Mathematics
raised mathematics educators’ level of consciousness about representations by adding it
to its list of essential process standards for school mathematics—a list that now includes
problem solving, reasoning and proof, communication, connections, and representations
(NCTM, 2000).

Mathematical formulas are one example of a type of representation. A formula is
a symbolic representation of a mathematical relationship. For example, A =s*is a
formula for the area of a square. This formula shows—concisely and eloquently—that the
area (A) of a square can be determined by multiplying the side (s) by itself, (squaring it).
With this type of representation, a great deal can typically be said in a small space.
Another example is a pictorial or spatial representation. As I taught different sections of
MTH 202 over the years, I became increasingly interested in ways in which various

spatial representations could be used to explain or validate the geometric formulas that
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were a part of the course. I began to wonder if different forms of representation were
helpful for students in understanding a concept.

But the word representation refers not only to the product (the formula, the
picture, etc.) but also to the process—the “act of capturing a mathematical concept or
relationship in some form” (NCTM, 2000, p. 67). The research around the role of
representations gives credence to both aspects, the process and the product. For not only
is it important to look at which types of representations can be used with students and
have an impact on student learning, but it is also important to recognize the development
of modes of representation as they occur in the classroom.

But representations also play an important role in the development of pedagogical
content knowledge as well—although the representations that are mentioned in PCK
research literature do not necessarily map easily onto the representations in the
mathematics literature. Ball identified “‘forms of representation’...[as] the crucial
substance of pedagogical content knowledge” (Ball, 1988). Borko et al. claimed that
making subject matter understandable for students hinges on the teacher’s ability to
“represent specific topics in ways appropriate to the diverse abilities and interests of
learners” (Borko et al., 1993). And in summarizing the literature on PCK, Van Driel et al.
suggested that “all scholars agree on Shulman’s two key elements—that is, knowledge of
representations of subject matter and understanding of specific learning difficulties and
student conceptions” (Van Driel, Verloop, & De Vos, 1998). Indeed, representation
appears as a critical component of PCK not only in Shulman’s introduction of PCK to the
field (Shulman, 1986), but also as a key element of the transformation phase in his model

for pedagogical reasoning and action (Shulman, 1987).
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It seemed to me that the mathematical representations (like spatial, symbolic, and
language) could be examples of some of the representations mentioned in the literature
on PCK, as in Ball’s “substance of pedagogical content knowledge,” but that much of the
writing about PCK didn’t involve physical representations as much as it did
representations of knowledge and understanding. With the word representation being
used in many different ways, I found that it was easy to get confused about its meaning
when applying ideas of PCK specifically to learning mathematics—a content area in
which representations already play an important role.

I decided to focus some of my analysis around the important mathematical
representations as they appeared in my data. Because I identified formulas and their
accompanying spatial representations as a potential theme before collecting data, I
encountered numerous references to these representations in my unit and lessc;n plans,
my teaching journal, the learning log prompts and assessment questions I wrote as well as
the student work done around them, and in the audiotapes of the class proceedings—any
source with evidence of my thinking and/or my words. The CMP textbooks (specifically,
the TE’s) also provided some evidence of identifying various representations and the
ways that they can be used in helping students understand a mathematical concept.

A useful method of analysis in thinking about types and roles of representations
was in developing and using coding categories. In Chapter 3, I give evidence of my work
in forming various categories of representations and how this process revealed a type of
representation that I previously disregarded—the representation of mathematical
language. I also discuss how the process of shared reflection was an important tool in

developing my understanding of the various ways in which representations were used, as
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I shared some of struggles and frustrations with preservice teachers and made these
conversations a part of my learning about teaching.

Nature of Tasks and Issues of Task Design. After looking more carefully at what I
wrote in my lesson plans and teaching journal, I uncovered a second theme. I noticed that
one particular problem—one of the learning log prompts—stayed a part of our class
discussions for parts of four different sessions. This was considerably longer than the one
day I planned to investigate this task. In thinking about why this task embedded itself so
deeply in my (if not the class’) conscious, I conjectured that if the task were worded
differently, it might not create the difficulties that it did for my students and me.

This supposition was gradually generalized to include basic ideas of task design.
That is, what goes into the development and construction of a good task—one that does
not mislead students but provides an avenue for investigating the problem as the teacher
intended.

The NCTM Professional Standards described worthwhile mathematical tasks as
ones “that are likely to promote the development of students’ understandings of concepts
and procedures in a way that also fosters their ability to solve problems and to reason and
communicate mathematically” (NCTM, 1991, p. 25). While it goes on to explain that
tasks may be selected or adapted from other resources, or generated by teachers
themselves, it provides little detail on the process that teachers go through in creating
meaningful tasks.

Since task design clearly depends on a flexible understanding of the underlying
mathematics around which the task is developed as well as identifying ways to help

students understand the mathematics themselves, it seems that a teacher education course
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with an interest in developing preservice teachers’ PCK should include some attention to
its development.

In my data, I found several sources for data around task development. In my
lesson and unit plans and in my teaching journal, I found a number of entries around this
particular learning log prompt alone. I also had copies of all of my students’ work on this
task—data which I used to triangulate my findings and theories on how elements of the
task I designed produced unexpected results. In addition to this, I had historical records of
this task when it was given to me as a student in a preservice teacher education course.
This was helpful in doing a critical analysis of the two versions of the task and looking at
the differences in expectations that the tasks make of students. In Chapter 4, I give
evidence of my using student work to investigate the design of a task and of my
comparing two different versions of the same mathematical task. I also discuss how the
process of shared reflection was a useful tool in helping me learn more about the ways in
which the task could be revised to better reflect the potential for learning that I was
hoping to capture.

In each of these themes—representations and task design—1I started by looking at
ways in which they exemplified preservice teachers’ PCK development. But in thinking
about each case, I kept wanting to turn from what my students needed to know to what /
needed to know to teach preservice teachers and what I learned through the use of shared
reflection. In light of this, I wondered if this was really a story about developing my own

PCK as a teacher educator in the context of attending to students’ PCK development.
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Revisiting Shulman’s Pedagogical Reasoning

As described from the start, this study was built around my wanting to look at
what I did to design and teach a mathematics content course that also attended to issues
of teaching that content to K-8 students. The students in the course were not intended to
be the subjects, but rather participants in a study of my own practice. So while I initially
thought the themes that I was developing centered on looking at developing students’
PCK, I began to recognize that another important aspect was the development of my own
pedagogical content knowledge.

Little had been written about the development of a teacher educator’s PCK.
Bennett and Carré (1993) applied Shulman’s model to a study of a postgraduate teacher
education program and Cochran, DeRuiter and King (1993) analyzed a constructivist
teacher education program using Shulman’s model. But both of these studies were done
on a general level, looking at an entire program instead of a specific case. These studies
also focused more on looking for PCK in the final end product, rather than on examining
the complexities of its development.

Geddis and Wood (1997) described a case study of a teacher educator in which
they documented a specific instance of teaching as a transformation of knowledge about
mathematics pedagogy for preservice teachers. Although rich in detail, their study looks
only at part of the traniformation process of teacher education and does not address the
process the teacher educator went through himself to develop his own PCK about the
subject matter.

It appears that a critical missing element in these studies is understanding the

teacher educator’s reflection on his or her learning and understanding—about what the
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students know about the content and pedagogy, and about what the teacher educator
knows about the content and the pedagogy. Because the teaching is taking place in a
teacher education context, the preservice teachers and the teacher educator can all benefit
when this reflection becomes a part of the classroom conversation.

In reflecting on my own experiences as an undergraduate student and a novice
middle school teacher, I recalled instances where I struggled to recreate a rich learning
situation for my students that I had as a preservice teacher. As with the example of using
the locker problem (page 14), I found that I was lacking some important understanding
about the problem in making it meaningful for my middle schoolers. Some of my
shortcomings centered around an understanding of the mathematics—the necessary
prerequisite skills that were needed and the sequencing of problems that could lead to a
deeper understanding. Other deficiencies were around the pedagogy—not knowing how
to organize my students and classroom to work on the problem, introducing a strategy too
early and not giving students an opportunity to construct their own, etc. But after further
reflection, I realized that all of these problems fell under the umbrella of my lacking
PCK, that is, ways to transform what I understood about the problem as a teacher and
making the mathematical knowledge accessible to my students. In the case of the locker
problem, I decided that what I was missing was some insight on what .my college
professor thought about when he chose the task, adapted it for our class, made decisions
about introducing representations, and other elements of the pedagogical reasoning
process. With some of that pedagogical content knowledge, my experience of using the

locker problem with middle school students might have been quite different.
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Teaching teachers and giving some attention to their PCK could involve taking an
additional step—providing for them some ideas for making curricular and pedagogical
decisions. These are skills that are often developed through years of teaching, but novice
teachers can also begin to have access to this decision-making process when the teacher
educator shares with them the process that he or she went through for using that
particular lesson or problem.

In fact, this process makes the pedagogical reasoning and action model explicit.
Instead of the teacher educator just working through the phases, the process itself is
highlighted and the preservice teachers have exemplary teaching modeled for them. This
is one way in which shared reflection can be utilized—where the teacher educator shares
his or her thinking process with preservice teachers. The subject of shared reflection can
be any phase in the pedagogical reasoning and action cycle but by definition, it needs to
occur within the teacher educator’s reflection cycle. Figure 5 shows an adaptation of my
model of Shulman’s pedagogical reasoning and action cycle to describe the process of a

teacher educator employing shared reflection.

Comprehension

Transformation (of subject matter)

1. Preparation
2. Representation
3. Selection

K\\ 4. Adaptation

Reflection
Shared Reflection
(with students)
Instruction

Assessment (of students’ understanding and teacher’s performance)

Figure 5: A Teacher Educator’s Pedagogical Reasoning and Action
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For example, the teacher educator may choose to wait until a complete lesson has
been planned, taught, and assessed before he or she begins to share with the preservice
teachers some of the decisions that were made around the choice of the problem, the
representations that were used, the way in which the lesson was presented, or the
assessment has been completed. In other instances, the teacher educator may take the
time to address some of the phases either before, during, or after those phases present
themselves in the lesson, but still after the teacher educator has reflected on the phase
him- or herself. These are decisions that the teacher educator needs to address at all
times, deciding whether the students should be let in on the decision-making process or if

they should be allowed to “muck about” in the mathematics or the pedagogy for awhile.

Refocusing My Study

Looking back at my data, I found many instances of how I used aspects of shared
reflection in helping my students develop their PCK. In each case, the journey begins and
ends with my looking at my own PCK of the problem and thinking about how giving
attention to the role of representations or task design using shared reflection may have
helped students with their PCK development. To that end, I clarified my central question.
I was now interested in tackling the issue of: “Can pedagogical content knowledge be a
useful framework for a teacher educator in designing and teaching a mathematics content

course for preservice teachers and if so in what ways?”
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The Story

This study is a story about my efforts to give attention to the pedagogical content
knowledge development of preservice teachers through a process of examining my own
PCK development as a teacher educator. Although I started the study with an idea of
focusing on students’ PCK development, it wasn’t until midway through the course that I
began thinking about focusing on the development of my PCK for teaching prospective
teachers and using that experience as a lens for thinking about what the subject matter of
PCK might be for preservice teachers. Reflecting on my experiences as an undergraduate
student helped me to formulate a model for teacher education in which an emphasis on
shared reflection gives preservice teachers some insight to teaching content to K-8
students. This study details my some of my efforts to use shared reflection in lessons

about representations and task design.
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CHAPTER 3

REPRESENTATIONS

Introduction

This chapter takes the form of three episodes. Each episode describes: (a) a
mathematical topic that was covered in the course; (b) the ways in which the mathematics
was presented with respect to the development and use of representations; and (c) how
shared reflection played an important role in the course.

The three episodes center around trapezoid area, circle area, and volumes of
prisms, cylinders, cones, and spheres. The first episode deals with my gaining a deeper
understanding of different types of representations—symbolic, spatial, and mathematical
language. The second episode deals with my looking at limitations of some
representations and the ways in which multiple representations are linked with each
other. The third episode deals with my struggling to reconstruct some of my own prior
mathematical knowledge and my sharing those struggles with the students. In the third
episode, I also look at the use of a blended representation that proved to be a particularly
powerful one for preservice teachers.

Throughout each episode, there is also an underlying tension concerning the
importance of providing justification. Students come to believe that certain mathematical
ideas are true. But as described in the NCTM’s Curriculum and Evaluation Standards for
School Mathematics (1989) and Principals and Standards for School Mathematics

(2000), students need to consider what it takes to prove the validity of these assertions. In
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a course for preservice teachers, some argue that attention should be given to
understanding what it takes to validate a mathematical statement and various
methods—or proof schemes—for providing this justification (Harel & Sowder, 1998).
The reasoning goes that just as school students are being expected to provide reasoning
about their mathematics, so must their future teachers work on understanding what it
takes to justify a mathematical assertion.

In looking at justification in this chapter, I use the classifications developed by
Harel and Sowder in which proof schemes are described as externally based, empirical,
or analytic. Each scheme has several sub-categories (Figure 6) which are helpful for
looking at various representations that are used (Sowder & Harel, 1998). In each of the
episodes, I examine what proof schemes are implied by the inherent assumptions that

were made by me as the teacher educator.

Externally based proof schemes

| ]
Authoritarian Ritual Symbolic

Empirical proof schemes

Perceptual Examples-based

Analytic proof schemes
(mathematical proofs)

]
| ]

Transformational Axiomatic

Figure 6: Proof Schemes
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Episode 1: Trapezoid Area

Background—Working with Triangles

Students’ work with triangles earlier in the course involved investigating ways to
generalize the area of a triangle and developing a symbolic formula for triangle area. A
series of triangles were presented on grid paper and students wei'e given time to develop
strategies for finding area. The goal was to find one or more methods that could be used
with as many different triangles as possible. (Two triangles from'this labsheet are presented
in Figure 7.) Two methods were common: pairing a triangle with a congruent figure or

dissecting the triangle and rearranging the pieces to form a new figure.
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Figure 7: Triangles A and D on Grid Paper

Using Two Copies of a Figure. When investigating a right triangle like A, students

often paired it with a congruent copy, rotated 180° and placed so that the hypotenuses
matched, creating a rectangle with an area twice that of the original shape (Figure 8). The
rectangle’s area was easily determined (by counting squares or by using the base multiplied
by the height) and the area of the triangle was commonly stated as “half of the area of the

rectangle.”
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Figure 8: Two Copies of Triangle A

Although non-right triangles, like D, were less likely to be paired with a congruent
copy, some students continued the reasoning from the right triangles—using the resulting

parallelogram instead of a rectangle (Figure 9).'

b

Figure 9: Two Copies of Triangle D
With both right triangles and non-right triangles, students used two copies of the
original triangle to make a new shape for which they could find the area. And since two

copies had been used, the area of the resulting figure was double that of the original shape.

Students then concluded that the area of the original triangle was only % the area of the

resulting figure, leading to the general formula A = %bh.

! In a previous class, students discovered that a parallelogram has an area equal to a rectangle with the same
base and height as those of the parallelogram, leading to the general formula for the area of a parallelogram
(rectangular or not) as A = bh.



Dissecting and Rearranging. Many of our earlier investigations with area centered
on ways to take a shape, subdivide it, and then put the pieces back together in a new shape
whose area could be determined. This strategy—which I call dissection and
rearrangement—is important in mathematics both historically and as an example of a proof
scheme.

Some simple dissections were well-known to the ancient Greeks, but the first
formal collection of dissection problems was most likely written by the tenth-century
Persian astronomer, Abul Wefa (Gardner, 1969). The problems were typically presented as
interesting mathematical diversions, showing for example how three congruent squares can
be cut into nine pieces to make one single square. In the early twentieth century,
mathematicians (like the puzzle creator Henry Ernest Dudeney) took on geometric
dissections with a renewed recreational fervor, working to set records based on the fewest
number of cuts needed to dissect a given figure and rearrange the pieces into a specific
shape.

In MTH 202, I referred to some of the ways in which methods of dissection and
rearrangement were used by mathematicians to determine the areas of unknown regions,
like how Leonardo da Vinci calculated the areas of many curved figures by cutting them
apart and rearranging the pieces to create figures with known areas. I referred to this
method not as a mathematical recreation, but as a viable way to justify a geometric idea.
Many students employed this technique in a number of investigations on area, making it a
common strategy for looking at the triangles.

When working with right triangles like A, the most typical approach to dissecting

and rearranging was to make one cut—horizontal or vertical—and reduce either the height
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or the base to half its original length. These two pieces could then be formed into a
rectangle with half of the height and the same base as the original triangle (Figure 10), or

the half of the base and the same height (Figure 11).

A 5]
Ny oy
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Figure 10: Triangle A as Figure 11: Triangle A as
Rectangle with Half of the Height Rectangle with Half of the Base

The notion of making one cut to create two pieces which could be rearranged to
make a known shape was used with non-right triangles as well. However with these
triangles students discovered that the cut had to be made parallel to the “base” (the side that
lay on one of the grid lines)®. For example, on Triangle D, one cut could be made parallel
to the base that would intersect each of the other sides at their midpoints (Figure 12). The
top piece could be rotated 180° and placed on either side to create a non-rectangular
parallelogram with a base equal in length to the base of the triangle, but with a height half

of the triangle’s height.

? Because this triangle activity was focused on developing and understanding the basic triangle area formula
A =1bh, all of the triangles presented in class had at least one side drawn on a grid line. The idea of finding
the area of a triangle whose endpoints all lie on the intersection of grid lines but none of whose sides lie on
grid lines was also presented and was played out in the context of surrounding a shape with a rectangle and
subtracting off the areas of the unwanted pieces. It was important that students saw and worked with
triangles of many different types, but for the purposes of the lesson on developing a general formula for
areas of triangles, only triangles with at least one side on a grid line were considered.
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Figure 12: Triangle D with Half of the Height in One Cut
Some students made two cuts with the non-right triangles (Figure 13), still
recognizing the fact that the resulting figure would have a height half of that of the original
triangle. These students thought of the top triangle as being composed of two smaller right
triangles, each of which fit nicely with the larger bottom piece to create a rectangle. These
students were likely guided by the existing grid lines to consider this second cut and to
create a final shape with all sides lying on the grid lines.
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|

Figure 13: Triangle D with Half of the Height in Two Cuts

In each of the above examples (Figures 5-8), the shape resulting from dissection

and rear was a parall or not. And each of these resulting

llel had one di ion (either the base or the height) the same length as the
original triangle. The other dimension was half the length of the original triangle. Students
reasoned that the parallelograms they made from the triangles had areas equal to either (a)

the original triangle’s base multiplied by half of its height, or (b) the original triangle’s
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height multiplied by half of its base. Symbolically, this led to the triangle area formula of

A =1bh.

Area of a Trapezoid—Connecting Symbolic and Spatial Representations

The course was designed so that one subject typically led to the next, helping
students to see not only how different mathematical ideas were connected, but also how a
strategy that was useful with one topic might be employed with another. For this reason, I
chose to follow triangles with some work on trapezoids.

Since many students had used the dissection and rearrangement approach with
triangles, I decided that it would be a useful strategy to use with the class when reasoning
about the trapezoid formula. When I introduced the trapezoid area formula, I presented the

diagram in Figure 14.

Figure 14: Trapezoid Method A
I expected students to reason through the problem as they had done with other
shapes before, using the figure to justify the parts of the formula. In particular, I expected
that students would recognize that the resulting figure (OQLN) was a parallelogram with an

area equal to the area of the original trapezoid (JKLM). Furthermore, the parallelogram had

* A trapezoid is sometimes defined as a quadrilateral with at least one pair of parallel sides. Using this
definition, the set of parallelograms (quadrilaterals with two sets of parallel sides) is a subset of the set of
trapezoids. I chose to use the more limiting definition of a trapezoid as a quadrilateral with exactly one pair
of parallel sides. This allowed me to introduce parallelograms first, giving students some knowledge on a
figure which was useful when reasoning about the formula for the area of a trapezoid. The alternate
definition has parallelograms as a special case of trapezoids, rendering parallelograms much less useful in
understanding trapezoids.
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a base equal to the sum of the trapezoid’s two bases (b; + b;) and the height of the resulting

parallelogram was equal to half the height of the original trapezoid. Substituting these

values into the basic parallelogram area formula A = bh, we would get A = (b; + by) x %h

which is equivalent to the more standard form: A = % (b; + b)h.

I was intrigued with the idea of using a spatial representation to justify a known
area formula. I thought that it was a good way to show preservice teachers that geometric
figures and their manipulation were legitimate means of proving a mathematical
statement (here, an area formula) and that there were multiple ways in which a figure
could be manipulated to yield similar results. I knew that these students, as teachers,
would need to be open to different approaches presented by their students and so I
decided to present three other methods for reasoning about the trapezoid area formula. I
did this in the context of an assessment task (Figure 15), given after students had worked
with the trapezoid area formula and after they had been shown the first justification of the
area formula using spatial reasoning.

The three spatial representations in Figure 15 had not been discussed in class. I
asked students to choose one and explain how it could be used to justify the known
formula. All three of the methods were in some way related to the parallelogram and
triangle work we had done earlier and I expected students would use this prior knowledge

to give good mathematical justifications.
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We learned in class that the formula for the area of a trapezoid is A = %(bl + by)h.

K b J
L b1 M

Each of the three diagrams below is a different verification of the formula for the

area of a trapezoid. Choose one (by circling it) and explain in detail how that

picture shows that the area of the original trapezoid is -;-(bl + by)h.

Figure 15: Trapezoid Quiz Task
A majority of the students chose the first spatial representation in the task
(reproduced in Figure 16) to write about. Students recalled that we had used two copies
of a triangle to create a parallelogram and they followed that same reasoning with the

trapezoid. Thus, parallelogram RKLN had an area double that of trapezoid JKLM. They
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knew that the area of RKLN was (b; + by)h, so they reasoned that the area of JKLM was

L(b) +by)h.
K b, J b, R
L b, M b, N

Figure 16: Trapezoid Method B
Students who chose the second representation in the task (Figure 17) saw that the
trapezoid was divided into two triangles and that the necessary dimensions of these
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