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ABSTRACT

COMPUTATIONAL METHODS TO SIMULATE LARGE CLASSICAL

PARTICLE SYSTEMS WITH APPLICATIONS TO FLUIDS AND

MICROPOROUS MATERIALS

Tibor F. Nagy

A completely discrete ~ discrete space, time and energy — computational model and

its implementation is presented here as an alternative to continuous type simulations

such as lV'lolecular Dynamics and continuum Monte Carlo methods. The final goal is

to reduce the amount of the calculation per particle in order to increase the timescale

of the simulation and the size of the particle system simulated. The computation is

performed on a lattice with discrete particles in discrete states.

The fundamental particle simulation algorithms are studied. The well known

neighbor-list or Verlet-list method is speeded up from quadratic to linear size de-

pendence. This algorithm is applicable to continuous simulations also, it is lattice

independent. Then the cell-list method is adapted to discrete lattices, using efficient

bit manipulations. A field-representation method is developed as well as a general-

ization of the Lattice-Gas method.



The discrete computational techniques and other programming methods for to-

day’s advanced computer architectures are discussed in detail with their implementa-

tions in Fortran. The high performance of the whole method is mainly due to these

techniques. Performance data are presented for the different methods.

The pair distribution function and density profiles inside parallel slits are calcu-

lated for different fluid densities. The lattice effects are successfully removed from

the pair distribution function. The results agree well with continuum results for large

slit widths. New results on layering for very narrow slit widths are presented.

Finally a lattice-based geometrical method is presented to characterize the struc-

ture of void space inside zeolites. This method is generic, it can be applied to arbitrary

atomic and geometrical systems as well.
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“The purpose of computing is insight, not numbers.”

(R.W. Hamming)
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Chapter 1

Overview

In this chapter we will briefly review currently existing computational techniques to

simulate the behavior of a given collection of classical particles. These techniques

cover a broad scale from the microscopic atomic to the macroscopic continuum level

depending on how the ensembles of particles or the physical substances are treated in

the problem. At the microscopic scale the two most important methods - Molecular

Dynamics (MD) and Monte Carlo (MC) - will be briefly discussed. At the macro-

scopic end Computational Fluid Dynamics (CFD) will be mentioned. This field itself

represents a very large area in science and engineering, its literature fills up sections

in libraries. It is of course impossible to describe it in a subsection of a thesis, its

fundamental methodology will be mentioned just to orient ourselves among the dif—

ferent methods. The Lattice-Gas (LG) method will be then described as a particle

based, method giving correct macrosc0pic behavior very successfully and efficiently.

The gap between the micro and macro world is still wide and it is still waiting to

be covered by new methods and techniques. Recently the expressions “bridging the

landscapes”, “mesoscopic simulators” can be very often heard at scientific meetings.

The power of computers increases constantly every year. Unfortunately our desire

to reach larger simulation sizes on longer time scales increases as well, keeping our



computers constantly busy and leaving plenty of room to develop new and faster

simulation methods.

1 . 1 Molecular Dynamics

The Molecular Dynamics method was developed and successfully used already in the

very early days of electronic computers [1], and it is still one of the most fundamental

techniques to simulate particle systems ranging from the atomic level in condensed

matter physics to the galactic scale in astronomy. It is basically the numerical solution

of the classical equation of motion, Newton’s second law:

d2? —.

"Ii—1 : E9

dt2

where m,- is the mass of the ith particle, 7",- is the position and F: is the force acting on

the particle caused by the other particles of the ensemble and possible external fields.

This force must be known by the simulator in order to proceed with the iteration

from moment to moment. If the number of particles is N, this equation of motion

represents 3N coupled, ordinary, second order differential equations. The analytical

solution of this problem is not feasible for large N, where large means anything

greater than two. The numerical method to solve these differential equations is the

finite difference method: the time is discretized, it proceeds in increments of (St. If

the positions, velocities, accelerations and other information describing the system

are known at a given moment of time t, then these quantities can be approximated

at a later time (t + 6t) by their Taylor expansions around time t:

F(t + 6t) 2 F(t) + 6t27(t) + %6t2&‘(t) + %6t35(t) + - ~-

-0

17(t+ 6t) = 27(t) + we) + $531)“) + . ..

5(t + 5t) 2 6(t) + 6t5(t) + . --

-o

b(t+6t) : 5(t)+---



to a certain degree of accuracy. This accuracy is controlled by the size of the time

interval 6t, the number of terms used in the expansion and the integration-scheme

which generates the quantities of the future from the quantities of the present and

the past. The quantity 5 in the expansion above denotes the third time derivative of

the position. The Taylor-expansion does not necessarily have to go this far nor does

it need to stop here. Different integration schemes might use different numbers of

terms from the expansions, or might combine the same terms differently.

One of the simplest and probably the most widely used scheme was developed

by Verlet [2]. Let us take the future and the past Taylor expansions of the positions

keeping the first three terms:

m + (St) = m) + 6t17(t) + éafiae) + - - -,

1

F(t —- 6t) 2 F(t) — 6t'17'(t)+ 56t2é‘(t) + - --

By adding together these two equations, after rearranging we obtain:

F(t + 6t) = 2F(t) — F(t — 6t) + 6t2d'(t). (1.1)

As we can see, the future position is calulated in this scheme based on the present and

the past position and the present acceleration. When simulating a particle ensemble

on the computer this calculation is performed for each particle. Then the particles are

moved to their new position. At the new positions the forces acting on the particles are

calculated with the knowledge of the particle-particle force function and the external

field, if that is present. From the forces the accelerations at these new positions are

determined by (‘1',- = Iii/mi. Now we have all the information to take a new step

in time, the iteration cycle is therefore completed. The velocity is not present in

the Verlet-scheme, as we can see. If velocity dependent quantities are needed to be

calculated — such as kinetic energy —, then the velocities can be obtained by:

_ m + 6t) — m — 6t)
6(t) _ 25: . (1.2) 
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Figure 1.1: Verlet scheme represented on the lozenge diagram. The skeleton of the

diagram is on the left: position, velocity, acceleration and third time derivative of the

position. The Verlet scheme is in the middle. The velocity scheme is on the right.

Unfortunately the main advantage of the Verlet-scheme - its simplicity — causes the

method to be not very stable numerically: a small term - 6t2c'i — is added to the

difference of two large terms — the positions. Large numbers of other, more sophisti-

cated and more complicated schemes were developed in the past decades in order to

give more precise and numerically more stable results. Obviously the price we have

to pay for this higher accuracy is more computing time; therefore a careful balance

must always be found between the quality of results and the calculation time.

The different integration schemes can be best understood and graphically visual-

ized with the so called lozenge diagram. [3] See Figure 1.1. The framework of the

diagram is shown on the left. The different columns represent positions, velocities,

accelerations and the third derivatives of the positions at consecutive moments in



time. The time axis is vertical and it points downward. The present is labeled by

zero in the figure. Every second column is shifted by half of the timestep 6t. The

quantities in these columns — marked by full circles — represent values in the middle

of the time intervals. Calculating a physical quantity at a given point in a column

using left neighbors means differentiation with respect to time: 211/2 2 (r1 — ro)/6t,

using right neighbors means integration in time: n - r0 = owl/2. The diagram in

the middle represents the Verlet integration scheme given by equation (1.1). The

numbers next to the edges of the graph give the weights of the terms in the formula.

Moving from the acceleration column to the coordinate column means integration in

time twice resulting in a (W factor. The velocity elements - the second column -

are represented by empty circles because the velocity is not present in this scheme.

The rightmost diagram corresponds to the equation (1.2). This formula calculates

the velocity at the endpoint of a time interval using two next nearest neighbor posi-

tions. These types of velocity points are represented by empty squares on the lozenge

diagram. Alternatively it is possible to calculate the velocities in the middle of the

intervals using two nearest neighbor positions. This graphical representation helps us

to understand and remember this and other integration schemes.

We need to be extremely cautious when we program integration schemes on com-

puters. Floating point arithmetic is not associative contrary to the common assump-

tion. When adding quantities very different in size — as in the Verlet scheme - small

terms can easily get lost next to the large ones. The smaller a term is, the more

computation it usually requires to be determined. Losing these terms is not just a

waste of effort, but it can also modify the physical results of our simulations signif-

icantly. As a rule of thumb for coding, we should always group together variables

holding quantities similar in magnitude before performing operations on them in or-

der to minimize the loss of precision. Other simple but important rules, methods

and integration schemes are described in [4] — [8]. At the present time Molecular



Dynamics simulations of atomic systems typically use 10‘14 — 10‘15 second for the

timestep 6t, perform 1 to 10 million iterations per particle reaching the timescales of

nanoseconds. The size of the simulated system largely depends on the computer in

use. The largest supercomputer simulations today can contain 100 million particles.

The peak performance of these simulations is in the range of 10—20,000 atomiterations

per second per processor [9] -— [12]. This performance is still not sufficient to study

atomic or molecular systems on long diffusive timescales.

1.2 Monte Carlo method

Monte Carlo type methods were used long before the development of electronic com-

puters, the roots of these techniques date to centuries back. Ingenious mechanical

devices — for example the Galton gasket - were used to study randomness and dis-

tributions of events. Random numbers generated by real physical phenomena were

tabulated in tables and used by researchers in different fields. These tables are acces-

sible even today in electronic or other forms readable by computers [13]. An analog

mechanical Monte Carlo trolley was designed by Fermi [14] to simulate the diffusion of

neutrons in nuclear reactors and other devices. With the advent of digital computers

the Monte Carlo method became one of the most important simulation methods in

science. We discuss random number generation by computers in a later chapter; here

we describe the physical aspects of the method.

When we simulate a set of particles using Molecular Dynamics, we follow the time

evolution of the particles. As we monitor them in time, we collect information about

the behavior of the ensemble and we can “measure” physically important quantities,

for example kinetic energy. These observables are our main goals in computer simula-

tions. However we can employ other averaging methods. The different configurations

of the particle system do not necessarily have to be consecutive in time reflecting



the true time evolution, they can be randomly generated independent snapshots of

the system. This kind of averaging method is perfectly appropriate, if we are inter-

ested only in configurational properties in equilibrum, such as spatial distributions

but not the time dependent dynamics. The “Monte Carlo method” is therefore the

generic name for any of these types of techniques, sampling the configurational space

randomly. Traditionally only the configurational space was sampled, however more

advanced Monte Carlo methods incorporated momentum also as we will see in the

case of the Lattice-Gas model. In this model the real space configurations visited

after each other are not independent anymore, they represent a probabilistic time

evolution of the ensemble. The “time” however is not the real physical time but the

series of timesteps taken by the simulator. The relation between the real time and

the simulation time is usually not known. This is generally the major drawback of

any Monte Carlo method. The equivalence of the Molecular Dynamics type time

averaging and the Monte Carlo type ensemble averaging —- either configurational or

phase space averaging — is one of the most fundamental questions in statistical and

computational physics. Usually this equivalence holds true, but there are exceptions.

When should we use Monte Carlo methods instead of Molecular Dynamics? When

for example the microscopic dynamics of the system is not known, or it is known but

computationally expensive to simulate it. Or we just want to simulate random pro-

cesses. The question of the true randomness in Nature versus our limited knowledge

is rather philosophical, we do not address it here.

The first and most referred application of the Monte Carlo technique on digital

computers was performed by Metropolis et al. [15]. Within the framework of the

Monte Carlo method the acceptance probability of a configuration was derived and

used successfully for the first time. Since then this special case of the Monte Carlo

technique is called the Metropolis algorithm or Monte Carlo importance sampling,

or because of its wide use, mistakenly simply Monte Carlo. We should keep in mind
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Figure 1.2: The Metropolis acceptance function at two different temperatures T1 and

T2, where T1 is the lower one.

that any method using random sampling can be called a Monte Carlo method. It

can sample only the configuration space, but in the general case it might sample the

full phase space also. The Metropolis algorithm is just one special recipe to accept

or reject a newly generated state or configuration based on its Boltzmann weight rel-

ative to the old state or configuration. If the energy difference between the new trial

and the old configuration is AE, then the new trial is accepted with a probability of

earp(—AE/kT), where k is the Boltzmann constant, T is the temperature. If AB is

negative, the new state is always accepted. This acceptance function is shown in Fig-

ure 1.2. for two different temperatures T1 and T2, where T1 < T2. If the temperature

is low, then the acceptance probability is also low. At zero temperature only those

steps are accepted which decrease or at least do not increase the energy. At infinitely

high temperature every step is accepted independently of the increase or decrease in



energy. The heart of the MetrOpolis algorithm is that a new state is generated from

the old one by a small random modification. This gives it its efficiency. Generating

a completely new configuration each step would require large amount of calculation,

although certain types of simulations might need this kind of sampling. This step

by step simulation of the particle system is stochastic as opposed to the completely

deterministic path in the case of Molecular Dynamics. If this evolution simulated

by the computer is interpreted carefully, it can give information about the true time

evolution of the system, but we always have to remember the probabilistic nature of

the Monte Carlo methods when studying the real physical world. Furthermore very

often physically forbidden steps are taken in Monte Carlo simulations, for example a

particle is removed from inside the bulk of a fluid. This is clearly impossible in the

real world. However we should not attribute physical meaning to one single event like

this, useful information about observable quantities are collected through statistical

averaging. Nonphysical steps in a Monte Carlo simulation usually help to reach equi-

librum quicker than in a fully realistic simulation. On the other hand incorrect use of

these steps might drive the whole simulation to a wrong track. There are no general

rules, only computer experiments can decide about the validity of a given type of

simulation step.

1.3 Computational Fluid Dynamics

In the framework of Computational Fluid Dynamics the gaseous or liquid substance

in the question is described by continuous scalar and vector fields such as density,

temperature, pressure, velocity. In the general case these physical quantities may

change in time as well. Depending on the exact physical properties of the fluid —

compressibility, viscosity - and the external forces and boundary conditions, very

different physical laws and their equations must be applied. General treatment of the



problem is practically impossible. The most important class of equations in this area

of physics is the Navier—Stokes equations. In the case of incompressible, viscous flow

it takes the following form:

017 l

— + (27, V)27 : ——Vp + VA17.

at p

Because of the incompressibility the continuity equation will be:

V17 2 0,

where 17 2 17(77, t) is the velocity vector field, p = p(17, t) the pressure, p = p(f', t) the

density scalar fields, V the viscosity of the fluid. The formal scalar product (17, V) is

the differential operator

+ 3+ 3
“yay Uzdz

018—3:

acting on every component of 27. Analytical solution is possible only for very special

geometries and boundary conditions. In engineering, enormous amounts of compu-

tational power are spent in solving these equations numerically, and a huge amounts

of manpower are invested in the development of these numerical methods. The ma-

jority of these methods are basically finite diflerence type numerical techniques. In

real engineering problems the shape of the space where the physical quantities are

calculated is usually arbitrary and lacks any symmetry. Orthogonal — cartesian, cylyn-

drical, spherical — discretization of the space is usually rather impractical; nonregular

meshes adapted to the geometry of these problems are used instead. The difference

operators might become very complicated on these grids, but still significant compu-

tational gain can be achieved compared to the orthogonal lattices. The techniques of

using nonregular meshes or grids are commonly called finite element methods, causing

general confusion with the name of finite difference methods. These finite element

methods represent a very large field in numerical engineering today [16]; the detailed

discussion is impossible here.
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The Navier-Stokes equations have been solved for a large number of porous ma-

terial geometries with fluids inside them under a broad range of physical conditions

[17]. One major question is the physical validity of these solutions at different length

scales. Computational Fluid Dynamics is definitely applicable down to the 1 mm —

100 micron range, but it surely fails at the 100 nanometer scales, where the world be-

comes truly atomistic. No simple answer can be given in the range between these two

limits, fluid properties and external conditions can modify the physical behavior sig-

nificantly. This intermediate length scale is not accessible to the methods described

above, Molecular Dynamics cannot reach it efficiently on today’s computers, and

continuum fluid dynamics is not valid here. The Lattice-Gas method was developed

in the effort to bring particle based simulation techniques and continuum methods

closer.

1.4 Lattice-Gas method

The early history of the Lattice-Gas and other related discrete methods cannot be

traced back in time precisely. One of the simplest version of this model was con-

structed and studied in the seventies by Hardy, de Pazzis and Pomeau [18], and it

has been called the HPP model since then. In this model, pointlike particles move

on a two dimensional square lattice, jumping one lattice unit in one time step in a

synchronized way with each other. When two particles collide frontally they scatter

away from each other perpendicular to their original direction. When they collide

at a right angle, they proceed in their original direction without interaction. After

long investigation of this model, it turned out that it does not recover the results

of the Navier-Stokes equation perfectly, and the simulation results depend on the

orientation of the lattice. After these discouraging results the model was abandoned

and forgotten for about a decade. Due to the work by Wolfram [19] in the field of

11



Cellular Automata research, the Lattice-Gas model was rediscovered in 1986 by Frish

et al. [20], but this time on a triangular lattice. This version of the model became

known by the names Hexagonal Lattice—Gas (HLG) or Lattice-Gas Cellular Automata

(LGCA). The underlying triangular lattice plays a very important role: due to the

hexagonal symmetry, the Navier-Stokes equation is recovered correctly from the mi-

croscopic collision rules of the particles. Furthermore the results of the simulations are

independent of the orientation of the lattice. Due to the correct physical predictions

by the model and the high computational efficiency, it suddenly became extremely

popular.

Let us briefly review the Lattice—Gas model at the microscopic level. The pointlike

particles take one step of a lattice unit at every timestep simultaneously. At any

moment no two particles moving in the same directions are allowed to occupy the

same lattice site: no two particles are allowed to occupy the same phase space point.

Particles traveling in different directions however are allowed to be at the same site.

There are six different directions at every lattice site pointing to the six nearest

neighbors of that site, therefore a maximum of six particles can occupy each site.

The 64 possible occupation states are shown in Figure 1.3. There are 64 possible

site states, because every direction can be in two states: it can contain a particle

or it can be empty, hence 26 = 64. For practical reasons the directions are labeled

counterclockwise from 0 to 5, with the zeroth direction pointing to three o’clock. The

binary representation of the state table from Figure 1.3 is shown here:

000000 000001 000010 000011 000100 000101 000110 000111

001000 001001 001010 001011 001100 001101 001110 001111

010000 010001 010010 010011 010100 010101 010110 010111

011000 011001 011010 011011 011100 011101 011110 011111

100000 100001 100010 100011 100100 100101 100110 100111

101000 101001 101010 101011 101100 101101 101110 101111
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Figure 1.3: The 64 possible states of a site in the Lattice-Gas model. The empty

circles represent the site itself, the full circles represent the particles moving out

from this site. The state in the top left corner represents the completely empty site,

the bottom right corner represents the completely full site, occupied by six particles

moving out in the six possible directions.
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110000 110001 110010 110011 110100 110101 110110 110111

111000 111001 111010 111011 111100 111101 111110 111111

The lowest — rightmost — bit is the zeroth bit. This bit represents a particle moving in

the zeroth direction. If this bit is 1, then there is a particle moving in this direction,

if this bit is 0, then there is no particle - or in other words there is a hole — moving

in this direction. The decimal representation of these numbers is naturally:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 . . . . 22 23

24 . . . . . . 31

32 . . . . . . 39

40 41 . . . . 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

From the binary representation we can see that a lattice site is represented by six bits.

The Lattice—Gas simulation is performed by manipulating these bits. Every iteration

cycle is executed in two steps as follows:

1. Move the particles in their original direction by one step.

2. Resolve the particle collisions.

The collisions are resolved using the same state table shown in Figure 1.3. As we

see some of the states in the table are labeled by arabic numbers. Three two-body

collisions are labeled by 2, two three-body collisions are labeled by 3, and three four-

body collisions are labeled by 4. The other states are not labeled. The collisions

are resolved in the following way: if a state results in a particular label, then it is

switched to another labeled state of the same arabic number with equal probability in

the case when there is a choice. For example in the case of a frontal two-body collision
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—- labeled by 2 ~ the particles scatter with a 60 degree right twist or with a 60 degree

left twist with 50-50 percent probability. In the case of the symmetric three-body

collisions — labeled by 3 in the table — the state is always switched to the only other

symmetric three-body state, meaning that the particles simply bounce back in the

directions from which they originally came from. The four-body collisions — labeled

by 4 — are completely analogous to the two body collisions, the probability of the

left or right twist is 50-50 percent. All the other unlabeled states remain unchanged

during the collision resolution, the particles in these interactions simply do not scatter

at all. Mass — the number of particles — and momentum is conserved in each type of

collision. It is easy to see that the state table together with the transition rules — and

therefore the whole Lattice-Gas method itself — remain invariant under the exchange

of the particles and the holes.

Several modifications and extra features have been added to the basic Lattice-

Gas method during the past years [21], [22]. The power of these methods lies in

their computational simplicity from the viewpoint of the computer: the language of

physics is translated into the language of bit operations and Boolean logic, where

computers work the best. One of the most efficient Fortran implementations of the

simple Lattice-Gas model and its performance is given in [23]. As the extra features

are introduced into the model, the elegant simplicity and therefore the computational

efficiency easily gets lost.

1.5 Continuous versus discrete methods

In the previous sections we have reviewed the most important types of simulation

techniques. Computationally all these techniques can be divided into two classes

based on the underlying arithmetic used in the simulations: continuous or discrete, —

in the language of the computers: floating point or integer type. Molecular Dynam-
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ics and Computational Fluid Dynamics are traditionally continuous methods. Monte

Carlo is a generic framework algorithm; it can drive both continuous or discrete simu-

lations. Lattice-Gas is a completely discrete method. Historically the largest class of

mathematical methods used in physics is the class of differential equations, for exam-

ple Newton’s equation of motion, the Maxwell equations, the Schrodinger equation.

These equations contain continuous space, time and variables. When we solve these

equations numerically on the computer, we often forget about the conflict between the

continuous nature of these models and the discreteness of our machines. The floating

point numbers and operations offered by the digital computers are just approxima—

tions of the real quantities and functions we need. For example a simple conversion

is already problematic between decimal and binary number systems, because these

two number systems are incompatible. Two number systems are called incompatible,

if their base numbers have prime factor(s) not present in both base numbers. In our

case 10 = 2 X 5, therefore 5 is a prime factor present in only one of the bases. Due to

this fact, some of the decimal numbers with finite length would be equal to infinitely

long periodically repeating binary numbers. The decimal number 0.1 is equal to the

0.0mm binary number with the last four digits repeating infinitely. The Opposite

direction, binary to decimal conversion however will always produce finite sequences

from finite sequences of digits. Because in our computer we have only finite amount

of storage to hold the bits, this infinitely long binary sequence will be cut at some

point. To demonstrate this, let us run the following program:

X = 0.005

WRITE(6,*) X

After storing the decimal number 0.005 in variable X, and writing it back to the

screen, we get the not very surprising result: 4.9999999E-3. The number 0.005

is of course just one of the many decimal numbers producing this phenomena. In-

terestingly not every fractional decimal number behaves like this. For example the
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decimal number 2.1 is returned correctly by the program above, altough it is not

representable in binary form using finite number of bits. On every computer there is

a large set of decimal numbers which will not be recovered correctly after storing and

simply retrieving it. The situation gets worse when we perform operations - addition,

multiplication — on these numbers. After one single multiplication we might already

start losing precision. The code

X = 2.1

Y = X*X

WRITE(6,*) X,Y

will produce 2. 100000 and 4.409999 as output. When we solve differential equations

or other continuous mathematical models, we constantly struggle with the numerical

error trying to reduce it.

There are special purpose analog computers and devices — for example operational

amplifiers — operating on continuous quantities, but they are far less flexible and uni-

versal than our digital programmable computers. There are theoretical models for

continuous computation for example the UMRAM (Unit Multiplication Random Ac-

cess Machine) [24], where the access, multiplication and addition of infinitely precise

quantities are performed at unit cost. However this model still has to be implemented

in hardware, if that is physically feasible at all.

There are completely discrete — discrete space, discrete time and discrete state

— models: in mathematics for example the Cellular Automata models, in physics

the spin models such as the Ising model. These two particlular classes of models

are fundamentally equivalent to each other, they are just the result of two slightly

different approaches — the approach of the mathematicians or computer scientists,

and the physicists -— to describe the same reality. This class of models can be ex-

actly implemented on today’s digital computers without the loss of any precision.

Furthermore the computational efficiency of these discrete simulations is far better
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than the efficiency of the continuous simulations, because the underlying arithmetic

is integer type instead of floating point. The fundamental floating-point operations —

addition and multiplication — can take 3 to 5 times more time on a typical computer

today than an integer operation. With additional programming techniques — look-up

tables, bit manipulation the performance of discrete simulations can be increased

even further.

Can we apply these efficient discrete techniques in the field of atomistic fluid sim-

ulations using lattice resolutions finer than in the Lattice-Gas? This thesis hopefully

will give a convincing yes answer to this question. However we do not assume or claim

any discreteness of the physical world at the level of atoms and molecules. We just

simply apply discrete simulation and numerical techniques learned from other fields

[25] in order to increase computational performance in this field.
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Chapter 2

Modeling fluids

2.1 Introduction

In this chapter we introduce the simplest version of our model. The underlying

lattice and the particles will be defined first. Along with the physical results the

computational implementation will also be also explained. Computer codes are still

very often neglected in scientific papers. There are only a few books written for

physicists by physicists [4] — [8]. In these books the emphasis is naturally placed on

the physics, not on the programming aspects. Scientists - with the obvious exception

of computer scientists - usually do not have deep formal education in programming.

Good coding is supposed to be picked up when doing real science. Graduate students

are often puzzled by other people’s code or struggling with the mysterious behavior of

not very well-written and documented programs. It is not easy to turn this mystery

and misery to mastery. In the hope that someday somebody will read this work and

find an idea or a solution to a programming problem, several code fragments will be

included in the text with explanations.
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Figure 2.1: Circular objects with different radii on a two dimensional square lattice.

The radii are 4.0, 6.0, 8.0, 10.0, 10.1 and 10.9 lattice units respectively.

2.2 The basic model

The simplest form of our model consist of a two-dimensional square lattice and parti-

cles on this lattice. The particles are not simple points anymore as in the Lattice-Gas

method, but they have structure. The simplest structured object in this world is a

circle with a given radius R measured in the lattice units a. Figure 2.1 shows six

“circular” objects with the following radii: 4.0, 6.0, 8.0, 10.0, 10.1, 10.9. Notice that

the radius is not necessarily an integer number: diagonal points — points that are

on the edge of the circle between the horizontal and vertical diameters - can join or

leave the circle when the radius is changed by less than a lattice unit. These circles —

especially the small ones — are not very smooth, they have ragged edges. One can say

they are not circular shaped at all. How can we expect to obtain smooth results from

a rough model like this? This is one of the most critical questions in the applicability
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Figure 2.2: A three dimensional spherical object with radius 3.5 lattice units on a

simple cubic lattice.

of the whole model, we return to it later when discussing the physical results. Besides

the square lattice, triangular lattice will also be used in two dimensions and simple

cubic lattice in three dimensions. A “spherical” object with radius 3.5 on the simple

cubic lattice is shown in Figure 2.2. Due to the finite size of the particles, a collision

can be non-central with a nonzero impact parameter. The momentum conservation

can be satisfied on a discrete lattice only in the case of special initial conditions and

impact parameters. For example, when two particles collide horizontally or vertically

on the square lattice with an impact parameter exactly equal to half of the particles’

radius. However an arbitrary collision would produce momentum vectors generally

not representable on the lattice. Different lattices might have a different number of
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special cases when the momentum might be conserved, but no lattice can satisfy the

momentum conservation in the case of every possible collision.

In our model, when two particles collide, new momentum vectors are generated

completely randomly from a set of allowed directions on the lattice. Therefore the

momentum conservation will be violated in a single particle-particle collision, but

it might remain statistically valid for the ensemble of the particles, or for the time

average of one particle’s collisions, or for the combination of these two averages.

We use two different schemes to simulate the paths of the particles between two

collisions: random walk and ballistic motion. In the case of random walk a new di-

rection is generated randomly at every timestep for each particle. A newly generated

direction is statistically independent of a previous direction for any given particle.

When two particles collide with each other during their walk, the originally chosen

step by the initiating particle will be rejected as a geometrically forbidden step and

this particle will not move at this timestep. The direction generated at the next

timestep might coincide with the previous direction which was just rejected. In this

case it will be rejected again, unless the other particle moved away in the meantime.

In the case of ballistic motion the particles will remember their momentum direction

between two timesteps. They will take their memorized step if it is allowed geometri-

cally. However if a collision happens with another particle or with some geometrical

constraint, the colliding particle stays at rest for one timestep and a new direction

is generated and stored in the particle’s memory to use in the next timestep. In

the simplest case of this model the different momentum directions are statistically

independent and have the same probability. This applies for both the random walk

and the ballistic motion. Nonequal probability weights for the different momentum

directions can be introduced into the model also.

Small example simulations are shown in Figure 2.3 for square and triangular lat-

tices and for random walk and ballistic motion.
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Figure 2.3: Two dimensional example simulations for square and triangular lattices.

The underlying lattices are 512 by 512, the radius of the particles is 12.0 lattice units.

The particles are shown with a smaller radius for clarity. The full circles represent

the initial positions of the particles, the empty circles represent the final positions.

Every particle took 5000 steps in each simulation by random walk in the left two

figures and by ballistic motion in the two right figures. The number of particles is

250 in the top two and 200 in the bottom two figures. The paths of several particles

are shown by continuous lines.
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The word “timestep” always refers to the ensemble timestep, if not stated other-

wise. In every ensemble timestep each particle is updated once. The initial particle

configurations are generated randomly. Because of this random initial condition the

ensemble update is performed in the same order on the particles at every timestep

without introducing specific pattern into the motion. Random permutations of the

particles between updates might be required only in the case of special geometric or

pattern forming initial conditions.

2.3 Computational digression

Before implementing our model, we are going to discuss three computational subjects

which will play an important roles in the performance of the implementation. These

are the following: the order of indices when handling multidimensional arrays, binary

arithmetics and random number generation. These topics are still not very well

known to physicists despite their impact on the performance or the reliability of the

simulation. These “tricks” can be useful in other areas in computational physics.

2.3.1 Order of indices

Large two and three dimensional arrays will have to be handled in our simulations.

When manipulating these arrays, we use nested loops with different depths. Does

the order of indices matter in these loops? To be concrete let us ask the following

question: Which one of the following program fragments will be executed faster,

version A or version B? (Let us assume that a two dimensional matrix A has to be

filled by a numerical constant 7r.)

C Version A

D0 I=1,1000

DO J=1,1000
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A(I,J) = 3.1415926 !first index is outermost

ENDDO

ENDDO

C Version B

D0 I=1,1000

D0 J=1,1000

A(J,I) = 3.1415926 !first index is innermost

ENDDD

ENDDO

Our first answer is that they will need the same amount of time to finish, because

the response time of the semiconductor memory device in a given machine is always

the same independently of the location of the requested memory element. This is

why it is called Random Access Memory (RAM), emphasizing that we can access its

contents in any random order, the answer will always take the same time. (This is

in contrast with the linearity of magnetic tapes for example, where the access time

strongly depends on the position of the information on the tape.)

However a gap opened up between the speed of the Central Processing Units

(CPUS) and the RAM memories. Typical CPUs today run at 300-800 MHz, memory

chips on the other hand only at 133—100 MHz or less. This is due to the very intensive

development on the CPU market. It became clear already in the mid-eighties, that

the communication speed between the CPU and the memory is the crucial factor in

the performance of a computer, not the raw frequency of the CPU. This phenomenon

became known as the von Neumann bottleneck: the processing unit is not fed fast

enough, it spends most of its time waiting for data from the memory. The majority

of computers today are designed based on John von Neumann’s concept [26], namely

one active device — the CPU — is acting on one passive device — the memory. These are

the type of machines sitting on almost every desk, and they suffer from this narrow
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Figure 2.4: Intermediate cache memory between the CPU and the main memory.

Only one level of cache is shown, but usually more than one is implemented in today’s

hardware. The other levels would function in the same way.

bandwidth constraint. There exist machines based on different concepts: massively

parallel machines [27] or other exotic not CPU based constructions free from the

bottleneck. These machines are ironically called “non-von” machines. Ironically

because the theory of Cellular Automata used in the construction of the majority of

these parallel machines was developed by von Neumann himself and Stanislaw Ulam

[14, 28].

The solution to this bottleneck problem was the introduction of intermediate

memory, the so called cache memory between the CPU and the main memory. See

Figure 2.4. The cache runs at a faster speed than the main memory, but because

of its fast speed, it is also more expensive. Due to the higher price it is smaller

in capacity than the main memory. Information commutes in chunks between the
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memory and the cache. The exact size of this unit largely depends on the exact type

of the hardware and it is called by several different names at different levels of the

hardware: line, block, page, but they all function similarly. As the CPU processes

data or executes program code, the currently used block is transferred from the main

memory to the cache giving faster access for the CPU. Transferring a block — which

is a continuous series of data words — from the memory to the cache is performed

faster than moving these units individually. From the cache these units are ready to

be accessed individually by the CPU, but at the faster speed of the cache. This is

the main idea behind memory caching. Unused inactive blocks are moved back from

the cache to the main memory to give room for other blocks.

Today’s personal computers have two levels of cache, workstations usually have

three. The level closest to the CPU — called level one (L1) — is integrated on the

CPU chip itself, and runs at the same speed. The size of the L1 cache is typically

8—64 Kbyte, the L2 is 1-2 Mbyte, but significant differences may exist depending on

the exact design. This hierarchy of intermediate memories is able to speed up the

execution of a program significantly, if the program accesses the data more linearly in

the memory. In this case a block already in the cache contains the next piece of data.

A new block must be fetched from the memory only when the boundary of the block

has been reached. A program of this linear access type is called cache-friendly. The

cache can contain several different blocks originally not necessarily consecutive in the

memory. If the consecutive memory accesses are completely random in time a new

block has to be transferred each time, resulting no gain in performance with respect

to the cacheless design. A program of this type misses the cache often, giving high

miss to hit ratio. This complicated memory managing process is usually controlled

by hardware only, no intervention is required or even possible by the programmer

[30, 31]. However with a little extra care we can make our programs cache-friendly

and therefore more efficient. But how?
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Turning back to the original matrix filling question, the answer is that version B

will be executed about 3-5 times faster than version A depending on the frequency

ratio of the CPU and the main memory in the machine. Why is version B the winner?

When FORTRAN was designed, engineers had a thorough education in linear algebra.

A matrix is usually pictured as a collection of column vectors, so it was natural to

store a matrix as a linear sequence of the consecutive columns in the one-dimensional

memory. Vertically neighboring elements in the matrix are stored next to each other

in the memory, horizontal neighbors on the other hand can be far from each other

depending on the size of the matrix. This storage scheme is called column—major

ordering. In version B of our program the first index - the row index — runs faster,

because this is the index of the inner loop. The memory access is therefore linear

cache-friendly, resulting in good performance. See Figure 2.5. In version A matrix

elements far from each other in memory are accessed, a block already in the cache

will be missed in each new access, forcing one to bring a different block into the

cache, not utilizing the faster speed of the cache. When coding array manipulation

in FORTRAN, we should remember the principle of triple-F: “in Fortran the First

index runs Fastest”, therefore the first index must be the index of the innermost loop.

However there are certain operations, for example the transposition of a matrix, when

the indices will always be in the eflicient order on one side of the equation but in the

inefficient order on the other side, no matter which order we use:

C Matrix transposition

D0 I=1,1000

D0 J=1,1000

A(J,I) B(I,J) !Left side 0K, right inefficient

or

A(I,J) B(J,I) !Right side 0K, left inefficient

ENDDO
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Figure 2.5: Accessing elements of a two dimensional matrix which was stored using

column-major ordering. Top: sequential, cache-friendly and therefore fast access,

equivalent to version B of the code. Bottom: nonsequential, cache-unfriendly slow

access, equivalent to version A.
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ENDDD

There are advanced transposing and ordering algorithms developed for operations

like this, but they are beyond our scope [32]. Other important well known and well

tuned algorithms —- like the Fast Fourier Transformation — can be redesigned for this

new hardware with cache memory, achieving even higher performance [33]. Simple

fundamental concepts and techniques are explained in [34] — [37].

More modern programming languages like PASCAL, C and others developed after

FORTRAN had chosen the row-major ordering to store arrays. The reason behind

this decision was the ignorance of linear algebra by modern time programmers. When

they write nested loops they simply pick the alphabetical order for both the loop

indices and the array indices, which gives the inefficient memory access in the case

of the FORTRAN type column-major storage. The switch of the ordering fixes this

problem, but introduces other difficulties in multi-language projects. When a matrix

is passed between subroutines or functions written in languages using different storage

order, the matrix appears transposed. Because transposing is exactly what we want to

avoid, the same algorithms must be coded in a transposed way in the two languages.

This will make interlanguage translation — either automatic or manual - difficult and

error prone.

2.3.2 Binary arithmetic

Manipulating numbers at the binary level is generally regarded as the lowest and

dirtiest level of activity even by programmers. Physicists and mathematicians try to

program the computer at a high abstract level, not thinking too much about the cost

and the efficiency of the calculation. (“Mathematicians don’t understand the cost

of operations.” D. Knuth. By mathematicians he refers to everybody who is not a

computer scientist.) This tendency is perfectly normal, if the calculation takes much

less time than programming the calculation itself. On the other hand if the simulation
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lasts much longer than the programming, then it is worthwile to investigate faster

techniques, even if they are not obvious to us, but are more efficient for the computers.

Changing the underlying arithmetic of a simulation from floating point to inte-

ger can yield significant speed-up, as we mentioned earlier. A processor typically

performs an integer operation (addition, subtraction, bit manipulation) in one clock-

cycle, while floating point addition or subtraction takes two, three or even more

cycles. Integer multiplication usually requires longer time than addition. Similarly,

floating point multiplication takes more time than floating point addition, and floating

point division is slower than floating point multiplication. Integer division or modulo

calculation however might take even longer than floating point operations, and the ex-

ecution time is strongly dependent on the operands. This operation therefore should

be avoided, whenever is possible. Integer division is usually not even implemented

in modern CPU’s instruction set, due to the complexity of this operation. Either

software function is used instead, or it is performed with floating point arithmetic.

An alternative to module for a special case will be given later in this section.

Now we will review how the integer numbers are represented in binary form and

how to operate on these numbers. We will use these methods when we implement

periodic boundary condition in our simulation or when we sort the particles into cells

inside the simulation box. The examples will be given using 8 bit numbers but only

for brevity. These methods will work analogously if the underlying numbers consist

of 16, 32 or more bits.

If only positive numbers are needed the values between 0 and 255 can be stored

in eight bits:

11111111 = 255 largest representable number

11111110 = 254

10000000 = 128
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01111111 = 127

00000001 = 1

00000000 = 0 zero

The first scheme to represent negative numbers beside positive ones was developed

very early for the first computers and it was called “one’s complement” representation.

The negative pair of a given positive number is generated by complementing all the

bits to their opposite values. For example the pair of +9 and —9 looks like this:

00001001 +9

11110110 -9.

As we can, see complementation works in the opposite direction the same way: +9

can be generated from —9 by flipping every bit in the binary form. The only problem

with this scheme is that it contains two zeros: the +0 and the —0:

00000000 +0

11111111
-0-

To correct this deficiency the “two’s complement” method was constructed by a little

modification of the one’s complement: after flipping the bits an extra 1 is added to

the result. The zero becomes a unique number, the fix point of this transformation:

00000000 original zero

11111111 after bitflip

100000000 adding 1 to the result.

Altough the highest -— ninth — bit became 1, it is simply thrown away, because we can

have only eight bits in a byte. When we use 16 or 32 bit long numbers this extra bit

is ignored similarly in the process. It is possible to catch this bit, but we do not need

it for our purposes. Our +9 and —-9 example will look like this now:
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00001001 +9

11110111 -9.

Interestingly this scheme works in both directions also. The best way to imagine

the two’s complement representation is the following: let us cut the list of signless

positive numbers from 0 to 255 into half at the midpoint between 127 and 128. Slide

the upper half (128-255) under the zero keeping the original orientation of the list.

The original upper half becomes the lower negative half:

01111111 = +127

01111110 = +126

00000010 = +2

00000001 = +1

00000000 = 0 zero

11111111 = -1 (was 255)

11111110 = -2 (was 254)

10000001 = -127 (was 129)

10000000 = -128 (was 128)

As we can see there are 128 negative and 127 positive numbers. The highest (leftmost)

bit became the sign bit: it is 0 for the positive numbers, and it is 1 for the negative

numbers. Generally, if we have n bits, then (2"'1 — 1) positive and (2”‘1) negative

numbers can be represented around the zero. When using 16 bits, the representable

interval is from —32, 768 to +32, 767, when using 32 bits it is from —2, 147, 483, 648 to

+2, 147, 483,647. The general purpose computers and programming languages today

always use the two’s complement representation. Complementation is defined for

nonbinary number-systems also. In this case the general name of one’s complement
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is radix-minus-one complement or diminished radix complement, the generalization

of two’s complement is called radix complement or true complement.

One more binary operation must be understood before our physical application,

namely masking bits out from a number. If for example only the five lowest bits are

needed from an eight bit long number, then the following bitwise AND operation will

give the required result:

01101101 source

00011111 mask

00001101 result

The original data is AND-ed with the mask which lets through only those bits from

the source where the maskbits are equal to 1. The other bits from the source, where

the mask is 0, are set to zero independently of their original value. The bits at these

positions were masked out.

Now let us turn to our physical application: a randomly walking particle moves

on a one-dimensional discrete lattice of 32 sites. How can we implement periodic

boundary condition? Let us label the lattice points starting from zero: 0,1,2,...31.

When the walker takes a step, the new position must be checked, and if it is outside

of the allowed range, it must be mapped back at the opposite end of the lattice. The

following integer variables and codefragment will perform this operation:

NS = 32 !size of the lattice defined

MS NS-1 !mask for bitwise operation

!some code can be here

NEHX = ... !new position is generated

IX = IAND(NEWX,MS) !periodic boundary condition applied

!more code can come here
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The function IAND is the name of the bitwise AND operator in FORTRAN. How does

this whole method work? If the walker wants to leave the simulation box on the right

side with a coordinate value 32, the

00100000 = 32 NEWX new coordinate

00011111 = 31 MS mask

AND --------

00000000 = 0 IX corrected coordinate

operation will bring it back on the left side with a coordinate of zero. The indexing

of the lattice points starts at zero as the leftmost lattice site. When the walker tries

to leave the box on the left with a coordinate value of —1, the same AND operation

as before will map it back to the allowed range on the right side:

11111111 = -1 NEWX new coordinate

00011111 = 31 MS mask

AND --------

00011111 = 31 IX corrected coordinate

This method works correctly even if the walker is allowed to jump longer than one

lattice constant when trying to leave the box: it will be brought back on the opposite

side of the box to the proper position. Mathematically this AND operation between

the mask — equal to (2" — 1) — and an arbitrary operand — the source — is a modulo

calculation: it calculates the remainder of the source when divided by 2" simply

keeping the lower n bits and deleting all the higher ones. This is a faster way to

calculate remainder than integer division, unfortunately it can be applied only when

the divider is integer power of two. These examples were given using 8 bit arithmetic,

but again the method works when using 16 or 32 bit arithmetic. In the case of two

or three dimensional simulation this periodic boundary correction must be performed

on each coordinate independently. The simulation box does not necessarily have
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to be square or cubic shaped, different dimensions can have different lengths. The

only requirement for the lengths is that they must be exact powers of two, and the

indexing must start from zero. The mask must be the length of the box minus one in

every dimension. The other traditionally used methods — if-then coordinate checking,

modulo arithmetic, look-up table — do not impose this size restriction on the box, but

they need significantly more time to execute compared to the bitwise AND which is

performed in one machine cycle. Furthermore when a Fourier transformation of the

simulation box is needed, power-of—two sizes will be clearly advantageous.

One more technique will be explained in this section; namely how to sort particles

into cells. The simulation box is often divided into smaller units called cells. The

particles are sorted into the cells based on their coordinates. This classification is

required when collecting spatial distribution data or when using the cell-list method

to simulate the system. (The cell-list method will be described in detail later.) The

question is the same as before: how to do it quickly? The answer is the same again:

by using bit manipulation. In the previous example the size of the simulation box

was 32. Let us divide this box into 4 cells of length 8 each. For better understanding

let us pick more than one particle with random coordinates from inside the box:

10:110 = 22 coordinate #1

00:110 = 6 coordinate #2

10:101 = 21 coordinate #3

The binary form of the coordinates are divided into two parts by the colon: a lower

and a higher part. This colon serves as a delimiter only for clarity, it does not hold

place and it does not have any mathematical function. The higher part tells which

cell the coordinate is from, the lower part tells the relative position within that cell.

There are 2 high bits giving 22 = 4 cells, and there are 3 low bits allowing 23 = 8

positions inside a given cell. The total number of bits is 5, resulting in 25 = 32 possible

positions, which was our original initial condition. The high part of the first and the
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third coordinate is the same, namely binary 10 , meaning that these coordinates are

from the same cell, the second cell. The high part of the second coordinate is 00, this

particle is in the zeroeth cell. The low part of the first and the second coordinate

is equal — 110 — : these two particles occupy the same relative position — the sixth

position — within two different cells. Generally the form of a number in any number

system - not only in binary — is a pathway: the highest digit tells us which main cell

the number is in. In the case of the binary number system we can choose between two

cells: left or right, zero or one. In the case of decimal system we can choose from ten

cells, from 0 to 9. The consecutive lower digits tell the position within the previous

cells with more and more precision. This process is shown in Figure 2.6. For clarity

only three bits are used instead of five as in the numerical example above.

By now we know it is straightforward to determine the lower part of a coordinate,

we just have to mask out the higher bits and keep the lower ones by using the proper

Inask:

10:110 = 22 coordinate #1

00:111 = 7 mask

AND ------

00:110 = 6 relative coordinate inside the cell

To extract the higher part of the coordinate we need a different treatment, because

a simple masking will leave the high bits in their original position, giving incorrect

result:

10:110 = 22 coordinate #1

11:000 = 24 mask

AND ------

10:000 = 16 wrong result

To fix this problem, we have to shift the final result to the right by three places.

37



 

000 001 010 011 100 101 110 111

  
 

Figure 2.6: The binary tree for three bits. Every three digit binary number at the

bottom is a path on the tree. A 0 bit means left, a 1 bit means right at the nodes

where the tree splits into smaller branches. The highest bit of the numbers tells to

which half the number belongs. The highest two bits locate the quarter, the highest

three bits the eighth.
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When shifting a binary number in either right or left direction the bits leaving the

number will be dropped (shifted out), bits entering at the other end will be filled with

zeros. Therefore there is no need for the initial AND operation shown above at all,

the bits not needed will be deleted during this shift:

10110 = 22 coordinate #1

SHIFT#1 01011 = 11

SHIFT#2 00101 = 5

SHIFT#3 00010 2 correct cell number.

These three shifts above can be written in one FORTRAN statement, and they will

be executed in one step in one CPU-cycle:

IC = ISHFT(IX,-3)

The ISHFT function needs two arguments: the variable to be shifted - which is our

original coordinate IX — and the number of shifts to be carried out. The shift is signed,

negative shifts move the bits to right, to the direction of lower places. Positive shifts

move the bits to left, to the direction of higher places. The incoming new bits have

zero value, the bits shifted out are lost. Several other types of shifts exist on different

CPUs, but this is the only type we will need. This kind of shift is usually called a

logical shift. The logical shift is nothing but dividing or multiplying by 2" where n

is the number of shifts. The lower bits lost during the right-shift give the reminder

in the division. These bits were not lost. We kept them when we masked them out

before the shift, as we did in this example.

The techniques described in this section are simple and very powerful. Contrary to

the common belief, bitwise operators are implemented in FORTRAN, and these tech-

niques are portable between platforms. Strictly speaking bit operators are not part

of the FORTRAN-77 standard, but after the Department of Defense recommended

inclusion into the language, they were implemented in a standard way. With the
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FORTRAN 90/95 version of the language these operators became a standard part of

the language.

2.3.3 Random number generation

Proper generation and correct use of random numbers are still very often in the center

of scientific arguments:

“My random number generator is faster than yours!”

“Yes, but my generator produces better random numbers!”

Can we generate real randomness with a completely deterministic computer? The

answer is clearly no, we can only mimic randomness.

The first generator was proposed by von Neumann [4, 39] and used first by

Metropolis [15]. This generator is a simple “square and extract” method: it squares

a four digit decimal integer resulting in an eight digit number and then it extracts

the middle four digits. This generator turned out to be rather poor, and failed many

important statistical tests since its first application. However the final physical re-

sults produced using this generator were correct in [15], and are still correct. The

question of randomness and the generation of it by deterministic computers turned

out to be one of the hardest questions in mathematics. How well can we mimic ran-

domness with a simple algorithm like this? Von Neumann’s own answer was not very

promising: “Anyone who considers arithmetical methods of producing random digits

is, of course, in a state of sin.” [39]. Several more sophisticated algorithms were

developed to generate pseudo random numbers since von Neumann’s generator. The

most widely used is definitely the linear congruental method. Let us generate a series

of integer numbers in the following recursive way:

xn+1 : ((123,, + 6) mod m, (2.1)

where m is the modulus, a is the multiplier, c is the increment. The very first
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starting value 1:0 is often called seed. The parameter m must be large in order to give

a long series of numbers. It is usually 232 on today’s computers to make the modulo

calculation efficient as we learned in the previous section. The critical parameter

is a. If it is chosen carefully, then the generator will walk through every number

between 0 and (232 — 1) before it starts to repeat itself, and the series of the numbers

will mimic randomness well. The most important criteria to determine a good value

for a are given in [39]. The generators on Digital and Sun workstations currently

use a = 69069. The value of c is not very critical, it is usually chosen to be 1 in

order to prevent the generator from getting trapped inside a loop that generates

zeros infinitely. Several generators that use diflerent parameters are given with their

limitations and capabilities in [13].

The starting value x0 simply tells the generator where to start its walk through

the numbers. In practice the generated integer numbers are mapped linearly into

the [0, 1) interval — inclusive on the left, exclusive on the right — by a floating point

division with 232. This final result is given back by the function through its name:

X = RAN(NSEED)

The floating point variable X will contain the resulting random number. At the same

time the integer seed is also modified. The modification of the argument by the

function is called side effect. This is the way the generator function remembers the

last random number between two function calls. It is not advisable to change the

seed at every call, but it is perfectly legal. However the “never change the seed after

it is initialized” rule is not true either. If our program is done with one simulation, it

can start a new one in the same run with a new seed, so the two simulations become

logically independent. To understand the generator better, we will now abuse it with

the following program by forcing it to take the 0, 1,2, . . .5 seeds systematically:

D0 I=0,5
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NSEED I

X RAN(NSEED)

WRITE(6,*) I,X,NSEED

ENDDD

Notice that variable I is not passed directly to the function RAN because that would

modify it as a side effect. Modification of the loop variable inside the loop is possible,

but not wise. The program will give the output:

0 0.0000000 1

1 0.0000160 69070

2 0.0000321 138139

3 0.0000482 207208

4 0.0000643 276277

5 0.0000804 345346

From this we can recognize that the multiplier a = 69069, the increment c = 1, and

the floating point random number is generated from the integer one by a division

with 232. If we do not force the generator as above, but instead we let it keep its

seed between calls, and at the same time we convert the integer random numbers to

binary, we will be able to see the pattern even more clearly. The program

NSEED = 0

D0 I=0,5

X = RAN(NSEED)

WRITE(6,*) I,X,NSEED

ENDDD

will generate the output:

0 0 . 0000000 1 00000000000000000000000000000001
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1 0.0000160 69070 00000000000000010000110111001110

2 0.1107408 475628535 00011100010110011000001111110111

3 0.7630801 -1017563188 11000011010110010011011111001100

4 0.1799780 772999773 00101110000100110000101001011101

5 0.9028781 -417135238 11100111001000110000010101111010

(The code above is not complete; the binary conversion is not included for clarity.)

The lowest — rightmost —- bits are not random at all, they alternate periodically. This

is due to eq. (2.1): from an odd number an even is generated, and from an even an

odd is generated. Therefore the other commonly used “always initialize the generator

with a large odd seed” is not true either. Even if we start with zero seed as above, only

the first one or two numbers will not be random, which cannot be very dangerous in

a large simulation. If we plan to use the integer random number at the level of bits,

then the lowest ones should be avoided. For this special purpose there are generators

that produce random bits at every place [13]. However these bit generators can be

used efficiently only if the interval we need to cover is an exact power of two. Some

parameters such as the size of the simulation box will always be exact power of two

in our simulations, but others —— for example the number of particles, or the number

of allowed particle steps on the lattice — might be arbitrary integers. Therefore a

linear “stretching” of the [0, 1) interval is used: the floating-point random number is

multiplied by a proper constant. This is the only floating point operation currently

in the core of the simulations. According to the specifications, the generators are

not allowed to give 1.0 as a result. However, depending on the exact properties of

the hardware and the software, some generators may function incorrectly. The RAND

generator from [13] on the DEC Alpha processor using the FORTRAN-77 compiler

produces 1.0 once in about every 30 — 50 million calls. It is like getting a seven when

rolling a six sided dice! If we are lucky, our simulation program stops with a fatal

error message. If we are not so lucky, it will keep running, producing strange or
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unphysical results. The other generators: RAN1, RAN2 from [13] and the RAN intrinsic

function built into FORTRAN—77 on the Alpha processors have worked correctly so

far.

When performing serious calculations, not only the seed, but also the generator

must be changed periodically. If the results are invariant under these changes, the

Monte-Carlo computational side of the simulation is correct. Conceptual or physi-

cal problems however may still exist. Changing the generators requires editing and

recompiling of the code. But the seed should never be “wired into” the code as is

commonly practiced. If a simulation is performed using the same physical parameters

— size of the box, number of particles — and the same seed, the results of different

runs will be exactly identical, leading to wrong conclusions. The best practice is to

use the following or similar input data in our parameter files:

T GENSEEDFLAG ngenerate your own, F read next line

-23986 NSEED manual seed

This is a snip from an actual parameter file read by the simulation programs. The

input parameters are on the left, the names of the variables are in the middle, com-

ments are on the right. If the flag is true — T —, the program generates its own seed

from the internal clock. (This procedure is not explained here, but the source code to

build a seed from the clock is given in the Appendix.) If it is false — F —, it uses the

manual seed given in the other line. In both cases the initial seed is then written back

to a log file for debugging purposes. When the results are strange or unexpected, the

seed from the log file is fed back to the simulation along with the unmodified physical

parameters, to reproduce the results. If the problem is reproducible, we have a chance

to catch it.

We used the methodology described here in each simulation. The generators were

periodically rotated. No unexplained computational behavior was found in the final

results with the exeption of the illegal value of 1.0 returned by the RAND generator as
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mentioned. Therefore this generator was not used.

2.4 Implementation

Based on the computational techniques discussed in the previous chapter we will now

implement several methods in practice needed for our simulations. These methods

range from simple tricks applicable only for special situations to generally usable

methods. In the codefragments the implicit type definition — which is the default

in FORTRAN - is always turned off by the statement IMPLICIT NONE. If not stated

otherwise, the variables are assumed to be INTEGER, independently from their first

letter. Only very few REAL variables and functions are used, these will be clearly

specified. If there are line numbers on the right side of the program listings, then

they are used only in the explanations, they are not part of the code.

2.4.1 Coordinate based methods generally

When simulating a particle system, the minimum amount of information we need is

the set of positions defined by two or three coordinates depending on the dimension-

ality of the problem:

771' = ($5,315 (21)),

where i goes from 1 to N, to the number of particles. Depending on the exact type

of the simulation, velocities or accelerations might also be required. In our model

velocities are used in addition to coordinates in the ballistic type simulation, and

only coordinates in the random walk type simulation. If the particles are diflerent

in size or have extra features, the information describing them must also be listed.

The interaction — either in the form of force or energy — is calculated based on the

coordinates. Velocity dependent interactions are also possible, but they are not very

common. In condensed matter physics the interactions are short range, meaning
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that particles interact only if they are close to each other, typically a few particle

sizes away. This would suggest that only a fairly small number of interactions per

particle must be calculated by the computer. However, using only the coordinates,

we cannot tell if two particle are within the interaction range or not before actually

calculating the distance between them. This turns out to be the central problem

of all simulation algorithms: altough the linear list of the coordinates describes the

particle configuration unambigously, it is not a suitable data structure for efficient

simulation. Algorithms taht use the coordinate list usually perform only at 0(N2),

i.e. the calculation time depends quadratically on the size of the physical system

simulated, because at each step every particle’s distance is calculated from every

other particle in order to decide if they interact or not.

By allocating extra storage for additional — and therefore redundant - information

it is possible to speed up this basic algorithm significantly. Two important methods

were developed for this purpose: the neighbor-list method by Verlet [2] and the cell-list

method [38]. In both of these techniques, lists are constructed with particles within

a safely large distance range. In the neighbor-list method these lists are attached to

the particles, in the cell-list method to the cells. (The cells are small regular periodic

regions within the simulation box.) With the aid of these lists the simulation steps

become 0(N) in both cases: the interaction for each particle is calculated by using

the particles on the lists only. However these lists have to be kept consistent, they

have to be refreshed periodically as the system evolves. Refreshing the neighbor-lists

unfortunately needs 0(N2) calculation traditionally, leaving this method in the 0(N2)

class. The cell-lists on the other hand can be updated in 0(N) time, making this

method to a truly linear algorithm. In the next section a new algorithm is presented,

where the neighbor-lists are refreshed quickly, i.e. in 0(N) time, rendering this

method to be a true linear algorithm also. In the section after that we show how

to generate the cell-lists on a discrete lattice using bit manipulation. After that
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another new method, the field-representation is presented. This method is based on

the Lattice-Gas model, it uses a lattice to represent the particles, but at a higher

resolution. Finally the most important computational tricks used on the triangular

lattice are explained.

Let us now implement the fundamental data structures we need in our simulations.

As we mentioned earlier the coordinates of the particles are necessary:

INTEGER LATOM

PARAMETER (LATDM=99999)

INTEGER X(0:LATDM),Y(0:LATOM)

INTEGER NATOM

In three dimensions the third coordinates will also be declared. The parameter LATOM

controls the amount of memory to be allocated, the variable NATDM contains the actual

number of atoms given by the user in the parameter file. Indexing starts from zero

for reasons explained later. Parameters controlling memory usage start with letter L,

actual variables characterizing the simulation start with N. The size of the simulation

box is given by the LS-NS pair:

INTEGER LS

PARAMETER (LS=4095)

INTEGER NS

where the content of NS is provided by the user, and it must be an exact power of

two, for example 1024, 2048 or at most 4096 in the example above. The bitmask for

the periodic boundary condition calculation is always generated by:

MS = NS - 1

The letter S refers to the word Size in the examples above. If the simulatin box is

not square or cubic shaped, separate variables are needed in each dimension: NX, NY,
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NZ. They all have to be exact powers of two. The allowed directions — either for the

case of the random walk or for the ballistic flight — are defined by:

INTEGER NDIR

INTEGER DIRX(0:7),DIRY(0:7)

where NDIR holds the number of allowed directions, DIRX and DIRY are the compo-

nents. All of these variables are initialized from a parameter file supplied by the user.

This section of the parameter file usually looks like:

4 NDIR number of directions

1 0 Right

-1 0 Left

0 1 Up

0 -1 Down

In three dimensions there is a third component, and the indexing goes from 0 to 25

in order to accomodate nearest, next nearest and second nearest jumps on the simple

cubic lattice. One of the few REAL entities is the random number generator function:

REAL RAN

INTEGER NSEED

The generator can be either the built in generator or it can be taken from for example

[13]. Its seed is declared after it, and it is initalized from the system clock or from

the parameter file as discussed in the previous section, but it is not “wired into” the

source code. These are the most important variables necessary for our simulation.

With them we can already understand the central driver of the random walk type

simulation:

MATDM = NATOM - 1

. some code can be here ...
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D0 J=0,MATOM

ND = INT(NDIR*RAN(NSEED))

NEWX = IAND((X(J) + DIRX(WD)),MS)

NEWY = IAND((Y(J) + DIRY(WD)),MS)

rest of the simulation comes here

ENDDO

For each atom a Working Direction ND is generated randomly from the set of allowed

directions. This is one of the several places, where we can save an extra addition,

because the indexing of the directions starts from zero and not one. If we started

from one, we would need:

”D = INT(NDIR+RAN(NSEED)) + 1

This painful pedantry seems to be unnecessary, but this part of the simulation is

executed most frequently. Any extra operation here can waste a large amount of CPU

time. The new position is generated from the old position and the displacement. The

periodic boundary condition correction is performed by the IAND function as we can

see. Other programming details will be given in the next sections.

2.4.2 A fast neighbor-list method

The traditional neighbor-list method was developed by Verlet [2] to speed up the

basic “every particle compared to every particle” version of Molecular Dynamics

simulations. If the maximum distance of particle—particle interaction is rC — usually

called the cut-ofi radius —, then a safely larger radius r, is defined by r, = rC + Ar,

where Ar is a positive term — usually called skin - controlled by the user. Then a list

is generated and stored for each particle containing the index of all other particles
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within the r; list-radius. The simulation is performed using these neighbor-lists: when

the interaction of a particle with its environment is determined, only the particles on

the list are included in the calculation. If the interaction is short ranged — which is

usually true in many simulations — then the physics is not affected by the exclusion

of the far particles. However as the simulated system evolves, particles from outside

of the list-radius r, might get inside the interaction radius re. The danger is clear:

an intruder particle not present on the neighbor-list crosses the safety zone Ar, and

it can come close enough to interact with the particle owning the list. The simulator

does not include the intruder in the interaction calculation, because it was not on

the neighbor-list originally. The simulation at this point goes wrong, calculating an

incorrect interaction. To prevent this, the neighbor-lists must be updated periodically

at a given frquency. This refresh frequency f, must be chosen according to the Ar

safety zone. If Ar is large, we do not need to refresh the lists very frequently. However

a large list-radius will result in long neighbor-lists, requiring larger memory storage.

If Ar is small, the lists are short, but we have to update them frequently. There

is no specific rule about chosing Ar and f,, they must be fine tuned when running

computer experiments.

Altough the neighbor-list method gives a significant speed-up, the whole method

remains 0(N2), because the lists are generated from scratch comparing every particle

with every other one. If for example the lists are updated at every hundredth simu-

lation step for a large particle system, then the neighbor-list method will be about a

hundred times faster than the basic method, but it will still scale as 0(N2) with the

system size.

Can we refresh the neighbor-lists in a smarter and faster way? The answer is yes.

The intruder particles do not come from very far, they are second or third neighbors,

therefore they are on the neighbor-lists of the neighboring particles. This process is

shown in Figure 2.7. On the left side one particular configuration of three particles
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Figure 2.7: Particle C approaches particle B through particle A. The left panel shows

the configuration before, the right panel after the simulation step. The solid lines

represent the physical particle-particle interactions. Particles A and B remain within

each other’s interaction range, the particle C switches from the range of A to that of

B. Updating of the lists is assumed to be due after the simulation step shown. The

lists before the step describe the physical connections on the left. After the update,

the lists must reflect the configuration on the right.
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— A, B and C — is shown, on the right the same particles after one simulation step.

Particles A and B did not move much, but particle C moved to right significantly

in this example. How can we then quickly refresh the neighbor-lists? With two

consecutive steps for each particle:

1. Scan the particles on the neighbor-list of the central particle. Keep only those

which are still inside the list radius.

2. Scan the particles on the neighbor-lists of the particles on the central neighbor-

list. Keep those which are inside the list radius.

The second step is nothing, but checking the next nearest neighbors on the connec-

tivity graph. Unfortunately, the first step might modify the central neighbor-list, and

therefore the conectivity graph as well, so in the second step not every particle is

checked, some of them might have already been disconnected. We can understand

this situation with the help of Figure 2.7. Before the step — on the left side — both

particle B and C interact with A, therefore both particles are on A’s list. B and C

however are far enough from each other, they are not listed on each other’s lists. After

the step — on the right — particle C moved away from the neighborhood of A to the

neighborhood of B. The connections on the figure represent the physical interactions.

The graph connections are described by the neighbor-lists. They must contain the

physical interaction connections, in order for the simulation to be correct. In optimal

case the two graphs - the physical and the logical — coincide. Let us try to construct

the logical graph representing the physical situation on the right from the graph on

the left. On the left the physical and the logical graphs coincide, the simulation is

correct up to this point. When the list of particle A is examined after the simulation

step is taken, both B and C are on it. B stayed close, however C moved away, there-

fore C will be removed. Neither B nor C has neighbors other than A — in this example

—, so no scan is performed for next nearest neighbors. When the list of B is scanned,

only A is found on it, and it stays on it. The scan for the next nearest neighbors of B
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cannot find C, because C was already removed from A’s list. We have lost C in the

logical space! In the physical space on the other hand C moved close enough to B to

interact with it, therefore the simulation is not valid physically anymore. Remember,

we want to avoid exhaustive - every particle against every particle — check, because

we want to speed up our ()(N2) algorithm to 0(N).

How can we fix the problem above? By using two copies of neighbor-lists for

each particle: a source copy and a target copy of the lists. The new target lists are

constructed based on the old source lists. No modification —« for example disconnection

— is made on the source lists during the construction! When the target lists are

completed, the two lists switch their role: the target becomes the source that the

simulation is based on. They are periodically alternated during the whole simulation.

Altough the memory requirement for the lists is doubled now, this algorithm scales

linearly with the size of the particle system. The performance of this algorithm will be

given in the next chapter. The code is rather long and complicated for this method;

we describe it only in words here. The scan in the first step — the scan of the central

particle’s own list — is straightforward: only the particles inside the list radius will

make it to the new target list. The scans in the second step — the scans of the lists of

the neighboring particles — are more complicated. Not only the geometrical condition

must be checked, but also the database of the lists must remain consistent by not

allowing a particle to enter into its own list or the same particle twice into any given

list. The danger of the self-pointing particle comes from the following source. If

particle B is on the list of particle A, then particle A is on the list of particle B

as well: the neighbor’s neighbor-list will always contain the particle currently under

test. It is forbidden to enter a particle into its own list, because that will lock the

particle in its current position — a particle’s distance from itself is always zero. The

energy calculation might become incorrect also using this zero distance. The source

of a double entry is that a common neighbor of two particles will be on the list of
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both of the particles, therefore the same particle found in the first scan will be found

in the scans in the second step. A double entry does not cause particle clash, but the

interaction energy will be calculated incorrectly: twice for the particle present on a

list twice. By rejecting the double entries the lists remain logically consistent, and

the simulation keeps running correctly.

2.4.3 Cell-list method by bitmanipulation

In the cell-list or domain-decomposition method [38] the simulation box is divided

into smaller units called cells or domains. Then each particle is classified into a cell

based on the particle’s coordinates. For every cell a list is constructed containing all

the particles within that cell. Obviously, a particle cannot be listed in more than

one cell’s list. The classification of the whole particle system is an 0(N) procedure,

because it takes the same amount of time to classify any one of the particles, and

every particle must be classified only once. The lists are associated with the cells,

not with the particles as in the neighbor-list method. When the construction of the

lists is finished, the simulation can start. The interaction of a particle with the other

particles is calculated as follows: based on the particle’s coordinates the cell, that

it belongs to is determined. The particles on the list of this central cell and the

surrounding cells are the candidates to interact with our original particle. In two

dimensions 9, in three dimensions 27 cell-lists are scanned. Just as in the neighbor-

list method, the cell-lists must be refreshed at a given frequency. The frequency must

be chosen so that between two updates of the lists no particle can travel a distance

equivalent to the side length of a cell. As we can see, both the list updates, and the

simulation steps need 0(N) time, making the cell-list method a true linear method.

Now let us implement the cell-list method on our discrete lattice using bit manip-

ulation. Let us assume we have a 1024 by 1024 sized discrete simulation box in two

dimensions, and it is divided into 16 cells. The size of one cell is therefore 256 by 256
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Figure 2.8: A two dimensional square shaped simulation box with randomly dis-

tributed particles. The box is divided into 16 cells. The side length of the box is

assumed to be 1024, therefore the side of a cell is 256. Both the box size and the

cell size must be exact powers of two in order to use bit manipulation in the cell list

method. One complete coordinate is stored in 10 bits. The two highest bits locate

the cells inside the box, the low eight bits give the coordinate within a cell.

lattice unit. See Figure 2.8. We will need the following data structures to implement

the cell-list method:

INTEGER NS 01

INTEGER NLOBS 02

INTEGER LCL 03

PARAMETER (LCL=50) 04

INTEGER LCLS 05

PARAMETER (LCLS=31) 06

INTEGER CL(0:LCL,0:LCLS,O:LCLS) 07

where NS holds the actual side length of the square shaped simulation box. NLDBS is



the Number of LOw Bits in the Size characterizing the cell. These variables receive

their value from the parameter file given by the user, but for the sake of this example

we initialize them inside the code according to the sizes shown in Figure 2.8:

NS 1024

NLDBS 8

The size of the box is 1024, the size of the cell is 256. We need 8 bits to locate

a lattice site within a cell, because 28 = 256. In other words the variable NLDBS

must be the base 2 logarithm of the cell size. A total of 10 bits is needed to locate

a site inside the whole box — 210 = 1024 -, therefore the two high bits will locate

the position of the cells within the simulation box. The parameter LCL containing

50 is the Length of the Cell-Lists. This length must be large enough to accomodate

every particle inside a given cell. It depends on the size of the cells, the size of the

particles and the density of the fluid. Furthermore it must be safely large to handle

possible density fluctuations as well. Traditionally the cell-list method used linked

lists [4, 32]. In that method only one pointer is associated with every cell and every

particle. The cell’s pointer contains the head, the label of the first particle found in

that cell. Then the first particle points to the second, the second to the third and so

on. The tail, the last particle points to a stop signal, a number which would not be a

valid particle label for example —1. The advantage of this method is that it uses only

the minimum required amount of memory, there is no need for overestimation against

density fluctuations. The disadvantage is that the memory access of the linked lists

is random in the memory of the computer, therefore it is not cache-friendly. The

parameter LCLS containing 31 — an exact power of two minus one — gives the number

of cell-lists to allocate in a given dimension. The three dimensional array CL is the

Cell List itself. This array can be quite large in real simulations, in this example it is

only 51 by 32 by 32 by 4 bytes, which is 208896 bytes in total. Because the elements

of one list are accessed right after each other, the element index is the first one to
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give efficient sequential memory access. The second and third indeces are the cell

indeces. With one more important variable MCLS = NCLS-l, and a few work and loop

variables — ZX,ZY,WI , I ,J — the cell-list is generated with the following code:

D0 J=0,MCLS 01

D0 I=0,MCLS 02

CL(0,I,J) = 0 03

ENDDO 04

ENDDD 05

D0 I=0,MATOM 06

ZX = ISHFT(X(I),-NLOBS) 07

ZY = ISHFT(Y(I),-NLOBS) 08

CL(0,ZX,ZY) = CL(0,ZX,ZY) + 1 09

VI = CL(0,ZX,ZY) 10

CL(WI,ZX,ZY) = I 11

ENDDO 12

In the lines 1-5 the length of every cell-list is cleared to zero. In the lines 6-12 the

cell-lists are constructed. The important lines are 7 and 8. The a: and y coordinates of

the ith particle are bit shifted to the right: the low 8 bits are shifted out, only the high

2 bits are kept in the lowest two places. These high bits of the coordinates identify

the cell where the particle resides. Then the length of this cell-list is incremented by

one in line 9 to register this new particle. This just incremented length value gives

the next available empty storage place in the list. A working index WI is generated in

line 10 to point to this next empty place. In line 11 the label of the ith particle — I

- is stored at this place. Line 12 closes the loop over the atom index. In the case of

continuous type simulation the cell-index calculation needs two or three floating-point

operations per dimension. Here we did it with one bit shift, which takes one CPU

cycle. The bit shift operators are extensively used inside the simulation loop also,
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giving good performance. Performance data of this method will be given together

with the other methods’ performance.

2.4.4 Field-representation

What other alternatives do we have to represent and simulate particles besides the

coordinates of the particles? In the Lattice-Gas method pointlike particles move and

interact on the lattice. These particles are represented by bits i.e. numbers stored on

the lattice. The dynamics of the system is simulated by manipulating these numbers

according to certain rules as we saw. It is important to notice that in the Lattice-Gas

method, the coordinates of the particles are not stored explicitly. Instead the points

of an abstract discretized space are flagged, when they are occupied by particles.

Furthermore there are no neighbor-lists or cell-lists to keep track of interactions. The

collisions between particles are detected right away by checking the content of the

targeted site on the lattice. The main computational advantage of this method is

the simplicity of the operations when simulating the particles and detecting their

interactions. The disadvantage is the large amount of memory required to store the

simulated physical region. The disadvantage of the method from the physics point

of view is that the solutions given by it are continuum type like the solutions to

the Navier-Stokes equations. The method is particle based, but the results do not

reflect this particle nature back. This contradiction is only apparent. The results are

smooth; because the particles are pointlike on the scale of the lattice, they cannot be

resolved by the lattice.

Let us therefore take a step further by allowing our particles to have structure

seen by the lattice. Let the lattice points which are part of a particle have a value

of 1, the background points outside the particle have a value of 0. See Figures 2.1

and 2.2. We can refer to these latter points as vacuum points. The vacuum points

are not shown on the figures at all. On Figure 2.1 the black points form a “circular”
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Figure 2.9: The eight possible movements of a circle on a two dimensional square

lattice: two horizontal, two vertical and four diagonal. The values of the lattice sites

marked by Head are incremented, the Tail sites are decremented to simulate particle

motion. The value of the Body points remain the same. The Center of the particles

are also marked. The radius of the circle is 6.1 lattice units.

step-function. When a particle moves on the lattice, it carries this step function with

itself. The updating mechanism of this step function is rather simple, it is shown

in Figure 2.9. There are four nearest neighbor —- up, down, left, right — and four

next nearest neighbor diagonal movements on the square lattice. When a particle —

a circular shaped step function -— is moved in a particular direction, only the lattice

points in the direction of motion must be updated. The new lattice points joining

the object are called Head points, the old points leaving the object are called Tail

points, as shown on the figure. The values of the lattice sites at the Head points are

incremented by 1, at the Tail points are decremented by 1, when the particle takes the
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step. Every other points - the Body points - of the object are intact in this process,

the lattice values are not modified at these points. The three dimensional case is

perfectly analogous: lattice sites in the direction of the step are incremented, on the

other side are decremented. The sites to be modified are the sites on the surface of

the sphere.

Let us now connect the radius of our physical particles with the radius of this

circular shaped step function on the lattice in the following way: if the radius of the

physical particle is R, then the radius of the step function will be 2R. What does

this circle with radius 2R represent? It is the area forbidden for the centers of the

other particles, the so called excluded area in two dimensions. In three dimensions it

is a sphere with radius 2R, and it is called excluded volume. By using the excluded

area, the collision of two two dimensional particles is depicted in Figure 2.10. When

two particles come close to each other, their excluded area starts to intersect. At this

intersection the values of the lattice sites become 2. When the distance between the

two centers is exactly 2R, then the two objects are in contact, they are not allowed

to come closer. In the excluded area picture the centers are not allowed to move to

lattice sites with a value greater than one. In this two-body collision this value is

2. In the collision of more than two objects the intersection of the excluded areas

has a value equal to the number of colliding objects. In two dimensions this can be

maximum 4. It is important to notice that, as in the Lattice-Gas method, there are no

lists of particle coordinates to keep track of interactions. Collisions between particles

are detected directly from the lattice by checking the value of the lattice site targeted

by the center of the initiating particle. The coordinates of the particles are stored as a

single linear list only. We will use the coordinates to collect spatial distribution data

for example, but the simulation is not based on particle-particle distance calculation.

The other important property of this method is that the original shapes of the particles

are restored when the particles leave each other after the collision. This is true for
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Figure 2.11: Modeling Lennard-Jones potential by a square shaped attractive well.

The depth of the well is unity, the width is a variable parameter. The width is set to

y; = 1.2444 of the diameter on the graph, where the attractive force is the strongest.

Generally it can be set to any other value in the simulation.

particle-obstacle collision also.

How can we model more complex interactions, for example

D12 06

U(r)=4e(-d—12-- HT),

Lennard-Jones type interactions within this representation? First, let us model the

Lennard-Jones interaction with a square shaped attractive potential. See Figure 2.11.

The depth of the well is fixed to one in units of reduced potential energy, the width

is controlled by us. On the figure the width is set to {fa—g = 1.2444 of the diameter.

This is the distance where the Lennard-Jones attraction force is the strongest. The

interaction between particles in this representation is shown in Figure 2.12. The

particle on the right is inside the potential well of the central particle. It is allowed

62



 

- Attractive zone

0 Forbidden zone """""""

QCenters .................

000000 .........o o o o o o

00000 00.00.000.0000 0 0 0 0

0 0 00.0.000000000000 0 0 0

0 0.00.00.00.00000000 0 0 0

0 0 0 0.00.00.00.00.......0 0 0 O

0 0.000.000.0000000000000 0 0

0 0 0 0.00.00.00.000000000000 0 0 0

0 0 00.00.00.00.0000000000000 0 0

0 0 0000......000000000000000 0 0

0 0 00.0.0.000000000000000000 0 0

0 0 00.0.00000000000000000000 0 0

0 0 0COOOOOOOOOOQOOCO0.0.0.080 0

0 0 0.00.00.00.00000000000000 0 0

0 0 0.00.00.00.00000000000000 0 0

0 0 0000....................0 0 0

0 0 00.00.000.000000000000000 0 0

0 0 0 00.00.00.00000000000000 0 0 0

0 0 000......00000000000000 0 0

0 0 0 0.00.00.00.00.......' 0 0 0

0 0.0.0.0000000000000 0 0 0

0 0 0 00.0.000000000000 0 0 0

E]- 0 0 0.0.0.0000.... 00000

o o o o o 0......... ......

   
Figure 2.12: The particle in the center interacts with three other particles. The

forbidden excluded area and the attractive zone is shown only for the central particle

for the sake of clarity, but the other three particles have the same zones around them

also. The centers are represented by empty squares. The radius of the excluded area

is 12.0 lattice unit, the range of the attraction is 15.0 to approximate the attraction

range of the Lennard—Jones potential.
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to move freely up, down and right, but it is not allowed to move to left because of the

hard core repulsion of the central particle. The particle on the left and up can take any

steps. If it moves down or right it will fall inside the attractive well lowering the total

energy. The particle on the left and down is just inside the potential well. It can move

freely to right and up. When it tries to move to left or down its step will be accepted

with the exp(—1/T) Metropolis probability. The Boltzmann constant k is set to 1

for computational simplicity. The depth of the potential well is also 1. The strength

of the interaction is therefore controlled by the temperature only, but without any

loss of generality. For computational efficiency the Metropolis acceptance function is

precalculated and tabulated for the actual temperature before the simulation begins.

Due to the discreteness of the energy, these probability values can be easily looked

up. This technique is commonly used in simulations of spin models. For continuous

type simulations the Boltzmann factor has to be calculated during the run. Because

the exponential function is one of the biggest consumer of the CPU time, we save

large amounts of computation compared to continuous type models [40].

How can we implement the field-representation method computationally? First,

we need the underlying lattice. In two dimensions:

INTEGER LS

PARAMETER (LS=8191)

INTEGER*1 F(O:LS,O:LS)

INTEGER NS

allocates an 8192 by 8192 square lattice F — called Field — with one byte per site,

totaling 64 megabytes. The maximum value of the field is 4 when four particles touch

each other in a close packed manner. Therefore 3 bits per site would be enough to

store these values. However we might need to represent other geometrical objects on

the lattice beside the particles, so it is useful to have extra bits. In three dimensions

we need to store even higher values for intersections. We could break up a byte
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among several lattice sites, but that would make the programming extremely complex.

Therefore even if some memory is wasted, we use eight bits per lattice site in both

two and three dimensions. In three dimensions usually 2563 sized lattices were used,

but 512 by 512 by 256 size was often reached in the case of pure hard core interaction.

The allocation of the three dimensional lattice is analogous to the two dimensional

one shown above. This lattice stores the excluded area or volume of the particles.

Another lattice is allocated with the same size to store the interaction field of the

particles and possible external potentials. These two lattices — the geometry and

the interaction lattices ~ are kept separately and used differently. When a particle

moves, first the geometrical lattice is checked for conflicts. If the step is not allowed

— collision with another particle or with some obstacle — no further action is taken,

the simulation takes the next particle. If the step is allowed geometrically, then the

integer energy difference is calculated between the new and the old positions, and the

step is taken with the Metropolis acceptance probability looked up from the table.

The shape of the particles, the head and tail points shown in Figure 2.9 are stored

in tables. The potential field of the particle, the head and tail points for this field

stored and handled analogously. Why do we waste large amount of memory to store

the underlying lattices, the shapes of the particles and the interactions? Can’t we

simply use coordinate based methods? We can, of course. But the field-representation

method will be able to handle non-circular particle or interaction shapes, and arbitrary

background geometry or potential easily, if necessary. Non-circular shapes will be used

in the next section. Furthermore, when random initial configurations of the fluid are

generated, the field-representation method gives superior performance compared to

the coordinate based methods. The performance of the method will be presented in

the next chapter.
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Figure 2.13: The triangular lattice on the left is sheared to the square lattice on the

right. The nearest neighbors on the triangular lattice are connected to the central

site to show the shape of the neighborhood before and after the transformation.

2.4.5 Techniques for the triangular lattice

The triangular lattice has advantages over the square lattice as we have seen in the

case of the Lattice-Gas. On the other hand the triangular lattice is often treated in

simulations as the naughty stepbrother of the square lattice. What is the simplest

way to represent the triangular lattice and perform calculations on it? The triangular

lattice can be sheared to form a square lattice. See Figure 2.13. The hexagonal

neighborhood on the triangular lattice becomes a four nearest plus two opposite next

nearest neighbor connectivity. Circles on the triangular lattice become ellipses on the

square lattice. See Figure 2.14. If we use the field-representation method discussed in

the previous section to simulate particles on the triangular lattice, we just have to use

the elliptical particle shapes and the two additional next nearest neighbor steps. The
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program originally deveIOped for the square lattice will work fine for the triangular

lattice; modifications are required only at the data level: number of allowed steps,

step directions, shapetables, head and tail points.

When using coordinate based methods on the triangular lattice, the underlying

arithmetic is switched from integer to floating point type, because one of the lattice

vectors has non-integer components:

11 Z (17 0))

r — l “3
2 " 2’ 2 '

In particle simulations usually distance squares are calculated and distance calcula—

tions are avoided whenever it is possible due to the large cost of the square root

calculation. The distance square on the triangular lattice is:

d52 = (11:2 + dxdy + dyz.

Therefore it can be calculated from the integer indices on the lattice without using the

non-integer components of lattice vectors at all. To be precise, the distance square

has this nice form exactly because of the special components of the second lattice

vector. Hence we need very little modification in our programs to switch from a

square lattice to a triangular one. Whenever there is a distance square calculation

like:

D2 = DX*DX + DY*DY

in our program, it should be modified to:

D2 DX*DX + DX*DY + DY*DY

or to:

D2 DX*(DX + DY) + DY*DY
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to be more efficient by saving one multiplication. Remember, all the variables are

integer type in the examples above.

Another difference between square and triangular lattices we discuss is the min-

imum image convention. In particle simulations periodic boundary conditions are

used in most of the cases. The simulation box is surrounded by its own copies in

every direction, and every particle has images in those boxes. When we determine

the interactions between the particles, every particle is assumed to interact with the

other particles only once and at the shortest distance. When the difference vectors:

—0

-o

dij 2 Ti — Tj

are calculated, the shortest one has to be found for every pair of particles. To under-

stand this procedure, we place the origin — the bottom left corner — of our simulation

box at 7"}, the position of the jth particle. See the left side of Figure 2.15. Due to the

periodic boundary condition, the other three corners will be the images of the origin

and therefore F]- as well. The ith particle can be anywhere inside the box. Depending

which quarter it resides in, it will be closest to the corner of that quarter. Do we need

to calculate the distances from the corners in order to decide which one is the closest?

Fortunately not. Due to the rectangular shape of the simulation box, we perform

the minimum image correction on the coordinates of the difference vector first, and

then we need to calculate the distance — which will be the shortest — only once. The

distance correction function is shown in Figure 2.16 for a box of size 16. Altough the

calculation of this function on the fly is not very complicated, it is precalculated and

stored in a look-up table for efficiency:

INTEGER DCTBL(-LS:LS)

NSP2 = NS / 2

DO I = -NSP2,NSP2

DCTBL(I) = I
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Figure 2.15: Minimum image convention for square and triangular simulation boxes.

On the left, the square box is divided into four quarter squares. Particles in a given

quarter are closest to the corner of that quarter. The square lattice on the left is

sheared to triangular one on the right. The dashed lines correspond to the boundaries

between the quaters from the square lattice. The continuous lines separate the correct

honeycomb shaped regions — the Wigner-Seitz cells — closest to the corners.
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Figure 2.16: The distance correction function for a square simulation box of size 16.

The largest distance is 8, half of the size of the box due to the periodic boundary

condition. The function is precalculated and tabulated for computational efficiency.
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ENDDD

DO I = (NSP2+1),MS

DCTBL( I) = I - NS

DCTBL(—I) = NS - I

ENDDO

Using this Distance Correction Table, the calculation of the shortest distance between

the ith and jth particle is:

DX = DCTBL(X(I) - X(J))

DY = DCTBL(Y(I) - YfJ))

D2 = DX*DX + DY*DY

If the shape of the simulation box is not square but rectangular, different distance

correction tables must be set up and used for the different sides.

Will this distance correction method work for triangular lattice too? Unfortu-

nately not perfectly, only approximately. As we can see on the right side of Figure

2.15, the dashed lines sheared from the square shaped box on the left do not coin-

cide with the continuous lines separating the honeycomb shaped regions, where the

distance is minimal to the corners of the simulation box. For the correct calcula-

tion — corresponding to the honeycomb shaped Wigner-Seitz cell -— the four different

distances from each corner must be calculated in order to decide which one is the

shortest:

(If 2 3:2 + my + y2,

d3 = d?+nx(nx — 2x—y),

d3 = df+ny(ny —2y—a:),

d3 = (13+ d§ + nrny,

where n,E and ny are the sizes of the box in general case. This is a rather complicated

calculation compared to the distance correction in the case of the square lattice.

72



However, if the simulation box is large enough compared to the range of interaction

between the particles, the missclassification of the particles around the dashed and

the continuous lines does not make any difference from the physics point of view.

Therefore the image correction method for the square box can be used for the rhombus

box on the triangular lattice.

2.5 Results

In this section we study the behavior of interacting many-particle systems by applying

our simulation methods to different situations. Performance data will be given first,

then specific physical results will be presented. The codes were executed mainly on

two computers — rigid3 and rigid4 — on our CMPT cluster. Both of these machines

are DEC Alpha computers with a Digital Unix operating system and a FORTRAN-

77 compiler installed on them. Rigid3 operates at 266 MHz, rigid4 at 433 MHz.

Execution times presented in the next sections were usually measured on rigid4. To

convert these times for rigid3, we can simply multiply the measured CPU times

by a factor of 1.6, the frequency ratio of the two machines, because they are very

similar in their hardware architecture. Smaller test runs were executed on several

other machines, mainly on Silicon Graphics and Sun computers in the Chemistry

and Physics departments, but no extensive performance data were recorded on these

computers.

2.5.1 Simulation performance

In our simulations we need to generate random initial configurations of fluid parti-

cles and then simulate them efficiently. In this section we study the behavior and

performance of coordinate and field-representation methods. Figure 2.17 shows a

configuration of 80,000 particles randomly dropped to a square simulation box of size

73



8192 by 8192. Figure 2.18 shows the bottom left 1024 by 1024 corner of the same

configuration containing about 1250 particles. The radius of the particles is 12 lattice

units. Figure 2.19 shows a configuration of 11,111 particles in a 512 by 512 by 256

simulation box, and Figure 2.20 shows a configuration of 2692 particles in a 2563

box. The radius of the particles in the three dimensional simulations was 8 lattice

units. How can we generate large configurations like these efficiently? We can use

coordinate based methods with neighbor lists. Unfortunately when we try to drop

a new particle into the simulation box, this new particle must be checked against

every other particles already in the box, because the new particle does not have a

neighbor-list yet. No matter which neighbor-list scheme — the basic or the fast — is

used to refresh the neighbor-lists, we have to construct the list for the new particle

first. Therefore this method will scale quadratically with the number of particles.

However it becomes even slower, when a higher fluid density is reached, because it

is more and more probable that the new particle will clash with another one already

in the box. In this case we will try to place the new particle at a different position.

The execution times for configurations of different sizes are shown in Table 2.1. Eight

different particle systems were generated with sizes from 10 to 75 thousands inside

an 8192 by 8192 box by two different methods: neighbor-list and field-representation.

Why is the neighbor-list based method so slow relative to the field-representation

method? The neighbor-list method performs as 0(N2) at low densities as we just

discussed. The field—representation method however needs only 0(N) time in the

same density range, and runs faster initially as well. In the field-representation the

excluded area of the particles alrady in the box are stored on the lattice. When a

new particle comes at a random lattice position, only this position must be checked.

If the value of the targeted lattice site is zero — vacuum point —, then the new parti-

cle is allowed to occupy this site. If the value is greater than zero, the new particle

clashes with one or more particles, therefore we need to look for another position.

74



.LL‘J.“ "viz“ f ' " VIM,“

first" - a“ r «as
n

v M . 1 ' .
v r . . , . ‘r m»
““I‘vm' « , “A . ~""‘_ » ‘ ». 15.1,, “"a’”

,. ;‘ “1),:ng . . ,..‘ Jr a» 1, A. *‘ ....gv . 1A1, ab;:fih

{83% ‘9 u A,» . 5:" ‘3. m; 'wp‘w
. f . “if? mugs-fig’fim

.
x .y

.“jv " .

vm

. . H

\ 1..»

{312%}. A
!”1:15 "u.“l ‘ ‘

i
a

:
,
-
.
‘
r
f
’

P

1
:
}
.

,
1
-

{5‘ .

, 455:»)? J

-. . J

1' u; 1‘2»

1,7
\ I“ 

Figure 2.17: Random configuration of a two dimensional fluid containig 80,000 circular

particles. The radius of a particle is 12 lattice units. The underlying lattice is an

8192 by 8192 square lattice. This configuration was generated in 45 seconds. The

area density of the fluid is 0.539.
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Figure 2.18: One 64th of the configuration from the previous figure. The size of the

lattice is 1024 by 1024, and the number of the particles is about 1250. The particles

are shown with a radius smaller than their original radius for better view. At this

density many of the particles are in contact with each other.
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Figure 2.19: Random configuration of a three dimensional fluid containig 11,111

spherical particles. The radius of a particle is 8 lattice units. The particles are shown

with a smaller radius — 6 lattice units — for better view. The underlying lattice is a

512 by 512 by 256 cubic lattice. The volume density is 0.355. This configuration was

generated in 33 seconds.
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Figure 2.20: Random configuration of a three dimensional fluid containig 2,692 spher-

ical particles. The radius of a particle is 8 lattice units. The particles are shown with

a smaller radius — 6 lattice units — for better view. The underlying lattice is a 2563

cubic lattice. The volume density is 0.344. This configuration is independent of the

one on the previous figure. This system was generated in 5.5 seconds.

78



 

 
 

 

 

 

 

 

 

     

System size Neighbor—list (s) Field-repr. (5)

10,000 11.9 2.0

20,000 49.7 3.0

30,000 118.7 4.0

40,000 230.8 5.1

50,000 423.9 6.1

60,000 826.7 7.3

70,000 2484.6 8.8

75,000 7436.0 11.1
 

Table 2.1: Two dimensional random initial configuration generation by two different

methods: neighbor-list and field-representation. The number of particles ranges from

10 to 75 thousand. The CPU times were measured on rigid4 and are given in seconds.

The collision check is done in a unit time in the field method, therefore this method

scales linearly with the number of particles at low densities. However, this method

will also slow down as the density of the fluid increases. Another advantage of the

field-representation method is that the lattice sites can be systematically checked for

availability, therefore we can know exactly when a configuration is jammed i. e. cannot

accept more particles. The data from Table 2.1 is depicted in Figure 2.21. The cost

we pay for this high performance is, of course, a large amount of memory. In the field

method the 8192 by 8192 lattice is stored in 64 megabytes, one byte per site. On

the other hand the neighbor-lists of the coordinate based method fit in less than 10

megabytes easily even for the largest particle systems.

It is possible to use the cell-list method when generating initial conditions. This

method would be somewhere between the field-representation and the neighbor-list

method. It would scale linearly with the number of particles, but it would not be as

fast as the field method, because the collision checks would be much more complicated.
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Figure 2.21: CPU times of neighbor-list and field-representation methods as a function

of system size. The top two graphs are linear on both axes but with different vertical

scale, both measured in seconds. The bottom two graphs are log-log plots of the top

ones. The graphs in the left column show the times for the neighbor-list method.

The graphs for the field method are on the right. The neighbor-list method requires

0(N2), the field method 0(N) time at low densities. At higher densities both methods

slow down.
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The configuration in Figure 2.17 was generated by the field method in only 45

seconds. The neighbor-list method however was not able to produce this configuration

within a time limit, the job was killed after 24 hours without finishing. The two

simulations used the same physical parameters and the same seed. Altough they are

two different algorithms, they use the random numbers in the same way, therefore

they were working on the exact same configuration. This is an important detail,

because this density was close to the highest achievable density, where configurations

start to become impossible to reach. The field-representation method has successfully

placed all 80,000 particles, therefore this particular configuration definitely exist.

The area density of the configuration in Figure 2.17 is pA = 0.539, the volume

densities of the configurations in Figure 2.19 and 2.20 are pv = 0.355 and 0.344

respectively. These densities are close to the so called jamming coverage Q; in two

and three dimensions. This problem is known as the parking problem or Random

Sequential Adsorption (BSA) [41, 42]. Objects with well defined shape and size — for

example identical circles in two, spheres in three dimensions — are dropped in a box.

A new object cannot intersect the old ones already in the box. Several other versions

and modifications of the problem were developed with applications ranging from

mathematics to chemistry [43]. The jamming coverage for circles in two dimensions is

91,20 = 0.5472i0.0002, and for spheres in three dimensions Gmp = 0.384i0.001. To

reach higher densities of liquid states, the particle configuration must be compressed

externally or some other artificial technique should be applied.

After the initial configuration is generated, we have to simulate the ensemble. We

can use any of the algorithms described in the previous sections. The performance

of these algorithms for two dimensional particle systems with hard core repulsion is

shown in Table 2.2. The performance of the traditional neighbor-list method drops

rather quickly. The other methods maintain an almost constant performance as the

number of particles increases. There is a slow decrease however. It is due to the

81



 

System size NL FNL CL FR

 
 

1,100 393 397 216 48

 

4,400 210 386 210 48

 

17,600 70 344 204 48

 

70,400 20 337 199 47       
Table 2.2: Performance of the different simulation algorithms in two dimensions. Four

different particle systems were simulated by each method. The number of the particles

is shown in the left column. The radius of the particles was 12.0 lattice units. The

size of the simulation boxes were 10242, 20482, 40962 and 81922 respectively. The area

density was kept constant at 0.474. The four methods are: Neighbor-List (NL), Fast

Neighbor-List (FNL), Cell-List (CL) and Field-Representation (FR). The numbers

give the performance in 1000 atomsteps per second on the rigid4 machine.

fact that as the system size incereses, the data structure describing it is more spread

in the computer memory. Consecutive memory accesses are farther from each other,

therefore the memory caching mechanism operates less and less efficiently. This effect

is even more pronounced, when the radius dependence of the performance is studied

for the field-representation method. If the radius of the particles and both sides of

the simulation box are halved, while the total number of the particles and hence the

density remains the same, the preformance should double, because the head and tail

points of the circular step function are on the perimeter, therefore their number is also

halved. Half as many operations are needed to be performed on the lattice, therefore

it should take half as much time. However since the simulation box is also smaller,

the lattice sites in consecutive columns are closer to each other in the memory. The

memory accesses will be more local, the caching will work more efficiently. See Table

2.3. As we can see, when the radius is halved, the preformance increases to more

than twice, and the same simulation runs faster in a smaller piece of memory. The
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Radius 10242 81922

 

 

12.0 62 48

 

6.0 254 151

 

3.0 688 579     

Table 2.3: Performance of the field-representation method as a function of particle

radius in two dimensions. The radius of the particles is in the left column. 1100

particles with radius 12.0 were simulated in a 10242 simulation box. Then the radius

and both sides of the box was halved to maintain the same density of the particle

system. The simulations needed a 10242 lattice or smaller, but they were carried

out in a corner of 10242 and 81922 lattices allocated in the memory to study the

preformance of the simulation on the size of the memory used. The performance data

is given in the units of 1000 atomsteps per second.

conclusion is therefore the following: for optimal performance only the necessary

amount of memory should be allocated.

In three dimensions the coordinate based methods slow down by a factor of

3 to 5 due to the increased number of neighbors in three dimensions. The field-

representation method slows down even more, because the number of head and tail

points now lie on the surface of the spherical particles, proportional in number to

the square of the radius. However the field method remains the only efficient way to

generate random initial configurations of fluids. Therefore a combination of these two

methods are used: the initial configurations are produced by the field-representation

method, and then they are read by the coordiante based methods for further simula-

tion.
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2.5.2 Pair-distribution function of hard core systems

The liquid phase is probably the most interesting phase structurally compared to

the gas or solid phases [44]. It is clearly distinct from them in its Pair Distribution

Function (PDF). This function describes the probability of finding two particles at a

given distance from each other. In two dimensions:

27rrpg(r)dr,

in three dimensions:

47rr2pg(r)dr

is the probability to find a particle in the (r, r + dr) distance interval from another

particle, where p is the number density of the particles: N/A in two and N/V in

three dimensions. In simulations the pair distribution function is usually constructed

by using the form:

gm = fiv—‘QZ 6177— a».
i<j

Every particle-particle distance is measured once (i < j) and stored in the distribu-

tion. The () averaging can be time or ensemble averaging. The factor in the front

gives the proper normalization. When the physical system is isotropic — like the bulk

of a liquid —, the pair distribution function g(r) will depend only on the particle-

particle distance but not the orientation, therefore it simplifies from g(r) to g(r),

where r = [f]. According to the precise nomenclature g(F) should be called the pair

distribution function, and g(r) the radial distribution function. However, very often

the acronym PDF is used for both functions. In this work only isotropic systems are

studied; we will refer to g(r) as PDF, even if it is not perfectly correct.

Now let us compute the pair distribution function for a simple system: 1100 atoms

are placed on a 1024 by 1024 square lattice with radius 12.0 lattice units. They

perform a random walk and they interact with each other via hard core repulsion.

Every atom takes 1000 steps before the data collection starts. Then the distribution
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Figure 2.22: The pair distribution function for a two dimensional hard core particle

system. The size of the simulation box is 1024 by 1024 and it contains 1100 particles

with radius of 12.0 lattice units. The interparticle distance r is normalized with the

particle diameter D. The area density of the liquid is 0.474. The data were collected

for 5000 time steps after 1000 equilibration time steps. The main wavy features can

be seen well, but the function is rather noisy.

is collected for 5000 steps. The final result is shown in Figure 2.22. Altough the main

wavy nature of the pair distribution function clearly shows up, it looks pretty noisy.

Maybe the particle system was not large enough, or the data collection period was

not long enough. It turns out that increasing the system size or the simulation time

does not remove, or does not even reduce the noise: it stays persistently in size and in

pattern! What kind of noise is this then, and how can we remove it? It is not random

noise, it is a lattice effect. When the PDF is collected, the particles are counted in

circular or spherical shells. The underlying square, triangular or cubic lattice is not
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Shell Square Triangular Cubic

(0,1) 1 1 1

(1,2) 8 12 26

(2,3) 16 18 66

(3,4) 20 24 158

(4,5) 24 30 234

(5,6) 40 36 410

(6,7) 36 48 470

(7,8) 48 66 738

(8,9) 56 60 866

(9,10) 56 66 1170

 

Table 2.4: The number of lattice points inside the first ten shells for square, triangular

and cubic lattices. The shells (5,6) and (6,7) for the square lattice are shown in Figure

2.23. The fluctuations in two dimensions can be so large, that the functions are not

even monotone.

compatible with the symmetry of the polar or spherical coordinate systems. Therefore

the number of lattice points within a shell is not exactly proportional to the area or

the volume of the shells. Some shells are under, some shells are overrepresented.

See Figure 2.23. By counting the lattice points inside the shells, the noise can be

calculated and removed. The number of lattice points inside the shells for our three

different lattices are shown in Table 2.4. If a lattice point is exactly on the boundary,

then it is counted into the outer shell. However this convention is arbitrary, it just

has to be used consistently. For example the points with coordinates (3,4) and (4,3)

in the first quadrant of the square lattice and their negative combinations are exactly

on the boundary in Figure 2.23 because the group of integer numbers (3,4,5) is a

Pythagorean triplet. The triangular and the cubic lattices have other combinations of
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Figure 2.23: Incompatibility between the square lattice and the polar coordinate

system. Two circular shells are shown (5,6) and (6,7). The number of lattice points

within a shell only approximates the area of the shells, but is not exactly proportional

to them. Some shells are underrepresented, some shells are overrepresented. For

example there are 40 lattice points in shell (5,6) and only 36 in shell (6,7), even

though the area of the latter shell is larger. This fluctuation is the origin of the noise

on the PDF.
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numbers. The total number of points inside a circle (sphere) with radius r ultimately

approximates the area (volume) of the circle (sphere) with an uncertainty 6. The

radius dependence of this uncertainty for the square lattice was studied by Gauss and

2/3, where k1 andSierpinski [45]. Gauss showed that e = klr, Sierpinski proved e 2 k2?"

k2 are constants, and r is the radius of the circle. We definitely do not want to reduce

the error by increasing the radius of the particles, because that would require even

larger lattices. To remove the noise, we calculate the ratio between the number of

lattice points in a shell and the exact area or volume of the shell. The exact formulas

of:

7r((r+1)2-r2) = 7r(2r+1),

((r+1)3 — r3) = f3371(3r2+3r+1)

must be used for the area and volume elements instead of the 27rrdr and 47rr2dr,

because dr 2 1 is not negligible compared to the radii of smaller shells. These ratios

for the first fifty shells are shown in Figure 2.24. If we divide our noisy pair distribution

function from Figure 2.22 with the corresponding lattice measure function from this

figure, the noise disappears. The smooth PDF is shown in Figure 2.25. It looks really

smooth, but how does it compare to results from continuum simulations? Numerical

data of continuous Monte Carlo simulations were taken from [46], and plotted together

with our simulations at four different densities in Figure 2.26. They agree very well,

but the PDF from the lattice is systematically under the continuum values for the

first few points. This can be understood qualitatively: the particles on the lattice

can be in close contact with each other at the minimum distance 2R only in special

orientations, for example exactly on top of each other vertically, next to each other

horizontally, or in the directions of the Pythagorean triplets, if those exist for that

radius. Particles in the continuum case on the other hand can touch each other at

the closest 2R distance in any orientation. Therefore the value of the PDF is smaller
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Figure 2.24: The ratios of the areas and volumes measured by the discrete lattices

with respect to the exact continuum areas and volumes of the shells for the first fifty

shells. The three different lattices are shown separately on the first three graphs and

then together on the last graph. Interestingly the function for the triangular lattice is

not smoother than for the square lattice as our intuition would suggest. The function

for the cubic lattice is clearly smoother than the square one, probably because of the

third dimension.
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Figure 2.25: The smooth pair distribution function after the noise from lattice effects

has been removed. The PDF from Figure 2.22 was divided by the lattice measure

function of the square lattice from Figure 2.24. For the simulation parameters see

Figure 2.22.
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Figure 2.26: Comparison of the pair distribution functions obtained by continuous

and discrete Monte Carlo simulations at four different densities. The data of the

continuous simulations were taken from [46] and they are plotted as empty circles.

The densities are given in percents of the hexagonal close packed density in two

dimensions: pA’HCP = 7r/ (2V3) = 0.9069. The discrete simulations were performed

on 5122 and 10242 lattices with the number of particles shown in the graphs. The

radius of the particles was 12.0 lattice units, and the particles took 5000 data collection

steps after 1000 steps were discarded.
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at short distances in the discrete case due to the limited number of positions on the

lattice.

The following question can also be raised: does the pair distribution function

within the lattice model depend on the underlying lattice or the exact type of ran-

dom walk? The answer to this question is shown in Figure 2.27. The result is not

surprising, the PDF is independent of the geometry of the lattice and the exact type

of the randomwalk.

Finally the computational technique of the PDF collection is described briefly.

When the distribution function is collected in a simulation, it is stored as a function

of particle-particle distance-square and not distance. Because the distance square is

an integer number even on the triangular lattice — as we have seen in the previous

chapter —, the storage of the function is straightforward. The function is converted

back to the distance space only at the very end of the simulation, when the final results

are prepared for output. This way we can save significant amount of CPU time by not

calculating the square root of the distance squares inside the simulation loop. The

price we pay for this high performance is again large amount of extra memory. For

example in a square shaped simulation box with side a the largest possible distance

between two particles is 39a according to the minimum image convention. The square

of this distance is 9;. Therefore in the case of a 1024 by 1024 box we need to

use a linear array of size 524,288 instead of a short array of about 724 elements.

Furthermore the long array in the distance square space will be sparse, because a large

portion of the integer numbers cannot be written as a sum of two squares, therefore

no PDF events will ever be recorded at those positions. The final conclusion is the

same again: we can save either CPU time or memory, but not both.
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Figure 2.27: The pair distribution functions for different lattices — square and trian-

gular - and different random walks on the square lattice. The first two graphs are for

the square lattice with four nearest neighbor (4NN) and four nearest neighbor plus

four next nearest neighbor (4NN + 4NNN) jumps. The third graph shows the PDF

on triangular lattice with six nearest neighbor (6NN) jumps. The three graphs are

shown together on the last graph. The curves are almost exactly on top of each other.

The radius of the particle is 12.0 lattice units and the area density is 0.474 for each

case. The first three graphs show the raw noisy PDF also. The last graph contains

only the smooth denoised functions.
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2.5.3 Density profile inside narrow slits

One of the simplest geometrical constraints we can place our particles in is a parallel

slit. Either in two or in three dimensions one of the particles’ coordinates is restricted

to an interval. When a particle attempts to cross the restricting boundary, it is simply

not allowed to take the step and it is not brought back at the other end of the interval

either, as it would be in the case of periodic boundary condition. The structure of

the liquid is strongly influenced by the presence of the wall. This geometrical setup

has been studied extensively by computer simulations [47] — [53], and by analytic and

semi-analytic methods such as density functional methods [54] — [57]. It is the testbed

for any new method, therefore we will test our method on this geometry too.

The two parallel walls are set up at a distance of 11 particle diameters from each

other both in two and three dimensions. The particles are placed randomly between

the walls at different densities. Due to the finite nonzero diameter of the particles, the

width of the area or volume allowed for the centers of the particles is narrower than

the true slit width by one particle diameter. The local particle density across the slit is

measured in the simulations by collecting the particle positions. It is straightforward

and efficient to collect events into a histogram on the underlying discrete lattice. The

results for two dimensions are shown in Figure 2.28, for three dimensions in Figure

2.29. Traditionally the reduced density is used in the literature on these plots. The

reduced density in two dimensions is:

[912,20 = PND2 = gPA,

in three dimesnions it is:

6

PR,3D = PND3 = —Pv,
7r

where pN = N/A or N/V is the number density, pA and pv are the area and volume

densities respectively. The reduced density is 1, when the circular (spherical) particles

form a square (simple cubic) lattice in two (three) dimensions exactly touching each
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Figure 2.28: Density of a two dimensional liquid inside a parallel slit. The distance

between the walls is 11 particle diameters (D), therefore the centers of the particles

are restricted to the [-5,+5] interval. As the density increases, the particles start to

form layers next to the walls. The average reduced densities of the ensembles are

given on the graph. At the lowest density 800, at the highest density 4000 particles

were simulated for 1 million steps each. The radius of the particles was 12.0 lattice

units, the width of the allowed region was 240 lattice units.
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Figure 2.29: Density of a three dimensional liquid inside a parallelslit. The distance

between the walls is 11 particle diameters (D), the same as in the previous figure. The

same layering effect can be seen when the density is increased. The average reduced

densities of the ensembles are given on the graph. At the lowest density 400, at the

highest density 2800 particles were simulated for 1 million steps each. The radius of

the particles was 11.0 lattice units, the width of the allowed region was 220 lattice

units.

96



other. In these reduced density units the highest close packed densities both in two

and three dimensions correspond to a number greater than one.

From the figures we can see the layering of the particles next to the wall. These

particles are pushed against the wall by the other particles. We can clearly observe

three layers of particles at the highest densities shown in the figures. In the middle

of the slit the densities are nearly flat. What happens if the walls are moved closer

to each other, while the particle density is kept at the same level? First, the flat

middle part of the density function will shrink. When it disappears, the two wavy

sides start to interact with each other, deviating slowly from the universal limiting

shape. This process is shown in Figure 2.30. When the slit gets even more narrow, the

shape of the density function becomes very sensitive to changes in width. Figure 2.31

shows the density function, when the width is between 2.5 and 5.0. The order of the

graphs is now reversed, the width is increased from the narrow to the wide, and the

functions are centered around the middle of the slit to see the layer formation better.

The widest function on this figure - 5.0 particle diameters — corresponds exactly to

the shortest function from the previous figure. There are three layers inside a slit 2.5

diamater wide, and there are five five layers inside a slit 5.0 diamaters wide. How

does the third layer form in the middle? Let us take another step further to even

narrower slits. Figure 2.32 shows the detailed mechanism of layer formation from

a width smaller than the particle radius to the width of 2.5 diameter, at which the

middle layer is fully developed. When the slit is very narrow, the density profile is

flat. The particles can bump into each other only from the front or the back. When

the slit gets a little wider, the particles start to push each other sideways against

the wall: the density function bends up. With further increase in width, the round

shaped valley profile sharpens, and suddenly the middle layer develops. It is just

a little bump first, but then it develops to a big peak in the middle. Figure 2.33

shows the development of the middle layer at the finest scale reachable at this lattice
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Figure 2.30: Decreasing the width of the slit in two dimensions, while keeping the

particle density constant at ,0}; = 0.688 i 0.002. As the slit walls come closer, thes

shape of the density function start to change significantly. The left wall is at position

a: = —0.5, the first layer of particles is formed at a: = 0. Only the left half of the

functions are shown due to the symmetry. The numbers on the graph represent the

width allowed for the particle centers measured in diameters. The function has the

same shape from width 10 to 7, at widths 6 and 5 it starts to change its shape.
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Figure 2.31: Layer formation inside a two dimensional slit when the width is increased

from 2.5 to 5.0 particle diameters. The density is the same as in the previous figure,

but with a larger uncertainty, because the particle system is smaller: m; = 0.688 :1:

0.005. The middle layer at width 2.5 widens first at width 3.0, then splits into two

peaks at 3.5. The smallest system contained 585 particles, the largest 1178. The data

collection was 100,000 timestep long per particle.
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Figure 2.32: The detailed mechanism of particle layer formation beginning at a width

narrower than a particle radius to 2.5 particle diameter. The density is the same as

in the prevoius two figures: pg = 0.68 :l: 0.02. The narrowest system contained 102,

the widest 585 particles, taking 100,000 steps each. The numbers on the graphs give

the slit width in lattice units, but the unit on the 2: axis is still particle diameter as

before. The particle radius was 12.0 lattice units.
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Figure 2.33: The development of the middle layer at the finest scale, when the slit

width is changed by one lattice unit at a time. The particle radius is 12.0 lattice

units, the density is the same as in the previous figure: pg 2 0.68 :l: 0.02. The early

formation of the third layer can be clearly observed.

resolution.

The density profiles for wide slits presented in this section are in good agreement

with the results of continuous type Monte—Carlo simulations [47] — [49]. However, no

simulation results are known to us for very narrow slits with fine stepsizes [50].

The density profiles did not need any additional noise removal procedure as in

the case of pair distribution function, because the slit walls were always parallel to

the underlying lattice. However, density profiles collected in cylindrical or spherical

pores would contain noise from lattice effects and would need to be corrected with

the technique used for the PDF.
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Chapter 3

Modeling zeolites

3.1 Introduction

Many commercial and noncommercial computer packages exist that permit one to

visualize molecules and crystal structures by wireframe, stick, ball-and-stick models,

and space-filling Corey-Pauling-Koltun (CPK) representations [58]. For Zeolites and

other porous materials such as vycors, aerogels and recently discovered nanoporous

materials such as MGM-41 the geometry of the pore space plays a very important

role in the physics and chemistry of the system [59] — [61]. The solvent contact and

solvent accessible surfaces can be constructed with the rolling sphere method [58].

Many commercial computer programs use this algorithm for molecules, in which the

sites that are accessible to spheres of a specified radius are displayed. We present a

method here which is much simpler and more efficient for a large collection of atoms

such as crystals and other complex systems [62]. The mathematics of the method is

discussed in the next section. Then the visualization process is described generally.

After that four different zeolites are presented as examples, illustrated by a series

of pictures generated by the visualization software. The examples are the following:

Linde type-L zeolite as a one-dimensional system [63]; MGM-22 as a two-dimensional
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one [64, 65]; ZSM-5 [66] and Zeolite-Y [67] as three-dimensional pore structures. At

the end simple statistical analysis is applied to extract more information about the

example systems. In the last section, the results are summarized and information is

given about the availability of the program package. It should be noted at this point

that originally this algorithm and the code was developed in a different scientific area

— in the channel structure of electrides — and it is already in everyday use in that field

[68] — [76].

3.2 The mathematical basis of the method

A given number of atoms are at known fixed positions in space:

Ci:(xi1 yiv 21’),

and every atom has a van der Waals radius 7*,- which is also known. The index 2' goes

from 1 to N, the total number of atoms. Now we ask the following questions: Where

are the empty regions - regions not occupied by atoms - in this structure and how

to construct a three-dimensional picture to visualize them? What is the measure of

emptiness? Let a mathematical grid be placed — for simplicity and other practical

reasons a cubic grid ~— at the positions:

92' = (u,,v,-,w,-)

over the space occupied by the atoms, in which j = 1, 2, ..., m and m is the number of

grid points. See Figure 3.1. At every grid point the distance between the mathemati-

cal grid point and the closest atomic surface is calculated and this distance is assigned

to the grid point. The atomic surface is defined by a sphere with the radius of the

atom in question, in other words we are using a hard sphere atomic model. Bonded

atoms then appear as intersecting spheres. Mathematically the value assigned to each
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Figure 3.1: Sampling the space of an imaginary two dimensional crystal. The large

empty circles represent the atoms, the small filled dots form the mathematical grid.

The grid must be completely inside the crystal in order to avoid edge effects.
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grid point is thus the following distance:

 

dj 2 mirth/(:22, — 11,)2 + (y,- — 113-)2 + (31' — 10112 - Ti}:

for all i. If a grid point happens to be inside the van der Waals radius of an atom, then

simply zero is assigned to this grid point. As it can be seen, this procedure is nothing

but placing the largest possible test sphere at every grid point without intersecting

any atomic surface. This calculation provides a scalar field : a real number is assigned

to every grid point in the space. The value of this scalar field ranges from zero - grid

points inside or exactly on the atomic surfaces — to the largest possible distance found

in the atomic structure — grid points at the center or close to the center of the largest

cavities.

In computational geometry this problem belongs to the class called motion plan-

ning or the piano mover’s problem [77], where a polygon shaped object has to be

moved through a labyrinth of geometrical obstacles. Our method is one possible so-

lution to the special case of spherical piano and spherical obstacles, applied to the

case of atomic structures.

3.3 The visualization process

Commercial visualization programs — for example Application Visualization System

(AVS) or Explorer - allow visualization of three dimensional scalar fields by drawing

an isosurface [78, 79] through the points which have the same value of the scalar.

Three dimensional contour plots are also a possible way to visualize scalar fields.

The level of the isosurface, which in the present case is the radius of the test sphere,

is controlled by the user. By changing this level, the scalar field can be scanned

through, the cavity and channel structure seen by test spheres with different radii

can be visualized. Alternatively the three dimensional isosurface can be imagined

as intersecting front of the spherical waves starting from the atomic surfaces and
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propagating outwards at a constant velocity [80]. By rotating the isosurface on the

computer screen, the channel and cavity structures can be viewed from different

directions.

To reduce the size of the data files, the real-valued scalar field is mapped linearly

into the 0—255 integer interval, using only one byte for every grid point. The visual-

ization programs mentioned above prefer this data format by default. If the scalar

field has its largest value equal to 5—10 A (which is typical for zeolites), then the error

introduced by this fieldvalue-discretization is 002-004 A. Due to the discreteness of

the mathematical grid ._ the field is sampled at discrete positions — additional error is

introduced, which can be much larger than this one. In a typical calculation, as seen

in the next section, usually a 41 by 41 by 41 cubic mathematical grid is placed on

a 36 A by 36 A by 36 A real physical volume, although this may be increased to an

81 by 81 by 81 grid if desired. Therefore the former choice yields a distance between

two gridpoints of 0.9 A, and 0.45 A for the latter. This will be the maximum error

superimposed on the channel and cavity diameters.

The isosurfaces might be slightly rough for the visualization programs right after

the calculations. The aesthetic quality of the pictures can be improved significantly

without much lost information by using a smoothing procedure. The smoothing

procedure is a three dimensional second order averaging with the following weight

    

factors: _ q

1 2 1 2 4 2 l 1 2 1 l

1

1 2 1 2 4 2 ) 1 2 1 J

This three dimensional array of weights is the three dimensional tensor product of the

weight vector %(1, 2, 1) used for one dimensional smoothing [13]. More sophisticated

smoothing weights or procedures are possible but were not necessary for our purposes.

The new smoothed value of the scalar field associated with a given grid point depends
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on its old value and the values of its 26 neighbors. The effect of this smoothing is

shown in Figures 3.2 and 3.3. Figure 3.2 shows the original data field; Figure 3.3

displays the data field after two consecutive smoothings. The complete description

of these Figures is given in the next section. The original six-fold symmetry around

the longitudinal axis can be seen on the unsmoothed structure. But this symmetry

is not very clear from the picture, because the underlying mathematical cubic grid

used by the visualization program is not compatible with the hexagonal symmetry of

the crystal. The smoothing procedure “cleans up” the picture, it smooths the sharp

edges and peaks, and it deletes the small fragments. But, at the same time it results

in some loss of information, as occurs with every kind of smoothing. The optimal

number of applications of this smoothing on the data field is one or two according

to our experience. The smoothing procedure is applied twice in every figure except

Figure 3.2. The error introduced by the smoothing depends on the actual shape of

the scalar field itself. To eliminate the smoothing error, the original scalar field may

be used without any smoothing for precise calculations, and then the smoothened

field for visualization only. By increasing the number of grid points this error and

the discretization error can be reduced also. The price one pays for the smaller error

is, as usual, increased computer time and bigger data files. The total error coming

from the three different sources — discretization of space, discretization of field and

smoothing — can be as large as 10-15 percent compared to the channel diameters in the

Atlas of Zeolite Structure Types [81]. However the main purpose of the visualization

method is to help understand qualitatively the channel structures in zeolites. More

quantitative data can be obtained by special purpose programs as we will see.
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Figure 3.2: Perspective view of the channels in Linde type—L zeolite, seen by Argon

atoms (r=1.7 A). The volume with strange shape shown in gray is the volume available

to the center of the test spheres with a given radius, in this case corresponding to an

Argon atom. No smoothing has been apllied to the data field. The edge length of the

cubic shaped sample volume is 35.9 A. The crystal structure has hexagonal symmetry,

therefore the cubic volume shown here is not compatible with the symmetry of the

crystal. Three complete channels and a half one can be seen. The small fragments

are from channels that extend outside of the sampled volume.
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Figure 3.3: The channels in Linde type-L zeolite, seen by Argon atoms (r=l.7 A)

after two smoothings. The sharp edges, peaks and some small fragments are deleted

due to this smoothing. The smoothing procedure is very useful for examining the

main channels and cavities without the fine structures, but it introduces some error,

because it modifies the field sligthly. This modification is evident in the figure: the

smoothed channels have a slightly smaller diameter than the unsmoothed ones at the

same level. Experience indicates that this change is not more than 10%.

109



3.4 Example structures

In the following four examples we have used 1.32 A for the van der Waals radius of

Oxygen and 1.82 A for Silicon. The first example is the Linde type-L Zeolite [63],

shown in Figures 3.2 — 3.4. The unit cell parameters are the following: a = 18.46 A;

b = 18.46 A; c = 7.51 A; a = 90°; [3’ = 90°; 7 = 120°. The edge length of the cubic

shaped volume on the figures is 35.9 A. This Zeolite has straight parallel channels

along the z axis without interconnections between them: the pore structure is one

dimensional. The shape of each channel is almost cylindrical (it has six-fold symmetry

around its axis as mentioned in the previous section) with a wavy profile along the

axis. The repeat length of the wave is the length of the unit cell in the z direction

which is 7.51 A. Somewhat less than five complete periods are shown in the figures.

There are three complete channels and one cut in half, because the cubic volume

shown in the figures is not compatible with the hexagonal unit cell of the crystal. It

should be emphasized here once again that the figures do not show the shape of the

channels, but rather the locus of points that the center of a sphere of the designated

radius can sample. The largest sphere which can be fit into the widest part of the

channel has a radius of 4.8 A, and the sphere which can be fit into the narrowest part

has a radius of 3.5 A. The latter radius is the critical one: a sphere with this radius

can diffuse through the system, but a bigger one cannot. A comparison of Figures

3.3 and 3.4 shows the difference in effective porosity: the center of the larger Xenon

atoms sample a smaller volume than the smaller Argon atoms.

The second example, the MOM-22 zeolite [64], is shown in Figures 3.5 - 3.8.

The unit cell parameters are the following: a = 14.11 A; b = 14.11 A; c = 24.88 A;

a = 90°; 6 = 90°; 7 2 120°. The edge length of the cube is 30.4 A. This structure has

two different, non intersecting two-dimensional channel systems. One of the channel

systems forms a triangular lattice, the other one a honeycomb lattice. There is no

link between the two channel systems. The triangular lattice has large cavities about
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Figure 3.4: The channels in Linde type-L zeolite as seen by Xenon atoms (r=2.2 A).

Comparing this figure with the previous one, it is shown that Xenon atoms see a

narrower channel structure than Argon atoms.
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Figure 3.5: Top view of the channel structure of the MGM—22 zeolite viewed along the

z-axis. The level is at the Argon atom radius (r=l.7 A); the edge length of the cube

is 30.4 A. One of the channel systems forms a two-dimensional triangular lattice with

big cavities at the hexagonal sites. The second channel system is a two-dimensional

honeycomb lattice.
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Figure 3.6: Side view of the channel structure of the MGM-22 zeolite viewed along

the direction of one of the a axes. The level is the Argon radius (r=l.7 A). This view

shows that there is no appreciable connection between the two channel systems. The

length of the large cavities in the triangular lattice is 20 A, the diameter is about

8.2 A. The ”triangular lattice - honeycomb lattice” pattern repeats itself in the z

direction. The two small hemispherical fragments are parts of the large cavity from

the next triangular lattice.
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Figure 3.7: Perspective view of the channel structure of the MOM-22 zeolite viewed

at the level of the Argon radius. This view provides a good illustration of the relative

positions of the two channel structures in the three dimensional space.
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Figure 3.8: The same perspective view as the previous figure, but now at the level of

the Xenon radius (r=2.2 A). Clearly, both channel systems became disconnected; the

Xenon atom is too large to diffuse through this zeolite.
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20 A long and 8.2 A in diameter. The honeycomb lattice does not have similar

features. The ”triangular lattice - honeycomb lattice” pattern repeats itself in the z

direction. Argon atoms could diffuse through both channel systems. The triangular

lattice connections close at a test sphere radius of 1.8 A, the honeycomb at 1.9 A.

Both channel systems are closed for Xenon atoms.

The third example is the well known ZSM-5 zeolite [66]. The unit cell is rectan-

gular with three different side lengths: a = 20.022 A; b = 19.899 A; c = 13.383 A.

Three side views and two perspective views are shown in Figures 3.9 — 3.13. The

edge length of the cube is 35.9 A. The straight channels in the direction of the b axis

are the major channels in this structure with a diameter of 4.5 A. The secondary,

wavy-shaped channels in the direction of the a axis with a diameter of 4.3 A are

slightly narrower. Altough there are no straight direct channels in the direction of

the c axis, particles can diffuse slowly in this direction using the major and the sec-

ondary channels alternately. The side views and the first perspective view show the

channel structure experienced by Argon atoms. The second perspective view, Figure

3.13, shows the structure at the level of the Xenon radius. From this figure it can be

seen that the Xenon atoms could not pass through the narrower secondary channels,

and they are at the threshold of going through the wider major channels. It would

be simple to calculate the threshold more precisely by increasing the resolution of the

sampling grid or sampling a smaller volume of the crystal.

The last example is the Zeolite-Y structure [67], shown in Figures 3.14 — 3.15.

This zeolite has a cubic unit cell: a = 25.03 A. The edge length of the sample cube is

35.5 A. The tetrahedral—shaped major cavities form a diamond lattice. The diameter

of these cavities is 11.2 A and they are connected to each other through channels

with a radius of 3.3 A. There is a secondary cavity in this structure with radius

2.2 A, but access is provided to these cavities only through very narrow channels of

radius 0.6 A. Zeolite-Y is probably the most thoroughly studied zeolite in laboratory
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Figure 3.9: The channels in zeolite ZSM-5 viewed along the direction of the c-axis

at the level of the Argon radius (r=l.7 A). The edge length of the cube is 35.9 A.

The vertical channels, in the direction of the b-axis, are the major channels in the

structure with diameters of 4.5 A. The horizontal secondary channels, in the direction

of the a-axis, with diameters of 4.3 A are slightly narrower.
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Figure 3.10: ZSM-5 viewed along the a-axis at the level of Argon radius. On this

view the major channels are still vertical — direction b — , but now the structure is

viewed along the direction of the secondary channels.
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Figure 3.11: ZSM-5 viewed along the b—axis, along the direction of the major channels.

The horizontal wavy shaped channels are the secondary channels in the direction of

the a axis. Although there are no straight direct channels in the direction of the c-axis,

particles can diffuse slowly in this direction by using the major and the secondary

channels.
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Figure 3.12: A perspective view of ZSM-5 at the level of the Argon radius (r=l.7

A) that shows the complex three dimensional channel network. Rotation of pictures

such as this provide information about the connectivity, that is not easily available

with traditional molecular or crystal visualization tools.
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Figure 3.13: A perspective view of ZSM-5 at the level of the Xenon radius (r=2.2 A).

The secondary channels are already closed at this level, and the major channels are

barely large enough to permit passage of Xenon atoms.
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Figure 3.14: The channels and cavities in the Zeolite-Y structure at the level of the

Argon radius (r=l.7 A). The major cavities form a diamond lattice. The radius of

the largest test sphere which can be fit into these tetrahedral-shaped cavities is 5.6 A.

The major cavities are connected to each other through channels with a radius of 3.3

A. The secondary spherical shaped cavities have a radius of 2.2 A. Access is provided

to these cavities only through narrow channels with a radius of 0.6 A. These channels

cannot be seen at the level of the Argon radius.
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Figure 3.15: The channels and cavities in the Zeolite-Y structure at the level of the

Xenon radius (r=2.2 A). The diamond structure can be seen more clearly at this

higher level. The secondary spherical cavities have just disappeared, because they

have about the same radius as Xenon atoms.
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experiments and in computer simulations due to its large cavity and channel sizes

and three dimensional structure [82] — [86].

3.5 Statistical Analysis

Besides using this procedure for visualization, the scalar field can be processed using

statistical analysis to gain more information about the geometry of the pore structure.

The probability density function n(r) can be calculated straightforwardly. The n(r)dr

product gives the relative number of grid points in the space at which a test sphere

with radius r,, (r < rt < r + dr) can be fit into the solid while touching the atoms. In

other words n(r)dr is the relative number of grid points exactly at distance r from the

atomic surfaces. Originally, this function was computed directly from the scalar field

calculated for visualization, simply by counting the grid points with the same values

and then building a histogram to see the distribution. Later an independent method

was developed in order to enhance the precision and performance. This method uses

only one unit cell - the smallest unit containing all the information about the whole

crystal - with periodic boundary condition instead of the cubic shaped sample volume.

Changing the size of the sample cube leads to slightly different statistics, because the

cube is not compatible with the symmetry of the crystal. Furthermore, the grid points

used in the statistical ananlysis to sample the space are generated at random positions

inside the unit cell instead of via a specific cubic pattern as in the visualization. The

results of this calculation are shown in Figure 3.16. For every structure the density

function goes to zero at the radius of the largest possible test sphere Rm”, which is

4.8 A for the Linde type-L Zeolite, 4.6 A for MOM-22 structure, 3.3 A for ZSM-5 and

5.6 A for Zeolite-Y. The total area under the probability density function i.e. the

integral from zero to the Rum radius gives the total porosity of a given structure:

0.57 for Linde, 0.56 for MGM-22, 0.53 for ZSM-5 and 0.66 for Zeolite-Y. The total
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Figure 3.16: The porosity probability density functions for the four different zeolites.

These functions were calculated by generating 1 million probing positions randomly

inside the unit cell. The density functions go to zero at Rum, the radius of the

largest cavity found in the crystal (Linde type-L: 4.8 A; MOM—22: 4.6 A; ZSM-5: 3.3

A; Zeolite-Y: 5.6 A). The integral of the density functions from rt, the radius of a

given test sphere to Rm“, the radius of the largest test sphere that can be fitted into

the crystal gives the effective porosity functions shown in the next figure.
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Figure 3.17: The effective porosity functions for the four different zeolites. The curves

start from the maximum porosity values for a test sphere of 0.0 A radius (Linde type-

L: 57%; MGM-22: 56%; ZSM-5: 54%; Zeolite-Y: 66%), then decrease as the radius of

the probing particle increases and finally go to zero at Rm”, the radius of the largest

spherical cavity found in the crystal (Linde type-L: 4.8 A; MOM-22: 4.6 A; ZSM-5:

3.3 A; Zeolite-Y: 5.6 A). These function were computed by numerical integration of

the density functions.

porosity of a crystal is the ratio of the empty volume — volume not occupied by atoms

— and the total volume of the crystal. Integration of the density function from rt —

a given test sphere radius in the range between zero and Rm“ - to Rm” gives the

effective porosity function. These functions are shown in Figure 3.17 for our example

zeolites. The effective porosity has the following meaning: it is the relative volume

in the crystal where a test sphere with radius rt is allowed to be placed. These are

the regions which are at a distance of at least rt from the atomic surfaces. Obviously
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a larger atom sees smaller free space inside the cavities and channels than a smaller

atom, therefore the effective porosity is reduced for a larger atom. For example Figure

3.17 shows that an Argon atom (r=l.7 A) sees only 10-20% effective porosity in the

four Zeolites instead of the total void of 53-66%.

The effective porosity function contains more information about a crystal than the

simple value of porosity -— the ratio of void and total volume —, which is just one value

of the whole function at r = 0. However it should be noted that the construction of

the effective porosity function is purely mathematical. The test spheres are dropped

into the crystal artificially from outside through an extra dimension. In reality a

diffusing atom has to travel through narrow channel to reach large cavities. Even

if the channels are perfectly straight, at intersections they might form cavities with

radius larger than the radius of the channels. These cavities will always be unreachable

from outside for larger particles even if they can accomodate them. Therefore the

real physical porosity function decays faster than the mathematical porosity function.

This mathematical porosity function is an upper limit. A more realistic construction

of the function would require the correct treatment of accessibility as in [87]. These

percolative threshold sizes of the channels can be determined — even if not very

precisely — from the visualization process by changing the isosurface level.

3.6 Summary

We have presented a geometrical method here that allows us to visualize channels and

cavities in zeolites and other porous structures by using computers, as exemplified

by pictures of different zeolites. The pictures can help not only to understand better

the connectivities and the structure of pore space, but also to give a simple yet

quantitative description about pore sizes and threshold sizes of the diffusing particles.

The program package to generate the data fields for visualization from a crystal
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structures (documentation, installation instructions, Fortran source files and example

structures) is available for free usage from:

ftp://argus.cem.msu.edu/pub/dye/voids

by anonymous file transfer, and technical support is available from the author. The

package is currently used at several universities and at the NEC Laboratory in Prince-

ton [88].
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Chapter 4

Summary and conclusion

A class of discrete computational models was deve10ped and implemented as an al-

ternative to continuous type simulations such as Molecular Dynamics and continuum

Monte-Carlo methods.

Four different algorithms were used at the driver level: traditional neighbor-list,

a fast neighbor-list, cell-list and field-representation. The fast neighbor-list method

designed in this work is a sophisticated extension of the traditional neighbor-list

method. It fixes the major deficiency — the quadratic dependence of the calculation

time on the size of the system simulated — of the neighbor-list method resulting in

a true linear algorithm. This algorithm is independent of the underlying lattice;

therefore it can be used in continuous type simulations as well. The cell-list method

implemented here is a discrete version of the widely used continuous cell-list or domain

decomposition algorithm. It uses simple bit manipulation very efficiently to sort the

particles into the cells. The field-representation method is a generalization of the

Lattice-Gas method: the particles in the Lattice-Gas simulation are pointlike; in the

field-representation they have their own structure. These algorithms give different

performance depending on the exact situations, but they all outperform the currently

fastest Molecular Dynamics and other continuous type simulations. This is mainly
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due to the integer arithmetic employed.

Three different lattices — square, triangular and cubic — were implemented and

studied. The particles can follow two different traveling methods: random walk or

ballistic motion. After collisions the new directions can be generated in an isotropic

or in a biased way. The underlying lattice can be utilized to represent arbitrary geo-

metrical constraints or external potential field or both at the same time. The particles

can interact with each other through hard core repulsion only or with some model

potential. Several physical properties can be collected in the simulations such as

density profiles or pair distribution functions. When combining all these possibilities

together the total number of combinations is quite large, it is in the range of several

hundreds. Obviously not all of them gives a physically sensible model. Thirty of the

most fundamental cases have been implemented in Fortran and used successfully for

this work. Many other cases are in the experimental stage. The length of an average

module is about one thousand lines.

The most important discrete computational techniques were discussed in detail.

These techniques are still not very widely known and used. They are relatively simple

and straightforward to implement in Fortran in a portable way as was shown. The

power of the simulation methods in this work is mainly due to these techniques.

Due to the discreteness of the underlying lattice, certain physical results must be

corrected in order to recover the continuum case. These lattice effect were successfully

removed from the pair distribution function. The density profile results for the hard

core fluid inside a parallel slit did not need extra correction because of the geometrical

compatibility of the lattice and the slit. Detailed results with fine stepsize were given

for narrow slits.

A lattice based geometrical method was developed to characterize the pore struc-

ture inside zeolites. This method is universal; it can be applied to arbitrary atomic

systems. Originally this method was developed to visualize channel structures in elec-
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trides. It is in every day use in this field, producing cavity and channel maps for these

materials. These maps are very similar in shape and character to electron density

maps which still require the power of supercomputers to be obtained. Even though

the two maps are not exactly the same, the geometrical maps help to understand the

physics of electrides. In the case of zeolites the geometrical maps are exactly what

we need to see in order to understand their physical prOperties. This geometrical

method was the first step in the development of this family of lattice based discrete

techniques.

Ultimately the particles can be placed on the lattices describing the geometry

of real physical enviromnents such as zeolites. The method is powerful enough to

overcome certain limitations of Molecular Dynamics. With additional features such

as chemical bonds for example, the applicability of the method widens even more.

The new features however must be introduced with care in order not to lose too much

of the computational efficiency.

The emphasis was placed on the computational methodology and the algorithms

for the following reasons. Developing, implementing and testing new methods is al-

ways demanding. These methods now can help other studies. Many of these methods

can be directly applied to other lattice based simulations, for example percolation

problems and spin systems.

Without investigating the fundamental computational methods, it is difficult to

reach large system sizes and long times even on today’s powerful computers.
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Appendix A

Source code for one module

In this appendix the source code for one of the modules is presented as an example,

along with the parameter and status files. Each module has a unique name. There is a

jobfile associated with each module with the same name and with the . job extension.

The names of the jobs to be performed are placed in the job-file. The job-file can

contain maximum 49 jobnames with maximum 30 characters each, one jobname per

line without empty lines. The structure of the jobfile is obvious, it is not shown here.

Each module reads its own jobfile at the very beginning of the run and then executes

them one by one. The extension .par is added to each jobname, and the simulation

parameters are read from that parameter file. If the parameter file does not exist or

it is misplaced, the module stops with a fatal error. There is no procedure built into

the modules to handle these types of situations with tolerance. (The error handling

routine would be more complicated than the whole main Monte-Carlo loop.) The

parameter files are slightly different for each module, but they are pretty similar in

structure. The most important parameters — size of the simulation box, number of

particles, particle radius — are always present in the parameter files. The parameter

file for this module is shown below. The numbers, logical values and strings are read

from the first column by the program module — everything else is ignored. We can
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use this area for our comments and reminders as the example show.

1024 Nx X-Size of the lattice

1024 NY Y-Size of the lattice

1100 NATOM Number of atoms

12.0 RAD Hardcore radius

1000 TSTEP Number of ENSEMBLE steps

T GENSEEDFLAG ngen your own seed, F:read next number

-23459 NSEED Manual seed for RNG

T GENCONFFLAG T:gen your own config, Fzread it from file

1024n1100r12.xy

1 IRS Number of config-repeats (1,2,4,8)

1 CTRY Constant for squeze trial

T WRITECONFFLAG Output configuration to file (T:Yes,F:No)

8 NDIR Number of directions

1 0 Right

0 1 Up

-1 0 Left

0 -1 Down

1 1 Right-Up

1 —1 Right-Down

-1 1 Left-Up

-1 -1 Left-Down

After the parameters are read from the parameter file, they are echoed back to a

log-file, to make sure each parameter has the correct value. The log-file has the name

of the job with the .log extension. The log-file looks very similar to the parameter

file; it is not shown here.

During the simulation a status file is created containing important information

about the simulation run. The name of the status file is created from the name of

the job with the .sts extension. The most important initial simulation parameters

are repeated to this status file again. Then other important simulation results —

particle densities, collision ratios — are written into this file. The number of particles

successfully placed in the simulation box is not necessarily equal to the number given

in the parameter file initially. If the planned density is too high, the program might

not be able to place all the particles. The status file gives the number of particles

finally placed, and the correct densities are calculated based on this number. The

status file is shown here for this module.
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Fundamental prameters

NX : 1024

NY : 1024

NATOM : 1100

RAD : 12.00000000

TSTEP : 1000

Densities

Numb dens: 0.00104904

Redu dens: 0.60424805

Area dens: 0.47457528

Initial configuration distances

2*RAD : 24.00000000

MINDO : 24.00000000

MIND20 : 576

Final configuration distances

2*RAD : 24.00000000

MINDO : 24.00000000

MIND20 : 576

Final collisions

PCOL : 169664

Coll ratZ: 15.42400

Every module generates result—files depending on what type of data was collected

in the simulation. This example module performs only the simulation without col-

lecting anything, so only the initial and final configurations of the particle system are

written to files. These files simply contain the coordinates of the particles, they are

not shown here.

Finally the Fortran source code for this module is given here. It is meant to be a

well commented, easy-to-read code, but it probably still has many obscure points. The

author would be happy to hear any suggestions, or to give detailed explanations. The

source code of the other modules are also available. This module simulates hard core

particles walking randomly in two dimensions using the field-representation method
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with periodic boundary condition and isotr0pic direction generation. Many of the

computational techniques discussed in this work can be found in the source code.

C h: hard core particles in Field-Representation

C 2: on a 2D square lattice

C p: with Periodic boundary condition

C i: Isotr0pic (=nonbiased) random walk

C a: version A: simulation only

C Update: in every ENSEMBLE time step each atom takes its own

C step in the SAME order in every cycle.

C_______________________________________________________________________

PROGRAM H2PIA

C_______________________________________ .. _____________________

IMPLICIT NONE

 

INTEGER LX,LY !Sizes for memory-allocation

PARAMETER (LX=8191,LY=8191) !(255,511,1023,2047,4095,8191)

INTEGER*1 F(0:LX,0:LY) !F: particle cores and media walls

INTEGER NX,NY !Actual sizes (N<=(L+1) must be)

INTEGER LATOM !Number of atoms MINUS ONE

PARAMETER (LATOM=999999) !to reserve in memory

INTEGER X(0:LATOM) !X coordinates of atoms

INTEGER Y(0:LATOM) !Y coordinates of atoms

INTEGER NATOM !Actual number of atoms

!(NATOM<=(LATOM+1) must be)

REAL*4 RAD !Radius of a particle

INTEGER TSTEP !Num of ENSEMBLE timesteps to take

LOGICAL GENSEEDFLAG !ngenerate our own, Fzread from file

INTEGER NSEED !Seed for RNG

LOGICAL GENCONFFLAG !ngenerate our own config, F:read it

CHARACTER CONFFILENAMEtBO !Name of the file where config is

INTEGER LENGCFN !Length of the name above

INTEGER IRS !How many times to repeat the configuration

!in both X and Y direction. (1,2,4,8,...)

INTEGER CTRY !Trial Constant for initial state

LOGICAL WRITECONFFLAG !Tzwrite configuration deon’t write
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INTEGER NUMBJDBS

CHARACTER NAMEJOBS(49)*30

INTEGER LENGJOBS(49)

C Randomwalk vectors

INTEGER NDIR !Number of directions (1-8)

INTEGER DIRX(Oz7) !Direction table x component

INTEGER DIRY(0:7) !Direction table Y component

C Hard core shapes

INTEGER NPNT !Number of points in the shapetable

INTEGER SHPTBLX(8000) !Table of the X shapecoordinates

INTEGER SHPTBLY(8000) !Table of the Y shapecoordinates

C Hard core deltashapes

INTEGER NDP(O:7) !Number of +1 delta elements

INTEGER DXP(125,0:7) !Delta = +1, X coord

INTEGER DYP(125,0:7) !Delta = +1, Y coord

INTEGER NDM(O:7) !Number of -1 delta elements

INTEGER DXM(125,0:7) !Delta = -1, x coord

INTEGER DYM(125,0:7) !Delta = -1, Y coord

INTEGER I

C.......................................................................

C Read jobfile

CALL RDJOBNAMES(NUMBJOBS,NAMEJOBS,LENGJOBS)

C Execute jobs one by one

DO I=1,NUMBJOBS

C Read parameter file

CALL READPAR(NAMEJOBS(I),LENGJOBS(I),NX,NY,NATOM,RAD,

# TSTEP,GENSEEDFLAG,NSEED,

# GENCONFFLAG,CONFFILENAME,LENGCFN,IRS,

# CTRY,WRITECONFFLAG,NDIR,DIRX,DIRY)

C Generate your own seed only when the flag says so

IF (GENSEEDFLAG) THEN

CALL GENSEED(NSEED)

ENDIF

C Write log file for double check

CALL WRITEPAR(NAMEJOBS(I),LENGJOBS(I),NX,NY,NATOM,RAD,

# TSTEP,GENSEEDFLAG,NSEED,

# GENCONFFLAG,CONFFILENAME,LENGCFN,IRS,

# CTRY,WRITECONFFLAG,NDIR,DIRX,DIRY)
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C Generate 2D circular step functions

CALL GEN2DCIR(2.0tRAD,NPNT,SHPTBLX,SHPTBLY)

C Generate Head and Tail points

CALL GEN2DDEL(NPNT,SHPTBLX,SHPTBLY,NDIR,DIRX,DIRY,

# NDP,DXP,DYP,NDM,DXM,DYM)

C Core: main Monte Carlo routine

CALL MCCORE(LX,LY,F,NX,NY,LATOM,X,Y,NATOM,RAD,TSTEP,

# NSEED,GENCONFFLAG,CONFFILENAME,LENGCFN,WRITECONFFLAG,

# IRS,CTRY,NDIR,DIRX,DIRY,NPNT,SHPTBLX,SHPTBLY,

# NDP,DXP,DYP,NDM,DXM,DYM,NAMEJOBS(I),LENGJOBS(1))

 

  

ENDDO !I

C_______________________________________________________________________

STOP

END

C................................ ._ _________

SUBROUTINE MCCORE(LX,LY,F,NX,NY,LATOM,X,Y,NATOM,RAD,TSTEP,

#NSEED,GENCONFFLAG,CONFFILENAME,LENGCFN,WRITECONFFLAG,

#IRS,CTRY,NDIR,DIRX,DIRY,NPNT,SHPTBLX,SHPTBLY,

#NDP,DXP,DYP,NDM,DXM,DYM,NAME,LENG)

C..................... .... ___________________ - _

C Main Monte Carlo routine.

C_______________________________________________________________________

IMPLICIT NONE

C Input-Output:

INTEGER LX,LY !Sizes for memory-allocation

INTEGER*1 F(O:LX,O:LY) !F: particle cores and media walls

INTEGER NX,NY !Actual sizes (N<=(L+1) must be)

INTEGER LATOM !Number of atoms MINUS ONE to allocate

INTEGER X(O:LATOM) !X coordinates of atoms

INTEGER Y(0:LATOM) !Y coordinates of atoms

INTEGER NATOM !Actual number of atoms

!NATOM =< (LATOM+1) must be

REAL RAD !Radius of the atom

INTEGER TSTEP !Number of ENSEMBLE timesteps

INTEGER NSEED !Seed for RNG

LOGICAL GENCONFFLAG !ngenerate our own config, Fzread it

CHARACTER CONFFILENAME*BO !Name of the file where config is

INTEGER LENGCFN !Length of the name above
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LOGICAL WRITECONFFLAG !Tzwrite configuration F:don’t write

INTEGER IRS !How many times to repeat the configuration

!in both X and Y direction. (1,2,4,8,...)

INTEGER CTRY !Trial Constant for initial state

C Randomwalk vectors

INTEGER NDIR !Number of directions (1-8)

INTEGER DIRX(0:7) !Direction table X component

INTEGER DIRY(O:7) !Direction table Y component

C Hard core shapes

INTEGER NPNT !Number of points in the shapetable

INTEGER SHPTBLX(8000) !Table of the X shapecoordinates

INTEGER SHPTBLY(8000) !Table of the Y shapecoordinates

C Hard core deltashapes

INTEGER NDP(O:7) !Number of +1 delta elements

INTEGER DXP(125,0:7) !Delta = +1, X coord

INTEGER DYP(125,0:7) !Delta 8 +1, Y coord

INTEGER NDM(O:7) !Number of -1 delta elements

INTEGER DXH(125,0:7) !Delta = -1, X coord

INTEGER DYM(125,0:7) !Delta = *1, Y coord

CHARACTER NAME*30

INTEGER LENG

C Functions:

INTEGER IAND

REAL*4 RAN

C Local variables:

INTEGER MX,MY

INTEGER PCOL

INTEGER I,J,K,L

INTEGER HI,HJ,HD,JNS

INTEGER OLDX,OLDY,NEWX,NEWY,ZX,ZY

INTEGER D2MIN,HIND2O

INTEGER MAXTRY,ITRY

INTEGER LDATA,LSTAT

REAL*4 PI,RH

CHARACTER HNAMEt30

C_______________________________________________________________________

C Init important variables

PCOL = O !Particle-particle collision counter

LDATA = 10 !Logical unit for DATA files

138



LSTAT = 11 !Logical unit for STATUS file

PI = 3.1415926

D2MIN = INT((2.0*RAD)**2) !Min allowed distance square

C_______________________________________________________________________

MX = NX - 1 !Masks for bitwise operations

MY = NY - 1

C.......................................................................

C Clear main array just in case. (The devil never sleeps.)

DO J=0,MY

DO I=0,MX

F(I,J) = O

ENDDO !I

ENDDO !J

C.......................................................................

C Initial configuration.

IF (GENCONFFLAG) THEN

C Let’s generate our OWN random initial configuration.

C (Try to set up NATOM piece of particles in the field without clash.)

MAXTRY = CTRY*NATOM

ITRY = 0

DO I=0,(NATOM-1)

10 IF (ITRY.GT.MAXTRY) THEN

C The field is full enough, let’s finish

NATOM = I !Number of successfully placed atoms

GOTO 20

ENDIF

C Generate a random position

NEWX = INT(NX*RAN(NSEED))

NEWY = INT(NY*RAN(NSEED))

C Is it allowed to occupy it?

IF (F(NEHX,NEWY).EQ.O) THEN

C YES: let’s put the atom down

ITRY = 0 !Reset trial counter

X(I) NEWX !Store X coord

Y(I) NEUY !Store Y coord

DO J=1,NPNT !Put the atom into the field

ZX = IAND((NEWX+SHPTBLX(J)),MX)

ZY = IAND((NEWY+SHPTBLY(J)),MY)

F(ZX,ZY) = F(ZX,ZY) + 1

ENDDO !J

ELSE

C NO: try again, but let’s count the trial

ITRY = ITRY + 1

GOTO 10

ENDIF

ENDDO !I

20 CONTINUE
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C Let’s read the configuration from an external file.

WNAME = CONFFILENAME(1:LENGCFN)

OPEN(UNIT=LDATA,FILE=WNAME,STATUS=’UNKNOWN’)

I = O

56 READ(LDATA,*,ERR=57,END=57) X(I),Y(I)

I = I+1

GOTO 56

57 CLOSE(LDATA)

NATOM = I

C Let’s generate field based on the particle coordinates

DO I=0,(NATOM-1)

DO J=1,NPNT

ZX = IAND((X(I)+SHPTBLX(J)),MX)

ZY = IAND((Y(I)+SHPTBLY(J)),MY)

F(ZX,ZY) = F(ZX,ZY) + 1

ENDDO

ENDDO

C............................................... _.._ ..--

C Let’s repeat the configuration and then correct the simulation

C box parameters accordingly.

IF (IRS.GT.1) THEN

C Repeat coordinates in X direction first

DO J=1,(IRS-1)

NJ = J*NATOM

JNS = JtNX

DO I=O,(NATOM-1)

HI = I + VJ

X(WI) = X(I) + JNS

Y(HI) = Y(I)

ENDDO !I

ENDDO !J

C Repeat field in X direction

DO J=1,(IRS-1)

JNS = J*NX

DO K=O,MY

DO L=0,MX

F((JNS+L),K) = F(L,K)

ENDDO !L

ENDDO !K

ENDDO !J

C Correct the number of atoms accordingly

NATOM = IRS*NATOM

C Correct the size in X after the repeat

NX = IRStNX
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MX = NX - 1

C Repeat coordinates in Y direction

DO J=1,(IRS-1)

NJ JtNATOM

JNS J*NY

DO I=0,(NATOM-1)

HI = I + NJ

X(HI) = X(I)

Y(WI) = Y(I) + JNS

ENDDO !I

ENDDO !J

C Repeat field in Y direction

DO J=1,(IRS-1)

JNS = J*NY

DO K=0,MY

DO L=0,MX

F(L,(JNS+K)) = F(L,K)

ENDDO !L

ENDDO !K

ENDDO !J

C Correct the number of atoms accordingly

NATOM = IRStNATOM

C Correct the size in Y after the repeat

NY = IRS*NY

HY = NY - 1

ENDIF

C......................................... _ _ ......

C Calculate the minimum particle-particle distance for status report.

C Calculates only for open boundary condition!

C 0(N‘2) process, but paranoia is paranoia.

MIND2O = NX*NX + NYtNY

DO I=O,(NATOM-2)

OLDX = X(I)

OLDY = Y(I)

DO J=(I+1),(NATOM-1)

ZX = OLDX-X(J)

ZY = OLDY-Y(J)

MIND2O = MIN(MIND20,(ZX*ZX + ZY*ZY))

ENDDO

ENDDO

C_______________________________________________________________________

C Open status file and write important parameters

WNAME = NAME(1:LENG)//’.sts’

OPEN(UNIT=LSTAT,FILE=WNAME,STATUS=’UNKNOWN’)

8 FORMAT(1X,A,110)

9 FORMAT(1X,A,F14.8)

WRITE(LSTAT,*) ’Program : H2PIA’
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”RITE (LSTAT , III) ’ ---------------------
------- :

WRITE<LSTAT,*) ’Fundamental prameters’

WRITE(LSTAT,8) ’NX : ’,NX

HRITE(LSTAT,8) ’NY : ’,NY

HRITE(LSTAT,8) ’NATOM : ’,NATOM

HRITE(LSTAT,9) ’RAD : ’,RAD

WRITE(LSTAT,8) ’TSTEP : ’,TSTEP

WRITE(LSTAT,*) ’ ---------------------------- '

WRITE(LSTAT,*) ’Densities’

RV = FLOAT(NATOM)/FLOAT(NX)/FLOAT(NY)

WRITE(LSTAT,9) ’Numb dens: ’,RW

NRITE(LSTAT,9) ’Redu dens: ’,4.0*(RAD**2)*RW

WRITE(LSTAT,9) ’Area dens: ’,PI*(RAD**2)*RW

WRITE(LSTAT,*) ’ ---------------------------- ’

WRITE(LSTAT,*) ’Initial configuration distances’

IF (MIND20.LT.D2MIN) THEN

WRITE(LSTAT,*) ’********t******** WARNING !!! Particle clash.’

ENDIF

HRITE(LSTAT,9) ’2*RAD : ’,2.0*RAD

WRITE(LSTAT,9) ’MINDO : ’,SQRT(FLOAT(MIND20))

NRITE(LSTAT,8) ’MIND2O : ’,MIND20

C............................. ....— .............

C Output: Initial configuration if it is requested.

IF (WRITECONFFLAG) THEN

WNAME = NAME(1:LENG)//’.xyini’

OPEN(UNIT=LDATA,FILE=WNAME,STATUS=’UNKNOWN’)

DO I=O,(NATOM-1)

WRITE(LDATA,’(I4,1X,I4)’) X(I),Y(I)

  

 

ENDDO

CLOSE(LDATA)

ENDIF

C_______________________________________________________________________

C Main Monte-Carlo loop starts here.

C..................... _ ......................................

C Init particle-particle collision counter

PCOL = O

C Main double loop starts here

C Timeloop first

DO J=1,TSTEP

C Atomloop second

DO HI=0,(NATOM-1)

VD = INT(NDIR*RAN(NSEED))

OLDX = X(WI)

OLDY = Y(WI)

NEHX = IAND((OLDX + DIRX(WD)),MX)

NEWY = IAND((OLDY + DIRY(WD)).MY)

IF (F(NEHX,NEHY).LT.2) THEN
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C Geometry allows the step, so let’s take it

X(WI) = NEWX

Y(WI) = NEWY

C Move particle hard core, head points first

DO I=1,NDP(HD)

ZX = IAND((OLDX + DXP(I,WD)),MX)

ZY = IAND((OLDY + DYP(I,WD)),MY)

F(ZX,ZY) = F(ZX,ZY) + 1

ENDDO !I

C Then hard core tail points

DO I=1,NDM(WD)

ZX = IAND((OLDX + DXM(I,WD)),MX)

2? = IAND((OLDY + DYM(I,WD)),MY)

F(ZX,ZY) = F(ZX,ZY) - 1

ENDDO !I

ELSE

C Collision with another atom, so let’s count it

PCOL = PCOL + 1

ENDIF

ENDDO !HI

ENDDO !J

 

Calculate the minimum particle-particle distance for status report.

Calculates only for open boundary condition!

O(N‘2) process.

MIND2O = NXtNX + NY*NY

DO I=O,(NATOM-2)

OLDX = X(I)

OLDY = Y(I)

Do J=(I+1),(NATOM—1)

ZX = OLDX-X(J)

ZY = OLDY-Y(J)

MIND2O = MIN(MIND20,(ZX*ZX + ZY*ZY))

C
O
O

ENDDO

ENDDO

C.......................................................................

C Output: Status file

WRITE(LSTAT,*) ’ ---------------------------- ’

WRITE(LSTAT,*) ’Final configuration distances’

IF (MIND20.LT.D2MIN) THEN

WRITE(LSTAT,*) ’***************** WARNING !!! Particle clash.’

ENDIF

HRITE(LSTAT,9) ’2*RAD : ’,2.0*RAD

HRITE(LSTAT,9) ’MINDO : ’,SQRT(FLOAT(MIND20))

WRITE(LSTAT,8) ’HINDZO : ’,MIND2O

WRITE(LSTAT,*) ’ ---------------------------- ’

WRITE(LSTAT,*) ’Final collisions’
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HRITE(LSTAT,*) ’PCOL : ’,PCOL

WRITE(LSTAT,*) ’Coll ratX: ’,

#100.0*FLOAT(PCOL)/FLOAT(TSTEP)/FLOAT(NATOM)

CLOSE(LSTAT)

C_____________________ __ __ ___________________________

C Output: Final configuration if it is requested

IF (WRITECONFFLAG) THEN

WNAHE = NAME(1:LENG)//’.xyfin’

OPEN(UNIT=LDATA,FILE=WNAME,STATUS=’UNKNOWN’)

DO I=O,(NATOM-1)

HRITE(LDATA,’(I4,1X,I4)’) X(I),Y(I)

 

 

ENDDO

CLOSE(LDATA)

ENDIF

C_______________________________________________________________________

RETURN

END

C________________________________________ _ _ ................

SUBROUTINE GEN2DCIR(R,NPNT,X,Y)

C-- _ _ _ .....................  

C Routine to generate 2D circular step function table with radius R.

C Radius must be less than 50 lattice units.

 C- __ ...........................

IMPLICIT NONE

C Input:

REAL*4 R !Real radius

C Output:

INTEGER NPNT !Number of points in the table

INTEGER X(BOOO) !Table of the X coordinates

INTEGER Y(8000) !Table of the Y coordinates

C Local variables:

REALt4 R2,D

INTEGER I,J,I2,J2,C

C__________________________ -_ ---

C Chekpoint: You never know what comes from the parameter file.

IF (R.GE.50.0) THEN

WRITE(6,*) ’Fatal Error!’

WRITE(6,*) ’Radius is too big: ’,R

 

STOP

ENDIF

C_______________________________________________________________________

R2 = R*R

NPNT = 0

C = INT(R)

C_____________________ - ...................................... 

C Generate points on the lattice in a pattern of square and check the

C distance from the origin. If it is inside the radius then put it in
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C the table.

C

C Points lying exactly on the boundary are excluded!

C

C The order of the indeces are good (in Fortran) for efficient linear

C memory access, no further sorting is necessary.

 

  

DO J=-C,C

J2 = J*J

DO I=-C,C

I2 = I*I

D = FLOAT(I2 + J2)

IF (D.LT.R2) THEN !.LT. throws out boundary points

NPNT = NPNT + 1

X(NPNT) = I

Y(NPNT) = J

ENDIF

ENDDO !I

ENDDO !J

RETURN

END

C________________________ _ ____________________________________

SUBROUTINE GEN2DDEL(NPNT,X,Y,NDIR,DIRX,DIRY,

# NDP,DXP,DYP,NDM,DXM,DYH)

C___________________________ —— ..

C Routine to generate 2D delta table of head and tail points for motion.

C (No explicit radius is present here, but it must be less than

C 50 units to fit in the table without outflow.)

 C_____________ __ ................................

IMPLICIT NONE

C Input:

INTEGER NPNT !Number of points

INTEGER X(BOOO) !Table of the X coordinates

INTEGER Y(BOOO) !Table of the Y coordinates

INTEGER NDIR !Number of directions (1-8)

INTEGER DIRX(Oz7) !Direction table X

INTEGER DIRY(O:7) !Direction table Y

C Output: ~

INTEGER NDP(O:7) !Number of +1 delta elements (head)

INTEGER DXP(125,0:7) !Delta = +1, X coord

INTEGER DYP(125,0:7) !Delta = +1, Y coord

INTEGER NDM(O:7) !Number of -1 delta elements (tail)

INTEGER DXM(125,0:7) !Delta = -1, X coord

INTEGER DYH(125,0:7) !Delta = -1, Y coord

C Local variables:

INTEGER C

PARAMETER (C=51)

INTEGER W(-C:C,-C:C)
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INTEGER I,J,N,IX,IY

C.......................................................................

C Let’s go through all the possible directions.

DO N=O,(NDIR-1)

NDP(N) 0

NDM(N) 0

DO J=-C,C

DO I=-C,C

H(I,J) = 0

ENDDO !J

ENDDO !I

DO I=1,NPNT

IX = X(I)

IY = Y(I)

U(IX,IY) = H(IX,IY) + 1 !Points without shift

IX = IX + DIRX(N)

IY = IY + DIRY(N)

H(IX,IY) = N(IX,IY) + 2 !Shifted points

ENDDO !NPNT

C The index-order is good in Fortran.

DO J=-C,C

DO I=-C,C

IF (H(I,J).EQ.1) THEN !Tail points: Minus

NDM(N) = NDM(N) + 1

DXM(NDM(N),N) = I

DYM(NDM(N),N) = J

ELSEIF (W(I,J).EQ.2) THEN !Head points: Plus

NDP(N) = NDP(N) + 1

DXP(NDP(N),N) = I

DYP(NDP(N),N) = J

 

ENDIF

ENDDO !I

ENDDO !J

ENDDO !NDIR

RETURN

END

C___________ _ -.. _______________________

SUBROUTINE RDJOBNAMES (NUMBJOBS,NAHEJOBS,LENGJOBS)

C........................................................... 

C Read jobnames and calculate lengths.

C Maximum number of jobs: 49, jobnamelengths: 30.

  
C...... -.. ..............................................

IMPLICIT NONE

C Output:

INTEGER NUMBJOBS

CHARACTER*30 NAMEJOBS(49)

INTEGER LENGJOBS(49)
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C Local variables:

INTEGER LIN,I

INTEGER HLENG

CHARACTER*30 HNAME

C_______________________________________________________________________

LIN = 10

OPEN(UNIT=LIN,FILE=’h2pia.job’,STATUS=’OLD’)

I = 1

1 READ (LIN,’(A30)’,ERR=99,END=99) NAHEJOBS(I)

I = I+1

GOTO 1

99 CLOSE(LIN)

NUMBJOBS = I-1

DO I=1,NUMBJOBS

HLENG = 30

HNAME = NAMEJOBS(I)

DO WHILE (WNAME(HLENG:WLENG).EQ.’ ’)

HLENG = WLENG - 1

 

ENDDO

LENGJOBS(I) = WLENG

ENDDO

RETURN

END

C________________________ .... _ ___________________

SUBROUTINE READPAR(FILNAM,LENG,NX,NY,NATOM,RAD,

#TSTEP,GENSEEDFLAG,NSEED,

#GENCONFFLAG,CONFFILENAME,LENGCFN,IRS,

#CTRY,WRITECONFFLAG,NDIR,DIRX,DIRY)

C_______________________________________________________________________

C Routine to read parameter file and do some data preprocessing.

C.......................................................................

IMPLICIT NONE

C Input:

CHARACTER FILNAM*30

INTEGER LENG

C Output:

INTEGER NX,NY,NATOM

REAL*4 RAD

INTEGER TSTEP

LOGICAL GENSEEDFLAG

INTEGER NSEED

LOGICAL GENCONFFLAG

CHARACTER CONFFILENAME*30

INTEGER LENGCFN

INTEGER IRS

INTEGER CTRY

LOGICAL WRITECONFFLAG
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INTEGER NDIR !Number of directions (1-8)

INTEGER DIRX(Oz7) !Direction table X component

INTEGER DIRY(O:7) !Direction table Y component

C Local variables:

INTEGER I,LIO

C.......................................................................

LIO = 10

OPEN(UNIT=LIO,FILE=FILNAM(1:LENG)//’.par’,STATUS=’OLD’)

C Parameters are read

READ(LIO,*) NX

READ(LIO,*) NY

READ(LIO,*) NATOM

READCLIO,*) RAD

READ(LIO,*) TSTEP

READ(LIO,*) GENSEEDFLAG

READ(LIO,*) NSEED

READ(LIO,*) GENCONFFLAG

READ(LIO,’(A30)’) CONFFILENAME

READ(LIO,*) IRS

READ(LIO,*) CTRY

READ(LIO,*) WRITECONFFLAG

C Direction table for randomwalk is read here

READ(LIO,*) NDIR

DO I=0,(NDIR-1)

READ(LIO,*) DIRX(I),DIRY(I)

ENDDO !I

CLOSE(LIO)

C Calculate the length of the config-file-name

LENGCFN = 30

DO WHILE (CONFFILENAME(LENGCFN:LENGCFN).EQ.’ ’)

LENGCFN = LENGCFN - 1

ENDDO

C We are done

RETURN

C____________________________________________________________

SUBROUTINE WRITEPAR(FILNAM,LENG,NX,NY,NATOM,RAD,

#TSTEP,GENSEEDFLAG,NSEED,

#GENCONFFLAG,CONFFILENAME,LENGCFN,IRS,

#CTRY,WRITECONFFLAG,NDIR,DIRX,DIRY)

C_______________________________________________________________________

C Routine to echo parameters to the log-file just in case.

C.......................................................................

IMPLICIT NONE

C Input:

CHARACTER FILNAMt30

INTEGER LENG
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C Output:

INTEGER NX,NY,NATOM

REAL*4 RAD

INTEGER TSTEP

LOGICAL GENSEEDFLAG

INTEGER NSEED

LOGICAL GENCONFFLAG

CHARACTER CONFFILENAME*30

INTEGER LENGCFN

INTEGER IRS

INTEGER CTRY

LOGICAL WRITECONFFLAG

INTEGER NDIR !Number of directions (1-8)

INTEGER DIRX(0:7) !Direction table X component

INTEGER DIRY(O:7) !Direction table Y component

C Local variables:

INTEGER I,LIO

C.......................................................................

LIO = 10

OPEN(UNIT=LIO,FILE=FILNAM(1:LENG)//’.1og’,STATUS=’UNKNOWN’)

C Parameters are written

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITECLIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

WRITE(LIO,*)

’Program

’FILNAM

’LENG

’NX

’NY

’NATOM

’RAD

’TSTEP

’GENCONFFLAG

’CONFFILENAME :

’LENGCFN

’IRS

’CTRY

’WRITECONFFLAG:

’NDIR

: H2PIA’

’,FILNAM

’,LENG

’,NX

’,NY

’,NATOM

’,RAD

’,TSTEP

’,GENCONFFLAG

’,CONFFILENAME

’,LENGCFN

’,IRS

’,CTRY

’,WRITECONFFLAG

’,NDIR

C Direction table for randomwalk is written here

DO I=0,(NDIR-1)

WRITE(LIO,*) ’I: ’,I,’ DIR: ’,DIRX(I),DIRY(I)

ENDDO !I

C We are done.

CLOSE(LIO)

RETURN

END .

C_______________________________________________________________________

SUBROUTINE GENSEED(SEED)

C_______________________________________________________________________
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Subroutine to generate seed for random number generators from

the system clock.

C_______________________________________________________________________

C

IMPLICIT NONE

Output:

INTEGER SEED

Local:

CHARACTER TM*8

INTEGER D1,D2,D3

!Seed

!Time string

!Work variables

 

Call time routine. (Not F77 standard, but it is very common routine.)

CALL TIME(TM)

Break string ’HH:MM:SS’ into separated integer variables.

READ(TM,’(I2,1X,I2,1X,I2)’) D1,D2,D3

Build integer seed in the form of: SSHHMMSS.

NEGSEED = D3*1000000 + D1*1000O + 02*100 + D3

RETURN

C.......................................................................

C23456789012345678901234567890123456789012345678901234567890123456789012

C.......................................................................

150



Bibliography

[1] Bl Alder, T.E. Wainwright, Studies in Molecular Dynamics. 1. General Method.

J. Chem.Phys., 31, p459-466 (1959).

[2] L. Verlet, Computer Experiments on Classical Fluids I. Phys.Rev., 159, p98-103

(1967]

[3] W.H. Beyer (editor), CRC Standard Mathematical Tables, 27th edition, [CRC

Press, Boca Raton, Florida, 1989].

[4] MP. Allen, D.J. Tildesley, Computer Simulation of Liquids, [Clarendon Press,

Oxford, 1987].

[5] DC. Rapaport, The Art of Molecular Dynamics Simulation, [Cambdidge Uni-

versity Press, 1995].

[6] D. Frenkel, B. Smit, Understanding Molecular Simulations, From Algorithms to

Applications, [Academic Press, San Diego, CA, 1996].

[7] G. Ciccotti, D. Frenkel, LR. McDonald, Simulations of Liquids and Solids,

Molecular Dynamics and Monte Carlo Methods in Statistical Mechanics, [North-

Holland, Amsterdam, 1987].

[8] H. Gould, J. Tobochnik, An Introduction to Computer Simulation Methods,

Applications to Physical Systems, Part 1, [Addison-Wesley, Reading, Mas-

sachusetts, 1988].



[9] T. Campbell, R.K. Kalia, A. Nakano, F. Shimojo, K. Tsuruta, P. Vashista, S.

Ogata, it Phys.Rev.Lett., V82, N20, p4018, (1999).

[10] T. Campbell, R.K. Kalia, A. Nakano, P. Vashista, S. Ogata, S. Rodgers,

Phy.9.Rev.Lett., V82, N24, p4866, (1999).

[11] P. Vashista, Multimillion Atom Molecular Dynamics Simulations of Ceramic Ma-

terials and Interfaces on Parallel Computers, OC40 2, APS March Meeting, At-

lanta, 1999.

[12] D. Hirshfeld, D.C. Rapaport, Phys.Rev.Lett., V80, N24, p5337, (1998).

[13] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes,

The Art of Scientific Computing, with CDROM ver. 2.06, (250 Mbytes of val-

idated random bytes generated by a physical white noise process) [Cambridge

University Press, 1994].

[14] NC. Cooper (editor), Los Alamos Science, N15, 1987.

[15] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equa-

tion of State Calculations by Fast Computing Machines, J.Chem.Phys., 21,

p1087-1092, (1953).

[16] SS. Rao, The Finite Element Method in Engineering, 2nd edition, [Pergamon

Press, New-York, NY, 1989]

[17] CD. Doolen, Lattice-Gas Methods for PDE’s, Theory, Applications and Hard-

ware, Physica D 47, (1991).

[18] J. Hardy, Y. Pomeau, J.Math.Phys., 13, p1042, (1972), J. Hardy, Y. Pomeau, 0.

de Pazzis, J.Math.Phys., 14, p1746, (1973), J. Hardy, 0. de Pazzis, Y. Pomeau,

Phys. Rev. A, 13, p1949, (1976).

152



[19] S. Wolfram, Cellular Automata and Complexity (collected papers), [Addison-

Wesley, Reading, Massachusetts, 1994].

[20] U. Frish, B. Hasslacher, Y. Pomeau, Lattice-Gas Automata for the Navier-Stokes

equation, Phys.Rev.Letters, 56, N14, p1505, (1986).

[21] DH. Rothman, S. Zaleski, Lattice-Gas models of phase separation: interfaces,

phase transitions, and multiphase flow, Rev.M0d.Phys, V66, N4, p1417, (1994),

D.H. Rothman, S. Zaleski, Lattice-Gas Cellular Automata, Simple models of

complex hydrodynamics, [Cambridge University Press, 1997].

[22] B. lV’layer, G. Kohler, S. Rasmussen, Phys.Rev.E., V55, N4, p4489, (1997).

[23] A. Bunde, S. Havlin (editors), Fractals and Disordered Systems, (second revised

and enlarged edition) [Springer, Berlin, 1996], Chapter 9: D. Stauffer, Cellular

Automata, p361.

[24] J .F. Traub, A Continuous Model of Computation, Physics Today, p39, May 1999.

[25] T.F. Nagy, S.D. Mahanti, C. Tsallis, Correlation function studies on the Domany-

Kinzel cellular automaton, Physica A, 250, p345, (1998).

[26] J. von Neumann, The Computer and the Brain, [Yale University Press, New

Haven, 1958], W. ASpray, A. Burks (editors), Papers of John von Neumann on

Computing and Computer Theory, [The MIT Press, Cambridge, Massachusetts,

1987]

[27] D. Hillis, The Connection Machine, [The MIT Press, Cambridge, Massachusetts,

1992]

[28] J. von Neumann, Theory of Self-Reproducing Automata, [University of Illinois

Press, Urbana, 1966].

153



[29] GS. Almasi, A. Gottlieb, Highly Parallel Computing, 2nd edition, [The Ben-

jamin/Cummings Publishing Company Inc., Redwood City, California, 1994]

[30] J .S. Evans, R.H. Eckhouse, Alpha RISC Architecture for Programmers, [Prentice

Hall, New Jersey, 1999].

[31] R. Bhargava, OpenVMS, [McGraw-Hill, New-York, 1995].

[32] DE. Knuth, The Art of Computer Programming, volume 3, Sorting and Search-

ing, 2nd edition, [Addison-Wesley, Reading, Massachusetts, 1998].

[33] J.M. Perez-Jorda, Computer Physics Comm. 108, p1-8, (1998).

[34] K. Dowd, C.R. Severance, High Performance Computing, 2nd edition, [O’Reilly

and Associates, Sebastopol, California, 1998].

[35] K.R. Wadleigh, I.L. Crawford, Software Optimization for High Performance

Computing, [Prentice Hall, New Jersey, 2000].

[36] D. Loshin, High Performance Computing Demistified, [AP Professional, Boston,

1994]

[37] A. Kruger, Efficient FORTRAN Programming, [John Wiley and Sons, New-York,

1990]

[38] R.W. Hockney, J.W. Eastwood, Computer Simulations Using Particles,

[McGraw-Hill, New—York, 1981].

[39] DE. Knuth, The Art of Computer Programming, volume 2, Seminumerical Al-

gorithms, 2nd edition, [Addison-Wesley, Reading, Massachusetts, 1998].

[40] E. Arapaki, P. Argyrakis, I. Avramov, A. Milchev, Phys.Rev.E., V56, N1, pR29,

(1997).

154



[41] S. Caser, H.J. Hilhorst, J.Phys.A., 28, p3887-3900, (1995).

[42] J.S. Wang, Physica A, 254, p179-184, (1998).

[43] J.W. Evans, Rev.M0d.Phys., V65, N4, pl281, (1993).

[44] JA Barker, D. Henderson, What is “liquid”? Understanding the states of mat-

ter, Rev.M0d.Phys., V48, N4, p587—671, (1976).

[45] MA. Herkommer, Number Theory: A Programmer’s Guide, [McGraw-Hill, New-

York, 1999].

[46] Y. Uehara, T. Ree, F.H. Ree, J. Chem.Phys., 70, N4, p1876, (1979).

[47] I.K. Snook, D. Henderson, J. Chem.Phys., V68, N5, p2134, (1978).

[48] E. Kierlik, M.L. Rosinberg, Phys.Rev.A., V42, N6, p3382, (1990).

[49] D. Henderson (editor), Fundamentals of Inhomogeneous Fluids, [Marcel Dekker,

Inc. New-York, 1992].

[50] T.F. Nagy, S.D. IV'Iahanti, to be published.

[51] E. Akhmatskaya, B.D. Todd, P.J. Divis, D.J. Evans, K.E. Gubbins, L.A. Pozhar,

(preprint, 1997).

[52] M. Merkel, H. Lowen, Phys.Rev.E., V54, N6, p6623, (1996).

[53] B. Gotzelmann, S. Dietrich, cond-mat/9610203, (1996).

[54] P. Tarazona, Phys.Rev.A., V31, N4, p2672, (1985).

[55] B. Gotzelmann, A. Haase, S. Dietrich, Phys.Rev.E., V53, N4, p3456, (1996).

[56] J.A. White, A. Gonzalez, F.L. Roman, S. Valesco, Phys.Rev.Lett., V84, N6,

p1220, (2000).

155



[57] DFT Plus, Models Library, User’s Guide, v1.00, (1996).

[58] M. Bender, R. Klein, A. Disch, A. Ebert, IEEE Trans.Vis.Comp.Graph., V6,

N1, p8, (2000).

[59] J. Karger, D.M Ruthven, Diffusion in Zeolites and other microporous solids, [A

Wiley—Interscience Publication, John Wiley and Sons, New-York, 1992].

[60] T.J. Pinnavaia, M.F. Thorpe (editors), Access in Nanoporous Materials, [Plenum

Press, New-York, 1995].

[61] L. Abrams, D.R. Corbin, J.Incl.Phen.Mol.Rec.Chem., 21, p1-46, (1995).

[62] T.F. Nagy, S.D. Mahanti, J .L. Dye, Computer modeling of pore space in zeolites,

Zeolites, 19:57-64, (1997).

[63] J \I Newsam, J.Phys.Chem. 93, p7689-7694, (1989).

[64] ME. Leonowicz, J.A. Lawton, S.L. Lawton, K.M. Rubin, Science 264, p1910-

1913, (1994).

[65] PA. Wright, J.M. Thomas, A.K. Cheetham, A.K. Nowak, Nature V318, 19/26,

p611, (1985).

[66] H. van Koningsveld, H. van Bekkum, J .C. Jansen, Acta Crystallogr. B43, p127-

132, (1987).

[67] DH. Olson, J.Phys. Chem. 74, p2758-2764, (1970).

[68] J.L. Dye, M.J. Wagner, G.T. Overney, R.H. Huang, T.F. Nagy, D. Tomanek,

J.Am.Chem.Soc. 118, 137329-7336, (1996).

[69] M.J. Wagner, J.L. Dye, Solid State Chem. 117, p309-317, (1995).

156



[70] L. Echegoyen, A.E. Kaifer (editors), Physical Supramolecular Chemistry, J.L.

Dye, p313—336, (1996).

[71] J.L. Dye, Inorganic Chemistry, Vol. 36, N. 18, p3816, (1997).

[72] RH. Huang, M.J. Wagner, D.J. Gilbert, K.A. Reidy-Cedergren, D.L. Ward,

M.K. Faber, J.L. Dye, J.Am.Chem.Soc., bf 119, p3765-3772, (1997).

[73] J.L. Dye, Macromol. Symp. 134, p29-39, (1998).

[74] J.E. Hendrickson, W.P. Pratt, Jr., R.C. Phillips, J.L. Dye, J.Phys.Chem.B., Vol.

102, N0. 20, p3917, (1998).

75] J. Kim, A.S. Ichimura, R.H. Huang, M. Redko, R.C. Phillips, J.E. Jackson, J.L.

Dye, J.Am.Chem.Soc., 121, p10666, (1999).

[76] M.J. Wagner, A.S. Ichimura, R.H. Huang, R.C. Phillips, James L. Dye,

J.Phys.Chem.B., Vol. 104, No. 5, p1078, (2000).

[77] SS. Skiena, The Algorithm Design Manual, [Springer-Verlag, New-York, 1998].

[78] Application Visualization Systems (AVS) User’s Manual v3.0, Startdent Com-

puter Inc., (1991).

[79] Iris Explorer User’s Guide v2.2, Silicon Graphics Inc., (1994).

[80] J.A. Sethian, American Scientist, V85, p254, (May-June, 1997).

[81] W.M. Meier, D.H. Olson, C. Baerlocher, Atlas of Zeolite Structure Types, Zeo-

lites, 17, (1996).

[82] GB. Woods, J.S. Rowlinson, J.Chem.Soc., Faraday Trans. 2, 85(6), p765,

(1989)

157



[83] S. Yashonath, J.M. Thomas, A.K. Nowak, A.K. Cheetham, Nature, V331, p601,

18 February 1988.

[84] H. Jobic, J. Karger, M. Bee, Phys.Rev.Lett., V82, N21, p4260, (1999).

[85] C. Saravanan, F. Jousse, SM. Auerbach, Phys.Rev.Lett., V80, N26, p5754,

(1998)

[86] C. Saravanan, SM. Auerbach, J.Chem.Phys., 107, (19), p8120, 15 November

1997, C. Saravanan, SM. Auerbach, J. Chem.Phys., 107, (19), p8132, 15 Novem-

ber 1997.

[87] T.F. Nagy, S.D. Mahanti, J. Chem.Phys. 106, (15), p6511, (1997).

[88] Ml. Khan, L.M. Meyer, R.C. Haushalter, A.L. Schweitzer, J. Zubeita, J.L. Dye,

Chem.Mater., Vol. 8, No. 1, p43, (1996).

158



' 1]“[[1]
3‘1

  


