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ABSTRACT

DESIGN, SYNTHESIS AND CATALYTIC APPLICATIONS OF
MESOPOROUS SILICA MOLECULAR SIEVES

BY
Wenzhong Zhang

The discovery of the Mobil M41S family of mesoporous molecular sieves has
stimulated great interest in surfactant-directed assembly of inorganic mesostructures. The
mesopores in these molecular sieves provide new opportunities for catalytic conversion
of large substrates in the liquid phase. Even though mesoporous molecular sieves exhibit
much larger pore sizes than conventional zeolites, accessibility to the catalytically active
sites in the framework of the mesopores is still very crucial for diffusion limited
reactions. Hexagonal and cubic mesostructures with uni-dimensional and 3-dimensional
pore-connectivity, respectively, show similar catalytic reactivities, despite differences in
pore branching, most likely both are diffusion limited. Therefore, it is practically useful
and scientifically significant to find some ways to improve the accessibility to the active
catalytic sites inside the mesopores. Regardless of the type of inorganic precursors used
in mesostructure synthesis, the pore size and connectivity of the framework take the size
and shape of the surfactant micelles filling in the structural channels. Therefore, an
promising strategy for the design and synthesis of mesoporous molecular sieves with
specific pore connectivity and accessibility would be to control the surfactant micelle
formation and hydrolysis of the inorganic precursors.

In addition to framework mesopores, complementary textural mesopores are

extremely important for enhancing the accessibility in catalysis. Our first objective was to
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tailor both the framework and the textural porosity of HMS silicas assembled through an
electrically neutral S°I° mechanism. The approach involved control of the solvent
polarity, along with the use of organic auxiliary agent (i.e. mesitylene) to control particle
nucleation rates and pore size. Increasing the polarity of the synthesis medium caused
faster hydrolysis of silicon alkoxide in the presence of the alkyl amine surfactant, which
led to meso-scaled fundamental particles and high textural porosity. Our second objective
was to use organic assembly modifiers such as tartaric, oxalic, gluconic and citric acids to
tailor the formation of MCM-41 through a S'T pathway. Well-ordered MCM-41
exhibiting a flake-shaped particle morphology with pore channels running orthogonal to
the flaky surface was obtained. Also, MCM-41 with textural pores in association with
meso-scaled fundamental particles was prepared under careful control. The importance of
the complementary meso-scaled inter-particle (textural) pores for improving the
accessibility of the framework pores in catalysis was demonstrated for the liquid phase
peroxidation of 2,6-di-tert-butyl phenol in the presence of Ti-substituted derivatives as
the catalysts. Also, liquid phase alkylation of 2,4-di-tcrt-butyl phenol was carried out
using Al-substituted derivatives as the catalysts. By facilitating accessibility, significantly
enhanced catalytic activity was observed for both Al-HMS and AI-MCM-41 with
complementary textural mesopores and meso-scaled fundamental particles comparable to
the pore channel lengths.

Variation of surfactant packing parameter g (= V/a,l) by changing the structure
and concentration of surfactant has been reported in literature as an effective approach to
altering the assembled mesostructures. Little is known about chemical modification of

surfactant head group using simple chemicals rather than co-surfactants to ultimately
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tailor the molecular sieves. The concept of altering the structures of mesoporous silica
molecular sieves by organic promoters in electrostatic S'I assembly has been
successfully illustrated. Mesoporous silica molecular sieves with well ordered 3-
dimensional hexagonal, cubic, and uni-dimensional hexagonal phases were
hydrothermally assembled in the presence of organic modifiers using cetyltrimethyl
ammonium bromide as the structure director and sodium silicate as the silicon source at a
relatively low surfactant to silicon ratio (i.e. 0.11). In addition, the concept of
incorporating structural order into mesoporous silica molecular sieves through the
introduction of electrostatic interactions at the interfaces of electrically neutral surfactant
micelles and neutral inorganic precursors has also been successfully demonstrated.
Mesoporous silica molecular sieves with well ordered hybrid domains consisted of 3-
dimensional hexagonal and spherical cubic (3-d-hex-cubic) phases, an uni-dimensional
hexagonal phase, and wormhole structural motifs were assembled using alkyl
polyethylene oxide surfactants and tetraethyl orthosilicate through a new counterion
mediated (N°M'X)[° pathway. Our approach explicitly illustrates that silica
mesostructures can be altered using both organic and inorganic modifiers such as
hydroxyl carboxylic acids for quaternary ammonium surfactant and metal salts for alkyl
polyethylene oxide surfactants, respectively. The modifiers most likely bind to the
surfactant head group to cause a significant change in the effective-surfactant-head-
group-area, which alters the packing parameter g and, ultimately, the inorganic

mesostructure.
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Figure 5.10 ?’Al-NMR spectra for as-made and calcined AI-MCM-41 molecular
sieves prepared using tartaric acid as the structure promoter with
HMS-like and clay-like flaky textural pores.........cc.ccoceevuereeccerueneenuennes 136

Figure 5.11  Temperature programmed desorption (TPD) of pyridine pre-adsorbed
on AI-MCM-41 catalysts and purged at 150 °C in N; stream for 1 h
before the TPD started. This TPD profile was carried out on a thermal
Foa € XV0 1 2R T 1 72 SRR 138

Figure 6.1 TEM images of calcined (600 °C) mesoporous silica molecular sieves
prepared in water using the alkyl polyethylene oxide type surfactant
Brij 56 (Ci6H33(EO)0H) as the structure director and TEOS as the
silicon source in the presence of CoCl,; salt as the structure promoter
under the same reaction conditions (45 °C, 40 h reaction time) except
that the surfactant to Co”* ratios are different. The surfactant to silicon
ratio was 1 to 24 for both samples, but the surfactant to metal ratio was
8.5 for the sample denoted as MSU-C (top photo) and 2.0 for the
sample denoted as MSU-H (bottom photo). These images are provided
as negatives for easier viewing of the pores as black spots. Pore to pore
distance is constantly ~13.7 nm through the specimen for MSU-C. The
insets are the electron diffraction patterns for areas imaged. .................. 154

Figure 6.2 (a). Selected area TEM image of MSU-C; (b). Electron diffraction
pattern of MSU-C; (c). Optic diffraction pattern obtained from the
Fourier-transformation of image (a); (d). Image obtained by reverse-
Fourier-transformation of the center tetragonal pattern in the optic
diffraction pattern (c); (e). Image obtained from the total reverse-
Fourier-transformation of optic diffraction pattern (c); (f). Image
obtained from the reverse-Fourier-transformation of 7 diffraction spots
selected from pattern (c) in such a way that these 7 spots resembling 7
spots in the real electron diffraction pattern (b). .......ccccceeevvvrivuenincrneen. 155

Figure 6.3 A TEM segment for MSU-C showing a different orientation of the
structure. The optic diffraction pattern (obtained by Fourier-
transformation of arrow indicated area in the image) is attributable to
both a (01-10)-3-d-hexagonal orientation and a (210) cubic orientation.
These patterns are very similar to the diffraction pattern for meso-
structured silica films with pores running orthogonal to the film
surface, as reported by Brinker et al. Notably, the pore to pore
distance 1S ~13.7 MM......couiiiiiiiiiceicee et 156

Figure 6.4 X-ray diffraction patterns for the calcined MSU-C and MSU-H
samples that were used to obtain the TEM images shown in Figure 6.1.
Both d-spacings, observed and calculated according to an uni-
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N, adsorption and desorption isotherms for calcined MSU-C and
MSU-H. Pore necking hysterisis loop for MSU-C is indicated by the
step at desorption branch, which is ~0.2 unit of relative pressure
behind the adsorption branch. MSU-H exhibits almost identical
adsorption and desorption branches signify the uniformity of uni-
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silica molecular sieves as described in Figure 6.7. The surfactant in the
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SEM (top) and TEM (bottom) images of mesoporous silica prepared
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Chapter 1

Supramolecular Assembly of Mesoporous Molecular Sieves and Their
Application in Catalysis

1.1. Introduction

A major advance in the design of mesoporous molecular sieves was provided by
Mobil researchers in reporting ' the supramolecular surfactant assembly of a broad family
of M41S materials with uniform pore sizes in the mesopore range 2.0-10.0 nm. Also,
Kuroda and his co-workers 2 described a structurally related mesoporous silica by
quaternary ammonium surfactant rearrangement of a layered precursor (kanemite). The
more versatile Mobil approach was based on the supramolecular assembly of cationic
surfactants (S*) and anionic inorganic precursors (I). Stucky and his co-workers 3 greatly
extended the S'T electrostatic pathway of Mobil to include a charge-reversed ST
assembly mechanism, as well as counterion-mediated S*XT" and SM'T pathways, where
X =CI, Br and M* = Na*, K*. More recently, counterion-mediated S*XT" pathway was
further extended to prepare well ordered cubic mesoporous silica films on glass
substrate.* It was also extended to protonated nonionic surfactants to synthesis
mesoporous silica with pore size up to 30 nm.?

Another pathway has been developed for the preparation of mesoporous
molecular sieves based on the hydrolysis of an electrically neutral inorganic precursor
(I°) in the presence of a neutral amine (S°) surfactant as the predominate structure
directing agent. This S°I° pathway was first used to prepare a mesoporous silica

molecular sieve and a Ti-substituted analog. A small amount of protonated amine was
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used as a co-surfactant in the original synthesis, ® but subsequent studies ’ showed that the
protonated co-surfactant component was not needed to achieve framework assembly.
Electrostatic forces do not play an important role in S°I° assembly. Instead, the assembly
forces at the surfactant-inorganic precursor interfaces are based on hydrogen bonding.
An equivalent H-bonding pathway, denoted N°I° has also been demonstrated for
nonionic polyethylene oxide surfactants and I° precursors. ® The most recent development

in electrically neutral assembly was a preparation of an entire family of ultrastable vesicle

mesoporous

Supramolecular Assembly Pathways
to Mesoporous Molecular Sieves
MSU CRG

H-Bonding
(neutral assembly)

Bujpuog aAneqg

Charge matchin
(electrostatic pathways)

Figure 1.1 Schematic showing of interfacial interactions for surfactant micelles in

cooperatively assembly
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molecular sieves using neutral gemini surfactants as the structure director. ° The S°I° and
N°I° pathways are complementary to those electrostatic templating pathways. These
pathways also are distinguishable from the S-I pathway developed by Ying and her co-
workers for the synthesis of meso-structured transition metal oxides. '°In the S-I pathway
a coordinate covalent bond is formed between the surfactant (usually, an amine) and the
metal center. All aforementioned cooperative assembly pathways afford as-made meso-
structures contain liquid crystal micelles in the framework pores. All the pathways were
schematically illustrated in Figure 1.1.

Other than the cooperative assembly mechanisms, surfactant liquid crystal

templating mechanism have been proposed too."'!

Although this templating pathway is
not intrinsically different from cooperative assembly pathways, it relies very much on
pre-formed liquid crystal phases to form meso-structured molecular sieves under a high
concentration of surfactant. Diffusion of inorganic precursor molecules to the interfaces
of the surfactant head groups and water molecules in the liquid crystal micelles without
altering of the liquid crystal phase is crucial for obtaining structural order in the final
products. However, the inefficient use of relatively expensive surfactants and the
difficulty in maintaining the liquid crystal phases upon addition of the inorganic
precursors limits the wide-spread use of this templating pathway.

Surfactant-directed assembly of mesostructures by sol-gel methods has been
extensively exploited. Regardless of the type of inorganic precursors used to form meso-
structures, in general, the pore size and connectivity take the size and shape of the

surfactant liquid crystal phase in the structural channels of as-made materials. Therefore,

a good strategy for the design and synthesis of meso-structures would be the over-all
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control of micelle formation that determines the final liquid crystal phases in the
framework pores.

In addition to mesoporous silica molecular sieves, structurally stable mesoporous
alumina, 3'? niobia, '* titania, '*'* many other metal oxides and metallic platinum
molecular sieves "> have been reported. Interestingly, most of these stable mesoporous
metal oxides have made use of electrically neutral or nonionic surfactants. For example,
mesostructured zirconium oxide '® and niobium oxide ' have been prepared using
primary amine surfactants as structure directors. The surfactant in mesostructured
zirconia was easily removed by ethanol extraction because of weak hydrogen bonding
between surfactant molecules and framework walls, however the surfactant in niobia
could not be simply extracted by ethanol because of the presence of dative bonds. Meso-
structured tungsten and iron oxide, as well as other metal oxides were assembled using
nonionic pluronic surfactants.'® Nevertheless, neutral surfactants produced more
structurally stable mesoporous transition metal oxides. In contrast, most mesostructured
metal oxides prepared using charged surfactants as the structure directors collapsed upon
removal of surfactants. '"'®

Unlike crystalline microporous zeolites, it has been recognized that the
mesoporous silica molecular sieves are built of amorphous silica walls. ' Although, effort
has been invested in the synthesis of crystalline walled mesoporous molecular sieves, the
walls are still amorphous for most of the mesoporous molecular sieves. An advance
toward synthesis of fully crystalline mesoporous materials was claimed for materials with
limited X-ray order, as indicated by limited number of reflections.'® Intrinsically, the

quasi-crystalline walls of these materials is alike of a mesostructured SnO,, which is a

consequence of particle assembly rather than a surfactant directed assembly.” Actually,
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the assembly forces at the surfactant-inorganic precursor interfaces greatly determines the
relative order of meso-structures. Longer range electrostatic interaction force affords
relatively higher structural order. The shorter range H-bond interaction force affords
worm-hole-like structural motifs that usually exhibit single-line X-ray diffraction
patterns. The key-role of longer range electrostatic interaction in the formation of higher
ordered meso-structures is illustrated in the following section comparing four
characteristic mesoporous silica molecular sieves assembled through electrostatic and

neutral pathways.

1.2. Structural Characteristics of Mesoporous Silica Molecular Sieves Assembled
through Neutral and Electrostatic Pathways

Four characteristic mesoporous molecular sieves are compared below. The first
one is an ordered cubic MCM-48 assembled using cetyltrimethyl ammonium bromide
(CTAB) as the structure director (S*) and tetraethyl orthosilicate (TEOS) as the inorganic
precursor (I') under basic conditions at relatively high concentrations of the surfactant
(i.e. surfactant to silicon ratio at 0.5). 21.22 The second one is an ordered hexagonal MCM-
41 prepared using cetyltrimethyl ammonium as the structure director and sodium silicate
as the silicon precursor through typical S'T assembly pathway at relatively low
concentration of the surfactant (i.e. surfactant to silicon ratio at 0.25). '7 The third one is a
worm-hole-like HMS formed by a supramolecular assembly pathway with dodecylamine
as the structure director that is predominately S°I° in character. ' The fourth one is a
disordered KIT-1 silica assembled via the S'T pathway using CTAB, sodium silicate and
EDTA as the reagents as reported by Ryoo et al. 2 These four mesoporous molecular

sieves were chosen because they are structurally distinctive.
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Figure 1.2 shows the X-ray diffraction patterns of these four samples. Higher
order reflections for hexagonal MCM-41 and cubic MCM-48 are unambiguously shown.
Cubic order is indicated by the presence of (211), (220), (321), (400), (420), and (332)
reflections, whereas hexagonal order is indicated by the presence of (100), (110) and
(200) reflections. In contrast, HMS and KIT-1 both show broad first reflection with
smeared humps at higher 20 angles. The Lack of structural order for HMS indicates the
intrinsic short- range interaction property of H-bonding in the assembly mechanism. For
KIT-1, electrostatic interactions between the surfactant head group and the inorganic
precursor might be weakened due to a decrease in the surfactant head group charge

density caused by association with

EDTA salts. Under these ::

C.H_N(CH,) Br
C_H,NH,
conditions, structural disorder

inevitably occurs as the
S‘t asssmbled, 150°C  MCM-48

electrostatic interaction range is -‘%
shortened. g r

Apparently, those three St assembled, 100C  MCM-41
mesoporous  molecular  sieves /L
prepared via an electrostatic S'T St asembled, rt  HMS
pathway exhibit only framework : st as:ambled;wo-c . KIT-1
mesoporosity, as indicated by the 4 8 12 16 20

20(degrees)

N, pore-filling step at a relative
Figure 1.2 X-ray diffraction patterns

pressure of 0.2 to 0.4. (Fig. 1.3) for mesoporous molecular sieves
assembled via electrostatic (S'T) and
The isotherm for HMS neutral (S°I°) pathways.
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characteristically exhibits both framework and textural mesoporosity with two

significant N2 uptake steps at relative pressures of 0.3 and 0.7. As shown by the inset in

Figure 1.3, the average pore sizes of HMS, MCM-41 and KIT-1 molecular sieves (29, 30,
and 33 A, respectively) are significantly larger than that of MCM-48 (26 A). Structural
differences are associated with differences in framework pore size. The similarity in pore
size for MCM-41 and KIT-1 may indicate that MCM-41 and KIT-1 tend to be
structurally similar, but different from bi-continuous cubic MCM-48, even though KIT-1
is rported to possess interconnected pore channels analogous to MCM-48. Larger pore

sizes for MCM-48 (Ia3d) so far have not been reported. Although the X-ray diffraction
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Figure 1.3 N; adsorption and desorption isotherms for mesostructured
molecular sieves assembled via S'T" and S°I° pathways.
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Figure 1.4 TEM images showing regular order of mesopores for (a) MCM-41 and
(c) MCM-48, but wormbhole like channels for (b) KIT-1 and (d) HMS.
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pattern does not explicitly shown higher order reflections, KIT-1 exhibits a quite narrow
pore size distribution which is about 3 times narrower than that of HMS. This verifies the
fundamental differences in assembly mechanisms for HMS and KIT-1.

TEM images show the structural versatility for these four molecular sieves.
(Figure 1.4). The image for MCM-41 explicitly shows a typical hexagonal arrangement
of uni-dimensional pores. The image for MCM-48 shows triangle arrangement of the
pore channels running along the cubic (111) direction. Instead of very regularly arranged
pore channels, HMS and KIT-1 both exhibit worm-hole-like channels. It is hard to tell the
structural difference by TEM for HMS and KIT-1. Nevertheless, the long range
electrostatic assembly affords meso-structures with relatively higher order than meso-
structures assembled from electrically neutral surfactants. However, the order is still
limited to the order of pore channels, which is far from the atomic order in crystalline

materials.

1.3. Synthesis of Mesosporous Silica Molecular Sieves Using Primary Amine
Surfactant as the Structure Directors

The first example of HMS silica was prepared at ambient temperature in the
presence of a 13.5:1 molar mixture of dodecylamine and dodecylammonium ion as the
structure directing co-surfactants. ® The product formed under these reaction conditions
exhibited only one resolved XRD reflection, which precluded the assignment of a long
range structure. Selected area electron diffraction studies provided evidence for the
occasional occurrence of very small domains of hexagonal symmetry, but the vast
majority of the sample was highly disordered and lacking in a long range regular

structure.
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Subsequent studies revealed that equivalent HMS silicas could be prepared by
omitting the onium ion from the reaction mixture and using only the neutral amine as the
structure director. * This S°I° pathway afforded silicas with Ny adsorption properties,
pore sizes, and XRD patterns virtually identical to the original HMS products formed

using a mixture of S° and S* surfactants. Also, the sparsely occurring small domains of

Figure 1.5 TEM image showing wormhole-like framework mesopores and meso-
scaled textural pores indicated by the arrows

hexagonal order were absent. In fact, hexagonal regions are very rarely formed even
when protonated surfactant is present. Instead, the wormhole channel motif with meso-
scaled inter particle voids shown in Figure 1.5 is formed almost exclusively >*even when
up to 15% of the amine is protonated. The onium ion can be introduced by adding a
protonic acid. Alternatively, the introduction of certain Lewis acid centers, as in the
replacement of some Si** sites by AI’*, Fe** or B**, will result in the formation of some

protonated amine surfactant during the assembly process in order to balance the resulting

10
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framework. = However, this small electrostatic participation of the surfactant is
structurally inconsequential, and neither it alter the wormhole channel motif, nor the

meso-scaled textural pores.
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Figure 1.6 N; adsorption and desorption isotherms for HMS prepared in (A) EtOH-
rich medium (H,O : EtOH = 35 : 65 by vol.); (B) H,O-rich medium (H,O : EtOH =
90 : 10 by vol.)

Recent studies have shown that particle morphology and textural porosity of HMS

can be judicially controlled by choice of solvent polarity. 2 HMS prepared in higher
polarity water-rich media (i.e. 90:10 H,O : EtOH medium by volume) shows wormhole-
like to sponge-like channels with fractal-like particle texture. This HMS exhibits a

significant amount of textural mesopores in the range of 150 A to 500 A, built from inter-
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growth of meso-scaled fundamental particles. These textural mesopores are different
from the voids formed by the physical packing of particles. HMS prepared in high
ethanol medium (H,O : EtOH = 35 : 65) exhibits much larger fundamental particle size,
with beads on string type of morphology and very little textural porosity. (Figure 1.6)
Therefore, textural porosity is not an intrinsic property of electrically neutral assembly,

but a property generated by the kinetics of the assembly process.

1.4 Catalysis
1.4.1 General Application of Mesoporous Molecular Sieves

As potential sorbents, catalyst supports or catalysts, mesoporous molecular sieves
have received considerable attention. A high density silanol groups on the walls of the
framework provide unique capability for meso-structured silica molecular sieves ror
grafting chemistry. A very active Ti-MCM-41 was prepared by grafting of a titanocene
complex to the meso-structured walls of MCM-41. 2 A grafted Ru-complex on MCM-41
also afforded a super active oxidation catalyst. *?’ Pd supported on MCM-41 generated
an exceptionally active catalyst for Heck reactions. 28 Grafting chelating ligand to silanol
groups of MCM-41 achieved excellent adsorbent for heavy metals in waste water. 2301
has been studied that most of hazardous heavy metals could be remedied by trapping into
the mesopores.

Mesoporous molecular sieves are catalytically useful as long as their pores are
uniform. A relatively high X-ray order is not necessarily beneficial for the catalytic

utilization of mesoporous molecular sieves. Actually, mesoporous molecular sieves still

encounter diffusion limitations, particularly for reactions in condensed media. The

12
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accessibility to the catalytically active centers located in the mesoporous framework is
extremely important for diffusion controlled reactions.

The uses of chemically modified derivatives of mesoporous HMS molecular sieve
silicas, prepared by neutral surfactant assembly pathways, as catalysts for a variety of
chemical conversions, including peroxide oxidations of olefins and phenols, ring opening

polymerization of lactide dimers, selective reduction of NOx, and cumene cracking will

be discussed below. These HMS catalysts are often more active than analogous catalysts
prepared through electrostatic assembly mechanisms. The wormhole-like framework
mesopores, along with the presence of complementary textural mesopores, most likely

facilitate access to the catalytic active centers in the framework.

1.4.2. Peroxide Oxidation
Metal-substituted HMS silicas have received considerable attention as catalysts
for the peroxide oxidation of aromatics to phenols and quinones and of alkenes to

epoxides and diols (see equation 1-3). One of the first reactions to be investigated was

OH
(0]
>L©/K BT Eq. (1)
45 °C
2,6-DTBP o
OH
H
HO
N
[0]
5 =500 -
45 °C
Styrene
—0 P Eq. (3)
O/ 45 °C (o)
MMA MPV
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the Ti-HMS catalyzed oxidation of 2,6-di-tert-butylphenol (2,6-DTBP) to the
corresponding mono-and dinuclear quinones using HO; as the oxidant. S This substrate
was of particular interest, because it was too large to access the framework Ti sites of TS-
1, an industrial microporous molecular sieve catalyst. >’ Other oxidation reactions that
have been investigated using Ti-HMS as a catalyst includes the conversion of benzene to
phenol, methyl metharcylate to methyl pyruvate and styrene to the corresponding
epoxide, diol and benzaldehyde. 32

The catalytic properties of mesoporous Ti-HMS and of Ti-MCM-41 for the liquid
phase oxidations of methylmethacrylate, styrene and 2,6-di-ferr-butylphenol are
described in Table 1.1.> Included in the Table for comparison are the conversions
obtained with microporous TS-1 as the catalyst. As expected based on pore size
considerations, the conversions observed for all three substrates are substantially larger
for the mesoporous catalysts than for the microporous catalyst. The S°I°-assembled Ti-

HMS catalyst exhibited consistently greater reactivity than the two Ti-MCM-41 catalysts

Table 1.1 Catalytic Peroxidation Activity of Ti-substituted (2 mol %) Mesoporous
Molecular Sieve Silica

Catalyst TS-1 Ti-MCM-41 Ti-MCM-41 Ti-HMS
(S'T) (S'XT) (S°I%)
MMA Conv. (mol%) 2.5 40 6.2 6.8
Styrene Conv. (mol%) 8.4 10 23 28
2,6-DTBP Conv. (mol%) 5.0 39 22 55
MMA is methylmethacrylate.

prepared by electrostatic assembly. The superior performance of Ti-HMS is especially

pronounced in the case of the large 2,6-di-tert-butylphenol substrate.
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The differences in catalytic reactivity between Ti-HMS and Ti-MCM-41 cannot
be attributed to differences in Ti siting. XANES and EXAFS studies showed that the
titanium center adopt primarily tetrahedral coordination in all three catalysts. ** Also, the
coordination environment is very similar for the three catalysts, as judged from the
similarities in the EXAFS features. Also, UV-VIS adsorption spectra showed no phase
segregation of titania, the spectral features being consistent with site-isolated titanium
centers. Because the framework walls of HMS tend to be thicker than MCM-41, the
superior reactivity of Ti-HMS cannot be due to an enhancement in the fraction of Ti
available for reaction on the pore walls. Thicker walls should bury more titanium at
inaccessible sites within the walls. The most distinguishing feature between Ti-HMS and
Ti-MCM-41 is the greater textural (inter particle) mesoporosity for Ti-HMS (cf. Figure
1.5). This complementary textural mesoporosity facilitates substrate transport and access
to the active sites in the framework-confined mesopores, thus enhancing catalytic
efficiency compared to MCM-41 meso-structures with little or no textural porosity.

Sayari and his co-workers 3336 have investigated Ti- and V-substituted HMS
silicas as liquid phase oxidation catalysts for large organic molecules. Their results
verify that the activity of HMS derivatives is typically higher than the corresponding
MCM-41 analogs. He also has emphasized the importance of the accessibility of Ti-
active sites in determining reactivity toward large molecules. He further noted that a
number of oxidation reactions which occured readily over small pore TS-1 catalysts, did
not take place in the presence of larger pore Ti-P or ultra large pore Ti-MCM-41 and Ti-
HMS. All these observations suggest that differences in surface hydrophilicity and Ti
redox potential also play a role in determining the reactivity of tetrahedral Ti sites in

these frameworks. On the other hand, TS-1 is not known to catalyze the oxidation of
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acetone at rates that are competitive with benzene hydroxylation, yet Ti-HMS catalyzes
acetone oxidation readily.”’

Kaliaguine and his co-workers *® have compared the catalytic reactivity of Ti-
HMS and Ti-MCM-41 silicas for the epoxidation of o-pinene with tert-
butylhydroperoxide as the oxidant. The conversions over Ti-HMS were somewhat lower
than Ti-MCM+41, although epoxide selectivities were similar. Also, Gontier and Tuel
3940 brepared a series of Ti-HMS using reaction times as short as 15 min at ambient
temperature. Tetrahedral Ti loadings up to 2 wt % and thermal stabilities up to 650°C in

air were possible without forming extra-framework titania. *

However, they
subsequently found no substantial difference in catalytic reactivity between Ti-HMS and
Ti-MCM-41 for the oxidation of aniline. * These results of Kaliaguine and Gontier and
Tuel suggest that the Ti-HMS derivatives used in these studies not possess the high
textural porosity needed for facile access to framework Ti sites. In fact, the absence of
textural mesoporosity in the Ti-HMS catalyst used by Gontier and Tuel was confirmed by
N7 adsorption studies. *' These reports verify that the interparticle mesoporosity of Ti-
HMS and HMS molecular sieves, in general, is dependent on the reaction conditions used
for framework assembly. In general, textural porosity is formed when the assembly
process is carried out in a water-rich solvent. Alcohol-rich solvents tend to eliminate
textural porosity. Enhanced reactivity for large molecule conversions over HMS

catalysts can be expected only when the textural and framework mesoporosities are

comparable in magnitude.
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1.4.3 Ring Opening Polymerization

The small crystallite domain sizes and high textural mesoporosity that can be
achieved for HMS derivatives through S°I° assembly may be especially beneficial in
promoting polymerizations and other bulky conversions where diffusion effects can limit
the catalytic effectiveness of larger particle mesostructures. In order to demonstrate the
potential utility of mesostructures for polymerization reactions, it has been shown * that
Sn(IV)-substituted HMS is remarkably effective for the ring opening polymerization of /-
lactide dimer to poly (/-lactic acid), abbreviated PLA, with a high molecular weight and
low polydispersity.

Sn-HMS containing 1 mol % tin(IV) was prepared at ambient temperature by S°I°
assembly in ethanol:water (3:1v/v) using a 100:1 molar mixture of Si(OC;Hs)4 and
Sn(iso-C3H7)4 as the inorganic precursors and dodecylamine as the structure
directing surfactant. The N; adsorption isotherm for the calcined (550 °C) mesostructure
indicated a BET surface area of 886 m%/g, an average framework pore size of 2.7 nm, and
a textural (inter-particle) mesoporosity in excess of the framework mesoporosity.

Table 1.2 reports the conversions of L-lactide dimer to PLA at 130 °C (see
equation 4). Included for comparison purposes are the conversions for pure HMS silica,
a Sn-doped silica gel (1.0 mol% Sn) and pure SnO;. The latter two catalysts were
prepared by hydrolysis of the corresponding alkoxides under condition analogous to
those used to form Sn-HMS.

The polymerization product obtained from Sn-HMS exhibited the highest

conversion as determined by THNMR (82%), the largest average molecular mass (36000)

and a low polydispersity (1.1). In the case of pure tin oxide as the catalyst, the

17



conversion

Jower mole

case of Sn
centers in 1

Lewis-acid

A
l

0/\0/

Lactide

Table12
—_—
Caalys

S

S0-HMs
HMS

S1-doped g
$n0,

&

\

a,
ReaCIiOn (



conversion was substantial (73%), but the polymerization product had a much
lower molecular mass (17800) and a high polydispersity (1.7). The low activity in the
case of Sn-doped silica gel may indicate the lack of a suitable dispersion of active metal
centers in the host silica. Sn-HMS, however, clearly combines the reactivity of tin

Lewis-acid sites with the selectivity of a regular mesopore structure in affording PLA

o (o) o
Sn-HMS I [
CH,;CH(OH)CO(CH(CH;)CO),H Eq.()
(o] o 130 °C

Lactide Dimer PLA

Table 1.2 Lactide polymerization over heterogeneous cata]ystsa

Catalyst Conversion (%) PLA Molecular mass
Sn-HMS 82 36 000

HMS 0 --
Sn-doped Silica 22 3200

SnO; 73 17 800

“%Reaction conditions: 2.00 g (13.9 mmol) lactide dimer; 0.1 g catalyst (except for SnO,,
where 0.001 g was used); T = 130 °C; reaction time 72 h. All catalysts were calcined at
550 °C prior to use.

with a reasonably high molecular mass and low polydispersity. It appears that the
ordered pore structure improves average molecular mass and polydispersity values in
comparison to homogeneous catalysts by imposing steric constraints on the propagating
PLA chains and minimizing ‘back-biting’ and intermolecular transesterification

reactions.
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1.4.4. Selective Catalytic Reduction (SCR) of NO

Yang et al., 4 recently investigated the activity of Fe* exchanged forms of Al-
MCM-41 and AI-HMS for the selective catalytic reduction (SCR) of NO by NHj (see
equation 5). In order to minimize the number of factors that may cause significant
differences in the catalytic properties between AI-MCM-41 and Al-HMS, the aluminum
contents of both molecular sieves were controlled to around 8%. Also, the pore size
distribution for the two supports was controlled to around 28 A, the BET surface areas
were in the range 800-850 m?/g, and the framework pore volumes were similar (0.62 and
0.75 cm’/g for AI-HMS and AI-MCM-41, respectively). However, the textural
mesoporosity of AI-HMS was comparable to the framework mesoporosity, whereas little
or no textural porosity was present for AI-MCM-41.

Although HMS and MCM-41 are similar both in terms of chemical composition,
surface area, and pore volume, Fe/Al-HMS showed considerably higher activities than
Fe/AlI-MCM-41. The main differences between HMS and MCM-41 are the crystal
domain sizes and the unique textural porosity of HMS. The crystal domain size for HMS
was of the order 150 A, whereas that of MCM-41 was larger by two orders of magnitude,
as judged by XRD line widths and TEM.

The comparison of the estimated apparent and intrinsic rate constants given in
Table 1.3 show that the reaction for the Fe/Al-MCM-41 sample was severely limited by
pore diffusion, but not for HMS molecular sieve. The Thiele effectiveness factor for the
HMS was nearly 1.0, whereas that for the MCM-41 were 0.53 at 350 °C and 0.44 at 400

°C. An overall activation energy of 6.5 kcal/mol for Fe-HMS was in the range for SCR
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without diffusion limitation. The high effectiveness factor for the HMS catalyst is
attributable to the small domain size and short diffusion path in the framework channels.
Thus, the advantage for the Fe>* exchanged mesoporous molecular sieves, in particular

Al-HMS, for the SCR reaction is clearly demonstrated.

NO + NH; ﬂ_. N, + H,O Eq(5

350 °C

Table 1.3 Comparison of the apparent and intrinsic first-order rate constants and
the over all diffusivity for NO SCR reaction over Fe** exchanged Al-HMS and Al-
MCM-41*

Catalyst Apparent k (s™') Intrinsic k (s™)? Diffusivity (cm¥s)2
350 °C 400°C  350°C 400°C  350°C 400 °C

Fe/Al-HMS 56.5 87.5
56.6 87.6  3.95x107 4.0x10”’
Fe/Al-MCM-41 30.0 38.5

%he intrinsic rate constant and diffusivity are assumed to be the same for both
mesoporous catalysts.

1.4.5. Acid Catalysis

The replacement of silicon by trivalent elements in HMS materials has been
investigated by several groups in an effort to improve Bronsted and Lewis acidity for
catalytic applications. 4448 Although AI-MCM-41 derivatives can be prepared directly by
electrostatic assembly pathways, the as-synthesized materials are structurally sensitive to
calcination. * Also, if sodium silicate is used in the synthesis, a post-synthesis treatment

with NH4NO3 is needed to remove residual Na* ions from the exchange sites. > It has

been reported by Corma and his co-workers °' that AI-MCM-41 undergoes framework
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dealumination upon calcination to remove the surfactant. Hitz and Prins ** verified the
dealumination of surfactant-filled AI-MCM-41 upon calcination, but they showed that
dealumination could be minimized by first removing up to 73% of the surfactant by
proton exchange in ethanol.

In contrast to the electrostatic assembly pathways to Al-MCM-41, the S°I°
pathway to AIl-HMS derivatives offers a convenient route to acidic mesoporous
molecular sieves with retention of framework aluminum and other trivalent ions. As
noted earlier, the replacement of Si** by AI** requires the protonation of one equivalent
of structure-directing amine surfactant for every equivalent of Al’* incorporated into the
framework. However, because only up to 15 mole % of the silicon can be replaced at
tetrahedral sites, the majority of the framework is assembled through H bonding
interactions of the amine surfactant with the silica framework. Consequently, most of the
surfactant (>90%) can be efficiently removed by simple solvent extraction and this
preserves the tetrahedral siting of aluminum centers in the framework.

Tuel and Gontier * have recognized the potential importance of the S°I° assembly
pathway for the preparation of HMS derivatives containing trivalent framework elements
of catalytic significance. They found that AI’*, Ga’*, Fe** and B** all could be
incorporated into the framework of HMS silica at Si/M>* ratios as low as 10. More
importantly, the neutral amine surfactant could be removed by solvent extraction without
damaging the framework. Also, the remaining small concentration of charge balancing
primary alkylammonium ions associated with the aluminum sites could be removed
either by calcination or by ion exchange without collapsing the framework or removing
the aluminum from the framework. Similar results were obtained for other M**-

substituted derivatives. Thus, the structural degradation that normally occurs upon
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calcining M>*-substituted mesostructured silicas to remove surfactant can be avoided
through S°I° assembly and the subsequent solvent extraction of the vast majority of the
surfactant. The heat of combustion associated with the removal of the remaining
protonated surfactant is not sufficient to significantly alter the framework structure.
Mokaya and Jones ***® also have recognized the advantages of preparing
mesoporous silica and aluminosilicate molecular sieves through a S°I° assembly
pathway. Using a synthetic methodology equivalent to that originally reported for HMS
synthesis (i.e., alkyl amines as the surfactant, alkoxides as the inorganic precursors,
ethanol/water as a solvent, ambient temperature assembly, and solvent extraction of the
surfactant), they prepared a series of derivatives with XRD and textural properties
identical to HMS materials. However, they designated their products as MMS rather than
HMS derivatives. Interestingly, their Al**-substituted products with Si/Al ratios in the
range 5-40 exhibited greater Bronsted acidity and catalytic activity for cumene cracking
compared to AI-MCM-41, amorphous aluminosilicate gel and zeolite HY of similar
aluminum content. *’ In addition, the Al-HMS catalysts were less prone to deactivation.
It is unlikely that the siting and intrinsic acidity of tetrahedral aluminum centers in Al-
HMS, AI-MCM-41, and aluminosilicate gels differ significantly, because the framework
walls in all three materials are amorphous. However, access to the acidic sites in these
materials may differ greatly. What is particularly distinctive of most Al-HMS materials
compared to AI-MCM-41 and amorphous gels is the uniformity of the framework pores.
The short intersecting framework pores, in addition to the small crystallite domain size,
may well facilitate access to the active sites in HMS structures. This improved access

may be the main reason for the superior reactivity of AI-HMS materials as acid catalysts
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relative to AI-MCM-41, which have very long channel lengths, and amorphous gels with
irregular, highly constrained pore-structures.

Very recently, van Bekkum and his co-workers *® have reported modifying Al-
HMS and AI-MCM-41 (Si/Al = 30) to contain entrapped unit cells of ZSM-5. These
modified mesostructures were prepared by ion exchanging the aluminosilicates with
tetrapropylammonium cations as MFI structure directors and subsequently digesting the
mesostructures in glycerol at 120°C for 24 h. The resulting nanoporous aluminosilicate

products, designated NPA-1 and NPA-2, respectively, exhibited XRD patterns

Catalyst

> + \/

300 °C

Table 1.4 Cumene Conversions (%) at 300 °C

Catalyst Al-MCM41 PNA-1 Al-HMS PNA-2 ZSM-5
20 min 14.7 41.3 248 47.6 95.1
3 hr. 13.6 37.5 26.8 424 93.7

characteristic of AI-MCM-41 and Al-HMS, but reflections characteristic of ZSM-5 were
absent. An FTIR band at 550-560 cm™ in both products was considered to be indicative
of unit cells of ZSM-5 highly dispersed in the mesostructure framework. Further
evidence for the presence of entrapped ZSM-5 unit cells was provided by the acid
catalytic activity of NPA-1 and NPA-2 toward cumene cracking. As can be seen from
the cumene conversions listed in Table 1.4, the acid catalytic activity of the modified

mesostructures is substantially greater than the parent mesostructures. It is especially
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noteworthy that PNA-2, obtained by modification of AI-HMS, is more active than the

PNA-1 product derived from AI-MCM-41. The superior activity of AI-HMS and NPA-2

relative to AI-MCM-41 and NPA-1 may again be attributed to the intrinsically more

efficient access to framework catalytic sites for HMS derivatives.
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Chapter 2

Mesoporous Titanosilicate Molecular Sieves Prepared at Ambient
Temperature by Electrostatic (S'T,, S*XT*) and Neutral (S°I°) Assembly
Pathways : A Comparison of Physical Properties and Catalytic Activity

for Peroxide Oxidations

Abstract

Hexagonal mesoporous titanosilicates with distinguishable framework charges and
textural mesoporosity, namely, Ti-MCM-41 and Ti-HMS were prepared at ambient
temperature by electrostatic and neutral assembly processes, respectively. Titanium
incorporation at the 2 mol % level was accompanied by increases in lattice parameters
and wall thickness, but the framework pore size remained unaffected. Cross-linking of
anionic framework of as-synthesized Ti-substituted MCM-41 prepared by electrostatic
S+I- and S*X-I* assembly pathways (where S+ is a quaternary surfactant and I- and I* are
ionic silicon precursors) was enhanced significantly by Ti-substitution, as judged by 29Si
MAS NMR. The neutral framework of as-synthesized Ti-HMS formed by S°I° assembly
(where SO is a primary amine and I° is a neutral silicon preursor) exhibited the same high
degree of cross-linking as the unsubstituted silica analog. UV-VIS and XANES spectra
for the calcined forms of Ti-MCM-41 and Ti-HMS indicated: (i) the presence of site-
isolated Ti species in the framework; (ii) predominantly tetrahedral coordination for Ti,
along with some rehydated five- and six-coordinated sites; (iii) Ti siting that was virtually
independent of the framework assembly pathway. The exceptional catalytic activity in the
case of Ti-HMS, especially toward larger substrates, was attributable to the small
crystallite size and complementary textural mesoporosity that facilitates substrate access

to framework Ti sites .
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2.1 Introduction

Titanium silicalite-1 (denoted TS-1) is an effective active catalyst for the liquid
phase peroxide oxidations of alcohols and alkanes !, the epoxidation of alkenes 2 and the
hydroxylation of aromatics 3. The activity of TS-1 arises from the presence of accessible,
site-isolated Ti centers in the silicalite framework that are capable of undergoing a facile
coordination change and forming an active peroxo-titanium complex 4. Because of the
small pore size of the inorganic framework, the substrates that can be oxidized by TS-1
are limited to species having kinetic diameters < 6 A. However, the recently reported
hexagonal mesoporous silica molecular sieves prepared by electrostatic 54 and neutral "*
surfactant templating pathways offer promising opportunities for the preparation of large
pore TS-1 analogs capable of transforming larger organic molecules.

MCM-41 silicas normally are prepared by one of two possible electrostatic
assembly pathways. The S+I- pathway originally utilized by Mobil researchersS involves
electrostatic interactions and charge matching between positively charged assemblies of
rod-like micelles of quaternary ammonium surfactants (S*) and anionic silicate species (I
). The second pathway, the so-called counterion mediated S*X-I* pathway 6, makes use
of the same surfactant cations under strongly acidic conditions in order to assemble a
positively charged silica precursors (I*). In contrast, HMS derivatives were prepared by
a neutral S°I° assembly pathway that involves hydrogen bonding interactions between
neutral S° primary amine surfactants and neutral I° inorganic precursors (e.g., tetraethyl
orthosilicate) 7. The electrostatic assembly pathways afford as-synthesized materials
with negatively charged framework walls, whereas neutral assembly yields neutral

frameworks and walls that are characteristically thicker than those formed by electrostatic
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assembly. These fundamental differences give rise to distinguishable physical and

chemical properties for MCM-41 and HMS materials.

Corma et al. have reported the preparation and catalytic activity of Ti-MCM-41 9.
The catalyst was obtained by electrostatic S*I- assembly under hydrothermal conditions
at 408 K. We reported the ambient temperature preparation of S*X-I* - assembled Ti-
MCM-41 and S°I° assembled Ti-HMS catalysts 10 and found preliminary evidence for
greater reactivity for the Ti-HMS derivative. More recently, several other groups have
reported on the preparation and catalytic properties of Ti-MCM-41. !1-15 In all instances
the syntheses were accomplished using exclusively the S*I- assembly pathway 5 under
hydrothermal conditions at temperatures above 373K. Thus, relatively little is known
concemning the catalytic activities of titanium-substituted mesoporous molecular sieves
assembled at ambient temperature by electrostatic assembly pathways.

In the present work we investigate the assembly of mesoporous Ti-MCM-41 and Ti-
HMS catalysts via electrostatic and neutral assembly processes at ambient temperature,
compare the physical properties of these products, and elucidate the differences in their

catalytic activities for the peroxide oxidations of large organic molecules.

2.2 Experimental
2.2.1 Materials

TS-1 with an analytically determined titanium loading of 2 mol % was synthesized

by the method of Taramasso et al. 3. Tetraethyl orthosilicate (TEOS), tetraisopropyl

orthotitanate (TIPOT) and tetrapropylammonium hydroxide (TPAOH) were used as a
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source of silica, titanium and template, respectively. The molar composition of the
reaction mixture was 0.022 Ti : 1.0 Si : 0.35 TPAOH : 35 H;O. The synthesis was
accomplished by placing the reaction mixture in an autoclave and heating at 443 K for 48
h under static conditions.

Ti-MCM-41 and Ti-HMS derivatives with equivalent titanium loadings (i.e., ~2 mol
%) were prepared using deionized colloidal silica or TEOS as the source of silica, TIPOT
as a titanium precursor, and long chain alkylammonium or alkylamine surfactants,
respectively, as templates. In contrast to the hydrothermal reaction conditions normally
used to prepare Ti-MCM-41 (i.e. autoclaving above 373 K), our Ti-MCM-41 catalysts
were prepared by ambient temperature synthesis via electrostatic S*I" and S+XT+
assembly. In both of these electrostatic pathways cetyltrimethylammonium cations
(CTMAY) served as the template. For S*I- assembly, a deionized 34 wt % colloidal silica
solution (Aldrich) and TIPOT were added to a solution of template under vigorous
stirring and the pH of the reaction mixture was adjusted to 12 with tetramethylammonium
hydroxide (TMAOH). The molar composition of the reaction mixture was 0.020 Ti : 1.0
Si : 0.50 CTMA* : 1.0 TMAOH : 160 HyO. The preparation of Ti-MCM-41 by the
counterion-mediated pathway (S* X-I*) utilized strongly acidic conditions (pH=1.5) in
order to generate and assemble positively charged silicon species from TEOS. In a
typical preparation the template was dissolved in acidic aqueous solution followed by the
addition of a TEOS/TIPOT solution. A higher Ti : Si gel ratio of 1:10 was used for this
pathway in order to prepare a product with the desired Ti:Si ratio of 2 : 98. The use of
excess Ti for this preparation was necessitated by the high solubility of Ti under strongly

acidic conditions. The composition of the reaction mixture was 0.10 Ti : 1.0 Si : 0.20
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CTMAY : 1.0 HCI : 160 H,O. For both electrostatic pathways, the reaction mixture was
aged under vigorous stirring for 24 h in order to obtain the crystalline Ti-MCM-41
product.

Ti-HMS was synthesized via a neutral S°I° templating pathway using dodecylamine
(DDA) as the surfactant and ethanol (EtOH) as a co-solvent. In a typical preparation the
TEOS/TIPOT solution was added to the solution of DDA in water and ethanol under
vigorous stirring. The molar composition of the reaction mixture was 0.022 Ti : 1.0 Si :
0.20 DDA : 9.0 EtOH : 160 H20. The reaction mixture was aged at ambient temperature
under vigorous stirring for 24 h in order to obtain the crystalline product. For
comparative purposes we have also prepared pure silica MCM-41 and HMS samples by
omitting the Ti source in the above preparations. All samples were filtered, washed
thoroughly with water, dried at ambient temperature and calcined at 923 K for 4 h.

Commercially available samples of MgTiO3, anatase, rutile, neptunite and a sample
of hexadecaphenyl-octasiloxy-spiro-(9, 9)-titanate (denoted spirotitanate 16) were used as
reference materials for XANES analysis. Spirotitanate contains Ti atoms tetrahedrally

coordinated to four siloxy oxygens !7.

2.2.2 Characterization
The powder X-ray diffraction (XRD) patterns of all samples were measured on a

Rigaku Rotaflex diffractometer equipped with a rotating anode and Cu-Kg radiation
(A=1.542 A). In general, the diffraction data were collected by using a continuous scan

mode with a scan speed of 2 degrees (20)/min.
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295i-MAS NMR spectra were measured at 79.5 MHz on a Varian VXR-400S solid
state NMR spectrometer equipped with a magic angle spin probe. For each measurement
the samples were placed in zirconia rotors and spun at 4.2 kHz. The quantitative
determination of Q2, Q3 and Q* sites was accomplished by deconvolution of the spectra.

UV-VIS spectroscopic measurements were carried out on a Shimadzu UV-3101PC
UV-VIS-NIR Scanning Spectrophotometer equipped with an integrating sphere. A

reflection mode with a resolution of 10 nm and BaSO4 reference were used for the
measurements. The collected relative reflection intensity (R.=Rsample/Rreference) Was

transformed into F(R..) by using Kubelka-Munk function F(R..) =(1-R..)%/(2R..) 18. All
spectra were plotted in terms of F(R..) versus wavelengths.

The X-ray absorption spectra were recorded at the Stanford Synchrotron Radiation
Laboratory with a SPEAR storage ring operating at 3 GeV and 50-100 mA. Wiggler
beam line 10-2 was used with a Si-(220) double-crystal monochromator. In order to
reduce contributions from higher harmonics the second monochromator crystal was
detuned to 50% of the maximum intensity. The slit before the monochromator as well as
that in front of the first ion chamber was set to 1 mm height. The energy calibration of
the monochromator was checked between every two spectra by measuring the Ti-K edge
(4966 eV) of a Ti metal foil reference. All spectra were recorded at room temperature
using a continuous-scan technique (QEXAFS) !9. The counting time per data point was
0.5 s and the distance between data points was 0.1 eV 20. The pre-edges were normalized
for absorbance by fitting the spectral region from 4900 to 4950 eV with a Victoreen
function and subtracting it as background absorption. In addition, all spectra were

normalized for atomic absorption by using the average absorption coefficient of the
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region from 5050 to 5150 eV. The normalization was performed in order to compare the
pre-edge peak intensities, energy positions and peak widths. The normalized Ti K-edge
XANES spectra in the energy range of 4960 to 4980 eV were fitted using a series of
symmetric profile functions. Lorentzian and Gaussian functions were used for fitting the
pre-edge and the ascending absorption edge features, respectively. The XANES data of
the micro- and mesoporous titanosilicates were collected in the fluorescence-yield mode,
using a Stern-Heald type detector filled with Ar gas 2!, whereas all reference compounds
were measured in a transmission mode using two ion chambers. The first chamber was
filled with a mixture of He and N (ratio 2:1) and the second only with N,.

N, adsorption-desorption measurements were carried out at 77K on a Coulter
Omnisorp 360CX Sorptometer using a continuous flow measurement mode. Prior
measurements samples were outgassed at 423K and 10-6 Torr for 12 h. The pore size

distributions were calculated by the method of Horvath-Kawazoe 22.

2.2.3 Catalytic experiments

The catalytic performance of all samples was tested for the liquid phase peroxide
oxidation of: (i) methyl methacrylate (MMA) to methyl pyruvate, (ii) styrene to
benzaldehyde, and (iii) 2,6-di-tert-butyl phenol (2, 6-DTBP) to quinones. All reactions
were performed under vigorous stirring in a three-neck glass flask equipped with
condenser and thermometer. The oxidation of MMA and styrene was carried out using
10 mmol of substrate, 30 mg of catalyst, and 10 ml of acetonitrile as a solvent. The

amount of 30 wt % H,0O», the reaction temperature, and reaction time were as follows: (i)

40 mmol H70,, 321 K and 6 h, respectively for MMA oxidation, and (ii) 20 mmol
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H;0,, 321 K, and 3 h, respectively for styrene oxidation. For 2,6-DTBP oxidation,
however, 10 mmol of substrate, 100 mg of catalyst, 10 ml of acetone as a solvent, and 30
mmol 30 wt % H,O, were used, and the reaction was carried out at 335 K for 2 h. The
products were analyzed by means of a GC equipped with a SPB-20 capillary column and
a FID. The reaction products were confirmed by GC-MS analysis. The internal standard
method was used for quantitative analysis of the products. The conversion of substrate

and selectivities to the products were calculated through carbon balance.

2.3 Results and Discussion

2.3.1 Synthesis

A major objective of this study was to elucidate the structure-reactivity relationships
for mesoporous MCM-41 and HMS titanosilicates prepared at ambient temperature by
electrostatic and neutral surfactant templating pathways, respectively. In order to
minimize the number of compositional and structural variables for these two classes of
materials and to focus on potential differences in local Ti siting by XANES spectroscopy,
the ambient temperature synthesis was performed in such a way that the Ti loading for
the two classes of materials was 2 mol % and the framework-confined mesopore size was
2729 A. Cetyltrimethylammonium cations were used as templating surfactant for both
S+I- and S+X-I* electrostatic preparations.

The ambient temperature synthesis of Ti-HMS materials by the neutral S°I° approach
generally affords materials with larger framework-confined pores than the corresponding
S*I- or S*X-I* pathways with surfactants of the same alkyl chain lengths. Thus, in order

to prepare Ti-HMS with an average pore size of 27 A, we selected a primary amine
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template with shorter alkyl chain, namely, dodecylamine. In all cases, template removal

was accomplished by calcination in air at 923 K for 4 hr.

2.3.2 Characterization
(@) XRD. Table 2.1 summarizes the properties of the Ti-MCM-41 and Ti-HMS

catalysts prepared by different templating pathways. Included in the Table for

Table 2.1 Properties of Ti-substituted Mesoporous Silicas Prepared by Ambient
Temperature Synthesis Using Different Templating Pathways

Parameterd MCM-41 MCM-41 HMS
(1) (S+X1+) (S°P)
Surfactant Ci6H33N(CH3)3*  Cj6H33N(CH3)3* C12H25NH?
Ti:Si ratio (mol):
Initial gel 2.0:98 10:90 2.2:97.8
Calcined product 2.2:97.8 2.5:97.5 2.4:.97.6
d100 (A) 38.1 (36.0)b 36.5 (33.0) 40.2 (36.0)
Unit cell (A) 44.0 (41.5) 42.5 (38.1) 46.4 (41.5)
A (A) 4.1(8.5) 5.6 (9.6) 0 (3.0)
H-K pore size (A) 29 (28) 27 (26) 27 (26)
FWT (A) 15(12) 15 (12) 19 (15)
SBET (m?/g) 859 (923) 1354 (1345) 1075 (1108)
Vtotal (cm3/g) 0.70 (0.72) 0.92 (0.95) 1.40 (1.42)
Vir(cm3/g) 0.68 (0.70) 0.90 (0.92) 0.68 (0.70)
Vix (cm3/g) 0.02 (0.02) 0.02 (0.03) 0.72 (0.72)
Vix/Vfr 0.03 (0.03) 0.02 (0.03) 1.06 (1.03)

2 The unit cell parameter = 2d100V3 and A is the unit cell contraction upon calcination.
FWT is the framework wall thickness obtained by subtracting the Horvath-Kawazoe (H-
K) pore size from the unit cell parameter. The total liquid pore volume Vgotal was
estimated at a relative pressure of 0.95. The volume of framework confined mesopores,
Vi, was determined from the upper inflection point of the corresponding adsorption step.
The volume for textural porosity, Vi, was obtained from the equation Vi = Vi) = Vir.
The data in parenthesis are for the pure silica analogs.
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comparison are the structural parameters for the pristine silicates (the values in
parentheses). It should be noted that both S*I- and S°I° pathways, allow for the
essentially complete incorporation of the Ti in the product at the 2 mol % level, whereas
the S*X-I* pathway required a 4-fold excess of Ti in the reaction mixture in order to
achieve a similar Ti loading (2.5 mol%). In addition, the yields of crystalline product
(based on Si) for the S*I- and S° I° pathways were more than 85%, whereas that for the
S+X-I*+ pathway was only about 50%.

All reaction products exhibit similar djgp, unit cell parameters and H-K pore sizes
but Ti-MCM-41 and Ti-HMS catalysts differ dramatically by their lattice contraction
parameters (cf. Table 2.1). The significant lattice contraction exhibited by Ti-MCM-41
samples prepared by the electrostatic S*I- and S+X-I* pathways is not surprising and
could be attributed to the cross-linking of the significant amount of non-fully condensed
framework sylanol groups upon calcination (see below). In contrast Ti-HMS prepared by
neutral templating does not exhibit lattice contraction due to its more fully cross-linked
framework. We have previously noted 7-23, that the neutral S°I° pathway affords
mesoporous materials with more fully cross-linked and thicker framework walls than the
electrostatic templating pathways. We have attributed this phenomenon to the absence of
surfactant-silica oligomer charge matching and silica-silica oligomer charge repulsive
interactions in forming the framework walls. As shown by the data in Table 2.1 the
framework wall thickness of all materials increases upon Ti incorporation into the
framework. The changes in unit cell size and framework wall thickness (cf. Table 2.1)

strongly suggest Ti incorporation in the walls of the mesoporous silicate framework. An
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increase in the unit cell size parameter has been also noted ** to occur upon Ti
incorporation into ZSM-5 frameworks.
It is noteworthy that the specific surface areas are very similar for the pure and Ti-

substituted samples. On the basis of comparisons of the full N, adsorption-desorption

isotherms (not shown), the most significant difference between the Ti-substituted
products prepared by neutral and electrostatic templating pathways is in the substantially
larger textural mesoporosity exhibited by the S°I° assembled Ti-HMS derivative (compare

Vix and V/ Vg ratios in Table 2.1). Ti-HMS exhibits ratio of Vix/Vfr mesoporosity of

1.06 whereas Ti-MCM-41 samples exhibit negligible small ratios in the range of 0.02-
0.03. The enhanced interparticle mesoporosity of Ti-HMS, which is a consequence of the
smaller particle size afforded by neutral surfactant templating, will be shown later to play
an important role in liquid phase catalytic oxidation reactions of large organic molecules.
Figure 2.1 illustrates the XRD patterns of the calcined Ti-MCM-41 and Ti-HMS
materials together with those for the corresponding pure silica analogs. All materials
exhibit well-defined 100 reflections in their XRD patterns. Hexagonal mesostructures
with greater long range order were obtained at ambient temperature conditions by the
S+X-I*+ pathway (Fig. 2.1 A). This is evidenced by the presence of additional relatively
narrow 110 and 200 diffraction lines in the XRD patterns of pure and Ti-substituted
MCM-41 samples. The diffraction patterns of the calcined Ti-MCM-41 and pure silica
analog prepared by S*I- pathway (Fig. 2.1 B) are very similar to these of HMS and Ti-
HMS (Fig. 2.1 C). These patterns generally exhibit 100 reflections accompanied with
broader unresolved higher order reflections. These results are not surprising in view of

the ambient temperature conditions used for the synthesis and the lack of NaOH in our
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S+I- reaction mixtures. We observed similar lack of long range order for a series of pure
silica MCM-41 materials prepared by ambient temperature synthesis by the S+I-
assembly pathway with surfactants of different alkyl chain lengths 23. The lack of long
range order exhibited by the HMS and Ti-HMS samples was attributed to the weak H
bonding forces that govern the neutral S°I° assembly process and to the corresponding
small scattering domain sizes 7.

(b) 2Si MAS NMR. Figure 2.2 shows the 29Si MAS NMR spectra for as-synthesized
samples of pure and Ti-substituted mesoporous molecular sieves prepared by ambient
temperature S*I-, S*X-I* and S°I° assembly. In general, three bands centered at chemical
shifts of -92, -100, and -110 ppm were observed for the MCM-41 derivatives. These
bands can be attributed to Si(OSi)x(OH)4.x framework units where x=2 (Q2), x=3 (Q3)
and x=4 (Q?), respectively. It is noteworthy that all as-synthesized electrostatically-
templated pure and Ti-substituted MCM-41 samples exhibit a higher fraction of
incompletely cross-linked Q2 and Q3 framework units than the S°I°* HMS samples (see
Figure 2.2). In addition, the as-synthesized pure and Ti-substituted HMS samples exhibit
a much higher average ratio of Q¥(Q3+Q?2) units (~2.8) than the as-synthesized pure and
Ti-substituted MCM-41 samples prepared by electrostatic templating (~1.0). This
implies that neutral templating allows for the preparation of mesoporous molecular sieves
with more completely cross-linked frameworks. A noteworthy trend is observed by
comparing the spectra of pure and Ti-substituted MCM-41 samples prepared by both
electrostatic templating pathways. Significantly, Ti incorporation leads to a dramatic
increase of the cross-linking of the MCM-41 framework. This is evidenced by the

increase in fraction of Q sites at the expense of both Q2 and Q3 framework sites. In the
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case of HMS, the increase of the fraction of Q? sites upon Ti incorporation is not as
significant due to the much greater degree of cross- linking exhibited by the pure silica
framework.

An additional consequence of Ti framework incorporation is the broadening of the

corresponding Q2, Q3 and Q* peaks in the 29Si MAS NMR spectra. This broadening

210 e 325 a. HMS, S°I°
b. Ti-MCM-41,

S X
c. Ti-HMS, S° I°

d. Ti-MCM-41,S* I
e. Anatase
f. TS-1

| | | | ]

200 250 300 350 400 450 500
Wavelength (nm)

Figure 2.3 UV-VIS spectra of calcined Ti-containing materials.
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could be attributed to the effect of the Ti sites on the chemical environment of the
adjacent Si atoms.

(c) UV-VIS Diffuse Reflectance Spectroscopy. The incorporation of titanium into
MCM-41 and HMS frameworks was further verified by UV-VIS diffuse reflectance
spectroscopy. The corresponding spectra of the Ti-substituted samples are shown in
Figure 2.3, along with those for TS-1, HMS and anatase. The spectrum for TS-1 shows
an absorption band at 210 nm, whereas bulk titania (anatase) shows a band at 325 nm.
The band at 210 nm was attributed to ligand-to-metal charge transfer associated with
isolated Ti (IV) framework sites in tetrahedral coordination 25. The broad absorption
band centered at 325 nm is typical for ligand-to-metal charge transfer occurring in bulk
titania. The spectra for the mesoporous Ti-MCM-41 and Ti-HMS derivatives lack the
330 nm band characteristic for segregated titania. This suggests that most of the Ti atoms
in our Ti-MCM-41 and Ti-HMS samples occupy site-isolated positions in the silica
framework.

The spectra for Ti-MCM-41 and Ti-HMS also are clearly different from the
spectrum of the microporous TS-1. This is manifested by the much broader character of
the absorption bands centered at 220 and 260-270 nm. The possibility of some Ti-O-Ti
clustering in the framework cannot be unequivocally precluded as amorphous TiO,/SiO,
gels with various Ti content exhibit absorption bands in the intermediate range of 250-
330 nm *. However, the 220 nm band clearly signifies that much of the Ti is in site-
isolated form. The slight shift and the increase in the width of the 220 nm band may be
indicative of a Ti in a distorted tetrahedral environment or of the presence of Ti species in

an octahydral coordination sphere.”"4 However, since there is very little shifting of the
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band toward lower wavelengths upon thermal dehydration, we favor a distorted
tetrahydral environment for most of the Ti sites in Tti-MCM-41 and Ti-HMS. The
XANES data provided below verify this assignment. We believe that this distorted
environment is a direct consequence of the amorphous character of the pore walls (i.e., a
wide variety of Ti-O-Si bond angles).

According to several literature studies, 27 the absorption shoulder at 260-270 nm can
be attributed to the presence of site-isolated Ti atoms in penta- or octahedral
coordination. Similar UV-VIS behavior, indicative of a high fraction of higher
coordinated Ti sites, also has been reported to occur upon hydration of TS-1 27. The
presence of a significant fraction of Ti sites with coordination numbers higher than four
in Ti-MCM-41 and Ti-HMS may be associated with the less crystallographic order in the
pore walls, the much higher accessible surface area, and the larger mesopores. These later
factors, most likely are responsible for the observed enhanced hydration of Ti sites in
MCM-41 and HMS relative to silicalite-1.

It is important to note that the UV-VIS spectra of the electrostatically templated Ti-
MCM-41 and Ti-HMS prepared by neutral templating are very similar and practically
indistinguishable. This implies that the effect of the templating method on the Ti siting in
Ti-MCM-41 and Ti-HMS samples prepared under ambient temperature conditions is
negligible. Therefore, any differences in the catalytic behavior of these materials may

not be attributed to intrinsic differences in Ti-siting.

(d) X -Ray absorption. In order to better elucidate the nature of the Ti-sites in

mesoporous Ti-MCM-41 and Ti-HMS samples we have performed Ti K-edge XANES

measurements 21. For comparison purposes we have also obtained Ti K-edge
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Figure 2.4 Ti K-edge XANES spectra of reference compounds containing Ti in
tetrahedral and octahedral oxygen environments: (a) anatase, (b) rutile, (c)
MgTiO;, (d) neptunite, and (e) spirotitanate.






Table 2.2 Ti K-edge XANES Results for Ti-Containing Materials *

Sample position normalized FWHMbD
(eV) height (eV)
Spirotitanate 4970.2 0.95 0.87
rutile 4971.7 0.20 1.5
anatase 4972.1 0.15 1.7
MgTiO3 4971.5 0.27 0.8
neptunite 4971.6 0.33 1.2
TS-1 4970.5 0.52 1.0
(2 % Ti)
Ti-MCM-+41 4970.7 0.30 1.3
(S*I, 2 % Ti)
Ti-MCM+41 4970.7 0.31 1.3
(S*X1+,2.5 % Ti)
Ti-HMS 4970.8 0.31 13
(S°T°, 2.4 % Ti)

aThe Ti K-edge XANES parameters were obtained by fitting the central
pre-edge peak to a Lorentzian Function. bThe full width at half maximum,
FWHM, is for the central pre-edge peak.

XANES spectra of reference compounds such as octahedrally coordinated anatase, rutile,
MgTiO3, distorted octahedrally coordinated neptunite, tetrahedrally coordinated
spirotitanate and TS-1. Figure 2.4 shows the Ti K-edge XANES spectra of the reference
compounds. All reference compounds with nearly octahedral Ti site symmetry exhibit
multiple, low intensity pre-edge peaks in the region from 4960 to 4980 eV (cf., spectra a,
b). Distortion of the octahedral geometry (inversion symmetry) leads to an increase in
intensity of the central peak, as shown for neptunite 2 (spectra ¢ and d). In contrast, the

spirotitanate with nearly regular tetrahedral geometry exhibits a single, very high
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intensity pre-edge peak (spectrum e). These results (see Figure 2.4 and Table 2.2) are in
good agreement with previous studies. 2932 We may conclude, therefore, that tetrahedral
Ti sites give a single, high intensity pre-edge peak, whereas Ti-sites in regular octahedral
symmetry afford multiple, low intensity pre-edge peaks. Although tetrahedral and highly
distorted octahedral Ti sites exhibit similar single pre-edge peak, the two environments
clearly are distinguishable by means of peak intensity and position.

The Ti K-edge XANES spectra of the mesoporous Ti-MCM-41 and Ti-HMS
samples prepared by electrostatic and neutral templating methods, respectively, are
shown in Figure 2.5. Included for comparison is the spectrum for microporous TS-1.
The following features are evident: (i) the spectra for all three samples are very similar
and contain a sharp pre-edge peak, (ii) the energy position of the pre-edge peak for Ti-
substituted MCM-41 and HMS is similar to that for TS-1 and spirotitanate, but different
from the reference materials containing octahedral Ti (see Table 2.2), (iii) the two Ti-
MCM-41 samples and Ti-HMS exhibit weaker pre-edge peaks that are slightly shifted
toward higher energies and wider FWHM than those of TS-1 and spirotitanate,
suggesting in addition to tetrahedral Ti the probable presence of some Ti higher
coordination sites (see below); (iv) most significantly, the spectral parameters for
calcined Ti-substituted MCM-41 and HMS molecular sieves prepared via different
assembly pathways at ambient temperature are very similar and practically
indistinguishable. These observations are also supported by our UV-VIS results and
show that the Ti siting in mesoporous MCM-41 and HMS materials is independent of the

templating pathway.

46



normalized Absorption

0 . PP B
4.96 5.0
E (keV)

Figure 2.5 Ti K-edge XANES spectra of calcined (a) Ti-HMS prepared by S°I°

assembly, (b) Ti-MCM-41 prepared by S*XT" assembly, (c) Ti-MCM-

41 prepared by S'T assembly, and (d) TS-1.
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Extending somewhat further our interpretation of the XANES data, we note that
Farges et al. performed ab initio multiple-scattering calculations of the Ti K-edge
XANES spectra for mixtures of reference compounds containing Ti atoms with various
coordination. 33 For instance, they calculated that the normalized height of the central
pre-edge peak varies from 0.6 to 1.0 for 4-fold Ti, from 0.4 to 0.7 for S-fold Ti and from
0.05 to 0.27 for 6-fold Ti containing compounds. Besides the differences in intensity, the
4- and 6-fold Ti containing compounds were found to differ by energy position of the

pre-edge peak. The energy position of the pre-edge peak for 6-fold Ti containing

compounds was found to be shifted on average of 1.5 eV toward higher energies. 33
Thus, structures containing mixtures of 4-fold Ti with 5-fold or 6-fold coordinated Ti
sites should exhibit pre-edge peaks with lower intensity that are slightly shifted toward
higher energies. Therefore, the coordination state of Ti-sites in our Ti-MCM-41 and Ti-
HMS materials may well be a mixture of 4-, 5- and 6-fold coordinations with tetrahedral
coordination being in the majority. The higher coordination Ti-sites, are most likely

generated through hydration of the tetrahedrally coordinated sites.

2.3.3 Catalytic results

Corma et al. have demonstrated 9 that Ti-MCM-41 catalyzes the epoxidation of
rather small organic molecules such as hex-1-ene and norbornene. We have reported that
Ti-MCM-41 and Ti-HMS are very effective oxidation catalysts for bulky aromatic
molecules that can not be converted over TS-1, such as 2, 6-DTBP 10, More recently,
several groups have elaborated on the preparation, characterization and catalytic activity
of Ti-MCM-41 11-15 and Ti-HMS 15.34. All of the Ti-MCM-41 catalysts investigated to

date were prepared by prolonged hydrothermal synthesis above 373 K using the
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electrostatic S*I- pathway originally demonstrated by the pioneering work of Mobil 3.
Here we compare the catalytic activity of Ti-MCM-41 and Ti-HMS samples prepared by
ambient temperature synthesis using both S*I- and S*XI* electrostatic templating
pathways and the neutral S°I° templating pathway, respectively. The catalytic
performance of the samples was tested toward olefin and aromatic substrates of different
size, such as the relatively small methyl methacrylate (MMA), styrene and the bulky 2,6-
di-rert-butyl phenol (2,6-DTBP). The catalytic results are summarized in Table 2.3.

The mesoporous Ti-MCM-41 and Ti-HMS exhibit higher catalytic activity than
microporous TS-1 for all reactions. The difference in catalytic activity between the
mesoporous and microporous titanosilicates increases with increasing of the substrate
size. The difference in catalytic activity is very small for the relatively small and
elongated MMA molecule (2-2.5 times higher conversion for the mesoporous catalysts).
However, as the substrate molecule becomes larger and more bulky (styrene and 2,6-
DTBP) the difference becomes much more pronounced. Thus, the difference in catalytic
activity among Ti-MCM-41, Ti-HMS and TS-1 reaches a maximum in the case of 2,6-
DTBP (4 - 11 times higher conversion). This result is not surprising given the fact that
the Ti-active centers are much more accessible in the larger mesopore size frameworks of
Ti-MCM-41 and Ti-HMS. Due to the small micropore size of TS-1 (~6 A), the large 2,6-
DTBP substrate can not penetrate into the framework pores and therefore can not be
transformed (only 4.5 mol % conversion). On the other hand, anatase (bulk titania) was
completely inactive for MMA and styrene oxidation. Its catalytic activity for the

conversion of the large 2,6-DTBP is also negligible (only 4.5 mol %).
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The oxidation of MMA proceeds with higher selectivity to methyl pyruvate (MPV)
over Ti-MCM-41 and Ti-HMS, but the microporous TS-1 affords slightly higher
selectivity to epoxide than Ti-MCM-41 and Ti-HMS (epoxide selectivity not included in
Table 2.3). The tendency of TS-1 to oxidize olefins primarily to epoxides is well
documented 35. A similar trend also is observed for styrene oxidation. Generally, Ti-
MCM-41 and Ti-HMS afford higher selectivity to diol, whereas more epoxide is
produced over the microporous TS-1. The fact that the oxidation of MMA and styrene
over Ti-MCM-41 and Ti-HMS proceeds selectively toward the alcohol derivative
(through the epoxide intermediate) could be a consequence of the more hydrophilic
nature of the amorphous pore walls.

Notari et al. have reported that bulk titania or substituted silicas containing Ti-O-Ti
bonds are not suitable for catalytic peroxide oxidation reactions because they selectively
decompose Hy0,.4 The comparison of the results for the HyO, decomposition over our
samples reveals a very interesting trend (Table 2.3, last column). In accordance with
Notari et al. our anatase sample affords 13 mol % decomposition of H2O;. Both TS-1

and Ti-HMS exhibit lower H,O, peroxide decomposition activity, whereas Ti-MCM-41

samples prepared by electrostatic S*I- and S*X'I* templating methods exhibit a higher
tendency to decompose H20O;. Especially noteworthy is the higher degree of H,0,
decomposition by Ti-MCM-41 prepared by the acidic counterion-mediated pathway S+X-
I*. This result is probably related to the pronounced tendency of the acidic S*X-I*
pathway to impede incorporation of Ti atoms in the silicate framework. All of our
syntheses involving the counterion-mediated pathway required at least a two to four-fold

excess of Ti in the initial gel in order to achieve the desired Ti doping. It may be that the
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strongly acidic conditions used in the synthesis limit the incorporation of Ti atoms in the
mesoporous framework.

A further comparison of the catalytic data reveals that S°I° -assembled Ti-HMS
exhibits activity superior to the electrostatically S*I- and S*X-I*-assembled Ti-MCM-41
samples for all reaction systems. This enhanced activity for Ti-HMS is especially
pronounced in the case of the large 2,6-DTBP. As shown by the data presented in Table
2.1, Ti-MCM-41 samples possess predominantly framework-confined mesoporosity and
little or no significant textural mesoporosity. !0 In contrast, Ti-HMS samples
characteristically exhibit significant complementary textural or interparticle
mesoporosity. The ratio of textural to framework-confined mesoporosity of Ti-HMS is
usually equal or higher than 1, whereas that of Ti-MCM-41 is usually close to zero.
These differences in catalytic behavior of Ti-HMS and Ti-MCM-41 mesoporous
molecular sieves are not due to differences in Ti siting, as judged from UV-VIS and
XANES data. We conclude, therefore, that the superior catalytic activity of Ti-HMS in
liquid phase oxidations is most likely due to the presence of complementary textural
mesoporosity that facilitates access of the framework-confined mesopores, especially by

large organic substrates.

2.4 Conclusions

Hexagonal mesoporous titanosilicates containing 2 mol % Ti - substitution can be
prepared at ambient temperature synthesis via three different surfactant templating
approaches (S*I-, S*X'I*, and S°I°). Electrostatic S*I" assembly of Ti-MCM-41 and

neutral S°I° assembly of Ti-HMS allow for almost complete incorporation of Ti in the
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mesoporous framework (at 2 mol % doping level), whereas electrostatic assembly of Ti-
MCM-41 under acidic conditions via a counterion-mediated S*X I+ pathway impedes Ti
incorporation. The incorporation of Ti in the anionic framework of MCM-41 materials
and in the neutral framework of Ti-HMS mesopore frameworks is accompanied by an
increase of the lattice parameter and the framework wall thickness. The framework
mesopore size of the MCM-41 and HMS samples remains unaffected by the framework
incorporation of Ti atoms. The degree of framework cross-linking of the electrostatic
S+*I- and S+X-T*-templated MCM-41 samples is significantly improved by Ti-substitution
as judged from the 29Si MAS NMR data. The UV-VIS and XANES results for calcined
forms of Ti-MCM-41 and Ti-HMS provide evidence that: (i) Ti species are incorporated
and site-isolated into the framework structure; (ii) Ti atoms are predominantly in a
tetrahedral coordination, but there is the possibility of some Ti sites in five- or six-
coordinated sites . (Higher coordinated Ti-sites most likely are generated by rehydration
of some of the tetrahedrally coordinated sites), and (iii) the Ti siting for the S*I- and S+X-
I* Ti-MCM-41 and for S°I° Ti-HMS are practically indistinguishable. This implies that
the assembly pathway method has little or no effect on the Ti siting, at least when the Ti-
MCM-41 and Ti-HMS samples are prepared at ambient temperature conditions.

A comparison of the catalytic results for the liquid phase peroxide oxidations of
methyl methacrylate (MMA), styrene and 2,6-di-tert-butylphenol (2,6-DTBP) reveals
that Ti-MCM-41 and Ti-HMS exhibit catalytic activities higher than TS-1 for all
reactions. The difference in activity between the mesoporous molecular sieve catalysts
and microporous TS-1 increases with increasing substrate size. The difference in activity

is small for the relatively small MMA molecule, but as the substrate becomes larger, as
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in styrene and, especially 2,6-DTBP, the difference in activity becomes much more
pronounced. This result is not surprising given the much more accessible Ti-active
centers embedded in the larger mesopore size frameworks of Ti-MCM-41 and Ti-HMS.
Due to the small micropore size of TS-1 (~6 A) the large 2,6-DTBP substrate can not
penetrate into the framework pores and therefore can not be transformed. S°I° -assembled
Ti-HMS exhibits greater catalytic activity than the Ti-MCM-41 materials assembled by
electrostatic S*I- and S*X-I* pathways The superior performance of Ti-HMS is
especially pronounced in the case of the large 2,6-DTBP. On the basis of UV-VIS and
XANES data, these differences in catalytic behavior of Ti-HMS and Ti-MCM-41 cannot
be attributed to differences in Ti coordination environment. Bercause Ti-HMS has
thicker framework walls than Ti-MCM-41, an enhancement in the fraction of surface Ti
sites can not be responsible for the greater activity of Ti-HMS. The most distinguishing
structural feature between Ti-HMS and Ti-MCM-41 is the greater inter-particle (textural)
mesoporosity for Ti-HMS. These complementary textural mesoporosity most likely
facilitates substrate transport and access of the framework-confined mesopores, thus

enhancing the catalystic efficiency of Ti-HMS.
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Chapter 3

Tailoring the Framework and Textural Mesopores of
HMS Molecular Sieves Through an Electrically
Neutral (S°I°) Assembly Pathway

Abstract

Water : ethanol solvent mixtures of differing polarity have been used to tailor the
framework and textural mesopores of HMS molecular sieve silicas through an electrically
neutral (S°I°) assembly pathway (S° = dodecyl or tetradecylamine; I° = tetraethyl
orthosilicate). Mesostructure assembly from a water-rich solvent mixture, water : ethanol
= 90 : 10 (v/v), afforded wormhole-like framework structures with a complementary
textural pore volume equal in magnitude to the framework pore volume. An ethanol-rich
mixture, water : ethanol = 35 : 65 (v/v), also formed wormhole-like frameworks, but the
textural porosity was less than 20% of the framework pore volume. HMS derivatives
with high textural porosity were comprised of mesoscale fundamental particles that
aggregate into larger particles. In contrast, HMS mesostructures with low textural
porosity were assembled into much larger aggregates of macroscale spheroid to disk-
shaped fundamental particles. The differences in particle textures were attributed to
differences in I° hydrolysis rates and S°I° nucleation and growth rates in the two solvent
systems. The presence of mesitylene in the reaction mixtures resulted in an expansion of
the framework pores under water-rich conditions. Pore contraction, however, was
observed with mesitylene present under ethanol-rich conditions. This versatile structure-
modifying property of mesitylene in S°I° assembly is explained by the solvent-dependent

binding of the aromatic molecules to two structurally distinct and size-altering
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“dissolved” and “adsorbed” states at the centers and interfacial surfaces of the surfactant
micelle, respectively. Thus, both the framework and the textural pores of HMS silica can
be readily tailored to the needs of a particular materials application through S°I° assembly

by a judicious choice of an appropriate solvent and an auxiliary structure modifier.
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3.1 Introduction

The discovery of Mobil MCM-41 mesoporous molecular sieves ! has stimulated
great interest in the surfactant-directed assembly of mesostructures by sol-gel methods.
Thus far, three general assembly pathways have emerged. First, the electrostatic charge
matching pathway between cationic or anionic surfactant micelles and charged inorganic
precursors. Among these, the so-called S*I- and S-I*+ pathways2.3 represent the most
commonly encountered electrostatic assembly pathways. Counterion mediated S*X-I*+
and S-M*I- assembly processes, where surfactant and inorganic reagents are brought
together at the micelle interface through triple ion interactions, represent extensions of the
charge matching pathway3. The second pathway pairs neutral amine surfactants (S°) or
nonionic polyoxyethylene surfactants (N°) with neutral inorganic precursors (I°) through
hydrogen bonding at the S°I° or N°I° interface#-8. The third general assembly route to
mesostructures exploits dative bond formation between donor groups on the surfactant
and a metal acceptor centers in the inorganic precursor®.

The original synthesis of hexagonal MCM-41 silicas was accomplished through a
S*I- assembly mechanism using quaternary ammonium ions as the surfactant and silicate
anions as the inorganic precursor!. Related mesoporous structures, designated HMS
silicas, have been obtained through S°I° assembly, wherein S° is an alkylamine and I° is a
silicon alkoxideS. In general, surfactant removal from the neutral frameworks HMS
silicas can be achieved by simple solvent extraction, whereas the displacement of the
electrostatically bound surfactants from the anionic framework of as-synthesized MCM-
41 requires proton exchange or destruction of the surfactant by combustion!0, More

importantly, there are significant structural differences between MCM-41 and HMS
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silicas. MCM-41 denvatives typically exhibit three or more X-ray diffraction lines
indicative of long range hexagonal channel packing. In contrast, HMS silicas show one
or, at most, two broad X-ray peaks as a consequence of a small crystallite domain size
and/or a much lower degree of channel packing order.

Although they are distinguishable with regard to structural ordering, MCM-41 and
HMS molecular sieves both exhibit a sharp step in their nitrogen adsorption isotherms,
corresponding to the presence of a regular mesoporous framework. Owing to the very
small elementary particle size of many HMS derivatives, they can exhibit complementary
textural mesopores, in addition to framework pores. The textural pore volumes for HMS
can be up to 1.5 or more times as large as the framework pore volumes, whereas MCM-
41 exhibits very little textural mesoporosity!!. The textural mesopores are important
because they greatly facilitate mass transport to the framework mesopores. For this
reason the catalytic reactivity of HMS is usually superior to MCM-41, especially for
conversions involving large substrates in a liquid reaction medium where reaction rates
are diffusion limited!2.

Another potential benefit of S°I° assembly is the possibility of conducting
mesostructure synthesis in media of diverse polarity. Unlike their ionic counterparts, S°
and I° reagents are generally soluble in a wide range of solvents. Thus, solvation effects
on the rates of hydrolysis and assembly might be an effective means of controlling
structure. One of the objectives of the present study was to examine the possibility of
tailoring both the framework and textural mesopores of HMS silicas by controlling the

polarity of the reaction medium in which the assembly process is carried out. Our
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approach makes use of two water : ethanol compositions to control polarity, one water-
rich and the other ethanol-rich.

We also have investigated the role of mesitylene as an auxiliary structure-
directing agent in both solvent systems. By using solvation effects to shift the
equilibrium between structurally distinct binding states of mesitylene in the surfactant
micelles!3-15, we are able to effect an expansion or contraction of the framework pore
structure of HMS. The ability to control both framework and textural mesoporosity can
be of great value in designing HMS materials as catalysts, adsorbents and sensor

matenals.

3.2 Experiment

HMS molecular sieves were prepared by S°I° assembly pathways in water :
ethanol solvent mixtures of differing composition and polarity. In both reaction media
tetraethyl orthosilicate (TEOS) served as the neutral silica precursor and dodecylamine
and tetradecylamine were the neutral structure director. In a typical synthesis the
surfactant was dissolved in ethanol, and then the desired amount of water was added
under vigorous stirring to obtain a homogeneous solution. TEOS was added to the
surfactant solution and the mixture was allowed to react under stirring at ambient
temperature for about 20 h. The reactions were carried out in an open beaker in a well
ventilated hood to allow for some evaporation of solvent and concentration of the solid
reaction products. When mesitylene was used as an auxiliary structure director, it was
added to the surfactant solution and stirred for 15 minutes before the addition of TEOS.

All of the HMS reaction products were filtered and dried in air. Although the surfactant
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can be readily removed from HMS mesostructures by solvent extraction, there was no
need to recover the surfactant from the small quantities of products formed in the present
work. Consequently, the as synthesized products were directly calcined at 650 °C in air
for 4 h to simutaneously remove the surfactant and dehydroxylate the framework.

For the purposes of probing the effect of solvent polarity on textural porosity, it
was desirable to form HMS silicas from water-rich and ethanol-rich solutions with
equivalent framework porosities. To achieve equivalent framework pore structures, we
used reagent concentrations in the ethanol-rich system that were twice the concentrations
for the water-rich medium. For HMS assembly in the relatively low polarity, ethanol -
rich reaction medium, where water : ethanol volume ratio was 35 : 65 , the molar
composition of the reaction mixture was 1.0 TEOS : 0.25 Surfactant : 18 EtOH : 34H,0.
For assembly in a relatively high polarity, water - rich solvent mixture, namely, 90 : 10
(v/v) water : ethanol, the molar composition was 1.0 TEOS : 0.25 Surfactant : 10 EtOH :
130 H,0.

Powder X-ray diffraction patterns were measured using Cu-K¢q, radiation (A=1.542
A) and a Rigaku Rotaflex diffractometer equipped with a rotating anode operated at 45
kV and 100 mA. The scattering and receiving slits were 1/6 degree and 0.3 degree,
respectively.

N, adsorption and desorption isotherms at -196 °C were obtained on a Coulter
Omnisorp 360CX Sorptometer operated under continuous adsorption mode. Pore size
distributions were calculated from the N; adsorption branch using the Horvath-Kawazoe

model.16

62



100CX

accelerat
estimate!
high ma
about 30
suspensi
minutes.

sectionir

33 Rest



Transmission electron microscopy (TEM) studies were carried out on a JEOL
100CX instrument using an electron beam generated by a CeBg filament and an
acceleration voltage of 120 kV. The resolution of the instrument was about 6 A, as
estimated by indirect measurement of the spherical aberration constant 17 under medium-
high magnification (i.e., 100,000X). Therefore, it was possible to resolve pores above
about 30 A. The specimens were prepared by dipping a carbon coated copper grid into a
suspension (0.1 wt %) of mesoporous material in ethanol that was pre-sonicated for 10
minutes. Attempts to use thin-sectioned specimens were abandoned, because thin

sectioning caused damage and loss of texture-pore information.

3.3 Results

Two versions of HMS silicas were prepared through S°I° assembly at ambient
temperature in reaction media that differed in solvent polarity. In one reaction system the
mesostructures were formed from a “water-rich” solution of 90 : 10 (v/v) water : ethanol.
The other reaction medium was a less polar “ethanol-rich” solution of 35 : 65 (v/v) water
: ethanol. Two S° surfactants, namely, dodecylamine and tetradecylamine, were used as
structure directors. The reaction stoichiometries were the same for both the water-rich
and the ethanol-rich reaction systems (S°/I° = 0.25). When mesitylene (Mes) was present
as an auxiliary structure director, the Mes/S° molar ratio was 1.0 or 4.5.

Figures 3.1 and 3.2 provide N; adsorption-desorption isotherms for the HMS
silicas obtained from dodecylamine and tetradecylamine as structure directors,
respectively. The adsorption properties of the mesostructures assembled from the two

surfactants under the same reaction conditions are qualitatively equivalent. As can be
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Figure 3.1
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N, adsorption-desorption isotherms for HMS silicas assembled at ambient
temperatures from dodecylamine and TEOS: Curves A and B are for
derivatives obtained from a water-rich (water : ethanol = 90 : 20 (v/v)) and
ethanol-rich solution (water : ethanol = 35 : 65 (v/v)); curves C and D are
for derivatives prepared from the same water-rich and ethanol-rich
solutions, but in the presence of mesitylene (Mes/S° = of 1.0). The HK

values are the Horvath-Kawazoe pore diameters.
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Figure 3.2 N, adsorption-desorption isotherms for HMS silicas prepared from
tetradecylamine and TEOS in water-rich and ethanol-rich solution. The

labeling of the isotherms is the same as in Figure 3.1.
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seen from the isotherms labeled A and B in both Figures, the structures obtained from the
water-rich and ethanol-rich solutions give stepped-shaped isotherms at P/Po < 0.4. The
positions of the steps comrespond to Horvath-Kawazoe pore sizes of 28-29A
(S°=C,H,5NH,) and 33-35 A (S° = C;4HNH)).

Although the mesostructures obtained from the water-rich and ethanol-rich media
have equivalent frameworks, the textural mesoporosity, as evidenced by the N
adsorption/desorption in the region P/Po > 0.4, depends dramatically on the polarity of
the medium used for assembly. A textural pore volume even larger than the framework
pore volume can be obtained from the water-rich system, whereas the ethanol-rich
medium generates a mesostructure with little or no textural pores. As will be seen from
TEM images presented below, the high textural mesoporosity for the water-rich system is
associated with the presence of extremely small fundamental particles.

We consider next the effect of mesitylene on the framework pore structure and
textural mesoporosity of HMS silicas assembled from water-rich and ethanol-rich
solutions. The structure mediating properties of mesitylene is manifested in the
adsorption-desorption curves labeled C and D in Figures 3.1 and 3.2. The presence of
mesitylene at Mes/S° = 1 in the water-rich systems causes the adsorption step to be
significantly shifted to higher relative pressure. The shift in the step position corresponds
to a 3-5 A increase in HK pore size. In the ethanol-rich medium, however, the presence
of mesitylene results in a shift of the step position to lower relative pressures,

corresponding to a 5-7 A decrease in HK pore diameter.
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Figure 3.3 N, adsorption-desorption isotherms for a HMS silica prepared from
dodecylamine in water-rich solution in the presence of mesitylene (Mes/S = 4.5): (A)
after calcination at 650 °C with retention of framework and textural mesopores and (B)
after calcination at 1000 °C with collapse of framework pores but with retention of
textural pores. Insert: Horvath-Kawazoe pore size distribution after calcination at 650
°C.
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Although mesitylene can substantially expand or contract the framework pores
depending on the polarity of the reaction medium, it does not alter the key role of the
solvent in regulating the textural porosity. As will be shown below, mesitylene actually
increases the textural mesoporosity under water - rich assembly conditions, but it has only
a minor influence on the extremely low textural pore volume of HMS when assembled
under ethanol - rich conditions.

To further probe the influence of mesitylene on the framework pores assembled
from a water-rich environment, we repeated HMS assembly in 90 : 10 (v/v) water :
ethanol at a much higher Mes/S° ratio of 4.5. As shown by the N isotherms in Figures
3.3, the adsorption step due to framework pore filling is further shifted to higher relative
pressure as a consequence of a HK pore size (38A) that is 9A larger than the value
obtained in the absence of mesitylene. The insert to Figure 3.3 shows the half width of
the HK pore distribution to be ~10 A, a value typical of HMS materials. On the basis of
the hysteresis loop at higher relative pressure, it appears that the textural pore volume is
substantially increased by ~ 50 % from ~<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>