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ABSTRACT

AN APPROACH TO THE DEVELOPMENT OF INTELLIGENT SYSTEMS
THROUGH INTEGRATING FUNCTION-BASED REASONING WITH THE
GENERIC TASKS METHODOLOGY

By

Oleg Yurievich Lukibanov

The research in knowledge-based systems have advanced to a degree
where different schools of thought have developed as well as described a
number of useful methods that solve various kinds of problems. However
powerful these methods are they cannot solve complex problems working alone.
Complex problems require the cooperation of a number of problem-solvers each
contributing to the overall solution. This dissertation refers to such systems as
Integrated Knowledge-Based Systems (I-KBS).

This dissertation research defines a methodology, language, and tool set
that could be used for the description of integrated architectures of I-KBS. The
core of the approach is a modified function-based reasoning theory that enables
decomposition of a modeled entity, its functionality, and a causal network that
explains the functionality of the overall unit.

This dissertation describes the changes that have been made to the
traditional function-based reasoning theory and application of the proposed

methodology to the development of a shell for constructing integrated
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knowledge-based systems - S-Force. The description of the features and
functionality of S-Force is then given on an example construction of an integrated
knowledge-based system.

The dissertation describes the application of the proposed methodology
and S-Force to re-designing the knowledge-based core of the KBS Socharis — a
systems for generating multiple conceptual manufacturing plans for mechanical
assemblies made of polymer composite materials.

In the conclusion, this dissertation compares the developed approach to
other methodologies that promote cooperation between multiple software entities
and poses a hypothesis that the reported research may serve as a basis for the

development of complex, reusable integrated problem-solving architectures.
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1. INTRODUCTION

1.1. Motivation
Since the 1960s research in Knowledge-Based Systems (KBS) has

produced many successful practical applications in various domains. Bu
dissecting problem-solving patterns, several schools of thought developed a
number of general-purpose problem-solving methods (PSM). These methods
are often used to solve a particular task. Meanwhile, the majority of practical
problems require the use of a number of different PSMs to solve the problem at
hand. An alternative to the development of a monolithic, large-sized KBS which
incorporates all necessary PSMs is the development of a KBS that consists of a
number of cooperating problem-solving units each of which is an instantiation of
a specific PSM. Often such an instantiation leads to the development of
separate knowledge-based system resulting in a collection of separate problem-
solving modules. In order to perform a designated function, this collection of
problem-solving modules requires careful and precise assembling or integrating.
Such Integrated Knowledge-Based Systems (I-KBS) are an emphasis of this
dissertation. | define an Integrated Knowledge-Based System as a KBS which
consists of multiple, disparate problem-solving modules co-operating to solve a
given problem.

Ontological research has suggested that the use of shareable domain
ontologies as an inter-agent language is a practical solution to the problem of

communication between disparate modules. However, integration of a number of
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knowledge-based systems in the I-KBS is more than the definition of a
communication media and language; it requires the determination of the control
and information flow as well. Software engineering practices suggest using the
derivatives of object-modeling techniques (OMT) and component-based system
development as an effective way to develop software systems. However, these
methods were often neglected in the methodologies for development of
knowledge-based systems.

The focus of this dissertation is the development of a methodology which
allows the integration of the disjoint knowledge-based systems into a functional I-
KBS.

1.2. Importance of the Research

KBS development methodologies, knowledge acquisition, knowledge re-
use, and integration techniques for large-scale intelligent systems are the topics
of a significant amount of research in the US and Europe. The importance of
KBS research is underscored by the endeavors of European multi-national
projects (such as ESPIRIT-I and ESPIRIT-II (van Heijst, Schreiber et al. 1997)
(Wielinga and Schreiber 1994) and Vital (Motta, O'Hara et al. 1994)) as well as
by support from US governmental agencies (such as DARPA' (DARPA 1998)
and NSF’s? program on Knowledge and Cognitive Systems). In the introduction
to DARPA'’s High Performance Knowledge Bases (HPKB) project, it was noted

that

! Defense Advance Research Project Agency
2 National Science Foundation
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“[The Al KBS community] reached a threshold where the power gained
from applying knowledge based technology is much greater than in the past.
Techniques for creating large knowledge bases have advanced significantly.
Many fundamental problems of how to perform efficient inference on large
knowledge bases have been solved (although others remain). Many
specialized techniques for creating and applying knowledge have matured.
The potential payoff from combining all this research progress into one
program is tremendous. " (DARPA 1998)

This progress in the KBS field made feasible the development and
exploitation of systems intended to solve large and complex problems. However,
not much attention was paid to the issue of development of practical
methodologies and developmental environments that would support building
complex integrated knowledge-based systems.

1.3. Research Context

Advances in Object Modeling Technique laid the basis for the
development of the Universal Modeling Language (UML) (Fowler and Scott
2000) that serves as a very expressive and convenient medium for modeling
complex software systems with intricate communication between its different
components. Rational Rose® — a commercial tool based on the UML - provides
a “what you see is what you get” environment for modeling complex software
systems starting at the conceptual level of requirements definition. As a resuit of
the modeling process Rational Rose® generates a skeletal code in one of the

object-oriented languages of choice: C++, Java, Visual Basic, etc. This skeletal
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code provides guidelines for the designer team by defining the input-output
interface of each object, object specifications, and the channels for inter-object
communications. As long they do not break through the defined in UML
interface, the software engineer can implement the objects and define data
structures without worrying about integration issues. By storing object models
and retrieving them on demand, UML not only allows but encourages reusing
components. At the same time, however, the area of knowledge-based systems’
development lacks any similar methodology applicable to designing large scale,
high performance knowledge-based systems. The need in such a methodology
and a proof-of-the-concept tool motivated this dissertation research.

The Generic Task (GT) approach (Section 3.2.3) provides large-grain
templates for constructing knowledge-based systems. However, GT is brittle in a
sense that its templates are rigid and pre-defined. Therefore, in order to
accommodate a deviation from a template it is necessary to re-program the code
that governs the inference and/or knowledge representation in the template. This
defies the principle of having a certain number of reusable, unchangeable
templates for the problem-solving needs. On the other hand, it is often possible
to identify parts of the overall problem that could be effortlessly tackled by one of
the templates. This poses the problem of how to effectively integrate the
resulting problem-solvers so they not only function properly, but the overall
problem-solving organization is understandable and manageable.

The alternative is to design KBSs following the CommonKADS approach

(Section 3.2.5) and decompose the problem into a large set of primitives and
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then integrate them in a knowledge-based system. Each primitive module is
programmed separately and, on practice, can rarely be reused. In a nutshell, it
also relies on the developer’'s programming skills to implement and integrate
problem-solving modules. This approach results in the system with the problem-
solving architecture concealed inside the code.

This dissertation describes a methodology that eliminates excessive and
unnecessary programming for problems that could be decomposed into smaller
chunks, each of which can be solved by application of the large-grain problem-
solving template. By assuming the black box stance i.e., looking at every
problem-solver as at a black box with known functionality, inputs, and outputs,
and using the Knowledge-Level Architecture Hypothesis (Sticklen 1989) (Section
3.2.2), it is feasible to compose and describe the problem-solving architecture of
the integrated system. The composition of the system includes explicit
specification of communication channels between co-operating entities and
specifying their activation condition, whereas the description of the functionality
of the integrated system should be built on functionality of each participating
| problem-solver, its connections, and its supervising control structures. In
addition, the dissertation methodology provides implicit guidelines for designing
an |-KBS: first, to decompose the problem into the chunks that could be easily
handled by a single pre-defined template and second, define the communication
and control flow between such modules. It is important to understand that the
practical application of a knowledge-level architecture to design I-KBSs became

possible in the light of recent advances in software engineering (Section 3.4),
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communication techniques and approaches (Section 3.4), and component-based
programming (section 3.4.2).
The three mainissues that prompted this dissertation are listed below:

1. The Knowledge-Level Architecture hypothesis (KLA) (Section 3.2.2). The
main idea of KLA is that if an agent [a knowledge based system] is
decomposed into sub-agents [problem-solvers], then the composite agent can
be understood at the knowledge level by a knowledge level description of
sub-agents and specifying the sub-agents’ integration and communication
structure. The KLA model of an integrated KBS is then used for validating the
KBS behavior and finding integration conflicts in the I1-KBS architecture.

2. The application of Function-Based Reasoning (FR) theory to modeling
software systems

3. Advances in ontology research suggest using a domain ontology as a
communication media for inter-agent communication. A domain ontology is
the conceptualization of facts, terms, and assumptions and their inter-
relations in the domain of interest. The purpose of domain ontologies is
threefold (Gruber 1992). First, it helps to organize the domain terminology
and to clarify possible misreadings of a term. Second, it helps in creating a
database backbone for the multitude of problem-solvers in the domain of
interest. Third, the ontology serves as a basis for inter-agent communication.
That is, agents that participate in the problem-solving process communicate

using this ontology and interpret it in the same way.
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I will show that with some augmentations, the FR methodology allows
designing and modeling integrated knowledge-based systems utilizing arbitrary
control structures and with an emphasis on the system’s knowledge level
architecture (KLA). It is possible to recognize three major control structures that
are commonly used in the development of integrated systems:

1. Rigid Control architecture (RC), i.e. all interconnections between problem-
solvers (PS) and execution order are determined during system development
time.

2. Semi-Rigid Control architecture (SRC), i.e. PS’s interconnections are
determined during the system development time. However, the exact order of
operation is decided on during run time.

3. Flexible Control architecture (FC), i.e. neither PS’ interconnections nor
execution order are set a priori but emerge dynamically during the system’s
operation.

Modern methodologies for building integrated systems and multi-agent
systems often concentrate on the implementation of one of the above control
architectures. The methodology proposed in this dissertation aims to enable the
I-KBS developer to use any combination of the control architectures listed above
to closely fit the control flow of the problem at hand.

1.4. Research Objective

The development of an I-KBS poses problems of decomposition, of

knowledge acquisition, and of the integration of pre-built modules. The approach

proposed in this dissertation aims to resolve some of these problems by:
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1.

2.

Providing the means to decompose the problem into the set of manageable
sub-problems and

To organize the integration infrastructure based on the functionality of the
modules called to solve each of these sub-problems.

The research is focused on the problem of developing medium-to-large

scale integrated knowledge-based systems. The process of building such a

system generally includes the following consecutive steps:

To decompose a problem into a set of smaller sub-problems that are easier to
handle from the knowledge-engineering perspective.

To identify the methods that are capable of solving these sub-problems, and if
possible to locate pre-built modules that serve these purposes.

To develop a domain ontology — a vocabulary of domain terms and their
interrelations — to provide a backbone for the individual problem-solving
modules as well as to arrange means for inter-problem-solver
communications.

To implement individual modules.

To integrate individual modules in the target I-KBS leveraging available
control information.

To develop a front-end to the I-KBS that presents the results of the I-KBS run
to an end-user.

In spite of the fact that many of the above listed tasks have been

addressed in often research, the issue of the development of functional I-KBS

with an explicit problem-solving architecture, clear but flexible control structures,
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and adaptable access to the information flow is an open question. The
methodology discussed in this dissertation answers some of these questions.

There are several difficulties that have to be taken into consideration when
approaching these problems:
¢ To correctly identify unitary problem-solving components.

o To correctly organize functional decomposition-composition of the I-KBS.
¢ To unambiguously direct the information and control flow through the I-KBS

The traditional Function-Based Reasoning (FR) gives the means to reason
about a device in terms of the functions of its sub-devices and to compose the
functionality of a device from the functions of its components. Following one of
the branches of FR, which uses the metaphor of device on software system, we
apply this metaphor to an Integrated Knowledge-Based System. To do so, it will
be necessary to augment the traditional Function-Based Reasoning theory to
allow modeling and integrating I-KBSs as well as the explicit assignment of
information and control flow between the cooperating entities.

The core of my approach is the notion of function or role of a unitary
problem-solver that is looked at as a black box with known inputs, outputs, and
functionality. Given the decomposition of the problem at hand into chunks that
could be solved by such unitary problem-solvers, the goal is to compose the
higher-level problem-solver (capable of solving more complex problem) out of
these black boxes. These higher-level problem-solvers in turn are used as black
boxes to form higher level modules, and so on. The functionality of a larger

problem-solver is a composition of the functionalities of lower-level problem-
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solvers. The result of the goal-driven recursive repetition of the composition

procedure is a knowledge-based system that performs the desired function, i.e.

solves the problem.

1.5. Deliverables
The outcome of this work is a shell that allows building integrated
knowledge-based systems using the theoretical framework discussed in this
dissertation. To prove the validity of the methodology the shell is used to re-
design a knowledge-based planning system.
On the KBS side of the research the contributions are:

KBS-1. Augmentation of the Function-Based Reasoning methodology to allows
functional decomposition of integrated knowledge-based systems using a
limited set of unitary problem-solvers as base-line building blocks.

KBS-2. Addition of an Information-Processing layer to the functional modeling
methodology which enables an explicit assignment of information and control
flow through the Functional Model.

KBS-3. Addition of the capability of describing dynamic control over the parts
of the Functional Model of the I-KBS, therefore enabling implementation of
arbitrary distributed control structures and problem-solving units within the |-
KBS.

KBS-4. The development of a shell which supports building I-KBSs in the

described framework.

10
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The domain of choice is the domain of manufacturing with polymer
composite materials®, where | target the existing intelligent manufacturing
planning system — Socharis* — and re-design it using the approach proposed in
the dissertation. The main purpose of this re-design is to ease the maintenance
of the system, since Socharis’s control is directly coded in Smalltalk and can be
modified only by an experienced software engineer. The redesigned system
features:

CMD-1. Possibility of on-the-fly change in the system’s architecture, the
architecture of its components, and the knowledge content. Re-designed in
the developed shell the new Socharis will provide graphical interfaces to
examine every part of the system and the ability modify them if necessary.
Modification can not only affect the knowledge encoded in the system, but
also the control flow that governs the order of the problem-solvers’ activation.

CMD-2. Explicit definition of the information and control flow between the
components of the system that lets the user understand the problem-solving
strategy of Socharis. This, in turn, may be used as an educational instrument
for teaching manufacturing in polymer composites.

An important conjecture that follows from the leveraging Knowledge-level
architecture hypothesis is that the methodology discussed in this dissertation
allows developing reusable integrated problem-solving architectures for non-

trivial tasks in a way that the second-generation expert systems (Section 3.2.2)

3 Composite Manufacturing Domain - CMD
4 Socharis is the Greek name of ancient Egyptian god Sekar — the god of crafts
and construction

11
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prompted the development of reusable problem-solving methods for common
tasks.
1.6. Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 introduces
the domain problem that serves as a proving ground for the advocated approach.
Historical and theoretical background is discussed (Chapter 3). Chapter 4
analyses the underpinning theory of the research. Chapter 5 gives a detailed
statement of the problem, followed by a description of the approach and
implementation framework. An illustrative example of using the developed
framework to build I-KBSs is given in Chapter 6. Re-implementation of I-KBS for
the described domain problem and discussion of the resulting problem-solving
architecture are addressed in Chapter 7. In conclusion (Chapter 8) | address

future research venues and general challenges in KBS research.

12
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2. DOMAIN PROBLEM

Any research in KBS is usually composed of two problems: the domain
problem (e.g. to diagnose a disease, to aid in design, or to find the cause of
malfunction) and the Al problem. The latter is concerned with development of
new or augmented Al theory. The former is concerned with the applying
particular problem solving strategies, techniques, knowledge representation
methods, etc. to solve a domain problem. Without a domain problem a KBS
researcher does not have any means to support the validity of the advocated
approach and, therefore, the described Al method is bound to be merely
theoretic philosophizing.

This dissertation introduces a problem in the domain of composite
materials and demonstrates how the proposed approach to the development of
integrated KBS can be used to solve it. The example domain problem (Martinez,
Lukibanov et al. 1998; Martinez, Lukibanov et al. 1999) is described as follows:

To create a system for generating conceptual manufacturing plans for
mechanical assemblies made of composite materials which satisfies the following
input output specifications.

INPUT: The input to the system is given in terms of a conceptual
composite assembly (CCA) (Lenz, Hawley et al. 1998; Zhou, Lenz et al. 1999).

A part of the CCA called the configuration model represents an assembly
hierarchically, depicting not only assembly-component relationships but also the

relationships between geometric parameters and design features of the

13
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assembly. Within such a hierarchical configuration model, ontological members
include structure objects (an assembly or a subassembly), component objects
(the base level of atomic parts for the structural assembly), joining objects
(fastening one structure or component to another), and feature objects
(expressing such features as holes). An ontology of link types expresses the
relationships between objects. Link types include part-whole links (assembly-
component or assembly-internal joint), join links (expressing connectivity
between objects and the joints between them), and feature links (component-
feature or subassembly-feature). Each component node contains the description
of its type, rough geometry and material class. Each joining node contains
information about joining parameters.

OUTPUT: The output of the system should be a family of conceptual
hierarchical manufacturing plans for the manufacturing of the assembly. The
generated manufacturing plans can be used for estimating both the properties of
the final product and its required manufacturing resources, such as labor, tooling,
machinery, etc. The plan is represented as a directed graph.

The knowledge-based system that performs this function — Socharis - was
created in the Intelligent Systems Laboratory at Michigan State University.
Socharis was created using GT ITS (the Generic Task Integrated Tool Set).

However, this tool set does not support complex control flow, which led the
developers to code all the control information in VisualWorks Smalitalk. Such

“closed source” architecture hinders the maintainability of Socharis especially in

14
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an environment where the knowledge base and the control flow should be
changed and/or tuned for each particular deployment of Socharis.

The next section discusses the architecture of Socharis and describes its
knowledge organization, content, and knowledge-level architecture as well as
provides an introduction to the domain of manufacturing with polymer composite
materials.

2.1. Introduction to Composites

A composite material is a heterogeneous combination of two or more
materials (reinforcing elements, fillers and binders), differing in form or
composition on a macro-scale. The combination results in a material that
maximizes specific performance properties traceable to one of the constituent
materials or to the aggregate composite material. Composite materials have
been termed the “materials of the future”. However, this increased design
flexibility is often accompanied by an increased design complexity. Industrial
designers of composite material systems and architectures work within narrowly
defined sub-areas because of the vast expertise necessary to cover the entire
domain. Consequently, the full design flexibility of composite materials is not
typically realized.

Design for manufacture has been historically more prevalent for polymer
composites than metals. In part, this is because many design factors (e.g. ,
geometry, functional requirements, production rates, and material system) either
constrains or suggests specific composite fabrication technologies. As the

selection of a manufacturing process can greatly affect both the functional

15
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qualities and cost of the final product, manufacturing concerns often dominate
purely design concerns. Even using solely manufacturing constraints, the variety
of available composites fabrication technologies can complicate any conceptual-
level comparison of fabrication alternatives for a part. Additionally, designers’
biases can simply eliminate possible alternate fabrication processes, artificially
limiting the list of available options.

Over the past several years, a software suite has been developed in the
Intelligent Systems Laboratory at Michigan State University to accomplish
integrated design and fabrication planning at the conceptual level (Lenz, Hawley
et al. 1998; Martinez, Lukibanov et al. 1999; Zhou, Lenz et al. 1999)). It
supports the conceptual design/re-design process for the transformation of metal
structural assemblies to polymer composites. This software suite assists
engineers in exploring the space of design and manufacturing possibilities and
evaluating evolving solutions without detailed design or analysis.

The suite produces a family of conceptual composite redesigns from the
original metal part. Each member of this family is a valid redesign option,
meeting the original design requirements. These redesigns are passed to a
manufacturing planner for further evaluation. By reviewing alternative
manufacturing plans suggested for the functionally equivalent conceptual
designs, the designer can rule out those that are less effective and concentrate
on the more effective plans. The resulting solutions will not only satisfy functional

and aesthetic requirements, but can be easily manufactured.

16
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The following discussion presents Socharis (Lukibanov and Martinez
2000), the manufacturing fabrication planning portion of the software suite
mentioned above. It generates a family of applicable conceptual manufacturing
plans from a conceptual description of a composite assembly. The conceptual
manufacturing planning strategy presented previously served as the framework

upon which Socharis was built.

2.2. High-Level Problem-Solving Strategy of Socharis
Figure 1 reflects the high-level problem solving strategy of Socharis, which

mirrors the domain expert view of choosing an appropriate manufacturing plan
for polymer composite assembly (Committee 1987; Bickerton, Stadtfeld et al.
1998). First, it is necessary to convert the description of the problem from the
product designer description (Zhou, Lenz et al. 1999) to manufacturing engineer
terminology. This problem is taken care of by the application of several problem-
solvers that filter and convert the data. Along with translating the input data, this
problem-solving stage takes care of partial assembly ordering — by developing a
skeletal manufacturing plan. This plan is a graphical representation of temporal
assembly constraints that indicate assembly operation precedences based on
the part-subpart relations in the structure description (i.e. part A can not be
connected with part B until subparts of A: A1 and A2 are bonded to part A).

The next sub-problem is to process the converted description of every part
to rule-out unsatisfactory technologies. The list of applicable technologies then

enters the further stage of the problem-solving process which is the basis on

17
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each part’s requirements generates sets of manufacturing parameters, which if
used with the target technology will produced the desired part.

The later stages of the problem-solving process tend to produce multiple
results (a family of applicable manufacturing plans). To help the user to choose
between alternatives the manufacturing plans are ranked by a set of estimators
that rate the relative merits of each process. This stage concludes the problem-
solving process of Socharis.

The problem-solving architecture of Socharis consists of a large number of
cooperating problem-solving agents. A composite materials domain ontology
(Martinez, Lukibanov et al. 1999; Zhou, Lenz et al. 1999) is used to facilitate this
cooperation. This domain ontology provides a vocabulary for representing
knowledge about polymer composite materials.

The domain ontology is a four layer deep hierarchy: Class Category >
Class-> Attributes > Parameters. Each concept of the ontology also contains a
succinct description of any assumptions made. Take, for example, a term
definition for Shape > Shell > {AspectRatio, WallThickness, ...} 2> {{low,
medium, high},...}. An explicit definition of a Shell (e.g. , thin-walled planar or
curvalinear structure) and its quantitative correspondence to the qualitative
values of AspectRatio attribute minimize any potential ambiguity inherent in the
term definition. Such comments are mandatory parts of the representation and

adds meaning to the syntax of the term.
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Figure 1. Problem-solving Strategy of Socharis.
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The purpose of these ontologies is threefold. First, it helps to organize the
domain terminology and to clarify possible misreadings of a term. Second, it
helps in creating a database backbone for the multitude of problem-solvers in the
domain of interest. Third, the ontology serves as a basis for inter-agent
communication. That is, agents that participate in the problem-solving process

communicate using this ontology and interpret it in the same way.

2.3. Problem-Solving Architecture of Socharis

2.3.1. Translation and Skeletal Plan Generation
The task of this stage is to create a skeletal manufacturing plan and to

prepare design parameters that will be processed by technology
selectors/refiners downstream. This task is divided into three sub-tasks: creation
of the skeletal manufacturing plan, data translation, and selection of the feature
addition methods.

Skeletal Plan Creation. Construction of a skeletal manufacturing plan
requires the analysis of the existing conceptual configuration model of the
artifact. The generated skeletal plan is topologically analogous to the design’s
configuration model. At this point, the skeletal plan has only a rudimentary
structure, and any required add-on features have not yet been included in the
manufacturing plan.

These additional details are extracted from the configuration model in a
Data Translation. At this stage, the descriptive information about the

mechanical structure is translated from the terminology used by designers into
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that used by manufacturers. The translation involves a mapping of the design
ontology to the manufacturing ontology.

Feature Addition Method Selection. There are two methods for adding
a feature to a component of a composite part: machining or molding. In
machining, the feature is added to the component after the component has been
fabricated, whereas in molding the feature is incorporated as the component is
produced. The method for creating each individual feature must be decided
based on that feature’s tolerance allowances and the production quantities of the
component.

2.3.2. Generating the Family of Technological Alternatives

After a skeletal plan has been generated, Socharis assigns one or more
fabrication technology to each component within the manufacturing plan. After
each applicable fabrication technology is selected, manufacturing parameters
specific to each selected technology are set.

Technology Selection. The first use of the translated data occurs in this
stage as the appropriate manufacturing technologies are selected. Two
independent problem-solvers select applicable technologies based on (1)
geometrical features of the component (shape, aspect ratio, wall thickness, etc. )
and (2) material features (type of resin, fiber architecture). The results of both
problem solvers are lists of manufacturing technologies that theoretically could
produce a given component. The intersection of these lists, therefore, represents

the list of the technologies that satisfy all criteria given in the input data. The
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technologies contained in this intersection are then passed to the refinement step
for further processing.

Technology Refinement. After the technologies are selected, the
parameters for each technology are defined. These parameters include curing
requirements (e.g. , time, pressure, curing type, post curing), tooling
requirements (e.g. , tooling complexity, tooling material), and so on. The specific
subsets of parameters vary among the different generic technologies.
Component data (e.g. , geometry, material, and add-on features) and global
parameters (e.g. , production, and global tolerance allowances) are used to
define these parameter values. Each generic technology may contain many
different sets of parameter values. Additionally, each component may be
produced with muitiple technologies. Therefore, some way to compare the
generated manufacturing options is required.

2.3.3. Evaluation

Running Socharis results in multiple manufacturing plans for every part in
the assembly. Given the semi-deterministic assembly order, this leads to an
exponential increase in the number of possible manufacturing plans. To enable
navigation of this expansive space of possible manufacturing plans, Socharis’s
last problem-solving stage ranks the technologies according to a predefined set
of merits.

Merit tables are traditionally used in engineering practice for ranking
different design solutions. Every row in a merit table is associated with a critical

manufacturing metric (e.g. , cycle time, tooling turnaround time, and operator skill
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level). Each metric is linked to a weighting factor that reflects its importance to
an engineer. Alternative technologies are ranked according to these merits by
calculating the weighted sum of the estimated metrics.

The specific metrics used in Socharis were selected to enable the
evaluation of time (cycle time, tooling turnaround time), quality of the product
(mechanical properties of the product, geometrical repeatability) and human
factors (operator skill level, operator exposure, labor). This estimation assigns a
qualitative value from one to ten for each metric. The alternative processes are
then ranked according to the value of the weighted sum of the estimated metrics.

The user can limit the design space under examination by requesting that
Socharis only display the best few options for each component to be
manufactured. This is possible because of the merit table evaluations. This
significantly reduces the number of refined fabrication options among which the

user must choose.

2.4. Accomplishments and Shortcomings of Socharis and Application
Domain Problem Statement

One of the most important contributions of Socharis to the area of
conceptual design and manufacturing with composite materials was the
integration of knowledge about eight generic manufacturing technologies in one
system. This knowledge was specifically structured to suit the problem-solving
goals of Socharis: to identify, instantiate, and evaluate manufacturing
technologies for a composite assembly of interest. This concentrated knowledge
source could be used to plan and estimate the manufacturability of the composite

assemblies.
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As an important byproduct of the Socharis project, the research group at
Intelligent Systems Laboratory developed a comprehensive ontology of
manufacturing with composite materials (Lukibanov and Martinez 2000). This
ontology is a four-layer deep class, sub-class hierarchy that accounts for the
terminology used to describe both, the manufacturing processes and any
auxiliary information. This ontology was used as a backbone for the
development of GT-based problem-solvers that cooperate in Socharis.

Establishing and documenting Socharis’s problem-solving architecture led
to the generalization that these architectures representing a generic problem-
solving strategy of conceptual manufacturing planning. This framework is
suitable for developing planning systems in the domains other then polymer
composite materials.

Noted, that advanced users of Socharis have easy access to its
Manufacturing ontology and the knowledge content of the constituent problem-
solvers through the Generic Tasks Integrated Tool Set (GT ITS). GT ITS
features a graphical user interface for modifying knowledge and the internal
structure of problem-solvers. As a result it does not take much effort to update
and augment the knowledge about the processes that are already part of the
Socharis. The same is not true about the overall problem-solving architecture.
In fact, this constitutes the main drawback of Socharis - inability to effortlessly
change mid- and high-level problem-solving architecture.

The reason for this is that the complexity of problem-solving by far

exceeded which was presently supported in the GT ITS. The team of designers
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had to escape to the coding of the global control architecture in VisualWorks ®
Smalitalk programming language. This led to a situation where it is almost
impossible for an outsider to make any changes in the problem solving
architecture. Even seemingly simple tasks such as adding more problem-solvers
for evaluating additional manufacturing technology requires not only the
knowledge of Smalltalk, but also familiarity with existing GT ITS architecture and
code. The application domain problem of this research, consequently, is to
overcome these shortcomings of the present Socharis Implementation.

The task of exposing the problem-solving architecture of Socharis
comprises the application domain goal of this research. The application of the
described in this dissertation methodology allows representing the problem-
solving architecture of Socharis in a graphical, easy to understand way. The
shell for building integrated knowledge-based systems which supports the
presented methodology allows changing Socharis's problem-solving architecture
on the fly, adding and deleting components, reassigning control, and redirecting
the information flow. It is necessary to note that the redesign will affect only
knowledge-based core of Socharis ; other modules of Socharis lie outside the

research focus reported in this dissertation.
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3. PREVIOUS RESEARCH

3.1. Overview of Knowledge-Based Systems
The discussion about control architectures commonly used in the KBS

development precedes the overview of knowledge-based systems to provide a
new line of comparison between different approaches: prevalent control
strategy(ies) and explicitness of their Knowledge Level Architectures (Sticklen
1989). The main idea of Knowledge Architecture Hypothesis is that if an agent is
decomposable into sub-agents, then the larger agent can be understood at the
knowledge level by a knowledge level description of sub-agents and specifying
the sub-agents’ integration and communication structure. KLAH discussed in a
greater detail in Section 3.2.2.

3.1.1. Control Architectures
All currently employed KBS development integration schemes could be

related to one of the control architectures or combinations of these architectures

as described below:

1. Rigid Control architecture (RC), i.e. all interconnections between problem-
solvers (PS) and their execution sequence are determined during system
development time.

2. Semi-Rigid Control architecture (SRC), i.e. PS’s interconnections are
determined during the system development time. However, the exact order of

operation is decided on during run time.
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3. Flexible Control architecture (FC), i.e. neither PS’ interconnections nor
execution order are set a priori but emerge dynamically during the system’s
operation.

These control strategies differ significantly in the expressiveness of their
respective knowledge level architecture (KLA).

RC has an explicit KLA that is understood through input and output
information of the system. Moreover, one can always perform an analysis of the
KLA of any connected subpart of the system by analyzing the roles of each
participating problem solver, information flow, and execution order.
Nevertheless, the application of Rigid Control to the development of KBS for
relatively complex problem rarely results in the most elegant or optimal solution,
since complex problems seldom follow a simple problem-solving strategy that is
covered by Rigid Control. In addition, this approach suffers from brittleness (i.e.
unpredictable results for unexpected inputs) and often.

Similar to the Rigid Control architecture, KLA of the Semi-Rigid Control
could be expressed in terms of its input and conditional output. That is, given
any interconnected subpart of the system and purposes/roles of each
cooperating problem-solver one can determine the conditions in which this
subpart will be active and the role of this subpart in the overall problem-solving
process. However, the main drawback of the Semi-Rigid Control approach is
that it does not provide enough run time flexibility, especially in case where

emergent behavior is important. Another shortcoming is that this approach
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usually requires hand coding of conditional activation of problem-solvers which
complicates maintenance and debugging of KBS.

KLA of Flexible Control is difficult to determine. Given the knowledge-
level description of each of the problem-solvers participating in KBS and the
purpose of the whole system, one can hardly understand the role of an arbitrary
combination of methods since their interconnections and input-output
dependencies are not explicit and emerge only during run time. Flexible Control
provides flexible, dynamic control over global problem solving process.
Nevertheless, this approach also suffers from several shortcomings:

e the termination problem (i.e. how do we know that result has been achieved)
and

o difficulty of knowledge debugging (the need to debug KBSs demands
additional bookkeeping of activation records and problem-solving context).

This dissertation describes the framework that allows developing and
modeling KBSs that is able to use any of these control architectures or their
combination. The implementation supports use of Generic Task (GT)
(Chandrasekaran 1983) problem-solvers as bottom level building blocks for an I-
KBS, however there is no theoretical limitation for types of individual problem-
solvers.

Section 3.1.2 provides an account of knowledge-based systems’
development methodologies with respect to the openness of their knowledge-
level architecture as well as to their ability to handle different kinds of control

strategies. | also compare these methodologies along several directions, such
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as explicitness of the knowledge-level architecture and the availability of the
development shell.

3.1.2. Rule-Based Systems

Despite the serious critique of the rule-based methodology (Buchanan and

Shortliiffe 1984), this approach is extensively used in practice. In fact, the

overwhelming majority of the commercially available KBSs and KBS shells follow

it. The main advantage of this method is its simplicity. All the developer needs
to do is to encode IF-THEN rules using one of a large number of commercially
available rule-based system shells (e.g. CLIPS: C Language Integrated

Production System (Riley 1998) or Jess (Friedman-Hill 1997))

It is easy to see that a conventional rule-based system uses the FC where
each rule is a separate problem solver.
Major drawbacks of this approach (save for the usual critique) are:

e Absence of explicit control, which is usually programmatically encoded in the
conflict resolution strategy.

o Lack of evident knowledge-level architecture. That is, the purpose of each
rule in the KBS is unclear. Moreover, how rules are activated and selected in
case of multiple firing is hidden in the conflict resolution module. This hinders
structural analysis, troubleshooting, and effortiess re-use of rule-based
systems.

3.1.3. Hardwired Systems
Hardwired systems represent a sizable portion of modern industrially used

KBSs. Following this approach, the system is built of a number of modules
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whose ways of cooperation are decided on at the development stage.
Communication is usually done through sending messages over pre-defined
channels. This is a clear example of RC.

There are several benefits in using hardwired methodology. The main
advantage is the explicit control and ability to assess the knowledge-level
architecture of the system. The role of each component of the system can be
easily determined by its input-output information. In addition, pre-established
communication channels between different components of the system give the
basis to judge the role of every inter-connected sub-part of the KBS. This
provides a valuable assistance in determining knowledge flaws and conflicts in
the system. This, in turn, enables easy maintenance of such systems.

The major disadvantage of the hardwired approach to the development of
KBS is the system’s brittleness. That is, the system can function unpredictably
for certain groups of input. Another drawback is the system’s inflexibility to
change global problem-solving strategy without ad hoc methods.

3.1.4. Blackboard-Based Systems

A distinct family of KBS architectures is the successor of the “blackboard”
approach initiated in mid-1970s by HEARSAY-II project (Erman, Hayes-Roth et
al. 1988). One of the first available shells for development of blackboard
systems was Stanford KSL's BB1 (Johnson and Hayes-Roth 1987). BB1 has a

generic blackboard architecture that is represented in Figure 2.
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Knowledge
Sources

Blackboard

Control Shell

Figure 2. Blackboard Architecture

The software specialist modules, which are called knowledge sources
(KSs), contribute information that would lead to the solution of the problem.
Usually, each KS is a planar rule-based system, though KSs’ internal architecture
may follow any suitable problem-solving methodology (Vranes and Stanojevic
1995).

The blackboard is the database that keeps the current problem-solving
state. It could be seen as a collection of global variables accessible by all
participants of the problem-solving process.

The control shell governs the flow of problem-solving activity in the
system. Based on the blackboard context it decides which of the KSs is to run
next. The control shell is also traditionally implemented as a planar set of rules.

Carver et..al. (Carver and Lesser 1992) noticed a control problem with the

blackboard approach: ‘What makes blackboard control difficult is that it can be
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highly problematic to determine expected value of KSIs [knowledge sources]
because there may be complex interrelationships among the KSis.’

The conventional blackboard approach follows the FC. Nevertheless,
modern augmentations to this methodology leverage the convenience of SRC
and RC methods at the knowledge source level. That is the separate knowledge
source might be constructed by following these approaches.

(Hidlum, Sadeh et al. 1996) describe a blackboard-based system where
the blackboard is partitioned into the number of contexts that correspond to
different sets of working assumptions and different solutions and are active at
different times. By doing this the developers limit the amount of knowledge
visible to knowledge sources which, in turn simplifies the control.

One of the attractive features of the blackboard approach is that it fits the
hypothesis about the nature of cognition (Laird, Newell et al. 1987), (Brooks
1986). According to this hypothesis, different modules that are responsible for
different aspects of cognition are active all the time and constantly processing
information. These modules post results of their processes on the common
media, so different sources may use information collected and processed by
different modules.

Another benefit of the approach is its implementational
straightforwardness: given a problem, one needs to break the problem into
smaller chunks without worrying about explicit chunks’ interconnections, one
simply implements a problem solver for each of the chunks and links them to a

shared blackboard.
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However, the blackboard approach sufters from several significant
disadvantages. Lack of explicit structural control knowledge and the inability to
describe its knowledge-level architecture makes it difficult to maintain the
blackboard-based KBS. Moreover it makes it impossible to describe the problem
solving role of any part of the blackboard based KBS.

From the development point of view, the way in which a particular
blackboard KBS is being created defies several major principles of Software
Engineering (Schach 1997).

1. The coupling of different problem-solvers is achieved through the global
variable (the blackboard) which is considered bad practice in SE because it
affects:
1.1.Maintenance: change is difficult, since with each instantiation of PS in

another integrated KBS the developer needs to duplicate all global

variables;
1.2.Security: a PS may be exposed to more data than it needs therefore
allowing for potential breach of security.

| 2. The structure of the generic control module (flat rule base) follows the
principle of coincidental cohesion, i.e. it performs multiple unrelated actions,
which degrades maintainability, and hinders reuse.

3. Data is not encapsulated, that is, every participating problem-solver has direct
access to the variables on the blackboard, which potentially brings the

security problems.

33



32 Task-Sp
System

321 Krow

The imporz
s Hipatnesis (']
rihie level in
Eigimpementat

vl not De a e

£ to the recre

03t of the

(Are .
L"be:“e"t\y' Sunn

em

3% mbyan

O MraALA
~Luted the

,
L

£ kngwe

K ‘Eﬁf Ot CQQ:erq

"y dESC'ite or.

e

"~§'\Z}qg an a

o
Lower

e
- vus YeSea'

~
E.f’_\)'h

3, Ogha
Qe



3.2. Task-Specific Architectures and Integrated Knowledge-Based
System

3.2.1. Knowledge Level Hypothesis
The important milestone in KBS research is certainly Newel's Knowledge

Level Hypothesis (Newell 1980) (KLH), where he suggested the existence of a
knowledge level in computer systems which lies directly above the symbol level
and is implementation independent. Newell argued that the representation itself
should not be a topic of interest, but rather the nature of knowledge and its
relation to the representation. The use of the KLH allows systems description
independent of their internal representation and implementation details, which,
consequently, suggests a systematic approach to the system’s analysis. Newell
also introduced the notion of a rational agent that can be reasoned about in
terms of its knowledge, goals, and behavior.

KLH was criticized in (Sticklen 1989; Velde 1991; Velde 1993) because of
its lack of concern about control knowledge, its non-operational character (it can
only describe existent systems and does not help build new KBS), its not
recognizing an agent’s ability to be decomposable, and its lack of predictive
power. Nevertheless, the power that the KLH provides for KBS analysis guided
numerous research thrusts in the KBS field that investigate problem solving
methods, behaviors, and strategies.

3.2.2. Second Generation Expert Systems
Clancey’s (Clancey 1985) analysis of MYCIN, his description of Heuristic

Classification, and Chandrasekaran’s (Chandrasekaran 1983) work on reusable

problem solving models led to the crystallization of the idea that there are
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common inference strategies or inference structures that can be used for
problem solving. This is the working hypothesis of the Task Specific
Architectures (TSA) ‘branch of' KBS research, which heralded the beginning of
Second Generation of Knowledge-Based Systems in the early eighties. Since
then, methodological approaches to second generation expert systems almost
invariably rely on mapping the structure of a knowledge level model to the
architecture of the application.

McDermott’'s (McDermott 1988) role limiting models, Steel’s (Steels 1990)
components of expertise, and KADS knowledge sources (Balder and Akkermans
1992) are other examples of generalized inference strategies®. The mentioned
methodologies differ in several aspects: separation of the domain factual
knowledge from the problem-solving knowledge, granularity of tasks that are
chosen as basic inferences, etc. Nevertheless, each of the TSA approaches
considers a task decomposable into a set of sub-tasks, where each of the sub-
tasks could be solved by the application of a particular, generalized inference
structure.  Unfortunately, KLH does not provide insights on how this
decomposition could be analyzed. On the contrary, it regards an agent as a non-
decomposable entity.

Sticklen (Sticklen 1989) suggested an augmentation to KLH which he
called Knowledge Level Architecture Hypothesis (KLAH). The main idea of this
hypothesis is that if an agent is decomposable into sub-agents, then the larger

agent can be understood at the knowledge level by a knowledge level description

5 I will discuss the details of each mentioned methodology in the later sections
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of sub-agents and specifying the sub-agents’ integration and communication
structure. Another important contribution of KLAH is that it suggested that it is
possible to create a model of a decomposable agent and use that model as a
problem solver for validating the agent's behavior, finding conflicts in the
architecture. The paper was critiqued in (Clancey 1989; Slator 1989), but the
majority of the criticism was targeted at the philosophical issues raised in
(Sticklen 1989), although not all the critics agreed with the idea of agents’
decomposability. Yet, the similar ideas about agent's decomposability were
investigated by several researchers in KBS community.

Steels (Steels 1990) defined a similar idea of knowledge use level: a level
which lies directly above the knowledge level and which focuses on how a task is
decomposed into manageable sub-tasks, what ordering should be imposed on
the sub-tasks execution, etc. A similar idea underlines the concept of the KADS
task layer where primitive inferences are combined in the problem-solving
structures. KLH has evolved to the stage where it accepts the concept of an
agent’s decomposability.

All task-specific methodologies are based on the idea of task's
decomposability into a number of subtasks, each of which could be handled by a
pre-defined problem-solving method. However, the brittieness of large-grain
Generic Tasks (Chandrasekaran and Johnson 1993) and vague approaches to
task decomposition in small-grain problem-solving methods as in role limiting

methods (McDermott 1988) and KADS (Wielinga and Schreiber 1994) caused
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researchers to develop tools and methodologies that facilitate task
decomposition and sub-task integration processes.
3.2.3. GENERIC TASKS
‘The idea of generic task is not that interesting until we realize that the
way in which generic tasks are executed shows many similarities across
application domains. [for example] In the diagnosis of circuits, cars, power
plants, or diseases, significant elements are in common, specifically, the same
problem solving methods and the same types of domain models. ' (Steels
1990)
The Generic Task (GT) approach is a "large grain" view of problem solving
focused on a number of primitive problem solving types - called "generic tasks".
The GT approach was developed at the Laboratory for Intelligent Research at
Ohio State University by a team of researchers led by Chandrasekaran in late
'70s — early '80s (Chandrasekaran 1983; Chandrasekaran and Johnson 1993).
This approach includes task —level implementation, reusable, and executable
shells that simultaneously support knowledge acquisiton and system
implementation. The list of primitive generic tasks is as follows.
¢ Taxonomic Classification Task — Classify a (possibly complex) description of
a situation as an element, as specific as possible, in classification hierarchy
(Chandrasekaran, Mittal et al. 1979) (usually referred to as "hierarchical
classification")

e Function-based Reasoning - Given a causal understanding of how a "device"

works, answer "what would happen if" type questions (Sticklen and
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Chandrasekaran 1985) (this primitive task was originally called "state
abstraction")

¢ Knowledge Directed Information Passing — Given attributes of some datum
obtain attributes of some other datum, conceptually related to the original
datum

e Object Synthesis by Plan Selection and Refinement — Design an object
satisfying certain specification (Brown 1987) (this primitive task is usually
referred to as "routine design")

¢ Hypothesis matching — Given a set of hypothesis and a set of datum that
describe the problem state, decide if the hypothesis matches the situation

e Abductive Assembly of Explanatory Hypotheses — Given a situation to be
explained by the best explanatory account, and a number of hypotheses,
each associated with degree of belief, and each of which offers to explain a
portion of the data, construct the best composite explanatory hypothesis out
of the given hypotheses.

It could be said that one could never be sure that the list of above sets of

GTs covers all possible situations. Nevertheless, the GT methodology provides

a convenient mechanism for identifying an appropriate problem-solving method

for the task at hand and has been effectively used for the development applied IS

(Sticklen, Kamel et al. 1992; Sticklen, Kamel et al. 1992; Moy, McDowell et al.

1995; EI-Sheikh, Sticklen et al. 1996; Lenz, McDowell et al. 1996; El-Sheikh,

Penney et al. 1997; Kamel, Lukibanov et al. 1997; McDowell, Sticklen et al.

1997), etc.
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ISL’'s Generic Task Toolset (Sticklen, Kamel et al. 1992; Kamel,
Lukibanov et al. 1997), supports the development of integrated RC KBS within
the Generic Task approach. This tool supports development expert systems for
problems with well-defined and run-time unalterable control flow. KLA of the
KBSs built in this tool set is also easily identifiable, since the roles of each
participating specialists and each connected group of specialists are explicitly
specified. Limitations of this method are evident: inability to dynamically adjust
the systems behavior and inability to adopt flexible control architecture, which
leads to the necessity to hard-code control mechanisms programmatically
outside of the shell.

TIPS (Punch 1989) is an architecture that allows integration of existing
GT-based problem-solvers using sponsor-selector mechanism. TIPS is a
collection of problem-solvers linked together via sponsor selectors. To create an
integrated KBS within the TIPS framework the problem is first to decompose it
into GT-based problem-solvers. Then each problem-solving unit is associated
with a distinct sponsors-selector that controls the problem solver's activation.
Finally, it is necessary to specify a priority order for conflict resolution in case of
multiple selectors firing. There are definite advantages in the TIPS architecture
comparing to the pure blackboard approach: it allows leveraging domain control
knowledge and it supports vertical integration where one problem solver can
directly call another. The main drawback of TIPS is that it does not specify the

mechanism on how knowledge is shared between problem solving modules.
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Another interesting GT-based integration approach GT-SOAR (Johnson
1991) is based on SOAR's problem spaces (Laird, Newell et al. 1987). The
author proposed to use SOAR mechanism of problem spaces to dynamically
choose between available small-grain problem-solving methods in order to
achieve the given task described in terms of initial state and goal state. This
approach is similar to that proposed in several research directions within
CommonKADS community, where researchers report on development of
methods for integration of small-grain problem-solvers using blackboard
approach (Glaser 1996) and using specialized grammars (Brazier 1997), etc.

3.2.4. PROTEGE

PROTEGE-! (Tu, Kahn et al. 1989; Tu, Eriksson et al. 1995) is a meta-
tool that generates task-specific expert-system shells from libraries of reusable
problem solving methods, domain-ontology, and knowledge acquisition modules.

KBS created in PROTEGE-ll has strong feel of knowledge-level
architecture through emphasizing explicit role of each participating module or
connected collection of modules inside the expert system. PROTEGE-II
advocates flexible control architecture where the sequence of action could be
planned dynamically during the run-time exploiting agenda-based control.
Nevertheless, the implementation does not allow explicit stating of the control
model inside the shell and requires additional hard-core programming in CLIPS

or C.
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3.2.5. KADS
The KADS® (Knowledge Analysis and Design Support) community takes

the view that the development of KBS is a modeling activity during which the

developer defines different layers of KBS and specifies connections between

them. According to KADS there are several models that need to be specified
during the KBS development cycle: Organizational model, Application model,

Task Model, Model of Expertise, Model of cooperation, Conceptual model, and

Design model. Model of expertise — the core of the KBS — consists of four layers:

1. Static domain knowledge is based on first-order order-sorted predicate
calculus. This level contains domain factual knowledge, relations between
objects etc.

2. Knowledge sources — canonical inference steps - are the traditional generic
methods such as classification, abduction, etc. In addition, the methods for
knowledge transformation, selection and computation.

3. The Task level contains knowledge about how elementary inference engines
can be combined to achieve a certain goal.

4. The Strategic knowledge level determines what goals are relevant to solve a
particular problem.

Numerous KBS development environments that follow this approach were
built over years. This section overviews several KBS building environments that
were rooted in the KADS methodology, but differ in their approach to task

decomposition-integration problem.

® KADS was an ESPIRIT-I European multinational project that included
organizations from France, Germany, Netherlands, and United Kingdom
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The CommonKADS methodology (Wielinga and Schreiber 1994)
promotes design time integration of problem solving methods using domain-
ontology (static domain knowledge model) as communication glue. By defining a
connection between the layers of the KBS developer states that the explicit
communication channels and control strategy during system developing time,
therefore implementing RC or SRC global problem-solving strategy. The main
difficulty that the KBS developer faces following this approach is how to combine
small-grain problem-solving components into a consistent model. On the other
hand, having done this the integration of different parts of the system is being
performed seamiessly.

VITAL (Motta, O'Hara et al. 1994) is another approach originated within
KADS. VITAL takes the iterative viewpoint on the KBS building process, where
the initial problem statement is formalized using special kind of grammar called
GDM (generalized directive model). Then the initial GDM is refined by
application of rules of GDM grammar until it reaches terminal symbols that
represent basic inference mechanisms. Unlike CommonKADS, the VITAL
approach supports combination and integration of generic components by top-
down sentence-refinement process. During this process, all the communication
channels between the inference components along with their execution order are
established automatically. The weakness of this methodology is in the extreme
formalism that the KBS developer has to follow in order to describe the problem
at hand. This formalism is not always capable of reflecting the given problem

adequately.
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Glasser (Glaser 1996) proposed an opportunistic blackboard approach to
the integration of CommonKADS inference engines. The described system
CoMoOMAS supports a model-oriented approach to the construction of KBS, but
instead of determining the cooperation model during the design stage CoMoMAS
argues for the blackboard-like run-time dynamic cooperation model. However,
the described approach does not allow explicit representation of existent control
knowledge, which is its main drawback.

The Table 1 demonstrates comparison between discussed system for
development I-KBSs. The bottom row is reserved for the augmented FR

framework I-KBS construction that is one of the targets of the reported research.

Explicity  of | Global Local control | Ability to | Shell
KLA (1 -5) control strategy handle multiple
strategy control
structures
BB1, BBK 1 FC FC No Yes
PROTEGE-II 3 FC All Yes Yes
Generic Task | 6 RC RC No Yes
Toolset (programming
is needed)
TIPS 4 SRC RC No No
GT SOAR 3 RC FC No No
CommonKADS 5 SRC RC Some S'ever
a
VITAL 5 RC, RC No Yes
Some SRC
CoMoMAS 2 FC FC No No
Conventional FR 5 SRC RC No Yes
Augmented FR ? ? ? ? ?

Table 1. Comparison between the discussed approaches
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3.3. Ontologies and Other approaches to Knowledge Sharing in
Knowledge-Based Systems

Knowledge sharing is one of the keys to the successful development of a
composed system. Use of shared knowledge between cooperating agents
ensures that the agents are able to understand common information necessary
for problem solving. Moreover, it is likely that domain knowledge representation
developed specifically for co-operated problem solving would be reused in later
applications. The following sub-sections describe approaches to knowledge
sharing.

3.3.1. Syntactic Mapping

One of the strategies to achieve the inter-agent understanding is to create
translators that will transform knowledge representation of one agent to
knowledge representation of another agent when needed. In LOOM, for example
(MacGregor 1991), different type of reasoning engines were used for different
parts of problem solving: semantic net reasoning engine was responsible for
terminological reasoning, another — used logical representation. In this case,
information is translated from semantic network representation to Horn's clauses
and back. Interfaces between different types of agents translated information

from one representation to another (Table 2).

FRAME_BASED REPRESENTATION UNARY PREDICATS
Frame_name: Car Frame_name(Car) & Maker (Mercury)
Maker: Mercury & Model (Mystique) & Year (1995) &
Model: Mystique Color (Blue)
Year: 1995
Color: Blue

Table 2. A possible mapping between frame-based and unary predicates
representations
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Another example of syntactic integration is CYC (Lenat and Guha 1990).
Knowledge Base in CYC is divided into two levels: convenient for inference
Frame-Based (FB) representation is backed by First-Order Predicate Calculus
(FOPC) representation in order to “... provide the requisite expressiveness”. In
this case translation is be made in both direction FOPC « FB.

Disadvantages of this type of integration are following (van Heijst,
Schreiber et al. 1997):

o Fixed syntactical mapping restricts expressiveness of representations. For
example, if we are to express some piece of knowledge in some way in one
of the representational formalisms, this will put constraints on how this
knowledge will be represented in the other KR. This also may limit reasoning
ability of a problem-solver as well as expressiveness of knowledge model.

o Sometimes there is no obvious way to map one syntactical representation to
another.

o ltis not feasible to make such converters for every possible representation in
general.

Meanwhile, the simplicity of this methodology allows ad hoc mapping
procedures that can be written on the fly and do not require lead-time for
developing high-level system architecture. This method can also be used for
“hooking up” previously developed agents with new software. Such I-KBSs are
characterized as follows:

e small number of cooperating agents;

45



¢ S Synt :

v 10 Co-0perat:

KBS)is pianr

W) As 3 pe
¥ieted Kno
"Enangng ir
"ty USP'g
nse Semantis
waes) ang
1 Every
¥ee i g

e reses Ccn



e similar syntactic structure of knowledge used by the agents; and
e no co-operation with “foreign” agents (agents, acting outside this particular I-
KBS) is planned.

3.3.2. KIF: Knowledge Interchange Format
An approach to standardization of knowledge representation is being

developed under DARPA support in the KSE project’ (Genesereth, Fikes et al.
1992). As a part of this project, a group of researchers at Stanford University
developed Knowledge Interchange Format (KIF) — a formal language for
interchanging information among disparate computer programs. This language
inherits LISP’s syntax and is a declarative representation of knowledge. The
basic semantics of KIF is a correlation between the terms (constants and
variables) and the sentences of the language and a conceptualization of the
world. Every term denotes an object in the universe of discourse, and every
sentence is either true or false. In order to be true, the sentence should satisfy
the preset conditions and axioms. The authors also introduce non-monotonicity
for handling non-monotonic knowledge. In other words, KIF is a language that
supports First Order Predicate Calculus representation of knowledge with few
additions.

This research is, in fact, the first attempt to standardize knowledge

representation (KR). The authors filed a draft with the American National

7 The DARPA Knowledge Sharing Effort (KSE) is a consortium to develop
conventions facilitating sharing and reuse of knowledge bases and knowledge
based systems. Its goal is to define, develop, and test infrastructure and
supporting technology to enable participants to build much bigger and more
broadly functional systems than could be achieved working alone.
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Standard (Genesereth 1998) in which they suggested that KIF should be a

standard for representation of shared knowledge.

This method has many attractive properties: clarity of representation;
sound logic theory, which allows making proofs; with a few hundred years of
experience with predicates handling and manipulating. Nevertheless, this
representation has some noticeable shortcomings (Ginsberg 1991;
Chandrasekaran and Johnson 1993) that can diminish the usefulness of this
method:

o Different interpretations can treat the same sentence differently, e.g. what is
satisfiable in one interpretation may not be in the other.

¢ Non-logical types of knowledge (e.g. images, video, and audio) can not be
represented using KIF.

e Many KR schemes involve different extensions of FOPC, such as non-
monotonic reasoning, reasoning with limited data, reasoning with noisy data,
and so forth. Given all the differences in modern approaches to KR it seems
impossible to create a language that will capture all current and future trends
in KR without limiting the latter.

o Assuming the hypothesis that everything can be expressed in FOPC, the
translation of an arbitrary knowledge into this form may be a very difficult task.
For example, a translation of a probabilistic database into FOPC must include
an axiomatization of the theory of probability itself.

¢ Expressing arbitrary knowledge using any fixed and standardized KR method

can lead to tailoring knowledge to this representation.
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3.3.3. KQML: the pragmatic approach
The scope of the External Interfaces Group within KSE is the run-time

interactions between knowledge-based systems and other modules in a run-time
environment. Special attention has been given to two important cases -
communication between two knowledge-based systems and communication
between a knowledge-based system and a conventional database management
system. The Knowledge Query and Manipulation Language (KQML) (Finn,
Labrou et al. 1997) language is one of the main results, which has come out of
the external interfaces group of the KSE.

The basis for the KQML approach is the understanding of the fact that
common knowledge representation is not enough (or may not even be
necessary) to make the communication between agents work. Some important
pragmatic issues should be addressed first:
¢ Which agent to communicate with and how to find them.
¢ How to initiate and maintain exchange.
¢ What domain ontology to use.

KQML is concerned primarily with such pragmatic issues.

KQML introduces a new class of agents - communication facilitators -
capable of performing tasks for communication purposes, such as maintaining
registry of service names, forwarding messages, routing messages, etc. Agents
use these facilitators when they need to send a message to another agent.
Facilitators may access other agents using <machine: agent name> with use of

Domain Naming Service across the Internet.
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KQML is based on the balanced parenthesis list. The first element of the
list is performative and the remaining are parameters.

In the message in Figure 3 the agent stock-server asks for one reply
about PRICE IBM, and wishes the value to be returned in variable ?price using

language LPROLOG and ontology NYSE-TIKS.

(ask-one
:content (PRICE IBM ?price)
:receiver stock-server
:language LPROLOG

:ontology NYSE-TICKS)

Figure 3. Example of KQML query.

Much experience has been gathered from the variety of projects which
used KQML for inter-agent communication: Microsoft OLE2, experiment with
distributed CYC based agents over local network at the University of Maryland,
Object Management Group’s Common Object Request Broker Architecture

(CORBA) (Ben-Natan 1995), Xerox’s ILU etc.

3.3.4. Ontologies and Ontolinqua
In order for an agent to reason and exchange information about a domain

of discourse, it must use a conceptualization of that domain. This

conceptualization should provide a vocabulary for representing knowledge about
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the domain. These conceptualizations are usually called domain ontologies or
ontologies® (Gruber 1992)
Ontologies play different roles in knowledge-base development cycle.
Once created for a particular domain the ontology:
e provides the developer with a domain dictionary for representing domain
knowledge;
e provides with the glossary that is available for interacting between the user
and the KBS
e serves as an interoperation dictionary for agents that comprise KBS.
Research of Knowledge System Laboratory at Stanford University led to
the development of Ontolingua (Gruber 1992; Gruber 1993) - the tool (Ontolingua
Server (Fikes 1997)) and a methodology that helps in the development,
maintenance, and use of the domain ontologies. The backbone of Ontolingua is
KIF (which is augmented with the frame-base representation). This
representation allows expressing class — subclass hierarchies, relationships
between classes, functions on relations, and instances of classes that describe
domain knowledge.
The Ontolingua Server enables collaborative development of ontologies
over the Internet. Once logged into the server the user has the ability to create,

load, edit, and save ontologies. The tool also gives possibilities to maintain the

_ ® This definition is different from the definition of Ontology in philosophy where
itis understood as a theory about that what can exist. Throughout this proposal,
I will use term ontology in the KBS sense.
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ontology, check inconsistencies, translate to and from KIF, LOOM, CORBA’s
IDL, etc.

Three main impacts of the Ontolingua research are (i) crystallizing the
idea of inter-agent communication through use of ontology, (ii) enabling the
collaborative development of the domain ontologies, and (iii) sharing the domain
ontologies over the Internet. Different research groups for the development of
vocabularies are using the Ontolingua Server. Examples of such projects are
CommerceNet - providing Internet accessibility to products’ descriptions and
specifications, support of Enterprise project (Uschold and King 1995) in
development ontologies description of business process, and InterMed project
(Gennari, D. E. Oliver et al. 1995) — providing Internet-based medical
vocabulary.

Similar approach to knowledge sharing was suggested in CommonKADS
project. Detailed examples of this approach can be found in (Wielinga and
Schreiber 1994).

3.3.5. Tools for Developing Domain Ontologies
The development of domain ontology often precedes the development of

the software systems that uses it. However, it is often the case that the process
of building domain ontology stretches for the duration of the software
development cycle. An example of such development is the Socharis project,
during which the ontology of manufacturing with composite material was built first
and then was augmented many times during the development of the Socharis

system.
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The authors of Socharis developed Ontology Editor that was specifically
tuned to represent composite manufacturing ontology. As a part of the
dissertation research, this ontology was duplicated using Protégé (Figure 4,
Appendix C) and XML (Figure 5, Appendix D) to demonstrate interchangeability

of tools and methods.

',_,', Piotege/Win OntologyE ditor - [manuT ech_pont]

Fd He Cost St View Window Heb T

EJEIEI .&I@Lﬁl _J
Siot - Defauk | Allowed Classes/Symbols/Vab
O PartT echnology (X_ name

F 3 tookcomplexity T oolComplesity

@mw Labor

] PressureKS|
mtemperatue Temperature

=~ &3 ResinTiansferMold

- 3 Sprapup
E @ TechnologyMisc

+ €3 CureType

- &3 CuringTime

3 DeliverySystem ]

.- &3 FibetFormingMetho

:- &3 HeatedT ool

- &3 HeatingMethod

- 3 Labor

=3 Postcum

. o[ L |

For Help, press F1 I Y

Figure 4. Screenshot of the Manufacturing Ontology in Protégé shell
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- <header id="Manufacturing Ontology">
- <class id="Tooling with Parameters"> .
<category id="Aluminium" />
<category id="Nickel Electroforms” />
<category id="CRP" />
<category id="Ceramics" />
<category id="Polymers" />
<category id="GRP" />
<category id="Cast Iron" />
<category id="Tooling Foam" />
<category id="Steel" />
</class>
- <class id="Technologies with Parameters">
- <category id="Sprayup®>
+ <parameter type="oneOfvar® id="cure type">
<parameter type="oneOfvar" id="pressure-psi" />
+ <parameter type="oneOfvar® id="labor">
<parameter type="oneOfvar" d="temperauture" />
<parameter type="oneOfvar" d="time" />
</category>
+ <category id="Extrusion”>
+ <category id="Filament winding">
# <category id="Resin Transfer Molding">
- <category id="Compression Molding">
- <parameter type="oneOfvar" d="pressure-ksi'>
<value id="0.5-1.5" />
<value 1d="1.5-3.5" />
</parameter>
- <parameter type="oneOfvar" id="labor">
<value id="high" />
<value id="medium" />
<value id="low" />
</parameter> L‘

J I Iy S L Lt I R 7 SRy ppy SR

Figure 5. screenshot of MSIE 5 displaying re-developed in XML
Manufacturing Ontology

Both methods proved adequate for developing domain ontologies.
However, there are several differences between them:
o Protégé is a tool for developing knowledge-acquisition shells and the

developing working ontology is a part of the process. As a result of the
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developed in Protégé framework, ontology conforms to the internal format but
also could be exported in to a Lisp like balanced parenthesis list.

On the other hand, a number of commercially available XML editors let the
ontology designer create ontology by allowing defining hierarchical structures.
Since the focus of XML editors is on the generality, it could take more time to
design ontology in any of them. However, the result — an XML representation of

the domain ontology - is far more accepted than this of Protégé shell.

3.4. Related Research in Software Engineering

3.4.1. From Data Flow Diagrams to the Object Modeling Technique
The data-flow diagram (DFD) (Stevens, G. J. Myers et al. 1974) was

introduced in the early seventies to aid in a structured design of software,
representing data and the processes that transforms data. The DFD supports
the representation of data and processes that transform the data by systematic
decomposition of the system, therefore providing means for describing the
functionality of the system. The DFD allows tracing information and control flow
in the software system by following links in a directed graph where vertices
denote primitive operators (true/false test, assign, etc) and directed edges
represent data and control flow.

The Object-oriented paradigm, the successor of the DFD, is based on the
metaphor of a software system as an object that encapsulates data, and has
methods for manipulating this data. Different objects can communicate through

published interfaces. This approach has numerous advantages over the DFD
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(abstraction, modularity, encapsulation, reuse, etc. ). Nevertheless, it fails to
expressively represent the overall functionality of the system.

The problem attacked by the Object Modeling Technique (OMT) is the one
of constructing formal software specification from an informal high-level
description of software réquirements and specifications.

OMT is composed of object, dynamic, and functional models to provide
complimentary views that graphically describe different aspects of a software
system. A formal software model is usually described in terms of a specification
language based on process algebra (e.g. LOTOS) that allow description of the
system through its input, output, a behavioral expression that models the activity
of the process, and a set of post-conditions. State diagrams usually describe the
dynamic model of the system, and the functional model is captured in data flow
diagrams. The main flaw of this approach is that a well-defined integration
mechanism is virtually non-existent (Wang, Ritcher et al. 1997; Wang and
Cheng 1998).

Universal Modeling Language (UML) (Fowler and Scott 2000) is a
derivative of OMT that enables the development of software systems starting at
the problem definition stage. The development starts with identifying — actors —
functional parts of the system (a frame for future objects) and use cases (i.e.
responsibilities of the actors). Next the developer defines communication
channels and refines object definitions. The final steps are the generation of
wire-frame code in an object-oriented language (such as C++ or Java) that is

used as an object interface definition.
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The described methods while suited for the developing of a common

software product unfortunately cannot be applied directly to the area of KBS

development. The reasons for this are as follows:

1.

During the development of second generation KBS, the engineer usually
deals with modules of well-defined functionality (often available “off-the-
shelf”). Therefore making it unnecessary to formally describe the algorithm,
which underlies the problem-solving process.

The main concerns for KBS developers are similar to the OMT task: how to
map informal specification onto formal methods. The difference is as follows:
in KBS development, usually all methods for information processing are
already coded and the problem is how to decompose the original task into
manageable pieces that will allow direct application of the existent module.
The main bottleneck in the KBS development cycle, where the KBS engineer
spends the most time, is knowledge acquisition. This major problem is not
reflected in any of formal methods for software development.

Nevertheless, OMT provides a convenient metaphor for representing the

cooperating parts of KBS and defining information transfer between those parts.

It may also be advantageous to use OMT formalism to describe the system for

further analysis, maintenance, and reuse.

3.4.2. Component Reuse
Reuse of existing components in constructing software systems improves

productivity and the quality of the developed products. Much of the effort of
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software engineering lately was concentrated on the development of methods
that allow effective reuse of existing modules (Mili, Mili et al. 1995).

The essential step in the component reuse process is the selection of the
“right” component. It is often the case that interface specification and keyword
description are the only available criteria for choosing a component. However,
keywords cannot convey all useful information, unless a special agreement on
the semantics and pragmatics of the keywords exists. One of the attempts to
formalize component description was reported in (Chen and Cheng 1997).
Authors suggest using the Larch family of specification languages to describe the
components. Larch languages allow description of the component in terms of
assumptions (services required by a component), capabilities (services provided
by a component), and domain theory (an algebraic model of a domain).

This method enables the software design process (automated or manual)
to choose a component according to its logical specifications, pre- and post-
conditions, and services, provided or required. However, the other important
aspects of the component’s functionality are not taken into consideration. For
example, it is often required to perform a certain task in a given amount of time;
therefore, it would be desirable to know at least approximately, how fast a
component can perform on a given platform. Other examples of information
possibly required during selection time include:

e various hardware concerns (required networking bandwidth, memory

requirements, processor architecture, etc. ),
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o software concerns (e.g. implementation language, deployment platform,
protocol used), and

e KBS concerns (domain ontology, explanatory possibilities, knowledge base
maintainability, and so forth).

3.4.3. Personal Software Process
The Personal Software Process (PSP) (Ferguson, Humphrey et al. 1997)

developed at Software the Engineering Institute at Carnegie Mellon University
provides a software engineer with a methodology for the consistent development
of software products. This methodology is different from that described above in
the senses that it does not require formalizing of an algorithm, but rather
formalizing the programming discipline. The authors of PSP use the Capability
Maturity Model (CMM) (Hayes and Zubrow 1995) which addresses management
practices in software development.

PSP consists of a series of scripts that define tasks and forms for
recording data, and standards that govern such things as coding practices and
size counting. Figure 6 represents the general cycle of PSP for software
development.

The cyclic process in the middle of Figure 6 is built on several well-known
software-engineering principles: the modular design concept, versioning, and the
divide-and-conquer principle.

PSP was introduced in 1994 and has been put to practice with various

projects in several companies including Motorola and Union Switch, and Signal.
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Figure 6. PSP flow diagram.

3.4.4. Domain Specific Software Architecture
Another approach to software development and reuse was developed as a

result of a five-year research program sponsored by DARPA (Mettala 1992). Itis

called Domain Specific Software Architecture (DSSA) and is based upon the

observations that

1. Distinct software applications can have common architectures.

2. Such common architectures can enable efficient reuse of components across
such applications.

3. Such common architectures are easily recognized in the specific application
domains, in part, because the body of widely understood concepts for a
particular problem domain helps to overcome substantial differences in the

representation of the applications.
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There were six independent projects in the program®. The results of this
program clearly shows that the identification of general trends in software
architectures of a particular domain significantly increases the productivity
through re-use of software, documentation, and formalization of the initial
specifications.

| would like to draw attention to one of the projects in the DSSA program -
DICAM for Vehicle Management performed by the Tecknowledge (Hayes-Roth,
Erman et al. 1992). To achieve maximum results in the development of a
methodology and implementation of a suite of supporting tools for specification,
design, and validation of DICAM applications researchers of Tecknowledge
combined techniques of knowledge engineering and software engineering in
three principle ways:

1. Developing a hybrid control technology that combines important concepts
from real time software engineering with the knowledge-based reasoning
concepts of knowledge engineering.

2. The application of concepts, methods, and tools from knowledge engineering
directly in the software development process. (Knowledge - based models for
domain analysis, classification for taxonomies, abstraction and specialization,
blackboard methods of incremental problem-solving for system development

design, constraint specification and processing in software requirements

? Avionics Navigation, Guidance and Flight Director, Command and Control,
Distributed Intelligent Control and Management (DICAM) for Vehicle
Management, Intelligent Guidance, Navigation and Control, Hybrid Control, and
Prototyping Technology
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management, and knowledge-based expert systems for providing software
development and design assistance. )

3. The applications of software engineering methods to knowledge engineering
(e.g.g., real-time systems development, database centered design,
hierarchical systems, distributed systems, reference architectures, muiti-tool
software engineering etc. ).

According to (Honeywell 1999) automation and reuse can be applied to

80-90% of life cycle activities and can reduce effort by a factor of 2 to 10. The

Table 3 provides examples of estimates for various life cycle activities that might

be produced by particular development groups.

Life cycle activity [ Percent
and changes Reduction
Requirements: reuse requirements, avoid iterations on | 50% of 20% 80% of 20%
requirements
Design: automate analytic model generation, reuse 90% of 20% 95% of 20%
design specifications, avoid coding
simulation/prototype, avoid redesigns
Implementation: automate code generation, reuse 95% of 20% 95% of 20%
code, automate software/system integration, avoid re-
implementations
Testing: reuse test specifications, automate test | 90% of 20% 95% of 20%
code generation, automate trace/coverage analysis,
avoid re-testing unmodified units.
Documentation: automate document generation, | 50% of 20% 80% of 20%
reuse document boilerplate
Total 75% of 100% 90% of 100%
(4X reduction) (10X reduction)

Table 3. Impact of applying DSSA methods to DICAM

3.5. Function-Based Reasoning
The core idea of the described approach is based on associating a

computer system with the engineered device and applying methods of function-
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based reasoning and modeling developed for such devices for computer
programs. This section overviews the theory and practice of function-based
reasoning and presents current state in this field.

3.5.1. Description of Function-based Reasoning
The notion of function is in many ways central for practical engineering.

When a designer designs a device, he/she is concerned with the delivery of a
required function. When a system does not perform its function, diagnostic
reasoning helps identify the reason for the malfunction. Predicting the behavior
of the device can include reasoning about its functionality.

The work of Sembugamoorthy and Chandrasekaran (Sembugamoorthy
and Chandrasekaran 1986) was rooted in research in qualitative physics and
causal reasoning (de Kleer 1977; Hayes 1979; Kuipers 1986; Forbus 1988). This
research resulted in the theoretical framework for representation of a device’s
function and reasoning about a device in terms of its functions. This
methodology is called Function-based Reasoning (FR). In this framework, a
device is modeled through its decomposition into constituent sub-devices, each
with clearly defined function(s)/role(s). The combination of functions of all sub-
devices is targeted to achieve the stated function of the overall device.

The core idea of the approach is to enable capturing the causal
understanding of the device in modular packets where each packet is an
explanation of a purpose/role of the device. A device hierarchy captures the
decomposition of the device into interacting subsystems. The layers in the

device decomposition are linked by annotations in the causality packets to roles
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of lower level sub-devices. This plays a central role to any computation purpose
for which such a functional representation is used.

That is, when one "reads" a functional representation, one starts with a
device at the highest level in the device representation. One is then shown the
functions of the device. These functions are abstract statements of start and end
values (or changes to values) of state variables obtained when the device meets
its function, and the terms under which the function is applicable. Each function
then points to a causal fragment (a behavior of the device) which has typically
been in the form of a state variable description of the changes through which the
device goes in order to achieve its function. This device is annotated with
pointers to the functions of lower level sub-devices:

device=>» function = behavior <
sub-device =» function =» behavior
>. ..

that explains the device functionality from top to bottom.

There are several major notions and terms often-used in FR related
research. Below is the presentation of a compilation of definitions of a subset of
these terms, which will be used throughout this paper.

1. A device is a decomposable entity. Each component of a device is also a
device. A device has associated with its loci or ports of interaction with the
outside word. In many particular cases a port is associated with a substance

it handles (e.g. fluid, gas, electrical current, or data of a certain kind).
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2. Connections between devices use ports as points of interface and carry a
designated substance.

3. A partial description of a device or its environment is called state of the
device. A state is defined through the collection of state variables.

4. Types of functions of a device are distinguished according to the set
suggested by (Keuneke 1989) Control, to Prevent, Control to Make, and
Control to Maintain. This set is being augmented with new applications of the
FR methodology (Lukibanov, Martinez et al. 1998; Martinez, Lukibanov et al.
1998).

5. A function of a device is achieved by the behaviors of its constituent sub-
devices or the laws of the domain of discourse.

6. A behavior is a description of state changes in the device and is called causal
process description (macroexpansion) and it captures causal story of the
device functionality.

7. Every device in the FR representation is shown through the quartet of slots:
Function <ToMake | ToMaintain | . . . > of device <device>
Precondition <precondition(s) on state variable values>
Postcondition <change(s) in state variable values after function>
By <causal fragment which produces desired post-
condition>
Traditionally, the device's functionality is represented through the name of

the function it performs, preconditions that should be satisfied before the device

starts, postcondition expression which becomes TRUE after the device finished
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its operation, and By clause. By clause is the pointer to the behavior of the

device, which achieves the device function through the functions of the

subordinate devices or by means of world'® knowledge and definitions.

The notion of slug of matter is in many ways central for the functional-
reasoning paradigm. The slug is an indivisible fragment of a substance that is
being carried through the causal network that explains the functionality of the
device. The Laws of Conservation dictate that the slug of matter cannot be
changed, modified, or destroyed without applying specific operators that explicitly
perform these operations on it. One “reads” the causal network by tracing the
path of the slug of substance through the functional representation of a device.

Functional representation of a device along with the ability to understand
causal story of the device’s function brings to light several important qualities of
FR that has been leveraged in numerous FR applications:

o FR methodology supports functional and structural representation of the
device in one model, where one is naturally related to another.

e Functional representation supports reasoning which answers a ‘What if?’
question, and allows tracing consequences of an arbitrary action, manifested
through the changes in state variables.

¢ FR supports variable granularities of knowledge in the same model. That is,
there is no bottom level granule for device decomposition. The

decomposition can go on until infinity or until the developer decides that a

"% The "world knowledge" term here refers to the knowledge about the universe
of discourse
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particular level is sufficient for the description of the device's behavior. This
can be leveraged in another attractive quality of the FR approach:

e The ability to explain achieved results by backtracking through the causal
chain from the state that is needed to be explained at the level of explanation
required by the user or a level maximally achievable by a system.

FR methodology is flexible enough to be adapted to various areas. Next,
describe examples of application of FR techniques in different domains are:.

3.5.2. FR for Devices

Pegah’s and Bond’s (Pegah, Bond et al. 1992; Bond and Pegah 1993;
Bond and Pegan 1993) FR model for jet fighter FA-18 fuel system can serve as
an example of the application of the FR methodology to modeling physical
devices for simulation purposes. Another example of such modeling can be
found in (Kamel, Sticklen et al. 1989; Sticklen, Kamel et al. 1991). The test bed
is an automatic cruise control system, which is schematically represented in
Figure 7. In order to model the device for numerical and qualitative simulation
authors extended FR approach with the addition of a new type of function to
calculate and integrate qualitative and quantitative reasoning in a functional
model.

Hawkins (Hawkins, McDowell et al. 1993) has shown that FR can be used
as a tool for the troubleshooting devices. The authors used an augmented FR
approach for diagnosis in the External Active Thermal Control System for space
station Freedom which transfers accumulated heat from inside the station to the

outer space and maintains climate inside the station. The core idea of the
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approach is that the inherent properties of FR enable causal reasoning about the
device and, therefore, once the FR model of the device is complete, the
necessary diagnostic information could be automatically generated. Another
example of using the FR approach to troubleshooting devices was described in
(Price 1996), where the author showed how FR model of the electrical system of

a car is used to identify sneak electric paths.
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Figure 7. Schematics of automatic cruise control

(Modarres 1998) approached the problem of modeling nuclear plants from
the functional viewpoint. The model of a plant consists of several hundred
thousand functional units, which perform main and support functions that are
combined in a functional model. While his approach is somewhat different from
that of the mainstream FR community, it demonstrates important pragmatic

issues: the scalability of functional approach, use of libraries of devices, and
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functional decomposition of a device through the ‘goal-tree success-tree
approach’.

The FR approach was traditionally focused on modeling dynamic
behaviors of devices. A theoretical augmentation allowing FR methodology to
cover the modeling of static devices was proposed in (Lukibanov, Martinez et al.
1998). The authors demonstrated how knowledge of the mechanical structure of
a device coupled with the available functional information could not only capture
the design intent, but also aid in the re-design and in the reverse engineering of
the device.

Another attempt to use FR techniques for design purposes was presented
in (Lossak, Yoshioka et al. 1998). The paper reported joint efforts of Japanese
and German researchers, which resulted in a framework that allowed the use of
libraries of devices for design. Devices are represented functionally with
rudimentary geometrical data that allowed further manual detailing when design
commitments are made.

All previous examples dealt with the engineered entities. However, the FR
approach was successfully applied to modeling biological systems (Sticklen
1987; Sticklen and Tufankji 1992) and medical diagnosis (Tsumoto and Tanake
1995).

3.5.3. FR for Processes

It was noted (Chandrasekaran 1993; Chandrasekaran and Kaindl 1996)
that process modeling is an open problem for the FR approach. However,

processes (engineered or biological) that deal with the transformation and/or
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transport of some kind of substance could benefit from the FR approach. For
example, Lambert in (Lambert, Riera et al. 1997) presented a functional
approach applied to modeling nuclear reprocessing. Another application and
extension of the FR methodology was demonstrated in (Martinez, Lukibanov et
al. 1998). The center of the authors’ attention is the dependencies between
parameters of a manufacturing process and manufactured artifact. The authors
describe how a functional model of a manufacturing process can be leveraged to
not only determine the parameters of a manufactured artifact, but also estimate
the manufacturability of the design.

The main difference between these two approaches is that Lambert .et.
al.. models the process through modeling the objects that perform this process.
On the other hand, in the approach proposed by Martinez et. al.. the process
itself is the subject of modeling through FR techniques.

3.5.4. FR for Software Design and Understanding
A computer program is a special kind of device with well-established

functionality and interfaces. Software systems have strong flavor of causality
that could be understood by following the input data through the software system.
Computer programs in general have well-established decomposition into
subprograms (for procedural or functional programming) or objects (for object-
oriented programming). These properties allow treating a software product as a
device from the FR point of view. (Allemang and Chandrasekaran 1991)
(Hartman and Chandrasekaran 1995) applied the ideas of functional

decomposition to computer programs. The goal of the above research is to aid in
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automatic program understanding and debugging. (Murdoc and Goel 1998)
applied the results of these studies and augmented them in research towards a
functional architecture of reflective agents. A reflective agent is an agent that is
aware of its reasoning. The authors claim that leveraging the FR representation
for agents can greatly improve performance of the system within which these
agents operate. The authors also demonstrate the performance of the proposed
approach using meeting scheduling software as a test bed. Stroulia (Stroulia and
Sorenson 1998) demonstrated the applicability of the FR methodology to
designing and re-designing software. The authors leverage the diagnostic
properties of FR models to find “bottlenecks” in software systems, where the
implementation does not meet the design specifications. Another example of
applying the FR methodology to software design can be found in the description
of ZD system (Liver and Allemang 1995). The authors advocate component-
based software engineering. They show how the FR approach is used to
describe the functionality of software components and make binding decisions
during system integration. The FR approach also gives the possibility to describe
the software architecture, automatically generate a Data Flow Diagram, and
ultimately, capture the design rationale.

3.5.5. State of the Art

The current state of the art research on functional reasoning is focused on
two major points — automatic generation of functional models and incorporating
time into functional models. The first point is directly associated with following

issues:
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Model completeness, which is a twofold problem itself:

— The causal model must be “true”, that is every “rule” in the model must be
correct with respect to the variables of the model.

- At every possible state, the model has to have enough information to
generate the next set of possible states, i.e. the model should be self-
sufficient.

Libraries of devices. This issue has been addressed from both theoretical

and practical points of view in many researches and applications. However,

there are still problems remaining. These problems are concerned with
library organization, device instantiation, property inheritance in the
hierarchical libraries, etc.

Model description. This is the problem of ‘faceplates’, i.e. how to describe the

device with the “right” amount of information for the model assembler to make

an educated decision on using a particular device from the library in the
assembled model.

Incorporating explicit time into the functional representation is an open

problem. Yet, resolving this problem is very important for many different

theoretical and practical purposes, and is essential for the practical
applicability of FR methodology for great many different real life problems.

Such as combining different time sensitive devices (e.g. a model of the cruise

control and a model of climate control) with different time scales into a bigger

model (e.g. a model of a car).
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Problems of designing libraries of device were addressed in (Pegah,
Hawkins et al. 1994) and now are being revisited and extended in ongoing
research at Intelligent Systems Laboratory at Michigan State University. In the
same research, Hawkins addresses the problem of incorporating time into the
functional models and associated sub-problems.

There are a number of problems directly or indirectly associated with the
described venues of the research. Some of them will be addressed in the
proposed research.

3.6. Conclusion

| would like to re-iterate the important theoretical and practical sources
that prompted and contributed to this dissertation research.

1 Introduction of reusable problem-solving methods and task-specific
architectures in the KBS research allows concentrating on the
decomposition of a problem into the set of manageable units, where each
unit has predefined functionality and inference strategy.

2 The Generic Task branch of TSA and the legacy software package
(GT ITS) proved to be an effective tool for building practical small-scale
KBSs.

3 Advances in integration methodologies and inter-object communication
techniques allowed identification of generic control architectures and
methods that allow integration of distributed units into a functional system.

4 Ontological research enabled the development of domain ontologies

that are used to share knowledge between separate parties.
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5 Universal Modeling Language and component-based software

engineering take a black box point of view at the software modules, which
allows concentrating on the modules’ functionality and treating the
problem of integration of this modules separately.

6 The Function-Based Reasoning paradigm provided a functional
perspective on any engineered or biological device. The extension of the
FR paradigm on software systems enables their functional decomposition
thus allowing concentrating on the function of every participating module,
gradual problem decomposition, and progressive knowledge acquisition.
The next section will show how the listed above theories are used to build

methodology that supports the development of integrated knowledge-based

systems.
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4. ANALYSIS AND A THEORY BEHIND APPROACH

4.1. Introduction
To build a knowledge-based system that solves a domain problem is to

create a software system that will model the functionality of the domain expert,

i.e. solves the tasks usually performed by domain expert. More often than not

this means that an internal I-KBS architecture should copy (at least partially)

experts’ thought structure. The process of eliciting this structure and underlying

domain knowledge — knowledge acquisition - is the core problem that has to be

solved during the construction of a knowledge-based system. In the case when

building a knowledge system involves reuse of existing problem-solving modules,

the task of system building expands to include issues of integrating disparate

problem-solving modules. Generally, the whole system building process could

be divided into five major stages:

1. Assess the problem at hand and decompose it into manageable sub-
problems.

2. Organize them in problem - sub-problem structure (so the solution of sub-
problems leads to the solution of a larger problem)

3. Acquire problem-solving units responsible for solution of sub-problems

4. Determine information flow between problem-solving units by explicitly or
implicitly connecting problem-solvers’ inputs and outputs as well as
designating a working vocabulary and structure of messages that are being

passed between units
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5. Define necessary control that would manage activation of each participating
problem-solving unit.

The next Section lists issues that are not covered in this research and its
reasons. The rest of this Chapter describes how the approach developed as a
part of the research effort and covers the described above stages.

4.2. Whatis Not Covered by the Approach?

This dissertation intentionally omits problems of developing domain
ontology. A domain ontology serves, as a backbone for building Integrated
Knowledge Based Systems by providing working vocabulary that is syntactically
and semantically understood by all participating units. The reason for leaving out
such an important issue is that recent progress in ontological research resulted in
the number of methods and tools for generating robust domain ontologies
(Section 3.3). In addition, eXtensible Markup Language (XML) became de facto
industry standard for developing domain vocabularies that in many cases play a
role of ontologies by allowing store and reuse domain factual knowledge in
flexible pre-defined structures. The application side of the dissertation (redesign
of Socharis) is based in part on the ontology of manufacturing with composite
materials that was developed as a part of the Socharis project.

Another major KBS problem that is excluded from the scope of the
research: is the problem of building individual problem-solvers (a substantial part
of I-KBS building process). The reason for this is that research in Task-Specific
Architectures (TSA) already produced a well-populated group of problem-solving

methods that could be successfully applied to solve isolated problems of ordinary
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complexity. However, the practical issues of integration of multiple problem
solvers in to a working system were not in the focus of the research community.
This research instead, centers on methodology that uses these problem-solving
methods to develop large integrated KBSs. In fact, this dissertation is built on the
foundation of one of schools of TSA — Generic Task approach — which supplies
the unitary problem-solvers for building I-KBS in the described framework.
4.3. Theoretical Premise
Sticklen’s Knowledge-Level Architecture Hypothesis, Steels’s Knowledge
Use Level, and Van de Welde’'s Modeling Libraries have one thing in common: all
three of them consider the structural organization of problem-solving units
(methods) as a crucial step in designing, describing, or modeling an intelligent
system. The main thought behind these theories is that given the functionality of
each agent and all the connections among the agents in the system it will be
possible to understand the behavior of the system, and its sub-parts. While
intuitively accurate, neither of these theories suggests how to organize agents,
how to provide communication channels, and how to control execution order. ,
except for Van de Velde in (Velde 1994) where he suggested using any of the
available methodologies (CommonKADS, Vital, etc. ) to do so. However, he
stopped short of describing a mechanism that could lead to the realization of the
Modeling Libraries. This dissertation is based on the premise that Function-
Based Reasoning/Function-Based Modeling is able to model such structures in

all their richness.
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The Generic Task methodology serves as another important theoretical
cornerstone of the described approach. Generic tasks proved to be a convenient
instrument in knowledge acquisition along with development and deployment of
knowledge-based systems. However the brittieness of GT templates caused the
developers of KBSs programmatically alter the pre-defined inference engine
and/or knowledge representation to adapt them to the problem at hand.
Extending generic tasks, this dissertation capitalizes on the large-grain view of
the problem-solving process at the same time allowing modifying control among
the cooperating entities without re-programming problem-solving templates. In a
sense, this approach enforces guidelines for designing an I-KBS using the set of
pre-defined templates. The basic principle is to divide the problem into a number
of smaller more manageable parts that could be solved by an application of a
single template without altering it. Then integrate the resulting knowledge-based
systems into a functioning I-KBS by defining control and information flow
between them.

However, it is important to understand that the only quality of Generic
Tasks that has been heavily leveraged here is the possibility to apply the black-
box point of view on any GT-based problem-solvers. This is because of the fact
that each GT-based unitary KBS is self-sufficient in the sense that it contains all
knowledge necessary for problem-solving as well an inference module. The
significant conclusion is that any self-contained problem-solver could be used in
the extension of the described methodology as long as its functionality could be

“black boxed”.
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4.4. FR as a Structure Modeling Methodology
Inherent properties of the FR methodology — that sees a device as a

recursive hierarchy of sub-devices — allow considering a software system (such
as an integrated knowledge-based system) as a hierarchy of sub-systems.
Along this line, the FR modeling mirrors the Rational Unified Process (RUP)
(Fowler and Scott 2000) that considers structural decomposition of the software
system as one of the stages of software development. RUP recently has
become an industry standard for development of large, well documented
software systems. Having its roots in Capability Maturity Model (Section 3.4.3)
and Object Modeling Technique (Section 3.4.1), RUP goes beyond structural
modeling and defines documenting policy, use-case models, block diagrams, etc.
By following the Rational Unified Process the designer ideally finishes by
generating skeletal code for the software system being designed. One of the
RUP’s shortcomings in modeling knowledge-based systems comes from its
ability of transforming the design intent into the code. Often, when dealing with
knowledge-based systems the code is not important (inference engine is already
written and being reused), but knowledge representation is not. However, RUP
does not have facilities to operate with complex knowledge models often intrinsic
for knowledge-based systems.

Meanwhile, the use of the Function-Based Modeling techniques for
problem decomposition allows the I-KBS designer concentrating on knowledge
structure and representation, rather than on low-level methods for data handling.
In addition, the natural for FR ability to arbitrarily choose the level of

decomposition and explicitly define functionality of every participating subsystem
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comes particularly handy when modeling the system out of the readily available
components.
4.5. Limitations of the Traditional FR Approach
In spite of the adequacy of the traditional FR methodology in modeling |-

KBS’ structure this theory suffers from several limitations:

e The lack of an adequate ontology capable of describing the functionality of
problem-solving units.

¢ |nability to distinguish between different parts of the substance that is being
passed through the functional model, i.e. treating it as an inseparable slug of
matter.

o Weakness of the pre-condition clause that made it very difficult to state
complex conditions on the activation of parts of the functional model, which
adds to the absence of complex control structures within the functional model.

These drawbacks limit application of the FR techniques to modeling
software systems to primitive ones. Systems with a simple information flow and

straightforward functionality.

4.6. Extension of Function-Based Reasoning Methodology: Functional
Ontology

The implemented in this dissertation extension to the function-based
reasoning methodology deals with the issues outlined in previous section. The
problem of insufficient ontology is managed thorough augmentation of functional
ontology with new types of functionality and behavior (Section 5.2.1). The
addition to the functional ontology in the presented research agrees with the use

of GT-based problem-solvers as bottom-level modules. That is, the functional
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ontology is extended to describe functionality and behavior of specific types of
problem-solving methods: hierarchical classifier and multiple routine designers.
It is possible to carry on this extension further to include any other types of
problem-solvers should they be chosen as a building block, therefore extending
the usefulness of the methodology beyond the Generic Task framework.

The use of augmented functional ontology not only helps to accurately
describe the functionality of every component of modeled I-KBS, but also directs
the problem decomposition process by suggesting available problem-solving
methods and, by doing that, implicitly guiding the I-KBS designer to dissect the
problem into the chunks manageable by available problem-solving methods.

Another advantage of using such augmented functional ontology is as
follows. According to the theory of task-specific architectures, every problem-
solving method has a specific knowledge structure associated with it. Therefore,
definition of a method automatically specifies an associate with this method
knowledge representation. If we turn this argument around, than it could be said
that one could identify an applicable problem-solving method by analyzing
available knowledge and its representation. Consequently, a fixed set of
problem-solving methods (an explicit enumeration in the functional ontology)
enables matching of knowledge structures in domain of interest to available
knowledge representation. This also could be used as an instrument in problem
decomposition process.

The implementation of this extension to the FR methodology is described

in detail in Section 5.2.1 of this dissertation.
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4.7. Extension of Function-Based Reasoning Methodology:
Information Processing

Conventionally, a FR model deals with a s/lug of substance (Section 3.5)
that travels through a causal model. This slug of matter cannot appear,
disappear, or transform (by changing in nature and magnitude) without
application of specifically stated operations. While this is sufficient for the
majority of engineered devices, a software system requires different approach.
Information, that travels through the software system is not a monolithic s/ug but
rather a collection of information streams each of which travels by a different
(possibly independent) trajectory and could be created or destroyed without
contradicting to any of conservation laws (which are of concern when dealing
with physical devices).

This dissertation introduces Port Managers that address both of the listed
above concerns. Port Manager is an auxiliary device associated with every
component of functional decomposition. Its main role is to supervise input and
output variables of the device, translate them into internal representation if
needed, connect with other port managers, and control activation of the
corresponding device depending on the current problem-solving context. Port
managers envelop their respective devices, therefore enforcing the black box
point of view. The only way to access a device is through the input and output
variables that are published in the device’s port manager.

Any part of the I-KBS could be connected (dynamically or statically) to any
number of co-operating modules. Any sub-set of input or output variables can

participate in such connections. To support this quality of software systems port
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managers should be capable of performing multiple variable mappings, linking
output variables of one device/problem-solver to input variables of another.
Exercising multiple mapping mechanisms, the I-KBS developer can effectively
model arbitrary information flow among the participating problem-solving
modules. This feature could be related to the object-oriented programming
techniques where the designer encapsulates data and methods and provides
interfaces to access them from outside.

Another problem that was listed as a shortcoming of the traditional FR, is
the weakness of the control structures — preconditions — a Boolean expression
on model’'s state variables. Precondition is the only way to gain dynamic control
over the execution: when precondition is satisfied the sub-device activates.
While satisfactory for modeling engineered devices where the amount of
modeled through variable substances small enough, this form of control seriously
hinders adequate modeling of software systems.

Port managers can considerably strengthen FR techniques in this respect.
Port managers could not only perform all types of precondition checking, but also
add controls, specific for problem-solving types participating in an |-KBS
construction. This could be justified by the fact that different problem-solvers
produce results of different structure that may require specific attention (e.g.
enumerating and filtering). These different kinds of results might in turn be used
by other problem-solvers. It is the task of port managers to recognize these
structures and act correspondingly so that the problem-solver would receive input

parameters of structure that agrees with it interface specification.
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Ideally, a well-planned I-KBS should conform to a single domain ontology
to achieve uniform understanding among participating entities. In case this rule
is compromised, port managers should provide translating capability that would
transform the outputs of one module to the input of another.

In short, a port manager could be compared with a plug
adapter/transformer kit that a savvy traveler caries around the world to plug to
different electrical and telephone outlets with different voltages and configuration,
so his or her device keeps receiving energy and data in different locations from
different sources without being concerned of device’s malfunction.

4.8. Conclusion

The combination of the described in previous sections augmentations to
the traditional Function-Based reasoning paradigm allows adequate description
of the architecture of an Integrated Knowledge-Based System capitalizing on the
functionality of the participating units, functional task-subtask decomposition, and
explicit direction of the information flow. The major change that allows
description of the I-KBS is the addition of the facility of port managers that handle
the information and control flow. Without this change the application of the FR
methodology falls short in competent modeling of I-KBSs because of its inability
to express multiple flows of the substance through the functional model as well
as deficiency of the control mechanism.

Augmentation of the functional ontology, on the other side, lets the I-KBS
designer concentrate on the directed decomposition of the problem at hand into

chunks that could be handled by the units whose functionality is expressed in the
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augmented functional ontology. A flexible nature of this functional ontology
permits its extension to include description of different problem-solving modules
therefore adapting to new problems.

The next step is to present a consistent methodology that if followed, will
result in the I-KBS that solves the problem of interest. The next chapter
introduces such a methodology and describes each proposed theoretical

augmentation from the practical, implementational standpoint.
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5. PROBLEM STATEMENT AND APPROACH

5.1. Problem Statement
The goal of this research is to develop a framework for design and

deployment of integrated knowledge-based systems. This research addresses

the following problems:

1. Rapid modeling of system architecture for development of problem-solving
architectures and on-the-fly modifications of existing systems.

2. Guiding the task decomposition process by assisting in the identification of
the constituent sub-parts of the system, mapping the identified sub-tasks to
the existing problem-solving methods, and re-using of existing problem-
solvers.

3. Integrating pre-built problem-solvers into the target system, leveraging control
knowledge and using the domain ontology for the inter-agent communication.
5.2. Approach

Following the proposed approach, building of an I-KBS is divided into
three stages. Each stage corresponds to the construction of one of three I-KBS’
models:

1. Task-subtask decomposition model or Problem-Solving Hierarchy (PSH): a
recursive division of the problem into smaller problems that could be tackled
by unitary problem solvers.

2. Functional Model: shows a function (or a role) of each part of the I-KBS in the

problem-solving process.
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3. Information-Processing Model: shows how information (variables and control)
is used and is passed between the different parts of the I-KBS.

PSH can be understood as a recursive, domain dependent division of an
overall problem into sub-problems that bottoms at the level where every identified
sub-problem can be solved by some a priori identified method. This Problem
Solving Hierarchy does not reflect a problem-solving flow but rather is a static
decomposition, similar to the device-sub-device decomposition of the
conventional FR. PSH allows the user and the designer to immediately assess
all problem-solving units of an I-KBS, to see problem-sub-problem decomposition
of the task at hand, and to access other models of the I-KBS.

The Functional Model enables the designer to look at the function of each
node of the PSH, where the function/role of every leaf of PSH is tied to a
particular unitary problem solver or a formula. The function(s) of every
intermediate node and the function(s) of the root of the PSH are composed of the
functions of the other nodes of PSH. The Functional Model is used to generate a
macroexpansion of the I-KBS: a network that shows a causal chain of firing
different parts of PSH. This macroexpansion gives a high-level picture of the
functionality of an I-KBS by imposing partial temporal order on the execution of
the components of PSH.

The traditional FR is usually concentrated on a particular slug of matter
that passes through the functional model. In the case of I-KBS, this slug of
matter is information that is being passed from one node of the Functional Model

to another. The Information-Processing Model is used to unambiguously
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determine the direction of each stream of the information flow as well as to define
some control data used to manage the nodes of the Functional Model.

5.2.1. Integrated Knowledge-Based System as a Device: Functional

T Ontology
| use a metaphor of a device to describe a problem-solver. According to

the approaches described in previous section, its input data, output data, and a
problem-solving behavior (which achieves a function of a problem-solver) can
characterize any problem-solver. This characterization mirrors the functional
characterization of a device, thus enabling use of the FR methodology on
software systems including problem solvers.

Following FR methodology an integrated KBS can be decomposed as
follows:

Problem-solver = function <» behavior=»

Sub-problem solver = function = behavior. .

The decomposition goes further on until the developer reaches the level of
granularity, where a type of each leaf-level sub-problem solver is matched to the
- one from the pre-defined set.

One of the advantages of the FR approach is the possibility of estimating
the overall behavior of the device, based on the behaviors of the sub-devices,
and knowledge of connectivity of devices. To leverage this property of FR it is
necessary to define bottom level behavior of every problem solver. However, it is
difficult to describe precise behavior of an arbitrary problem-solver. Such

description is bound to be very general and therefore, will not give good leverage
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during task decomposition. Focusing on specific types of problem-solvers allows
precise defining of function and behavior for each of selected PS. These
definitions are reflected in the proposed augmentation to the current functional
ontology. The changed functional ontology will aid in the task decomposition
process by:
1. supplying the guidelines for choosing a particular PS method for a given
situation and,
2. by directing decomposition of a task into sub-tasks whose PS architecture
matches to that of predefined problem-solving methods.
In the research, | focus on classes of problem-solvers that are covered by
a sub-set of GT problem-solvers: Hierarchical Classifier, Multiple Routine
Designer, and Structured Matcher. However, there are no theoretical limitations
on the type, size, etc. of bottom level problem-solver.
The proposed functional ontology for the set of GT problem-solvers is

shown on Table 4.

88




“Probl
Solver

Tipe.
Kirar
| Clast

Rouin
Design

Sety
Katche,

M
RS

R

Solver



Problem Function | State Pre-condition Post-
Solver Variables condition
Type
Hierarchica | To A set of All symptom Class
| Classifier | Classify Symptom variables are set Variable is
To Select | variables; Or specific set of set
Class symptom variables is | Or
Variable set classification
failed
Routine To Design | A set of Design requirements | All Design
Designer To Set design variables are set parameters
Parameter | requirements are set
s variables; Or
A set of Design
design Failed
parameters
Structured | To A set of All characteristic Matched
Matcher Establish | characteristic | variables are set Or | hypothesis
variables; Specific set of found
Set of characteristic Or
hypothesis variables is set Matching
failed
Algorithmi | To A set of input | All input variables Output
cPS Calculate | variables; are set Or variables are
A set of Specific set of input | set
output variables is set
variables
A Problem | To Solve | A setofinput | Allinput variables Output
Solver variables; are set variables are
A set of Or Specific set of set
output input variables is set
variables

Table 4. Function ontology for GT based problem solvers
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5.2.2. Augmenting Precondition Clause
In order to seamlessly apply the FR methodology to designing and

modeling I-KBSs it is necessary to overcome several theoretical and
implementational shortcomings.

In the traditional FR approach, the set of preconditions is the only method
to control a device. According to this methodology, every function of the device
is described as follows:

1. Function: <ToMake | ToMaintain I. . . > of device <device>

2. Precondition: <precondition(s) on state variable values>

3. Postcondition: <change(s) in state variable values after function>

4. By: <causal fragment which produces desired postcondition>

The precondition generally takes the form of logical propositions on state
variables. If the precondition is satisfied then the function is performed and the
postcondition is set. In many cases, when FR is used to model a simple
engineered device this control method is adequate and sufficient. However, for
more complex devices with elaborate behavior(s) it is not enough to state simple
Boolean preconditions. If we are to model moderate complexity KBS using FR
methodology, we need to be able to express complex conditional and causal
relationships between different parts of the system, conditional activation of
problem-solvers, translating outputs of one module to another, etc. To tackle
these issues | introduce the notion of port managers, an auxiliary mechanism
associated with every device in the FR model, that would control its. Control

functions of a port manager include, but not limited to: converting input to a
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device from one ontology to another, performing elaborate problem-solving
procedures on inputs (e.g. deciding on defaults according to a specific problem
solving context), conditional transferring of control to parent or children devices,
etc.

Where each module performs self-activation based on the current problem
solving-context, the use of port managers will enable an adequate modeling of
flexible and semi-restricted control. In fact, port managers will play the role of
distributed control units associated with each device. In the cases, where the
developer chooses to use a centralized control scheme, the function of port
managers will be reduced to the traditional checking of Boolean preconditions.

In addition to performing operations on inputs, the port manager might
execute some actions on the output of the device. An example situation where
one might use the output port manager is when the result of the device is not
satisfactory and it would be preferable to run the device again. In this case, the
port manager would modify the input data for the device and run the device
again. Another use of a port manager for output may be the conditional
activation of subordinate devices, when the developer elects to center the control
at the parent device instead of transferring it to the sub-devices.

The introduction of port managers will enable the modeling and designing
integrated KBS with arbitrary architectures. Nevertheless, in order to provide
advanced design and modeling capability it is necessary to overcome another
shortcoming of the current FR implementation: its inability to perform internal

cycles.
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5.2.3. Tying it All Together
In the proposed framework, the construction of an |-KBS starts with

developing a problem-solving hierarchy, which is a direct application of a
traditional FR methodology augmented as described in Section 5.2.1. The PSH
is built top-down by specifying a root of hierarchy first and then working down.
This creates branches and sub-devices where the leaf nodes are associated with
a unitary problem-solver, executed through “by knowledge” or “by definition”
behavior, or simple formula. The resuit of this process is the hierarchy that
shows the decomposition of the problem into subproblems as perceived by a
knowledge engineer.

The next step is the development of a Functional Model of an I-KBS. This
is usually done bottom-up by assigning the functionality to the leaf nodes and
then composing the functionality of the intermediate nodes from already defined
functional chunks. A macroexpansion of a Functional Model gives a view on the
causal network of the interoperation of the parts of the I-KBS. In fact, the causal
net defines partial execution order; where the nodes located farther from the
source are being executed after those nodes located closer to the source. It is
important to know that the execution order defined in macroexpansion does not
necessarily express the real activation of the nodes, since the activation of the
node depends also on preconditions and conditional operations defined through
the port managers.

Following the development of the Functional Model the I-KBS designer
defines the Information-Processing Model that determines the activation

conditions for every node of the functional model as well as variable mappings
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between different parts of PSH. Described in Section 5.2.2 port managers
perform these tasks by allowing the designer to access the variables of each port
connect output variables of another port and arrange for their values to be
passed to the internal variables of the node. Port managers enables the
designer to create elaborate preconditions that not only include a series of
predicates but also define collections of variables that have to be determined
before the node is being activated. In addition, the port managers allow
prescribing sets of default values to the variables to support standard reasoning
as well as reasoning with incomplete data. On top of that, port managers provide
a number of features that aid the designer in the process of developing I-KBS.

The detailed illustrated example of building I-KBSs using the developed
shell is given in the Chapter 6. In that Chapter | discussed not only the
particularities of implementation of the proposed methodology, but also give a
tutorial on building an I-KBS according to the described approach.

5.3. Framework Restrictions

To correctly design an I-KBS using the described approach it is important
to understand restrictions that it applies to the design process and the resulting
architectures. The nature of the restrictions lies in the position that the described
approach takes towards a unitary problem-solving unit. The unitary problem-
solver is considered a black box. That is, a problem-solver is being looked at as
an entity with known inputs, outputs, and functionality. There is not any other
information known about a particular problem-solver. That means that an I-KBS

designer manipulates problem solvers as LEGO® blocks without knowing their
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internal structure, knowledge, and etc. This point of view is close to object-
oriented and component-based software engineering from the object or
component handling perspective. Therefore, it is reasonable to expect that the
benefits of these methodologies to be extended to the described framework.
These benefits include ease of components’ reuse, painless upgrade of
components’ functionality as long as it does not affect its input and output
specifications, ease of modeling and developing. However, software-engineering
practices do not necessarily cover all the possible approaches to the designing of
an I-KBS.

Lets take for instance a generic problem that can be solved by problem-
solver A, that in turn needs the result of problem- solver B to solve one of the
intermediate steps. Three possible problem-solving architectures would perform
a task at hand:

1. Large Black Box. To incorporate problem solver B into problem solver A
therefore creating a bigger problem solver AB that performs functions of both

problem solvers, A and B (Figure 8)

Figure 8. Large Black Box
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2. Muiltiple Black Boxes. To divide problem solver A into a number of smaller
problem-solvers {A11 ... Ali; A21 ... A2j}. Where problem solvers A11 ... Ali
generate inputs for problem solver B and problem solvers A21 ... A2j.work

with the results of A11 ... Ali and B to produce final result (Figure 9).

—1 All

A2l "-’
—] Al2

A22 —
—{e e

A. }—
— A

A
-1 Al

Figure 9. Multiple Black Boxes

3. Gray Box. Using this architecture the I-KBS designer can access the internal
variables of the problem solver A and re-rout them to the inputs and outputs

of problem solver B (Figure 10Figure ).

|

[

[ [ ]|

Figure 10. Gray Box
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The first method, Large Black Box, however convenient, poses three
major problems."

o First, this architecture makes it difficult to reuse problem solver B in another |-
KBS. That is, the reuse of B can be effected by two ways: a) by re-
implementing it using acquired knowledge or b) by calling the problem solver
AB with the set of inputs that will allow run of problem solver B and then filter

the results (if possible). Both methods require considerably more efforts than

case of separate implementation of B.

e Secondly, knowledge acquisition for one complex problem solver often is
more elaborate than knowledge acquisition for two separate problem solvers.
The reason for this lies in the shift in knowledge engineering where instead of
developing problem solver A and B separately and then integrating them, the
designer needs to work on these three issues simultaneously. Consider for
example a problem of diagnosing of a malfunction (of a Mars probe) where
several sub-problems require determining of some value. Suppose that a PS
for determining such a value exists and provides an answer in metric units.
Then the designer needs to incorporate this PS into the structure of the
diagnostic PS remembering not only to provide all necessary integration, but
also to convert units from metric to SAE within the same problem solver.

e This leads to the third problem.

e Problem-solving architecture of AB problem solver is more complex then the
respective architectures of problem solvers A and B separately, which may

lead to difficulties with I-KBS’s maintenance.
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The second architecture, Multiple Black Boxes, addresses three above

problems by chunking the problem solver into smaller black boxes with simpler

internal architecture. Nevertheless, in turn, states another two.

First, knowledge engineering for developing Multiple Black Boxes architecture
for this problem might be “unnatural” for customary domain problem-solving
practice. That is, the problem at hand might need a finer slicing (in
knowledge and problem-solving methods chunks) then usual for the domain
specialist. Lets look at the problem, introduced in the previous example and
consider how it could be solved using Multiple Black Boxes architecture.
First, every part of the diagnostic PS that uses the results of value setting PS
becomes a separate problem solver and is being dealt with separately.
Secondly, the part of diagnostic PS that prepares the data to be run by value
setting PS also becomes a separate PS. Lastly, it is necessary to introduce
an additional module that will convert units from metric to SAE.

Secondly, the growth of the number of cooperating problem solvers in an |-
KBS may lead to a more complex architecture, which may hinder the
system’s maintainability.

The Gray Box solution is very popular nowadays in multi agent

architecture. However, its implementation requires knowledge of internal

structure of problem solver A and changing a point of view at a unitary problem

solver from black box to gray box with the possibility to access internal variables

and manipulation with them. Yet, in many cases the insides of a unitary problem

solver are not visible to an I-KBS designer, especially in the case when the
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system is being built by integrating readily available components. In addition to
that, changing of the internal structure of a problem solver that is being used in
several I-KBSs leads to an avalanche of changing code and/or knowledge in all
co-operating problem solvers.

Constant trade-off between ease of implementation, ease of maintenance,
and ease of re-use drives the I-KBS designer to choose the most appropriate
integration structure. The described approach leans towards the black box point
of view at the unitary problem solver, therefore excluding Gray Box structures
from the list of alternative solutions to an integration problem. Consequently,
implementational framework that supports the development of I-KBSs using the
described approach drives the designer to use Large Black Box or Multiple Black
Boxes solutions to the integration problems. Yet, it is possible to escape to the

Gray Box architecture using legacy implementation of MRD and HC.
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6. ILLUSTRATED APPROACH

To better understand the advocated approach it is helpful to walk through
the process of building an I-KBS step-by-step using the developed Shell for
Constructing Integrated Knowledge-Based Systems (S-Force). As an example, |
will use the simplified problem statement for Socharis: to generate a family of
applicable conceptual manufacturing plans from a conceptual description of a
composite assembly. The knowledge-based kernel of this system deals with the
problem of selecting, instantiating, and estimating a number of modern
manufacturing technologies used to produce composite parts and consists of
more than thirty unitary problem-solving modules. To make a walk through the
system building process using S-Force readable | will limit the number of
technologies that are considered for instantiation to Hand Lay-up and Resin
Transfer Molding (RTM). In addition, | will reduce the number of estimation
metrics to Part Turnaround Time and Tooling Cost metrics. Such limiting by no
means lessens the control complexity of the I-KBS but instead it only reduces the
number of problem-solvers that are being governed by the similar control and
mapping structures. The description of full version of re-designed Socharis can
be found in Section 6 and Appendix B.

Similarly to the original, the problem of Socharis* - an abridged Socharis -
is divided into three major parts: the technology selection, the technology
refinement, and the technology estimation. At the first stage Socharis* chooses

the manufacturing process according to the description of the composite part:

99



shape, material, tolerances, etc. Then, if RTM and/or Hand Lay-up technologies
are selected, Socharis* sets the manufacturing parameters suitable to
manufacture the composite part (multiple results are likely). Finally, for each of
the parameterized manufacturing technologies, Socharis* calculates normalized
metrics for the part’s turn around time and the tooling cost to help the designer to
decide between multiple alternatives.

The number of GT-based problem-solvers was developed to solve
different subtasks of the overall Socharis’s problem. All separate problem-
solvers were built using a consistent ontology of manufacturing with composite
materials constructed as a part of the Socharis project. A list and short

description of problem-solvers that are re-used in this example are shown in the

Table 5

Name Type Responsibilities

OperationSelector | Hierarchical select manufacturing technology
Classifier

RTMRefiner Multiple Routine Set parameters for the RTM process
Designer

Lay-upRefiner Multiple Routine set parameters for the hand lay-up
Designer process

PartTT Multiple Routine calculate metrics for the part turn
Designer around time

ToolingCost Multiple Routine calculate metrics for the cost of tooling
Designer used to manufacture the part

Table 5. Problem-solvers, participating in Socharis *.

Building of an I-KBS using S-Force is done in stages, by constructing

three models:
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1. Task-subtask decomposition model or problem-solving hierarchy that shows a
recursive division of the problem into smaller problems that could be tackled
by unitary problem-solvers.

2. Functional Model that shows a function (or a role) of each part of the I-KBS in
the problem-solving process.

3. Information-Processing Model that shows how information (variables and
control) is used and is passed between the different parts of the I-KBS.

In the following sections, | will describe the steps that the developer of the

I-KBS takes to build these models and completes I-KBS in the S-Force

environment.

6.1. Building the PS Hierarchy

The first step in building of an I-KBS using the developed shell is to
construct a decomposition of the I-KBS into PS-subPS hierarchy: problem-
solving hierarchy (PSH). This PSH is not a functional I-KBS, but rather a model
of it that shows all available parts of the I-KBS organized in the meaningful
clusters. These clusters represent task-subtask decomposition of the problem as
it had been elicited from the field expert. Another way to look at PSH is that the
solution of the problem defined for a node in PSH depends on the solution of its
children (but may depend as well on the solution for other nodes). However, the
actual order of subtasks’ execution and the restrictions on variable passing are

defined in other models: functional and information passing.
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6.1.1. Socharis* Example
The problem-solving process for Socharis* could be divided into three

parts: Technology Selector, Technology Refiner, and Estimator. Two latter also

are divided into smaller parts: Lay-up Refiner and RTM Refiner, Tooling Cost

Estimator and Part Turnaround Time Estimator respectively. This decomposition

reflects problem-solving procedures usually performed by the manufacturing

engineer while assessing alternatives for the part production:

1. Assess all possible spectrum of applicable technologies.

2. Consider possibility of altering different parameters. It is possible that one
needs to consult different experts to set the correct parameters (in our case
RTM and Hand Lay-up experts. )

3. Evaluate choices according to the set of pre-defined metrics. The set of
metric has to be pre-defined and normalized in order to provide fair estimation
of alternatives (e.g. Tooling Cost and Part Turnaround Time).

To start working in the S-Force environment, the I-KBS designer launches
a correspondent VisualWorks image FRIPS. then clicks on the I" button in the

launcher toolbar to start Generic Task Integrated Toolset. Figure 11 shows the
cascaded set of interfaces that guide the user through the process of creating
new |-KBS:

1. Select ps > New from the menu bar

2. Enter the name of the new |-KBS

3. Select the type of problem-solver "FRIntegratedProblemSolver"

4. Click ok
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Following, the designer creates the root of the hierarchy and subsequently
adds subs to itin the "FR - Device Hierarchy" editing window. Addition of
a root is done by selecting "Relation = Add root" from the top menu
followed by entering the name of the node in the correspondent dialog window

(Figure 12). PSH can have multiple roots if this is required by the particularities

of the problem at hand.

ey 11:3034 am

Choose the type of Problem Solver:

Sy _tetp | Poot1:3109em -
SimpleHCPS
Name of new Problem Solver: Functonatrary
I Socharis

3 CompCiRES
b i)
_tawen [ —

Figure 11. Cascaded set of interfaces guiding the developer through the
rocess of creating new I-KBS

|xy

Example ':Re!
\ ‘What is the name of the sub device?
Tac"m‘ogySe

Figure 12 Adding a sub to the node of PSH
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Attaching subs to a parent node is done by action-clicking’! on the node
where the sub is to be added, selecting create Sub Device from the pop-up

menu and entering the desired name (Figure 12Figure ).

Relation Utility
Part TT Estimator | A
Estimator |<
Tooling Cost Estimator |
Example Socharis Refiner
Layup Refiner |
Technology Selector l\
RTM Refiner I
7
~ L-

Figure 13. Problem-Solving Hierarchy of Socharis *

Figure 13 shows complete PSH of Socharis* that mirrors task
decomposition described earlier in this section. However, it is impossible to
make any conclusion about run time order of activation of PSH nodes. This

order is determined through functional and information passing models

6.2. Functional Model: Assigning Functionality to the Nodes of PS
Hierarchy

The next step in building an I-KBS is to define the Functional Model for its
every part. Traditionally the list of behaviors' types consisted of “by Knowledge”,
“by Definition”, “by Function of Device”, and “by Behavior of Device”. |
augmented this list with the “by Problem-solver” type that allows associating a

GT-Based problem-solver with a particular node of PSH. This behavior type

' Action-click is middle button on 3-button mouse or Ctrl + right button in Win X environment, or
command Click in Macintosh environment.
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enriches the current implementation of FR modeling framework by allowing
complex problem solving procedures being executed at the unitary device level
instead of simple one-step operations. The distinction between types of

behaviors is explained in Table 6.

Type Description

By Knowledge Unitary behavior. |Is based on the common to particular
domain knowledge.

By Definition Unitary behavior. |Is based on the domain definition of
particular device.

By Function of Device | Complex behavior. Calls other device’s function

By Behavior of Device | Complex behavior. Calls particular behavior of another
device.

By Problem-solver Unitary behavior. Calls an associated with the node GT-
based problem-solver

Table 6. Description of types of behaviors employed in Functional Model

of I-KBS

To facilitate I-KBS building and maintaining, every node of PSH is
associated with a variable — <node name> Number (stage counter) — which
serves as a counter of problem-solving stages. This helps in supporting
necessary bookkeeping as well as marks the meaningful milestones. As a rule,
before the node is activated for the first time during problem-solving process, the
value of stage counter is set to zero (unless otherwise specified by the system
developer or the user). Each step in problem-solving process (or state change in
traditional FR) is being marked by incrementing stage counter value. For

example, if a device A has a function £nA with a behavior bha of the type "by
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Problem-solver: psa", then the state change that occurs in the bha
correspondent to the function fnA of the device A is as follows:

A Number = 0 > by ProblemSolver psA -> Set A Number to: 1
This information can be used to check if a particular node had been

invoked during the problem-solving process and to check the status of the
problem solving in case of multiple state-changes in a behavior of a node.

On practice, the assignment of functionality is the bottom-up process. The
developer associates the unitary functions with the lower level of PSH and then,
builds the functional definitions of the upper nodes using the lower nodes
functions and behaviors as building blocks.

In this implementation, | limited the types of invoked GT-Based problem-
solvers to Hierarchical Classifier and Multiple Routine Designer to support legacy
software. On the other hand, these two types of problem-solvers cover broad
enough spectrum of classes of problem to be exclusively used in the
development of Socharis. However, as was noted earlier, there is no theoretical
limitation on the type of unitary problem-solver that could be used in the
advocated approach.

6.2.1. Socharis* Example
To define the functionality of each of the leaves of PSH the developer

performs the following sequence of actions:

1. Action-clicks on the correspondent node and chooses "Browse device"
from the pop-up menu

2. Action-clicks on the upper pane and selects "Add function" and Enters

the name of the function
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3. Calls the behavior interface by double clicking on the added function name in
the upper pane

4. Adds behavior similarly to adding function

5. Invokes behavior relation interface by double clicking on the name of the
behavior

6. Finally, action-clicks on the Name Number node and chooses "add state

change" from the pop-up menu and then, selects the type of the state

change link.

alnix]

r 7 7 1
| Relation Uity »? FRIPS Dovice ' - /{8 [=] 3 |
1 Technology Selector |
Estmator ki »? FRIPS Function - =10l
= Sectecoctny
Example Socharis Retiner - - .
i Relation  Utility

Behaviors

Technology Selector i : Technology Selector Number = 0|
Sub Devices

By ProblemSolver ‘Operation_Selector’
“ et Technology Selector Number To 1

‘.4 R :d .

Figure 14. Sequence of interfaces leading to behavior definition

Figure shows the cascaded sequence of interfaces that result in the
definition of the behavior for the Technology Selector. PS Hierarchy window
shows PSH of Socharis*. FRIPS Device window provides interface to
information about a device (in this case, to the device Technology Selector)
its functions and sub-devices. By selecting browse function (or double clicking
on a function name), the user invokes function interface: a window with title

FRIPS Function that shows all constituent behaviors of the function. The last
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window — stBeh Behavior — was called from FRIPS Function. This

interface represents behavior that leads to achieving a correspondent function.

Below are the descriptions of functionality for each node of PSH for

Socharis®.

Device Function Behavior

Operation Select by problem-solver Operation_Selector_New.

Selector Technolog | SimpleHCP Set operationSelector Number to 1
y

Lay-upRefiner | Refine by problem-solver: Lay-up.
Lay-up BasicRDProblemSolver Set Lay-upRefiner

Number to 1

RTMRefiner Refine by problem-solver: RTM. BasicRDProblemSolver
RTM Set RTMRefiner Number to 1

PartTT Estimate by problem-solver: PTT. BasicRDProblemSolver
PTT Set PartTT Number to 1

ToolingCost Estimate by problem-solver: ToolingCost.
Tooling BasicRDProblemSolver Set ToolingCost Number
Cost to 1.

The functionality of upper level node is assembled from the functions of

the lower level node as follows.

Device Function Behavior
Estimator | Estimate by function Estimate PTT of device PartTT
Technology and
by function Estimate Tooling Cost of device
Tooling Cost Set Estimator Number to 1
Refiner Refine by function Refine Lay-up of device Lay-upRefiner
Technology and

by function Refine RTM of device RTMRefiner Set
Refiner Number to 1

It is easy to change the functionality of the device by editing the

correspondent behavior.

For example, to accommodate the particularities of

problem-solving process in Socharis* it is necessary to perform estimation of the

technological process right after the refining stage. Consequently, the updated

functions of Lay-upRefiner and RTMRefiner are represented as follows:
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Device

Function

Behavior

Lay-upRefiner | Refine Lay-

By Problem-solver: Lay-up.

up BasicRDProblemSolver Set Lay-upRefiner
Number to 1
by function Estimate Technology of device
Estimator Set Lay-upRefiner Number to 2
RTMRefiner | Refine RTM | By Problem-solver: RTM. BasicRDProblemSolver

Set RTMRefiner Number to 1

by function Estimate Technology of device
Estimator Set RTMRefiner Number to 2

Finally, the description of the functionality of the root device is described

through the functionality of its children nodes:

Device Function Behavior
Socharis Socharis by function Select Technology of device operation
Example Function Set SocharisExample Number to 1.

by function Refine Technology of Device Refiner
Set SocharisExample Number to 2.

6.3. Functional Model: Macroexpansion
The functional description of each node does not give the full picture of the

functionality of the overall I-KBS: to look at the full-blown Functional Model of the

I-KBS it is necessary to generate its macroexpansion. Macro-expansion is the

net (a directed graph with one or more sources and sinks) that represents causal

(and therefore partial temporal) relationships between different parts of the PSH.

There is an explicit succession in the execution of the nodes that are located on

different levels of the network: nodes closer to the source are being executed

before those farther from it. However, the execution order of the nodes that are

located on the same level of the macroexpansion cannot be determined from this
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model. In addition, macroexpansion does contain neither information about
variables passing between different parts of I-KBS, nor control knowledge about
conditional nodes invocation, conditional looping, etc. The role of Information-
Processing Model described in the next section is to explicitly define this kind of
knowledge.

6.3.1. Socharis* Example

In order to assess the global causal story correspondent to the developed
I-KBS the designer builds macroexpansion by selecting "ps -> Build
Macroexpansion" in the menu. The macroexpansion of |I-KBS Socharis*
(Figure 15) can be browsed by selecting "Browse - Browse
Macroexpansion" from the top menu.

To better understand what macroexpansion represents, let us examine
Figure 15 more closely. This macroexpansion is read top-down (or left-to-right in
case the user flipped the macroexpansion using one of the available commands).
An explanation to this macroexpansion of I-KBS Socharis* could be given as
follows.

If Example Socharis Number equals 0 (i.e. the system has not been run
yet) and Technology Selector Number equals 0 (Technology Selector has not
been invoked before) then S-Force runs problem-solver Technology Selector
which sets the Technology Selector Number to 1 (i.e. acknowledges that this
node has been invoked once. ) According to the behavior of the Example
Socharis node, this finalizes the first stage of the problem solving process by

setting the Example Socharis Number to 1. Then the systems checks if Refiner,
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Lay-up Refiner, and RTM Refiner have not been called yet and if this is true,
invokes the problem-solvers Lay-up and RTM. Further, after testing the
invocation of Estimator, Part TT Estimator, and Tooling Cost Estimator, the
system runs problem-solvers Part_turnaround_time, and ToolingCost. Finally,
after all nodes finished successfully the system sets correspondent <node
name> Numbers: Part TT Estimator Number and Tooling Cost Estimator Number
to 1, Estimator Number to 1, Lay-up Refiner and RTM Refiner Numbers to 2,
Refiner Number to 1, and at last Example Socharis Number to 2, therefore

finishing problem-solving process.

Example Socheris Number = 0 |

Technology Selector Number = 0 |

By ProblemSolver *Operation_Selector’ Set Technology Selector Number To 1 |

Set Exarmple Socharis Number To 1|

Refiner Number = 0

Layup Refiner Number = 0| RTM Refner Number = 0|

By ProbiemSolver: Layup’ Set Layup Refiner Number To 1] By ProblemSoiver: RTM Set RTM Refiner Number To 1 |

Estimator Number = 0

Part TT Estimator Number = 0| Tooling Cost Estimator Number = 0

By ProblemSoiver: ‘Part_turnaround_time' Set Part TT Estimator Number T0 1 ] By ProblemSolver: Tooling_cost' Set Tooling Cost Estrmator Number To 1 ]
Set Estimator Number To1|  Set Estrator Number To 1|

Set Layup Refiner Number To 2| Set RTM Retiner Number To 2|

Set Refiner Number To 1| Set Refiner Nurmber To 1 |

Set Example Socherts Number To 2 |

Figure 15. Detailed macro-expansion of Socharis*
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This is a detailed macroexpansion that shows both, pre- and post-
assertions on <node name> Numbers. On practice however, it is more
convenient to use condensed form of macroexpansion that displays only pre-

assertions as shown on the Figure 16.

5% Macio Expansion 1008 xH

| S Relstion Uiy

Example Socharts Number = 0 |

TacmobgySdectorw-O|

By ProblemSoiver ‘Operaton_Selector’ Set Technology Selector Number 7o 1 atTime 0

Refiner Number = 0

i
!
!
i
i
!
|
i
|

LmRemavW-Ol RTMRemaMm-OI

! By ProblemSoiver Layup' Set Layup Retiner Number To 1 dTimeﬂ By ProblemSotver RTM Set RTM Retiner Number To 1 atTime OI

Estmator Number = 0

mnemam-ol rmcwemam-q

\\—

1
5 By ProblemSolver. Pert_turneround_time’ Set Part TT Estenator Number To 1 l'l’meﬂ By ProblemSolver Tooling_cost' Set Tookng Cost Estenator Number To 1 atTme 0]

= ——

~ 1

Figure 16. Macroexpansion of Socharis*

6.4. Information-Processing Model
In order to define Information-Processing Model of an I-KBS it is

necessary to perform six tasks:

1. Define input and output for every node of PSH. l.e. explicitly specify all
variables that participate in a particular node prescribing whether the variable
is input, output, or neither.

2. Determine whether or not the result should be passed to an upper device in

PSH.
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3. Define default values of input variables. l.e. assign values to the variables
that will be used in this node in case a user or previous problem-solving
activity has not assigned them.

4. Define mapping between different nodes. If a node takes its input values
from the other node(s), it is necessary to explicitly specify that variables of the
node take their values from a different node(s).

5. Define all preconditions to the nodes. |.e. specify qualitative, quantitative, and
existential predicates that should be satisfied in order for the node to be
activated. Qualitative and quantitative predicates are the tests on qualitative
and numerical |-KBS variables respectively. In case of multiple predicates the
system performs logical AND operation for all qualitative and quantitative
predicates. Existential predicate is the table in which the designer indicates
what variables should have values (be set) for the initiation of the node. It is
possible that a particular node could be initiated with different sets of input
variables therefore, S-Force performs logical OR operation for all existential
predicates of the node.

6. Define the node’s activation control that depends on multiple output of other
node(s). There are two types of this kind of control implemented in S-Force:
iteration on the multiple output of other node(s) or conditional activation of a
node using multiple output of other node(s) as a test expression.

Port managers introduced in this dissertation resolve these tasks through

convenient interface and automation of I1-KBS building.
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6.5. Information-Processing Model: PSH
S-Force gives two ways to define input and output information for every

node of PSH:

1. Manually: by filling database with variables as its normally done within
Generic Task Integrated Toolset and then updating port managers’ contents
from this database.

2. Semi-automatically. In this mode S-Force automatically imports variables
from the databases of cooperating problem-solvers and fills in internal
variables for the ports. The designer then adds more variables if necessary,
distributes variables into input and output variables’ lists, etc.

Semi-automatic mode takes part when the I-KBS designer associates a
behavior of a node with a particular existing GT-based problem-solver. S-Force
imports all the variables from this problem-solver, converts variable types to the
necessary standards, updates I-KBSs database with these variables, and adds
these variables to the set of internal variables of the node. After all the variables
of a problem-solver are imported into the I-KBS model, each variable is given a
flag that indicate whether this variable is input, output, or neither.

Finally, for each node of the PS hierarchy the designer identifies default
output variable: a special kind of variable that holds values of the result of the
node’s execution and whether or not this variable should be passed up the
problem-solving hierarchy.

There is no strict limitation on the direction of the variable assignment
process: top-down or bottom-up traversal of PSH. On practice, the designer

uses a mix of these strategies to see which study matches better to a specific
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part of the PSH. Generally, it is a good idea to start with the node that is called
first in the macroexpansion, and works its way down the macroexpansion
network.

6.5.1. Socharis* Example
Updating I-KBS'’s database with variables imported from a problem-solver

is done automatically at the time the designer develops the Functional Model of
the I-KBS and uses state change link type “by Problem-solver”, as was explained
in previous section. In order to access information about node’s variables it is
necessary to action-click on the node in the PS Hierarchy Window and
select Browse Port Manager as shown in the Figure 17.

The Figure 18 represents the top pane of the Port Manager
Interface for Lay-up Refiner node that provides front end to Port

Manager’s functions for managing variables.

A% PS Hieraichy Ni=1E3

Relation  Utility
Part T Estimtor | A
Tooling Cost Estimator |
Example Socharis Refiner |
v Layup Refi  Create Sub Device

Technology Selector I Browse Device
RTM Refine
Browse Port Manager
N Inspect Resuilt
Standard Operations ~

Figure 172. Opening Port Manager interface
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Figure 18. Upper pane of the Port Manager Interface that allows
manipulating with the node’s variables

The central list is the list of all variables of the node: input, output, and
internal. By clicking on the buttons at the right lower corner of this list the user
can browse or remove a selected variable. To add a variable to the list of
internal variables the designer clicks on Add button and chooses a variable from
the database or by selecting ‘—another name—' from the list has a possibility
to add a new variable to the I-KBS. A variable from the central list could be
redirected to the input or output lists by selecting a variable and clicking on the
left (to transfer to the input list) or right (to transfer to the output list) arrow.

Button operation is associated with the input variables’ list. It enables
the designer to assign actions that have to be done with the variables before the
node is being activated (preconditions, defaults, mappings, and controls). The
detailed description of each of mentioned operation would be given in the next
Sections. Button Propagate Up is mostly used in the development stage when
it is necessary to propagate the variable to the upper level node (for variable

mapping purposes for example. ) To unload a variable from the input list the
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designer selects it and click on the right arrow button located above Browse
input variable button.
Right hand side of the variable pane contains the list of output variables
and four buttons:
1. left arrow for unloading a selected variable from the output list
2. Browse to browse a selected variable
3. set Default to set the selected variable a default variable for the resulting
value of node’s operation, and
4. pass result up button. This button sets the flag on the output variable

that it should be passed to the upper node after the node finished operation.

faa=ite

pumeem—= Choose the name of the internal variable:

pressure Do you want to create a new variable

SmallTalk Variable |

requiremt [ in database ? l
fiberList
depth

[_ox | coma

17
Enter the name of variable

[ommrend
o | ool

Figure 19. Adding new variable to a node

If the node functionality is achieved through the “By Problem-solver”
behavior, then result of, problem-solver is saved in to a variable of Smalltalk type

Dictionary. In this case the designers executes the following sequence of actions
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to determine where the result of problem-solver is being stored and how it is

being passed up.

1.

2.

Create new variable by clicking Add button and Selecting “another name’

In the following dialog window, click on the Smalltalk variable button and enter
the name of this variable. Figure 19 shows the cascaded set of interfaces
that result in creating new variable Lay-up Refiner Result

The next step is to move this variable to the output variables’ list. This is
done by selecting Lay-up Refiner Result variable in the list of all variables and
clicking on the right arrow at the upper right corner of the all variables’ list.
Then, it is necessary to make this variable the Default output variable.
Selecting this variable in the output variables’ list and clicking Set Default
does this.

Finally, if the designer decides to pass this variable up one level he or she
selects this variable and clicks rPass result up and then, selects the
output variable of the upper node where to pass the result. Note 1: the output
variable of the upper node should already exist. Note 2, if a node receives
results from more than one of its children it concatenates them, no
intermediate result is lost. Figure 20 shows the set of interfaces that result in

passing the value of Lay-up Refiner Result tothe Refiner Result.
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Figure 20. Passing the result variable up one level

The description of input and output variables for port manager for Lay-up

Refiner is shown in the Table 7.

Input Variables Internal Variables Output Variables
Lay-up Refiner Number Lay-up Refiner Number Lay-up Refiner Number
Lay-up Refiner Ctrl Lay-up Refiner Result Lay-up Refiner Result
Depth Lay-up Refiner Ctrl curing type
FiberList curing type labor
Functional requirements depth postcuring
Geometrical Complexity FiberList pressure
Production functional requirements resin prepreg/wet
ResinList Geometrical Complexity temperature
Size labor Tool complexity
Surface Quality postcuring toolingList
Tolerances pressure manTechList

production

resin prepreg/wet

ResinList

size

Surface Quality

temperature

Tolerances

Tool complexity

toolingList

manTechList

Table 7. Variables of Lay-up Refiner Port Manager.
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All variables but Lay-up Refiner Ctrl, Lay-up Refiner
Result, Lay-up Refiner Number, and manTechList are the variables
from the correspondent problem-solver operation_Selector_New.
SimpleHCPS. Lay-up Refiner Result contains the result of the execution
of this node. In this case, it will hold the name of the established specialists of
hierarchical classifier. Lay-up Refiner Number is a bookkeeping variable
that helps keep track of PS stages. Lay-up Refiner cCtrl is the control
variable that controls the execution of this node. Finally, manTechList is the
output control variable that holds input control value that activated this node.

Descriptions of input/output/internal variables of other port managers for
Socharis* can be found in Appendix A.

6.6. Information-Processing Model: Input and Output

Default values of input variables are used in cases where an existential
predicate requires the presence of this variable but it was not supplied to a node.
This feature of S-Force gives the designer an ability to develop robust systems,
which are able to work with incomplete data. However, it is not a necessary step
in the I-KBS development and might be skipped.

6.6.1. Socharis* Example
To access an interface that allows various manipulating with input

variables including definition of default variables the designer clicks on the
operation button. This opens the bottom pane of the port Manager
Interface (Figure 21). At the lower right corner of this pane located the

Default Values interface: a table with the left column containing all input
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variables and right column representing their default values, where question
mark (‘?') means undefined.

If the designer wants to set a default value for a variable he or she:

1. Clicks on the row in the Default Values table containing the desired
variable

2. Selects the default value from the pop-up menu

3. Clicks Ok

To reverse default values to undefined state the designer clicks set to
‘undefined’ button.

It is important to exercise caution in using this feature. If used improperly
it could mask problems in the I-KBS architecture such as gaps in variable
mapping. In fact, it is better to develop the system first without employing default
values’ tables and only then add them.

Figure 21 shows that the default value for ResinList variable of Lay-up
Refiner node is setto DGEBA. This means that if the value of ResinList was

not set by previous problem-solving activity it will be set to DGEBA.
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Figure 21. Interface for definition of default values of input variables

6.7. Information Processing Model: Mapping
The next task is to specify how the information flows from one node of

PSH to another during the problem-solving process. That is, to determine
variable mapping between different parts of PSH. S-Force gives the ability to do
so by using Mapping feature of Port Managers.

Any node could receive information from many different sources during
the problem solving. Moreover, depending on the problem-solving context a
node could receive different kinds and type of information from the same node at
different times. To accommodate this, S-Force enables the designer to create

multiple variable mappings. At run time the mapping works as follows: once the
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node is reached during the problem solving, S-Force iterates over the list of

mappings and fills the values of all the variables that are defined there.

There are two things that the I-KBS developer should keep in mind while
mapping variables from one node to another:

1. Both variables (source and destination) should be defined using the same
working ontology. Failure to do so will lead to a non-functional I-KBS since S-
Force does not have enough information to translate the values. One of the
solutions to this is to create translator problem-solver and map the variables
through it.

2. If the mapping to be done from multiple output of a particular node then it is
necessary to appoint a variable that would control mapping from this multiple
output. The exact procedure of how to use multiple outputs to control a node
is described in the Section 6.9.3 (RD Control).

6.7.1. Socharis* Example
After clicking the operations button in the Port Manager’'s window the

designer accesses the interface that allows manipulating with input variables of
the node before the node’s activation (Figure 21). To start working with
mappings the designer clicks on the Mapping button, which calls mapping
managing interface in the middle of the bottom pane. Then, to create mappings
the designer repeats the following sequence of actions for each desired mapping:
1. Clicks on the Add button

2. From the appeared list of ports managers associated with every node of PSH,

the designer selects the port manager to make mapping from (source port).
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3. Enters the suffix (usually a number) to differentiate between multiple
mappings from the same port and clicks ok.

4. The interface that allows defining a mapping is similar in feel to the efault
values interface. That is, by clicking on the row containing the name of the
destination variable in the left column the designer calls list of all available
source variables from the source port.

The Figure 22 shows the cascaded set of interfaces that result in addition

of mapping RefinerPort@l for Lay-up Refiner Port Manager (a

destination) from Refiner Port Manager (a source).

jon
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Pt 11 Extimatort  ETet SUffx for this mapping  [Co0 o0
Tookng Cost Estn [el oot

[ e

Tolerances
Tool complexty ?
tooingList 2

Figure 22. Adding of mapping
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Lay-up Refiner node has two mappings:

1. One from Refiner node: all input values necessary for running the Lay-up
multiple routine designer.

2. Secondly from Technology Selector node. This mapping indicated that
input control variable of Lay-up Refiner is to be taken from output variable
TSResult. The detailed description of setting up this kind of control is given in
the Section 6.9.

The designer can also delete and edit a selected mapping by clicking on
buttons Remove and Edit correspondingly.

6.8. Information Processing Model: Preconditions

One of the roles the Port Managers play in an I-KBS is the setting and
testing the preconditions. This role is inherited from the precondition clause of
the traditional FR. The precondition clause usually contained a set of qualitative
and quantitative predicates, all of which should be satisfied before the node is
allowed to be executed. Meanwhile, the described framework augmented the
precondition clause with a new kind of precondition: existential predicate.

Existence predicate contains names of input variables whose presence is

necessary for running the node. This ensures that the node with multiple

functionality and/or behaviors each of which uses just a subset of the data runs
as soon as it receives enough data to execute some of its paths.

6.8.1. Qualitative and Quantitative Predicates

Qualitative predicates are designed to test I-KBSs variables that take

value from a predefined collection of legal values, whereas quantitative
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predicates test the values of I-KBSs numerical variables. A test expression for
quantitative precondition may include complex formulas that could contain other
I-KBSs variables. One important thing to remember while writing testing
formulas for quantitative predicates is that precedence of arithmetic operations in
these formulas is governed by the Smalltalk laws: all formulas are read left to
right and no implicit precedence is stated (that is 2+3*5 = 25. )

6.8.2. Existential Predicates
As it was mentioned earlier, existential predicates are used to specify sub-

sets of input variables that should be set in order for the predicate to be satisfied.
If there are more than one existential predicate defined for a particular port
manager, then the collection of existential predicates is satisfied if either of
members of this collection is satisfied.

In addition to the function of activating the node whenever it has enough
defined input variables to activate some of the behaviors, existential predicate
play another important role. In a case when the node is called but there is not,
enough information to run the node S-Force uses existential predicates as a
template to fill in values of input variables from the default values table.

6.8.3. Socharis* Example

To access interfaces for manipulating predicates the designer selects a
Qualitative, Quantitative, or Existential from the predicate types list
located in the upper left corner of lower pane of Port Manager Interface as shown

in the Figure 23.
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Figure 24. Qualitative predicate interface

L

After the predicate type is selected, the central window shows the list of
defined predicates of this type. The designer can add new predicate, remove, or
browse selected predicate. To add a qualitative predicate the I-KBS designer:

1. Selects Qualitative in the predicate types list

2. Clicks add in the central window
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. In the appeared interface (Figure 24) the designer selects a qualitative
variable from the variable drop list, equals on not equals sign from the
operator drop list and a desired value of this variable from the value drop

list.

. Clicks ok

To add a quantitative predicate the I-KBS designer:

. Selects guantitative in predicate types list

. Clicks Add in the central window

. In the appeared interface (Figure 5) the designer selects a Quantitative
variable from the upper left variable drop list, equal on not equals sign from
the operator drop list. In the right hand side calculator the designer enters
the necessary formula using the variables drop list to enter variables in the

formula (operator precedence agrees with Smalltalk standards).

. Clicks Enters and Ok
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Figure 25. Quantitative predicate interface

To add an existential predicate the I-KBS designer:

Selects Existence in the predicate types list

. Clicks add in the central window

. In the Existential predicate interface (Figure26) the designer clicks on the

rows that contains necessary variable therefore changing ‘?’ (not needed) to

** (should be set)

. Closes table
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Figure26. Existential predicate interface

6.9. Information Processing Model: Activation Control
Predicates’ mechanism allows testing preconditions for single valued

variables and does not account for multiple results and multiple valued variables
that are produced by problem-solvers employed in an I-KBS. However, it is
highly desirable to have this feature to enhance the control over the I-KBS's
execution.

S-Force operates with two basic types of GT problem-solvers, each of
which could produce multiple results: Hierarchical Classifier (HC) and Multiple
Routine Designer (MRD). Hierarchical Classifier results in a set of parameters
with values: ‘matched’, ‘neutral’, ‘against’, etc. These values correspond to the
HC's confidence of how a particular parameter fits to the situation described

through input variables. MRD'’s output is a collection of sets of instantiated
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parameters. Each set of this collection represents a valid solution to a given
problem. It would be reasonable to allow the designer of an I-KBS to use these
output to control the problem-solving process by either iterating over the MRD’s
output or selecting a next part of I-KBS to activate based on HC’s output.

In addition to above S-Force enables the designer use boosting, i.e.
combining the results of a number of problem-solvers into a single result by
selecting the results intersection (in a set theoretic notation). This technique is
widely used in the many areas of artificial intelligence including machine learning
(Schapire, Singer et al. 1998; Schapire and Singer 1998). In S-Force’s version,
the designer can perform boosting of results of several hierarchical classifiers.
This technique saves the time at the knowledge acquisition stage by allowing
solving a given problem using different perspective in the multitude of problem-
solvers in cases when the structure and knowledge architecture of a single
problem-solver (that considers all aspects of the problem) is complex or unclear.

6.9.1. HC Control
The result of Hierarchical Classifier (HC) is the list of its leaf specialists

with their respected established values (e.g. matched, neutral, against).
Hereafter, | will refer to all the specialists with values ‘matched’ as established
specialists.

It is often the case that the further I-KBS execution depends on the
established specialists (e.g. a particular HC selects one or several named parts
of an I-KBS to execute next. ) This behavior is very useful in implementing and

modeling blackboard like mechanisms in an |-KBS, where the context defines
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activation of the next module at the run time. S-Force enables the designer to
use this kind of control over the I-KBS behavior in the run time through the HC
Control. The designer creates a special input variable (a control variable) that is
being mapped to from the source node - the node that produces multiple result.
Then this control variable is associated with a set of values. When at least one
of these values are matched to one of the values that are mapped from the
source node the current node will be activated. To finalize definition of the HC
control the designer should designate a variable that will keep the value that
caused the activation of the node. This helps to keep current problem-solving
context up-to-date.

While the HC control is most suited to be used in adjunct with Hierarchical
Classifier type of problem-solver it can also be used with any node that produces
multiple results similar in nature with the result of HC. The use of the HC control
with the booster is one of the examples of such operation (Section 6.9.5).

6.9.2. Socharis* Example
In the described example, the Lay-up Refiner node is being activated if the

| Technology Selector node is HC operation_Selector_New. SimpleHCPS
has Lay-up as one of the established specialists. In previous section, | showed
how to use the Lay-up Refiner Port Manager to execute mapping from a
node to a node of PSH. The Figure 27 shows the mapping of the resulting

variable of Technology Selector TSResult to Lay-up Refiner Ctrl.
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The designer assigns the control and appoints the variable that will hold
the value that activated the node as follows:

1. Adds new variable from |-KBS's database manTechList and transfers it to
the output variables’ list (this variable will hold the value that activated the
node).

2. Adds new SmallTalk variable Lay-up Refiner ctrl and transfers it to the
input variables’ list (this variable will hold values mapped from the other
node).

3. Clicks on the operations button to access input operation interface.

4. Creates mapping from port Technology SelectorPort — Technology
SelectorPort@l — as described in Section 1. 7. 1 and maps the variable
Lay-up Refiner Ctrl from TSResult.

5. Clicks on the control button. Then clicks the aAdd button and selects Lay -
up Refiner Ctrl from the list of available control variables and click ok

6. Selects Lay-up Refiner ctrl and clicks the HC control button

7. Clicks Yes to confirm choice of established specialists from the list.
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8. Selects TsSRrResult from the list of result variables of Technology
Selector Port.
9. Selects Lay-up from the list of available leaf specialists and clicks Ok, then
clicks cancel to stop selection.
9.1.If the designer needs to select more then he or she specialist repeats
step 8 until he or she selects all necessary specialists, then clicks Cancel
9.2.If the designer wishes to input names of specialists by hand, he or she
can do it by selecting No at the Step 7 and then entering desired values
by hand using ‘%’ as delimiter.
10.From the list of output variables of current port selects variable where to send
the value that activated the node. In our case manTechList.
The set of cascaded interfaces in the Figure resuilts in the assigning HC
control to the Lay-up Refiner ctrl. This control will be satisfied if
TSResult will contain Lay-up as one of the established specialists.

6.9.3. RD Control
RD Control is associated with the typical multiple routine designer output:

a collection of sets of design parameters with established values. One can
expect to have the system iterate over the collection of the parameters using
each set in problem solving to explore the solution space.

In S-Force the designer is able to set this kind of the control of the node by
mapping output variable of a node producing such kind of result (e.g. a node
whose behavior is linked to a multiple routine designer) to an input control

variable.

134




Preconditions Control Variables
Qualitative K\
Quantitative

Use established specialists of the :

mapped port ouput control? ,

?

yos no

| ] =] P ,

X

cmwmmma“m_.il! Setto undefined |

F re—— Choose test value (Canceito en

B mm ] " Ch the port output variable

- to hoid the value of the controk:
| oK l c“ell

o l
|

Figure 28. Adding HC Control

Similar to the HC Control, the RD Control can be used not only with the
nodes whose behavior is achieved through the MRD problem-solver. In fact, the
result of any node can be used to control iterations if this result complies with the
structure of the output of MRD node.

It is important however to take care of variable naming and used ontology.
That is the names of the parameters in MRD output sets should correspond to
the names of the input variables defined in mapping. The same is true for the
used ontology: ontologies of the source node and the destination node should

agree in the variables used for mappings. Otherwise, the problem-solving

process would be compromised.
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6.9.4. Socharis* Example
The assignment of the RD Control to an input control variable is relatively

straightforward task. In our example Tooling Cost Estimator should run for all

sets of parameters set by either or both Lay-up Refiner and RTM Refiner nodes.

The following sequence demonstrates how the I-KBS designer creates a RD

Control from the Lay-up node to the Tooling Cost Estimator node.

1. Confirms that Lay-up Port Manager’'s list of output variables includes all
necessary information: all Lay-up. BasicRDProblemSolver output variables
and the node’s designate output variable that holds the result of MRD run
(Figure 29)

2. Creates new SmallTalk variable tceLay-upCtrl for Tooling Cost Estimator port
manager and transfers it to the input variables’ list.

3. In port manager for Tooling Cost Estimator creates new mapping Lay-up
Refiner Port @1 as shown in the Figure 30. Notice that the designer maps

not only the variables that are needed for the run of the MRD associated with
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the node, but also the control variable. Again, it is important to have Lay-up
Refiner resulting variables match Tooling Cost Estimator input variables

compliant in names and ontology

Preconditions Mappings
Quaitative RTM RefinerPca/as —_'l
Quantitative ;" Vanable Mapping
Existence
Tooling Cost Estimator Num|?
manTechList manTechList
material cost ?
Tool complexity Tool complexity
Mapping Toqling cost ? —
toolingList toolingList
Control tce Result ?
Laywp O Layup Refiner §
tce RTm Ctrl ?

Figure 30. Mapping of Lay-up Result onto Tooling Cost Estimator input
and control variables

1. The next step is the assignment of the RD Control to the tcelLay-upCtrl
variable. To do so the designer accesses operations Interface and clicks on
the Control button to invoke control manipulating interface.

2. Clicks Add button and select tceLay-upCitrl from the list of available variables.

3. Selects tcelLay-upCitrl in the central window of operations interface and clicks
RD Control.

4. Select Lay-up Refiner Port Manager from the list of available ports to specify

that control is indeed passed from the Lay-up Refiner Node.
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6.9.5. Boosting
Combining the results of several different problem-solvers working on the

same task from different perspectives proved an effective technique; this not only
saves the time during the knowledge acquisition stage, but also tends to
outperform a traditional approach. This method of combining the results is called
boosting.

S-Force employs a form of boosting that allows taking the results (in form
of lists of values) of two nodes and combining them by finding their intersection.
By applying this procedure iteratively, one can perform boosting for multiple
nodes.

6.9.6. Socharis* Example
Socharis* does not use this capability of S-Force, however in the original

project this feature was used when the result of two Technology Selectors were
combined to prune the list of applicable technological processes. Each
Technology Selector chooses a list of appropriate manufacturing processes
depending on: first — part geometrical and functional description; second - part
material.

To assign a node to a booster function it is necessary to perform the
following steps:
1. While defining behavior of a booster node, define state change as “By

Definition” and enter ‘of booster’ in the input field.

2. Open port manager interface of this node and create three Smalitalk variables

listl, 1ist2, and resulting variable. Note, naming list1 and list 2 is

obligatory
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3. Transfer 1ist1 and 1ist2 toinput list, resulting to output list
4. Make resulting variable a default output variable
5. Make two mappings from port managers corresponding to two nodes that
produce results for boosting. Map output variables of these nodes to 1ist1
in one mapping and to 1ist2 in another
The result of booster node is similar in nature to the output of the node
associated with HC: list of established specialists. Therefore, it can be used in
another boosting operation.
6.10. Final Remarks
After the |I-KBS developer built three models: problem-solving hierarchy,
Functional Model, and information processing model, he or she can run the
system by creating a new case (an instantiated set of I-KBS’s input variables)
and selecting PS 2> Run from the S-Force Launcher window. The result of
problem-solving process could be browsed by selecting Inspect Result in
action-click pop-up menu for every node in PSH. If designed correctly then the
global result will be located in the root of the PSH.

6.10.1. Sequence of nodes’ activation and mapping sequence
To build a fully functional I-KBS it is necessary to understand how S-Force

works while running an I-KBS. The run of an I-KBS is a breadth-first traversal of
the macroexpansion with performing precondition check, mapping, and defaults
assignment. The sequence of actions that S-Force executes when it decides on
an activation of a node are as follows:

1. Check if it is necessary to perform HC, RD, or Booster control and mapping.
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2. In casé when no control is specified:
2.1.Assess all input variables
2.2.Do mapping if exists
2.3.Check Existential predicate and set defaults if necessary
2.4. Test remaining preconditions
2.5. Execute node (e.g. run associated problem-solver, perform state change)

3. In case when HC Control is specified:

3.1.Assess mapped control values and compare them to the list of values that
activate the node
3.2.1f the condition satisfied then perform steps 2. 1 through 2. 5
4. In case when RD Control is specified:
4.1.For each sets in input MRD result collection
4.2.Map input sets
4.3.Execute steps 2. 1 through 2. 5
5. In case when boosting is specified:
5.1.Map two input lists and find their intersection
6. Pass the result to the node up in the hierarchy if specified
7. Update I-KBS current case with the obtained as a result of the node run
values

6.10.2. Color-coding
While building a complex |-KBS it is important to keep track of what parts

of the system has been assigned functionality and if assigned what it is. S-Force

provides a special color coding of the nodes in PSH to quickly overview the
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system in design. By selecting Utility ->Show PS Types in the PS

Hierarchy window, the designer accesses the interface where the nodes of

the PSH are colored according to the specified function and/or behavior:

RD or HC is associated with a behavior of the node

the node’s functionality is achieved using “by Knowledge” or “by Definition”
behaviors

the node exhibits multiple functionality or behavior

node does not have a function associated with it yet.

Another color coding information available to the S-Force's user is the

coloring of the nodes after I-KBS run. In this case, the color of each node

corresponds to the status of node's activation during the problem-solving

process:

no precondition is specified and node has been activated

precondition is satisfied

precondition is satisfied and internal mapping was executed (e.g. mapping
multiple routine designer's output to the input of this node)

precondition(s) is satisfied after the default values were invoked

preconditions are not satisfied

the node was not called

This color-coding enables fast tracking of gaps in functionality and

information passing in an I-KBS.
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7. RE-IMPLEMENTATION OF SOCHARIS

The original Socharis consists of four major parts: the graphical user
interface, the ontology editor, the conceptual composite assembly structure
parser, and the knowledge-based kernel. This chapter describes how the
framework for developing I-KBSs is used to redesign the knowledge-based core
of Socharis.

The main knowledge intensive section of Socharis is the part which is
responsible for generating of manufacturing alternatives, instantiating them with
the sets of technological parameters and estimating the merits for each
generated alternative as was discussed in Section 4.2. The problem-solving
architecture of Socharis and its parts (depicted on the Figure 1) was hard coded
in Smalltalk, therefore restricting the maintenance of the system to the people
intimately familiar not only with Socharis’s problem and Smalltalk, but also with
the legacy software that Socharis is built on.

The use of S-Force, the Shell for Constructing Integrated Knowledge-
Based Systems, allows re-implementation of Socharis’s knowledge-based core
(SochariskB) in a framework of an advocated methodology that allows the
designer and the user accessing the system, its knowledge-level architecture,
and problem-solving architecture of its components.

7.1.  Problem-Solving Hierarchy of Re-Designed SocharisKB

Following the domain dependent decomposition of the Socharis’s problem

(Section 2.2) the Problem-Solving Hierarchy (PSH) of Re-Designed SochariskB

(Re-SochariskB) is divided into three major parts: Technology Selector,
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Technoloéy Refiner, and Technology Estimator. Represented in the Figure 1
PSH of Re-SochariskKB follows the stationary task-subtask decomposition of the
problem from the domain specialist’s viewpoint. Where each of three major sub-
problems is further decomposed into a number of smaller sub-problems that
could be handled by a GT-based problem-solvers or being solved through unitary
operations like Boosting.

Besides playing the role of task-subtask hierarchy, the PSH provides an
access to every part of the I-KBS through the set of functional menus as well as
enables system building and maintaining functions.

7.2.  Functional Model of Re-Designed Socharis

The macroexpansion of Re-SochariskB (Figure 32'?) illustrates causal
order of activation of node. Particularly it shows that first, the system selects
technologies, then boosts the results of two selectors. Next, it instantiates the
selected technologies by running correspondent problem-solver and finally, it
estimates the parameterized technologies by activating nodes responsible for

running estimator problem-solvers.

"2 Due to the large size of the macroexpansion, I substituted a system screenshot with its copy rearranged so
it fits the space allotted.
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S-ﬁorce treats a macroexpansion as a network with distributed control
where every node is being invoked as soon as the system reaches the node’s
layer of the network. However, the node does testing the self-applicability
through the mechanism of port managers. Macroexpansion gives an access to
high-level information flow in an I-KBS, the level where the information is being
treated as a monolithic slug of matter passing through the device's (I-KBSs)

Functional Model.

operationSelector Number = 0 [—#] By PS:Operation_Selector’ Set operationSelector Number 10 | [———
[ marSel Number =0 | By PS:'materialTechnology" Set matSelNumber to | f—————————
——{Remeumw-OJO———-{ By Definition of:'B * Set selectionB: Number to | I'—' lelem‘mam-olt-
L-{ CompressionMolding Number = 0 [-{ By PS:'Compression Moking Set CompressionMolding Number 1 | [———
-9 FilameniWinding Number = 0 |——————8{ By PS: FilamentW inding Set FilamenWinding Number 1 | [—————
- InjectionMolding Number = 0 (———————{ By PS: *InjectionMokding’ Set InjectionMolding Number 1 | |
-O{ LayupNumbu-O} :{ By PS: ‘Layup’ Set Layup Number o | I—
L o{ Reuminfiven Namber =0 | o[ By Ps. ‘Resminfusion’ Set Reinlnfusion Number 0 1 |———1
Lo RTM Number -0 ] —»{ By PS: ‘RTM" Set RTM Number to | [———
| By PS ‘GeometricalRepeatability’ Set SeomRep Number 1o 1 [¢ J]r' ",Nmm-olo-
[ By PS "Labor* Set Labor Numberto | fe Labor Number = 0
[ By PS *MechanicalProperties" Set mechProperties Number to | fé————{ mechProperties Number = 0 |4

[ By PS "Operator_Exposure’ Set Opertixposure Number to | f#——————— OperExposure Number = 0 ]-‘_{ Extimator Number = 0
[ By PS "Part_Tumaround_time’ Set pantTT Number 1o 1 k——{ﬂ_umio_]t-

[ By Ps Skill_Level” Sex SkillLevel Number 1o 1 [& { stitiLevel Number =0 Je-
l By PS "Tooling_Cost" Set ToolingCost Number to | ]-——{ ToolingCost Number = 0 l‘-‘
I By PS "Tooling_Tumaround_time’ Set ToolingTT Number to 1 ToolingTT Number = 0

Figure 32. Macroexpansion of SocharisKB

7.3.  Information-Processing Model of Re-Designed Socharis
In spite of the telltale nature of the macroexpansion, it does not show all

the information necessary for understanding the problem-solving behavior of Re-
SocharisKB. Information-Processing Layer is specifically designed to show how

information is used and processed by every node of the functional model

145




therefore exposing the problem-solving behavior of an I-KBS. Port managers are
used to access the Information-Processing Model. Through the mechanism of
port managers, the designer and the user can access individual nodes, their
preconditiods, mappings, and specific control.

Organization of port managers for operationSelector, RTM, and Labor
(Appendix B) nodes of PSH could illustrate three distinctive examples of control
structures that are used in Socharis.

Port manager for operationSelector indicates input and output
variables of the node as well as existential conditions and default values. This
port manager does not impose any mappings and dynamic control. That means
that this node will activate the correspondent problem-solver if the existential
predicate is satisfied. This node is directly and unconditionally mapped to
Booster node that makes it an example of the Rigid Control architecture where
the communication channels as well as the order of execution are being defined
before the system has run.

If we look at the RTM node, then besides the information about the
input/output variables and mapping we can see that the node is being controlled
by that variable rtmBoostCtrl which is mapped from boosterResult.
rtmBoostCtrl has a type of HC control, which tells us that the node will be
activated when the value of boosterResult will contain value ‘Resin
Transfer Molding’ designated in control field of the rtmBoostCtrl.
The similar control structure could be found at every node responsible for running

individual technology refiners, which directly maps to the domain-derived strategy
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for identi&ing perspective technologies. On the other hand, the problem-solving
architecture of the part of Re-SochariskB responsible for technologies’
instantiations is an example of the blackboard architecture. Blackboard is being
modeled via'broadcasting variables’ values through the communication channels.
Each refiner node (a knowledge source in blackboard terms) filters the necessary
values through the mapping and activates the respective problem-solver if the
value of the control variable triggers it.

Macroexpansion of Socharis does not show that the nodes responsible for
the estimation of a particular merit have to be executed as many times as a
number of alternatives generated by Re-SocharisKkB. However, if we take a look
at the Information-Processing Model of SocharisKkB (Appendix B) at one of the
estimator nodes (e.g. Labor) we notice six control variables, each responsible
for manipulating the node’s activation in case of a particular problem-solving
context. Lets’ take a closer look at the control variable RTMCtrl.  This
variable is being mapped from the RTM Port from the RTMResult output
variable and contains the result (likely to be multiple result) of the RTM refiner. In
the case when the control is being handed to this node by the RTM node, the
Labor node effects the mapping of the variables using RTMPort @1 mapping and
iterates the Labor node for all values of the RTMResult. This is a clear example
of Semi-Rigid Control Architecture, where one defines the communication
channels but activation of the node and number of node’s iteration are

determined only during the run time.
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Thé above instances demonstrated the ability of the S-Force to re-produce
three different kinds of control architectures (Section 3.1.1) using mechanism of
dynamic control provided by port managers within the Information-Processing
Model.

7.4. Ontology, User Interface, Pre-, and Post-processing

S-Force does not cover problems associated with the development of
domain ontology, user interface, and algorithmic pre- and post-processing.

The development of domain ontology in every particular case is a process
where the KBS developer might use a number of available shells (e.g.
Ontolingua server tool (Fikes 1997), ProtégéWin (Eriksson, Fergerson et al.
1999)) and then parse the result in to the knowledge structure convenient for
building I-KBS. For Socharis, we developed a Manufacturing Ontology Editor
(Martinez, Lukibanov et al. 1998; Martinez, Lukibanov et al. 1999) that allowed
creating and modifying ontology of manufacturing with polymer composite
materials. This manufacturing ontology is a four-level deep class-subclass
hierarchy (Category - Class - Attribute - Value) that describes a part as well
as manufacturing technology used to produce it.

Alternatively, | used ProtégéWin tool to create a similar ontology and
output it into the balanced parenthesis list that could be easily parsed to re-create
an existing ontology. However, ProtégéWin goes one step further by allowing
creating interfaces that help produce instances using the developed ontology.
These instances then can be sent to an external application for the processing.

Unfortunately, as recognized by the team of creators of ProtégéWin,
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developmént of a good interface is not a problem that could be undertaken by a
general-purpose tool. The interfaces, generated by ProtégéWin are fair for the
development purposes; however, they are totally unacceptable for the end-user.
Similar reasons motivated my research to forego features of S-Force that would
allow developing the end-user interface for a front-end application and
concentrate on the development of an interface suitable for the developmental
purposes.

A particular domain- and application-dependent user interface can be
developed in a Smalitalk environment using back-end of the S-Force that
contains a list of pointers to all variables participating in the problem-solving
process. It is also relatively straightforward to write CORBA or ActiveX interface
definitions for the back-end of a developed |-KBS to use it as a server accessible
by external applications.

Algorithmic pre- and post-processing in a KBS are usually operations that
prepare input data for the |I-KBS and transforming the output data for user's
understanding. If some of these procedures are knowledge intensive they can
be imported as parts of the |-KBS. However, for the most part of these
procedures are highly domain, application, and user dependent hence, similar to
end user interface and are left out of the scope of the described research.

7.5. Discussion

Chapters 6 and 7 demonstrated the possibility of implementation of I-KBS

using the framework that supports the described approach. The approach is

based on the Function-Based Reasoning theory, augmented with new functional
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ontology énd addition of the Information-Processing layer that allows not only
explicit assigning of input and output information for every node of Functional
Model but also defining mapping, advanced preconditions, default values, and
dynamic control.

Section 7.3 demonstrated that the problem-solving architecture of Re-
SochariskB leverages Rigid Control, Flexible Control, and Semi-Rigid Control
architectures at different points of a problem-solving process depending on the
available information, which allows close fitting of the I-KBS problem-solving

architecture to the domain engineer problem-solving strategy and tactics.
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8. CONCLUSION

This dissertation addresses two major problem areas consequently
divided into the number of sub-goals:

1. In the knowledge-based systems area (KBS): development of methodology
and implementing the supporting software framework for constructing
integrated knowledge-based systems.

KBS-1. Augmentation of the Function-Based Reasoning methodology that
allows functional decomposition of a real world problem using as building
blocks a limited set of types of unitary problem-solvers.

KBS-2. Addition of an Information-Processing layer to the functional modeling
methodology, which enables an explicit assignment of information and control
flow through the Functional Model.

KBS-3. Addition of the capability of describing dynamic device control over the
parts of the Functional Model of the I-KBS, therefore enabling implementation
of arbitrary distributed control structures and problem-solving units within the
I-KBS.

KBS-4. The development of a shell which supports building I-KBSs in the
described framework.

2. In the area of composite materials (CMD): re-design of the knowledge-based
core of the system Socharis whose goal was to generate a family of
applicable conceptual manufacturing plans for assemblies made of polymer

composite materials.
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CMD-1. .Possibility of on-the-fly change in the system’s architecture, the
architecture of its components, and the knowledge content. Re-designed in
the developed shell Socharis will provide graphical interfaces to examine
every paft of the system and to modify them if necessary. Modification
cannot only affect the knowledge encoded in the system, but also the control
flow that governs the order of the problem-solvers’ activation.

CMD-2. Explicit definition of the information and control flow between the
components of the system that lets the user to understand the problem-
solving strategy of Socharis. This, in turn, may be used as an educational
instrument for teaching manufacturing in polymer composites.

This chapter reports on the accomplishments and the contribution of the

dissertation research specifically covering the listed above sub-goals.

8.1. Contributions to the Knowledge-Based Systems Field

8.1.1. Preamble
The major KBS goal of this dissertation research was to develop a

methodology for constructing integrated knowledge-based systems. The
foundation of the proposed approach is the Function-Based Reasoning theory. A
number of qualities of the FR methodology such as explicit causal network,
hierarchical device decomposition, and the ability to arbitrary vary the level of
granularity of the decomposition prompted this researcher to consider it as the
methodology for description of the integrated problem-solving architecture. In
addition to that, application of the FR techniques to component-based software

engineering described in (Liver and Allemang 1995) justified the use of this
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methodolbgy to describe integrated knowledge-based systems However, the

function-based reasoning theory required certain modifications to accommodate

the specifics of the modeled subject: an integrated knowledge based system.
The main obstacles that prohibit direct application of the FR methodology

to decomposition and modeling I-KBSs could be listed as follows (Section 3.2):

e The lack of an adequate ontology capable of describing the functionality of
problem-solving units.

¢ Inability to distinguish between different parts of the substance that is being
passed through the functional model, i.e. treating it as inseparable slug of
matter.

e Weakness of the precondition clause that made it very difficult to state
complex conditions on the activation of parts of the functional model, which
adds to the absence of complex control structures within the functional model.

The additions to the current FR framework which have been proposed in
this dissertation augment traditional FR and particularly to its implementation in
the Intelligent Systems Laboratory’s legacy software package attacks these
issues by:

e Introducing changes to the functional ontology, including functional
description of bottom-level devices/problem-solvers (Section 3.2.1)

e Adding the notion of port managers that allow description of the information-
processing layer that directs information and control flow in an I-KBS, and

(Section 3.2.2)
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e Using port managers as the distributed control units that expand the notion of
pre-condition in the traditional FR (Section 3.2.2)

These augmentations allow using the FR techniques to describe I-KBS
emphasizingy task-subtask decomposition and the function of each separate or
integrated component of the functional model!.

Below | summarize the specific accomplishments in the areas listed
above.

8.1.2. Functional Ontology

The modification to the traditional functional ontology (Section 3.2.1)
includes description of functionality of GT-based problem-solving types. This
ontology is best leveraged when the designer attempts to approach a new
problem, which does not have a clear task — sub-task decomposition. In this
case, the functional ontology guides the designer in identifying the role of
subordinate units as one of the available problem-solving types. Moreover, it
provides the designer with predetermined configuration of input and output data,
specific for each type of problem-solver. This affects the process of building |-
KBS since types of dynamic controls explicitly depend on the type and structure
of this information. The result of multiple routine designer is a collection of sets
of parameters that would satisfy the described in the inputs requirements the
reasonable operation that could be performed on this result is consecutive look-
up. On the other hand, the result of hierarchical classifier is the list of
predetermined names with correspondent confidence value: “matched”, “neutral”,

“against”, etc. The reasonable operation on this rather output structure is to
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compare ft with specified a priori test expression. Therefore, the structure of the
available information may hint the KBS designer to choose one problem-solving
unit over the other.

In the case of explicit or known task breakdown, the functional ontology of
problem solving does not play its guiding role in task-decomposition process. In
turn the designer is faced with the task of finding an available off-the-shelf
problem-solving unit capable of tackling each identified sub-task. This problem
spurs a challenging branch in the research in the theoretical and practical FR: a
problem of concise and sufficient definition of a device and its functionality. Such
definition or a template should enable automatic or semiautomatic retrieval of a
device from the library of devices. The research toward creating such a universal
template for a device description is currently underway in Stanford University’s
Knowledge Systems Laboratory and Ohio State University’s Laboratory for
Artificial Intelligence Research.

8.1.3. Information-Processing Layer and Port Managers

The most important innovation in the research reported is the introduction
of an information-processing layer to the functional model (Section 3.2.2). This
layer allows treating information flowing through the functional model as a flow of
divisible streams of data and control, rather than as an inseparable slug of
substance: a representation common for the traditional FR approach.
Information-processing layer is accessible to the I-KBS developer through the
mechanism of port managers, introduced in Section 3.2.2. Port managers

govern the inputs and outputs of every device/problem-solver in the functional
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model. fhey are able to perform testing of preconditions, checking assertions,
assigning default values to the ports (input and output variables), map ports form
one device to another, control device's activation, etc. Using port managers,
information flow through the functional model could be separated, unified,
mapped from one module to another, and re-directed.

Association of port managers with every device/problem-solver of the
functional model allows associating of distributed control units with every part of
the functional model. These control units enhance the functionality of their
predecessors -~ precondition clauses - but also enable the development
architectures with complex control structures including iteration and boosting.

8.1.4. S-Force: a Shell for Developing I-KBSs

Following the proposed changes to the FR framework, the shell for
constructing I-KBSs — S-Force (Chapters 6 and 7) — was implemented on the
basis of legacy software package (GT ITS) suitable for the development of stand-
alone or hard-wired GT-based problem-solvers. The legacy of GT ITS was the
main reason for using the GT-based problem-solvers as base-line problem-
solving units. Another consideration in favor of exploiting GT-based problem-
solvers was the fact that they have been successfully applied to the development
of the number of KBSs in the Intelligent Systems Laboratory at Michigan State
University over the last decade.

It is important to understand that in spite of use of GT-Based problem-
solvers in S-Force, the methodology developed in this dissertation does not

impose any restriction on the type of the problem-solving modules that serve as
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basic building blocks. The main criterion is to be able to look at the problem-
solving unit as at a black box with clearly identifiable input, output, and
functionality.

S-Force provides the developer with the graphical environment that allows
on the fly designing and building I-KBSs by defining and systematically
describing three layers of an |-KBS: the Problem-Solving Hierarchy, the
Functional Model, and the Information-Processing Model (Chapter 6).
Development of an I-KBS is finished when each leaf of the Problem-Solving
Hierarchy is associated with a specific problem-solving unit. S-Force allows re-
use previously built in the GT ITS framework units as parts of an I-KBS as well as
supporting the design of the problem-solving units from scratch.

8.1.5. Practical Application of S-Force

The practicality of S-Force was studied on several examples including re-
designing knowledge-based core of Socharis system (Chapter 7 Appendix B)
and building of an exemplary tutorial system (Chapter 6, Appendix A). S-Force’s
features are proved adequate for designing and modeling integrated knowledge-
based systems. In fact, it took approximately four hours to re-design KBS core of
Socharis consisted of thirty cooperating entities, if all problem-solving units were
available in advance.

-S-Force gives access to the knowledge level architecture of I-KBSs
designed in it by the means of graphical user interfaces that disclose every part
of the problem-solving architecture, functionality and internal structure of the

constituent parts of an I-KBS, and an I-KBSs information-processing layer.
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8.1.6. Summary and Venues of Future Research
There are some implementation-level shortcomings of S-Force that should

be addressed in future research. Current implementation of S-Force does not
take advantage of possibility to distribute the problem-solving modules across the
network. However, it is possible to locate modules on the different machines and
call them asynchronously using one of available protocols and broker
architectures. One thing that has to be kept in mind is the synchronization of
results of multiple problem-solvers working on the same problem.

One of the features of port managers unexplored in the current
implementation is the possibility to post-process results of the run of the node.
The addition of the post-processing capability can considerably increase the
power of the shell to develop more complex problem-solving architectures.

To summarize the features and the capabilities of the reported in this
dissertation research towards developing methodology and the tool for
constricting I-KBSs Table 8 below compares it with the existing methodologies
and shells for building I-KBSs. The comparison is done along the lines
presented in the Section 2.2.5 that underscores the explicitness of the knowledge
level architecture, implemented control strategies, and the existence of the shell

supporting the methodology.
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Explicity of | Global Local Ability to handle | Shell
KLA (1 -5) control control multiple control
strategy strategy structures
BB1, BBK 1 FC SRC No Yes
PROTEGE-II 3 FC All Somewhat Somewhat
(programming
required)
Generic Task | 5 RC RC No Yes
Toolset (programming is
needed)
TIPS 4 SRC RC No No
GT SOAR 3 RC SRC No No
CommonKADS 5 SRC RC Some Several
VITAL 5 RC, some | RC No Yes
SRC
CoMoMAS FC SRC No No
Conventional FR SRC RC No Yes
Augmented FR RC, SRC, | RC, SRC, | Yes Yes
S-Force FC FC

Table 8. Comparison of the S-Force with other methodologies and shells.

The above discussion leads to the conclusion that the goals KBS-1

through KBS-4 were achieved in this dissertation.

opened new research paths that could be investigated in the future:

o Development of the device/problem-solver definition template

However, the research

e Augmentation S-Force to allow development and modeling distributed

problem-solving architectures

e Improvement of port-manager's functionality with the addition of post-

processing.
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8.2. Contributions to the Application Domain
Redesigning the knowledge-based core of Socharis using S-Force

accomplished the stated in the Introduction to the dissertation application domain
goals CMD-1 - CMD-2 by enabling the direct access to the control structures
governing problem-solvers’ activation process. These control structures were
previously hidden in the Smalltalk code that disallowed effortless alteration and
augmentation of Socharis. Use of S-Force enabled the designer to directly
access the decomposition of the problem of the conceptual manufacturing
planning as it is perceived be a domain specialist. The major benefit of a re-
designed system is that the control and information flows through a problem-
solving process and are directly exposed to the designer through the graphical
user interface. Such open architecture enables the designer making changes in
the problem-solving architecture in the case of necessity to adapt future versions
of Socharis to new deployment sites.

Another important contribution of work on Socharis and re-designed
Socharis in the application domain area is the hypothesis introduced in
(Lukibanov, Martinez et. al.. 2000), which asserts that a high-level problem-
solving architecture developed for Socharis is a high-level problem-solving
architecture of the conceptual process planning task in general. Given this, the
problem-solving skeleton of the redesigned Socharis can serve as a backbone
for the process-planning intelligent systems in domains others than polymer
composite materials. It would be challenging and engaging to take on the

problem of manufacturing process planning in the area of metal- or woodworking
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using the-Socharis's problem-solving architecture implemented in S-Force as a
starting point.
8.3. Concluding Remarks

By taking the hypothesis introduced in (Lukibanov, Martinez et. al.. 2000)
- that supposes that problem-solving architecture of Socharis is, in fact, the
problem-solving architecture of the conceptual manufacturing planning - one
step further it is reasonable to suggest that there exists a number of problem-
solving architectures commonly used in the problem-solving activity. The PSMs
of Second-Generation Knowledge-Based Systems (Section 3.2) serve as
templates for building solutions for homogeneous tasks, tasks that require a
single method. In contrast, integrated problem-solving architectures can be used
to approach heterogeneous problems that are impossible to solve by application
of a single problem-solving method but rather by their combinations.

The challenge is in identifying such architectures. Extracting and
categorizing problem-solving architectures could be done only after analyses of a
great number of different tasks and approaches or by generalizing on a
successful implementation in a particular area. One of the sources where such
an analysis is possible is the Domain Specific Software Architectures (DSSA)
research (Mettala 1992) (Section 3.4.4). Five-year long DARPA sponsored
research was aimed to identify common software architecture in six different
areas:

1. Avionics Navigation

2. Guidance and Flight Director
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3. Comﬁand and Control

4. Distributed Intelligent Control and Management (DICAM) for Vehicle
Management

5. Intelligent Guidance, Navigation and Control

6. Hybrid Control, and Prototyping Technology

Research was distributed among several contractors: IBM Federal Sector
Division, GTE Federal Systems, Tecknowledge Federal Systems, Honeywell
Systems and Research Center, ORA Corporation, and TPW. This research
resulted in the set of methodic and tools that defined specification, design, and
validation of software systems specific for each domain. One the
accomplishments of the DSSA project was the conclusion that mature software
architecture should possess three basic elements:

o well-defined notation for capturing architectures

o well-defined methods for producing and analyzing formal models from
specification, captured in notation

e a well-defined method for producing implementation from a specification
captured in the notation.

However, no study was performed to identify similarity(s) between the
developed software architectures and processes. The reason for this is that at
that time, the researchers lacked the necessary methodology to describe the
software architecture and processes in the unified way. Nowadays, Rational
Unified Process (RUP) developed as a result of research in Capability Maturity

Model, Personal Software Process, and Object Modeling Techniques can help in
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capturing organizational flow and architectural details. Analyzing RUP models, it
might be possible to recognize similarities in the overall organizational process
as well as software architecture. However, knowledge-intensive processing is
beyond the RUP covered area since it does not support knowledge modeling
techniques.

The information presented in this dissertation methodology provides
means to model such knowledge-intensive tasks by describing problem-solving
architectures that could be compared along three axis: problem decomposition,
functional decomposition, and information processing. This feature enables
comparison between a difference modeled in S-Force systems. Such an
analysis followed by generalization could lead to definition of a number of useful
problem-solving architectures that would serve as backbone for the next
generation of knowledge-based systems consisting of multiple cooperating

entities and featuring accessible knowledge level.
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APPENDIX A
KNOWLEDGE STRUCTURE OF SOCHARIS*

Device: Example Socharis
Function: Example Socharis Fn
Beahvior: Example Socharis Beh
Port Manager: Example SocharisPort

All variables:

Example Socharis Number input output
Example Socharis Result output
Technology Selector Number input
Fiber Architecture input
size input
Wall Thickness input
Aspect Ratio input
Shape input
partMaterial input
Layup Refiner Number input
Tolerances input
SurfaceQuality input
GeometricalComplexity input
functional requirements input
Refiner Number input
Layup Refiner Number input
RTM Refiner Number input
Production input
Tooling Cost Estimator Number input
Part TT Estimator Number input
fiberList input

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:

Controls:
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Device: Estimator
Function: EstimatorF
Beahvior: EstimatorB

Port Manager: EstimatorPort
All variables:

Estimator Number

input output

EstimatorResult

output

depth

input

Tooling Cost Estimator Number

input

Part TT Estimator Number

input

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:

Example SocharisPort@1

Estimator Number

?

EstimatorResult

l)

depth

Wall_Thickness

Controls:
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Device: Refiner

Function: RefinerFn
Beahvior: RefinerBh
Port Manager: RefinerPort

All variables:

Refiner Number input output
RefinerResult output
Tolerances input
SurfaceQuality input

size input
resinList input
Production input
GeometricalComplexity input
Fiber Architecture input

RTM Refiner Number input
depth input
functional requirements input
Layup Refiner Number input
fiberList input
Qualitative predicates:

Quantitative predicates:

Existential predicates:

Production ?

resinList ?

Fiber Architecture *

depth *

Refiner Number ?
GeometricalComplexity *
functional requirements *

Layup Refiner Number ?
Tolerances *
SurfaceQuality ¥

RTM Refiner Number ?

size *

Default values:

Mappings:

Example SocharisPort@1

Refiner Number ?
RefinerResult ?
Tolerances Tolerances
SurfaceQuality SurfaceQuality
size size
resinList partMaterial
Production Production
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GeometricalComplexity

GeometricalComplexity

Fiber Architecture

Fiber Architecture

RTM Refiner Number

l)

depth

WaII_Thickness

functional requirements

functional requirements

Layup Refiner Number

?

Controls:
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Device: Technology Selector
Function: SelectTechnology
Beahvior: stBeh
Port Manager: Technology SelectorPort

All variables:

Technology Selector Number input output
Aspect Ratio input

Fiber Architecture input
partMaterial input
Shape input

size input

Wall Thickness input
TSResult output

Qualitative predicates:
partMaterial ~= unknown
Shape ~= unknown

Quantitative predicates:

Existential predicates:

partMaterial

Wall_Thickness

Aspect Ratio

Shape

Technology Selector Number

| #]. O | | »| »

Fiber_ Architecture

size

Default values:

Mappings:

Example SocharisPort@1

Technology Selector Number ?

Aspect Ratio Aspect Ratio
Fiber Architecture Fiber Architecture
partMaterial partMaterial
Shape Shape

size size
Wall_Thickness Wall_Thickness
TSResult ?

Controls:
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Device: Part TT Estimator
Function: Estimate PTT
Beahvior: epttBeh
Port Manager: Part TT EstimatorPort

All variables:

Part TT Estimator Number input output
CMtemperature input
curing type input
FWtemperature input
IMtemperature input
manTechList input

Part turnaround time output
resin prepreg/wet input
resinList input
RTMHeating method input

size input

Wall Thickness input

ptte Layup Ctrl input

ptte RTM Ctrl input
pteResult output
Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

Layup RefinerPort@1\

Part TT Estimator Number ?
CMtemperature ?

curing type curing type
FWtemperature ?
IMtemperature ?
manTechList manTechList
Part turnaround time ?

resin prepreg/wet resin prepreg/wet
resinList resinList
RTMHeating method ?

size size

Wall Thickness depth

ptte Result ?

ptte Layup Ctrl Layup Refiner Result
ptte RTM Citrl ?
EstimatorPort@1

Part TT Estimator Number ?
CMtemperature ?

curing type ?
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FWtemperature

IMtemperature

manTechList

Part turnaround time

resin prepreg/wet

resinList

RTMHeating method

size

Wall Thickness

@
2
b

ptte Result

ptte Layup Ctrl

ptte RTM Citrl

EVIRSIESHIoRESIESIBSIES IR RS BN ] BN

RTM RefinerPort@1

Part TT Estimator Number ?

CMtemperature ?

curing type Curing type
FWtemperature ?

IMtemperature ?

manTechList manTechList

Part turnaround time ?

resin prepreg/wet ?

resinList resinList

RTMHeating method Heating method
size size

Wall Thickness ?

ptte Result ?

ptte Layup Ctrl ?

ptte RTM Cirl RTM RefinerResult
Controls:

ptte Layup Ctrl

type rdinputControl
control name ptte Layup Ctri
control Layup Refiner Result
ptte RTM Citrl

type rdinputControl
control name ptte RTM Ctrl
control RTM RefinerResult

171







Device: Tooling Cost Estimator

Function: Estimate Toolig Cost

Beahvior: etcBeh
Port Tooling Cost EstimatorPort
All variables:

Tooling Cost Estimator Number

input output

manTechList

input

material cost

Tool complexity

Tooling cost

toolingList

input

tce Layup Ctrl

input

tce RTm Ctrl

input

tce Result

output

Qualitative predicates:
toolingList ~= unknown

Quantitative predicates:

Existential predicates:

manTechList

tce RTm Citrl

Tooling Cost Estimator Number

tce Layup Ctrl

toolingList

MESIES IRV ] B

Default values:
Mappings:
Layup RefinerPort@1

Tooling Cost Estimator Number

?

manTechList

manTechList

material cost

?

Tool complexity

Tool complexity

Tooling cost

?

toolingList

toolingList

tce Result

?

tce Layup Ctrl

tce RTm Ctrl

Layup Refiner Result
?

RTM RefinerPort@1

Tooling Cost Estimator Number ?

manTechList manTechList
material cost ?

Tool complexity Tool complexity
Tooling cost ?

toolingList ToolingMaterial

tce Result ?

tce Layup Ctrl ?

tce RTm Ctrl RTM RefinerResult
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Controls:
tce RTm Ctrl

type

rdinputControl

control name

tce RTm Ctrl

control

RTM RefinerResult

tce Layup Ctrl

type

rdinputControl

control name

tce Layup Ctrl

control

Layup Refiner Result
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Device: Layup Refiner
Function: Refine Layup
Beahvior: riBeh
Port Manager: Layup RefinerPort

All variables:
Layup Refiner Number input output
Layup Refiner Result output
Layup Refiner Ctrl input
curing type output
depth input
fiberList input
functional requirements input
GeometricalComplexity input
labor output
ostcuring output
pressure output
production input
resin prepreg/wet output
resinList input
size input
SurfaceQuality input
temperature output
Tolerances input
Tool complexity output
toolingList output
manTechList output

Qualitative predicates:
Quantitative predicates:
Existential predicates:

resinList

depth

Layup Refiner Ctrl

functional requirements

Tolerances

SurfaceQuality

GeometricalComplexity

production

fiberList

Layup Refiner Number

] #| o] 2] #{ | 2].O] | *

size

Default values:

| resinList | DGEBA

Mappings:
Technology SelectorPort@1
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Layup Refiner Number

2
Layup Refiner Result ?
Layup Refiner Ctrl TSResult
curing type ?
depth ?
fiberList ?
functional requirements ?
GeometricalComplexity ?
labor ?
postcuring ?
pressure ?
production ?
resin prepreg/wet ?
resinList ?
runSystem ?
size ?
SurfaceQuality ?
temperature ?
Tolerances ?
Tool complexity ?
toolingList ?
manTechList ?
RefinerPort@1
Layup Refiner Number ?
Layup Refiner Result ?
Layup Refiner Ctrl ?
curing type ?
depth ?
fiberList fiberList
functional requirements functional requirements
GeometricalComplexity GeometricalComplexity
labor ?
postcuring ?
pressure ?
production Production
resin prepreg/wet ?
resinList resinList
runSystem ?
size size
SurfaceQuality SurfaceQuality
temperature ?
Tolerances Tolerances
Tool complexity ?
toolingList ?
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| manTechList B

Controls:

Layup Refiner Ctrl

type hcinputControl
control name Layup Refiner Ctrl
output - manTechList
control %Layup
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Device: RTM Refiner
Function: Refine RTM
Beahvior: rtmBeh
Port Manager: RTM RefinerPort

All variables:

RTM Refiner Number input output
RTM RefinerResult output
RTM Refiner Ctrl input
Curing temperature output
Curing time output
Curing type output
FiberFormingMethod output
Fiber Architecture input
GeometricalComplexity input
Heating method output
labor output
Postcuring Required output
Production input
resinList input
runSystem

size input
SurfaceQuality input
Tolerances input
Tool complexity output
ToolingMaterial output
manTechList output

Qualitative predicates:
Quantitative predicates:
Existential predicates:

RTM Refiner Ctrl

RTM Refiner Number

size

Tolerances

Production

resinList

SurfaceQuality

w 2] #| | 2| | #].O|-O

GeometricalComplexity

Fiber Architecture

Default values:
Mappings:
Technology SelectorPort@1

RTM Refiner Number ?

RTM RefinerResult ?

RTM Refiner Ctrl TSResult
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Curing temperature

Curing time

Curing type

FiberFormingMethod

Fiber Architecture

GeometricalComplexity

Heating method

labor

Postcuring Required

Production

resinList

runSystem

size

Tool complexity

ToolingMaterial

BC] EX] B BUT ECY BUY B BT BUT BT BT BRY BCY IR

RefinerPort@1

RTM Refiner Number ?

RTM RefinerResult ?

RTM Refiner Ctrl ?

Curing temperature ?

Curing time ?

Curing type ?
FiberFormingMethod ?

Fiber Architecture Fiber Architecture
GeometricalComplexity GeometricalComplexity
Heating method ?

labor ?

Postcuring Required ?

Production Production
resinList resinlList
runSystem ?

size size
SurfaceQuality SurfaceQuality
Tolerances Tolerances

Tool complexity ?
ToolingMaterial ?

Controls:

RTM Refiner Ctrl

type hclnputControl
control name RTM Refiner Ctrl
output manTechList
control %RTM
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APPENDIX B
KNOWLEDGE STRUCTURE OF RE-ENGINEERED SOCHARIS

Device: Socharis
Function: SocharisFn
Behavior: SocharisBh
Port Manager: SocharisPort

All variables:

Socharis Number input output
socharisResult output
Selector Number input
operationSelector Number input
Aspect Ratio input
Fiber Architecture input
partMaterial input
Shape input
size input
Wall Thickness input
matSel Number input
GeometricalComplexity input
production input
Compression Molder Number input
SurfaceQuality input
Tolerances input
Layup Number input
fiberList input
functional requirements input
RTM Number input
Resin Infusion Number input
FilamentWinding Number input
inserts input

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:

Controls:
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Device: Estimator
Function: Estimation
Behavior: EstimatorBeh
Port Manager: EstimatorPort
All variables:

Estimator Number

input output

estimatorResult

output

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:

Controls:
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Device: Refiner
Function: refinerFn
Behavior: refinerBh
Port Manager: RefinerPort
All variables:

Refiner Number

input output

refinerResult output
GeometricalComplexity input
production input
Compression Molder Number input
fiberArchList input
resinlList input
SurfaceQuality input
Tolerances input
Layup Number input
fiberList input
depth

size input
functional requirements input
RTM Number input
Resin Infusion Number input
FilamentWinding Number input
inserts input
Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

SocharisPort@1

Refiner Number ?
refinerResult ?
GeometricalComplexity GeometricalComplexity
production production
Compression Molder Number ?

fiberArchList

Fiber Architecture

resinList partMaterial
SurfaceQuality SurfaceQuality
Tolerances Tolerances

Layup Number ?

fiberList fiberList

depth Wall Thickness

size size

functional requirements functional requirements
Controls:
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Device: Selector
Function: SelectorFn
Behavior: SelectorBh
Port Manager: SelectorPort
All variables:

Selector Number

input output

selectorResuit

output

operationSelector Number

input

Aspect_Ratio

input

Fiber Architecture

input

partMaterial

input

Shape

input

size

input

Wall Thickness

input

matSel Number

input

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:
SocharisPort@1

Selector Number

selectorResult

operationSelector Number

Aspect Ratio

Fiber Architecture

partMaterial

Shape

size

Wall Thickness

matSel Number

RV IRSIENSIESIESI RN IR IES] BV ] RN

Controls:
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Device: GeomRep
Function: grFun
Behavior: grBeh
Port Manager: GeomRepPort
All variables:

GeomRep Number input output
GeometricalComplexity input
Geom_Rep input
manTechList input

resin prepreg/wet input
GeomRepeatRsit output
layupCtrl input
RTMCtrl input

cmCtrl input

imCtrl input

fwCtrl input

riCtrl input
Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

LayupPort@1

GeomRep Number ?
GeometricalComplexity GeometricalComplexity
Geom_Rep ?
manTechList manTechList
resin prepreg/wet resin prepreg/wet
GeomRepeatRsit ?

layupCtrl lyupRsilt
RTMCtrl ?

cmCtrl ?

imCtrl ?

fwCtrl ?

riCtrl ?
FilamentWindingPort@1

GeomRep Number ?
GeometricalComplexity GeometricalComplexity
Geom Rep ?
manTechList manTechList
resin prepreg/wet ?
GeomRepeatRsit ?

layupCtri ?

RTMCtri ?

cmCtrl ?
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imCitrl ?

fwCtrl fwResult
riCtrl ?
Compression MolderPort@1

GeomRep Number ?
GeometricalComplexity GeometricalComplexity
Geom Rep ?
manTechList manTechList
resin prepreg/wet ?
GeomRepeatRsit ?

layupCitrl ?

RTMCtrl ?

cmCtrl cmResult
imCtrl ?

fwCtrl ?

riCtrl ?
RTMPort@1

GeomRep Number ?
GeometricalComplexity GeometricalComplexity
Geom Rep ?
manTechList manTechList
resin prepreg/wet ?
GeomRepeatRsit ?

layupCtrl ?

RTMCtrl RTMResult
cmCtrl ?

imGCitrl ?

fwCtrl ?

riCtrl ?

Resin InfusionPort@1

GeomRep Number ?
GeometricalComplexity GeometricalComplexity
Geom Rep ?
manTechList manTechList
resin prepreg/wet ?
GeomRepeatRsit ?

layupCtrl ?

RTMCtrl ?

cmCtrl ?

imCtrl ?

fwCtrl ?

riCtrl riResult
InjectionMoldingPort@1

GeomRep Number ?
GeometricalComplexity GeometricalComplexity
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Geom_ Rep ?
manTechList manTechList
resin prepreg/wet ?
GeomRepeatRsit ?

layupCitrl ?

RTMCtrl ?

cmCtrl ?

imGCtrl imResult
fwCtrl ?

riCtrl ?

Controls:

imCtrl

type rdinputControl
control name imCtrl

control imResult
cmCtrl

type rdinputControl
control name cmCitrl

control cmResult
riCtrl

type rdinputControl
control name riCtrl

control manTechList
RTMCtrl

type rdinputControl
control name RTMCtrl
control RTMResult
layupCitrl

type rdinputControl
control name layupCtrl
control lyupRsit
fwCtrl

type rdinputControl

control name

fwCtrl

control

fwResult
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Device: Labor
Function: laborFn
Behavior: laborBeh
Port Manager: LaborPort
All variables:

Labor Number

input output

labor

input

Labor estimation

output

manTechList

input

layupCtrl

input

laborResult

output

RTMCtrl

input

cmGCtrl

input

imCitrl

input

fwCitrl

input

riCtrl

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:
LayupPort@1

Labor Number

?

labor

labor

Labor estimation

?

manTechList

manTechList

layupCtrl

lyupRsit

laborResult

RTMCtrl

cmCtrl

imCtrl

fwCtrl

riCtrl

N NI

FilamentWindingPort@1

Labor Number

labor

Labor estimation

3 [|-of~|-

manTechList

anTechList

layupCtrl

laborResult

RTMCtrl

cmCtrl

imCtrl

fwCtrl

Result

riCtrl

'\)g'\)'\)-\)-\)-\)
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Compression MolderPort@1

Labor Number ?

labor labor
Labor estimation ?
manTechList manTechList
layupCitrl ?
laborResult ?

RTMCtrl ?

cmCitrl cmResult
imCtrl ?

fwCtrl ?

riCtrl ?
RTMPort@1

Labor Number ?

labor labor
Labor estimation ?
manTechList RTMResult
layupCtrl ?
laborResult ?

RTMCtrl RTMResult
cmCtrl ?

imCtrl ?

fwCtrl ?

riCtrl ?

Resin InfusionPort@1

Labor Number ?

labor labor
Labor estimation ?
manTechList manTechList
layupCitrl ?
laborResult ?

RTMCtrl ?

cmCitrl ?

imCtrl ?

fwCtrl ?

riCtrl riResult
InjectionMoldingPort@1

Labor Number ?

labor ?

Labor estimation ?
manTechList manTechList
layupCtrl ?
laborResult ?

RTMCtrl ?

cmCtrl ?
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imCtrl imResult
fwCtrl ?

riCtrl ?

Controls:

cmCtrl

type rdinputControl
control name cmCtrl

control cmResult
fwCtrl

type rdinputControl
control name fwCtrl

control fwResult
RTMCtrl

type rdinputControl
control name RTMCtrl
control RTMResult
riCtrl

type rdinputControl
control name riCtrl

control riResult

imCtrl

type rdinputControl
control name imCtrl

control imResult
layupCtrl

type rdinputControl
control name layupCtrl
control lyupRsit
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Device: MechProp
Function: mpFun
Behavior: mpBeh
Port Manager: MechPropPort
All variables:

MechProp Number

input output

MachanicalProperties

output

manTechList

input

resin prepreg/wet

input

mechPropResult

output

layupCtrl

input

RTMCtrl

input

imCtrl

input

cmCtrl

input

fwCtrl

input

riCtrl

input

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:
InjectionMoldingPort@1

MechProp Number

?

MachanicalProperties

?

manTechList

manTechList

resin prepreg/wet

?

mechPropResult

?

layupCitrl

?

RTMCtrl

?

imCitrl

imResult

cmCtrl

?

fwCtrl

?

riCtrl

?

FilamentWindingPort@1

MechProp Number

MachanicalProperties

manTechList

3 ||

anTechList

resin prepreg/wet

mechPropResult

layupCtrl

RTMCitrl

imCtrl

cmCtrl

fwCtrl

Result

riCtrl

-\)g'-\)-\)-\)w)'s)-\)
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Compression MolderPort@1

MechProp Number ?
MachanicalProperties ?
manTechList manTechList
resin prepreg/wet ?
mechPropResult ?

layupCitrl ?

RTMCtrl ?

imCtrl ?

cmCtrl cmResult
fwCtrl ?

riCtrl ?
LayupPort@1

MechProp Number ?
MachanicalProperties ?
manTechList manTechList
resin prepreg/wet resin prepreg/wet
mechPropResult

layupCitrl lyupRsit
RTMCtrl ?

imCtrl ?

cmCtrl ?

fwCtrl ?

riCtrl ?
RTMPort@1

MechProp Number ?
MachanicalProperties ?
manTechList manTechList
resin prepreg/wet ?
mechPropResult ?

layupCtri ?

RTMCtrl RTMResult
imCtrl ?

cmCtrl ?

fwCitrl ?

riCtrl ?

Resin InfusionPort@1

MechProp Number ?
MachanicalProperties ?
manTechList manTechList
resin prepreg/wet ?
mechPropResult ?

layupCitrl ?

RTMCtrl ?

imCtrl ?
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cmCtrl ?

fwCtrl ?

riCtrl riResult
Controls:

imCtrl

type rdIinputControl
control name imGCtrl

control imResult
cmCtrl

type rdinputControl
control name cmCtrl

control cmResult
RTMCtrl

type rdinputControl
control name RTMCtrl
control RTMResult
layupCtrl

type rdinputControl
control name layupCtrl
control lyupRsit

riCtrl

type rdinputControl
control name riCtrl

control riResult

fwCtrl

type rdinputControl

control name

fwCtrl

control

fwResult
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Device: OperExposure
Function: oeFun

Behavior: oeBeh
Port Manager: OperExposurePort

All variables:
OperExposure Number input output
Fiber input
fiberList input
manTechList input
OperatorExposeValue output
resin prepreg/wet input
resinList input
Solvents&Corrosives
Toxins output
oeResult output
layupCtrl input
RTMCtrl input
cmCtrl input
imCtrl input
fwCtrl input
riCtrl input
Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:
LayupPort@1
OperExposure Number ?
Fiber ?
fiberList fiberList
manTechList manTechList
OperatorExposeValue ?
resin prepreg/wet resin prepreg/wet
resinList resinList
Solvents&Corrosives ?
Toxins ?
oeResult ?
layupCitrl lyupRsit
RTMCtrl ?
cmCtrl ?
imCtrl ?
fwCtrl ?
riCtrl ?
FilamentWindingPort@1

| OperExposure Number [ ?




Fiber

fiberList

manTechList

3 [~

anTechList

OperatorExposeValue

resin prepreg/wet

resinList

Solvents&Corrosives

Toxins

oeResult

layupCtrl

RTMCtrl

cmGCtrl

imCtrl

fwCtrl

Result

riCtrl

Y g BN BN BN 1 BN BRI BN 1 PR Y BRI B

Compression MolderPort@1

OperExposure Number

Fiber

fiberList

manTechList

3 |-~

anTechList

OperatorExposeValue

resin prepreg/wet

resinList

Solvents&Corrosives

Toxins

oeResult

layupCtrl

RTMCtrl

cmCtrl

mResult

imCtrl

fwCtrl

riCtrl

N[O [=I] ] 9] ]| ]|

RTMPort@1

OperExposure Number

Fiber

fiberList

H

manTechList

3 [-o]-o[-o

anTechlist

OperatorExposeValue

resin prepreg/wet

resinList

Solvents&Corrosives

Toxins

oeResult

layupCtrl

RTMCtrl

|-~~~ |-~o]-o-

TMResult
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cmGtrl

imCtrl

fwCtrl

riCtrl

NN

Resin InfusionPort@1

OperExposure Number

Fiber

fiberList

manTechList

anTechList

OperatorExposeValue

resin prepreg/wet

resinList

Solvents&Corrosives

Toxins

oeResult

layupCitrl

RTMCtrl

cmCtrl

imCtrl

fwCtrl

N[NNI+ ] 9[9[ F [} 9]

riCtri

riResult

InjectionMoldingPort@1

OperExposure Number

Fiber

fiberList

manTechList

anTechList

OperatorExposeValue

resin prepreg/wet

resinList

Solvents&Corrosives

Toxins

oeResult

layupCtrl

RTMCtrl

cmCtrl

NI T [ 9]

imGCtrl

Result

fwCtrl

riCtrl

-\)°\)§

RefinerPort@1

OperExposure Number

?

Fiber

?

fiberList

fiberList

manTechList

?

OperatorExposeValue

resin prepreg/wet

?
?
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resinList resinList
Solvents&Corrosives ?
Toxins ?
oeResult ?
layupCtrl ?
RTMCtrl ?
cmCtrl ?
imCtrl ?
fwCtrl ?
riCtrl ?
Controls:
layupCtrl
type rdinputControl
control name layupCtrl
control lyupRsit
riCtrl
type rdinputControl
control name riCtrl
control riResult
fwCtrl
type rdinputControl
control name fwCtrl
control fwResult
RTMCtrl
type rdinputControl
control name RTMCtrl
control RTMResult
cmCtrl

type rdinputControl
control name cmCtrl
control cmResult
imCtrl
type rdinputControl
control name imCtrl
control imResult
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Device: partTT
Function: partTTfn
Behavior: partTTBeh
Port Manager: partTTPort

All variables:

partTT Number input output
CMtemperature input
curing type input
FWtemperature input
IMtemperature input
Part turnaround time

resin prepreg/wet input
resinList input
RTMHeating method input
size input
Wall Thickness input
manTechList input
pttResult output
lyupControl input
rtmCtrl input
imCitrl input
cmCtrl

fwCtrl input
riCtrl input

Qualitative predicates:
Quantitative predicates:
Existential predicates:

Default values:

Mappings:

LayupPort@1

partTT Number ?
CMtemperature ?

curing type curing type
FWtemperature ?
IMtemperature ?

Part turnaround time ?

resin prepreg/wet resin prepreg/wet
resinlist resinList
RTMHeating method ?

size size

Wall Thickness depth
manTechList manTechList
pttResult ?
lyupControl lyupRsit
RTM Number ?
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ntmCtrl

imCtrl

cmCtri

fwCtrl

N[NNI

riCtrl

FilamentWindingPort@1

partTT Number

CMtemperature

curing type

@[99

FWtemperature emperature

IMtemperature

D]

Part turnaround time

resin prepreg/wet delivery system

resinList resinList

RTMHeating method ?

size size

Wall Thickness ?

manTechList manTechList

pttResult

lyupControl

rtmCtrl

imCtrl

cmCtrl

fwCtrl Result

N)E"‘Q'\)N)-\)'\)

riCtrl

Compression MolderPort@1

partTT Number

=19

CMtemperature emperature

curing type

FWtemperature

IMtemperature

Part turnaround time

resin prepreg/wet

resinList

RTMHeating method

size

Wall Thickness ?

iR d i i

manTechList anTechList

pttResult

lyupControl

rtmCtrl

imCtrl

cmCtrl mResult

fwCtrl

N[O | I]9] 9]

riCtrl
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RTMPort@1

partTT Number

CMtemperature

curing type

FWtemperature

IMtemperature

Part turnaround time

resin prepreg/wet

resinList

RTMHeating method

T~ -a]-2]-o~

eating method

size

Wall Thickness

manTechList

3|~

anTechList

pttResult

lyupControl

rtmCitrl

TMResult

imCtrl

cmCtrl

fwCtrl

riCtri

||| |-~

Resin InfusionPort@1

partTT Number

|

CMtemperature

curing type

uring type

FWtemperature

IMtemperature

Part turnaround time

resin prepreg/wet

resinList

RTMHeating method

||| ]I]9]9]|O

size

Wall Thickness

Wall_Thickness

manTechList

manTechList

ttResult

?

lyupControl

rtmCtri

imCtrl

cmCitrl

fwCtrl

SNSRI BTN |

riCtrl

riResult

InjectionMoldingPort@1

partTT Number

CMtemperature

curing type

FWtemperature

N[NNI
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IMtemperature

temperature
Part turnaround time ?
resin prepreg/wet ?
resinList resinList
RTMHeating method ?
size : size
Wall_Thickness ?
manTechList manTechList
pttResult ?
lyupControl ?
rtmCtrl ?
imCtrl imResult
cmCtrl ?
fwCtrl ?
riCtrl ?
RefinerPort@1
partTT Number ?
CMtemperature ?
curing type ?
FWtemperature ?
IMtemperature ?
Part turnaround time ?
resin prepreg/wet ?
resinlList ?
RTMHeating method ?
size ?
Wall Thickness depth
manTechList ?
pttResult ?
lyupControl ?
tmCtrl ?
imCtrl ?
cmCtrl ?
fwCtrl ?
riCtrl ?
Controls:
riCtrl
type rdinputControl
control name riCtrl
control riResult
rtmCtrl
type rdinputControl
control name rtmCtrl
control RTMResult
imCtrl
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type rdinputControl
control name imCitrl

control imResult
fwCtrl

type rdinputControl

control name

fwCtrl

control fwResulit
lyupControl

type rdinputControl
control name lyupControl
control lyupRsilt
cmCitrl

type rdinputControl

control name

cmCtrl

control

cmResult
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Device: SkillLevel
Function: sIFun
Behavior: siBeh
Port Manager: SkillLevelPort

All variables:

SkillLevel Number input output
manTechList input
runSystem

Skill level output
sIResult output
layupCtrl input
RTMCtrl input
cmCtrl input
imCtrl input
fwCtrl input
riCtrl input

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:
InjectionMoldingPort@1

SkillLevel Number ?

manTechList r}\anTechList

runSystem ?

Skill level

siResult

layupCitri

RTMCtrl

|||}

cmCtrl

imCtri imResult

fwCtrl

'\)°~)§

riCtrl

FilamentWindingPort@1

SkillLevel Number

anTechList

3|

manTechList

runSystem

Skill level

slResult

layupCtrl

RTMCtrl

cmCitrl

imCtrl

fwCtrl Result

'\)g‘-\)'\)'\)-\)\)'\)w)

riCtrl
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Compression MolderPort@1

SkillLevel Number ?
manTechList manTechList
runSystem ?

Skill level ?

slResult ?

layupCtri ?

RTMCtrl ?

cmCtrl cmResult
imCitrl ?

fwCtrl ?

riCtrl ?
LayupPort@1

SkillLevel Number ?
manTechList manTechList
runSystem ?

Skill level ?

slResult ?

layupCtrl lyupRsit
RTMCtrl ?

cmCtrl ?

imCtrl ?

fwCtrl ?

riCtrl ?
RTMPort@1

SkillLevel Number ?
manTechList manTechList
runSystem ?

Skill level ?

s|lResult ?

layupCitrl ?

RTMCtrl RTMResult
cmCtrl ?

imCitrl ?

fwCtrl ?

riCtrl ?

Resin InfusionPort@1

SkillLevel Number

manTechList manTechList
runSystem ?

Skill level ?

siResult ?

layupCitrl ?

RTMCtrl ?

cmCtrl ?
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imCtrl ?

fwCtrl ?

riCtrl riResult
Controls:

RTMCtr

type rdinputControl
control name RTMCtrl
control RTMResult
cmCtrl

type rdinputControl
control name cmCtrl

control cmResult
layupCitrl

type rdinputControl
control name layupCitri
control lyupRsit
imCtrl

type rdinputControl
control name imCtrl

control imResult

riCtrl

type rdinputControl
control name riCtrl

control riResult

fwCtrl

type rdinputControl
control name fwCtrl

control fwResult
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Device: ToolingCost
Function: tooligCost
Behavior: toolingCostBeh
Port Manager: ToolingCostPort
All variables:

ToolingCost Number

input output

manTechList

input

material cost

Tool complexity input
Tooling cost output
toolingList input
toolingCostResult output
layupCtrl input
RTMCtrl input
cmCtrl input
imCtrl input
fwCtrl input
riCtrl input
Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

InjectionMoldingPort@1

ToolingCost Number ?
manTechList manTechList
material cost ?

Tool complexity

tool complexity

Tooling cost ?
toolingList toolingList
toolingCostResult ?
layupCtrl ?

RTMCtrl ?

cmCtrl ?

imCtrl imResult
fwCtrl ?

riCtrl ?
FilamentWindingPort@1

ToolingCost Number ?
manTechList manTechList
material cost ?

Tool complexity ?

Tooling cost ?
toolingList toolingList
toolingCostResult ?
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layupCtrl ?

RTMCtrl ?

cmCtrl ?

imCtrl ?

fwCtrl fwResult
riCtrl : ?
Compression MolderPort@1

ToolingCost Number ?
manTechList manTechList
material cost ?

Tool complexity Tool complexity
Tooling cost ?

toolingList toolingList
toolingCostResult ?

layupCtrl ?

RTMCtrl ?

cmCtrl cmResult
imCtrl ?

fwCtrl ?

riCtrl ?
LayupPort@1

ToolingCost Number ?
manTechList manTechList
material cost ?

Tool complexity Tool complexity
Tooling cost ?

toolingList toolingList
toolingCostResult ?

layupCtrl lyupRsit
RTMCtrl ?

cmCitrl ?

imCtrl ?

fwCtrl ?

riCtrl ?
RTMPort@1

ToolingCost Number ?
manTechList manTechList
material cost ?

Tool complexity Tool complexity
Tooling cost ?

toolingList ToolingMaterial
toolingCostResult ?

layupCtrl ?

RTMCtrl RTMResult
cmCtrl ?
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imCtrl ?

fwCtrl ?

riCtri ?

Resin InfusionPort@1

ToolingCost Number ?
manTechList manTechList
material cost ?

Tool complexity

Tool complexity

Tooling cost ?

toolingList toolingMaterial
toolingCostResult ?

layupCitrl ?

RTMCtrl ?

cmCtrl ?

imGCtrl ?

fwCtrl ?

riCtrl riResult
Controls:

fwCtrl

type rdinputControl
control name fwCtrl

control fwResult

riCtrl

type rdinputControl
control name riCtrl

control riResult
RTMCtrl

type rdinputControl
control name RTMCtr
control RTMResult
layupCirl

type rdinputControl
control name layupCtrl
control lyupRsit
imCtrl

type rdinputControl
control name imCtrl

control imResult
cmCtrl

type rdinputControl
control name cmCtrl
control cmResult
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Device: ToolingTT
Function: tttFn
Behavior: tttBeh
Port Manager: ToolingTTPort

All variables:

ToolingTT Number input output
GeometricalComplexity input
size input
Tooling Turn Around Time output
toolingList input
toolinTTResult output
lyupCtrl input
RTMCtrl input
cmCtrl input
riCtrl input
fwCtrl input
imGCtrl input

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:
InjectionMoldingPort@1

ToolingTT Number ?

GeometricalComplexity GeometricalComplexity

size size

Tooling Turn Around Time ?

toolingList toolingList

toolinTTResult

lyupCtrl

RTMCtrl

cmCtrl

riCtrl

eV IESIESIESIESIEN)

fwCtrl

imCitrl i}n Result

RefinerPort@1

ToolingTT Number

GeometricalComplexity

N
o®

size

Tooling Turn Around Time

toolingList

toolinTTResult

lyupCtrl

RTMCtrl

RN IESIESIESI RS ES I RES IR

cmCtrl
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riCtrl ?

fwCtrl ?

imCtri ?
FilamentWindingPort@1

ToolingTT Number ?
GeometricalComplexity GeometricalComplexity
size size

Tooling Turn Around Time ?

toolingList toolingList
toolinTTResult ?

lyupCirl ?

RTMCtrl ?

cmCtrl ?

riCtrl ?

fwCtrl fwResult

imCtrl ?

Compression MolderPort@1

ToolingTT Number ?
GeometricalComplexity GeometricalComplexity
size ?

Tooling Turn Around Time ?

toolingList toolingList
toolinTTResult ?

lyupCtrl ?

RTMCtrl ?

cmCtrl cmResult

riCtrl ?

fwCtrl ?

imCtrl ?

LayupPort@1

ToolingTT Number ?
GeometricalComplexity GeometricalComplexity
size size .
Tooling Turn Around Time ?

toolingList toolingList
toolinTTResult ?

lyupCtrl lyupRslt
RTMCtrl ?

cmCtrl ?

riCtrl ?

fwCtrl ?

imCtrl ?

RTMPort@1

ToolingTT Number ?
GeometricalComplexity GeometricalComplexity
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size size

Tooling Turn Around Time ?

toolingList ToolingMaterial
toolinTTResult ?

lyupCitrl ?

RTMCtrl RTMResult
cmCtrl ?

riCtrl ?

fwCtrl ?

imCtrl ?

Resin InfusionPort@1

ToolingTT Number ?
GeometricalComplexity GeometricalComplexity
size size

Tooling Turn Around Time ?

toolingList toolingMaterial
toolinTTResult ?

lyupCtrl ?

RTMCtrl ?

cmCtrl ?

riCtrl riResult

fwCtrl ?

imCtrl ?

Controls:

cmCtrl

type rdinputControl
control name cmCtrl

control cmResult
riCtri

type rdinputControl
control name riCtrl

control riResult

fwCtrl

type rdinputControl
control name fwCtrl

control fwResult
RTMCtrl

type rdinputControl
control name RTMCtrl
control RTMResult
lyupCtrl

type rdinputControl
control name lyupCitri
control lyupRsit
imGCtrl
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type

rdIinputControl

control name

imCtrl

control

imResult
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Device: Compression Molder
Function: cmFunction

Behavior: cmBehavior

Port Manager: Compression MolderPort

All variables:

Compression Molder Number

input output

fiberArchList

GeometricalComplexity input
labor output

ressure-ksi output
production input
resinList
temperature output
Tool complexity output
toolingList output
boosterinputControl input
cmResult output
manTechList output
Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:
selectionBoosterPort@1
Compression Molder Number ?
fiberArchList ?
GeometricalComplexity ?
labor ?
pressure-ksi ?
production ?
resinList ?
temperature ?
Tool complexity ?
toolingList ?
boosterinputControl boosterResult
RefinerPort@1
Compression Molder Number ?
fiberArchList fiberArchList
GeometricalComplexity GeometricalComplexity
labor ?
pressure-ksi ?
production production
resinList resinList
temperature ?

t)

Tool complexity

211




[ toolingList [?

Controls:

boosterinputControl

type hcinputControl
control name boosterinputControl
output : manTechList

control Compression Molding
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Device: FilamentWinding
Function: fwFn
Behavior: fnBeh
Port Manager: FilamentWindingPort

All variables:

FilamentWinding Number input output
cure type output
delivery system output
functional requirements input
GeometricalComplexity input
pressure output
production input
resinList input
size input
temperature output
toolingList output
fwResult output
fwBoosterCitrl input
manTechList output

Qualitative predicates:
Quantitative predicates:
Existential predicates:
Default values:
Mappings:
selectionBoosterPort@1

FilamentWinding Number

cure type

delivery system

functional requirements

GeometricalComplexity

pressure

production

resinList

size

temperature

toolingList

fwResult

o gESIENIESIESIRSIRSIESIESIESIES IRV ES ]

fwBoosterCtrl oosterResult

RefinerPort@1

FilamentWinding Number

cure type

)|

delivery system

functional requirements functional requirements

GeometricalComplexity GeometricalComplexity

pressure ?
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production production
resinlList resinList

size size
temperature ?

toolingList ?

fwResult ?
fwBoosterCtrl ?

Controls:

fwBoosterCtrl

type hcinputControl
control name fwBoosterCitrl
output manTechList
control Filament Winding
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Device: InjectionMolding
Function: imFn
Behavior: imBeh

Port Manager: InjectionMoldingPort
All variables:
InjectionMolding Number input output
GeometricalComplexity input
heated tool output
inserts input
pressure-ksi output

roduction input
resinList input
size input
temperature output
tool complexity output
toolingList output
imResult output
imBoostingCtrl input
manTechList output
Qualitative predicates:
Quantitative predicates:
Existential predicates:
GeometricalComplexity
size
inserts
InjectionMolding Number
resinList
production
Default values:
| inserts none
Mappings:
selectionBoosterPort@1
InjectionMolding Number
GeometricalComplexity
heated tool
inserts
pressure-ksi
production
resinlList
size
temperature
tool complexity
toolingList
imResult ?
imBoostingCtrl boosterResult

* *eD * » *

S JEVIESIESIENIESIESIES IR IR RV RS

215




RefinerPort@1

InjectionMolding Number ?
GeometricalComplexity GeometricalComplexity
heated tool ?
inserts inserts
pressure-ksi- ?

roduction production
resinList resinList
size size
temperature ?
tool complexity ?
toolingList ?
Controls:
imBoostingCitrl

e hclnputControl

control Injection Molding
output manTechList
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Device: Layup
Function: LayupFn
Behavior: LayupBeh
Port Manager: LayupPort

All variables:

Layup Number input output
curing type output
depth input
fiberList

functional requirements input
GeometricalComplexity input
labor output
postcuring output
pressure output
production input
resin prepreg/wet output
resinList input
runSystem

size input
SurfaceQuality input
temperature output
Tolerances input
Tool complexity output
toolingList output
lyupBoostCtrl input
lyupRsit output
manTechList output

Qualitative predicates:
Quantitative predicates:
Existential predicates:

fiberList

size

depth

Layup Number

resinList

GeometricalComplexity

Tolerances

functional requirements

SurfaceQuality

lyupBoostCtrl

| * ] t * * » *| *| =

roduction

Default values:
Mappings:
selectionBoosterPort@1

~

| Layup Number
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curing type

?
depth ?
fiberList ?
functional requirements ?
GeometricalComplexity ?
labor ?
postcuring ?
pressure ?
production ?
resin prepreg/wet ?
resinList ?
runSystem ?
size ?
SurfaceQuality ?
temperature ?
Tolerances ?
Tool complexity ?
toolingList ?
lyupBoostCtrl boosterResult
lyupRsilt ?
manTechList ?
RefinerPort@1
Layup Number ?
curing type ?
depth depth
fiberList fiberList
functional requirements functional requirements
GeometricalComplexity GeometricalComplexity
labor ?
postcuring ?
pressure ?
production production
resin prepreg/wet ?
resinList resinList
runSystem ?
size size
SurfaceQuality SurfaceQuality
temperature ?
Tolerances Tolerances
Tool complexity ?
toolingList ?
lyupBoostCtrl ?
lyupRsit ?
manTechList ?
Controls:
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lyupBoostCtrl

type hclnputControl
control name lyupBoostCtrl
output manTechList

control Layup
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Device: Resin Infusion
Function: riFn
Behavior: riBeh
Port Manager: Resin InfusionPort

All variables:

Resin Infusion Number input output

curing type output

fiberArchList input

FiberFormingMethod output

fiberList input

functional requirements input

GeometricalComplexity input &
labor output '
postcuring output

pressure output .
production input

resinList input

runSystem

size input

SurfaceQuality input

temperature output

Tolerances input

Tool complexity output

toolingMaterial output

Wall Thickness input

riBoosterCtrl input

riResult output

manTechList output

Qualitative predicates:
Quantitative predicates:
Existential predicates:

resinList

Wall Thickness

functional requirements

Resin Infusion Number

riBoosterCitrl

fiberList

SurfaceQuality

production

fiberArchList

size

Tolerances

| #f #| #| 2| #] #l.Ql0| #| #| »

GeometricalComplexity

Default values:
Mappings:
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selectionBoosterPort@1

Resin Infusion Number

curing type

fiberArchList

FiberFormingMethod

fiberList

functional requirements

GeometricalComplexity

labor

postcuring

pressure

production

resinList

runSystem

size

SurfaceQuality

temperature

Tolerances

Tool complexity

toolingMaterial

Wall Thickness

RV IR I[e g ENIENIESI RS ESIENIESIRSIESIES] DSBS IRSIRSIES I RS I RS EVIES IR )

riBoosterCtrl oosterResult
riResult

manTechList

RefinerPort@1

Resin Infusion Number ?

curing type ?

fiberArchList fiberArchList
FiberFormingMethod ?

fiberList fiberList
functional requirements functional requirements
GeometricalComplexity GeometricalComplexity
labor ?

postcuring ?

pressure ?

production production
resinList resinList
runSystem ?

size size
SurfaceQuality SurfaceQuality
temperature ?

Tolerances Tolerances
Tool complexity ?
toolingMaterial ?
Wall_Thickness depth
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riBoosterCitri ?

riResult ?
manTechList ?

Controls:

riBoosterCtrl

type hcinputControl
control name riBoosterCitrl
output manTechList
control Resin Infusion
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Device: RTM
Function: RTMFn
Behavior: RTMBeh
Port Manager: RTMPort

All variables:

RTM Number input output
Curing temperature output
Curing time output
Curing type output
FiberFormingMethod output
Fiber Architecture input
GeometricalComplexity input
Heating method output
labor output
Postcuring Required output
Production input
resinList input
runSystem

size input
SurfaceQuality input
Tolerances input
Tool complexity output
ToolingMaterial output
rtmBoostCtrl input
RTMResult output
manTechList output
Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings: :

selectionBoosterPort@1

RTM Number ?
Curing temperature ?
Curing time ?
Curing type ?
FiberFormingMethod ?
Fiber Architecture ?
GeometricalComplexity ?
Heating method ?
labor ?
Postcuring Required ?
Production ?
resinList ?
runSystem ?
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size

SurfaceQuality

Tolerances

Tool complexity

ToolingMaterial

N[O |99

rtmBoostCtrl oosterResult
RTMResult

manTechList

RefinerPort@1

RTM Number ?

Curing temperature ?

Curing time ?

Curing type ?
FiberFormingMethod ?

Fiber Architecture fiberArchList
GeometricalComplexity GeometricalComplexity
Heating method ?

labor ?

Postcuring Required ?

Production production
resinList resinlList
runSystem ?

size size
SurfaceQuality SurfaceQuality
Tolerances Tolerances
Tool complexity ?
ToolingMaterial ?

rtmBoostCtri ?

RTMResult ?
manTechList ?

Controls:

rtmBoostCtrl

type hclnputControl
control name rtmBoostCtrl
output manTechList
control Resin Transfer Molding |
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Device: matSel
Function: matSelFn
Behavior: matSelBh
Port Manager: matSelPort
All variables:

matSel Number

input output

resinList

input

matSelResult

output

Qualitative predicates:
resinList ~= unknown

Quantitative predicates:

Existential predicates:

resinList

matSel Number

Default values:
Mappings:
SelectorPort@1

matSel Number

?

resinList

partMaterial

matSelResult

?

Controls:
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Device: operationSelector
Function: opSelFn
Behavior: opSelBh
Port Manager: operationSelectorPort
All variables:

operationSelector Number

input output

Aspect Ratio

input

Fiber Architecture

input

partMaterial

input

Shape

input

size

input

Wall Thickness

input

opSelResult

output

Qualitative predicates:
size ~= unknown
Aspect_Ratio ~= unknown
partMaterial ~= unknown
Fiber_Architecture ~= unknown
Shape ~= unknown
Wall_Thickness ~= unknown

Quantitative predicates:

Existential predicates:

size

Fiber Architecture

Shape

operationSelector Number

partMaterial

Wall Thickness

w ] wl.ol| #| »| »

Aspect Ratio

Default values:

Fiber_Architecture

quasilsotropic

Shape casting
Aspect Ratio medium
size medium
partMaterial DGEBA
Wall Thickness medium
Mappings:

Controls:
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Device: selectionBooster
Function: boosterFn
Behavior: boosterBh
Port Manager: selectionBoosterPort
All variables:

selectionBooster Number

input output

list1

input

list2

input

boosterResult

output

Qualitative predicates:
Quantitative predicates:
Existential predicates:

selectionBooster Number

list1

list2

Default values:
Mappings:
matSelPort@1

selectionBooster Number

?

list1

matSelResult

list2

?

boosterResult

?

operationSelectorPort@1

selectionBooster Number

?

list1

?

list2

boosterResult

opSelResult
?

Controls:
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APPENDIX C
MANUFACTURING ONTOLOGY REDESIGNED IN PROTEGE FRAMEWORK

(defclass PartTechnology
(is-a Root)
(role concrete)
(slot techname
(type STRING)
(create-accessor read-write))
(slot tech-description
'+ (allowed-classes Technology)
(type INSTANCE)
(create-accessor read-write)))

(defclass Technology
(is-a Root)
(role abstract)
(multislot tool-complexity
i+ (allowed-classes ToolComplexity)

(type INSTANCE)

(create-accessor read-write))
(slot name

(type STRING)

(create-accessor read-write)))

(defclass ResinTransferMolding
(is-a Technology)
(role concrete)
(multislot postcuring-required
'+ (allowed-classes Postcuring)
(type INSTANCE)
(create-accessor read-write))
(multislot curing-temperature
'+ (allowed-classes Temperature)
(type INSTANCE)
(create-accessor read-write))
(multislot heating-method
i+ (allowed-classes HeatingMethod)
(type INSTANCE)
(create-accessor read-write))
(multislot fiber-forming-method
+ (allowed-classes FiberFormingMethod)
(type INSTANCE)



(create-accessor read-write))
(multislot curing-time
i+ (allowed-classes CuringTime)
(type INSTANCE)
(create-accessor read-write)))

(defclass Sprayup
(is-a Technology)
(role concrete)
(multislot labor
i+ (allowed-classes Labor)

(type INSTANCE)
(create-accessor read-write))
(multislot cure-type
T+ (allowed-classes CureType)
(type INSTANCE)
(create-accessor read-write)))

(defclass Extrusion
(is-a Technology)
(role concrete))

(defclass Pultrusion
(is-a Technology)
(role concrete))

(defclass CompressionMolding
(is-a Technology)
(role concrete)
(multislot pressure-ksi
'+ (allowed-classes PressureKSl)
(type INSTANCE)
(create-accessor read-write))
(multislot labor
+ (allowed-classes Labor)
(type INSTANCE)
(create-accessor read-write))
(multislot temperature
+ (allowed-classes Temperature)
(type INSTANCE)
(create-accessor read-write)))

(defclass Layup
(is-a Technology)
(role concrete)
(multisiot pressure
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i+ (allowed-classes Pressure)
(type INSTANCE)
(create-accessor read-write))
(multislot labor
T+ (allowed-classes Labor)
(type INSTANCE)
(create-accessor read-write))
(multislot postcuring
+ (allowed-classes Postcuring)
(type INSTANCE)
(create-accessor read-write))
(multislot cure-type
i+ (allowed-classes CureType)
(type INSTANCE)
(create-accessor read-write))
(multislot resin-prepreg-wet
+ (allowed-classes ResinPrepregWet)
(type INSTANCE)
(create-accessor read-write))
(multislot temperature
'+ (allowed-classes Temperature)
(type INSTANCE)
(create-accessor read-write)))

(defclass TechnologyMisc
(is-a Root)
(role abstract))

(defclass CureType
(is-a TechnologyMisc)
(role concrete)
(slot cure-type
(allowed-values autoclave microwave oven room press)
(type SYMBOL)
(create-accessor read-write)))

(defclass CuringTime
(is-a TechnologyMisc)
(role concrete)
(slot curing-time
(allowed-values days hours minutes)
(type SYMBOL)
(create-accessor read-write)))

(defclass DeliverySystem
(is-a TechnologyMisc)
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(role concrete)

(slot delivery-system
(allowed-values prepreg wet winding wet rolled)
(type SYMBOL)
(create-accessor read-write)))

(defclass FiberFormingMethod
(is-a TechnologyMisc)
(role concrete)
(slot fiber-forming-method
(allowed-values braiding cut and place directed fiber stamping
textile preforming)
(type SYMBOL)
(create-accessor read-write)))

(defclass HeatedTool
(is-a TechnologyMisc)
(role concrete)
(slot heated-tool
(allowed-values yes no)
(type SYMBOL)
(create-accessor read-write)))

(defclass HeatingMethod
(is-a TechnologyMisc)
(role concrete)
(slot heating-method
(allowed-values electric heat blanket heated platens microwave oil
oven steam no heating)
(type SYMBOL)
(create-accessor read-write)))

(defclass Labor
(is-a TechnologyMisc)
(role concrete)
(slot labor
(allowed-values high medium low)
(type SYMBOL)
(create-accessor read-write)))

(defclass Postcuring
(is-a TechnologyMisc)
(role concrete)
(slot postcuring
(allowed-values yes no possible)
(type SYMBOL)
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(create-accessor read-write)))

(defclass Pressure
(is-a TechnologyMisc)
(role concrete)
(slot pressure
(allowed-values low moderate high)
(type SYMBOL)
(create-accessor read-write)))

(defclass PressureKSI
(is-a TechnologyMisc)
(role concrete)
(slot pressure-ksi
(allowed-values 0. 5-2 0. 5-1. 51. 5-3. 52-55-10 10-20)
(type SYMBOL)
(create-accessor read-write)))

(defclass ResinPrepregWet
(is-a TechnologyMisc)
(role concrete)
(slot prepreg-wet
(allowed-values prepreg wet)
(type SYMBOL)
(create-accessor read-write)))

(defclass Temperature
(is-a TechnologyMisc)
(role concrete)
(slot temperature
(allowed-values 25-50 25-100 50-150 80-150 100-200 150-200
150-300 200-250 200-300 250-350 300-450)
(type SYMBOL)
(create-accessor read-write)))

(defclass ToolComplexity
(is-a TechnologyMisc)
(role concrete)
. (slot tool-complexity
(allowed-values veryhigh high medium low)
(type SYMBOL)
(create-accessor read-write)))
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APPENDIX D
MANUFACTURING ONTOLOGY REDESIGNED IN XML

<<header id="Manufacturing Ontology">
<class id="Tooling with Parameters">
<category id="Aluminium"/>
<category id="Nickel Electroforms"/>
<category id="CRP"/>
<category id="Ceramics"/>
<category id="Polymers"/>
<category id="GRP"/>
<category id="Cast Iron"/>
<category id="Tooling Foam"/>
<category id="Steel"/>
</class>
<class id="Technologies with Parameters">
<category id="Sprayup">
<parameter type="oneOfVar" id="cure type">
<value id="autoclave"/>
<value id="microwave"/>
<value id="oven"/>
<value id="heated tool"/>
<value id="room cure"/>
</parameter>
<parameter type="oneOfVar" id="pressure-psi"/>
<parameter type="oneOfVar" id="labor">
<value id="intense"/>
<value id="medium"/>
<value id="low"/>
</parameter>
<parameter type="oneOfVar" id="temperauture"/>
<parameter type="oneOfVar" id="time"/>
</category>
<category id="Extrusion">
<parameter type="oneOfVar" id="pressure-psi"/>
<parameter type="oneOfVar" id="time"/>
<parameter type="oneOfVar" id="temperature"/>
</category>
<category id="Filament winding'>
<parameter type="oneOfVar" id="temperature">
<value id="25-50"/>
<value id="50-150"/>



<value id="150-200"/>
<value id="200-300"/>

</parameter>

<parameter type="oneOfVar" id="delivery system">
<value id="prepreg"/>
<value id="wet winding"/>
<value id="wet rerolled"/>

</parameter>

<parameter type="oneOfVar" id="pressure">
<value id="low"/>
<value id="moderate"/>
<value id="high"/>

</parameter>

<parameter type="oneOfVar" id="cure type'">
<value id="autoclave"/>
<value id="microwave"/>
<value id="oven"/>
<value id="room"/>

</parameter>

</category>
<category id="Resin Transfer Molding">

<parameter type="oneOfVar" id="Postcuring Required">
<value id="yes"/>
<value id="no"/>
<value id="possible"/>

</parameter>

<parameter type="oneOfVar" id="Curing temperature">
<value id="100-200"/>
<value id="200-300"/>
<value id="25-100"/>

</parameter>

<parameter type="oneOfVar" id="Heating method">
<value id="electric"/>
<value id="heat blanket"/>
<value id="heated platens"/>
<value id="microwave"/>
<value id="0il"/>
<value id="oven"/>
<value id="steam"/>
<value id="no heating"/>

</parameter>

<parameter type="oneOfVar" id="Tool complexity">
<value id="high"/>
<value id="low"/>
<value id="medium"/>
<value id="very high"/>
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</parameter>
<parameter type="oneOfVar" id="FiberFormingMethod">
<value id="Braiding"/>
<value id="Cut-and-Place"/>
<value id="Directed Fiber"/>
<value id="Stamping"/>
<value id="Textile Preforming"/>
</parameter>
<parameter type="oneOfVar" id="Curing time">
<value id="days"/>
<value id="hours"/>
<value id="minutes"/>
</parameter>
</category>
<category id="Compression Molding">
<parameter type="oneOfVar" id="pressure-ksi">
<value id="0. 5-1. 5"/>
<value id="1. 5-3. 5">
</parameter>
<parameter type="oneOfVar" id="labor">
<value id="high"/>
<value id="medium"/>
<value id="low"/>
</parameter>
<parameter type="oneOfVar" id="temperature">
<value id="150-200"/>
<value id="200-250"/>
<value id="250-350"/>
</parameter>
<parameter type="oneOfVar" id="Tool complexity">
<value id="high"/>
<value id="low"/>
<value id="medium"/>
<value id="very high"/>
</parameter>
</category>
<category id="Layup">
<parameter type="oneOfVar" id="pressure">
<value id="low"/>
<value id="moderate"/>
<value id="high"/>
</parameter>
<parameter type="oneOfVar" id="labor">
<value id="high"/>
<value id="medium"/>
<value id="low"/>
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</parameter>
<parameter type="oneOfVar" id="postcuring">
<value id="yes"/>
<value id="no"/>
<value id="possible"/>
</parameter>
<parameter type="oneOfVar" id="curing type">
<value id="oven"/>
<value id="autoclave"/>
<value id="microwave"/>
<value id="press"/>
<value id="room"/>
</parameter>
<parameter type="oneOfVar" id="Tool complexity">
<value id="high"/>
<value id="low"/>
<value id="medium"/>
<value id="very high"/>
</parameter>
<parameter type="oneOfVar" id="resin prepreg/wet">
<value id="prepreg"/>
<value id="wet"/>
</parameter>
<parameter type="oneOfVar" id="temperature">
<value id="25-50"/>
<value id="50-150"/>
<value id="150-200"/>
<value id="200-300"/>
</parameter>
</category>
<category id="Pultrusion">
<parameter type="oneOfVar" id="pressure-psi"/>
<parameter type="oneOfVar" id="time"/>
<parameter type="oneOfVar" id="temperature"/>
</category>
<category id="Resin Infusion">
<parameter type="oneOfVar" id="pressure">
<value id="low"/>
<value id="moderate"/>
<value id="high"/>
</parameter>
<parameter type="oneOfVar" id="labor">
<value id="high"/>
<value id="medium"/>
<value id="low"/>
</parameter>
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<parameter type="oneOfVar" id="postcuring">
<value id="yes"/>
<value id="no"/>
<value id="possible"/>

</parameter>

<parameter type="oneOfVar" id="curing type">
<value id="oven"/>
<value id="microwave"/>
<value id="press"/>
<value id="room"/>

</parameter>

<parameter type="oneOfVar" id="Tool complexity">
<value id="high"/>
<value id="low"/>
<value id="medium"/>
<value id="very high"/>

</parameter>

<parameter type="oneOfVar" id="FiberFormingMethod">
<value id="Braiding"/>
<value id="Textile_Preforming"/>
<value id="Directed_Fiber"/>
<value id="Stamping"/>
<value id="Cut-and-Place"/>

</parameter>

<parameter type="oneOfVar" id="temperature">
<value id="25-50"/>
<value id="50-150"/>
<value id="150-200"/>

</parameter>

</category>
<category id="Injection Molding">

<parameter type="oneOfVar" id="pressure-ksi">
<value id="0. 5-2"/>
<value id="2-5"/>
<value id="5-10"/>
<value id="10-20"/>

</parameter>

<parameter type="oneOfVar" id="heated tool">

- <value id="yes"/>
<value id="no"/>

</parameter>

<parameter type="oneOfVar" id="temperature">
<value id="80-150"/>
<value id="150-300"/>
<value id="300-450"/>

</parameter>
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<parameter type="oneOfVar" id="tool complexity">
<value id="very high"/>
<value id="high"/>
<value id="medium"/>
<value id="low"/>
</parameter>
</category>
</class>
<class id="Joining Technologies with Parameters"/>
<class id="Joinings with Parameters">
<category id="Washer"/>
<category id="Bushing"/>
<category id="Rivet"'/>
<category id="Strap"/>
<category id="Lap"/>
<category id="Fastener"/>
<category id="Bolt"/>
<category id="Bearing"/>
<category id="Weld"/>
<category id="Pin"/>
<category id="Snap Fit"/>
<category id="Screw"/>
<category id="Adhesive"/>
</class>
<class id="Features with Parameters">
<category id="blind hole">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">radius</parameter>
<parameter type="singleValued">depth</parameter>
<category id="flange">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">height</parameter>
<parameter type="singleValued">length</parameter>
<parameter type="singleValued">width</parameter>
<category id="wall/web">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
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</parameter>
</category>
<parameter type="singleValued">thickness</parameter>
<category id="insert'">
<parameter type="oneOfVar" id="numberOf">
<value id="none"/>
<value id="1"/>
<value id="&gt;2"/>
</parameter>
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<category id="bridge">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">height</parameter>
<parameter type="singleValued">length</parameter>
<parameter type="singleValued">width</parameter>
<category id="bend">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">radius</parameter>
<parameter type="singleValued">angle</parameter>
<category id="blind slot">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">depth</parameter>
<parameter type="singleValued">length</parameter>
<parameter type="singleValued">width</parameter>
<category id="marking">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
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<category id="groove">
<parameter type="oneOfVar" id="machining">
<value id="yes"/>
<value id="no"/>
</parameter>
<parameter type="oneOfVar" id="molding">
<value id="yes"/>
<value id="no"/>
</parameter>
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">depth</parameter>
<parameter type="singleValued">length</parameter>
<parameter type="singleValued">width</parameter>
<category id="hole">
<parameter type="oneOfVar" id="machining">
<value id="yes"/>
<value id="no"/>
</parameter>
<parameter type="oneOfVar" id="molding">
<value id="yes"/>
<value id="no"/>
</parameter>
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">radius</parameter>
<parameter type="singleValued">numberOf</parameter>
<category id="step">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">width</parameter>
<category id="depression">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>

240




<parameter type="singleValued">depth</parameter>
<parameter type="singleValued">length</parameter>
<parameter type="singleValued">width</parameter>
<category id="blind pocket">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">depth</parameter>
<parameter type="singleValued">length</parameter>
<parameter type="singleValued">width</parameter>
<category id="internal thread">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<category id="tolerance">
<parameter type="oneOfVar" id="range">
<value id="High"/>
<value id="Medium"/>
<value id="Low"/>
</parameter>
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<category id="fin">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">height</parameter>
<parameter type="singleValued">length</parameter>
<category id="finish">
<parameter type="oneOfVar" id="quality">
<value id="High"/>
<value id="Medium"/>
<value id="Low"/>
</parameter>
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
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</parameter>
</category>
<category id="cutout">
<parameter type="oneOfVar" id="complexity">
<value id="high"/>
<value id="medium"/>
<value id="low"/>
</parameter>
<parameter type="oneOfVar" id="size">
<value id="medium"/>
<value id="small"/>
<value id="large"/>
</parameter>
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<category id="chamfer">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">radius</parameter>
<category id="slot">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">depth</parameter>
<parameter type="singleValued">length</parameter>
<parameter type="singleValued">width</parameter>
<category id="extruded hole">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">radius</parameter>
<parameter type="singleValued">height</parameter>
<category id="external thread">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
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</parameter>
</category>
<category id="boss">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">height</parameter>
<parameter type="singleValued">lenght</parameter>
<parameter type="singleValued">width</parameter>
<category id="pocket">
<parameter type="oneOfVar" id="tolerance">
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">depth</parameter>
<parameter type="singleValued">length</parameter>
<parameter type="singleValued">width</parameter>
<category id="rib">
<parameter type="oneOfVar" id="tolerance'>
<value id="loose"/>
<value id="tight"/>
</parameter>
</category>
<parameter type="singleValued">height</parameter>
<parameter type="singleValued">length</parameter>
<parameter type="singleValued">width</parameter>
</class>
<class id="Matrix Material with Parameters'>
<category id="Aluminum"/>
<category id="PA66"/>
<category id="PAl"/>
<category id="PEI"/>
<category id="PC/PBT"/>
<category id="Metal"/>
<category id="ABS"/>
<category id="ABS/PBT"/>
<category id="PSU"/>
<category id="PMR 15 Monomers"/>
<category id="Epoxidized Phenolic Novolac"/>
<category id="Chlorendic Resin"/>
<category id="PC/ABS"/>
<category id="PBT"/>
<category id="PPS"/>
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<category id="PET"/>
<category id="TGETPE"/>
<category id="PC"/>
<category id="Vinyl Ester Resin"/>
<category id="DGEBA"/>
<category id="TGMDA"/>
<category id="BPA Fumarate Resin"/>
<category id="Phenolic Novolac Resin"/>
<category id="Phenolic Resole Resin"/>
<category id="4,4-MDA-BMI"/>
<category id="Isophthalic Resin"/>
<category id="PPQO"/>
<category id="Orthophthalic Resin"/>
<category id="Thermid 600 Oligomers"/>
<category id="PAS"/>
<category id="PEEK"/>

</class>

<class id="Fiber Type with Parameters">
<category id="AS-4 Carbon"/>
<category id="P-100 Graphite"/>
<category id="Kevlar-29"/>
<category id="C-Glass"/>
<category id="P-55 Graphite"/>
<category id="Kevlar-149"/>
<category id="SiC"/>
<category id="Boron"/>
<category id="None"/>
<category id="E-Glass"/>
<category id="Kevlar-49"/>
<category id="S-Glass"/>
<category id="Quartz"/>

</class>

<class id="Fiber Architecture with Parameters">
<category id="continous SM"/>
<category id="woven"/>
<category id="braided"/>
<category id="chopped"/>
<category id="unidirectional"/>
<category id="quasilsotropic"/>
<category id="chopped SM"/>
<category id="special"/>

</class>

<class id="Shape with Parameters">
<category id="casting">

<parameter type="oneOfVar" id="Aspect_Ratio">
<value id="high"/>
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<value id="medium"/>
<value id="low"/>
</parameter>
<parameter type="oneOfVar" id="size">
<value id="big"/>
<value id="medium"/>
<value id="small"/>
</parameter>
<parameter type="oneOfVar" id="GeometricalComplexity">
<value id="High"/>
<value id="Medium"/>
<value id="Low"/>
</parameter>
<parameter type="oneOfVar" id="Wall_Thickness">
<value id="thick"/>
<value id="medium"/>
<value id="thin"/>
</parameter>
</category>
<category id="beam">
<parameter type="oneOfVar" id="Aspect_Ratio">
<value id="high"/>
<value id="medium"/>
<value id="low"/>
</parameter>
<parameter type="oneOfVar" id="size">
<value id="big"/>
<value id="medium"/>
<value id="small"/>
</parameter>
<parameter type="oneOfVar" id="GeometricalComplexity">
<value id="High"/>
<value id="Medium"/>
<value id="Low"/>
</parameter>
<parameter type="oneOfVar" id="Wall_Thickness">
<value id="thick"/>
<value id="medium"/>
<value id="thin"/>
</parameter>
</category>
<category id="rotation_figure">
<parameter type="oneOfVar" id="Aspect_Ratio">
<value id="high"/>
<value id="medium"/>
<value id="low"/>
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</parameter>
<parameter type="oneOfVar" id="size">
<value id="big"/>
<value id="medium"/>
<value id="small"/>
</parameter>
<parameter type="oneOfVar" id="GeometricalComplexity">
<value id="High"/>
<value id="Medium"/>
<value id="Low"/>
</parameter>
<parameter type="oneOfVar" id="Wall_Thickness">
<value id="thick"/>
<value id="medium"/>
<value id="thin"/>
</parameter>
</category>
<category id="closed_shell">
<parameter type="oneOfVar" id="Aspect_Ratio">
<value id="high"/>
<value id="medium"/>
<value id="low"/>
</parameter>
<parameter type="oneOfVar" id="size">
<value id="big"/>
<value id="medium"/>
<value id="small"/>
</parameter>
<parameter type="oneOfVar" id="GeometricalComplexity">
<value id="High"/>
<value id="Medium"/>
<value id="Low"/>
</parameter>
<parameter type="oneOfVar" id="Wall_Thickness">
<value id="thick"/>
<value id="medium"/>
<value id="thin"/>
</parameter>
</category>
<category id="shell">
<parameter type="oneOfVar" id="Aspect_Ratio">
<value id="high"/>
<value id="medium"/>
<value id="low"/>
</parameter>
<parameter type="oneOfVar" id="size">
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<value id="big"/>
<value id="medium"/>
<value id="small"/>
</parameter>
<parameter type="oneOfVar" id="GeometricalComplexity">
<value id="High"/>
<value id="Medium"/>
<value id="Low"/>
</parameter>
<parameter type="oneOfVar" id="Wall_Thickness">
<value id="thick"/>
<value id="medium"/>
<value id="thin"/>
</parameter>
</category>
</class>
</header>
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