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ABSTRACT

EVALUATION AND IMPROVEMENT OF THE HMM BY

STATE-SPACE MODELING

By

Yong-Beam Lee

Analytical modeling of speech production is not an easy task, in part because of

the rapidly time-varying nature of speech signals. The hidden Markov model (HMM)

is widely used for the stochastic modeling of time-varying signals, and it has been

most applied in the area of speech production and recognition.

Most current HMM research has focused on its applications. On the other hand,

studies of the theoretical aspects of the HMM are relatively few. This is due to

the difficulties of analyzing a model that is inherently probabilistic and recursive in

nature. However, if the fundamentals of the HMM are approached from a different

direction, it is possible to obtain useful analyses of the HMM which contribute to its

use in speech technologies.

The main objective of this dissertation is to revisit and further investigate three

fundamental HMM problems related to speech recognition using a novel mathematical

formulation. Rather than the conventional representation of the HMM as a scalar

recursive algorithm, the HMM will be represented using a vector-matrix formulation.



It will be shown that the HMM can be represented as a state-space model. The

conventional Baum-Welch (time-varying) model as well as an “approximate” time-

invariant model will be studied in detail in the context of this new formulation. A

more thorough theoretical and empirical investigation of this approximate model is

presented in this dissertation. In particular, the spoken-digit recognition problem will

be the focus of applied studies.

Some useful results and techniques using the time—invariant approximation of the

HMM are addressed and analyzed. In addition, new state—search techniques using

clustering, and novel set-membership identification techniques are developed as the

basis for a novel HMM training approach. The new training results in HMM state

assignments corresponding to acoustically meaningful segmentation of the speech,

rather than adherence to the conventional maximum likelihood criterion. The results

of new search techniques are compared to those of the Viterbi search.
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Chapter 1

Introduction

1.1 Background

Speech is the most natural way of transferring information among human beings.

Speech recognition by a machine (e.g., a computer) is a way to translate human speech

into corresponding text so that a machine can perform productive work automatically

according to human speech inputs. It has many applications such as word dictation,

voice activated dialing, automated attendant, command control of a machine, and

so forth. The eventual goal of speech processing in engineering is to make machines

understand human speech as naturally as humans communicate with one another.

While human communication is natural and easy because of the extraordinary

capability of the human brain, speech recognition by a machine is not straightforward

in Spite of the remarkable deve10pment of computer technology.

There are some practical reasons why processing of speech signals is challenging.

For example, the same phoneme, when spoken by different speakers, will be acous-

tically different due to variations in vocal-tract anatomy. Also, the same speaker

may produce different versions of the same sound under different circumstances, for

instance, when s/he is suffering from a cold and when s/he is not [3]. Certain sounds



may be shortened or completely left out when the speaker talks very fast. Differences

in dialect, like phoneme deletion or phoneme substitution, also complicate the Speech

recognition process. Other problems, like speech related noise (e.g., lips smacks and

tongue clicks), add to the difficulty of the recognition systems. It is obvious that

without some simplifying assumptions the task of modeling speech for recognition

would be highly impractical.

The hidden Markov model (HMM) is a popular technique in many contempo-

rary applications in signal processing, communications, and control. In particular,

the HMM has been used to successfully and automatically cope with acoustic uncer—

tainty in speech signal applications [4] using the statistical modeling. For example,

achieving a flexible model for rapidly time-varying signals using a dynamic program-

ming technique [4] is very difficult. The popularity of the HMM is due to its simplicity,

compactness, and easy implementation. Along with the dynamic time warping tech-

nique (DTW), the HMM has been applied to Speech recognition systems for many

years. In particular, this technique can be globally applied to a large and complex

speech recognition system [4].

Although the HMM has been widely researched and extensively applied to the

speech processing field, it is true that it lacks diverse formulations so that the HMM

can be exploited more efficiently depending on specific applications. This is because of

its inherent time-varying nature as well as the somewhat complex recursive structure

associated with sophisticated model. HMM research has focused primarily on its

application rather than its fundamental characteristics.



1.2 History of the Vector-Matrix Formulations of

the HMMs

The conventional Baum-Welch algorithm, which is also called the Forward-Backward

(F—B) algorithm [1, 2, 4], is, a concise, and compact representation of the HMM

dynamics for explaining quickly time-varying speech signals efficiently. Whether any-

path or a bestpath (Viterbi path) [4] is considered for evaluation/training of the

HMM, the conventional F-B approach of the HMM is based on a series of scalar

recursion [1, 2, 4]. Also, due to the model characteristics associated with stochas-

tic time—varying signals, the F—B HMM inherently does not have such flexibility and

applications as a linear time-invariant model which has stationary parameters repre-

senting a model.

Work cited in [6, 7, 8, 27, 30, 31, 32] represents several independent approaches

that take advantage of vector-matrix formulations of the HMM. Vector-matrix rep-

resentations of the HMM provide a diverse and unified way to interpret the HMM

Operation. In recent paper, by Turin and Karan [27, 31], matrix HMM formulations

have been exploited to find useful algorithms for speech recognition technology. In

addition, Hjalmarsson et al. [30] have used a state-space formulation of HMM to find

non-recursive formulae for training the HMM. Similarly, in work by Elliott et al. [32],

a state-space formulation of HMM has been used for estimation and control. Ex-

cept for the work conducted in the author’s laboratory [6, 7, 8], these vector-matrix

formulations are all based on the F—B HMM. Vector-matrix formulations of the time—

invariant approximation (TIA) of the HMM, which is different from the conventional

F—B HMM, were first proposed by Snider and Deller [6, 7].

Turin [27] has proposed vector-matrix representations of the HMM to allow paral-

lel computing to achieve some computational savings during training and evaluation.

In particular, he uses vector-matrix formulations to obtain a more computationally



efficient algorithm when speech signals satisfy a certain condition.

Karan et al. [31] have used a matrix formulation for the algorithm proposed by

Streit [29] in computing the eventual moments, defined1 as Mj,,-(lc, T) = E{Pj(0t)'°} =

20,]. P,~(0T) PJ-(OT)’°, to measure moments of the output sequence probabilities of the

HMM M,- with respect to M;. Here M = {N, M, A,B,1r} is a set of parameter

matrices defining the characteristics of the HMM with a state-transition matrix A,

observation probability matrix B, as well as the initial state distribution matrix 1r

and the N and M related to the sizes of the matrices. The evaluation Mj,i(k, T) pro-

posed in [29] uses vector-matrix descriptions to overcome a computational difficulty

by simplifying the recursive scalar computations which have a similar formulation

to the a posteriori probabilities [1, 2] P(0,q¢ = i I M) in the F-B HMM. Such

computational savings are possible due to the asymptotic analysis of the dynamics of

state-space equations.

Elliott et al. [32] suggest a unique state-space model for the two stochastic vari-

ables, state and observation, leading to a independent identically distributed (i.i.d)

observation process through a change of probability measure. By forming such an

ideal distribution, it is possible to obtain several key results related to state estimator

by applying the Fubini theorem which allows interchange of expectation and summa-

tion in the product measure Space. This technique has shown the capability of the

state—space structure of the HMM in state estimation and control.

Snider and Deller [6, 7, 8] adept a simplified probability likelihood measure

113;, P(0t) to allow a more compact and analyzable approach to evaluate the HMM

likelihood, P(0 | M). Depending on the circumstances, it is possible to control the

compression index, the ratio of the number of eigenvalues merged to the total number

of eigenvalues in all the HMMS, for trade-off between speech recognition rate and

Speed and memory complexity requirements.

 

1Precise definitions of notations are established in Chapter 2.

4



1.3 Problems of Existing Vector-Matrix Formula-

tions of the HMM

In spite of useful results inherent in the vector-matrix and state-Space approaches to

the HMM cited above, Open issues remain.

First, in [27], to obtain a computationally economical formulation with a vector-

matrix formulations of the PB HMM, it is assumed that long stretches of the same

symbol string occur within a Speech utterance. In fact, such a condition on a speech

signal is very helpful to have more computational savings in training and testing

of the HMM in reality. For instance, for a very limited small scale system which

has a small vocabulary as well as a small number of symbols with simple waveform

structures, 'Ihrin’s condition on signals is justified; therefore, further computational

savings can be attained without compromising recognition performance. In addition,

under the very unusual circumstance that the speaker is restricted in the number of

sounds s/he can reliably produce, Turin’s condition is valid even with a relatively

large vocabulary.

However, in reality ’I‘urin’s condition on signals is not ubiquitous in the quickly

time-varying speech signals. In practice, even a word model which may have as many

as 128 symbols after being quantized for the purpose of efficient, secure storage and

transmission, does not usually adhere to Turin’s condition very well. Also, for a

large scale system with a large vocabulary and complex speech waveform structures,

it is unusual to find that Turin’s condition is met. Even for a sentence model or a

compound model which is composed of concatenating of phones or word HMMS, it is

not easy to argue in support of Turin’s condition on speech signals. In other words,

there is a limitation in applying ’I‘urin’s algorithms to the general speech signal ap-

plications. When speech signals do satisfy 'I‘urin’s condition, however, computational

savings can be obtained. This will be discussed in detail later in the thesis.



The work Of Elliott et al. [32] is mainly focused on finding an Optimal estimation

algorithm from Observed signals to reveal the originating signals transmitted in a

noisy environment. Further, Elliott’s derivations are focused mostly on the estimation

Of states and unknown parameters without a specific procedure for the likelihood

evaluation Of the HMM. This is a significant derivations from HMM modeling and

use in speech recognition.

Snider and Deller report empirically useful results in terms Of performance and

computation savings, but Offer little discussion of the general viability of the modified

likelihood [LT=1 P(Ot). Such a likelihood measure is not identical to P(0 | M) Of the

F—B HMM because Of the potential for including extra likelihoods from illegal state

paths [4, 7, 25]. A brief explanation about this issue is discussed in [4].

1.4 Objectives

In this research, the focus is on the use Of HMMs to model the acoustic process at the

lowest levels Of a Speech recognizer. First, the conventional HMM with a state-space

structure will be reformulated leading to a versatile computational structure with rich

interpretability. In particular, a TIA HMM suggested in [6, 7, 8] will be a main focus

Of this dissertation. The viability Of the TIA HMM will be shown through several

formal approaches. Such time-invariant formulations and corresponding likelihood

measures will be argued tO be proper approximations Of the conventional F-B HMM.

This thesis is composed of five chapters. The present chapter is a short introduc-

tion to, and background of, this research. The second chapter introduces time-varying

and time-invariant state-Space models of the HMM. Vector and matrix formulation

notations are used to describe the three fundamental problems of the HMM. In partic-

ular, the “illegal state path problem” inherent in the TIA HMM is briefly discussed.

The third chapter deals intensively with the problem of illegal state paths produced



by the TIA HMM. A few evolving techniques that reconcile the conventional F-B

HMM to the TIA HMM are discussed. Chapter 4 is focused on the problem Of

finding an apprOpriate state sequence in some sense for a given speech signal. New

state-search techniques using the maximum likelihood criterion, clustering, and novel

set-membership identification techniques are develOped for HMM training. The re—

sults of these search techniques are compared to those Of the conventional Viterbi

search. The final chapter, Chapter 5, presents research conclusions and future re-

search directions.

In this research, theoretical results are applied mainly to the isolated digit recogni-

tion problem, one Of the classical problems Of speech recognition. For the experimental

studies in this research, input speech, which is uttered by an American male speaker,

is sampled at a rate of 10kHz. More details Of this Speech corpus is described in

Chapter 3.

Because Of the non-stationary nature of speech utterance, the acoustic feature

extraction is performed on sampled data on a frame-by-frame basis. Hamming window

analysis is applied to each frame, all Of which are 25ms long with a 15ms overlap. Then

10‘“ order mel-frequency cepstral coefficients are computed. This produces a sequence

of cepstral speech vectors, or as it is usually called, a speech pattern. These speech

patterns are classified based on the seven level clusters so that each speech pattern

is represented by 128 symbols. It has been implicitly assumed that the given speech

signals are free from all background noise so that we can concentrate exclusively on

the main modeling problem.



Chapter 2

Vector-Matrix Formulations of the

HMM

In this chapter, we first review briefly the HMM theory to support new derivations

based on the conventional mathematical formulations. Three basic problems Of the

HMM, evaluation, estimation (training), and decoding, will be introduced. Then,

these basic HMM problems will be reformulated in vector-matrix notation. The con—

ventional F-B algorithm as well as the Viterbi search algorithm will also be subsumed

under this vector-matrix formulation. Third, the TIA HMM prOposed by Snider and

Deller [6, 7, 8] will be discussed, followed by the transformation of the TIA and F-B

HMM formulations. Next, some useful characteristics of the HMM discovered using

the vector-matrix formulations will be discussed. They give a framework in which to

take advantage of the TIA HMM. Fourth, it will be shown analytically with several

approaches that such an approximate approach for the HMM evaluation is proper

under some practical conditions. Finally, the “illegal path problem” inherent in such

an approximation will be briefly discussed. This apparent defect Of the TIA HMM

will be treated extensively in Chapter 3.



2.1 HMM Background

The HMM was first applied to Speech technology independently by Baker [21] at

Carnegie Mellon University and Jelinek at IBM in 1975 [1, 2, 3, 4]. When it was

first published, neither was it called the HMM, nor was it develOped to model and

recognize speech signals [22, 23, 24]. However, because Of its excellent performance in

(apparently) explaining the prOperties Of highly variable signalsl, it has been broadly

used in the area Of speech signal processing.

The major capability Of the HMM lies in its ability to structure the information

content Of variable data. It also systematically translates this information into a set

Of stochastic parameters.

The HMM uses a stochastic approach to explain the characterization of speech

variability. It is used to model a doubly stochastic production process with the

transition parameters modulated by a Markov chain [1, 2]. Thus, the Observed speech

sequence2 is assumed to be the result of the interaction of two stochastic processes.

The Markovian assumption on the transition probabilities of the HMM imposes

two major constraints on the possible variations in the speech production system.

The first constraint is a state model and the other is the dynamics Of state transi-

tions according tO the Markovian assumption. These allow a compact description

of the time-varying speech signal assumed to represent “acoustic states” of speech

production.

The HMM is a versatile model which can be used to represent a word, a subword

unit, or, in principle, a complete sentence or paragraph [4]. Figure 2.1 shows a typical

Six-state HMM with left-to-right or Bakis state transition constraints [4].

Let us now formalize the dynamics Of the HMM. Recall the definition Of a homo-

 

1This work, in part, investigates whether the HMM accurately models the physical properties of

the speech production system. (See Chapter 4.)

2Specified later in this section.



 

Figure 2.1: Six-state Bakis tOpOlogy Of the HMM.

geneous first-order discrete-state Markov process as one which can be at one of N

states3 31,82, . . . , SN and whose state transitions are dependent only upon the most

recent state. Let us denote the state of the system in the abstract at discrete time t

by qt. We denote the stationary conditional probabilities by

“ii = PI‘It = SjI‘It—l = Si): 1 5. ii]. S M (2-1)

Additionally, let the initial state probabilities be denoted

7r,- = P(q1= Si), 1 g i g N. (2.2)

The realization of the process is a state sequence, say, {q1, q2, . . . , qT}. This process

is completely characterized by the number Of states N, the set Of state-transition

probabilities {0451'}, and the set of initial state probabilities {7r,-}.

Now consider a discrete-Observation hidden Markov process. In the discrete HMM,

an Observation sequence are assumed to be generated by jumping from state to state.

With each jump, either during the transitions (on the arc), or upon at the next state,

an Observation is emitted. At each time, an unknown state emits Observation symbol

0, = k, 1 g k S M according to the conditional distribution

bj(lc) = P(k Observation at time tIqt = 53'), 1 S j S N, 1 g k g M (2.3)

= P(0t=k|(1t=sj):

 

3By convention, integers are used to represent states as shown in Fig. 2.1.
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where M is the number Of distinct Observation symbols. Symbol 0, is the index of

some characteristic measurement extracted from Speech, usually frame-wise. There-

fore, a speech signal is reduced to strings Of features extracted from the acoustic

speech waveform. The generated Observation sequence, denoted in the abstract by

0 = {01, 02, . . . ,OT}, is a realization Of a doubly stochastic process, is. a random

process generated by an unobservable random process. Here, T is the number Of Ob—

servations in the sequence. A model governed by such a probabilistic structure is the

hidden Markov model when the unobservable random process is a stationary Markov

process as described above.

In the remainder of the discussion, we shall use the notation M to denote the set

Of elements of an HMM, namely M = {N, M, {051'}, {bJ-(k)}, {7r,-}}.

2.2 Time-Varying Forward-Backward HMM

In this section, we review three HMM problems - evaluation, decoding, and training

(or estimation) - and reformulate the conventional F-B HMM in vector-matrix terms.

We then exploit this structure to discover interesting prOpertieS Of the HMM. We

also inherently derive some useful expressions for HMM implementation based on

state-space formulations.

2.2. 1 Evaluation Problem

The recognition or evaluation problem involves the determination of the conditional

likelihood for a given Observation string, 0, namely P(O I M). The most natural

measure Of the likelihood Of a given HMM, say M, in light Of Observation sequence

0, would be a posteriori probability P(M I 0). However, the available data will not

allow us to characterize P(M I 0) during the training process, under the condition Of

equal a priori probability P(M) among the HMMS, so it is conventional to take the a

11



posteriori probability P(0 I M) as the Observation probability measure instead [4].

Vector-Matrix Formulation of the HMM Along a Forward Path

In the F-B solution to this problem [23], the forward probabilities are defined by

0i“) = P(01,02,...,0t,qt :2. I M) for Z = 1,.. .,N. (2.4)

This quantity is the joint probability Of the partial Observation sequence to time t

and residence in state i at time t, given the model M. These probabilities can be

calculated recursively as follows [4]: For each state j = 1, . . . , N; and for each t Z 1

j(t+1)= Zai(t()aj.-b(0t+1) i=1 .,N, (2.5)

where aj, and bj(0t+1) are defined in (2.1) and (2.3). For the initial time, aj(1) is

defined as bj(01)7rj. The final conditional observation probability is

P(01,02, . . . ,OT I M) = £047“). (2.6)

i=1

The HMM has been develOped and studied principally through such conventional

formulations. Here, conventional formulations implies that in the evaluation and

training (explained later) required in the HMM computations, the algorithm is ba-

sically focused on individual computations Of each state as (2.5) rather than an in-

tegrated way that combines state computations. In general, because it represents

a linear, time-varying state-Space system, the HMM can be researched principally

experimentally. However, by combining state processing, it is possible to acquire sev-

eral Significant insights into the HMM which might be difficult to discover otherwise.

Once revealed, these useful characteristics Of the HMM can be applied to applications

for practical benefits.

12



Generally, matrices provide convenient tools for systemizing laborious calculations

by providing a compact notation for describing complicated interrelationships among

system variables. Through vector-matrix notations, it is possible to process all HMM

states simultaneously and reveal useful properties of the HMM in the process. Let

us reformulate the three HMM problems with vector-matrix notations to provide one

important basis Of this research.

For an N—state HMM, the N recursions of (2.5) for a,(t), i = 1, . . . , N, can be

written in vector-matrix form as

    

    

{ (11(t'l'1) \ (b1(0t+1) 0 0 \

a2(t+1) _ 0 b2(0t+1) . . . 0

K (1N(t+ 1) j \ 0 0 . . . bN(0t+1) }

/ all an ... am ) ( a1(t) \

021 022 . . . 021v . (12“) , (27)

\ 0N1 0N2 . . . aNN / \ (XII/(t) )

This equation can be viewed as the state equation Of an N—State state-space model

with state variable4 01,-(t), i E [1, N]. The state equation can be used for t = 1 by

 

4Note that the “states” in this context are to denote mathematical variables with which they are

used to represent an alternative time-domain dynamics of a HMM. On the other hand, the meaning

of “state” in the context of “state model” explaining a HMM is to imply that within such a state,

a signal possesses some measurable and distinctive properties.
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adding the input term

    

/ b1(01) 0 . . . O \ ( 7I'1 \

0 b2(01) . . . 0 W2

. «5(2) (2.8)

( 0 0 b~(01)) (7m)

to the right side Of (2.7), in which 6(t) is the Kronecker sequence [4, 33]. In vector-

matrix notation, we can write the complete state equation as

a(t + 1) = A(t + 1)Aa(t) + A(1)1r6(t), (2.9)

where the vector and matrix definitions are Obvious by correspondence to (2.7) and

(2.8).

The output equation for the state-space model is

I

y(t) = C a(t). (2.10)

The prime in (3'I is used to denote the matrix transpose. The only output of signifi-

cance (for making a final decision) is

P(01,02, . . . , 0T I M) = y(T) = c’a(:r), (2.11)

with matrix 0 defined to be a vector of ones,

C" = 1’ = [1,1,...,1]. (2.12)

14



Analysis of HMMS with Vector-Matrix Formulations Along a Forward

Path

Note that since the probability Of making a transition to some state at each time is

always unity, then each column of A must sum to one. Accordingly, A is a column

stochastic matrix [38] which, in turn, makes it non-negative definite [44, 45]. An

important consequence Of this is that the vector 1 consisting of all ones is a left

eigenvector Of A with eigenvalue 1 [39] SO that l'A = 1'. Non-negative matrices occur

in a variety of applications [45]. Non-negativeness implies useful characteristics that

can be used to analyze the dynamics Of a model [51]. Furthermore, in the left-to-right

or Bakis HMM, which is Often employed in speech recognition, A is a lower-triangular

matrix with strong diagonal components. In this case, the eigenvalues of A are the

diagonal elements themselves. Moreover, because of its triangular structure, if all

the eigenvalues are distinct, then eigenvector matrix Of A is also triangular. Finding

the eigenstructure Of such models is therefore relatively computationally inexpensive.

The use Of this eigenstructure will be explained later in this chapter.

The vector-matrix representation (2.9) and (2.10) reveals interesting results that

are not apparent in the usual F—B recursions. Above all, it is the combination Of A(t)

and A, which comprise the effective state-transition part Of state equation, monitors

and quantifies state path information. Here A has dimensions N x N, and provides all

N2 state-transition probabilities at a given time. This implicitly includes information

about whether a given state transition is possible. The premultiplication Of A by

A regulates the possible paths through the states in light Of the states’ abilities to

generate certain Observations. Non-zero values in the diagonal elements Of the A(t)

matrix allow state jumps at t depending on the locations Of those non—zero values

whereas zeros prohibit such transitions. For example, if A5,,(t) is zero, meaning that

a symbol at time t is not generated from state i, then the it” row Of A - A is also zero.

Therefore, jumps from any state to state i at time t are prohibited. Consequently,
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A(t) can be regarded as a sort Of switching matrix at t which specifies the available

transitions in accordance with the topology of A. Thus, if there is a legal path starting

from an initial state tO a final state associated with T-duration speech utterance

0 = {01,02, . . . ,OT}, T multiplications Of matrix pairs A(t)A with t = 1, . . . ,T

produce a non-zero matrix. Such a non-zero matrix leads to non-zero likelihood with

a suitable initial state probability and a final Observation condition.

Henceforth, the model consisting Of (2.9) and (2.10) is called the time-varying

state equation because the composite state-transition matrix, A - A, varies with time.

The entries in A effectively control the state path by prohibiting entry into a state

at time t that cannot produce symbol 0;.

By recursion, the a posteriori probability is written in terms of the matrices defined

above as

P(01,02, . . . ,OT | M) = UA(T)AA(T — 1)A- - . A(2)AA(1)1r. (2.13)

Since P(01,02, . . . , Or I M) is a scalar, it can also be expressed as

P(OIM) = (C'A(T)AA(T—1)A---A(2)AA(1)1r)' (2.14)

= 1r'A(1)A'A(2)A'A(T — 1)A'A(T)C.

In fact, this is the formulation with which Turin started in deriving other matrix-based

HMM algorithms [27].

Vector-Matrix Formulation of the HMM Along Backward Path

In general, the matrix representation (2.13) provides a flexible way to compute the

Observation probability through diverse state-space structures and representations for

the model. For example, let us derive a state equation that is different from (2.9)-

(2.11). To have a state-space model (2.9)-(2.11), A(t)A was considered as a state
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variable for (2.13). Instead, let fl(t) be an N-vector Of state variables for (2.14).

Define MT) = C. Because Of recursive nature of equation (2.14), an alternate state-

equation-like formulation follows immediately. Let

fi(t) = A'A(t + 1)s(t + 1) (2.15)

and B(T) = C fort = T—1,T—2, . . . , 1. Then the a posteriori conditional Observation

probability is given by

P(01,02, . . . ,OT | M) = n’A(1)p(1). (2.16)

In the matrix formulation, it is not necessary to know the statistical interpretation

Of )8, whose elements are equivalent to flit) in (2.17), but these quantities are rec-

ognizable as the backward probabilities in the F—B algorithm where they are defined

as

fii(t) = P(0t+1:0t+21---10TIQt=inli i=1:"'?N1 (2'17)

and computed recursively as

=2 a,-,-b,-(0,+1)fi,-(t+ 1), (2.18)

Similarly tO (2.5).

Not surprisingly, the state-space formulation (2.15) Of state recursions, written
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explicitly as

f .310) \ / an 021 am I

,82(t) = (112 6.22 0N2 (219)

    (51%”) (am am (INN)

    

(bl(0t+l) 0 0 l { ,BIIt‘I'I) \

O b2(0t+1) . . . 0 . ,32(t + 1)

\ 0 0 bN(0t+1) } \5N(t+1) )

can be decomposed into the F—B backward recursions as in (2.18). The output equa-

tion complementing (2.19) is given by

W) = «'Aumm (2.20)

with the only output Of significance (for making a final decision) being

y(1) = P(01,02,...,0TIM)

N

= "’A(1)3(1) = Zflibi(01)16i(1)' (2-21)

i=1

Result (2.21) is equivalent to the likelihood computation provided by the backward

F-B recursion [1, 2, 4].

Other Vector-Matrix Formulations for the HMM

In addition to these results which are equivalent to the widely-used F-B recursions,

the matrix formulation provides a flexible state-equation-like structure that serves as
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a basis for many other computational structure. For instance, if AA(t) takes to be

the state variable rather than A(t)A in (2.13), then we Obtain a new state equation

with a state vector X (t) governed by the recursion

X(t+1) = AA(t)X(t)+1r6(t),

with output equation

:10) = P(01,02, - - . .0: l M) = C“A(Wflt)

and final likelihood

y(T) = P(01,02,...,0TIM)=dA(T)X(T).

In fact,

X(t+1) = Aa(t)

where a(t) is defined in (2.4).

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

The expressions above are useful in different circumstances. Usually A has full

rank and, thus, almost always has inverse .4”. However, in (2.9), A is Often singu-

lar because of its sparseness. Therefore, having A premultiplied by A in the state

equation allows transformation Of the state-space equation. Equation (2.15) provides

a representation similar to that Of (2.22) in the sense that the A, premultiplies A in

the state-transition equation. Later we Show some useful expressions and prOperties

arising from this characteristic. More novel prOperties Of HMMS will also result from

the formulation in which A is premultiplied by A in the state equation.
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Some interpretation for the state vector X (t) is Obtained by considering one Of

its elements. From (2.22),

X.<t+ 1) =f3a..b.(o.)X.-(t). (227)
5:1

In the Moore form Of the HMM [4], a symbol is tO be produced when a new state is

entered following the transition. This fact makes it difficult to give an exact prob—

abilistic interpretation Of X,- (t + 1) as is possible for a(t) in (2.4). By inspection,

however, state variable X,(t + 1) is similar to a(t) Of (2.5) except that X,(t + 1)

amounts to a posteriori probability before a symbol is produced but after a state

transition has occurred. This is similar to Kalman filter update. From (2.27), an

Observation symbol is apparently generated before a state transition occurs, i.e. with

the exit Of the state at time t — 1. This does not imply that this formulation is

equivalent to the Mealy form Of the HMM [4], since the present expression is based

on a,-,- and bj parameters from the Moore form. Therefore, the definition Of B is quite

different in the Mealy form Of the HMM which is based on a model in which a symbol

is produced during the state transition, not upon arrival at a new state. However,

the usefulness Of (2.27) will be discussed later.

Thus, the state-Space formulation suggested here is a general and flexible repre-

sentation Of the HMM Of which the conventional F—B HMM is a special case. The rep-

resentation embodies various interpretations and computational forms for the HMM.

There are potentially many interpretations and formulations for the HMM using the

vector-matrix form.

Consider another example formulation. Similarly to X (t), we can drive a state

space formulation for the backward computation as

Y(t) = A(t)A'Y(t + 1) + A(T)C§(T — t) (2.28)
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y(t) = «Y(t) fort=T—1,T—2,...,1 (2.29)

and

y(T) = P(01,02,...,0T I M) = «’Y(1). (2.30)

For the new state variable Y(t), the condition Y(t) = 0 is imposed for t > T.

In terms Of the developments above, the final likelihood can be variously repre-

sented. For example,

P(01,02,...,0T|M) = dam

= «'Aumu)

= a’(t)a(t), te{1,T}

= s’(t)a(t), te{1,T} (2.31)

= X’(t)Y(t), te{1,T}

= Y'(t)X(t), te {1,T}.

Also, letting tr(-) denote the trace Of a matrix, we can write

I

P(OIM) = tra(t)fl(t))

= tr A(t)A . . . A(2)AA(1)1r(A'A(t + 1) . . . A’A(T)C)')

(

= tr(a(t)fi’(t)) (2.32)

(

(tr A(t)A...A(2)AA(1)1rC"A(T)A...A(t+1)A).

Here WC" forms an N x N matrix.
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Interpretation of the HMM Evaluation using the Vector-Matrix Formula-

tion

As yet another example HMM formulation arising from the vector-matrix framework,

consider the Bakis HMM structure in which every path starts from a predetermined

initial state (by definition, state 1) and finishes at a final state (state N). From

equation (2.13), the likelihood can be represented in the compact form as

P(01,02, . . . ,0, | M) = C’G(t)1r, (2.33)

where

G(t) = A(t)AA(T — 1)A - - oA(2)AA(1). (2.34)

Thus, G(t) amounts to matrix products among vector-matrix-vector multiplications

for P(O I M). We know that a matrix is a set of numbers arranged in a rectangular

grid Of rows and columns. Likewise, matrix G(t) provides an algebraic interpretation

for computing P(01,02, . . . ,0; I M) as follows: Let C“ = (0,0, . . . ,0, 1) and 1r, =

(1,0, . . . ,0) for simplicity, and let us suppose that the size Of each matrix in (2.34) is

N x N, and that G(t) is computed in advance. G(t) multiplies both vectors C and

11' for P(01,02,...,0¢ I M). Then, the computation Of P(01,02, . . .,0, I M) in

(2.33) is equivalent to choosing the (N, 1) element in G(T) according to the position

Of non-zero entries in C" and 71'. Therefore, entry g,,-(t) of G(t) amounts tO the

the sum of likelihoods Of the paths leading from state i at initial time to state 3'

at time t. Thus, the vector-matrix representation simplifies the underlying meaning

Of the forward or backward computation of the HMM in a way which might not

be possible with the conventional F—B HMM algorithm. This example shows that

the vector-matrix formulation Of the HMM elucidates the likelihood computations in
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association with state paths for signals.

2.2.2 Decoding Problem

The HMM was conceived as one for which states would represent distinct acoustic

phenomena [2, 4]. The solving the decoding problem also elucidates the structure of

the model while providing the statistical characteristics Of each state.

The state sequence Q = {q1, Q2, . . . ,q'r} corresponding tO a speech symbol string

0 = {01,02, . . .,OT} in the HMM is “hidden.” The hidden part of the HMM, a

state sequence, must be found based on some modeled way since no exact solution

exists. There are several ways of finding a state sequence for a speech signal. Among

them, the Viterbi search algorithm [57, 58] is pOpular and recognized as an efficient

way Of finding an Optimal state sequence. Here we structure the Viterbi algorithm

in the matrix notation established above and discuss the significance of resulting

formulation.

Let

di(t+ 1) = max P(01102a' ° '10t+13q17Q22' ' ' :qt1Qt+l = Z I M): (235)

qliq21"'1qt

which implies the highest probability of a single path ending at state i, at time t+ 1.

In the similar way, let

‘I’i(t + 1) = argmqetlxp(01:022~-:0t+1:(I1:Q22---:(It2(1t+1 = i I M) (2-36)

\II,(t + 1) is the state qt at time t that leads to d,(t + 1). In these terms, the steps Of

the Viterbi algorithm are as follows:
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o Initialization

      

    

    

  

 

612(1) 2 0 b12501) 0 . 77.2 , (2.37)

{ 1111(1) \ f 0 \

W2“) = 0 (2.38)

K ”NI” 1 K 0 /

o Recursion

Fort=2,...T,

I (11(1) ) (b,(o,) 0 0 )

32(1) _ o b,(o,) 0

( dN(t) ) ( 0 0 bN(0t) )

{ max{d1(t — 1)a11, . . . ,dN(t — 1)01N} I

x max{d1(t — 1)0.21, . . . ,dN(t — 1)0.2N} (239)

\ max{d1(t — 1)am ..... dN(t — Dan/N} )

_ 0 b,(o,) 0
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/ maxlSjSN{dj(t‘1)a1j} \

maxlSjSN{dj(t — 1)a2,-}

  

    

x , (2.40)

I max15,5~{d,-(t - 1)“le /

I ‘1’1(t) \ I argmaxlgsflddt- Dan} \

‘1’2(t) = arg maxlstNide - 1)a2,~} (2.41)

\ ‘I’N(t) ) \ argmaXISjSN{dj(t_1)aNj} )

0 Termination

P’(01,02,...,OT | M) = max{d,~(T)}, (2.42)

q} = max{\II,-(T)} (2.43)

Fort=T—1,...1,

q? = ink-+1 (t+ 1). (2.44)

Where q; is the Optimal state at t. We can represent equations (2.37) through (2.41)

in matrix form as follows:

d(t) = A(t)max{Aod(t- 1)} (2.45)

‘1’“) = arngaX{{a.-j}1gi,jg~o{dj(t— 1)}193N} (2-46)

for t = 2, . . .T. Where d(1) = A(1)1r and 0 represents the Hadamard product [36]
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Of the N x N matrix and the N x 1 vector defined such that

{(311 CiNI {f1\ {Cllfl CleN\

021 C2N 0 f2 = C21f1 C2NfN . (2.47)

      \CNI CNN) {far} (CNifi CNNfN)

The likelihood in (2.42) can be represented as

P'(0 l M) = I|d(T)||1- (2-48)

The back substitution process to find the Optimal state path is the same as equation

(2.44).

The matrix formulation Of the Viterbi search algorithm provides a compact repre-

sentation Of the search algorithm. Also, such formulation makes it easy to implement

the search algorithm. In MATLAB, for example, we can get very compact and sim-

plified code.

2.2.3 Training (Estimation) Problem

The training problem concerns how to estimate the elements of M so as tO best

describe 0. This problem is Often solved in a maximum likelihood (ML) framework.

To estimate the model parameters given an Observation sequence 0, the quantity

P(OIM) is Optimized. Using an iterative procedure, the model parameter set M

is reestimated to maximize P(OIM). There are two widely-used algorithms for this

optimization problem, the F-B reestimation algorithm (iterative update and improve—

ment) and the Viterbi training algorithm [4, 57, 58]. The Viterbi algorithm has been

shown to converge to a prOper characterization Of the underlying Observations [17, 19],

and has been found to yield models with comparable performance to those trained
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by F—B reestimation [20]. Further, the Viterbi approach is more computationally

efficient than the PB procedure [4].

A matrix representation for the F—B training algorithms is described in [27]. How-

ever, an alternative and more straightforward formulation is presented here.

The 7 variable [1, 2], a key component in the HMM training, is first represented

in a vector-matrix formulation. 73-,(t) is the probability of a path being in state i at

time t and making a transition tO state j at time t + 1 given 0 and M. Thus, we

have

 

’in(t) = P(‘It =iaQt+1 = LI 0,M) (2.49)

a,-(t)aj,b-(Ot)fl-(t 'I' 1) _ _

P(JOINJI) , t—1,...,T 1 (2.50)

for each j and i, where a, b, 01,6 are defined as (2.1), (2.3), (2.4), and (2.17). Let us

define the matrix

 

  

(7110:) 71203) ’YINIt)

I‘ (t) = 721“) 722.03) ’72N(t) . (2.51)

(7111103) 7N2“) ’YNNU) I

Then by (2.50),

I fl1(t+ 1) 0 0 l

1 0 @(t+1) 0

r“) — P(o | M)

\ 0 0 flN(t+l)/
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(01(00 0 0 \ / all (112 am \

0 b2(03) . . . 0 (1.21 0,22 . . . 021v

X . X

K 0 0 bN(0t) / \ 0N1 0N2 aNN /

01(t) 0 0 \

x (I ‘12.“) " (I (2.52)

( 0 0 aN(t) )

  

  
 

( ,81(t+ 1) 0 0 l

1 0 fl2(t + 1) 0

= P(O I M) ' 3

\ 0 0 ,3N(t+1) }

/ a1(t) 0 0 l

0 (12(t) . . . 0

A(t)A , t = 1,. ,T — l (2.53)

K 0 0 . . . UN“) )

= dias(13(t + 01);]$1023) -dias(a(t)), t: 1 ,T 1, (2.54)

where

( P1 0 ... 0 \

A 0 0

diag(p) = : p2 : : (2-55)

  

for any row or column vector p.
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Then, if 7,-(t) (note single subscript) is defined as in [40],

    

mlt) = P(qt =i I QM), (2-56)

we have

{ '71“) \ { 01(t)51(t) \

_ 72(t) _ 1 02(t)32(t) _ _

7(t) — : —- __(a'(t),8(t)) : , t — 1, . . . ,T 1 (2.57)

\7N(t) ) \ CYNUWNU) )

= r’(t).1 (2.58)

assuming that a'(t)fl(t) 96 0. This equation holds for any t E [1, T — 1].

In terms of variables defined above, the reestimation formula for the state-

transition matrix A becomes

    

( (71(t) 0 0 “—1

A = Tim) M (_) 72°“) (.J (2.59)

( ( 0 0 7N(t) ) )

= r(t) gamma») (2.60)

in which 23:11 denotes a element-by—element conventional matrix summation. Here

A denotes estimated value of A.

To reestimate the B matrix, let V = {Ukj} be an K x N matrix such that

V = { Z 71(t)}15kst<,195~° (2'61)
t 8.1:. O¢=k

Then, with the matrix defined above, the reestimation formula for the observation
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matrix B becomes

{ {71(t) 0 0 )\_l

B = Vx 2T: 9 72°“) 9 (2.62)

    ( (0 0 ...ry~(t)))

= Vx (édiaghun) . (2.63)

As a consequence, we have a compact expressions of its training algorithm with

matrix formulations.

2.3 Time-Invariant Approximation for the HMM

A vector—matrix formulation of the RB HMM is posed in a state-space formulation

with suitable state variables, state-transition matrix, and output equation. In mod-

eling terms, the state—space system of the F—B HMM is linear, but time-varying.

However, because the state-transition matrix is time varying due to varying obser—

vation symbol probabilities, unlike the linear time-invariant model, it is not easy to

transform the F-B HMM expressions and to derive other representations for the HMM

which may be useful to find various techniques tosolve the HMM problems for some

Speech applications.

An approximate time-invariant model for the time-varying state-space F—B HMM

with more potential for application is presented. Since theoretically it is not possible

to make the time-varying F—B HMM and TIA HMM identical, a revised formulation

with different state variables and likelihood measurements needs to be posed for the

approximation. There are several ways to pose such an approximation. Here, we study

one approximation method based on a state-Space formulation which was develOped

30



in the author’s laboratory by Snider and Deller [4, 6, 7].

The original motivation of the technique prOposed in [6, 7] was to decrease the

computational load in evaluating the HMMs. However, here we will show that such a

derivation is useful not only for the computational aspect, but also for an reasonable

approximation of the likelihood P(O | M) computed using the time-invariant state-

space model. Practically, in the HMM, we can approximate a posterion' probability

using the state equation as below:

P = P(o1 lM)P(02 | M) - . - P(OT | M) ~ P(01,02, . . .,OT | M).(2.64)

The validity of this approximation will be discussed in this and the next chapter.

As [6, 7, 8], we assume that there is a model M with N states q,-,z' = 1,2,. . ., N

and M discrete observation symbols k, k = 1,2, . . . , M. At each observation time

t, we define the state probability vector a:(t), and the observation probability vector,

y(t) , as follows:

a:(t) é (z,(t),x2(t),...,xN(t)) (2.65)

(Mt), y2(t), - - - ,ym(t)) (2-66)Q A
H

V

II

where, 2,-(t) is the probability of being in q,- at discrete time t given the model M,

P(q, at t | M), and yk(t) is the probability of generating symbol k at discrete time t

given the model M, P(k at t I M).

In these terms, the dynamics of the HMM are as follows:

a:(t + 1) = Am(t) + u(t)6(t) (2.67)

y(t) = Ba:(t) (2.68)

13w l M) = [[1 Hot | M) = 1311101“) (2.69)
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where, A is the N x N state-transition matrix associated with the HMM whose (75, j )

element, a,,- = P(qj at t+1 | q,- at t) for any t; B is the M x N observation probability

matrix whose (k, j) element, bk, = P(k | qj); and 11(0) is some vector such that when

2(0) is defined as zero, 3(1) takes the prOper initial values, with u(t) arbitrary but

finite for all t 75 0, and 6 (t) is the Kronecker sequence. yo, (t) corresponds to the

It“ element of vector y(t). Here It is the symbol realized by 0,. 13(0 | M) is the

likelihood explained in the following.

The expressions (2.67)-(2.69) are not equivalent to (2.9)-(2.11) since the definitions

of the state variables as well as the likelihoods from both sets of equations are different.

State variable a(t) is the joint probability of the partial observation sequence from

an initial time to time t. However, 2(t) is the probability of being in states at time t.

Therefore, the likelihood P(01,02, . . . ,OT | M) which needs to be evaluated from

an initial time to a specific time t cannot be expressed by state variables a:(t +1) and

y(t) without an independence condition that will be explained.

For reference, because A is a stochastic matrix, a:(t) is a positive vector. In the

Bakis structure of the HMM which is often employed in speech recognition, except a

few initial values of t, m, (t) 76 0 for any 2'. This implies that the system can be any

one of states [1, N] regardless of the preceding state.

From (2.67) and (2.68), we have

a:(t) = A‘"1u(0), (2.70)

y(t) = BA"1u(O). (2.71)

These two probability values can be used to compute the state and observation prob-

abilities at any time t 6 [1, T]. The observation probability at time t for a observation
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symbol 0, is

P(Ot l M) = yo.(t)

= (b1(0t), b2(0t), . . . , (IA/(00) ' 23“)

= b1(0t)$1(t) + b2(0¢)$2(t) + . . . + bN(0t)$N(t) (2.72)

= 1’A(t)m(t).

Here 570,) = (51(ot), 52(ot), . . . , bN(0,)). Note that

b’(0,) = 1’A(t). (2.73)

Horn (2.72), it is seen that the probability for a given observation at time t can be

computed using state equation (2.70) and observation equation (2.71).

2.4 Transformations of State Equations

One of the merits of using the state-space structure develOped above is that it admits

the transformation of the state and observation equations into alternative formula-

tions. Let us discuss this subject for the conventional F-B HMM and the TIA HMM.

2.4.1 Transformation of Time-Invariant State Equation

The original motivation for the time-invariant state equation was that the state-

transition matrix could be diagonalized to significantly reduce the number of floating

point Operations required to compute the HMM likelihood5 [4, 6, 7].

To diagonalize the state-transition matrix, let a:(t) = Mz(t). Where M is diag-

onalizing transformation on the state space. M is a square matrix with dimension

 

5In light of the remarks by Mitchell et al. [25], further discussion of this model appears in [4].
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N x N and z(t) is a new state variable defined as M‘la:(t) assuming that M"1

exists. If A does not have distinct eigenvalues other than zero, then M‘1 does not

exist. However, in the practical HMM application in speech processing, a speech

signal is modeled as the result of random processes. A holds such variable transition

information of random processes. Numerically, this leads that mostly the entries of

A are different from each other. For example, the same phoneme spoken by different

speakers will be acoustically different. Also, the same speaker may produce different

versions of the same sound under different circumstances. Numerically, this leads

that mostly the entries of A are quite different from each other and they do not have

specific patterns such as singularity for the matrix for instance. Numerically, such

diversity of realization of random processes for speech signals justifies assuming the

existence of M’1 under a suitable size of number of state in the state model.

Equation (2.67) and (2.68) yield

Mz(t+1) = AMz(t)+u(t)6(t) (2.74)

y(t) = BMz(t). (2.75)

Diagonal dominance provides a relatively simple criterion for guaranteeing the

nonsingularity of a matrix. An NxN real or complex matrix A is diagonally dominant

if law] 2 23,-,2,- Iaijl,i = 1, . . .,N. A is also strictly diagonally dominant if strict

inequality holds. If A is strictly diagonally dominant, then A is nonsingular [37].

Since A is nonsingular, a matrix M, that is composed of a set of eigenvectors of A,

is nonsingular. Therefore, M’1 exists. From (2.74),

z(t+1) = M“AMz(t)+M‘lu(t)6(t) (2.76)

y(t) BMz(t). (2.77)
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Now suppose that M = PU, where P is the usual matrix of normalized eigenvectors

and U is a special diagonal matrix such that the 2"" element of the vector U'1 is

the reciprocal of the 2"” element of the vector P’1u(0). As a consequence of this

operation, each element of the excitation vector, M‘1u(t), is unity at time zero.

It follows that

z(t + 1) = U"1P‘1APUz(t) + U‘1P_lu(t)6(t) (2.78)

= Az(t) + fi(t)6(t) (2.79)

y(t) = BPUz(t) = Bz(t) (2.80)

where A = U‘IP'IAPU is a diagonal matrix, fi(t) = U"1P“lu(t), and B = BP.

This result is significant because it separates all states into independent computations.

Furthermore, this property provides a way to combine all HMMS in the system into

one large state-space formulation [6, 7]. Moreover, as in (2.70) and (2.71),

z(t) = A 17(0), (2.81)

y(t) = BAHam) (2.82)

where A“ is computed easily.

In the HMM application to speech modeling, the Bakis condition is generally

assumed, and, thus, A is a triangular matrix. Therefore, when there are K HMMS

which need to be evaluated, it is necessary to compute eigensystems of K models.

However, under the Bakis condition, all the eigenvalues are located on the diagonal

positions of A. Therefore, it is not necessary to compute eigenvalues. Furthermore,

because of the strong diagonal prOperty of A, it is highly probable that there are

quite a few cases across which eigenvalues can be shared. Hence practically we do

not need to compute all the eigenvectors of K systems. Thus, computational load to
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computing eigenvalues and eigenvectors of A among models can be possibly lessened

by suitable preprocessing which examines the diagonal components of state-transition

matrices across models.

2.4.2 Transformation of the Time-Varying State Equation

Let us return to the case of the time-varying state equations,

a(t + 1) = A(t + 1)Aa(t) + A(1)1r6(t)

y(t) P(01,02, . . .,0. | M) = C'a(t).

(2.83)

(2.84)

Let A and P denote the eigenvalue and eigenvector matrices of A respectively,

AP = PA.

Since A is nonsingular, P is nonsingular. Therefore

a(t + 1) = A(t+1)(PAP"1)a(t)+ A(1)1r6(t)

= A(t+1)PAP“1a(t)+ A(1)1r6(t)

P'1a(t+1) = P-1A(t+1)PAP'1a(t)+P—1A(1)7r6(t).

Now let

P‘la(t) = 6(t).

Then

a(t + 1) = (P"A(t+1)PA)a(t) + (P’1A(1)1r)6(t)

y(t) = P(01,02,...,0tIM)=C"P6:(T).
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Since P is an eigenvector matrix of A, this expression can be represented as follows:

a(t + 1) = P"1(APA(t + 1) — APA(t + 1) + A(t + 1)AP)d(t)

+(P“A(1)7r)5(t)

= P“APA(t+1)a(t) + P“1(A(t+1)AP — APA(t+1))c‘i(t)

+(P’1A(1)7r)5(t)

= AA(t + 1)a(t) + P‘1(A(t+ 1)PA — PA(t+1)A)Ez(t) (2.91)

+(P“A(1)1r)6(t)

= AA(t + 1)d(t) + P‘1(A(t + 1)P — PA(t+1))Ad(t)

+(P"A(l)7r)6(t)

= AA(t + 1)6:(t) + (P‘1A(t + 1)P — A(t + 1))Aa(t)

+(P“A(1)vr)6(t),

where AA(t + 1) is a diagonal matrix. To obtain a diagonalized state equation from

(2.91), we need to have

P-1A(t+1)P = A(t + 1).

Or equivalently,

A(t+1)P = PA(t+1). (2.92)

If P has N distinct eigenvalues, the necessary and sufficient condition to satisfy the

commutativity (2.92) is that all the eigenvectors of P should be same as those of

A(t + 1) for all t [37]. However, P is not an eigenvector matrix of A(t + 1) but

of A. Therefore, P‘1A(t + 1)P aé A(t + 1) in general. Furthermore, A(t) is time

Varying. Thus, a constant P which satisfies (2.92) for every t does not exist in
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general. Therefore, there is no universal eigenvector matrix P which diagonalizes the

time-varying F-B HMM.

In addition, consider the case in which the eigenvector matrix P changes with

time, depending on A(t). Let P, denote a eigenvector matrix of A(t)A. Then it

follows that

a(t + 1) = A(t+1)Aa(t)+ A(1)1r6(t) (2.93)

Pzfilau + 1) = P:.31(A(t + 1)A)Pt+1P:.31a(t) + P::1A(1)vr6(t) (2.94)

a(t + 1) = A(t + 1)AP;+1,P,P;1a(t)+ P;.},A(1)1r6(t)

= —A(t+ 1)A(Pt—+11Pt)a(t) + P1331(A(1)1r)6(t) (2-95)

if P;1 exists for all t, where d(t + 1) = P3100: +1), and Pt'fi1(A(t + 1)A)Pt+1 =

W. However, due to the sparseness of A(t), A(t)A is singular most of the

time and Pfl does not exist at these times. Additionally, even if Pfl exists for all t,

it is necessary to compute P, for each t, resulting in no computational benefit from

the matrix diagonalization. Moreover, due to the fact that P,—+11Pt aé I in general,

(2.95) implies that it is not possible to obtain a diagonalized state equation using the

formulation above.

2.5 Analysis of Illegal Paths Caused by Approxi-

mation

In this section, we discuss the problem caused by the approximation of the PB time-

varying HMM by the TIA HMM. This issue was first noted by Mitchell et al. [25]

following the publication of the original TIA HMM paper [7].
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2.5.1 Likelihood Difference

We first discuss the relationship between P of the TIA HMM and P of the PB HMM.

Those likelihood are significant for HMM evaluation in speech recognition.

As a matter of fact, the likelihood measure, P(O | M) = {:1 P(Ot | M) em-

ployed with state equations (2.67)-(2.69) is not linearly related to the a posteriorijoint

probability P(O | M) = P(01,02, . . . ,OT | M) used on the F-B HMM approach.

For example, suppose there are three symbols {01, 02,03} in an observation string

at times t = 1, 2, 3, respectively. Then by the “chain rule” of conditional probability,

P(01,02,03 | M) = P(01 l M)P(02 | 01,M)P(03 | 02,01,M) (2.96)

which, if and only if 01,02, and 03 are conditionally independent“, can be written as

P(01,02,O3 | M) = P(Ol I M)P(02 I M)P(03 | M) (2.97)

~

= P(01,02,03 ] M). (2.98)

In this case, a time—invariant state equation can be applied to compute the “F-B”

a posteriori probability P(O | M). However, the symbol occurrences are generally

dependent upon the states in the HMM. The inequality of P(O | M) and P(O | M)

caused by the assumption of independence among symbols without consideration of

hidden state dependency was initially noted in [25], where a simple counter-example

using a two-state HMM can be found7.

To examine the differences in P and I3 in more detail, consider a model with two

states. From the F-B matrix formulation (2.13),

P(01,02, 03 | M) = C’A(3)AA(2)AA(1)1r (2.99)

 

6The dependent conditioning information being the state value.

7In light of the remarks by Mitchell et al. [25], further discussion of this model appears in [4].
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. b1(03) 0 an 612

= C

0 02(03) G21 G22

)

x “02) 0 a” a” (2.100)

0 b2(02)) G21 022

01(01) 0 \ 71'1

0 52(01) ) W2 

Assume a left-to—right (Bakis) model so that (712 = 0,U = (0,1) and 1r' = (1,0).

Then,

P(01,02,03 IM) = b2(03)a21b1(02)a11b1(01)

+ b2(03)a22b2(02)a21b1 (01). (2.101)

On the other hand, the product of individual observation probabilities is

. .,(3) ) . 21(2)
P(03 | M)P(02 | M)P(01 I M) = 1 A(3) 1 A(2)

272(3)) 222(2)

, 171(1) \
1 A(l) (2.102)

182(1)) I

b1(03)al1b1(02)aubl(01)

51(03)Gf1b2(02)02151(01)

b2(03)a21a11b1(02)a11b1(01) (2.103)

52(03)a2ia11b2(02)021b1(01)

b2(03)a22a21b1(02)a11b1(01)

+ b2(03)a22a21b2(02)a21b1(01).

 

+
+
+
+

Therefore, P(O | M) involves extra cross terms which can be regarded as resulting
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from one or more “illegal” state paths. Since all the terms of each P(Ot I M) are

multiplied together in computing 11;, P(Ot I M), this technique has been called an

“anypath” method [4].

Although different from the F—B HMM likelihood, the “time-wise” P(O I M)

probability has been useful in discovering new aspects of HMMs in this work. More-

over, the accompanying state equation is advantageous in that the resulting HMMS

can be implemented to perform fast processing in real application with fewer re-

sources than with the F-B HMM [6, 7, 25]. It is well-known that the training and

evaluation of F-B HMMS are computationally very demanding [66]. To decrease the

computational complexity, a few techniques have been prOposed using vector-matrix

formulations [27, 30]. However, since the proposed techniques are based on the time-

varying F-B HMM, there is a limitation to the possible decrease in computational

complexity. In spite of the apparent weakness of permitting illegal paths, the TIA

HMM is a useful and effective model as we discuss later in this work.

2.5.2 Comparison of the State-Transition Matrices

Let us examine the state transitions of both F—B HMM and TIA HMM in more detail.

Next, we discuss the discrepancy of the role of state-transition matrices of each model

from the point of how to constitute available state paths of a speech utterance.

Since A premultiplies the matrix A in the time-varying state—space HMM, diag-

onal elements of A multiply the corresponding rows of A. To examine the dynamics

of the AA matrix of the time-varying state equation, consider two two-state Bakis

models and a test string 0 = (01,02, . . .,OT}. At times t and t+ 1,

a(t) = 121(0.) 0 a” a” a(t—1) (2.104)

0 b2(03) G21 0'22
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a(t+1) = MOM) 0 “11“” a(t) (2.105)

0 b2(0t+1) 021 022

_ 51(0t+1) 0 all 012

0 b2(0t+1) 021 022

b 0 0

1( t) a“ a” a(t—1). (2.106)

0 b2(0t) 021 022

Due to the Bakis condition, an = 0 and only transitions from state 1 to 2, 1 to 1, and

2 to 2 are legal. However, these legal jumps are also controlled by the probabilities

in A(t) and A(t + 1). Let b2(0t) = b1(03+1) = 1 and b1(0¢) = b2(0t+1) = 0 for

instance. From these assumptions,

all 0 O 0

a(t + 1) = a(t — 1) (2.107)

0 0 G21 022

= a(t — 1). (2.108)

0 0

Therefore, the likelihood P(O I M) becomes zero. This is from the fact that by A(t),

the observation at t can be generated from state 2 and by A(t + 1), the observation

at t+ 1 can be generated from state 1, but once an observation is generated by

the second state, the path cannot return to state 1. Hence the matrix sequence

A(t)A,t = 1, . . .T inherently determines the allowable state paths depending on the

elements of the observation string.

For the time-invariant model of (2.67) and (2.68), however, the computed likeli-

hood (2.69) is an approximate value based on the assumption that O, is uncondition-
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ally independent of 0., for all 7' E [1,t — 1), meaning that

N

P(Ot I M) = ZP(0t I Qt = i:M)P(Qt = i I M) (2-109)

i=1

= 1'A(t)a:(t). (2.110)

Here, algebraically the computation of P(Ot I M) involves a:(t) which is a state

distribution that is dependent upon t only, not upon the history of the state path, nor

of the symbol string. Thus, only the state-transition probabilities in A are responsible

for predicting the state path in the TIA HMM. However, observation symbols play a

significant role in deciding the feasibility, if not the value of the probability, of a state

sequence. The viability of the TIA HMM depends on the degree to which probabilities

computed for illegal state paths are small, rendering them infeasible. This will be

discussed in the following chapters.

2.6 Validity of the Time-Invariant Approximation

of the HMM

We examine the extent to which the TIA HMM represented by approximations (2.67)-

(2.69) is a viable model for practical speech recognition. In particular, the relative

significance of two significant matrices A and B of the F-B HMM will be examined

analytically and heuristically using several approaches. Of course, it is true that the

following analysis are in fact heavily dependent upon the probabilities of A(t).

2.6.1 Matrix Norm Approach

Let us first revisit two state—transition equations (2.11) and (2.25). Again, we have

P(01,02,...,0,,...,0TIM) = C’a(T)=C’A(T)X(T). (2.111)
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Note that the actual relationship between a(t) and X(T) is given in (2.26). For

t 76 T, the likelihood of the RB HMM is

P(0,,02,...,0.|M) = 1a(t)=lA(t)X(t). (2.112)

For simplicity of analysis, consider an ergodic constraint on A so that all N states

are legitimate final states. Then,

P(01,02, . . .,0. l M) = C’a(t) = C'A(t)X(t) (2.113)

for t E [1,T] with suitable initial conditions 07(1) = A(1)7r and X (1) = 77. Because

A is a stochastic matrix, it is easily verified that

(f = C'I=C'A= CA" (2.114)

for any natural number n with a column vector C as defined in (2.12) and I defined as

the identity matrix of suitable size. Then for any 1 g t S T, a posteriori probability

(2.112) can be represented variously as

P(01,02,...,0,|M) = 651(1)

= I|a(t)lll

= dAa(t)

= IIAa(t)II1

= dA(t)X(t)

= IIA(t)X(t)||1 (2115)

= C'AA(t)X(t)

= IIAA(t)X(t)II1
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where I] -

then

= |IX(t+1)|I1,

II represents the ll norm. If n is a matrix such that

Therefore, we have that

for any n with C = [1,1,...,1].

A+n = I,

C'A = c’=dr

= C’(A+n)

= C’A+dn.

do = d((2)n=0

(2.116)

(2.117)

(2.118)

(2.119)

Here 0 is the zero vector with an appropriate

dimension. The difference matrix 52 indirectly points out the relative importance of

the stochastic matrix A in the process of evaluation of the a posteriori probability

for a given utterance. From (2.115),

Ila(t)II1 = IIAa(t)|I1=II(I-9)a(t)II1

= “G(t) - m3I(I)II1-

(2.120)

In particular, consider a diagonally dominant A. For simplicity, let A is a 2 x 2
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matrix and let 61 and 62 be two small numbers in the off-diagonal so that

a a 1—6 611 12 = 1 2 ' (2.121)

G21 G22 61 1-62

Also, let

a t

a(t)= 1” . (2.122)

0120)

Then,

6 —6

n: 1 2 . (2.123)

—61 62

Therefore, all the elements of Q are composed of small numbers. From (2.121), we

have that

Aa = (2.124)

(1 — 61)C¥1(t) + 6202“)

6101(t) + (1 — 62)oz2(t)

If 61 and 62 are relatively small compared to the entries of a, (2.124) can be approx-

imated as

(1 — £1)a1(t) + 620:2(t) z (1 — 61)al(t) (2.125)

6101 (t) + (1 — 62)02(t) (1 — 62)a2(t)

= (1 — 61) 0 a1(t)

0 (1 — 62)02(t) C12“)

2 Da,
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where D is a diagonal matrix which is made up of diagonal elements only from matrix

A so that A = D + D1. Therefore,

P(01,02,...,0,IM) = IIa(t)I|

= IIAa(t)II

= ||(D+D1)a(t)||

.9 IIDa(t)II (2.126)

= dDa(t),

where D is practically close to an identity matrix I.

2.6.2 Likelihood Expansion Approach

The preceding discussion concerns figuring out the relative insignificance of stochastic

matrix A at the final time t in light of the likelihood. In fact, however, we need to

see the effect of A at each of the time instants {1,2, . . . ,T} at which a speech signal

is evaluated.

To look at the influence of A matrix more closely, again consider a two-state model

and the dynamics of the HMM over a few time instants. The results of this analysis

can be extended to any size state model. Let M1 and M2 be two HMMs for speech

evaluation. For simplicity, let us suppose that an observation string is composed of

three symbols {01, 02, 03}. Then, we need to evaluate the final two likelihoods,

P(01,02,03 | M1) = (1,1)A1(3)A1A1(2)A1A1(1)1r1 (2.127)

P(01,02, 03 | M2) = (1,1)A2(3)A2A2(2)A2A2(1)1r2, (2.128)

where subscripts 1 and 2 denote M1 and M; respectively. Let us assume a Bakis

structure for A1 and A2. Then 01,12 = (11,22 = (12,12 = (12,22 = 0. Like the notation of
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A1, A2, the subscript of n from and-,- denotes a transition probability from state 2' to

j in HMM 17.. So, the likelihoods for M1 and M2 become

P(01,02,03 I M1) = b1,1(3)a1,11b1,1(2)a1,11b1,1(1)7rl,1

+ b1,2(3)a1,21b1,1(2)a1,11b1,1(1)7r1,1 (2.129)

+ b1,2(3)a1,22b1,2(2)a1,21b1,1(1)7r1,1

P(01702103 I M2) = b2,1(3)02,1152,1(2)G2,11b2,1(1)7r2,1

+ b2,2(3)a2,21b2,1(2)a2,11b2,1(1)7724 (2.130)

+ 52,2(3)a2,22b2,2(2)02,21b2,1(1)7T2,1-

Here similarly to and-g, bug-(k) denotes an observation probability for symbol 16 from

state j in HMM n and 7r,”- denotes a initial state probability for a state i in HMM

n. In (2.129), if A1 is close to A2, then B plays a decisive role in computing the

likelihoods. It is difficult to show analytically how much the matrices A and B affect

the likelihood in general since its result differs depending on the time-varying input

speech signals. However, it is possible roughly to estimate the relative contribution

of each matrix.

2.6.3 Matrix Inversion Approach

Here we consider the application of the vector-matrix formulation of the HMM to

assess the relative importance of A and B to the likelihood. 5

Previously, a matrix norm has been applied for an ergodic model to obtain a closed

form for the a posteriori probability quantity of a given speech utterance at a Specific

time as (2.115) or (2.116). Now consider a general case covering all time indices.

Reconsider a model with a time-varying state-equation representation as (2.22).
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Multiplying both sides of (2.22) by A“,

A‘1X(t+1) = A(t)X(t)+A’11r6(t). (2.131)

Let us assume a Bakis structure with strong diagonal elements in A. As before, let

fl=I—A. Then

(I — n)-1X(t + 1) = A(t)X(t) + A-lmsu). (2.132)

Further

(I—fl)’1 = I+n+nz+n3+m (2.133)

= I + n: a". (2.134)

Therefore,

(I + f: fl")X(t + 1) = A(t)X(t) + A'11r6(t) (2.135)

n=l

X(t+1) = A(t)X(t) —(§;m)X(t+1)+A-1«6(t).(2.136)
n=1

Horn the definition of {2 and (2.134),

2 n" = A-1 — I. (2.137)

n=l

Substituting in (2.136),

X(t + 1) A(t)X(t) — (A'-l — I)X(t + 1) + A—1n6(t) (2.138)

= 22(1) + 22(6 + 1) + A‘11r6(t) (2.139)
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where X(t) = A(t)X(t) and X(t+ 1) = —(A’1 —I)X(t+1). Because A is assumed

to have strong diagonal elements, X (t + 1) = X(t) for all t > 0. To see X(t + 1)

quantitatively, consider, for example, a simple case in which A E R2”,

all 012
A = _

(2.140)

G21 022

Then,

A'1 _ I = d tlA . G22 — (111022 + 012021 —a12 (2.141)

e ( ) —a21 0.11 — 011022 ‘I' 012021

assuming that det(A) = (1116722 — (112021 > 0 which is justified in the present analysis

because of the strong diagonal property. Contrary to the denominator, all entries

of the numerator of (2.141) are small numbers. For the Bakis model, (122 = 1 and

an = 0, so that

921 0

A‘l—I = “1‘ . (2.142)

—“ 0

Accordingly, I] (A—1 — I)X(t+ 1) II is very small compared with the values in X(t). For

any size of N, we reach the same conclusion. This is further support for the notion

that observation probabilities are much more significant than the state-transition

probabilities in computing the likelihood.

2.6.4 Eigenanalysis Approach

Let us examine the eigensystem of the state-transition matrix of the time—varying F-B

HMM. This approach also leads to the conclusion that A is relatively insignificant

compared to A in light of the likelihood measure.
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From (2.86), the diagonalization of time-varying F-B HMM is explicitly given by

a(t + 1) = A(t + 1)PAP'1a(t) + A(1)1r6(t). (2.143)

Since A(t + 1) is a diagonal matrix, analyzing A (or P) is sufficient. Note that

generally the operation of vector-matrix-vector multiplication (2.90) to compute the

likelihood does not have a straightforward relation to the eigensystem of the matrix.

However, consider the condition in which A is close to the identity matrix I.

To observe the significance of A, consider two HMMs which are numerically very

close to each other. Let A1 and A2 be state-transition matrix of M1 and M2,

respectively. Let A1 have the Bakis tOpOlogy. For analysis purpose, suppose that all

the entries of A2 are close to those of A1 and they are close to I so that they have

strong diagonal property. Further assume that the other two matrices B1 and m

from M1 are the same as B2 and «2 from M2. Then let us estimate the likelihood

from A2 in terms of A1.

Consider a practical case first in which A2 which is close to A1 is of the Bakis

topology so that the diagonal entries of A2 are eigenvalues themselves. During ma-

trix multiplications for likelihood computation, the eigenvalues of the state-transition

matrix are explicitly involved in the matrix operations as explicit (diagonal) entries

in the matrix. In this case, it is trivial since both A1 and A2 produce the similar

likelihood.

Next consider the case such that A2 is not of the Bakis topology but it is still

strongly diagonally dominant. The non-Bakis condition makes the analysis difficult

since the eigenstructure of the system varies depending on changes in the entries

of the matrix. Because A2 is no longer triangular, the eigenvalues of the matrix

are not explicitly involved in the matrix multiplication. However, the Gerschgorin

circle theorem [37, 38, 39] provides another way to assess the matrix multiplication
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approximately. The theorem tells the possible relative locations of correSponding

eigenvalues after the entries of a matrix changes a little from an original matrix. To

apply the theorem, let A be an eigenvalue of the N x N matrix A2. Then, by the

Gerschgorin theorem, each eigenvalue lies in at least one of the discs with center am,-

and radius r,- = 23,-,5,- IaW-I, z” = 1, . . . , N in the complex plane,

I/\ — amiI S Ti. (2.144)

Because A2 is diagonally dominant, the size of each Gerschgorin disk is very small.

Moreover, since A2 is a stochastic matrix, one eigenvalue remains unity. For matrix

computation, consider eigenvectors of A2. Although the eigenvalues of A2 are not

affected much and the Euclidean distances between respective eigenvalues of A1 and

A2 are small, the sensitivity of eigenvectors depends on the eigenvalue sensitivity

and separation. In particular, in case of identical eigenvalues, there exists an infinite

set of possible eigenvectors because of linear dependency. Therefore, the eigenvector

conditions are not helpful to estimate the likelihood with matrix A2 in association

with A1.

However, in case that A(t) is sparse8 so that the effect of off-diagonal elements

are reduced, we may get likelihood results with A2 which are close to those with A1.

The results are in fact mostly dependent upon the probabilities of A(t).

For the TIA HMM, (2.76) and (2.77), eigenanalysis approach is better applicable

than for the F-B HMM because the time-invariant state equation does not depend

on the observation symbol string.

 

8The sparseness of B will be explained in Chap. 3.
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Chapter 3

Practical Issues in the Use of the

TIA HMM

This chapter is devoted to the practical issues related to the TIA HMM. Here, the

“practical issues” relate principally to the problem of illegal state sequences in the TIA

HMM. Additionally, the technique prOposed by Turin [27] to reduce the computational

load for likelihood computation will be reexamined. Then, a new approach will be

prOposed and derived to reduce the computational work for likelihood computation

based on a condition imposed on an utterance by Turin. Through such an approach,

we will show that we can obtain more computational savings as well as fast evaluation

with reduced computational resources. Even though such an assumption imposed by

Turin on a speech utterance is not ubiquitous in real speech signals, however, this

study will be significant to compare the efficiency of computational savings of the new

approach with that of Turin. We will discuss the problem related to computational

savings of HMMS first in the following section.
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3.1 Efficient Evaluation Technique

In [27], Turin suggests a new technique for computing the HMM likelihood efficiently

using a vector-matrix formulation of the HMM. Turin’s approach assumes that the

observation string extracted from the speech has long stretches of identical observa-

tions. Let us discuss and examine his method so as to derive more computational

saving technique.

Before presenting a new technique, we briefly review the Turin’s method [27].

Assume that the observation string has long stretches of identical observations, say,

0t+1 = 0t+2 = ' ‘ ' = 0t+r (3.1)

with r—repetitions of the symbol. When there are many blocks of repetitive strings,

the following development can be reapplied. From (2.13), the likelihood is given by

P(01,02,...,0TIM) = C'A(T)AA(T—1)A---A(2)AA(1)7r (3.2)

= UA(T)AA(T—1)A---A(t+r+1)A

(A(t + 1))A)'A(t)A- . - A(2)AA(1)1r (3.3)

under (3.1). Thus, the problem becomes how to compute a matrix (A(t + 1))A)’

efficiently. Among several algorithms proposed by Turin [27] for computing (A(t +

1))A)r one of the technique suggested using [28] is as follows:

1. Let {bk_1bk-1 ---b1bo} be a binary representation of r as

r = b0+2b1+...+2’°—1b,,_1. (3.4)
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Also, let

Qo = I (3.5)

R1 = A(t+1)A. (3.6)

2. Fori=1,...,k+1,

Ri+1 = R3 (3-7)

.-_ ’fb,-_ =0

0.- = Q 1 1 ‘ (3.8)
Qi—iRi if bi—l = 1-

3. Termination

(A(t+1))A)' = Qk (3-9)

This algorithm requires on the average 3N3 log10 r floating—point Operations (fl0ps)

in calculating (A(t + 1))A)’. It is obvious that we get more computational savings

when for r is large. Depending on r, however, the computational savings varies. For

example, when r = 2" for n E N, the large computational savings can be obtained. On

the other hand, the computational savings becomes relatively small when r = 2" — 1.

As well as such variability of computational savings, this algorithm still requires a

recursive squaring of (A(t + 1)A).

To improve upon techniques proposed for computing (A(t+ 1)A)" [27, 28], we de-

velOp a more computationally efficient technique for computing this repetitive matrix

multiplication based on a linear transformation of the matrix. This method is par-

ticularly efficient in cases where the matrix R1 from (3.6) is a sparse, near-triangular

matrix, typical of the HMM structure. The derivation follows.

In Chapter 2, a similarity transformation of the non-singular matrix A was used
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to obtain more computational savings in the TIA HMM. Similarly, a linear transfor—

mation can be applied to the computation of (A(t + 1)A)'. In this case, this matrix

product is singular most of the time.

Initially, suppose that A(t + 1) is non—singular. Then, the resulting product

A(t + 1)A is non-singular; thus, the matrix (A(t + 1)A) can be expressed as the

product of three matrices,

A(t + 1)A -_—_ P(t + 1)D(t+1)P‘1(t+ 1), (3.10)

where P(t + 1) is an eigenvector matrix of, and D(t + 1) is a diagonal eigenvalue

matrix of, A(t + 1)A. Therefore,

(A(t +1)A)r = P(t+1)D’(t + 1)P-1(t+1). (3.11)

Since D(t+ 1) is a diagonal matrix, computing D"(t+1) is straightforward. If D(t+ 1)

is N x N, for example, it takes only N x r flaps to compute D'(t + 1). Likewise,

computing P‘l(t + 1) from P(t + 1) takes N3 flops. This is not computationally

demanding when N is not large. N is practically not over 6 in HMMS.

Second, suppose that A(t+1)A is singular because of zero elements in the A(t+1)

matrix. Note that A is a non-singular matrix. In this case, we still can choose non-

singular eigenmatrix P(t + 1) because it is possible to have any linearly independent

eigenvector corresponding to a zero eigenvalue. Thus, a non-singular matrix P(t + 1)

exists always regardless of values of A(t + 1). Hence, there is always a valid relation

(3.11).

To compare the required number of floating Operations for computing (A(t+1)A)'

between three techniques described above, consider a simple case as follows. Suppose

that all the diagonal entries of A(t+ 1) are not zero, and A is a triangular matrix with

allowing any forward state jump. Furthermore, assume that state transition matrix
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A(t + 1)A has distinct eigenvalues. Then, the necessary computational complexities

for three techniques are shown in Table 3.1. For example, when r = 10 and N = 5,

 

 

 

I Approaches 1 flops I

Conventional F-B HMM gm + 1)?“ + %(N + 1)(N + 2) (7' - 1)

Turin’s algorithm 3N3 log10 r

Similarity Transformation N(N + 1) + N7 + N2 + N3 + %(N + 1)(N + 2)   
 

Table 3.1: Approximate computational complexities for computing (A(t + 1)A)' by

three different approaches.

the approximate complexities for computing (A(t + 1)A)' are 2040 fl0ps by the

conventional scalar recursive F—B HMM algorithm, 375 flOps by Turin’s algorithm,

and 265 flOps by the similarity transformation in (3.11).

It is obvious that, like [27], savings in computing P increases with increase of

r. In contrast to the technique in [27], however, the necessary load for computing

(A(t + 1))A)r using the similarity transformation is less sensitive to 7' since the

computational load increases proportionally with rate of N. On the other hand, for

the 'I‘urin’s algorithm, it increases with 3N3 associated with log10 7'.

Now, consider the TIA HMM under the Turin’s assumption that the observation

string has long stretches of identical observations. From (2.78) and (2.80), the partial

likelihood from t + 1 to t + 7‘ becomes

lilerlM) = 11111210»:(7)} (3.12)

= HII{5(0(0,)Az(T—1)} (3.13)

= (6’(030426))(B’(o...>4"1z<t))

(5'(0..1)422<t))(6'(050440) (3.14)

because 5(07) and 2(7) do not change over 15+ 1 g 7' S t+ r. In (3.14), however,
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it is not possible to get further computational savings for Hi”;+1 P(OT I M) even

though A is a diagonal matrix, because A is between row and column vectors which

form a dot product.

3.2 Analysis of the TIA HMM

In this section, the structure of the TIA HMM will be focused on in detail.

3.2.1 Likelihood Structures

The HMM is Obviously based on the assumption that at each time, a symbol is

generated as a consequence of a state transition or result of state entrance. Depending

on the type of the HMM, a symbol is modeled to be generated either during or after

state jump [4]. In either case, the likelihood is made up of T sequential multiplications

of pairs of aj, from A and bj(k) from B for a T-length speech utterance. The initial

state probability 7r,- is a special case of a,,- which could be represented symbolically

as 77,- = 050.

For simplicity, assume that there is a single legal state path. Then, according to

the dynamics of the HMM, the formulation of the likelihood is as follows:

P(0 I M) = {a91.0b¢11(0t)} ' ' ' {amm-lbm(0t)}{a¢1t+1,9tbt+l (Ot+l)} ' ° ' ' (3°15)

In case there are more than a single legal state path, the sum of terms of form

(3.15) comprises the overall likelihood. Therefore, regardless Of the number of legal

states, the number of aJ-is are the same as that of bjs in the likelihood equation when

evaluated by the F-B HMM or Viterbi HMM.

For the TIA HMM, however, 2:, (t) is computed from Markov process (2.67); thus,

:3, (t) is sum of terms composed of (1,, and takes a “sum-Of-products” formulation. In
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prOportion to t, the exponent of aji increases and z,(t) could be up to (t — 1)" powers

of a,,-. Therefore, Hi1 P(Ot I M) requires T terms of (2.72) and thus it takes on

“product-of-sums” formulation. Also, in 1'12":1 P(Ot I M), (t — 1)“ powers of 61,-, is

multiplied by a single bj(0t) rather just a,,-.

In an extreme case, for example, suppose that only a single element of a vector

5' = (b1(0t), b2(0t), . . . , bN(0t)) is not zero for t E [1,T]. Such a condition is rarely

satisfied for real speech signals under a HMM framework since it implies a simple

“non—hidden” Markov model. Practically, however, for a few t E [1,T], such phe-

nomenon occurs frequently in the F—B HMM training. It is not easy to quantify for

how many times the assumption is fit because the length of training speech utterance

varies and it really data-dependent. Moreover, initial values of A and B randomly

assigned influence the estimated values of A and B during training.

The case that only one element of b, has non-zero probability in training is in-

vestigated with fifteen different initial settings for A and B. As before, a Bakis

constraint is considered. Also, fifteen training utterance of word “six” and “four” are

used for this simulation. For the word “six” with 5—state HMM, the rate of the case

that only a single element of bI has non-zero probability is 28.5% of T-observations

in training sequences. On the other hand, for the word “four” with 3—state HMM,

the rate reaches 84% of T-observations in training sequences.

According to the assumption, we have

from (2.72). Here, i designates the state that produces 01- Let N = 2 for instance,

and consider a case with the Bakis constraint on A. It follows that

(1) = , (3.17)
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1'1 G11

(2) = . (3.18)

$2 (121

2
a: a

1 (3) = ” . (3.19)

1132 021011 + 022021

3
:1: a

1 (4) = ” (3.20)

132 amafl + (1220216111 + 032021 + 022021011

If P = P(Ol | M)P(02 I M)P(03 I M)P(04 | M) is to be evaluated for the

observation string 0 = {01, 02, 03, 04} for instance, then the likelihood becomes

P = P(01 I M)P(02 | M)P(03 I M)P(04 | M) (321)

= bar (Oil-7301 (1)b92 (02)$¢12 (2)1793 (03)3393 (3)914 (04)$94 (4): (3-22)

where {q1, (12, q3, q.,} is a sequence of states which produce a symbol string 0. In case

{(11 = 1, (12 = 1, q3 = 2, q; = 2}, for example, which is one of the legal state sequences

that can produce a symbol sequence 0,

P = film.) (323)

= {70540051(02)b2(03)b2(04)}

{011(021011 + 022021)(0210?1 + 022021011 + 032021 + 022021011)}. (3.24)

The highest order of the polynomial in the a,,- coefficients is six, and these polynomials

are multiplied by b1(01)b1(02)b2(03)b2(04)7r1. These products are not consistent with

(3.15) in the sense of Moore or Mealy forms of HMMS.

Comparing (3.15) with (3.22), roughly speaking, aj; in (3.15) is substituted for xq,

in (3.22). With “extra” polynomials composed of ajgs in 3,1,, the likelihood 11;, P(Ot I
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M) is different from P(O I M) of the F—B HMM. It is not simple to figure out

quantitatively how much such extra likelihood from the TIA HMM affects the overall

performance of the speech recognition system. The performance is data—dependent

and dependent as well on the values of ajf, bj(0t).

Even though two likelihood measures are not identical, the performance of a speech

recognition system using HQ, P(Ot I M) is not significantly degraded. This fact does

not imply that state-transition probabilities are not informative. They are important

to constitute a possible state sequence as well as the likelihood in the HMM. In the

F-B HMM, they are vital. In case of the F-B HMM, the state probabilities themselves

regulate the state path to some extent. In addition, with such state probabilities made

up Of state-transition probabilities sums instead of state-transition probabilities ajis,

the evaluation by the TIA HMM does not significantly influence the performance of

a speech recognition system. More empirical results about viability of the TIA HMM

will be studied again later when we discuss an Optimal state sequence of a speech

utterance. Ultimately, of course, recognition performance obtained from a model

matters, not absolute likelihood scores.

Simply Speaking, finding a HMM producing maximum HT:1 P(Ot I M) is to find a

best scoring HMM in light of P(Ot) over [1, T] on the average. Inherently, this implies

that if there is, on average, a higher matching rate associated with each individual 0:

of a testing utterance to each individual 0: of a training utterance, it is much more

probable that the correct utterance is recognized than if there are fewer matching

cases. This method is similar to the “perplexity” used in a language model which

roughly means the average number of branches at any decision point so that its degree

implies the difficulty or uncertainty in each word [4, 33].

In another sense, the likelihood evaluation by the TIA HMM can be regarded

as a subOptimal method when considered against the ML criterion, contrary to the

conventional F-B HMM.
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3.2.2 Experimental Comparisons of Likelihood Between

Model Types

In this section, we will empirically Show the usefulness of the TIA HMM in speech

recognition. The spoken digit recognition problem will be the focus of the experi-

ments. Digit recognition has important applications in on—line banking, credit card

inquiry, and automatic dialing.

Fifteen isolated-word utterances of each ten digits “zero” through “nine” were

downloaded from ftp: //archive.egr.msu.edu/pub/jojo/DPHTEXT. They were col-

lected in a quiet room at the author’s lab, recorded on TDK type II using a TEAC

W-450R cassette deck with Dolby C noise reduction. Prior to sampling, the data

were filtered using an active bandpass, fourth-order Butterworth filter with a low—

pass cutoff frequency of 4.7 kHz and a highpass cutoff of 75 Hz. These were uttered

by an American adult male and sampled at 10 kHz. A MetraByte DAS16F 12—bit

analog to digital conversion board was used to sample the data. Each speech file con-

sists of integer samples covering the range 21:2048. Tenth order cepstral data [c(1) to

C(10)] were generated as a feature vector sets from these utterances using 256 points

Hamming windows and an FFT algorithm.

These generated cepstral feature vectors were used to construct a codebook of

128 symbols. This codebook was used to quantize the speech sample utterances for

training and testing.

The objective of this discussion is to compare the recognition result of two dif-

ferent likelihood measures from the F-B HMM and TIA HMM, and verify that the

TIA HMM works properly without much degradation in the Speech recognition per-

formance. Since the definitions of likelihood measures from both models are funda-

mentally different, it is not meaningful to directly compare the likelihood quantities.

Instead, we will compute global performance measures from the model types.
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For this simulation, a discrete HMM is used as a word model. Due to the available

data set, a speaker-dependent model will be tested.

To Show the usefulness of the time—invariant state-space HMM empirically, one of

the formal tests used in pattern recognition studies is conducted [9].

o In each digit, randomly chosen fourteen isolated words among fifteen utterance

are used as a training set for the HMM and then the unselected utterance is used

as a testing utterance. Next, the testing utterance is included in the training

data set and the other utterance which was chosen as a training utterance

previously is assigned as a testing utterance. This procedure is repeated until

each utterance is used as a testing utterance once. This procedure is called the

leave-one-out, or deleted test [9].

The experimental results appear in Tables 3.2- 3.3. Each table shows the likelihood

result from the F-B HMM and the TIA HMM respectively. For Simplicity, only one

set of results corresponding to the first of 15 testing utterances is shown here. The

results for the other utterances are are similar to those in the tables. M.- denotes the

HMM for the digit 2'. Fivestate Bakis HMMs are used to allow only one skip in any

forward transitions.

To avoid numerical underflow caused by the multiplication of many numbers

between zero and one, the logarithm with base 10 is taken to the the quantity of

_ P(O.). Therefore, the index of the recognized HMM in a given trial is

T

i'=argmax(HlP((0.)th)

(i) = arg max(logII(P(0. | M.)) (3.25)

1:1

T

4: z" = arg mad: 108 P(O. I Mi»

' 1:1

T

4:) z" = argmiin(—ZlogP(0t I M.))

i=1
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In every experiment, the digits are recognized correctly. As well as this recognition

result, two additional observations are made.

0 Generally, the RB HMM produces larger likelihood than the TIA HMM.

Roughly speaking, this is due to the “extra” probabilistic terms ajis multi-

plied to bj(0t) as (2.103) in the TIA HMM. Since those afis take the values

between zero and one, the likelihood decreases as such terms and the cross

terms produced by (2.69) increase.

0 Even if the recognition performance of two types of model may be the same,

there are differences of likelihood. Tables 3.4 and 3.5 are the statistics of Ta-

bles 3.2 and 3.3 respectively. They Show that the F-B HMM is more advanta-

geOus than the TIA HMM from the recognition point of view. This is because

not only the average likelihood difference between a correct digit and incor-

rect digits of the F—B HMM is larger than that of the TIA HMM, but also

the variance of incorrect digits of the former is smaller than that of the latter.

Therefore, the speech recognition system with the F-B HMM is robust than the

TIA HMM. A technique to make TIA HMM robust will be discussed later.

A more fundamental question concerning the speech recognition problem in light of

the likelihoods from the F-B HMM and the TIA HMM is the following: For i 6 [1, M],

if

P(01,02, . . .,OT I M.) 2 P(01,02, . . .,OT I M,) (3.26)

holds for all j 79 z', is

T T

H P(Ot I Mi) 2 H P(O. I My) (3-27)

t=l t=1

always true for any 2'? Where M is the number of HMMS which is equivalent to the

number of words to be compared. If (3.27) holds for any i, the TIA HMM can be

used with equal effectiveness in recognizing strings.
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Testing M1 M2 M3 M4 M5 M6 M7 M3 M9 M0

Data

one 82.1 508.4 572.2 479.0 223.0 529.3 321.4 512.5 182.3 580.0

two 550.7 83.0 779.0 684.1 642.0 634.1 611.6 778.9 672.6 403.6

three 791.6 732.9 109.8 723.6 710.4 731.7 737.6 367.5 753.7 544.3

four 601.8 826.3 670.7 82.9 599.4 753.6 835.3 781.4 839.9 596.2

five 721.6 760.3 601.2 431.2 57.2 706.8 556.5 747.6 680.1 482.0

six 891.1 737.2 850.5 906.3 662.9 140.0 457.0 691.8 873.1 850.2

seven 477.3 676.5 587.9 700.7 492.3 520.4 121.1 708.6 482.2 753.2

eight 575.7 515.0 327.0 608.9 530.3 508.3 565.1 72.2 558.2 525.5

nine 220.6 564.5 652.4 573.3 281.8 610.3 383.0 584.5 60.4 728.2

zero 1053.7 827.9 922.1 840.5 933.4 963.8 944.7 974.2 1027.5 127.3

Table 3.2: Likelihood from the F—B HMM in leave-one-out-test.

Testing M1 M2 M3 M4 M5 M6 M7 M8 M9 M0

Data

one 112.0 477.4 510.9 490.0 258.9 543.0 340.1 532.2 194.2 508.5

two 630.9 96.2 772.7 707.9 567.9 650.8 628.0 773.7 688.0 434.5

three 793.5 711.5 119.8 726.8 717.1 714.3 746.7 412.1 753.3 427.8

four 630.5 818.7 697.8 103.8 606.1 772.3 840.2 818.5 835.7 481.7

five 724.5 723.1 663.5 394.3 85.9 651.6 581.6 719.2 694.8 506.3

six 894.9 737.5 872.3 897.1 663.3 165.3 338.4 656.6 863.6 854.3

seven 484.3 644.7 646.8 681.0 420.1 481.0 145.1 693.9 469.0 619.4

eight 574.9 516.0 303.9 598.9 516.9 508.9 530.5 95.9 565.5 537.4

nine 179.5 498.2 660.9 623.6 256.8 640.3 411.1 610.4 82.0 651.3

zero 1056.0 840.4 834.1 790.0 876.9 971.9 954.0 960.6 1032.5 172.4           
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Table 3.3: Likelihood from the TIA HMM based on leave-one-out-test.

  

 

 



 

 

   

Testing Likelihood Likelihood Likelihood Standard deviation

Data of mean of difference of of

correct digit incorrect digits correct digit & incorrect digits

incorrect digits

one 82.1 434.2 352.1 151.5

two 83.0 639.6 556.6 115.2

three 109.8 677.0 567.2 134.8

four 82.9 722.7 639.8 106.1

five 57.2 631.9 574.7 120.0

six 140.0 768.9 628.9 147.2

seven 121.1 599.9 478.8 110.8

eight 72.2 523.7 451.5 80.5

nine 60.4 510.9 450.5 174.0

zero 127.3 943.0 815.7 75.0

average 93.6 645.2 551.6 121.5     
 

Table 3.4: Statistical Properties of the likelihood results from the F—B HMM.

 

 

 

   

Testing Likelihood Likelihood Likelihood Standard deviation

Data of mean of difference of of

correct digit incorrect digits correct digit & incorrect digits

incorrect digits

one 112.0 428.3 316.3 129.7

two 96.2 650.4 554.2 105.5

three 119.8 667.0 547.2 142.4

four 103.8 722.3 618.5 126.6

five 85.9 628.7 542.8 114.3

six 165.3 753.1 587.8 182.7

seven 145.1 571.1 426.0 105.7

eight 95.9 516.9 421.0 85.5

nine 82.0 503.5 421.5 182.2

zero 172.4 924.0 751.6 92.8

average 117.8 636.5 518.7 126.7    
 

Table 3.5: Statistical Properties of the likelihood results from the TIA HMM.
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Unfortunately, (3.27) does not hold in general. The relationship is very data-

dependent. Therefore, a more practical question is stated as follows: For 2' e [1, MI,

if

P(01,02, . . .,0T I M.) > P(01,02, . . . ,OT I M,) (3.28)

holds for all j 75 2', is

T T

H P(0. I M.) > H P(Ot I Mj) (3.29)

t=l t=l

always true for any 2? However, it is not easy to analytically specify how much larger

the left side of (3.28) needs to be than the right side of (3.28) does. We can only

say that in the case of the previous example, the likelihood of the correct word is

approximately three times greater than that of the others. More intensive study of

the likelihood relationship between the F-B HMM and the TIA HMM in conjunction

with the performance of speech recognition is left for future research.

3.2.3 State Probability Distribution Vector in the TIA HMM

In this section, we will investigate a:(t) of (2.67) to assess the effect of A in determining

state sequences of an utterance in conjunction with the observation symbols.

Consider a Bakis-type TIA HMM. Then, a state-transition equation is composed of

A and state probability distribution vector m(t). However, since the state-transition

part in the TIA HMM is only composed of A in contrast to A and A(t) in the F-B

HMM, a Bakis condition does not have a direct influence on constituting the possible

state transitions for an observation string. Instead, A affects 2(t) and a:(t) indirectly

controls state transitions.

To observe the effect of A, let us compare two cases, a Bakis (AB) and ergodic

(Ac) constraints, for state-transition configuration with each other. Tables 3.6 shows
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the state probability distribution vectors $(t) for a few specific times when

0.9 0 0.9 0.2

 

 

 

          

B: 2 Ac: 2 (3'30)

0.1 1 0.1 0.8

with 23(1) = 23(1) = (1,0)’.

t=1 =2 2:3 t=4 t=5 2:40 2:50 t=60 2:70

23(2) 1.000 0.900 0.810 0.729 0.656 0.016 0.005 0.002 0.000

0 0.100 1.190 0.271 0.343 0.983 0.994 0.998 0.999

2:.(2) 1.000 0.900 0.830 0.781 0.746 0.666 0.666 0.666 0.666

0 0.100 0.170 0.219 0.253 0.333 0.333 0.333 0.333
 

 
Table 3.6: State probability distribution vectors under Bakis, x(t)B, and ergodic,

:c(t)e, constraints.

The effect of A on a:(t) is not apparent over short intervals. It follows that the

likelihood differences arising from a Bakis and ergodic constraints are not evident

over short times. Additionally, it is not possible to distinguish the topology of the

HMM from a record of a:(t). However, over a sufficient duration of time, we see that

the difference in two state probability distribution vectors becomes distinguishable.

As explained in Section 3.2.1, the eflect of A in the TIA HMM is indirect and

“global” in a sense to form “possible” state paths in an utterance, contrary to A

which locally affects state paths.

3.2.4 Comparison of a:(t) and 7(2)

In this section, we will discuss similarities of one state variable of the F-B HMM and

the other of the TIA HMM. Particularly, we are interested in the similarity of state

probability distribution vector 23(2) of the TIA HMM and 7(0.) of the EB HMM.
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Previously, we have

931'“) = P(Qt =1 I M) (3-31)

7.0) = P(t}: = i I QM). (332)

where 0 = {01,02,...,0T} and M = {N, M, A,B,7r}. Note that 7.(t) is the a

posteriori probability of a state based on 0. On the other hand, T.(t) is a state

probability distribution without 0 although both state variables provide information

about the probability being in state 2' at time t.

Reconsider the previous recognition experiments. For analysis purposes, consider

the case for word “four.” Suppose that M is computed from fifteen training utter-

ances using the F-B HMM and A is

  

(0.9625 0 0 0 0 )

0.0375 0.8835 0 0 0

A = 0 0.1165 0.9704 0 0 (3-33)

0 0 0.0277 0.8652 0

( 0 0 0.0020 0.1348 1.0000 )

The corresponding state probability distribution 23,-(t) along 2 for 2' = 1, . . . ,5 appears

in Fig. 3.1. Also, with M, "7203) 2' = 1, . . . ,5 can be computed for each utterance 0 of

training data set. It is interesting when all 7,-(t),2' = 1, . . . ,5 of the training data set

is combined and the average of the 7,-(t) is computed along t. Here since the length of

each training utterance may be different, it is not possible to get complete alignment

of the training data set along t. Instead, only the time duration commonly occupied

by all training data set is considered.

The average of 7,-(t) for the entire training utterance is shown in Fig. 3.2. Com-

paring results, the transition pattern of 2,-(2) is seen to be similar to that Of 7.(t) for
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Figure 3.1: State probability distribution after training digit “four.”
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1, . . . ,5 from the entire training utterances of
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each 2' even though the actual probabilities are different. For the other digits other

than word “four,” we see the same phenomenon.

It is not easy to say how these two statistical variables from different models is

related since x.(t) is a infinite sequence if t is not constrained and 7,-(t) is a finite

sequence according to the size of training data. Roughly speaking, however, the

average of 7,-(t) for the training data set amounts to the state probability distribution

T.(t). This phenomenon is related to counting process when A, B are computed.

3.2.5 Experimental Results on the Effects of A

We have shown theoretically that a strongly diagonal A does not make significant

contribution to the likelihood scores in the TIA HMM. Here, we will Show this ex-

perimentally with some examples. Along with this experiment, we will discuss the

possible way of reducing the computational loads required in the HMM training using

the characteristics of A.

To observe the effect of A Of the TIA HMM, first let us update B only in the

HMM training in the five-state Bakis HMMS while allowing only one skip in any for-

ward transitions. In other words, after A is assigned initially, the training procedure

estimates B only and does not change A. Then, compare the likelihoods. Let

(0.99 0.00 0.00 0.00 0.00)

0.01 0.99 0.00 0.00 0.00

An. = 0.00 0.01 0.90 0.00 0.00 . (3-34)

0.00 0.00 0.05 0.99 0.00

  (0.00 0.00 0.05 0.01 1.00)

72



( 0.70

0.20

0.10

0.00

 ( 0.00

0.00

0.80

0.10

0.10

0.00

0.00

0.00
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0.10

0.00

0.00

0.00

0.80

0.20

0.00

0.00

0.00

0.00

1.00  
I

(3.35)

be the two preset state-transition matrices, for example. A3, is more diagonally

dominant than A3,. A. is the state-transition matrix for digit 2' from the F-B HMM

training. Table 3.7 is the sum of likelihoods of fifteen training utterances for each

digit. Note that Since we take the negative log to the likelihood for numerical purpose,

the ML actually amounts to the minimum likelihood in the table.

 

14‘. A31 AB,
 

    

1008.4

1111.3

1154.5

1182.2

1030.7

2111.8

1725.6

1028.3

1073.2

1908.0  

1019.5

1053.1

1176.0

1120.5

1072.5

1996.4

1632.3

991.3

899.9

1689.5  

1053.3

1074.0

1240.6

1227.3

1146.7

2123.1

1719.8

1006.9

991.8

1800.7   
 

Table 3.7: Sum of likelihoods of fifteen training utterances for each digit associated

with three different state-transition matrices in the EB HMM.

From the table, we see that the likelihoods from the usual F-B HMM which

requires both A and B training can be frequently less than those of the models

whose A is arbitrarily set and only B is updated. Other than the problem of local

minimum of the HMM training in the Optimization criterion, we see that the training

A is not much crucial in certain cases such as having diagonally dominant A in the

HMM.
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Next, to examine the recognition results for different state-transition matrices,

let the resubstitution-test be performed even though such a test is not practical in

speech recognition system. In the resubstitution-test, the training utterance is used

for a testing utterance. In this simulation, however, there is no difference between

a resubstitution-test and leave-one-out-test because we are looking for the effect of

the tOpOlogy Of A in the F-B HMM and TIA HMM. We can reach the the same

conclusions with a leave-oneout-test. Also, the results from the resubstitution-test

will be useful when we discuss the topic about finding an optimal state sequence in a

speech utterance in Chapter 4.

The recognition results are in Table 3.8 through Table 3.13. Table 3.8 shows the

likelihoods for each digit from the F-B HMM computation when one randomly cho-

sen testing utterance among fifteen is evaluated by the HMMS. Table 3.9 shows the

likelihoods for each digit from the TIA HMM computation when the same testing

utterance in the case of F—B HMM is evaluated by the HMMS. Table 3.10 and Ta-

ble 3.11 are the likelihoods for A3, for the EB HMM and the TIA HMM respectively.

On the other hand, Table 3.12 and Table 3.13 are for A3,.

Comparing Table 3.10-Table 3.13 with Table 3.8-Table 3.9, yields the following

observations:

0 The digit recognition performance with A3, and AB, matches the performance

with A1 and B in the F-B HMM. In addition, the more diagonally dominant

A is, the better the recognition performance.

a In case of the TIA HMM, we have the same conclusion that the more diagonally

dominant A is, the better the recognition performance. However, the recogni-

tion performance is more sensitive to the values of state-transition matrix than

that of the F-B HMM.

o In an extreme case such as 62,-, = 71¢, for all j E [1,N], the recognition per-
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Test M1 M2 M3 M4 M5 M5 M7 M3 M9 M0

data

one 63.7 481.0 569.0 553.8 218.1 532.4 320.4 534.5 173.7 567.1

two 476.2 84.3 669.2 570.5 643.7 638.8 489.7 635.0 724.1 456.8

three 800.7 758.5 75.3 728.7 682.7 697.8 741.8 544.3 747.3 493.6

four 593.2 680.2 711.9 70.7 612.0 757.4 843.7 823.2 868.0 559.5

five 727.4 748.7 622.7 442.9 53.1 637.5 592.1 696.5 694.7 498.7

six 857.2 681.5 756.8 820.3 633.0 122.7 302.2 536.1 711.7 827.9

seven 473.3 654.9 517.1 655.2 365.9 526.8 96.1 685.0 382.7 670.3

eight 562.7 536.1 424.4 574.7 530.2 447.8 524.9 66.8 532.9 551.7

nine 194.7 551.4 629.4 677.9 265.8 621.8 366.9 580.0 63.5 677.6

zero 1054.1 833.4 898.6 839.9 893.2 976.0 940.0 986.3 366.0 129.9

Table 3.8: Likelihood P(O I M) using A.- and B for each digit 2' in a resubstitution

test.

Test M1 M2 M3 M4 M5 M6 M7 M3 M9 M0

Data

one 93.8 457.4 511.6 555.9 251.1 543.2 341.8 526.6 195.8 610.7

two 549.9 106.6 627.2 619.1 557.8 654.5 503.3 626.7 729.2 424.6

three 809.8 725.7 111.8 721.3 678.4 709.3 750.3 547.2 729.8 475.9

four 611.5 689.9 710.9 103.5 612.8 796.5 847.8 838.6 872.7 490.0

five 729.3 714.3 650.9 413.6 97.2 642.6 610.5 712.5 702.1 531.7

six 860.9 705.3 771.5 806.9 639.1 145.2 297.4 553.5 773.6 815.2

seven 413.8 638.2 575.7 699.7 391.0 539.3 122.7 700.8 409.4 683.2

eight 568.2 479.2 360.7 548.9 520.3 449.7 510.2 84.8 543.8 559.1

nine 139.3 487.7 634.9 692.3 231.3 647.5 395.6 588.1 95.8 694.0

zero 1056.0 842.8 818.3 789.2 862.0 981.5 952.5 977.3 1041.7 160.9
 

 

  
Table 3.9: Likelihood 11;, P(o. | M) using A,- and B for each digit 2' in a resubsti-

tution test.
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Test M1 M2 M3 M4 M5 M6 M7 M3 M9 M0

Data

one 65.2 532.9 569.5 550.1 214. 1 530.9 322.0 517.0 170.6 577.8

two 471.2 78.7 675.8 580.3 633.6 680.3 481.9 636.1 724.3 443.5

three 801.6 755.1 76.5 733.8 681.2 755. 1 745.1 557. 1 755.4 483.5

four 587.6 672.2 711.2 70.6 604. 1 759.4 849.6 826. 1 869.1 572.3

five 729.2 743.1 622.2 429.0 59.7 692. 1 585.7 757.9 690.7 491.8

six 858. 1 697.0 755.9 807.0 639.9 115.5 307.4 599.3 715.6 850.2

seven 473.9 665.3 516.6 666.3 376.8 553.0 88.8 740.9 461.6 741.1

eight 563.5 536.6 424.6 573.2 537.8 464.4 519.4 72.4 535.8 529.0

nine 173.5 604.9 628.9 673.3 273.0 621.2 371.2 566.2 52.7 673.1

zero 1054.9 828.2 897.5 823.6 950.3 975.0 945.0 989.2 1040.4 114.0
   
Table 3.10: Likelihood P(O I M) using A81 and BAH, for each digit in a resubsti-

tution test.

 

 

  

 

          

Test M1 M2 M3 M4 M5 M5 M7 M8 M9 M0

Data

one 175.8 482.5 514.0 567.7 300.4 570.9 385.2 557.4 208.5 510.4

two 470.7 166.6 615.7 595.5 556.2 682.3 546.7 644. 1 724.0 453.7

three 827.4 740.9 161.0 725.8 689.3 743.8 760.5 547.2 741.0 479.1

four 607.2 725.2 694.4 134.2 610.0 802.4 853.7 852.7 876.0 533.5

five 741.9 704.1 619.9 436.9 125.8 665.6 608.9 740.5 669.6 550.5

six 877.0 660.9 743.2 782.3 664.8 197.1 220.9 582.5 724.9 747.4

seven 451.0 666.7 527.6 685.0 432.6 567.3 177.0 722.6 402.6 576.8

eight 583.4 445.1 366.3 537.2 525.9 461.6 509.2 120.6 557.5 478.0

nine 223.0 513.6 634.7 712.0 296.8 673.9 437.8 628.9 99.2 599.2

zero 1056.0 853.9 819.9 787.1 853.2 995.6 946.9 991.6 1044.8 208.9 
 

  
Table 3.11: Likelihood H2"=1 P(Ot I M) using AB, and BAs for each digit in a

l

resubstitution test.
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Test M1 M2 M3 M4 M5 M5 M7 M3 M9 M0

Data

one 66.2 470.1 566.6 548.1 212.3 536.6 320.9 534.0 179.0 583.5

two 540.9 81.7 681.8 586.2 645.5 639.8 486.6 626.7 726.4 447.6

three 798.3 760.5 81.4 733.8 676.2 697.9 734.9 542. 1 716.2 543.5

four 592.6 672.1 706.4 77.7 617.3 748.6 847.6 821.5 867.3 568.2

five 727. 1 755.7 617.2 433.0 61.8 643. 1 595.7 694.8 690.8 493.3

six 854.8 687.9 804.7 817.0 636.1 123.7 294.1 528.0 720.4 849.4

seven 476.7 650.4 514.3 673.8 376.8 530.4 93.5 677.4 369.6 754.1

eight 560.2 530.2 424.3 577.5 528.3 449.9 525.7 68.7 535.8 558.1

nine 178.9 535.2 627.8 670.0 271.5 628.0 366.5 575.8 59.8 671.4

zero 1051.6 831.6 911.4 830.3 953.7 978.7 952.0 989.3 1038.4 121.2
 

  
Table 3.12: Likelihood P(O I M) using .43, and BA3,‘ for each digit in a resubsti-

tution test.

 

 

 

 

Test M1 M2 M3 M4 M5 M6 M7 M3 M9 M0

Data

one 135.5 470.3 569.8 554.1 306.0 641.6 358.0 536.3 255.2 626.5

two 710.4 206.4 707.7 774.0 680.0 677.2 710.2 613.9 746.7 475.5

three 792.9 775.5 197.6 749.4 676.2 730.1 744.8 725.9 712.6 728.4

four 745.0 672.8 773.8 320.9 705.6 761.5 860.6 828.0 871.8 566.0

five 731.5 825.8 773.0 607.9 441.0 822.4 811.9 702.0 798.5 651.6

six 859.2 919.5 878.3 943.4 739.3 260.8 662.5 536.9 850.5 906.4

seven 491.6 655.6 769.7 844.1 554.8 619.3 381.2 687.4 590.4 759.4

eight 564.6 583.7 417.8 640.4 532.7 481.7 568.0 141.5 540.9 623.0

nine 236.5 540.5 684.0 674.9 406.9 769.5 486.2 584.9 292.3 734.9

zero 992.0 892.5 945.5 989.5 1041.1 999.7 1017.7 980.8 1046.0 611.0           
 

  
Table 3.13: Likelihood HT:l P(O, I M) using AB, and BAB for each digit in a

2

resubstitution test.
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formance becomes degraded. This is because of the more ambiguity caused

by “equally likely” state transition. Contrary to this argument, with A which

is close to a diagonalized matrix, the performance becomes enhanced because

of lessened ambiguity about state occupancy at a given time. In information

theory, such uncertainty is measured in terms of entropy [5].

For the leave-one-out tests, the conclusions above are the same.

Associated with these experimental results, we see that the required time and

resources to train the HMMS become lessened with a preset state-transition matrix

.43, due to the unnecessity of training a state-transition matrix. Therefore, it is

possible to reduce the computational loads required in the training.

Followed by this assertion, the arising problem could be “how close does A need

to be a diagonalized matrix to obtain a satisfactory recognition performance?”. This

is left for future research.

3.3 Reconciliation of the TIA HMM

In this section, we are going to discuss a few evolving techniques that reconcile the

TIA HMM to the conventional F-B HMM.

3.3.1 Feedback Control

From Table 3.10 through 3.13, we see that the less each 23,-(t) is overlapped, the

better the performance. The implies that in the TIA HMM, the closer one of states

is probability one at each t, the better the performance. Simply speaking, we want a

TIA HMM close enough to a certain “unknown” desirable system so that the states

are separable from each other as much as possible for every t. Such separation can

decrease the adverse effects of illegal paths.
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However, the exponentially decaying characteristic by the Markovian assumption

in the HMM basically does not allow such “separation.” One attempt to compensate

for extra probabilities, as well as to decrease illegal paths effects, is to use state-

variable feedback to get a desired state responses. State feedback technique is to

relocate the eigenvalues of a system to get a desired system response [94].

If a given linear time-invariant system realization is state controllable, any desired

characteristic polynomial can be obtained by state-variable feedback. In our problem,

however, neither do we have specific desired eigenvalues, not do we know exactly which

eigenvalues will be Optimal in a sense that the recognition performance as well as its

robustness of the TIA HMM is comparable to those of the F—B HMM. Provided that

such desirable poles are known, we have

a:(t + 1) = A2:(t) + u(t)6(t) + W(t), (3.36)

from the TIA HMM. Where W is the state feedback input which regulates the state

probability so that a:(t + 1) can reach the desired values for each t by

W(t) = Fa:(t). (3.37)

Here we do not have a specific control input except an initial time t = 0 in the

HMM. This is in contrast to the usual state-space control problem. Therefore, to

accommodate the time-varying nature of a speech signal and to avoid the exponential

decaying state probabilities of the Markovian model, we need a time-varying feedback

control such as

W(t) = F(t):c(t). (3.38)

Unfortunately, this attempt does not allow us to have stationary diagonalized state-
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transition matrix [A + F(t)] for all t. Therefore, we have the same problem which

we face in the F-B HMM. The motivation for using the TIA HMM in speech recog-

nition lies on its diagonalization. Therefore, the principal advantage of using the

diagonalization of the state equation does not exist in this approach.

3.3.2 Stochastic Modeling of Temporal Information in the

TIA HMM

To make the TIA HMM robust, consider a model which includes additional temporal

information between neighboring symbols of an utterance.

The assumption that the observations generated by the HMM’s hidden process

are only state dependent is, in fact, a limitation of the HMM when applied to a

real speech signal. In reality, speech features are correlated. To include additional

time-ordering relation between consecutive symbols in a Speech utterance, consider

one of the techniques prOposed by Dai et al. [63]. The idea is to include a Markovian

relation between symbols instead of just “observation independent.”

In Dai’s approach, the state-space is the codebook and each symbol in the code-

book becomes a state of the Markov process. The revised criterion seeks to find a

HMM which produces a ML in the conventional F-B HMM sense in conjunction with

the likelihood based on the Markovian relation between symbols as

L’(0) = P(o | M)P(0 | M’), (3.39)

where

P(0 I M) = P(013022"'20T I M): (3'40)
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and

P(O I M’) : P(01,02,.-.,0T I M’)

= P(OT l 01,02,...,0T_1,M')P(01,02,. ..,0T-1 | M’)

= P(OTI0T_1,M')P(01,02,...,0T_1 IM’) (3.41)

= {113(0. |0t_1,M')

T

t=1

with

P(ol |00,M') = P(O1 | M’). (3.42)

Here M, stands for the set of initial symbol probability and symbol transition matrix.

The same idea can be applied to the TIA HMM, the likelihood [1:11 P(Ot I M),

L’(0 I M,M’> = (£13m. l M>)(P<o I M’»

= (1:1 P(Oth))(fi P(O. I OHM» (3.43)

= @110. | M)P(0, | 0,_1,M’)).

Therefore,

no I 34.34) = - Iog1:1(P(0. I M)P(0. I0._1,M’))

= ‘ZIOSUD(0t I M)P(Ot I 0t—12M)) (3-44)

= ZlogPOtIM)+108P(0tIOt13M»
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The L(0 I M, M') likelihood results for the ten spoken digits database described

in Section 3.2.2 are given Table 3.14. Here 00 in the table denotes infinite value caused
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Table 3.14: The likelihoods based on L(o | M, M’) with the TIA HMM.

by the negative log 0. It is obvious that all the digits are recognized correctly. As

well as this correct recognition performance, the difference of likelihood measure (or

variance in likelihood measure) between digit 2' and digit j 75 2' evaluated by M.-

becomes large. As a result, the recognition system is robust.

3.4 Discussion

In this chapter, the problem caused by mismatch between two model types, the TIA

and F—B HMM, have been focused on in detail. Additionally, practical issues in the

use of the TIA HMM have been discussed with the theoretical and empirical evidences

of the model.

Regardless of the problem caused by illegal state sequences, with the TIA HMM,

we obtain the comparable speech recognition performance to the F—B HMM in some

applications such as digit recognition. Such flexibility of controlling recognition rate
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and speed and memory makes the TIA HMM useful some applications.

Next, to reconcile the TIA HMM to the F-B HMM, various attempts are taken

although both models theoretically cannot be identical. Through those approaches,

however, two significant results are reverified. First, albeit the inherent difference of

both models, there are some similarities between certain state variables of each model.

Next, the relative importance of B over A was reverified. Also, it was found that the

diagonally dominant condition on the state-transition matrix in the TIA HMM is an

important factor to affect the the performance of speech recognition.

Finally, we introduced a possible technique to render the TIA HMM robust. The

technique is to add one more temporal constrain between symbols of an utterance to

the existing HMM for HMM evaluation. Although the technique requires additional

memory and computations for this new constraint, it increases the robustness of

speech recognition.
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Chapter 4

Training HMMS so that Hidden

Model States Meaningfully

Represent Acoustic States

The HMM is a state model and a speech utterance is modeled to be generated in

accordance with state transitions. In particular, a meaningful state sequence is Sig-

nificant. Through a meaningful state sequence, for example, we can learn about

the structure of the signal model, and obtain the average statistics of the individual

states. In addition, the experimental evidence suggests that a state frequently repre-

sents one or more identifiable acoustic phenomena [2, 4]. Thus, we can discover the

acoustic characteristics of a speech utterance associated with such a meaningful state

sequence.

Finding a meaningful state sequence of a Speech signal in the HMM is often cited

as one of three major analytical problems centered on the HMM. The information

about an apprOpriate state sequence is useful to improve the performance of Speech

recognition system in conjunction with the solutions of two other HMM problems,

the evaluation as well as the training. This is because the evaluation and training
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through a meaningful state sequence produces better performance and gives simple

algorithms for evaluation and training.

Like the evaluation problem of the HMM, for which a solution can be given de-

pending on the likelihood criterion, there are several possible ways to find a mean-

ingful state sequence corresponding to a given observation sequence. Depending on

the Optimality criterion followed by the definition of “ state sequence,” the result of

possible state sequences corresponding to a speech signal may be different.

The problem of finding a meaningful state sequence involves the attempt to un-

cover the hidden part of the model. Depending on the application, different criteria

can be employed to find an Optimal state sequence [56, 57, 59]. Among them, the

Viterbi search is a prevalent one and it is based on the probability that the HMM could

generate the observation sequence using the best possible state sequence [57 , 58],

Q“ = argmqax P(0,Q I M), (4.1)

in which Q represents any state sequence of length T.

The specific goal in this chapter is to prOpose some new techniques for finding

a meaningful state sequence associated with a Speech utterance. These techniques

are used for training HMMS in meaningful ways. Then, the results from each search

technique are compared to those of the Viterbi of the HMM.

In this discussion, it is assumed that a Speech Signal is already encoded with

reference to a codebook of 128 unique Spectral vectors. Hence, a speech utterance is

the sequence of codebook indices represented in the abstract as {01, 0t, . . . , 0T}. In

order to reduce the computational complexities required for recognition and analysis,

this research is restricted to the recognition of isolated words based on the discrete

HMM.
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4.1 Maximum Likelihood Approach to State Se-

quence Determination

We showed previously the usefulness of the TIA HMM in a spoken digit recogni-

tion problem. Also, the TIA HMM is potentially advantageous in a large-vocabulary

system for computationally efficiency. As well as evaluating the likelihood, the TIA

HMM technique can also be useful to find a meaningful state sequence of a speech sig-

nal. One way to enhance the performance of speech recognition is to exploit the state

sequence information which is Significant to compute more informative parameters

for M during training HMMS. Let us discuss this topic in detail.

4.1.1 Introduction

The Viterbi search technique is used to find an Optimal state sequence of a speech

signal based on the criterion (4.1) in the F-B HMM. As well as this widely used tech-

nique, however, there may potentially exist many other search techniques. Consider

one of the possible criteria for finding state sequence under the framework of the

HMMas

q? = argnggwahqth) forlStST (4.2)

and

Q‘ = {qI.43.---,qi~}- (4-3)

In other words, an optimal state sequence is a sequence of individuals state at each

t which is most likely to produce a symbol at t in conjunction with a state distribu-

tion probability. Without an explicit imposing constraint on state transitions, this
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criterion is simpler than (4.1) which requires a backtracking procedure.

Actually, this criterion is close to the formulation of the TIA HMM. In fact, the

state searching procedure of the F-B HMM is to Viterbi what that of the TIA HMM

is to (4.3). Apparently, (4.2) and (4.3) can be easily implemented by the TIA HMM

since

q? = It)? P(0t29t I M) (4.4)

= 1%?X{P(0t I qt2M)P(Qt IM)} (4-5)

= lrsniasilcv{bi(0t)$i(t)}- (4-6)

A Bakis condition on state-transition matrix is not “explicitly” involved in in consti-

tuting the legal state sequence by (4.2) and (4.3). Because of lack of explicit imposing

constraint on state transitions, the TIA HMM produce an illegal state sequences dur—

ing operations.

In Chapter 3, however, we have Shown that the recognition performance is com-

parable to the conventional F-B HMM in spite of illegal state sequences. By the

same token, it will be shown here that the criterion (4.2) and (4.3) is also practically

efficient in finding a meaningful state sequence.

It will be shown that even though the computed state sequence of a Speech ut-

terance by (4.2) and (4.3) is not completely identical to the state sequence by the

Viterbi search technique for all t E [1,T], however, remarkably, the result of this

technique is quite close to that of the Viterbi search in a “global sense” for correct

word. The global shapes of computed state sequences by the Viterbi search and this

new ML in accordance with the TIA HMM are Similar to each other. Moreover, it

will be discussed that this ML technique is a fast and suboptimal method to Obtain a

possible state sequence information without backtracking procedure required in the

Viterbi search.
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4.1.2 Experimental Results

To see the viability of the search criterion (4.2), (4.6) is applied to find a meaningful

state sequence of the four different spoken utterances of “one,” “two,” “four,” and

“six.” The resubstitution and leave-one-out test are performed with these example

utterances. Here, it is assumed that M, for all z' = 1,. . .10 is computed in advance

using the F-B algorithm. Index 3‘ = 1 represents word “one,” and i = 10 represent

word “zero.”

To assess the effectiveness of the TIA HMM at finding a meaningful state sequence

for speech signals, let us apply (4.6) to the four example utterances.

Figures 4.1 through 4.8 are computed state sequences of four individual testing

word composed of “one,” “two,” “four,” and “six” based on Mg, 3' = 1,...,10.

Figures 4.1 through 4.4 are the resubstitution results and Figs. 4.5 through 4.8 are

the leave-one-out test results for the same utterances. Each figure is also composed of

ten subplots. For example, in Fig. 4.1, the left top figure is the raw Speech waveform of

the original spoken digit of word “one.” Below this raw waveform are the state search

results using the conventional Viterbi algorithm with the F-B HMM formulation based

on {A,-, 3,}, where z' = 1,2,4, 7, respectively. For example, in Fig. 4.1, the Viterbi

search result is obtained when the testing word “one” is evaluated by {A1, Bl} which

is the trained HMM for the word “one.” When that utterance is evaluated by different

HMMS other than {A1, B1}, the Viterbi algorithm does not provide reasonable results

except the cases of mis-recognition. Therefore, the Viterbi state searCh results for

other words not drawn.

The rest of the figures are state search results based on criteria (4.2) and (4.3)

for M,, i = 1,... ,10 ranging from top to bottom in the left and right columns,

respectively.

Horn the figures, the following are observed.

0 As expected, the resubstitution method produces better result than the leave-
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Figure 4.1: State search results from the conventional Viterbi and Q" = H? q; =

I]? argmaxq, P(Ot,qt I Mi), 2' = 1, . . . , 10 in a five-state Bakis HMM of a spoken

word “one.” Note that each graph represents a different “i” except top two figures in

the left column. The tests employ resubstitution.
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Figure 4.2: State search results from the conventional Viterbi and Q“ = H? q; =

I]:~ argmaxq, P(tht I Mg), 2' = 1, . . . , 10 in a five-state Bakis HMM of a spoken

word “two.” Note that each graph represents a different “i” except tOp two figures in

the left column. The tests employ resubstitution.
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Figure 4.3: State search results from the conventional Viterbi and Q” = I]? q,“ =

II? argmaxq, P(0¢,q¢ I M5), 2' = 1, . . . , 10 in a five-state Bakis HMM of a Spoken

word “four.” Note that each graph represents a different “i” except top two figures

in the left column. The tests employ resubstitution.
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Figure 4.4: State search results from the conventional Viterbi and Q" = 11ft]; =

H? argmaxq, P(0¢,qt I Mi), 2' = 1, . . . , 10 in a five-state Bakis HMM of a spoken

word “six.” Note that each graph represents a different “i” except top two figures in

the left column. The tests employ resubstitution.
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Figure 4.5: State search results from the conventional Viterbi and Q‘ = ['1qu =

HT argmaxq, P(thg I Mi), 2' = 1, . . . , 10 in a five-state Bakis HMM of a Spoken

word “one.” Note that each graph represents a different “i” except tOp two figures in

the left column. The tests employ leave-one—out.
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Figure 4.6: State search results from the conventional Viterbi and Q“ = I]? q; =

1'1? argmaxq, P(tht | Mg), 2' = 1, . . . , 10 in a five-state Bakis HMM of a spoken

word “two.” Note that each graph represents a different “i” except tOp two figures in

the left column. The tests employ leave-one—out.
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Figure 4.7: State search results from the conventional Viterbi and Q” = fqg =

H? arg max,” P(0¢,qt I M5), 2' = 1, . . . , 10 in a five-state Bakis HMM of a spoken

word “four.” Note that each graph represents a different “i” except tOp two figures

in the left column. The tests employ leave-one—out.
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Figure 4.8: State search results from the conventional Viterbi and Q“ = H? q; =

[If argmaxq, P(0¢,qt I Mi), 3' = 1, . . . , 10 in a five-state Bakis HMM of a spoken

word “Six.” Note that each graph represents a different “i” except tOp two figures in

the left column. The tests employ leave-one-out. '
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one-out method. In particular, the state search result for the correct word with

a resubstitution method adheres more closely to the Bakis constraints than with

leave-one-out test.

Roughly speaking, state sequence results using (4.1) and (4.2) appear to be

useful indicators to pre—filter the correct utterances for this limited vocabulary.

This implies that, with the likelihood values, but also by examining the se-

quence, it is possible to sort out the possible “candidate” utterances from the

utterance data base. Under a Bakis condition, for example, the state sequence

needs to be monotonically non-decreasing. After applying (4.2) and (4.3) to

the testing utterances, the correct utterance is one of the utterances in which

the computed state sequence is closely consistent with the Bakis topology. Ex-

periments with larger vocabularies are needed to confirm that this is a general

phenomenon.

The global shape of the state sequences found by the conventional Viterbi al-

gorithm and ML criterion using (4.2) and (4.3) for the correct word are similar

to one another. Even though there are some Short-term peaks which represent

jumps to different states and return to the previous states occurring over short

time durations, it is not difficult to estimate a possible plausible state sequence

in light of Bakis tOpOlogy by removing such short-term peaks.

When the correct speech utterance is evaluated, fluctuation in the state se-

quences are relatively scarce.

At a glance, the prOposed criterion does not appear to provide a reasonable crite—

rion for finding the “legitimate” state sequence since the scheme does not explicitly

impose constraint on Q“ composed of (1:: t = 1, . . .,T according to a Bakis con-

straint. However, the state sequence by (4.2) is close to the conventional Viterbi

search result without “explicit” constraint of state transition paths.
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The implications of those results can be summarized as follows: First, we know

that the TIA HMM relies on individual state probabilities at each time to dissuade

illegal paths, and it implicitly constitutes available state path information. Thus,

the evaluation through the TIA HMM provides a reasonable measure to classify the

utterances. Similarly to the evaluation of the HMM by the TIA HMM, criterion

(4.2) implicitly has information about a possible state sequence. Like the TIA HMM,

criterion (4.2) only indirectly controls the overall state paths.

Next, the results implicitly Show the relative significance of A and B. In the

previous deve10pments, we have assessed the relative Significance of A and B in the

HMM scoring process. We have dealt with this problem from various points of view in

the previous chapters. Added to such attempts, the approach to find an appropriate

state sequence can also help to Show the relative significance of A and B. As a

consequence of the various approaches, therefore, it is not difficult to infer that most

of the information of the training utterances is concentrated in the elements of B,

rather than A, in the F-B or Viterbi reestimation algorithm.

It is concluded that criterion (4.2) and (4.3) provides a simple and fast way to

find a meaningful state sequence Of a correct speech utterance approximately without

a Viterbi criterion.

4.2 State Sequence Based on “Acoustic Distance”

In this section, a new state search technique using recursive Viterbi search based on

an “acoustic” distance is presented. There are several advantages of applying this

technique to find an state sequence for a speech utterance. They are discussed here,

together with a basic idea and corresponding algorithm. Some results in a practical

application will be presented and those results are compared to the results from the

conventional Viterbi method.
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4.2.1 Introduction

One of the original motivations for using HMMS in speech recognition is the apparent

congruity between the speech production process and the mathematical dynamics of

the model. Human speech production can be approximately modeled as a process of

dynamically positioning the Speech system “articulators” into physical “states” which

correspond to resulting acoustic outputs. The acoustic manifestations Of these states

are “observable” to the listener, but the physical states are “hidden.” Accordingly,

the states of a HMM are often thought of, to a first approximation, as representing

distinct acoustical phenomena in the utterance, such as a vowel sound in a word or

a transition between phonemes in a word. In fact, the number of states in a model

is sometimes chosen to correspond to the expected number of such phenomena. For

example, if an HMM is used to model a phoneme (rather than a complete word),

then three states might be used — one to capture the transition on either end of the

phoneme, and one for the steady—state portion.

However, the HMM organizes itself to maximize an analytic criterion (usually

a ML), and not necessarily to correspond to some preconceived acoustic structure.

In fact, our work has shown that the conventional ML approaches (Baum-Welch

and Viterbi) frequently yield model structures which clearly exhibit little relation-

ship between waveform acoustics and HMM states. See Fig. 4.9 for an illustration.

A more “global” view of this phenomenon has led researchers, notably Ostendorf

and colleagues [61], to seek “segment based” models of the waveform that are more

meaningfully associated with regions of acoustic coherence in the Speech.

In this work, we present a Simple HMM decoding algorithm which seeks a mean—

ingful state sequence by finding an acoustic similarity among observation symbol so

that an acoustic meaningfulness for the state can be achieved. It is a new and simple

state searching technique for a given observation sequence using only a distance in-

formation within symbols of an utterance so that a state sequence could be consistent
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(a) Speech waveform of word "six“
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(b) Optimal state sequence by Viterbi decoding
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Figure 4.9: State segmentation resulting from conventional ML (Viterbi) training of

a five-state Bakis HMM for the utterance “Six.” The resulting segmentation is not

coherent with the physical dynamics of the speech.
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with the physical characteristics of a Speech waveform.

The work inherently begs the question as to why the conventional HMMS do

not exhibit more coherence between the “acoustic states” of the Speech, and the

analytical states of the model. We provide both qualitative and analytical analyses

of this question and also suggest some implications for HMM performance.

4.2.2 The Concept

Suppose that there is a sequence of speech samples along the time axis and the task is

to find a state assignment that explains their production in an Optimal and meaningful

way. From the modeling point of view, the desirable state sequence is such that each

state is a set of entities (symbols) that are acoustically similar. This general concept is

the basis for clustering algorithms [10]. Using ideas akin to a clustering procedure, we

seek an algorithm with which to find an state sequence for a given speech utterance.

Generally, clustering techniques are based on the heuristic argument that samples

representing the same cluster should be “close” to one another in the vector space

and “far” from vectors representing other clusters. The underlying assumption is

that the feature vector representing a sample is appropriate and efficient in capturing

similarity among exemplars. The most commonly used clustering strategy is based

on the minimum squared-error criterion where squared-error amounts to the distance

between a sample and the centroid of a cluster in the vector space. The general

objective is to obtain that partition which, for a fixed number of clusters, minimizes

the total squared-error. It is known that minimizing squared—error, or within—cluster

variation, is equivalent to maximizing the between-cluster variation [10]. In general,

a clustering method employs an iterative algorithm to Optimize a clustering criterion

function. Various criteria have been suggested in the literature, but among these,

the family of criterion functions quantifying the average affinity of feature vectors to

cluster representatives have proved to be most useful [18].
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In a discrete HMM system, let 0 = {01,02, . . . ,OT} be a sequence of a quan-

tized Speech symbol string for which we are interested in finding a meaningful state

sequence. For each 0:, 1 g t S T, there exists a corresponding M-dimensional fea-

ture vector x, in the vector space and thus we have a set X = {x1, x2, . . . ,xt, . . . ,xT}

associated with 0. In fact, x, amounts to a vector representing a centroid of a cer-

tain cluster in the codebook since index 0, is the result of quantization of a signal.

Frequently met-cepstral coefficients are used for elements of x, of when processing

a speech signal. Also, let 8 = {1,2, . . .,N} be a finite set of sequential natural

numbers, each representing a state. The task is to associate X with a sequence

Q = (q1,q2,...,q1~), qt 6 S, in a meaningful way based on a given optimization

criterion.

For this task, suppose that we initially have N partitions for X and let us denote

them as C = {6(1),C(2), . . . ,c(’°), . . . , C(N)}. Therefore, cm is also a set and it has nu“)

entries as

k _
C( ) __ {x2:;11n(j)+1, . . . , $Z:=l 110)} (4.7)

so that

N .

Zn“) = T. (4.8)

i=1

Simply, let us have an initial state segmentation such that the entire symbol

string is divided into N segments of approximately equal lengths. How the ini-

tial segmentation effects the performance will be briefly discussed later. Also, let

9 = {m(1),m(2), . . . ,m‘"’} be a set representing the centroids of clusters 60:), k =

1, . . . , N. Let the distance between z, and m0“) of cluster k be denoted by d(:rt, mm).

Here k E 8 so that eventually a sequence of states is denoted in terms of sequence of

clusters.
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Then, we have three sets as 9, X, and D. Where D is defined as

'D = {d($t:m(k))}lstsn ISkSN° (49)

Note that since the initial number Of clusters may not be the number of clusters, the

condition of merging of clusters may be imposed in the clustering algorithm. In that

case, the number of clusters can be less than N.

Now the task is to seek a meaningful state sequence Q" = {q1, Q2, . . . ,qT}, q E 8

under an optimality criterion.

Using the clustering algorithm, we seek a sequence Q" based on the criterion

T

Q’ = argm3n2d($t,m(q‘)) (4.10)

t=l

= argmgn dllma (4.11)

where Q = {q1,q2, . . . , qT}, dug] = 2;, d(zt,m(9‘)). It is known that the Euclidean

distance between two cepstral vectors representing features is a reasonable measure

of spectral similarity in the models [4]. Hence, let d(a:t,m(9‘)) = [In — m(‘1*)II2. Addi-

tionally, the constraint

QISQ2S-HSQT—ISQT (4-12)

is required for the Bakis model. This algorithm iterates until Q" converges to a stable

state sequence. The algorithm is based on the fact that there is high metric Similari-

ties between the components within the same cluster and high metric dissimilarities

between different clusters.

In develOping this technique, we assume a discrete HMM and thus a Speech signal

is assumed to be quantized. However, in fact, x, can be replaced with the unquantized

cepstral feature vector in this deve10pment since the algorithm is based on distance
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information between feature vectors. Usually the speech frame vectors are quantized

by the LGB algorithm [4] which is based on the k-means algorithm. Basically, It-

means algorithm is one of the ways of hierarchical clustering [4]. In a hierarchical

clustering procedure like k-means, theoretically there does not exist ordered relations

between objects that are located at different places in the same layer in the hierarchical

tree. However, in our deve10pment, we use a partitional clustering method which is

used frequently in engineering and science for problems in which single partitions are

important. Therefore, it is significant to check the proximities among symbols in the

codebook which are encoded by hierarchical clustering.

Figure 4.10, for example, shows the Euclidean distances between the features

representing for diflerent symbols such as “zero,” “32,” “64,” and “96” and the rest

of the features representing the symbols derived from spoken digits with cepstral

features quantized to 7 bits (128 levels) by LGB. For the other symbols other than

the above four symbols, we see similar pictures to Fig. 4.10.

The figure Shows that although the distances are not completely ordered as the

symbols assigned to the feature are ordered, the Euclidean distance is another mean-

ingful indicator to Show the proximities among symbols. Here symbols are encoded by

hierarchical clustering. Therefore, the quantized symbols may be classified according

to the partitional clustering method using the Euclidean distance between features.

The algorithm for finding a meaningful state sequence based on (4.10) through

(4.12) is as follows:

1. Initialization

One of N states is initially assigned to each feature in X = {x1, . . . ,xT}. X

can be divided into N approximately equal segments. Each components of a

given segment iS assigned the integer index of its associated segment, say,

{x1,x2,...,xn,} I—) 1
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Figure 4.10: Euclidean distances between four different symbols (symbol “zero,” “32,”

“64,” and “96”) and the rest Of symbols indexed along the abscissa in the codebook.

Each symbol represents a centroid of the cluster in the feature vector Space.

105



{xm+1,xm+2,...,xn2} 1") 2 (4.13)

{an_,+1,x,,~_,+2,...,xT} I—> N.

Also, let

91={m(1),m(2),...,m(m} (4.14)

be the set of centroids of the initial segments. Therefore, the elements of 91 are

 

given by

,,.

mm = zen-1+1“ (4.15)
Tbj — nj._1

for j E [1,N] with no = 0 and nN = T. Also, if Bakis tOpOlogy is concerned,

which is often employed in speech recognition, let

(II = 1. (1:? = N. (4.16)

. Recursion

Forl=2,3,...,

Fort=2,3,...,T-1,

where

q: = argrrlilin d($t,m("‘)) and q{_1 S q{. (4.18)
t

Next t
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Recompute C, 9,D with reassigned elements. If g, = 91-1, go to step 3. Oth-

erwise, Next I .

3. Termination

Q‘ = {qI.q5.---,qi~} (4-19)

Note that except for the initial cluster, the only required data for the recursive Viterbi

search based on k-means clustering comprise the set of distances between centroids

and a features.

To give the algorithm a probabilistic flavor, consider a mapping which transforms

distance measure to a probabilistic measure by using the mapping

P = f(d) = e-4 (4.20)

so that

P(q. = i) = e-dmm‘”). (4.21)

This transformation makes the above algorithm more like a ML formulation of state

search algorithm Similar to the conventional Viterbi search which is based on the ML

criterion. In (4.20), it is straightforward to see that as d(:ct, mg) —+ co, the probability

that qt is i approaches zero, while conversely, as d(:z:t, m.) —-) 0, the probability that q;

is i approaches unity. This is acoustically reasonable because in the high dimensional

vector Space, a small distance between two cepstral features vectors implies that

the corresponding acoustic frames are very similar acoustically and, thus, should be
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assigned to the same state. Therefore, (4.10) with constraint (4.12) can be written as

T

Q‘ = argmgXIIP(qt=ic)

t=1

T

= arg mgx 1'] (“the“) (4.22)

t=1

_ T (q)

= argmgxe Zt=1 d(z:,m t)

= argmax e’dl‘le

o

where it 6 {1,2, . ..,N} for all t. This expression could be useful to assess the

relationship between the conventional Viterbi search technique and the technique

above. We will have more to say later about the relation between the conventional

Viterbi technique and the recursive Viterbi search technique suggested here.

4.2.3 Recursive Viterbi Search Based on k-Means

The sequence Q” can be computed by a conventional k-means algorithm [9]. However,

in the case of speech Signals where time ordering of speech samples is important

associated with a state sequence constrained by Bakis topology for example, the

conventional Viterbi search technique is an apprOpriate way for finding a meaningful

state sequence. Therefore, let us apply the conventional Viterbi search technique

in finding Q" in our problem. The Viterbi searching is engineered to find an path

which satisfies (4.10) and (4.12) under the Bakis topology. Here, note that in contrast

to an ordinary Viterbi decoding technique, the prOposed approach requires Viterbi

technique to be applied iteratively until Q‘ converges to a stable state sequence. This

is because the algorithm requires arbitrary initial clusters and the algorithm is based

on the squared-error between a feature and a centroid. Therefore, the resulting state

sequence may be different at each iteration depending on the members of clusters.

This recursive Viterbi search employs k-means to find a meaningful state sequence
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using the distance information among symbols. The algorithm is described in the

following way. Here, we need two more variables d,(j), 1Mj) for this deve10pment.

Here d,(j ) stands for a sum of distances between the feature and a centroid of cluster

from t = 1, . . . ,t over the bestpath until it reaches state j at time t. 10,0) represents

a state at time t — 1 which corresponds to dt(j).

1. Initialization

Create initial clusters as in (4.13), and let

c1 = {C(11),C(12),...,C(1N)}. (4.23)

The centroids of N-clusters comprising the set 91 = {mIl), mjz), . . . ,mIN)} are

given by (4.15). Furthermore, let q'f = 1, q} = N as before. Additionally, the

initial values of the variables d¢(i) and 111,0) are given by

(11(1) = 0, (11(2) = 00 for 2 g i S N (4.24)

(01(3) = 0, Vj=1,...,N. (4.25)

2. Recursion

Forl=1,2,...,

Fort=2,3,...T, and forj =1,2,...N,

dtU) = lgiSnN{dt-l(i)+d($taml(i)l)} (4-26)

28(2) = arglrsrgian{dr—1(i)+d($t,mz(’;)1)} (4.27)

= magnesia}
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Next t

(if?) = 1g;.i<nNd«r(j)=aI/r(N) (4.28)

(1% = N. (4.29)

Backtracking:

q; = ¢,(q{+1), t=T—1,T—2,...,1. (4.30)

Q? = {quSr-qqil (4.31)

Recompute C; = {cIl),cI2), . . . ,ch)}igr = {mIl),mI2), . . . ,mIN)}. If 9; = 91-1,

go to step 3. Otherwise, Next 1.

3. Termination:

Q’ = QI={qI.QS,---.Qi~} (4-32)

The probabilistic version of this algorithm would use (4.20) in place of the direct use

of the metric.

4.2.4 Experimental Results

In contrast to the conventional Viterbi technique or the state search with a criterion

(4.2), the proposed technique does not require any specific a priori knowledge like

{A, B} from the training utterance set. Additionally, this technique does not have

mismatch problem between the training and testing data. Only an initial segmenta-

tion information is required. Therefore, this technique can be applied universally to

find a state sequence for a speech utterance.
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The Relationship between Likelihoods and the State Path in the conven-

tional Viterbi Technique

First, let us consider the effects of an initial values of the two significant matrices

in the PB HMM. The state segmentation results using the resubstitution method

for the word “six” is Shown Fig. 4.11. Each graph displays a state sequence and

the corresponding likelihood for a different set of initial values for A and B by the

conventional Viterbi search technique. For the numerical purpose, — loglo P(O I M)

along with a Optimal path is computed.

Figure 4.11 shows the impact of varying the initial values of A and B. In addition,

it shows the variable relationship between a state sequence and its corresponding

likelihood quantity. For example, although the likelihoods of two results are close

to each other, the state sequences could be quite different. Also, the state sequence

which has largest likelihood (the second figure) may be not coherent with the acoustics

of the utterance.

In an extreme case, the state sequence can be poorly matched to the acoustical

pattern of the corresponding speech utterance. This is because in the EB HMM,

for example, the likelihood is composed of T—multiplications of pairs of a,-,- and bj(k).

Under a Bakis topology with N states, a)”; is always one and it is highly probable

that “1,1 is close to one and it is greater than (1,.-,5, i E [2, N — 1]. To have large

likelihood under T-multiplications of pairs of probabilistic terms lying between zero

and one as (2.13), each aj, and bJ-(k) needs be as close as to one as much as possible.

Therefore, when the HMM is reestimated from the lengthy training utterances, the

HMM is, if possible, configured to have many initial (1) state and last (N) state when

structured according to the ML criterion in certain case. Accordingly, A and B could

be trained to assign as many initial and final states as possible without considering a

congruity of the state path with the acoustic “states” of the utterance.
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Figure 4.11: State sequence for the spoken word “six” by the Viterbi search technique

of a five-state Bakis HMM. Five different sets of initial values have been assigned to

A and B.
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State Search by Recursive Viterbi Based on k-Means

Let us apply the recursive Viterbi search based on k-means clustering to find a mean—

ingful state sequence corresponding to a Speech utterance. In particular, the spoken

utterances “four” and “six” are considered as examples. Figures 4.12 and 4.13 are

the resulting state sequences with the conventional Viterbi technique and recursive

Viterbi search based on k-means clustering. The first graph in Fig. 4.12 is the Speech

”

waveform for the word “four. The second figure is the result of the conventional

Viterbi search technique. The third figure is result of the recursive Viterbi search

based on k-means clustering. In addition, we need to compare the likelihoods of

the conventional Viterbi and the recursive Viterbi search based on 112-means cluster-

ing. Since probabilistic likelihood is not a formal measure to the proposed recursive

Viterbi search technique, it is necessary to have state sequence information as well

as likelihood of the recursive Viterbi search based on k-means clustering in terms of

the conventional Viterbi search technique. For this purpose, initially, the recursive

Viterbi search based on k-means clustering is applied to all fifteen training utterances

to supply a state information. Then, by counting the symbols in each state, two ma-

trices A and B of the HMM are constructed. From these matrices, we can apply the

conventional Viterbi technique to find a meaningful state sequence and corresponding

likelihood. These are shown in the fourth graph of Fig. 4.12. The shapes of the third

and last figures are frequently identical.

For utterance “four,” the resulting state sequence by the conventional Viterbi

technique and the recursive Viterbi search based on k-means clustering are not very

different. This is because there are too many states in the model. However, for

word “six,” it is apparent that the resulting state sequence by the recursive Viterbi

search based on k-means clustering is more consistent with the acoustic prOperties

the utterance. This is because the Viterbi algorithm has been focused on the finding

a state sequence which produces 3 ML criterion rather than considering the acoustic
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Speech Wavefom for word "four”
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Figure 4.12: State sequences for the spoken word “four” in a five-state Bakis HMM.

The second figure is the consequence of the conventional Viterbi search. The third

figure is the result of the recursive Viterbi search based on k-means clustering. The

4‘“ graph is the conventional Viterbi search result based on the third graph.
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Speech Wavefom for word "six"
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Figure 4.13: State sequences for the spoken word “six” in a five-state Bakis HMM.

The second figure is the consequence of the conventional Viterbi search. The third

figure is the result of the recursive Viterbi search based on k-means clustering. The

4‘“ graph is the conventional Viterbi search result based on the third graph.
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structure of the speech signal. On the other hand, the recursive Viterbi search based

on k-means clustering is mainly focused on acoustic features of speech Signals.

The likelihood quantities for all fifteen training utterances of “four” and “six”

resulting from the conventional Viterbi technique and the recursive Viterbi based on

k-means clustering are shown in Table 4.1. Table 4.1 shows that frequently we can

 

 

 

utterance “four” “six”

Viterbi k-means Viterbi k-means

1st 70.7 69.5 134.4 131.7

2nd 80.6 74.9 173.4 164.5

3rd 71.2 68.9 150.2 143.4

4th 70.1 65.8 124.9 126.3

5th 55.2 51.7 127.8 122.4

6th 65.9 63.7 120.8 119.0

7th 134.3 106.2 145.3 145.0

8th 79.6 76.1 128.4 129.2

9th 78.6 73.0 138.7 134.0

10th 75.6 74.1 136.4 134.1

11th 84.8 84.4 145.8 138.7

12th 82.7 80.0 118.1 116.5

13th 85.9 83.0 141.6 138.3

14th 71.8 74.3 106.5 103.3

15th 65.2 67.6 135.9 139.5       
 

Table 4.1: Likelihoods of the conventional Viterbi search and the recursive Viterbi

search based on k-means clustering.

find a state sequence which not only is acoustically better consistent with a speech

utterance, but also has more likelihood than the conventional Viterbi search.

Discussion

We have focused on an HMM training algorithm which seeks to Optimize acous-

tic meaningfulness of the HMM in the sense of minimizing a Euclidean distance of

acoustic Similarity among observations assigned to given states. This work differs

from that of Ostendorf et al. [61], not only in its focus on a more “localized” view of
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the waveform (frame processing with the explicit goal of training an HMM), but more

importantly in the explicit attempt to Optimize acoustic state-wise similarity rather

than Optimally segment the waveform using conventional ML. Similarly to the con-

ventional methods, the new algorithm can also be employed in recognition strategies

which assign scores based on acoustic match. The new method inherently provides

apprOpriate dynamic time warping of training and test strings, and is readily modified

to Optimize over multiple training sequences.

It can also be used to objectively and dynamically guide the selection of the

number of model states, the need for state merger, and to assess certain changes

in topology on-line. Most importantly, the new method is provably convergent to a

local minimum of acoustic mismatch, and regularly provides HMMS with meaningful

relationships between states and the acoustic content of the speech that the HMM

represents. Also this proposed work is different from the segmental method of states

by k—means segmentation [11, 33] Since the prOposed technique is based on the distance

metric between centroids and a sequence of symbols of speech. However, in [11, 33],

the segmental method is based on the F-B HMM which has parameter matrices

{A, B}.

Clustering, an unsupervised learning technique, has been widely applied to prob-

lems in pattern recognition and classification [9, 10]. In speech signal technology, this

technique has been particularly applied in generating a codebook for Speech coding,

classifying a Speaker, and acoustic modeling [4, 11, 12, 13, 14, 15, 33].

First, in contrast to the Viterbi algorithm which requires a priori knowledge M,

the recursive Viterbi search based on k-means clustering does not require any in-

formation. Knowing a state sequence without a priori knowledge has a few useful

implications. The state information for an utterance can help to exploit and adopt

various linear time-invariant system techniques to the speech processing technology

by obviating the modeling of the time-varying dynamics.
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Next, although the quantized symbols have been used in the deve10pment of the

algorithm, such quantization is not a requirement of the method. The cepstral feature

vector is directly involved in the computations. Therefore, the quantization distortion

can be avoided.

Finally, the relation between the conventional Viterbi and the recursive Viterbi

search based on k-means clustering may be interesting ultimately although it is not

clear from the present study. The hard part of this analysis is to uncover how the

distance information between centroids and feature vectors is dynamically distributed

in the M = {A, B, 1r}. In the F-B HMM training, the dynamics or characteristics of

an utterance are transmitted to aj; and bJ-(Ot) by the Expectation-Maximization [24]

method. For this method, the HMM requires quite many recursive iterations as (2.57)-

(2.62), which is not easily analyzed. The relation between the conventional Viterbi

technique based on F-B HMM and the recursive Viterbi search based on k-means

clustering is left for future research.

4.2.5 Appropriate Number of States

A clustering algorithm based on k-means helps to determine an effective number

of states in a meaningful way [10]. Determining the number of states is also an

important issue in designing a HMM [4, 16]. Generally, the number of states is

determined roughly based on the expected number of identifiable acoustic phenomena

in the utterance. For example, for a word model, five to ten states are often assigned

to capture the phones in the utterances. For the phoneme model, three states are

assigned for a HMM to model discrete phones. Since the recursive Viterbi search

based on Ic-means clustering is configured. to finding an state sequence which considers

acoustical characteristics of a Speech utterance, this technique can be exploited to

automatically determine the appropriate number of states in the HMM.

One way of finding an appropriate number of states according to the sequence of
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feature vectors of a speech utterance is found in [10]. AS a basis for further deve10p—

ment, we review this technique briefly.

There are a few ways of computing an appropriate number of clusters. Among

them, the Davis-Bouldin (DB) index provides a relatively Simple way of deciding an

appropriate number of clusters [10]. It has been verified that the index does not

depend on either the number of clusters nor the clustering method [10]. This index

is as follows:

Given a partition of T objects into N clusters, one first defines the following

measure of within-tO-between cluster spread for all pairs of clusters (j, k) as

6j+8k

R- =
1.1:

"W:

 (4.33)

where e, is the average error for the 3"" cluster and mg: is the Euclidean distance

between the centers of the j", and kt), clusters. Where the index for the kt), cluster is

defined as

R = R ' 4.34I: Iglaxmf .k} ( )

and the Davies-Bouldin index for the N-cluster clustering is defined as

1
N

N Z R), for N > 1. (4.35)

k=l

DB(N) =

DB(N) will be small for good clustering. The index is supposed to decrease mono-

tonically as N decreases until the “correct” number of clusters is achieved for well-

clustered data. The DB index is plotted against N and clustering is stOpped when

the index iS apparently minimized.

The DB(N) index can be easily implemented by the recursive Viterbi search

based on k-means clustering because such a search technique employs the criterion
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of minimizing the sum of Euclidean distances between the centroids of clusters and

a sequence of feature vectors for a speech utterance. The distance information is the

main element in DB computations. By using this method, let us find an apprOpriate

number of states in our digit recognition problem.

DB(N) versus N for the spoken utterances Of “one, two, four,” and “six” are

displayed in Fig. 4.14 through 4.17 respectively. For word “two” and “four,” we

see that three states are adequate. In case of word “one” and “six,” five states are

suitable in the HMMS. We can apply this method to the other words. For the spoken

digit recognition problem, therefore, five states will be apprOpriate. This result iS

consistent with the fact that conventionally we adOpt four to six states for modeling

a word in the HMM based on ML criterion.

Besides determining an adequate number of states, the DB(N) index also let

us know whether the Objects are well-clustered or poorly-clustered. As explained

previously, in the case of the well-clustered data, the DB(N) index decrease mono-

tonically as N increases until it reaches the “correct” number of states and then it

increases. For arbitrary random data, such a trend does not occur [10]. For our

example utterances, as shown in the figures, word “six” is better-clustered than the

other utterances.

All the other spoken digits have Similar patterns of DB(N). In addition, the

recursive Viterbi search based on k-means clustering is a meaningful technique for

finding a meaningful state sequence of a Speech utterance.

In the HMM, although the number of states of the HMM can be flexible, having

an adequate number of states is significant for enhancing the performance of Speech

recognition system by tuning each model to more faithfully match the acoustic prop—

erties of its corresponding Speech signals.
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Davis-Boulding relative indices for the fifteen different word “one“
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Figure 4.14: Davis-Bouldin relative index for fifteen utterances of spoken word “one.”
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Davis-Boulding relative indices for the fifteen different word "two'
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Figure 4.15: Davis-Bouldin relative index for fifteen utterances of spoken word “two.”
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Davis-Bouiding relative indices for the fifteen different word 'four“
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Figure 4.16: Davis-Bouldin relative index for fifteen utterances of spoken word “four.”

 
I V

.......................... ........

  
 

N, Number of States

 

.........................................

  
 

3 4 5 6 7

N, Number of States

0.85

0.8

D
B
(
N
)

P N o
r

0.7

0.85

1.05

0.95

 

...................

  
 

N, Number of States

 

 

 

'
c
h
1
'
_

  
 

3 4

N, Number of States
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Figure 4.17: Davis-Bouldin relative index for fifteen utterances of spoken word “Six.”
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4.2.6 Remark

First, let us examine the effect of initial clusters for the recursive Viterbi search based

on k-means clustering. Different initial partitions can lead to different clustering

results when the prOposed algorithm is applied. This is because algorithms based on

squared-error can inherently converge to local minima. This is especially true when

the clusters are not well-separated. Therefore, in choosing the initial partitions, if

possible, it is better to locate them far away from each other. Also one way to

overcome the local minimum problem is to run the state searching algorithm with

several different initial partitions. If they all lead to the same final partitions, we can

be more confident that the global minimum of squared-error has been achieved.

Figures 4.18 and 4.19 are a set of several clustering results for word “four” and

“six” with different initial clusters. For the word “four,” we see that with the given

initial clusters, there are two different patterns for the state sequence. For the word

“six,” we see more diverse patterns. Although the resulting state sequences are various

depending on initial state partitions, they are still more consistent with the acoustical

prOperties of a Speech signal than those obtained by the Viterbi technique.

Also in this technique, it is possible to adjust the number of clusters by imposing

a criterion on the state search algorithm so that it can be merged or split as in the

ISODATA method [4, 10].

4.3 State Search by Set-Membership Identifica-

tion

4.3.1 Original Thoughts about Exploiting the SM ID

In the HMM, no constraints are imposed on the speech signals (observations) at

different time epochs except a nonstationary Markovian assumption. As another
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Speech Wavefom for word 'four' Recursive Viterbi Result based on distance metric
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Figure 4.18: State search results for word “four” using the recursive Viterbi search

based on k-means clustering with different initial clusters.
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Speech Waveforn for word 'six' Recursive Viterbi Result based on distance metric
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Figure 4.19: State search results for word “six” using the recursive Viterbi search

based on k-means clustering with different initial clusters.
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approach, for signals which cannot be modeled by stationary processes, for exam-

ple speech, nonstationary autoregressive (AR) processes also have received consider—

able attention [77, 78]. In hidden filter model (HFM) approach, for example, 0, is

not only conditioned by Markov transition probabilities, but also is dependent on {

Ot_1, . . . ,OH, } for an apprOpriate p so that

0t = 9i(1)0t—1 + 0i(2)0t—2 + . . . + 0i (p)0t_p + 65(t). (4.36)

Here 03' = [ 9,.(1) 9,.(2) ... 9,0,) ] is the vector of AR coefficients for state i and

the driving sequence e,(t) is i.i.d Gaussian with mean u,- and variance of. The AR

model parameters are made conditional on the state of the Markov chain 2'.

The original motive for exploiting the SM ID in speech recognition is taking a type

of “filtering approach” which considers both stochastic and deterministic aspects of

observations at the same time in speech recognition. The prOposed model was thus

called the hidden filter for output probability distributions (HF-OPD).

For the development of HF-OPD, the TIA HMM was employed. Applying z-

transformation to (2.67) and (2.68), we have an input-output equation such as

y(2) = B(zI — A)‘1u(0)6(z). (4.37)

For convenience, (4.37) has been transformed to

B(zI — A)-1u(0) = D;1(z)NL(z) (4.38)

using matrix fraction description so that (4.37) can be represented as

DL(Z)y(z) = NL(Z)6(Z)‘ (4-39)
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By inverse transformation, the corresponding temporal difference equation becomes

Aoy(t) + . . . + ANy(t — N): B16(t — 1) + . . . + BN6(t — N) + e(t) (4.40)

with the added noise process. An estimated output probability distribution at each

time was used as training data for this dynamics. To accommodate a more reasonable

noise assumption, and to prevent excessive computation, a SM ID [81, 82] technique

was proposed for this process.

However, it turned out that the SM ID approach using the TIA HMM is not easy.

The main reason of the difficulty of applying the SM ID to the TIA HMM is the noise

bound s(t). Since the SM identification is based on a bounded-noise assumption, it is

very important to have tenable noise bound. It is well known that noise bounds have

significance influence on the performance of the SM identification [89, 90, 91, 92].

However, it was revealed that it is not easy to find an informative error bound when

the training data for the SM ID is a probability distribution vector as y in (4.40).

For example, if m(n) is a state vector and :i:(n) is an estimate of m(n), and if

e(n) = m(n) - a‘:(n), (4.41)

we have

||8(n)||§ S 2- (4-42)

Thus, the error bound of the input-output equation from the TIA HMM is too trivial

and large. Similarly to this case, we had more difficulty in finding an informative

error bound for e(t) in a multivariable system as (4.40).

However, we found that the SM ID is still useful to identify a preliminary state

sequence of speech signals because of its inherent characteristics of identifying the
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dynamics of a model.

4.3.2 Background of the SM Identification

The SM identification was pioneered by Schweppe [81], Witsenhausen, and Bertsekas

and Rhodes [82] in the late 19605, in the domain of control and system science. In

recent years, SM-based signal processing has been receiving considerable attention and

has become increasingly popular around the world; especially for the “bounded error”

(BE) problem which aims at characterizing the set of all parameter vectors consistent

with prior bounds on the errors between the measurements and model outputs. These

BE algorithms can be combined with various forms of least square error (LSE) signal

processing algorithms with beneficial consequences [83, 84, 85, 87, 88, 89, 90, 91, 92].

Suppose that there is a general ARX (Auto-Regressive with Exogenous input)

model,

to 4:

yn = Z aiyn—i + z: bjun—j + ”it (443)

i=1 j=0

= O'Txn + 127, (4.44)

where 0” = [a1, . . . ,ap,bo, . . . ,b,,], x: = [yn_1, . . . ,yn_p,un,un_1, . . . ,un_q], yn and un

are measurable outputs and inputs, respectively, and un is an unknown noise process.

Let m = p + q + 1 and assume that for each time n, on is bounded by a magnitude,

i.e.,

of, < 7,, (4.45)

where {7"} is a known positive sequence.

Let w(n) be a parameter set at time n such that all 0 E w(n) are feasible parameter

estimates of the model which are consistent with the error bounding in (4.45). In
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conjunction with the model of form (4.44), m(n), which is a “hyper-strip” region, can

be expressed as

m(n) z {0 : 0 E Rm, (3111 - ngn)2 S 7n}

which, when intersected over a given time range t E [1,n], usually form convex

polytOpes of feasible parameters

In general, <I>(n) is an irregular convex set and hence it is difficult to describe

and track. But in conjunction with the WRLS (Weighted Recursive Least Square)

processing, <I>(n) can be shown to be contained in a hyper-ellipsoid superset 5(12)

5(71) = {9 : (0 — 0")T91:n—m(0 — 9,.) < 1} (4.46)

Where C(n) is the weighted covariance matrix,

C(n) = C(n — 1) + Anxnxz,‘ (4.47)

n" is a scalar quantity,

n 2

..., = 030000. + 24.7.(1 — if") (448)
i=1

and 0“, the center of 5(71), is the weighted LS estimate at time n using the weights

{A,}?zl. It can be shown that 0,. can be computed recursively using

,
9
3
V

|
l
>

— P-1(n)

G7, = x£P(n - 1)xn

8,, = yn — 0:_1xn (4.49)
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PM) = P(n — 1) _ A"P(n - 1)xnx,7,'P(n
— 1)
 

1 + AnGn

6n = 0,._1 + /\,,P(n)x,,en

Km = nil—1 + An’l'n —M

1 + Ana"

The SM-WRLS algorithm starts off with a large ellipsoid, 5(0), which contains all

admissible values of the model parameter vector. The objective is to find the weight

A“ at time n so as to minimize the size of the membership set. Different criteria can

be applied to the optimization process. One criterion is to minimize the volume ratio

_ detB(n)

A") _ detB(n — 1)

 

V( (4.50)

where B(n) é KmC‘1(n).

It has been shown[84, 88] that the Optimal weight A; is the unique positive root

of the quadratic equation

0193, + a2)” + a3 = 0 (4.51)

where

(11 = (m — 1)Gi'yn (4.52)

(kg = 2mG’n'yn — MAG: — Guy" + EiGn (4.53)

03 = m'yn — me: — rtn_1G,, (4.54)

4.3.3 State Search Using the SM Identification

The SM ID is useful not only for computing the unknown system parameters, but

also for identifying the candidate state boundaries in a speech signal. In this section,

a state search technique using the SM ID is discussed.
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Concerned with a problem of finding a meaningful state sequence of a speech

utterance, we focus on where the transitions of the parameter sets occurs rather than

parameters of a model in the SM ID. The interesting part of the SM identification in

connection with finding an apprOpriate sequence is that it takes advantage of volume

or trace of an ellipsoid to describe the feasible values of parameters of a system. If

the data are not informative, there is no change of volume or trace and this selective

updating makes the SM theory useful. In addition, when the data come from a

same source which may be regarded as one “state,” the volume or trace will be

monotonically non-increasing for new data. When the input data may come from a

different source or “state,” there exists a different set of parameters. Thus, it leads

to a sudden change of the volume or trace (reset to the initial values) according to

the theory of the SM ID. Therefore, if the volume or trace is tracked graphically

or analytically with the SM algorithm, it is possible to get approximate information

about plausible state boundaries in a speech utterance. In the SM, algebraically this

implies that if the volume becomes negative at some points, those points could be

considered where a significant change of characteristics of a signal happens.

The resulting state sequences of a spoken digit “six” deduced are shown in

Fig. 4.20. The figure shows the sequences of three computed parameters, the vol-

ume of a bounding ellipsoid, Km, and informative points which indicates a sudden

change of volume or an in the time axis.

Here, the model is based on AR(3) which has three unknown parameters in a

linear prediction model. However, the order can be changed. As described, the

performance of the SM theory depends on the accurate bounds. In fact, knowing the

bound information for the model is a difficult problem. There are a few of ways to

estimate the noise bound. One method to approximately estimate the noise bound is
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The input speech of spoken word “six“ noise bound for the normalized speech
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Figure 4.20: Some informative results regarding state segmentation by the SM tech-

nique for the word “six.”
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to use the short-term signal power of Speech signals itself as

 

e 0

Here, Q represents the integer part of quotient. These expressions imply that the

noise is bounded uniformly within a N-size frame and that the noise is proportional

to the average signal power of the frame. In addition, an amplitude or attenuation

scalar a has been multiplied to adjust a noise bound depending on the application.

Conceptually, there is a transition of a set of parameters signifying the dynamics

of a signal when the system changes the state. In Fig. 4.20, three parameters, 01, a2,

and a3 make a transition simultaneously at the points where physical status may

change. More significantly, two major indicators, the volume of an ellipsoid covering

the feasible parameter quantities and 5,, make sudden changes at those points so that

the size of volume is reset to the initial size of volume. Those informative points

indicate a change of the dynamics of a signal. Thus, by detecting the informative

points, we had information about the transitions of acoustical phenomena of a speech

signal.

The performance of this technique is heavily dependent on the accuracy of noise

bound. Figure 4.21 and 4.22 are the results of state search for spoken digits “four”

and “six” by the SM technique with various values of a. First, depending on the

scale factor a, different sets of informative points are identified. Therefore, finding a

good scale factor is significant for processing speech signals in this way. Second, most

informative points are located in the boundary between unvoiced and voiced region

as well as the unvoiced region. At the unvoiced region, the dynamics of AR model
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changes rapidly. Thus, there occurs lots of informative points. For the transition

region, it is as we expected. Therefore, the search technique is useful to detect a

voiced/unvoiced regions of a signal by controlling a constant.
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Figure 4.21: State segmentation result by the SM theory with various values of a for

word “four.”
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Figure 4.22: State segmentation result by the SM theory with various values of a for

word “six.”
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Chapter 5

Conclusions and Future Research

5. 1 Conclusions

This research is study about the HMM, a state-of-the—art technique in Speech recog-

nition. Most speech-based studies of the HMM are focused on the applications of the

conventional F-B HMM.

First, the conventional F-B HMM has been transformed to the vector-matrix

formulation. This general formulation admits diverse formulations of the three HMM

problems and assist in the derivation of a more computationally efficient model.

Then, the main focus of this research is the reexamination of the TIA HMM, an

approximate model of the conventional F-B HMM, with a vector-matrix formulation

suggested by Snider et al. [7, 8]. In particular, we have focused on the inherent advan-

tages with the TIA HMM in speech recognition. The TIA HMM reduces the storage

requirements, improves computational efficiency, and increases numerical stability.

The TIA HMM has a natural vector-matrix formulation akin to a state-space

model. This state-space formulation permits the reduction of the dimensions of the

elements within a HMM pOpulation of tying some state variables so that the prob—

ability can be shared by the tied state variables. Therefore, by providing analytical
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and empirical results to the TIA HMM, this research becomes the basis of viability

of work of Snider [6] in related to the HMM compression.

In general speaking, this dissertation is an extension and more thorough examina-

tion of the work begun in [6] which falls short of reasonable explanations of applying

the TIA HMM to speech recognition. In particular, this dissertation is focused on the

analysis of the TIA HMM and its relation to the F-B HMM. By taking [1le P(Ot)

as likelihood measure for a speech utterance, the TIA HMM naturally causes to the

generation of the extra likelihoods. However, we showed analytically and empirically

that under some practical conditions such as a Bakis tOpOlogy which has a diagonally

dominant state-transition matrix, such an approximation is viable in some speech

processing applications like Spoken digit recognition.

Besides the analysis of vector-matrix formulation of the HMM undertaken here

to demonstrate the viability of the TIA HMM, we derive some useful mathematical

expressions for the F—B HMM as well as the TIA HMM. Such derived equations and

accompanying results make it possible to re—exploit classic results of the HMM.

Next, we showed a couple of techniques to reconcile the F—B HMM to the TIA

HMM although theoretically it is not possible to make the two models completely

equivalent. However, these attempts are significant in showing similarities and rela-

tionships between some of the state variables of the models. Those approaches illu-

minate the Operation of the HMMS while supporting the validity of the TIA HMM

approximation of the F-B HMM.

It is concluded that the TIA HMM has some significant advantages resulting from

loosening of the legal state path constraint which is implicitly required in the F-B

HMM. However, we showed that such an illegal likelihood does not severely degrade

the performance of spoken digit recognition with the TIA HMM.

Finally, we have proposed two new state search techniques. They are a new max-

imum likelihood approach (different from the conventional Viterbi technique which
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also employs a ML criterion), and the acoustic distance approach. Comparing with

the conventional Viterbi technique, by the new ML approach, we obtain an appropri-

ate state sequence of a speech signal which is close to that of the Viterbi technique in

a global sense that the global shapes of computed state sequences by the conventional

Viterbi and the new ML approach are similar to each other. Also, as we obtain more

computational efficiency in the TIA HMM, we also get the computational savings with

this approach. Furthermore, the quite closeness of the state sequence between the

conventional Viterbi approach and the new ML approach also becomes one viability

condition of the TIA HMM.

The recursive Viterbi search based on k-means clustering is designed to examine

the acoustic temporal variations of the speech signals and determine the correspond-

ing state sequence. Thus, the resulting state sequence is more consistent with the

acoustical evidence of a speech utterance.

In addition, the other possible approach of determining a possible state sequence

is to use the SM ID. Even though the original motivation of adOpting the SM ID in

our research was to apply an adaptive linear filtering technique to find a parameters

for M efficiently, we showed that SM ID technique is useful to find an appropriate

state sequence of a speech signal. In particular, this SM technique is useful to detect

boundaries of voiced, and unvoiced region of a speech signals. According to the

application, we can choose a suitable state search method among proposed technique.

Recently, it is required for the speech recognition system to cover larger vocabu-

laries as well as to support real-time speech applications. These applications require

a robust and computationally fast processing of speech recognition system. Under

certain environment of applications, however, one factor between the recognition rate

and computational advantages is relatively more required than the other. In case

that the computational aspect is relatively important without severe degradation of

performance of the speech recognition system, the TIA HMM is a suitable technique
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which allows to compromise the rate of recognition and resources with additional

controllable factor according to the application.

The TIA HMM is one HMM approach which uses the state-space formulation.

We conclude that the TIA HMM represents a viable alternative to the conventional

F-B HMM in certain speech processing area such as digit recognition.

5.2 Future Research

Some of the open problems related to this research are summarized as follows:

Using the vector-matrix formulation of the HMM, there are possibilities we

can find some unknown characteristics of the F-B HMM which may be useful

in speech-recognition technology albeit its inherent difficulty of time-varying

characteristics.

To develop and apply the TIA HMM more to the speech recognition problems,

it is necessary to test and show the viability of the TIA HMM under the di-

verse domains of speech recognition problems. For a certain application, this

technique may be favorable and for other applications, it may not. Therefore,

it is significant to apply this technique to various application areas.

In connection with the previous Open problem, it is necessary to find or develOp

the conditions, if any, of the TIA HMM to improve the recognition performance

without undermining the advantages of the TIA HMM.

In this research, the application of the TIA HMM has been to the discrete

HMM whose probabilities are all discrete components. However, application to

continuous-density HMMs is also possible. In continuous observation HMM, M

is to denote the elements of an HMM, namely N, {aij}, {bJ-(x)}, and {7r,-}. Here

b, (x) is the density function of continuous observation process x. Of course, the
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same diagonalizing and compression idea can be applied to the state-transition

matrix A. However, for the continuous probability distribution, we need to find

how to efficiently integrate the means and variances of the bJ-(x) and determine

the effects on recognition performance.

Since the HMM is a linear model, we can interpret the HMM in light of the

adaptive signal processing technology. In the previous analysis, the SM ID

technology has been exploited only to find a state sequence of a speech sequence.

However, the SM ID theory is mostly applicable to the computation of unknown

parameters of a model. More than anything else, the SM ID has an advantage in

a selective updating of the parameters through the bounding ellipsoid based on

the assumption of an known error bound. Therefore, the SM technique can be

applied to deduce the state parameters in a different fashion from the F-B HMM.

Furthermore, because the SM uses a bounding ellipsoid which includes all the

feasible parameter values, the SM ID technique is assumed to make the speech

recognition system robust. This is because using “set” of parameters instead of

Specific value for parameters, the SM ID theory can possibly assist to recover

lost symbol information in the string during pronunciation or quantization.

In connection with the application of the SM technique, we need to find an

informative error bound in advance. Presently, the error bound of the input-

output equation from the TIA HMM is too trivial and large for the deve10pment

of HF—OPD. Also, the size of {A, B} is still too large to process efficiently in the

SM framework. As known, B is usually a sparse matrix which has many zeros

in its elements and A is a triangular matrix. By considering matrix properties,

a useful application of the SM ID technique to the HMM problems may emerge.

This requires more intensive study.
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