
 



 

THESlS

.2001

This is to certify that the

dissertation entitled

An Approach to the Development of

Intelligent Systems through

Integrating Function—Based Reasoning

with the Generic Tasks Methodology

presented by

Oleg Yurievich Lukibanov

has been accepted towards fulfillment

of the requirements for

Doctor of Philosophy degree in Computer Science

and Engineering

/ :

4MS
Major professor

mm

MSU is an Affirmative Action/Equal Opportunity Institution 0.12771



 

LIBRARY

Michigan State

University
  
 

PLACE IN REI'URN BOXto remove this checkout fromyour record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

u
‘
,
‘

.
‘

.
1
4
‘
l
‘
§
§
\
-
2
‘
,
“
:
‘
\

i‘
i

i
.

i
-
.
_

‘
1

"
i.

I
‘
,
.
.
.
.
‘

,

o
u
t
}
.
.
.

1
‘

‘
y

_
_

-
w

1A
.

,
f
’

i
i
.
J
1

K
i
“
‘
1

A
’
W
'
!
’

I

 

1
"
W
"

Ai
l?
)

 

 

 

 

 

 

     
 

moo woman.“

 
  



U

.Du_7;CO))...£

.(li._(__((.r

J.133.1%;
K-.(c((1......



AN APPROACH TO THE DEVELOPMENT OF INTELLIGENT SYSTEMS

THROUGH INTEGRATING FUNCTION-BASED REASONING WITH THE

GENERIC TASKS METHODOLOGY

By

Oleg Yurievich Lukibanov

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science and Engineering

2000



:, 3.3).): a0 4.1

.: J1t3<3(. .

a ))V_)_ 5/] )J.4

I:J((D.J : .rluql.).

‘11.

CH.

4 .

a gen... ._..,. .4

.mm ”ennui
( I r

)T’” I

(..((.U

s 'l!

i

a (1 g .flDm ._ 1.1.1.

(.2. L. .. n.
. 4

,u).

at. 9”)
1a a .C r 'l/D 3b0,)\l.)

((( .(1 (\(U

. 3.,
(‘ll

c: f .

(I . j
r. K r‘ C.m (.‘.D‘I



ABSTRACT

AN APPROACH TO THE DEVELOPMENT OF INTELLIGENT SYSTEMS

THROUGH INTEGRATING FUNCTION-BASED REASONING WITH THE

GENERIC TASKS METHODOLOGY

By

Oleg Yurievich Lukibanov

The research in knowledge-based systems have advanced to a degree

where different schools of thought have developed as well as described a

number of useful methods that solve various kinds of problems. However

powerful these methods are they cannot solve complex problems working alone.

Complex problems require the cooperation of a number of problem-solvers each

contributing to the overall solution. This dissertation refers to such systems as

Integrated Knowledge-Based Systems (I-KBS).

This dissertation research defines a methodology, language, and tool set

that could be used for the description of integrated architectures of l-KBS. The

core of the approach is a modified function-based reasoning theory that enables

decomposition of a modeled entity, its functionality, and a causal network that

explains the functionality of the overall unit.

This dissertation describes the changes that have been made to the

traditional function-based reasoning theory and application of the proposed

methodology to the development of a shell for constructing integrated



 

11)}!

.3£33 3y...

 
.utmsnev _mtsm ”0 ”w ”V

..,....U.... isa:I ( ‘

.3 a. 023.. a a

".4100’.)x_;“A.“

2 li.‘;‘(.. (Worm...

is m Jozgm 2

”m...-(fl-.01.... GAE2).";

.m.x



knowledge-based systems - S-Force. The description of the features and

functionality of S-Force is then given on an example construction of an integrated

knowledge-based system.

The dissertation describes the application of the proposed methodology

and S-Force to re—designing the knowledge-based core of the K88 Socharis - a

systems for generating multiple conceptual manufacturing plans for mechanical

assemblies made of polymer composite materials.

In the conclusion, this dissertation compares the developed approach to

other methodologies that promote cooperation between multiple software entities

and poses a hypothesis that the reported research may serve as a basis for the

development of complex, reusable integrated problem-solving architectures.

 



   

  

.. u. ”g .38..

“mm was... 52m..

.2. .5 a 3.

I

.....(.;CC..

: .smmJbas 1

\ VJD. «n

I

a...

L
). .of. .- )

a. . gem... U(
I
)

. _3jvr.
__l((.wn HO «(2% OH

”WNW b... 1.
m?“ WC )(rmV9T.)”.3

.3... H1:...“ 3 ma... 3. 4
C . v‘ ".c C o u

...,_.,....,ma A

in».

_

do... m).JJD.’ —

C ,

s.(un

 



ACKNOWLEDGMENTS

Part of the research reported here has been supported by DARPA

RADEO program (ONR N00014-96-1-0678), by the NSF Rapid Prototyping

Initiative (NSF MlP-942—0351), and the Technology Reinvestment Program (eee-

9412783 613224).

I would like to thank my advisor, Dr. Sticklen for his support and

encouragement during my doctoral studies. Without stimulating discussions with

Dr. Sticklen this dissertation would have not been possible.

I indebted to my colleagues from the Intelligent Systems Laboratory for

debates we had over the ideas behind this research. I especially thankful to Mr.

Robert Hawkins and Dr. Timothy Lenz.

I most thankful to my wife and colleague lliana Martinez, without her

support and help I would be able to start and finish this research.



ICDOII LEDG\IE\TS_.....

TIM 0i C0\TE\”IS .........

157 III WILLS 

'5”. Of 0013......

Elli XBBRD Mill)“ .

‘. [\TRODICTIOL...

.. W

. .i1.7l'3\...........

..-. ,..-.....
.- .\?.!.-.\t:!-.'.'

rt: 5.
0‘ ,.-.'.,..,

__‘-
v

.. ."‘.«.r..ri -..‘~.:\. .

.4 3:3: "30:15";
_

'\“

U0-\It

§

~ 133%.er

..._,

With PROBLEM.

.3 DEEP-“A ()7. ; 1.‘

I

"e-.-, ' .
.. l\.!g.I~C-‘~!C\\ if;

‘I 'l '

.- , . _

.. tiff-431??
ALE

. 3... - m...

‘* -‘~'=~‘\’.-\ - ‘33:v --

i ~ 4

“- ”hr-5.3....” gr.t a ‘

i

N 0.10.2311; 2.
1 ~ 3

‘1 I- ’.

.~~ Ewa‘i... I’

I r»-l

n I P in. >- t5\J\‘/.¢.1\.!;\\‘l.\

YT." P
.. "“\;\”T.-.

-
~ :I. 1y 0"

“Q
l

..- Q‘,_ ~. ‘

H 4 ‘,€ \
I" .

.av.‘
H"" I, . -

. ‘0‘. {_ \l

M! B . -
. Q _

. .'-,

N... : ..
to ‘Y \_D‘E‘

" 1'39,~§3:P':-r.
a.

‘ "‘-s.~;'-
.1.

r“ ‘x.

" ..A
It‘d!“ - .‘Iy

.‘n “C. L.

,r . .
x. 5' *2}th

‘

r .

‘. 05"»,
‘ 'V-~.I~K1C‘

“4 ‘1‘.*.
I

r‘J p" "

A~J£

((‘ ~5FN1: .I' ‘2'

V ’3: I

i}:
All fi.7f’.\‘

“ TI .

i I K-(IJI ”If

. ,"l‘H

.'~' T “Q:
.‘ .

If. C, yI) - y (" I

‘ '~ U!
1‘ :\‘ F .

‘ ‘ h

‘ A~§n fi>f\: ..

‘I F a.-\_!

I

7r r
1‘ J": U"

D



TABLE OF CONTENTS

 

 

 

 

 

 

 

 

 
 

 

    

 

 

  

 

 

 

 

  

 

 

 

ACKNOWLEDGMENTS IV

TABLE OF CONTENTS V

LIST OF TABLES VIII

LIST OF FIGURES IX

LIST OF ABBREVIATIONS X

I. INTRODUCTION
1

1.1. MOTIVATION l

1.2. IMPORTANCE OFTHE RESEARCH .. - - - 2

1.3. RESEARCH CONTEXT - ..... 3

1.4. RESEARCH OBJECTIVE ..... 7

1.5. DELIVERABLES ..... ..... . - 10

1.6. DISSERTATION ORGANIZATION .......................... .. 12

2. DOMAIN PROBLEM 13

2.1. INTRODUCTION TO COMPOSITES -. ..... - 15

2.2. HIGH-LEVEL PROBLEM-SOLVING STRATEGY OF SOCHARIS - - ......... 17

2.3. PROBLEM-SOLVING ARCHTTECTURE OF SOCHARIS ....................... 20

2.3.1 . Translation and Skeletal Plan Generation ........................................................................... 20

2.3.2. Generating the Family ofTechnological Alternatives .......................................................... 21

2.3.3. Evaluation............................................................................................................................. 22

2.4. ACCOMPLISHMENTS AND SHORTCOMINGS OF SOCHARIS AND APPLICATION DOMAIN PROBLEM

STATEMENT . 23

3. PREVIOUS RESEARCH 26

3.1. OVERVIEW OF KNOWLEDGE-BASED SYSTEMS ................ . -- 26

3.1.1. Control Architectures ........................................................................................................... 26

3.1.2. Rule-Based Systems .............................................................................................................. 29

3.1.3. Hardwired Systems -- - . - ............................................................................ 29

3.1.4. Blackboard-Based Systems ................................................................................................... 30

3.2. TASK-SPECIFIC ARCHITECTURES AND INTEGRATED KNOWLEDGE-BASED SYSTEM ........................ 34

3.2.1. Knowledge Level Hypothesis ................................................................................................ 34

3.2.2. Second Generation Expert Systems ...................................................................................... 34

3.2.3. GENERIC’TASKS ................................................................................................................. 37

3.2.4. PROTEGE ............................................................................................................................ 40

3.2.5. KADS .................................................................................................................................... 41

3.3. ONTOLOGIES AND OTHER APPROACHES TO KNOWLEDGE SHARING IN KNOWLEDGE-BASED

SYSTEMS . . 44

3.3.1. Syntactic Mapping ................................................................................................................ 44

33.2. KIF: Knowledge Interchange Format .................................................................................. 46

3.3.3. KQML: the pragmatic approach .......................................................................................... 48

3.3.4. Ontologies and Ontolingua................................................................................................... 49

3.3.5. Toolsfor Developing Domain Ontologies ............................................................................ 51

3-4. RELATED RESEARCH IN SOFTWARE ENGINEERING ..... 54

3.4.]. From Data Flow Diagrams to the Object Modeling Technique ........................................... 54

3.42. Component Reuse ................................................................................................................. 56

V

 



? Prom-.43 3 7* 4 '1

-
-
.

k

. ‘. .5

It: masks...)

. '5 :90 R' -\

:‘ FACT'Dfi-bez. . H
0"

:t’ 313323;»: x'ls

if: .rl'i"l)(...(.’-

355 rt {9' Puma

:i: {pivflflsrrl

.‘.‘.‘ Slifi‘ffllti'T

3: (LACLSE-m ..............

I DiliSIS .\\D A Tlii

13 57133.01} .

I‘ "

.. wiafsxsffz'xasij

I3 792:1 r. Pawns

"R . ,

44 t! I. :5 .CT'f-‘z V

I'
.

-

u‘ E'T-T‘CM 0? ”T1": .

P a. 'h”. ‘

u. DEEMED 3.: T \
~ \lo

F. , '1 I

‘A 2" 35.0“ C-‘f' i” .\;"'.

P. ,.., .,,.,

- \;\lsbk)r~}\..u..unn..

‘. PROBLEM STATDII.

... Aymara. P'i

"4 I‘m :14. ’u;-
L

.
\

\ . .

-- ”Arno“
’ .-..,_

W \ L1}.

1 -“

' 5~J3Cfi€r
“LI--

r" , "‘

‘* Dirf'gr‘t‘ F..

'- \“‘_.

. ’ ‘

~ birvrr:
. .. -u. ' Em
~ _"\ . _

‘ . U‘LM --

‘

‘ F '

" 31"”.f‘r . g

4. . ‘1‘“ 51..

.- WW I.
i " u...

‘\?33\':‘.~

i" I “A PEPE

8‘ SifP/‘rrl :-

‘|. \ u
.- L”;

‘ f‘dg'VC‘V—

l “ 1&1.

Q“ 20..

A 1 ““ . .I _‘
I F t. 3‘

. Ns:: PH-

‘1; f ' '4 PI

." ~‘t".(;r a p
u I ._ ,

'. \':A
L...

k“ .Ish‘fi- .-

l’. "-i-.J\L’:-

.} Hr ' .- “I

K‘ . T C'Ilr'r-

3’ A 4 ”.

"3 RUW E.
iil COK'V

V .

I", &‘T'.~:h|.tl h

.3 .

‘ Br/rc ‘

' : run

{- LMI 9"

.r {'1
\1(‘{;;'

a -

t . Shaw
6 "

s C,

”Kit..-
\



3.4.3. Personal Software Process ................................................................................................... 58

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

  

 

 

 

 

 

3.4.4. Domain Specific Soflware Architecture ................................................................................ 59

35. FUNCTION-BASED REASONING - ...................................... . 61

35.1 . Description ofFunction-based Reasoning ........................................................................... 62

3.5.2. FRfor Devices ...................................................................................................................... 66

3.5.3. FRfor Processes................................................................................................................... 68

3.5.4. FRfor Sofiware Design and Understanding ........................................................................ 69

3.5.5. State ofthe Art .. ......................................................................................... 70

3.6. CONCLUSION 72

ANALYSIS AND A THEORY BEHIND APPROACH 74

4.1. INTRODUCTION ............. 74

4.2. WHAT IS NOT COVERED BY THE APPROACH? ......................... 75

4.3. THEORETICAL PREMISF 76

4.4. FR AS A STRUCTURE MODELING METHODOLOGY 78

4.5. LIMITATIONS OF THE TRADmONAL FR APPROACH 79

4.6. EXTENSION OF FUNCTION-BASED REASONING METHODOLOGY: FUNCTIONAL ONTOLOGY ........... 79

4.7. EXTENSION OF FUNCTION-BASED REASONING METHODOLOGY: INFORMATION PROCESSING ........ 81

4.8. CONCLUSION 83

PROBLEM STATEMENT AND APPROACH 85

5.1. PROBLEM STATEMENT 85

5.2. APPROACH 85

5.2.1. Integrated Knowledge-Based System as a Device: Functional Ontology............................. 87

5.2.2. Augmenting Precondition Clause ......................................................................................... 90

5.2.3. Tying it All Together .................................................................................. 92

5.3. FRAMEWORK RESTRICTIONS 93

ILLUSTRATED APPROACH 99

6.1. BUILDING THE PS HTERARCHY- --- 101

6.1.1. Socharis" Example ............................................................................................................. 102

6.2. FUNCTIONAL MODEL: ASSIGNING FUNCTIONALITY TO THE NODES OF PS HIERARCHY ............... 104

6.2.1. Socharis* Example ............................................................................................................. 106

6.3. FUNCITONAL MODEL: MACROEXPANSION ......... 109

6.3.1 . Socharis" Example ............................................................................................................. 110

6.4. INFORMATTON-PROCESSING MODEL ............ 112

6.5. INFORMATTON-PROCESSING MODEL: PSH ............ 1 14

6.5.1. Socharis“ Example ............................................................................................................. 115

6.6. INFORMA'I'ION-PROCESSING MODEL: INPUT AND OUTPUT. 120

6.6.1. Socharis* Example ............................................................................................................. 120

6.7. INFORMATION PROCESSING MODEL: MAPPING........................... 122

6.7.1 . Socharis“ Example ............................................................................................................. 123

6.8. INFORMATION PROCESSING MODEL: PRECONDITIONS ....................... 125

6.8.1 . Qualitative and Quantitative Predicates ............................................................................ 125

6.8.2. Existential Predicates ......................................................................................................... 126

6.8.3. Socharis* Example ............................................................................................................. 126

6.9. INFORMATION PROCESSING MODEL: ACTIVATION CONTROL .......... . - - - 130

6.9.1. HC Control ...................................................................................... 131

6.9.2. Socharis* Example ............................................................................................................. 132

6.9.3. RD Control ......................................................................................................................... 134

6.9.4. Socharis" Example ............................................................................................................. 136

6.95. Boosting--- ..................................................................................................... 138

6.9.6. Socharis” Example .................................................................................. 138

6.10. FINAL REMARKS 139

6.10.1. Sequence ofnodes' activation and mapping sequence ....................................................... 139

6.10.2. Color.coding__ ..................................................................... I 40 

vi



'. II-NPLE\IE.\T
.\TI(_)\

'.'. him-801W:
11:31-1-

'1 F3119“; Ham 6? I-

'.'~ '.\T-”l.i.\tl.7‘:O\-?'Iia_l Es . '.‘

CM?‘.CIJ‘..L'SER 1mm

'5 351332»

l cowusmx 

i; Cmmrnsmwz

ELI. Patric.--

ELI. fat.'3;'7.5.(ltl ,

J Irina-Jr. PM:

4 51m“! a Skin."

Sf: P';:r.c.:.' {rm .1'

.‘I Same". .211; In

'2: Ccnzmxs To ‘.‘.~I‘:

L CCMZLDN- Russia

@111ij

 

@313 A IUDMJIXJ‘ L

WWII B KNOII'LEDGL

WWI C WAIT\m I
\
_
_
_

L'EYDII D \IANITACTI I



7. RIB-IMPLEMENTATION OF SOCHARIS 142 

 

 

 

 

 

 

 

 

 

 

7.1. PROBLEM-SOLVING HIERARCHY OF RE-DESIGNED SOCHARIsKB -- - -- ............ 142

7.2. FUNCTIONAL MODEL OF RE-DESIGNED SOCHARIS 143

7.3. INFORMATION-PROCESSING MODEL OF RE-DESIGNED SOCHARIS ...................... .. 145

7.4. ONTOLOGY, USER INTERFACE, PRE-, AND POST-PROCESSING 148

7.5. DISCUSSION 149

8. CONCLUSION 151

8.1. CONTRIBUTIONS TO THE KNOWLEDGE-BASED SYSTEMS FIELD .................................................... 152

8.1.1. Preamble ................................................... 152

8.1 .2. Functional Ontology........................................................................................................... 154

8.1.3. Information-Processing Layer and Port Managers ............................................................ 155

8.1.4. S-Force: a Shellfor Developing I-KBSs ............................................................................. 156

8.1 .5. Practical Application ofS.Force ........................................................................................ 157

8.1.6. Summary and Venues ofFuture Research .......................................................................... 158

8.2. CONTRIBUTIONS TO THE APPLICATION DOMAIN 160

8.3. CONCLUDING REMARKS 161

APPENDICES 37

APPENDIX A KNOWLEDGE STRUCTURE OF SOCHARIS“ 165 

APPENDIX B KNOWLEDGE STRUCTURE OF RE-ENGINEERED SOCHARIS........................ 179

APPENDIX C MANUFACTURING ONTOLOGY REDESIGNED IN PROTEGE FRAMEWORK

228 

APPENDIX D MANUFACTURING ONTOLOGY REDESIGNED IN XML 233 

vii



 

   

  

n
‘(

Ao._el.))).J

2,1,0(0......anQua

mLm>LomFmHQP

Q
-

t
r
i

(

‘
l
;

I

-.___L_.8m8mg.m...

........wco,..m...mmm._u.,...

8.3£3.84..3

1.3CSRLS....O

 



LIST OF TABLES

Table 1. Comparison between the discussed approaches ................................ 43

Table 2. A possible mapping between frame-based and unary predicates

representations ........................................................................................... 44

Table 3. Impact of applying DSSA methods to DICAM ..................................... 61

Table 4. Function ontology for GT based problem solvers ............................... 101

Table 5. Problem-solvers, participating in Socharis *. ................................... 100

Table 6. Description of types of behaviors employed in Functional Model of

l-KBS ......................................................................................................... 105

Table 7. Variables of Layup Refiner Port Manager. ....................................... 119

Table 8. Comparison of the S-Force with other methodologies and Shells. 159

viii

 



 

   

   

     

  

 

  

....Lo3850%.m:L.
Jn—vU§fl

.2Lou9&8.LI.

\Iva;(A

1(memnxmo.3.

may.

-85as...

I

)1

r.

I

v
,

D
1
|
.
)

~

C

I
t

‘
1
'

a
r
i

(
:
5

I

v

I

I
‘

(
“
I
n

t
I
n

.ILCJMOOFONMOL..mmeuma

a9...:9.84.NL”

mg3.Dumb...

A“8$3me._._...L_.

5m$0.0.mm.“

msnow3...}3

8m6%L53m,”

m6SassowL

3%3...ummL

....................WmH...)

(

.L323¢anLS.”

...Loseesaw.an

.0!Lo2013.2..»

.3“9893New“

u.0).).._,.dm

.L_L.._Om-ctAimLn...“

 



LIST OF FIGURES

Figure 1. Problem-solving Strategy Of Socharis. ............................................. 19

Figure 2. Blackboard Architecture ..................................................................... 31

Figure 3. Example of KQML query. ................................................................. 49

Figure 4. Screenshot of the Manufacturing Ontology in Protege shell ............... 52

Figure 5. Screenshot of MSIE 5 displaying re-developed in XML Manufacturing

Ontology ...................................................................................................... 53

Figure 6. PSP flow diagram ............................................................................... 59

Figure 7. Schematics Of automatic cruise control .............................................. 67

Figure 8. Large Black Box ................................................................................. 94

Figure 9. Multiple Black Boxes .......................................................................... 95

Figure 10. Gray Box .......................................................................................... 95

Figure 11. Cascaded set of interfaces guiding the developer through the process

of creating new I-KBS................................................................................ 103

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Adding a sub to the node of PSH ................................................... 103

Problem-Solving Hierarchy of Socharis * ....................................... 104

Sequence of interfaces leading to behavior definition .................... 107

Detailed macro-expansion of Socharis* ......................................... 111

Macroexpansion of Socharis* ......................................................... 112

Opening Port Manager interface .................................................... 115

Upper pane of the Port Manager Interface that allows manipulating

with the node’s variables ........................................................................... 116

Figure 19. Adding new variable to a node ....................................................... 117

Figure 20. Passing the result variable up one level ......................................... 119

Figure 21. Interface for definition of default values of input variables .............. 122

Figure 22. Adding of mapping ......................................................................... 124

Figure 23. Predicate types list located at the upper left corner ........................ 127

Figure 24. Qualitative predicate interface ........................................................ 127

Figure 25. Quantitative predicate interface ...................................................... 129

Figure 26. Existential predicate interface ........................................................ 130

Figure 27. Mapping of HC Input Control .......................................................... 133

Figure 28. Adding HC Control ......................................................................... 135

Figure 29. Output Variables of Layup Port Manager ....................................... 136

Figure 30. Mapping of Layup Result onto Tooling Cost Estimator input and

control variables ........................................................................................ 137

Figure 31. PSH of SocharisKB ........................................................................ 144

Figure 32. Macroexpansion of SocharisKB ..................................................... 145



u
.
"
u
;

{
/
3
I
:

‘
.

t
.
-

0
.

fl
.

L
L
W
L
L
:

L

...

(I

I

-
7
5
?

‘

ltt

(la

...‘)l

.‘(r

'.

(I...

(III:

_(I.e

.\-)...)

(‘ftd

_._. s...

)1

.(.(



CCA

CMNI

CORBA

DARPA

DFD

DSSA

F8

F0

FOPC

FR

GT

cnwrs

HC

IDL

FKBS

IPT

ISL

KADS

KBS

10F

KLA (KLAH)

KLH

KQML

KR

KS

KSE

MRD

NSF

IDMT

PS

PSA

PSH

PSP

RC

RD

RTM

SRC

TSA

LIST OF ABBREVIATIONS

Conceptual Composite Assembly

Capability Maturity Model

Common Object Request Broker Architecture

Defence Advance Research Project Agency

Data Flow Diagram

Domain Specific Software Architectureq

Frame-Based

Flexible Control

First-Order Predicate Calculus

Function—based Reasoning

Generic Task

Generik Task Integrated Tool Set

Hierarchical Classifier

Interface Definition Language

Integrated Knowledge-Based System

Information-Processing Task

intelligent Systems’ Laboratory

Knowledge Analysis and Design Support

Knowledge-Based System

Knowledge Interchange Format

Knowledge Level Architecture Hypothesis

Knowledge Level Hypothesis

Knowledge Query and Manipulation Language

Knowledge Representation

Knowledge Sourse

Knowledge Sharing Effort

Multiple Routine Designer

National Science Foundation

Object Modeling Technique

Problem-Solver

Problem Solving Architecture

Problem-Solving Hierarchy

Personal Software Process

Rigid Control

Routine Designer

Resin Transfer Molding

Semi-Rigid Architecture

Task Specific Architecture



2. ESE:

mom gm 58m

 )8). ’1‘ j)’.. .)\I,hl

(ESCHC 1.0 % MLCr‘at:

3 vb)! .) in )‘l. l \IM.S

fiwuflflrJK («((mj MC 1 ‘1.

J,

. m. g 0323.462

3.P, _
L”Jim... (m2 8 mm _._.m m

3..., i
I.’

,m .395 .3 Rm

1631

I 1 )wt) ..r . P , ‘1. 0.; O.) 0v.,. _ on. .mLm .c.

.) .
_. 5.1613917),

ur (mam

.3... .1 4

«a. 3.

c .H D
.

t C(((
:1” 0‘“

O}.

f

I

R (to:. z a

f.” 9 .7 _.?
._(_. ... 1 I

(m. C U“

D '

”J. 13.1.)

((60.13

.’*7 .

. . J.
.L. , _

((n
I).

u 0’

.It In

I

.1. mm 1 .

mm. ~quHU‘

)

II! I \

.0

n;

‘1’,

I
)

.1215?an



1. INTRODUCTION

1. 1. Motivation

Since the 19603 research in Knowledge-Based Systems (KBS) has

produced many successful practical applications in various domains. Bu

dissecting problem-solving patterns, several schools of thought developed a

number of general—purpose problem-solving methods (PSM). These methods

are often used to solve a particular task. Meanwhile, the majority of practical

problems require the use of a number of different PSMS to solve the problem at

hand. An alternative to the development of a monolithic, large-sized KBS which

incorporates all necessary PSMS is the development of a K88 that consists of a

number of cooperating problem-solving units each of which is an instantiation of

a specific PSM. Often such an instantiation leads to the development of

separate knowledge-based system resulting in a collection of separate problem-

solving modules. In order to perform a designated function, this collection of

problem-solving modules requires careful and precise assembling or integrating.

Such Integrated Knowledge-Based Systems (I-KBS) are an emphasis of this

dissertation. I define an Integrated Knowledge-Based System as a K88 which

consists of multiple, disparate problem-solving modules co-Operating to solve a

given problem.

Ontological research has suggested that the use of shareable domain

ontologies as an inter-agent language is a practical solution to the problem of

communication between disparate modules. However, integration of a number of



mSJDIrmme m..-fl.

{LII ).>)o. )3. heme». m

S. .

3..(1.....1......N.UJ $5.5m

. H) 0

wave a “v. 9-...

h.

H.343 m... m... m.

.5....{a 0......

4.4.9.10.m g .4

0| ‘0’ ‘0. 2‘ O. \l‘lI

“n"u .m rm“ me“ C .

1.... P .

I 1.)).h)

« r r t; . (male 11)‘ .u' .(

.1)
ll 6)

if AflflDU‘) ,

(4“ ‘3 _m r

’

1.5““; a

U

_

 



knowledge.based systems in the l-KBS is more than the definition of a

communication media and language; it requires the determination of the control

and information flow as well. Software engineering practices suggest using the

derivatives of object-modeling techniques (OMT) and component-based system

development as an effective way to develop software systems. However, these

methods were often neglected in the methodologies for development of

knowledge-based systems.

The focus of this dissertation is the development of a methodology which

allows the integration of the disjoint knowledge-based systems into a functional l-

KBS.

1.2. Importance of the Research

KBS development methodologies, knowledge acquisition, knowledge re-

use, and integration techniques for large-scale intelligent systems are the topics

of a significant amount of research in the US and Europe. The importance of

KBS research is underscored by the endeavors of European multi-national

projects (such as ESPlRlT-l and ESPlRIT-II (van Heijst, Schreiber et al. 1997)

(Wielinga and Schreiber 1994) and Vital (Motta, O’Hara et al. 1994)) as well as

by support from US governmental agencies (such as DARPA1 (DAFiPA 1998)

and NSF’s2 program on Knowledge and Cognitive Systems). in the introduction

to DARPA’s High Performance Knowledge Bases (HPKB) project, it was noted

that

 

‘ Defense Advance Research Project Agency

2 National Science Foundation

 



.232 xmm 2

3... $2 x856”.

...... {83831.4

_...__..... admdmdm. U...

3%... 88m 3.

£28. $039.8

........w_ 8.3:

.3. .m 333....

.4....“ 983$ 5 ...

same 2 333m __...4

ll?

3 mega: 5m...

.c. _ (C.
a-(

03......

.
.b...p.n

.YESUDWM man 0(«(

.12...”m2...
“.9mo. .23).: D) 

a $83: 088.

3.....33 3 on...”

was... a 3.. c3...

3:

.. .. .3ra-r.

5.. $28 mm m S...



“[The Al KBS community] reached a threshold where the power gained

from applying knowledge based technology is much greater than in the past.

Techniques for creating large knowledge bases have advanced significantly.

Many fundamental problems of how to perform efficient inference on large

knowledge bases have been solved (although others remain). Many

specialized techniques for creating and applying knowledge have matured.

The potential payoff from combining all this research progress into one

program is tremendous. ” (DARPA 1998)

This progress in the K88 lield made feasible the development and

exploitation of systems intended to solve large and complex problems. However,

not much attention was paid to the issue of development of practical

methodologies and developmental environments that would support building

complex integrated knowledge-based systems.

1.3. Research Context

Advances in Object Modeling Technique laid the basis for the

development of the Universal Modeling Language (UML) (Fowler and Scott

2000) that serves as a very expressive and convenient medium for modeling

complex software systems with intricate communication between its different

components. Rational Rose® — a commercial tool based on the UML — provides

a “what you see is what you get” environment for modeling complex software

systems starting at the conceptual level of requirements definition. As a result of

the modeling process Rational Rose® generates a skeletal code in one of the

object—oriented languages of choice: C++, Java, Visual Basic, etc. This skeletal



.L“0OddcramL+3“mm.

)-3m)_—_

(.1;La.1L“2W.).Jn.

Sum...3%m3..
int.‘(It-\Jm

)IIIU

UO.U_.

(3.3).)a

(73.tomcoo.0.DD":3

“(1.1I!”a;

rmmh9.93.3w...

23,..33€30.33... 5“Ittl

11”;50C!8C@.f.)3)n.
£131“...a...

.(CI

IULmewr.“4<.wr)pl3;

(.l%(.}

0coEma.9...33.3.p.

_

_
..

3

’l)’))4

1:5350.1.33;on.tL

mafia3.3..gm...

335.38.383.33.

.89com..0.3333.

)1“)?

....L:Um.un
.10WQU..,LC3...}



code provides guidelines for the designer team by defining the input-output

interface of each object, object specifications, and the channels for inter-object

communications. As long they do not break through the defined in UML

interface, the software engineer can implement the objects and define data

structures without worrying about integration issues. By storing object models

and retrieving them on demand, UML not only allows but encourages reusing

components. At the same time, however, the area of knowledge-based systems’

development lacks any similar methodology applicable to designing large scale,

high performance knowledge-based systems. The need in such a methodology

and a proof-of-the-concept tool motivated this dissertation research.

The Generic Task (GT) approach (Section 3.2.3) provides large—grain

templates for constructing knowledge-based systems. However, GT is brittle in a

sense that its templates are rigid and pre-defined. Therefore, in order to

accommodate a deviation from a template it is necessary to re—program the code

that governs the inference and/or knowledge representation in the template. This

defies the principle of having a certain number of reusable, unchangeable

templates for the problem-solving needs. On the other hand, it is often possible

to identify parts of the overall problem that could be effortlessly tackled by one of

the templates. This poses the problem of how to effectively integrate the

resulting problem-solvers so they not only function properly, but the overall

problem-solving organization is understandable and manageable.

The alternative is to design KBSs following the CommonKADS approach

(Section 3.2.5) and decompose the problem into a large set of primitives and



3.... $3.3 .33 a

 
3.3.3.333 mama... ..

   

  

m“ .33. o... 3... am;

u....n....33.$..<.3.@ 383...“. w

I F. 3.3..) U‘WVIOD)‘ _‘m 33.3.).

3?. K. I. (. t.((.(. (1‘. _(
(

3. “3.3.56... 0.

 
‘1.-

s 9&me Qum.m333_

3.32.3.0... 2 5.3.9 9

.3.-. gamma. m. m

....w...m.3._....m. mm m. m n

:33. 3. 3333..

2.. .a 3m: m)...<m..>

:(

Him . .wD)‘moD

n. ‘4 r1)“

1C. v).

z a?
1"}.Dh

’VHVO.’ .

cvtn 3130—“),O

.0: 0% m
usuni



then integrate them in a knowledge-based system. Each primitive module is

programmed separately and, on practice, can rarely be reused. In a nutshell, it

also relies on the developer’s programming skills to implement and integrate

problem-solving modules. This approach results in the system with the problem-

solving architecture concealed inside the code.

This dissertation describes a methodology that eliminates excessive and

unnecessary programming for problems that could be decomposed into smaller

chunks, each of which can be solved by application of the large-grain problem-

solving template. By assuming the black box stance i.e., looking at every

problem-solver as at a black box with known functionality, inputs, and outputs,

and using the Knowledge-Level Architecture Hypothesis (Sticklen 1989) (Section

3.22), it is feasible to compose and describe the problem-solving architecture of

the integrated system. The composition of the system includes explicit

specification of communication channels between co-operating entities and

specifying their activation condition, whereas the description of the functionality

of the integrated system should be built on functionality of each participating

_ problem-solver, its connections, and its supervising control structures. In

addition, the dissertation methodology provides implicit guidelines for designing

an l-KBS: first, to decompose the problem into the chunks that could be easily

handled by a single pre-defined template and second, define the communication

and control flow between such modules. It is important to understand that the

practical application of a knowledge-level architecture to design l-KBSs became

possible in the light of recent advances in software engineering (Section 3.4),

 

 



3.33... 3..3 38.3.3.“

.3..m:mm.u9 m3.

(
L
I

3.3m "3.8m 2..me

  

.. 3.. .90....80mg. .

4.3.... 53... o. x;

8333......me 58 m.)

$88... man we...

3.3.3. .33 x;3.

5338.5;3.3.

3.33....333 o.

3......3 $3.33

m._£...m.§ 3 on...“

8.35.8... .3. 3mm

3 8.80....im. .Nmut)

M338 5.r3m an...

I... .

(—

333.0 mm:

g .8ch..

ammo,
(Um )_ .

9.3.833“

m... .. .. a

gwu. Hfim n

I.

3.3»... m

p . .DD’O

Mr. «M "Tum.

3mm)...



communication techniques and approaches (Section 3.4), and component-based

programming (section 3.4.2).

The three mainissues that prompted this dissertation are listed below:

1. The Knowledge-Level Architecture hypothesis (KLA) (Section 3.2.2). The

main idea of KLA is that if an agent [a knowledge based system] is

decomposed into sub-agents [problem-solvers], then the composite agent can

be understood at the knowledge level by a knowledge level description of

sub-agents and specifying the sub-agents’ integration and communication

structure. The KLA model of an integrated KBS is then used for validating the

K88 behavior and finding integration conflicts in the l-KBS architecture.

2. The application of Function-Based Reasoning (FR) theory to modeling

software systems

3. Advances in ontology research suggest using a domain ontology as a

communication media for inter-agent communication. A domain ontology is

the conceptualization of facts, terms, and assumptions and their inter-

relations in the domain of interest. The purpose of domain ontologies is

threefold (Gruber 1992). First, it helps to organize the domain terminology

and to clarify possible misreadings of a term. Second, it helps in creating a

database backbone for the multitude of problem-solvers in the domain of

interest. Third, the ontology serves as a basis for inter-agent communication.

That is, agents that participate in the problem-solving process communicate

using this ontology and interpret it in the same way.



:5. ma... 3..

mm... ma. 3%.$5.1»

{11) 2..q_;D

C

.. .. .m:(C.(

 ”$32... $8 5 n...

J ) V

.m... 83. 28......

w .3um. m8mxmu

D J

n. VH1...“h.” OOJHNUH

lfiop“ . . . .

.8 830 .5..
C (

3.3% .it. ..
) ‘4 .

um<._cm.0 0

«
A

me.(mm 00.3.”.10—_m1)1

mxuncflu.) Owumw mwm m

”1),;

It «(6 1D. .m .25 am;

o :r

.mm a...»(f )1)

(Lama 8 _

‘(Umwm



I will show that with some augmentations, the FR methodology allows

designing and modeling integrated knowledge-based systems utilizing arbitrary

control structures and with an emphasis on the system’s knowledge level

architecture (KLA). It is possible to recognize three major control structures that

are commonly used in the development of integrated systems:

1. Rigid Control architecture (RC), i.e. all interconnections between problem-

solvers (PS) and execution order are determined during system development

time.

2. Semi-Rigid Control architecture (SRC), i.e. PS’s interconnections are

determined during the system development time. However, the exact order of

Operation is decided on during run time.

3. Flexible Control architecture (FC), i.e. neither PS’ interconnections nor

execution order are set a priori but emerge dynamically during the system’s

operation.

Modern methodologies for building integrated systems and multi-agent

systems often concentrate on the implementation of one of the above control

architectures. The methodology proposed in this dissertation aims to enable the

l-KBS developer to use any combination of the control architectures listed above

to closely fit the control flow of the problem at hand.

1.4. Research Objective

The development of an I-KBS poses problems of decomposition, of

knowledge acquisition, and of the integration of pre-built modules. The approach

proposed in this dissertation aims to resolve some of these problems by:

 

 



1% 3mm.

awnaqmem ea

-

N. M. 8m, 3 .8 a...

39mm 8.8 5 m“

3.. $3.... a

to! v 3.. 3’1).

iK." 7...... 98. .30... a

3:!)
._

.

3.... 31$; 50.. .6'

.

((II

  I

1

. 280.....an m on.”

331...... .39..

. a 3.3. 3m 39...:



1.

2.

Providing the means to decompose the problem into the set of manageable

sub—problems and

To organize the integration infrastructure based on the functionality of the

modules called to solve each of these sub-problems.

The research is focused on the problem of developing medium-to-large

scale integrated knowledge—based systems. The process of building such a

system generally includes the following consecutive steps:

To decompose a problem into a set of smaller sub-problems that are easier to

handle from the knowledge-engineering perspective.

To identify the methods that are capable of solving these sub-problems, and if

possible to locate pre-built modules that serve these purposes.

To develop a domain ontology - a vocabulary of domain terms and their

interrelations - to provide a backbone for the individual problem-solving

modules as well as to arrange means for inter-problem-solver

communications.

To implement individual modules.

To integrate individual modules in the target l-KBS leveraging available

control information.

To develop a front-end to the l-KBS that presents the results of the l-KBS run

to an end-user.

In spite of the fact that many of the above listed tasks have been

addressed in often research, the issue of the development of functional I-KBS

with an explicit problem-solving architecture, clear but flexible control structures,



m... 5550.... 88m

.3“ u. 38mm...”

.5... 5.... $5....

_
main6”....3m can

L5,. ..... am)...

4

. .26....

. .2 1.. camamm

  
”.5 0.9.0... .3 as;

:5 a o. m 03.8

.503. .nm 5.?

gnu”... 93.) 3 o
. '._.U _ . D1)

mirjo.‘ ”o m.

Ubfimm;

'C 0.1

3......

.(It”).



and adaptable access to the information flow is an open question. The

methodology discussed in this dissertation answers some of these questions.

There are several difficulties that have to be taken into consideration when

approaching these problems:

0 To correctly identify unitary problem-solving components.

. To correctly organize functional decomposition-composition of the I—KBS.

. To unambiguously direct the information and control flow through the l-KBS

The traditional Function-Based Reasoning (FR) gives the means to reason

about a device in terms of the functions of its sub-devices and to compose the

functionality of a device from the functions of its components. Following one of

the branches of FR, which uses the metaphor of device on software system, we

apply this metaphor to an Integrated Knowledge-Based System. To do so, it will

be necessary to augment the traditional Function-Based Reasoning theory to

allow modeling and integrating l-KBSs as well as the explicit assignment of

information and control flow between the cooperating entities.

The core of my approach is the notion of function or role of a unitary

problem-solver that is looked at as a black box with known inputs, outputs, and

functionality. Given the decomposition of the problem at hand into chunks that

could be solved by such unitary problem-solvers, the goal is to compose the

higher-level problem-solver (capable of solving more complex problem) out of

these black boxes. These higher-level problem-solvers in turn are used as black

boxes to form higher level modules, and so on. The functionality of a larger

problem-solver is a composition of the functionalities of lower-level problem-



yam E 38: n

T

85...... a m £02m-

we5 0853.

  a. 93328?

5 omegam 0.

3.53338 3mm.

55.9. 3 v88

 
Os .5 xmm m um n

3p.
5 _. r3259

#11.))
c <'.( _m_ 80030.0w

a),

n7.

. .
(a
$3:

a f.

a?
0.;

flCDlu)‘;

.



solvers. The result of the goal-driven recursive repetition of the composition

procedure is a knowledge-based system that performs the desired function, i.e.

solves the problem.

1.5. Deliverables

The outcome of this work is a shell that allows building integrated

knowledge-based systems using the theoretical framework discussed in this

dissertation. To prove the validity of the methodology the shell is used to re-

design a knowledge-based planning system.

On the K88 side of the research the contributions are:

KBS-l . Augmentation of the Function-Based Reasoning methodology to allows

functional decomposition of integrated knowledge-based systems using a

limited set of unitary problem-solvers as base-line building blocks.

KBS-Z. Addition of an Information-Processing layer to the functional modeling

methodology which enables an explicit assignment of information and control

flow through the Functional Model.

KBS-3. Addition of the capability of describing dynamic control over the parts

of the Functional Model of the l-KBS, therefore enabling implementation of

arbitrary distributed control structures and problem-solving units within the l-

KBS.

KBS-4. The development of a shell which supports building l-KBSs in the

described framework.

10

 



:9E8
wish
alAc.

:8co?2.
....,._c.,,........

aF96.wgrmg

.m8ao_m...wo

m:Bm3$m.}:
m

>.....nwmoa
.

2r...r_

.mmmm"...

.cm55%En.

m9%9.5%...

3....kicomvmn.w...

 



The domain of choice is the domain of manufacturing with polymer

composite materials3, where l target the existing intelligent manufacturing

planning system - Socharis4 — and re-design it using the approach proposed in

the dissertation. The main purpose of this re—design is to ease the maintenance

of the system, since Socharis’s control is directly coded in Smalltalk and can be

modified only by an experienced software engineer. The redesigned system

features:

CMD-1. Possibility of on-theofly change in the system’s architecture, the

architecture of its components, and the knowledge content. Re-designed in

the developed shell the new Socharis will provide graphical interfaces to

examine every part of the system and the ability modify them if necessary.

Modification can not only affect the knowledge encoded in the system, but

also the control flow that governs the order of the problem-solvers’ activation.

CMD-2. Explicit definition of the information and control flow between the

components of the system that lets the user understand the problem-solving

strategy of Socharis. This, in turn, may be used as an educational instrument

for teaching manufacturing in polymer composites.

An important conjecture that follows from the leveraging Knowledge-level

architecture hypothesis is that the methodology discussed in this dissertation

allows developing reusable integrated problem-solving architectures for non-

trivial tasks in a way that the second-generation expert systems (Section 3.2.2)

 

3 Composite Manufacturing Domain - CMD

‘ Socharis is the Greek name of ancient Egyptian god Sekar - the god of crafts

and construction

11



“an...“ ”a 3mm”

 a. $852.03

3... an a 3 H

{I .

.15.... p.83 .5.

.55. ed 385.;

gm... ,5 30.32,

 
wumaml. 0:3m Us)”

3.4.5 3 5.3.2...”

33.1..raga ..xm,

u “mama 8.3m...”

8.58.5 ma 80.me

...

1.1.11 1010.11

5.....35.,(mm m



prompted the development of reusable problem-solving methods for common

tasks.

1. 6. Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 introduces

the domain problem that serves as a proving ground for the advocated approach.

Historical and theoretical background is discussed (Chapter 3). Chapter 4

analyses the underpinning theory of the research. Chapter 5 gives a detailed

statement of the problem, followed by a description of the approach and

implementation framework. An illustrative example of using the developed

framework to build l-KBSs is given in Chapter 6. Re-implementation of l-KBS for

the described domain problem and discussion of the resulting problem-solving

architecture are addressed in Chapter 7. In conclusion (Chapter 8) I address

future research venues and general challenges in KBS research.

12



 am. .3. 3 Q3.

$33.3”. ma 3m b

.0... 0.. 93.1.3 1..

fig. a. a 0......m 
33.; ,«(t-I < .m.1 Qrumm DO” _ .m

“3’3“";

.3 E. 35.0.

'

v36.) )T.

(or t.

_.._Um8,__~2.,_

rnr (

.. n . $303:
III-

_....,.......n.n1_
(I

. mm 8.. am

”.3?
u .( .01)

....a mmmn r
(.3 H. 1).

. S .5.

.pil

1.1.),

an. _ 3:

(h K

. (D1 )9

(7 7

(1
I, (

'I’D

1 ..’ .

l 1 .01.,



2. DOMAIN PROBLEM

Any research in KBS is usually composed of two problems: the domain

problem (e.g. to diagnose a disease, to aid in design, or to find the cause of

malfunction) and the Al problem. The latter is concerned with development of

new or augmented Al theory. The former is concerned with the applying

particular problem solving strategies, techniques, knowledge representation

methods, etc. to solve a domain problem. Without a domain problem a K88

researcher does not have any means to support the validity of the advocated

approach and, therefore, the described Al method is bound to be merely

theoretic philosophizing.

This dissertation introduces a problem in the domain of composite

materials and demonstrates how the proposed approach to the development of

integrated KBS can be used to solve it. The example domain problem (Martinez,

Lukibanov et al. 1998; Martinez, Lukibanov et al. 1999) is described as follows:

To create a system for generating conceptual manufacturing plans for

mechanical assemblies made of composite materials which satisfies the following

input output specifications.

INPUT: The input to the system is given in terms of a conceptual

composite assembly (CCA) (Lenz, Hawley et al. 1998; Zhou, Lenz et al. 1999).

A part of the CCA called the configuration model represents an assembly

hierarchically, depicting not only assembly-component relationships but also the

relationships between geometric parameters and design features of the

13

 



mmmm1.1%. (if;33:3

  

   

3.3 non.cm oc.._m

$33 .22 g m.

.3” 0.333 new

83333.3 83 3mm..-

3:253 cm3mm:

)3)’.)).)“

.. 5 f. o. mmmm?

 
33333.3 8.3833 ma 3

m 33 3233333...

3”.“kang «OLOT.DDU.

. 3.3 $83 39.5



assembly. Within such a hierarchical configuration model, ontological members

include structure objects (an assembly or a subassembly), component objects

(the base level of atomic parts for the structural assembly), joining objects

(fastening one structure or component to another), and feature objects

(expressing such features as holes). An ontology of link types expresses the

relationships between objects. Link types include part-whole links (assembly-

component or assembly-internal joint), join links (expressing connectivity

between objects and the joints between them), and feature links (component-

feature or subassembly—feature). Each component node contains the description

of its type, rough geometry and material class. Each joining node contains

information about joining parameters.

OUTPUT: The output of the system should be a family of conceptual

hierarchical manufacturing plans for the manufacturing of the assembly. The

generated manufacturing plans can be used for estimating both the properties of

the final product and its required manufacturing resources, such as labor, tooling,

machinery, etc. The plan is represented as a directed graph.

The knowledge-based system that performs this function - Socharis - was

created in the Intelligent Systems Laboratory at Michigan State University.

Socharis was created using GT ITS (the Generic Task Integrated Tool Set).

However, this tool set does not support complex control flow, which led the

developers to code all the control information in VisualWorks Smalltalk. Such

“closed source” architecture hinders the maintainability of Socharis especially in

14



W3 m...3.._.3333ma
2.3m.

  33.33%” .33 333mm .

33 32.. 38...”.

333.3% fiSNmfi

33,2 33 3.3338. 3. 3
(0.1:).

‘(r.(

v...‘ ).

txxm
(.0 a! o

 2. 323888:

3 8883.... am

lvo)‘ ’3

. I

ctn .93 $3382.“

(21.)?!)

(u ((0.6(3
o:

m
am“

a £333 $8.336 Um.

ngaamgn

181
.

33.48 333m .33

3...”... a 3...
.V . C3303 moon.

I

:v“ .3 o. 83U003.m

Wisp;

.2 (Unwammm .00
(

Mina
l . oonww):

Jo

r.

$..)).. .

a 3 553

HP”)... 3 fl

. _

3. Saxonm.
. .

win:
1.“,

saw 2
mcuumnk

( (r

m...



an environment where the knowledge base and the control flow should be

changed and/or tuned for each particular deployment of Socharis.

The next section discusses the architecture of Socharis and describes its

knowledge organization, content, and knowledge-level architecture as well as

provides an introduction to the domain of manufacturing with polymer composite

materials.

2. 1. Introduction to Composites

A composite material is a heterogeneous combination of two or more

materials (reinforcing elements, fillers and binders), differing in form or

composition on a macro-scale. The combination results in a material that

maximizes specific performance properties traceable to one of the constituent

materials or to the aggregate composite material. Composite materials have

been termed the “materials of the future”. However, this increased design

flexibility is often accompanied by an increased design complexity. Industrial

designers of composite material systems and architectures work within narrowly

defined sub-areas because of the vast expertise necessary to cover the entire

domain. Consequently, the full design flexibility of composite materials is not

typically realized.

Design for manufacture has been historically more prevalent for polymer

composites than metals. In part, this is because many design factors (e.g. ,

geometry, functional requirements, production rates, and material system) either

constrains or suggests specific composite fabrication technologies. As the

selection of a manufacturing process can greatly affect both the functional

15



......m3.mmh now. of.
C.‘

... 3. 1,1 1.1.
meumumiglrx. I

   333 331.33.3.83 o. a

33.33... 333033.933”

9.3. 3.33 8.3.. 3...

am .5. mmmam Fm

13mm.3.3 m.a...

m..ur_ (mm. (W...)

'—._mN

01).).10. ).2. . _

15...... .0332 ,. r1 turkn

..........w._ 331.:9.mm

w_~1 mxv__(1_.1...m

$43....) .

.1“. 9.95.6 mm.

I

I

1111

. 9 amp. 33 m

.Jm O1...)«Jm;
. 0..

.3... <,. _...3
(3‘

_.
.1!

a Uduum

.- ((WCJD _

a 9me

3.3 . m

. ammmja .
‘ _ n

0 _‘ .U‘

_( mam)*

n...- T.

. .uumfimt.)



qualities and cost of the final product, manufacturing concerns often dominate

purely design concerns. Even using solely manufacturing constraints, the variety

of available composites fabrication technologies can complicate any conceptual-

level comparison of fabrication alternatives for a part. Additionally, designers’

biases can simply eliminate possible alternate fabrication processes, artificially

limiting the list of available options.

Over the past several years, a software suite has been developed in the

Intelligent Systems Laboratory at Michigan State University to accomplish

integrated design and fabrication planning at the conceptual level (Lenz, Hawley

et al. 1998; Martinez, Lukibanov et al. 1999; Zhou, Lenz et al. 1999)). It

supports the conceptual design/re-design process for the transformation of metal

structural assemblies to polymer composites. This software suite assists

engineers in exploring the space of design and manufacturing possibilities and

evaluating evolving solutions without detailed design or analysis.

The suite produces a family of conceptual composite redesigns from the

original metal part. Each member of this family is a valid redesign option,

meeting the original design requirements. These redesigns are passed to a

manufacturing planner for further evaluation. By reviewing alternative

manufacturing plans suggested for the functionally equivalent conceptual

designs, the designer can rule out those that are less effective and concentrate

on the more effective plans. The resulting solutions will not only satisfy functional

and aesthetic requirements, but can be easily manufactured.

16

 



3w 6.0.:no

 3 . o

m”? 3m 339mm“;

2...:3. 82m zm   
WW03” *2...) m 830mm.(

3323.6 335“

, ,3? magma s“

R 335$;

3.3 a imam H

 



The following discussion presents Socharis (Lukibanov and Martinez

2000), the manufacturing fabrication planning portion of the software suite

mentioned above. It generates a family of applicable conceptual manufacturing

plans from a conceptual description of a composite assembly. The conceptual

manufacturing planning strategy presented previously served as the framework

upon which Socharis was built.

2.2. High-Level Problem-Solving Strategy of Socharis

Figure 1 reflects the high-level problem solving strategy of Socharis, which

mirrors the domain expert view of choosing an appropriate manufacturing plan

for polymer composite assembly (Committee 1987; Bickerton, Stadtfeld et al.

1998). First, it is necessary to convert the description of the problem from the

product designer description (Zhou, Lenz et al. 1999) to manufacturing engineer

terminology. This problem is taken care of by the application of several problem-

solvers that filter and convert the data. Along with translating the input data, this

problem-solving stage takes care of partial assembly ordering — by developing a

skeletal manufacturing plan. This plan is a graphical representation of temporal

assembly constraints that indicate assembly operation precedences based on

the part-subpart relations in the structure description (i.e. part A can not be

connected with part B until subparts of A: A1 and A2 are bonded to part A).

The next sub-problem is to process the converted description of every part

to rule-out unsatisfactory technologies. The list of applicable technologies then

enters the further stage of the problem-solving process which is the basis on

17

 

 



we. ma an...)

.mm a... 3... ”am.

gm ”mm... m.

.wmamaqo

mom... was” .

a .mm 30 3.,

83 n3 mm 2

4.8 wand.

u...
, . _

_“_ Tan. 1. I. 1
((4.5... _ .

( (IL

. —) _ _

$.53. r; um.

“Jabs;
(((1 r¢(.3o H:

flap...) r

.4.“. me a:

.p...

(c _. 353V 4

( on...

”V «n .10

F; W« 01..

ml. cg

.l‘lm *

c nu_ “rmwhwmw\lo 1

oh]

t J)» ..

5.3.
.._._o.._ n

r.

":1.

l((U JD,



each part’s requirements generates sets of manufacturing parameters, which if

used with the target technology will produced the desired part.

The later stages of the problem-solving process tend to produce multiple

results (a family of applicable manufacturing plans). To help the user to choose

between alternatives the manufacturing plans are ranked by a set of estimators

that rate the relative merits of each process. This stage concludes the problem-

solving process of Socharis.

The problem-solving architecture of Socharis consists of a large number of

cooperating problem-solving agents. A composite materials domain ontology

(Martinez, Lukibanov et al. 1999; Zhou, Lenz et al. 1999) is used to facilitate this

cooperation. This domain ontology provides a vocabulary for representing

knowledge about polymer composite materials.

The domain ontology is a four layer deep hierarchy: Class Category ->

Class-) Attributes -> Parameters. Each concept of the ontology also contains a

succinct description of any assumptions made. Take, for example, a term

definition for Shape -) Shell -) {AspectFiatio, WallThickness, ...} —) {{low,

medium, high},...}. An explicit definition of a Shell (e.g. , thin-walled planar or

curvalinear structure) and its quantitative correspondence to the qualitative

values of AspectRatio attribute minimize any potential ambiguity inherent in the

term definition. Such comments are mandatory parts of the representation and

adds meaning to the syntax of the term.

18



 

 

 

“D.ID4\!:!.» I
. . a O

..t .. -1.... 7.4.,

[I

‘l

.,

..

r

J.

 

 



 

 

 

 

Conceptual Composite Assembly
 

 
fig
 

 
 

 

     
 

Y

—'I Skeletal Plan Creation J

I
 

 

 

  
  

[ Translation

1
 

—>( Feature translation )

——§( Joining translation )

‘—>( Shape translation )

] .__.[ Data transformation 1

Feature adding method J
 

 

[ Joining Order Identification ] [ Feature Method Selection

L
 

 

Machining Complexity )
 

 

 

'l

 

Skeletal Plan and Data for

"echnologv Selection31nd Refinement

Molding Complexity

   

  
3%

   

 

 

1

(Technology Selector/Material)

 

I

 

( Technology Selector/Shape, etc. )
 

 

 

E .

 

   

 

(131:! Bit-Ill: N4

 

in RTM Refiner )

R, IM Refiner )

 

 

( Swamp Refine}; Ln

 

 

 

 

HEM

 
7% QM Refine; )

 

 

*VL FW Refinery

 

Refined Conceptual Manufacturing Plan
 

  
 

 

DEE
as

   
  

 

@ooling TurnaroundTime‘—

 

( Labor
\4
F

 

Geometrical Repeatability}:

 

——-'>( Operator Exposure)

 

{Part Turnaround Ti me)
 

 

 

 

Qtechanicai Properties
 

bfl Skill Level )

 

 

)¢

D( Tooling Cost )
 

 

Ranked Conceptual Manufacturing Plans
 

 

 fig—  
  

  

 
 

Figure 1. Problem-solving Strategy of Socharis.

)

 

19

 



The purpose 0"

3:3; terminology a

 

as creatng 3 dat;

man of irterest.

:rrncation. That

term sate usfing ti" 3

  

  
   

23. Problem-Sol

 2.3.‘. Trans‘atgr

The task of this :

15“.“ . ‘

its; 7" r t. '

" miners OCW'TQ

first: ‘ '
U

u

I:
a

. .-.a. manufa:

:Aa..,‘ ,

"w“- teas-As5' U .

Skeletal p13,1 Cl

“’3 '55 it.
a!“ r‘ ' '

“‘ 3 633/515 <

“53- Tne ge
”e'ated

nu
v, and a

n n..‘ Y re,“

15.“! a n

' “'9 Dan

Tl
. .cbe

add“:

I‘ Vin-0' A



The purpose of these ontologies is threefold. First, it helps to organize the

domain terminology and to clarify possible misreadings of a term. Second, it

helps in creating a database backbone for the multitude of problem-solvers in the

domain of interest. Third, the ontology serves as a basis for inter-agent

communication. That is, agents that participate in the problem-solving process

communicate using this ontology and interpret it in the same way.

2.3. Problem-Solving Architecture of Socharis

2.3.1. Translation and Skeletal Plan Generation

The task of this stage is to create a skeletal manufacturing plan and to

prepare design parameters that will be processed by technology

selectors/refiners downstream. This task is divided into three sub-tasks: creation

of the skeletal manufacturing plan, data translation, and selection of the feature

addition methods.

Skeletal Plan Creation. Construction of a skeletal manufacturing plan

requires the analysis of the existing conceptual configuration model of the

artifact. The generated skeletal plan is topologically analogous to the design’s

configuration model. At this point, the skeletal plan has only a rudimentary

structure, and any required add-on features have not yet been included in the

manufacturing plan.

These additional details are extracted from the configuration model in a

Data Translation. At this stage, the descriptive information about the

mechanical structure is translated from the terminology used by designers into

20

 



 

  

  

...m “m8 3. 33%,

”any a. 3m 3.8...

$33 59:

3m; 8 w 8.3...

.mué. 3m gum

:9 Emamm 5

”No.08. :5 323

431an amaam 
71.13))

3+

$1.
.f..(. ...m. _r.

8.». mass.-.

/

bums m 28.6an “

Mama: 33858 H

m. 82QO «
.1./3.))
Q(.

.(n

2.))”.

1.:-
)o

..

.rréaommou mmmflm

433063 mm.

amzaw
*

me $63..
amma:

m 833
ma

7

3.9. m 93 81.8



that used by manufacturers. The translation involves a mapping of the design

ontology to the manufacturing ontology.

Feature Addition Method Selection. There are two methods for adding

a feature to a component of a composite part: machining or molding. ln

machining, the feature is added to the component after the component has been

fabricated, whereas in molding the feature is incorporated as the component is

produced. The method for creating each individual feature must be decided

based on that feature’s tolerance allowances and the production quantities of the

component.

2.3.2. Generatino the Family of TechncMcal Alternatives

After a skeletal plan has been generated, Socharis assigns one or more

fabrication technology to each component within the manufacturing plan. After

each applicable fabrication technology is selected, manufacturing parameters

specific to each selected technology are set.

Technology Selection. The first use of the translated data occurs in this

stage as the appropriate manufacturing technologies are selected. Two

independent problem-solvers select applicable technologies based on (1)

geometrical features of the component (shape, aspect ratio, wall thickness, etc. )

and (2) material features (type of resin, fiber architecture). The results of both

problem solvers are lists of manufacturing technologies that theoretically could

produce a given component. The intersection of these lists, therefore, represents

the list of the technologies that satisfy all criteria given in the input data. The

21

   



weave 8....

q gem. 20.0mm

33328

flag 3.. 2

mafia Am.

wear .3 6m

)3!
o t.)

a ..an32 no.0

smegma g.

3 gm... B.

3.;
.)

o

(«6((
mu

‘5': 3.

_ t

l

I!) .

1 w)
I. 1.

r rrmeoM)
.

( q

z.

.. In}.

. .m

x. .

5...; . :
rm?

J...

I.l‘)
r2 an
.r_ . r.

I
(0.),

n

a: r

I

1,

.- («ire .

{613)



technologies contained in this intersection are then passed to the refinement step

for further processing.

Technology Refinement. After the technologies are selected, the

parameters for each technology are defined. These parameters include curing

requirements (e.g. , time, pressure, curing type, post curing), tooling

requirements (e.g. , tooling complexity, tooling material), and so on. The specific

subsets of parameters vary among the different generic technologies.

Component data (e.g. , geometry, material, and add-on features) and global

parameters (e.g. , production, and global tolerance allowances) are used to

define these parameter values. Each generic technology may contain many

different sets of parameter values. Additionally, each component may be

produced with multiple technologies. Therefore, some way to compare the

generated manufacturing options is required.

2.3.3. Evaluation

Running Socharis results in multiple manufacturing plans for every part in

the assembly. Given the semi-deterministic assembly order, this leads to an

exponential increase in the number of possible manufacturing plans. To enable

navigation of this expansive space of possible manufacturing plans, Socharis’s

last problem-solving stage ranks the technologies according to a predefined set

of merits.

Merit tables are traditionally used in engineering practice for ranking

different design solutions. Every row in a merit table is associated with a critical

manufacturing metric (e.g. , cycle time, tooling turnaround time, and operator skill

22



.2...835

n...

eczncouo3.5,p. (r:(a...

_Em;m3?8......a:
,3...c.-

 

  

  

  

  

..Nexm29m..2.9...“. (._(2“:

1..)L

...tqceomm”mm...”_

.3we;.0Sage

.38%05

a;2....83.8

T

’U5.93...mm...mam.m

EwecommE

 



level). Each metric is linked to a weighting factor that reflects its importance to

an engineer. Alternative technologies are ranked according to these merits by

calculating the weighted sum of the estimated metrics.

The specific metrics used in Socharis were selected to enable the

evaluation of time (cycle time, tooling turnaround time), quality of the product

(mechanical properties of the product, geometrical repeatability) and human

factors (operator skill level, operator exposure, labor). This estimation assigns a

qualitative value from one to ten for each metric. The alternative processes are

then ranked according to the value of the weighted sum of the estimated metrics.

The user can limit the design space under examination by requesting that

Socharis only display the best few options for each component to be

manufactured. This is possible because of the merit table evaluations. This

significantly reduces the number of refined fabrication options among which the

user must choose.

2.4. Accomplishments and Shortcomings of Socharis and Application

Domain Problem Statement

One of the most important contributions of Socharis to the area of

conceptual design and manufacturing with composite materials was the

integration of knowledge about eight generic manufacturing technologies in one

system. This knowledge was specifically structured to suit the problem-solving

goals of Socharis: to identify, instantiate, and evaluate manufacturing

technologies for a composite assembly of interest. This concentrated knowledge

source could be used to plan and estimate the manufacturability of the composite

assemblies.

23

 



  

    

   

am; $83.”.

sauna gag

...m.....mu._..s £3 .0

as“... a m aim.

mafia $8 a

$3. 5335:.

wanes... a 03m,

mmmnwgm m...“

is 03355....
A

:n name 2 o

mama *2 8.239...

an? 3613.

58.
3.. m

infra _
...958

038”

we 35... em

mum m @538.

..7.

(.91.-.

NJ... ) .2

r nchDJ
‘ .,( .H 32.0 X3.

5. .4..

hm‘ ..

(I "Jaw OjJDm.’
o

..(. ,CL

bush

..4ln)... _

.r r) .
((c $.12...er

_ _



As an important byproduct of the Socharis project, the research group at

Intelligent Systems Laboratory developed a comprehensive ontology of

manufacturing with composite materials (Lukibanov and Martinez 2000). This

ontology is a four-layer deep class, sub-class hierarchy that accounts for the

terminology used to describe both, the manufacturing processes and any

auxiliary information. This ontology was used as a backbone for the

development of GT-based problem-solvers that cooperate in Socharis.

Establishing and documenting Socharis’s problem-solving architecture led

to the generalization that these architectures representing a generic problem-

solving strategy of conceptual manufacturing planning. This framework is

suitable for developing planning systems in the domains other then polymer

composite materials.

Noted, that advanced users of Socharis have easy access to its

Manufacturing ontology and the knowledge content of the constituent problem-

solvers through the Generic Tasks Integrated Tool Set (GT ITS). GT ITS

features a graphical user interface for modifying knowledge and the internal

structure of problem-solvers. As a result it does not take much effort to update

and augment the knowledge about the processes that are already part of the

Socharis. The same is not true about the overall problem-solving architecture.

In fact, this constitutes the main drawback of Socharis - inability to effortlessly

change mid- and high-level problem-solving architecture.

The reason for this is that the complexity of problem-solving by far

exceeded which was presently supported in the GT ITS. The team of designers

24



._.)1.

15.9m?)

a;flaw“

.8nmwmfim:
((0%...V

.30;cowmgn;

{»1

s...

...cmmcfiumg:
u.....

d.2.,«a...

I

1).)

k(LCUOE
HWCL3)..

1.3:.
Itotuauku

a.@593ET

O0L3H0m..r._.u
..mIr:

5......“

“mumgE3);.

Influx.

838mmgwen...”

wsasE

”morean;
ass...“

28:099:ea.

muflwmpmamass...

..Bm9.3.2.02

a55Sue

__

cmL2mmuflmmmny

Lawgamug...

.t2Ram”3m...



had to escape to the coding of the global control architecture in VisualWorks ®

Smalltalk programming language. This led to a situation where it is almost

impossible for an outsider to make any changes in the problem solving

architecture. Even seemingly simple tasks such as adding more problem-solvers

for evaluating additional manufacturing technology requires not only the

knowledge of Smalltalk, but also familiarity with existing GT ITS architecture and

code. The application domain problem of this research, consequently, is to

overcome these shortcomings of the present Socharis Implementation.

The task of exposing the problem-solving architecture of Socharis

comprises the application domain goal of this research. The application of the

described in this dissertation methodology allows representing the problem-

solving architecture of Socharis in a graphical, easy to understand way. The

shell for building integrated knowledge-based systems which supports the

presented methodology allows changing Socharis's problem-solving architecture

on the fly, adding and deleting components, reassigning control, and redirecting

the information flow. It is necessary to note that the redesign will affect only

knowledge-based core of Socharis ; other modules of Socharis lie outside the

research focus reported in this dissertation.

25

 

T
.

 

 



I
)
,

\
i

2950.14

‘l

.4)_.

(elk-sum
C.CMHWWU.

...mMn).

‘

.(d.C_...mJvn

..(dt107mmu“

m>D33“man?__.

..m06.m8:.......
qu((.2119.-

89cmgm...in
(mg.

”KwUCNAmm.n)u

(.(CCOQ“OQC“U

,3QOa.383.”

9333E

e32.53



3. PREVIOUS RESEARCH

3. 1. Overview of Knowledge-Based Systems

The discussion about control architectures commonly used in the K88

development precedes the overview of knowledge—based systems to provide a

new line of comparison between different approaches: prevalent control

strategy(ies) and explicitness of their Knowledge Level Architectures (Sticklen

1989). The main idea of Knowledge Architecture Hypothesis is that if an agent is

decomposable into sub-agents, then the larger agent can be understood at the

knowledge level by a knowledge level description of sub-agents and specifying

the sub-agents’ integration and communication structure. KLAH discussed in a

greater detail in Section 3.2.2.

3.1.1. Control Architectures

All currently employed KBS development integration schemes could be

related to one of the control architectures or combinations of these architectures

as described below:

1. Rigid Control architecture (RC), i.e. all interconnections between problem-

solvers (PS) and their execution sequence are determined during system

development time.

2. Semi-Rigid Control architecture (SRC), i.e. PS’s interconnections are

determined during the system development time. However, the exact order of

operation is decided on during run time.

26



m mim 0032

2&3: 05.2 m

03.33.

:3... 83:2  
s. . D

3......“ £5.89

mo am 8 m.

   

   

  

  

31mg 2 3m 5..

.C, g E 83QO

manage 9864

@333? as man

figmeq. 8322 Dan

.3. 86: 98am,

“..me 2. you 001......

w... imécssmflma

.,.



3. Flexible Control architecture (FC), i.e. neither PS’ interconnections nor

execution order are set a priori but emerge dynamically during the system’s

operation.

These control strategies differ significantly in the expressiveness of their

respective knowledge level architecture (KLA).

RC has an explicit KLA that is understood through input and output

information of the system. Moreover, one can always perform an analysis of the

KLA of any connected subpart of the system by analyzing the roles of each

participating problem solver, information flow, and execution order.

Nevertheless, the application of Rigid Control to the development of KBS for

relatively complex problem rarely results in the most elegant or optimal solution,

since complex problems seldom follow a simple problem-solving strategy thatris

covered by Rigid Control. In addition, this approach suffers from brittleness (i.e.

unpredictable results for unexpected inputs) and often.

Similar to the Rigid Control architecture, KLA of the Semi-Rigid Control

could be expressed in terms of its input and conditional output. That is, given

any interconnected subpart of the system and purposes/roles of each

cooperating problem-solver one can determine the conditions in which this

subpart will be active and the role of this subpart in the overall problem-solving

process. However, the main drawback of the Semi-Rigid Control approach is

that it does not provide enough run time flexibility, especially in case where

emergent behavior is important. Another shortcoming is that this approach

27



L5; _‘ 28 3m.

R-.......%m 3.3?

x; 2 max.”

a... “$0,203 2 m

. _

5% a ”a {as

”$3: 2 3m

gums? ma 8...

    
r.

)1.)

.

3.

3...”. vumumww ”3% mUT

. 93330: o5

E.

4+...) ..—

c... (c

a. 2 .39...

mJonu)‘.
$3.9 ”ma oooxxmm

3w gwmmamx

‘mw.

mp}
((FOD

w.A
.N

$f.l...J.11

...,__$., am... ..
.. (

...n ..

c (Cropwé
.(CPLWm

mm

A...“ H.n
al.“. .I.

_ nwwo



usually requires hand coding of conditional activation of problem-solvers which

complicates maintenance and debugging of KBS.

KLA of Flexible Control is difficult to determine. Given the knowledge-

level description of each of the problem-solvers participating in K88 and the

purpose of the whole system, one can hardly understand the role of an arbitrary

combination of methods since their interconnections and input-output

dependencies are not explicit and emerge only during run time. Flexible Control

provides flexible, dynamic control over global problem solving process.

Nevertheless, this approach also suffers from several shortcomings:

. the termination problem (i.e. how do we know that result has been achieved)

and

. difficulty of knowledge debugging (the need to debug KBSs demands

additional bookkeeping of activation records and problem-solving context).

This dissertation describes the framework that allows developing and

modeling KBSs that is able to use any of these control architectures or their

combination. The implementation supports use of Generic Task (GT)

(Chandrasekaran 1983) problem-solvers as bottom level building blocks for an I-

KBS, however there is no theoretical limitation for types of individual problem-

solvers.

Section 3.1.2 provides an account of knowledge-based systems’

development methodologies with respect to the openness of their knowledge-

level architecture as well as to their ability to handle different kinds of control

strategies. I also compare these methodologies along several directions, such

28



as exp‘ahess ol :

.t.ef.:_:~.ent shell.

S‘srflle 1984), lb 5

3191+)??an majOTi'

9

"a
Thhm .n A‘I fi.A

'c """a auva ac.

  

    3.‘.2. REE—E

Despite the se

 

NC is to encode lF

s'raazle ralebased

A

Jr

:-

«C

22:23.". Sys:e.'n (F

k is easy to 56'

“Eng 1

v » lube Is a SEDara

may drama,

. In. "A

ANDe-tve 0‘ ex;|.'

0"“ a;

k" fasolm,

l. l

Nix 0f eVlGep‘t ‘

:se in. the K58 it

‘ OI ll| 11‘ .

5f]

 



as explicitness of the knowledge-level architecture and the availability of the

development shell.

34.3. Rule-Based Systems

Despite the serious critique of the rule-based methodology (Buchanan and

Shortliffe 1984), this approach is extensively used in practice. In fact, the

overwhelming majority of the commercially available K883 and KBS shells follow

it. The main advantage of this method is its simplicity. All the developer needs

to do is to encode lF-THEN rules using one of a large number of commercially

available rule-based system shells (e.g. CLIPS: C Language Integrated

Production System (Riley 1998) or Jess (Friedman-Hill 1997))

It is easy to see that a conventional rule-based system uses the FC where

each rule is a separate problem solver.

Major drawbacks of this approach (save for the usual critique) are:

. Absence of explicit control, which is usually programmatically encoded in the

conflict resolution strategy.

. Lack of evident knowledge-level architecture. That is, the purpose of each

rule in the K88 is unclear. Moreover, how rules are activated and selected in

case of multiple firing is hidden in the conflict resolution module. This hinders

structural analysis, troubleshooting, and effortless re-use of rule—based

systems.

3.1.3. Hardwired Svstems

Hardwired systems represent a sizable portion of modern industrially used

KBSs. Following this approach, the system is built of a number of modules

29



Em Sn 2 m

 
95......163 a _.

3%. 3w 5 m H

:3 3 mm.

3.3% a 3m m    

  

34mg g gm m...

...... $3...an 9

3358......8 9mg.)

mm a 3% 3m 3

3...an m 55% m

”..m Waddm: .. . .

.. a 9&8 q

mjnl)‘.

«. an n 0.0m“. «3T.
.. . U. LC..m



whose ways of cooperation are decided on at the development stage.

Communication is usually done through sending messages over pre-defined

channels. This is a clear example of RC.

There are several benefits in using hardwired methodology. The main

advantage is the explicit control and ability to assess the knowledge-level

architecture of the system. The role of each component of the system can be

easily determined by its input-output information. In addition, pre-established

communication channels between different components of the system give the

basis to judge the role of every inter-connected sub-part of the K88. This

provides a valuable assistance in determining knowledge flaws and conflicts in

the system. This, in turn, enables easy maintenance of such systems.

The major disadvantage of the hardwired approach to the development of

KBS is the system’s brittleness. That is, the system can function unpredictably

for certain groups of input. Another drawback is the system’s inflexibility to

change global problem-solving strategy without ad hoc methods.

3.1.4. Blackboard-Based Svstems

A distinct family of KBS architectures is the successor of the “blackboard”

approach initiated in mid-19703 by HEARSAY-ll project (Erman, Hayes-Roth et

al. 1988). One of the first available shells for development of blackboard

systems was Stanford KSL’s BB1 (Johnson and Hayes-Roth 1987). BB1 has a

generic blackboard architecture that is represented in Figure 2.

30



 

mea M. mm“

«8 mow..._m.m

:1

Raw... 84196 .3

um.m..._w_._ mmor xw Cm

0...? m3. m...”

.3)’

1"—

(Ink

\-



 

 

l—
‘I Sources  

  
Blackboard

  

Control Shell

     
 

Figure 2. Blackboard Architecture

 
 

The software specialist modules, which are called knowledge sources

(KSs), contribute information that would lead to the solution of the problem.

Usually, each K8 is a planar rule-based system, though KSs’ internal architecture

may follow any suitable problem-solving methodology (Vranes and Stanojevic

1995).

The blackboard is the database that keeps the current problem-solving

state. It could be seen as a collection of global variables accessible by all

participants of the problem-solving process.

The control shell governs the flow of problem—solving activity in the

system. Based on the blackboard context it decides which of the KSs is to run

next. The control shell is also traditionally implemented as a planar set of rules.

Carver et..al. (Carver and Lesser 1992) noticed a control problem with the

blackboard approach: ‘What makes blackboard control difficult is that it can be

31

 



0.853%

 aim was 33

3.. 82mm

   

  

$3 888an H

)3. .)
o o

.1.. 233 m. .

m "magma a v

skunk
$3 a so.

. .9

we,
ll.

Zoe—m‘

.

. r1). ..(L ID:

”-1).

. ,n D« fir
( .. _ w

( ,(Wiflw
(

m". .

r“ :3...

c...m.:.._

my“.



highly problematic to determine expected value of KSls [knowledge sources]

because there may be complex interrelationships among the KSls.’

The conventional blackboard approach follows the FC. Nevertheless,

modern augmentations to this methodology leverage the convenience of SRC

and RC methods at the knowledge source level. That is the separate knowledge

source might be constructed by following these approaches.

(Hidlum, Sadeh et al. 1996) describe a blackboard-based system where

the blackboard is partitioned into the number of contexts that correspond to

different sets of working assumptions and different solutions and are active at

different times. By doing this the developers limit the amount of knowledge

visible to knowledge sources which, in turn simplifies the control.

One of the attractive features of the blackboard approach is that it fits the

hypothesis about the nature of cognition (Laird, Newell et al. 1987), (Brooks

1986). According to this hypothesis, different modules that are responsible for

different aspects of cognition are active all the time and constantly processing

information. These modules post results of their processes on the common

media, so different sources may use information collected and processed by

different modules.

Another benefit of the approach is its implementational

straightfonrvardness: given a problem, one needs to break the problem into

smaller chunks without worrying about explicit chunks’ interconnections, one

simply implements a problem solver for each of the chunks and links them to a

shared blackboard.

32



 12.22. ....

29.938. 5

0.338 a .32...

”2&3.“me x

__

3....“ am 3 w: P

5.: 3m am

 ”.383 xmm a C

n.méé “moan:

._. ..g 8&3 2

«was gym gm”

$0an

2.2.5.288...an

mag. 5......

559%“

Camel?
m _..

magma;

N. .45 ”336
o

03.3.3.1).

. gym 2 83“

.J
n. E. .

nfi mm :0” 030m

mama 3 3m

mp». .
. ’1

...r... _ a). _
QU_CU.m4



However, the blackboard approach suffers from several significant

disadvantages. Lack of explicit structural control knowledge and the inability to

describe its knowledge-level architecture makes it difficult to maintain the

blackboard-based KBS. Moreover it makes it impossible to describe the problem

solving role of any part of the blackboard based KBS.

From the development point of view, the way in which a particular

blackboard KBS is being created defies several major principles of Software

Engineering (Schach 1997).

1. The coupling of different problem-solvers is achieved through the global

variable (the blackboard) which is considered bad practice in SE because it

affects:

1.1.Maintenance: change is difficult, since with each instantiation of P8 in

another integrated KBS the developer needs to duplicate all global

variables;

1.2. Security: a PS may be exposed to more data than it needs therefore

allowing for potential breach of security.

. 2. The structure of the generic control module (flat rule base) follows the

principle of coincidental cohesion, i.e. it performs multiple unrelated actions,

which degrades maintainability, and hinders reuse.

3. Data is not encapsulated, that is, every participating problem-solver has direct

access to the variables on the blackboard, which potentially brings the

security problems.

33



 

  

  

 

a .. . ,.3 __..v.._.1.n.

as. 3833 7

MAW-.1.. ..DJ.) _ .

(fitxum _m.-..m_ "3 ..

mud. é. .8 m a...

.3... .

a am 329

am? ._. “3.. a ..r



3.2. Task-Specific Architectures and Integrated Knowledge-Based

System

3.2.1. Knowledqe Level Hypothesis

The important milestone in KBS research is certainly Newel’s Knowledge

Level Hypothesis (Newell 1980) (KLH), where he suggested the existence of a

knowledge level in computer systems which lies directly above the symbol level

and is implementation independent. Newell argued that the representation itself

should not be a topic of interest, but rather the nature of knowledge and its

relation to the representation. The use of the KLH allows systems description

independent of their internal representation and implementation details, which,

consequently, suggests a systematic approach to the system’s analysis. Newell

also introduced the notion of a rational agent that can be reasoned about in

terms of its knowledge, goals, and behavior.

KLH was criticized in (Sticklen 1989; Velde 1991; Velde 1993) because of

its lack of concern about control knowledge, its non-operational character (it can

only describe existent systems and does not help build new KBS), its not

recognizing an agent’s ability to be decomposable, and its lack of predictive

power. Nevertheless, the power that the KLH provides for KBS analysis guided

numerous research thrusts in the K88 field that investigate problem solving

methods, behaviors, and strategies.

3.2.2. Second Generation Expert Svstems

Clancey’s (Clancey 1985) analysis of MYCIN, his description of Heuristic

Classification, and Chandrasekaran’s (Chandrasekaran 1983) work on reusable

problem solving models led to the crystallization of the idea that there are

34



 833 5.6..an

‘1). C. .3.

0.2.3 8.5.?

F..U.......U.u....aw amp.

:3) _\) )r

was... 98...... 3

5 u,‘ D’.

:2; $2 on

n31...) l

53...... g ”__...m .

8d”... am 2 mx“

.3». ma 2ij m

{’9’ .

..f- ‘7. ).)) .

(7...! _. .. ..D

(_CCA..(w nm

(1 ..wlp‘ f),(rm m 50.x

1.me ))



common inference strategies or inference structures that can be used for

problem solving. This is the working hypothesis of the Task Specific

Architectures (TSA) “branch of’ KBS research, which heralded the beginning of

Second Generation of Knowledge-Based Systems in the early eighties. Since

then, methodological approaches to second generation expert systems almost

invariably rely on mapping the structure of a knowledge level model to the

architecture of the application.

McDermott’s (McDermott 1988) role limiting models, Steel’s (Steels 1990)

components of expertise, and KADS knowledge sources (Balder and Akkermans

1992) are other examples of generalized inference strategiess. The mentioned

methodologies differ in several aspects: separation of the domain factual

knowledge from the problem-solving knowledge, granularity of tasks that are

chosen as basic inferences, etc. Nevertheless, each of the TSA approaches

considers a task decomposable into a set of sub-tasks, where each of the sub-

tasks could be solved by the application of a particular, generalized inference

structure. Unfortunately, KLH does not provide insights on how this

decomposition could be analyzed. On the contrary, it regards an agent as a non-

decomposable entity.

Sticklen (Sticklen 1989) suggested an augmentation to KLH which he

called Knowledge Level Architecture Hypothesis (KLAH). The main idea of this

hypothesis is that if an agent is decomposable into sub-agents, then the larger

agent can be understood at the knowledge level by a knowledge level description

 

5 i will discuss the details of each mentioned methodology in the later sections

35



   

  

   

. ., . 3..3.9%? m .

mica. >328.

30.3 822 a.

mandate 3.. n

PJ 2 3m 0%....

..m..§ 6%. m2...)

£3883.
<

...ng
3 we;

mama 66mm

.3... ..e 9.03 a

83638
56 q

a93%
2%...

a. 5.2 :35

a.... (”me.
XVI

T.

$0.3 $838.

a
swam,

.5388?
.5

a...” ,.. 34a as?

w. P...)

X. 1..
.. . )

3(d(
.

,.).
..

0..
[(w_'f—_\

'0'!)



of sub-agents and specifying the sub-agents’ integration and communication

structure. Another important contribution of KLAH is that it suggested that it is

possible to create a model of a decomposable agent and use that model as a

problem solver for validating the agent’s behavior, finding conflicts in the

architecture. The paper was critiqued in (Clancey 1989; Slator 1989), but the

majority of the criticism was targeted at the philosophical issues raised in

(Sticklen 1989), although not all the critics agreed with the idea of agents’

decomposability. Yet, the similar ideas about agent’s decomposability were

investigated by several researchers in KBS community.

Steels (Steels 1990) defined a similar idea of knowledge use level: a level

which lies directly above the knowledge level and which focuses on how a task is

decomposed into manageable sub-tasks, what ordering should be imposed on

the sub-tasks execution, etc. A similar idea underlines the concept of the KADS

task layer where primitive inferences are combined in the problem-solving

structures. KLH has evolved to the stage where it accepts the concept of an

agent’s decomposability.

All task-specific methodologies are based on the idea of task‘s

decomposability into a number of subtasks, each of which could be handled by a

pre-detined problem-solving method. However, the brittleness of large-grain

Generic Tasks (Chandrasekaran and Johnson 1993) and vague approaches to

task decomposition in small-grain problem-solving methods as in role limiting

methods (McDermott 1988) and KADS (Wielinga and Schreiber 1994) caused

36



.C_._

0.95%.:_ (L.

«raw4w:

258.0.8w...

’

_)

(moaaamSw:

cf

g?

_@938E,23...
QUIILC

$82.05who

      

  

 

a55;Ea,

,8.22?

mxmo6%

newc0290“.

2gramme



researchers to develop tools and methodologies that facilitate task

decomposition and sub-task integration processes.

§_._2.3. GENERIC TASKS

‘The idea of generic task is not that interesting until we realize that the

way in which generic tasks are executed shows many similarities across

application domains. [for example] In the diagnosis of circuits, cars, power

plants, or diseases, significant elements are in common, specifically, the same

problem solving methods and the same types of domain models. ’ (Steels

1990)

The Generic Task (GT) approach is a "large grain" view of problem solving

focused on a number of primitive problem solving types - called "generic tasks".

The GT approach was developed at the Laboratory for Intelligent Research at

Ohio State University by a team of researchers led by Chandrasekaran in late

'703 - early '805 (Chandrasekaran 1983; Chandrasekaran and Johnson 1993).

This approach includes task -|evel implementation, reusable, and executable

shells that simultaneously support knowledge acquisition and system

implementation. The list of primitive generic tasks is as follows.

- Taxonomic Classification Task - Classify a (possibly complex) description of

a situation as an element, as specific as possible, in classification hierarchy

(Chandrasekaran, Mittal et al. 1979) (usually referred to as "hierarchical

classification")

- Function-based Reasoning - Given a causal understanding of how a "device"

works, answer "what would happen if" type questions (Sticklen and

37



 Chandraseka'a

absf'action")

. Kncw'éedge Dr;

   obfain attribute:

datum

' Obiecl Synthes.

 
safsiyng certa'

referred to as "re

. Hpcthesis mat:

desrfibe the pro

. Abiuctive Asse

expfairfed by t?

each associate

fiction of the c

0* the given by;

h COU'ld be 1

378 Covers all DC

a mement rm

f

”Eh.

I '32)“

.y e? a! 11

"‘2.

1‘3"



Chandrasekaran 1985) (this primitive task was originally called "state

abstraction")

. Knowledge Directed Information Passing — Given attributes of some datum

obtain attributes of some other datum, conceptually related to the original

datum

0 Object Synthesis by Plan Selection and Refinement — Design an object

satisfying certain specification (Brown 1987) (this primitive task is usually

referred to as "routine design")

. Hypothesis matching — Given a set of hypothesis and a set of datum that

describe the problem state, decide if the hypothesis matches the situation

. Abductive Assembly of Explanatory Hypotheses - Given a situation to be

explained by the best explanatory account, and a number of hypotheses,

each associated with degree of belief, and each of which offers to explain a

portion of the data, construct the best composite explanatory hypothesis out

of the given hypotheses.

It could be said that one could never be sure that the list of above sets of

GTs covers all possible situations. Nevertheless, the GT methodology provides

a convenient mechanism for identifying an appropriate problem-solving method

for the task at hand and has been effectively used for the development applied IS

(Sticklen, Kamel et al. 1992; Sticklen, Kamel et al. 1992; Moy, McDowell et al.

1995; El-Sheikh, Sticklen et al. 1996; Lenz, McDowell et al. 1996; El-Sheikh,

Penney et al. 1997; Kamel, Lukibanov et al. 1997; McDowell, Sticklen et al.

1 997), etc.

38



 lSL's Gen

arsenal el al.

me Generic Task c

arse-ms With we

1335 built in this

lemming specga

slatted. Limztat-o

"L systems behav

@6235 to the necs

:‘sS—c of the she-1;.

TlPS (Puncr

$136590. D'Obefi

33’5“” 0i probe

1..

~939'Eied K33 w.
l

gnl:

:6...



ISL’s Generic Task Toolset (Sticklen, Kamel et al. 1992; Kamel,

Lukibanov et al. 1997), supports the development of integrated RC KBS within

the Generic Task approach. This tool supports development expert systems for

problems with well-defined and run-time unalterable control flow. KLA of the

KBSs built in this tool set is also easily identifiable, since the roles of each

participating specialists and each connected group of specialists are explicitly

specified. Limitations of this method are evident: inability to dynamically adjust

the systems behavior and inability to adopt flexible control architecture, which

leads to the necessity to hard-code control mechanisms programmatically

outside of the shell.

TIPS (Punch 1989) is an architecture that allows integration of existing

GT-based problem-solvers using sponsor-selector mechanism. TIPS is a

collection of problem-solvers linked together via sponsor selectors. To create an

integrated KBS within the TIPS framework the problem is first to decompose it

into GT-based problem-solvers. Then each problem-solving unit is associated

with a distinct sponsors-selector that controls the problem solver’s activation.

Finally, it is necessary to specify a priority order for conflict resolution in case of

multiple selectors firing. There are definite advantages in the TIPS architecture

comparing to the pure blackboard approach: it allows leveraging domain control

knowledge and it supports vertical integration where one problem solver can

directly call another. The main drawback of TIPS is that it does not specify the

mechanism on how knowledge is shared between problem solving modules.

39



£932 3..

 

m2. 980me ..

38mm 8. .8:

was so 9...?

s... <3 __m madam

94335.8 8

59.8m-

.8. . .n. omnmwmdn.



Another interesting GT-based integration approach GT-SOAR (Johnson

1991) is based on SOAR’s problem spaces (Laird, Newell et al. 1987). The

author proposed to use SOAR mechanism of problem spaces to dynamically

choose between available small-grain problem-solving methods in order to

achieve the given task described in terms of initial state and goal state. This

approach is similar to that proposed in several research directions within

CommonKADS community, where researchers report on development of

methods for integration of small-grain problem-solvers using blackboard

approach (Glaser 1996) and using specialized grammars (Brazier 1997), etc.

$2.4. PROTEGE

PROTEGE-ll (Tu, Kahn et al. 1989; Tu, Eriksson et al. 1995) is 3 meta-

tool that generates task—specific expert—system shells from libraries of reusable

problem solving methods, domain-ontology, and knowledge acquisition modules.

KBS created in PROTEGE-Il has strong feel of knowledge-level

architecture through emphasizing explicit role of each participating module or

connected collection of modules inside the expert system. PROTEGE-II

advocates flexible control architecture where the sequence of action could be

planned dynamically during the run-time exploiting agenda-based control.

Nevertheless, the implementation does not allow explicit stating of the control

model inside the shell and requires additional hard-core programming in CLIPS

or C.

40



 

1. 1.
...E... 383. z

A
o) .

_max 83..

A
)

R .
.,
J

C
)

:
7

(
D
‘

K
J

(
‘
1

.
‘
i
'

a
?

\
1
)

(
I
)

2
‘

I
-

—
—
I

.
.
‘
T

(
D

(
I
)

-
9

W i

r .H
1.

(tr:
0.(~p

(« (D)

r.“

avg...
'

7

II

((1403).!

. (U.
)

I s.

l

n

.-

(a
4 .II

(1.1.)

,0”

an “NW.
r. .1

ac.)



The KADS6 (Knowledge Analysis and Design Support) community takes

the view that the development of KBS is a modeling activity during which the

developer defines different layers of KBS and specifies connections between

them. According to KADS there are several models that need to be specified

during the KBS development cycle: Organizational model, Application model,

Task Model, Model of Expertise, Model of cooperation, Conceptual model, and

Design model. Model of expertise — the core of the KBS - consists of four layers:

1. Static domain knowledge is based on first-order order-sorted predicate

calculus. This level contains domain factual knowledge, relations between

objects etc.

Knowledge sources - canonical inference steps - are the traditional generic

methods such as classification, abduction, etc. In addition, the methods for

knowledge transformation, selection and computation.

The Task level contains knowledge about how elementary inference engines

can be combined to achieve a certain goal.

. The Strategic knowledge level determines what goals are relevant to solve a

particular problem.

Numerous KBS development environments that follow this approach were

built over years. This section overviews several KBS building environments that

were rooted in the KADS methodology. but differ in their approach to task

decomposition-integration problem.

 

6 KADS was an ESPIRlT-I European multinational project that included

organizations from France, Germany, Netherlands, and United Kingdom

41



wmwramm
8598

389.33..99

8.85gym...”

mx9:wern

mg?2%?

  

    

 

toCERES

.823Egg

.63mg32......

8me£50

E002:.



The CommonKADS methodology (Wielinga and Schreiber 1994)

promotes design time integration of problem solving methods using domain-

ontology (static domain knowledge model) as communication glue. By defining a

connection between the layers of the KBS developer states that the explicit

communication channels and control strategy during system developing time,

therefore implementing RC or SRC global problem-solving strategy. The main

difficulty that the KBS developer faces following this approach is how to combine

small-grain problem-solving components into a consistent model. On the other

hand, having done this the integration of different parts of the system is being

performed seamlessly.

VITAL (Motta, O’Hara et al. 1994) is another approach originated within

KADS. VITAL takes the iterative viewpoint on the K88 building process, where

the initial problem statement is formalized using special kind of grammar called

GDM (generalized directive model). Then the initial GDM is refined by

application of rules of GDM grammar until it reaches terminal symbols that

represent basic inference mechanisms. Unlike CommonKADS, the VITAL

approach supports combination and integration of generic components by top-

down sentence-refinement process. During this process, all the communication

channels between the inference components along with their execution order are

established automatically. The weakness of this methodology is in the extreme

formalism that the KBS developer has to follow in order to describe the problem

at hand. This formalism is not always capable of reflecting the given problem

adequately.

42



 0wmv:{02th

mv:FmCqué

.9an05

.__55;83mg

Sum8903“e...

anasaswas
 

.isause

dag22023

O:23“L...”a.

.93%

 



Glasser (Glaser 1996) proposed an opportunistic blackboard approach to

the integration of CommonKADS inference engines. The described system

CoMoMAS supports a model-oriented approach to the construction of KBS, but

instead of determining the cooperation model during the design stage CoMoMAS

argues for the blackboard-like run-time dynamic cooperation model. However,

the described approach does not allow explicit representation of existent control

knowledge, which is its main drawback.

The Table 1 demonstrates comparison between discussed system for

development l-KBSs. The bottom row is reserved for the augmented FR

framework l-KBS construction that is one of the targets of the reported research.

 

 

 

 

 

 

 

 

 
 

 

  

Explicity of Global Local control Ability to Shell

KLA (1 - 5) control strategy handle multiple

strategy control

structures

BB1, BBK 1 FC FC No Yes

PROTEGE-II 3 PC All Yes Yes

Generic Task 5 RC RC No Yes

Toolset (programming

is needed)

TIPS SRC RC No No

GT SOAR RC FC No No

CommonKADS SRC RC Some Slever

a

VITAL 5 RC, RC No Yes

Some SRC

CoMoMAS 2 F0 PC No No

Conventional FR 5 SRC RC No Yes

Augmented FR ? ? ? ? ?      
Table 1. Comparison between the discussed approaches

43

 



 a. 9:20

.3233

x328“.

83.0.0me 3m...“

3.3 3 :6

3.0qu m3

)4 _ ) .

$88 $8..

wssz

.5 a m .



3.3. Ontologies and Other approaches to Knowledge Sharing in

Knowledge-Based Systems

Knowledge sharing is one of the keys to the successful development of a

composed system. Use of shared knowledge between cooperating agents

ensures that the agents are able to understand common information necessary

for problem solving. Moreover, it is likely that domain knowledge representation

developed specifically for co-operated problem solving would be reused in later

applications. The following sub-sections describe approaches to knowledge

shanng.

3.3.1. Syntactic Mapping

One of the strategies to achieve the inter-agent understanding is to create

translators that will transform knowledge representation of one agent to

knowledge representation of another agent when needed. In LOOM, for example

(MacGregor 1991), different type of reasoning engines were used for different

parts of problem solving: semantic net reasoning engine was responsible for

terminological reasoning, another - used logical representation. In this case,

information is translated from semantic network representation to Horn's clauses

and back. Interfaces between different types of agents translated information

from one representation to another (Table 2).

 

 

 

FRAME_BASED REPRESENTATION UNARY PREDICATS

Frame_name: Car Frame_name(Car) & Maker (Mercury)

Maker: Mercury 8 Model (Mystique) & Year (1995) &

Model: Mystique Color (Blue)

Year: 1995

Color: Blue    
Table 2. A possible mapping between frame-based and unary predicates

representations

44



>832 m

Susana mmm

rmamrwmwma :

.35 328...

a 8% 33mm

536.,

magma? m” m_.



Another example of syntactic integration is CYC (Lenat and Guha 1990).

Knowledge Base in CYC is divided into two levels: convenient for inference

Frame-Based (FB) representation is backed by First-Order Predicate Calculus

(FOPC) representation in order to “... provide the requisite expressiveness”. In

this case translation is be made in both direction FOPC (—) FB.

Disadvantages of this type of integration are following (van Heijst,

Schreiberetal. 1997):

. Fixed syntactical mapping restricts expressiveness of representations. For

example, if we are to express some piece of knowledge in some way in one

of the representational formalisms, this will put constraints on how this

knowledge will be represented in the other KR. This also may limit reasoning

ability of a problem-solver as well as expressiveness of knowledge model.

0 Sometimes there is no obvious way to map one syntactical representation to

another.

. It is not feasible to make such converters for every possible representation in

general.

Meanwhile, the simplicity of this methodology allows ad hoc mapping

procedures that can be written on the fly and do not require lead-time for

developing high-level system architecture. This method can also be used for

“hooking up” previously developed agents with new software. Such l-KBSs are

characterized as follows:

0 small number of cooperating agents;

45



. ”233$”

. 38.0um.m...._

$9 a .23.,

.5. 3 m B

@8me 50

£368 .2

33m vaw

manmBmen

..S‘.

a 82 mag

in. T3 4

$388 a 2

.. V

as wmauubo a:

m .73..)
((ICJM

WZWH

) . H

1.124.

(1‘. 7.,

CC“
. .M

$4.10)

in?) ..m M

.( .. .

.. _v (umHDJ.
(cut)? {I ..

( _ 2,1,)
V) r . _. OD

r r a a (

.Cflflr



a similar syntactic structure of knowledge used by the agents; and

. no oo-operation with “foreign” agents (agents, acting outside this particular I-

KBS) is planned.

MIR Knowledoe lnterchanqe Format

An approach to standardization of knowledge representation is being

developed under DARPA support in the KSE project7 (Genesereth, Fikes et al.

1992). As a part of this project, a group of researchers at Stanford University

developed Knowledge Interchange Format (KIF) — a formal language for

interchanging information among disparate computer programs. This language

inherits LISP’s syntax and is a declarative representation of knowledge. The

basic semantics of KIF is a correlation between the terms (constants and

variables) and the sentences of the language and a conceptualization of the

world. Every term denotes an object in the universe of discourse, and every

sentence is either true or false. In order to be true, the sentence should satisfy

the preset conditions and axioms. The authors also introduce non-monotonicity

for handling non-monotonic knowledge. In other words, KIF is a language that

supports First Order Predicate Calculus representation of knowledge with few

additions.

This research is, in fact, the first attempt to standardize knowledge

representation (KR). The authors filed a draft with the American National

 

7 The DARPA Knowledge Sharing Effort (KSE) is a consortium to develop

conventions facilitating sharing and reuse of knowledge bases and knowledge

based systems. Its goal is to define, develop, and test infrastructure and

supporting technology to enable participants to build much bigger and more

broadly functional systems than could be achieved working alone.

46



 

  

  

  
   

   

  

.929“8...”.sz.

”Sum...

mcmzmxmwmheg

z.cowuwmrwwam.

5...;mogém

85USuse

...mem5

.52E.0.ea

3mgempmm

 



Standard (Genesereth 1998) in which they suggested that KIF should be a

standard for representation of shared knowledge.

This method has many attractive properties: clarity of representation;

sound logic theory, which allows making proofs; with a few hundred years of

experience with predicates handling and manipulating. Nevertheless, this

representation has some noticeable shortcomings (Ginsberg 1991;

Chandrasekaran and Johnson 1993) that can diminish the usefulness of this

method:

a Different interpretations can treat the same sentence differently, e.g. what is

satisfiable in one interpretation may not be in the other.

0 Non-logical types of knowledge (e.g. images, video, and audio) can not be

represented using KIF.

- Many KR schemes involve different extensions of FOPC, such as non-

monotonic reasoning, reasoning with limited data, reasoning with noisy data,

and so forth. Given all the differences in modern approaches to KR it seems

impossible to create a language that will capture all current and future trends

in KR without limiting the latter.

0 Assuming the hypothesis that everything can be expressed in FOPC, the

translation of an arbitrary knowledge into this form may be a very difficult task.

For example, a translation of a probabilistic database into FOPC must include

an axiomatization of the theory of probability itself.

0 Expressing arbitrary knowledge using any fixed and standardized KR method

can lead to tailoring knowledge to this representation.

47



9:. x

a ma

 

3.853 cm

matiouamnfi.

saacuomfi.

$me m x:.
. .r

fig. 3.”

53 . _.. .( mr mg.

3$an .5

gm um



3.3.3. KQML: the pragmatic approach

The scope of the External Interfaces Group within KSE is the run-time

interactions between knowledge-based systems and other modules in a run-time

environment. Special attention has been given to two important cases -

communication between two knowledge-based systems and communication

between a knowledge-based system and a conventional database management

system. The Knowledge Query and Manipulation Language (KQML) (Finn,

Labrou et al. 1997) language is one of the main results, which has come out of

the external interfaces group of the KSE.

The basis for the KQML approach is the understanding of the fact that

common knowledge representation is not enough (or may not even be

necessary) to make the communication between agents work. Some important

pragmatic issues should be addressed first:

. Which agent to communicate with and how to find them.

0 How to initiate and maintain exchange.

0 What domain ontology to use.

KQML is concerned primarily with such pragmatic issues.

KQML introduces a new class of agents - communication facilitators -

capable of performing tasks for communication purposes, such as maintaining

registry of service names, fonNarding messages, routing messages, etc. Agents

use these facilitators when they need to send a message to another agent.

Facilitators may access other agents using <machine: agent name> with use of

Domain Naming Service across the Internet.

48



      
5...: a

a a 833m”-

”,1. \o C ’11)‘ I

.n O£O©m fWrI.( P. r

‘



KQML is based on the balanced parenthesis list. The first element of the

list is performative and the remaining are parameters.

In the message in Figure 3 the agent stock-server asks for one reply

about PRICE IBM, and wishes the value to be returned in variable ?price using

language LPROLOG and ontology NYSE-TIKS.

 

 

(ask-one

:content (PRICE IBM ?price)

:receiver stock-server

:Ianguage LPROLOG

:ontology NYSE-TICKS)

Figure 3. Example of KQML query.

 

Much experience has been gathered from the variety of projects which

used KQML for inter-agent communication: Microsoft OLE2, experiment with

distributed CYC based agents over local network at the University of Maryland,

Object Management Group’s Common Object Request Broker Architecture

(CORBA) (Ben-Natan 1995), Xerox’s ILU etc.

3.3.4. Ontologies and Ontolingua

In order for an agent to reason and exchange information about a domain

of discourse, it must use a conceptualization of that domain. This

conceptualization should provide a vocabulary for representing knowledge about

49

 



i085.

. _. . m

$53 A“

of...“

9.8 9.8an

8.11



the domain. These conceptualizations are usually called domain ontologies or

ontologies8 (Gruber 1992)

Ontologies play different roles in knowledge-base development cycle.

Once created for a particular domain the ontology:

0 provides the developer with a domain dictionary for representing domain

knowledge;

0 provides with the glossary that is available for interacting between the user

and the KBS

- serves as an interoperation dictionary for agents that comprise KBS.

Research of Knowledge System Laboratory at Stanford University led to

the development of Ontolingua (Gruber 1992; Gruber 1993) - the tool (Ontolingua

Server (Fikes 1997)) and a methodology that helps in the development,

maintenance, and use of the domain ontologies. The backbone of Ontolingua is

KIF (which is augmented with the frame-base representation). This

representation allows expressing class - subclass hierarchies, relationships

between classes, functions on relations, and instances of classes that describe

domain knowledge.

The Ontolingua Server enables collaborative development of ontologies

over the Internet. Once logged into the server the user has the ability to create,

load, edit, and save ontologies. The tool also gives possibilities to maintain the

‘g

. 8 This definition is different from the definition of Ontology in philosophy where

It is understood as a theory about that what can exist. Throughout this proposal,

lwill use term ontology in the KBS sense.

50

 



£985
0

Eng;

5$88...

mxfimsm
nmg

.2dome.

85

9049

2.0.30..an



ontology, check inconsistencies, translate to and from KIF, LOOM, CORBA’s

IDL, etc.

Three main impacts of the Ontolingua research are (i) crystallizing the

idea of inter-agent communication through use of ontology, (ii) enabling the

collaborative development of the domain ontologies, and (iii) sharing the domain

ontologies over the Internet. Different research groups for the development of

vocabularies are using the Ontolingua Server. Examples of such projects are

CommerceNet - providing Internet accessibility to products’ descriptions and

specifications, support of Enterprise project (Uschold and King 1995) in

development ontologies description of business process, and lnterMed project

(Gennari, D. E. Oliver et al. 1995) - providing Internet-based medical

vocabulary.

Similar approach to knowledge sharing was suggested in CommonKADS

project. Detailed examples of this approach can be found in (Wielinga and

Schreiber 1994).

3.3.5. Tools for Developing Domain Ontologies

The development of domain ontology often precedes the development of

the software systems that uses it. However, it is often the case that the process

of building domain ontology stretches for the duration of the software

development cycle. An example of such development is the Socharis project,

during which the ontology of manufacturing with composite material was built first

and then was augmented many times during the development of the Socharis

system.

51



 

 

*
7
/
3
—

.
V
T

/
7
7

J



The authors of Socharis developed Ontology Editor that was specifically

tuned to represent composite manufacturing ontology. As a part of the

dissertation research, this ontology was duplicated using Protégé (Figure 4,

Appendix C) and XML (Figure 5, Appendix D) to demonstrate interchangeability

of tools and methods.

 

 

 

(5,; Protege/Win Ontoloquditor - [manuTechpont]

 

 
 

 

  

 

 
  

 

 
 

.Eiegacsfilot Vewwndowuelp £12151

EELEJ AELELIEI__l
Slot 5 Dela! i AlowedClaaseslSmbolsNab

—I_E name

[:r'irooicompieaay TooICornpiexiry

.Iabor Labor

" PressureKSl

Temperature

:$90 ReshTransferMold

‘ C3 Sprayup

E {8 Tecl'inobgiMisc

_5:0 CuteType

C) DeiverySystem _

O FberForm'ngMetho

. C) HeatedTool

0 Heatndrfethod

O Laba

:0 P touring

«J °‘ . «l l _.j

Forvf'lehimfevtsF‘l I l I fl  
 

Figure 4. Screenshot of the Manufacturing Ontology in Protégé shell

 

52

 



 

 

 

  

 

it \l)rssr:rtdtr0n\montlntoloqv xrnl . Microsoft Internet Explorer

  

 

 

j Eie will... rm‘ 10a! flerp“ ' ” " -

J*-*.©Elfl§3i'fl3:lfll§3'53l”l
5325... Forms": Stcp Rdresh Home ‘ Search Favories History J. Md Pint Eli j'

jWEEADissertafioMmmOrrtoloqyxnl
.1] (950 “an art

 

 

— (header id='Manufacturing Ontology“)

- (class id='Tooling with Parameters"> _

(category id='Aluminium' />

(category idz'Nickel Electroforms' />

(category id='CRP" />

(category id='Ceramlcs' />

(category id='Polymers' />

(category id='GRP" />

<category id='Cast Iron' /'>

<category id="l’ooling Foam" />

(category id='8teel" />

</class>

<class id='TechnoIogies with Parameters">

- (category id='8prayup'>

+ (parameter type='oneOfVar' id="cure type")

(parameter type='oneOfVar' id=“pressure-psi" />

+ <parameter type='oneOfVar' id="labor">

<parameter type="oneOfVar' ld="temperauture" /‘>

(parameter type='oneOfVar' id="time' />

</category>

+ (category id='ExtrusIon">

4» <category id='Filament winding”>

L’: (category id='Resfn Transfer Molding">

— <category id='Compression Molding'>

- <parameter type='oneOfVar' id="pressure-ksi">

<value id="0.5-1.5' />

<value id='1.5-3.5' />

</parameter>

— <parameter type='oneOfVar" id="labor">

<value id='high" />

<value id='medium" />

<value ld='|ow" />

</parameter> Ll

.--..-...-5-..L..-- I-..—f\‘ll-..l .J "L-.--.--..-a....._tr.

 

  
 

Figure 5. screenshot of MSIE 5 displaying re-developed in XML

Manufacturing Ontology
 

Both methods proved adequate for developing domain ontologies.

However, there are several differences between them:

0 Protege is a tool for developing knowledge-acquisition shells and the

developing working ontology is a part of the process. As a result of the

53

 





developed in Protege framework, ontology conforms to the internal format but

also could be exported in to a Lisp like balanced parenthesis list.

On the other hand, a number of commercially available XML editors let the

ontology designer create ontology by allowing defining hierarchical structures.

Since the focus of XML editors is on the generality, it could take more time to

design ontology in any of them. However, the result - an XML representation of

the domain ontology - is far more accepted than this of Protégé shell.

3.4. Related Research in Software Engineering

3.4.1. From Data Flow Diagrams to the Object Modelinq Technique

The data-flow diagram (DFD) (Stevens, G. J. Myers et al. 1974) was

introduced in the early seventies to aid in a structured design of software,

representing data and the processes that transforms data. The DFD supports

the representation of data and processes that transform the data by systematic

decomposition of the system, therefore providing means for describing the

functionality of the system. The DFD allows tracing information and control flow

in the software system by following links in a directed graph where vertices

denote primitive operators (true/false test, assign, etc) and directed edges

represent data and control flow.

The Object-oriented paradigm, the successor of the DFD, is based on the

metaphor of a software system as an object that encapsulates data, and has

methods for manipulating this data. Different objects can communicate through

published interfaces. This approach has numerous advantages over the DFD

54



 Egg. a

   

   

 

  

8.532 3..

:5 Us.”

g 83323

$338 2 mm

05 a o

8633an <

mama. > 322

35% 3me

Emma. 36cm:

0:5 208%.. M

$50 38.9



(abstraction, modularity, encapsulation, reuse, etc. ). Nevertheless, it fails to

expressively represent the overall functionality of the system.

The problem attacked by the Object Modeling Technique (OMT) is the one

of constructing formal software specification from an informal high-level

description of software requirements and specifications.

OMT is composed of object, dynamic, and functional models to provide

complimentary views that graphically describe different aspects of a software

system. A formal software model is usually described in terms of a specification

language based on process algebra (e.g. LOTOS) that allow description of the

system through its input, output, a behavioral expression that models the activity

of the process, and a set of post-conditions. State diagrams usually describe the

dynamic model of the system, and the functional model is captured in data flow

diagrams. The main flaw of this approach is that a well-defined integration

mechanism is virtually non-existent (Wang, Ritcher et al. 1997; Wang and

Cheng1998).

Universal Modeling Language (UML) (Fowler and Scott 2000) is a

derivative of OMT that enables the development of software systems starting at

the problem definition stage. The development starts with identifying - actors -

functional parts of the system (a frame for future objects) and use cases (i.e.

responsibilities of the actors). Next the developer defines communication

channels and refines object definitions. The final steps are the generation of

wire-frame code in an object-oriented language (such as C++ or Java) that is

used as an object interface definition.

55



 

software prod;

tere‘epment. *   
  

 

1. During the (

deals with r

shell”). Ther

which underli

2. The main co:

napnfionna‘

m KBS dew

already
code

manageable

3. The main
be

Spends
the .

reflected in ;

NSVerthe

afietatin
9 Car

It may also be ;

f, as.u1..ierana.‘ysiS.

R6358 cf

D'Cir’jHM; -
ubuVlty

and



The described methods while suited for the developing of a common

software product unfortunately cannot be applied directly to the area of KBS

development. The reasons for this are as follows:

1. During the development of second generation KBS, the engineer usually

deals with modules of well-defined functionality (often available “off-the-

shelf”). Therefore making it unnecessary to formally describe the algorithm,

which underlies the problem-solving process.

The main concerns for KBS developers are similar to the OMT task: how to

map informal specification onto formal methods. The difference is as follows:

in KBS development, usually all methods for information processing are

already coded and the problem is how to decompose the original task into

manageable pieces that will allow direct application of the existent module.

The main bottleneck in the KBS development cycle, where the KBS engineer

spends the most time, is knowledge acquisition. This major problem is not

reflected in any of formal methods for software development.

Nevertheless, OMT provides a convenient metaphor for representing the

cooperating parts of KBS and defining information transfer between those parts.

It may also be advantageous to use OMT formalism to describe the system for

further analysis, maintenance, and reuse.

3.4.2. Component Reuse

Reuse of existing components in constructing software systems improves

productivity and the quality of the developed products. Much of the effort of

56



 sctware angle?

that allow effect

  

   

   

 

The esse

fight" compone-

cescrfption are :

(swords came:

the senantrcs a.

CC"Dorients. Lar

535mm“ (Sew

mi‘s 0’ the co

EX“ In} .c- me. It IS Often

frE'ElQr

’ Would

3:")5 n
..pJOJrent n p

'e
3.



software engineering lately was concentrated on the development of methods

that allow effective reuse of existing modules (Mili, Mill et al. 1995).

The essential step in the component reuse process is the selection of the

“right” component. It is often the case that interface specification and keyword

description are the only available criteria for choosing a component. However,

keywords cannot convey all useful information, unless a special agreement on

the semantics and pragmatics of the keywords exists. One of the attempts to

formalize component description was reported in (Chen and Cheng 1997).

Authors suggest using the Larch family of specification languages to describe the

components. Larch languages allow description of the component in terms of

assumptions (services required by a component), capabilities (services provided

by a component), and domain theory (an algebraic model of a domain).

This method enables the software design process (automated or manual)

to choose a component according to its logical specifications, pre- and post-

conditions, and services, provided or required. However, the other important

aspects of the component’s functionality are not taken into consideration. For

example, it is often required to perform a certain task in a given amount of time;

therefore, it would be desirable to know at least approximately, how fast a

component can perform on a given platform. Other examples of information

possibly required during selection time include:

0 various hardware concerns (required networking bandwidth, memory

requirements, processor architecture, etc. ),

57



     

    

r SCl‘fWare C:

prOtOCOIUS:

. KBS conce'

ma"talnabl -

)

The PETS

eeredped at so

stances a some

ofscftri’a'e DTOC'U

the senses that

lynfam
*

HI
' g t' ’e D?

MJ‘J ;.. rt) Model (C

Draft-VA

I
, “Wes in some

PSP cons!

'92:: in0mg data. a:

s
28 Counting.

3:6": 'An

Elvpment.



0 software concerns (e.g. implementation language, deployment platform,

protocol used), and

o KBS concerns (domain ontology, explanatory possibilities, knowledge base

maintainability, and so forth).

3.4.3. Personal Software Process

The Personal Software Process (PSP) (Ferguson, Humphrey et al. 1997)

developed at Software the Engineering Institute at Carnegie Mellon University

provides a software engineer with a methodology for the consistent development

of software products. This methodology is different from that described above in

the senses that it does not require formalizing of an algorithm, but rather

formalizing the programming discipline. The authors of PSP use the Capability

Maturity Model (CMM) (Hayes and Zubrow 1995) which addresses management

practices in software development.

PSP consists of a series of scripts that define tasks and forms for

recording data, and standards that govern such things as coding practices and

size counting. Figure 6 represents the general cycle of PSP for software

development.

The cyclic process in the middle of Figure 6 is built on several well—known

software-engineering principles: the modular design concept, versioning, and the

divide-and-conquer principle.

PSP was introduced in 1994 and has been put to practice with various

projects in several companies including Motorola and Union Switch, and Signal.

58



 

 

Specifications

l
Requirements

and planning

l

High-level design

 

 

 

  

 

 

 

Postmortem

  
 

High-level design it

review Integration

System test

Use

3

 

   

   
Product

Figure 6. PSP flow diagram.

 

34.4. Domain Specific Software Architecture

Another approach to software development and reuse was developed as a

result of a five-year research program sponsored by DARPA (Mettala 1992). It is

called Domain Specific Software Architecture (DSSA) and is based upon the

observations that

1. Distinct software applications can have common architectures.

2. Such common architectures can enable efficient reuse of components across

such applications.

3. Such common architectures are easily recognized in the specific application

domains, in part, because the body of widely understood concepts for a

particular problem domain helps to overcome substantial differences in the

representation of the applications.

59

 



 There I

 

  

  

 

  

pz'CiQ'am clea'

architectures
"

hraugh reps:-

specifications-

lwoddii

DICAM for Vehl

Eman el al. 1

methodoiogy an

355.39“, and va

sentined techr

three principle v.

I. Developing ;

from real tir

Concepts of Ir

2' The aaplicat;

directly in the

domain anai;

be“ '
‘ VKbCard p-

d‘C-Sign
. Cons

   
  

l

"1 éOn:

~st New“

:9ng T C:
..,



There were six independent projects in the programg. The results of this

program clearly shows that the identification of general trends in software

architectures of a particular domain significantly increases the productivity

through re-use of software, documentation, and formalization of the initial

specifications.

I would like to draw attention to one of the projects in the DSSA program -

DICAM for Vehicle Management performed by the Tecknowledge (Hayes-Roth,

Erman et al. 1992). To achieve maximum results in the development of a

methodology and implementation of a suite of supporting tools for specification,

design, and validation of DICAM applications researchers of Tecknowledge

combined techniques of knowledge engineering and software engineering in

three principle ways:

1. Developing a hybrid control technology that combines important concepts

from real time software engineering with the knowledge-based reasoning

concepts of knowledge engineering.

2. The application of concepts, methods, and tools from knowledge engineering

directly in the software development process. (Knowledge - based models for

domain analysis, classification for taxonomies, abstraction and specialization,

blackboard methods of incremental problem-solving for system development

design, constraint specification and processing in software requirements

 

9 Avionics Navigation, Guidance and Flight Director, Command and Control,

Distributed Intelligent Control and Management (DICAM) for Vehicle

Management, Intelligent Guidance, Navigation and Control, Hybrid Control, and

Prototyping Technology

60



amnmmm

%i%

w Gym mu_

7.).

CC.

ggwg



management, and knowledge-based expert systems for providing software

development and design assistance. )

3. The applications of software engineering methods to knowledge engineering

(e.g.g., real-time systems development, database centered design,

hierarchical systems, distributed systems, reference architectures, multi-tool

software engineering etc. ).

According to (Honeywell 1999) automation and reuse can be applied to

80-90% of life cycle activities and can reduce effort by a factor of 2 to 10. The

Table 3 provides examples of estimates for various life cycle activities that might

be produced by particular development groups.

 

 

 

 

 

 

 

 

Life cycle activity Percent

and changes Reduction

Requirements: reuse requirements, avoid iterations on 50% of 20% 80% of 20%

requirements

Design: automate analytic model generation, reuse 90% of 20% 95% of 20%

design specifications, avoid coding

simulation/prototype. avoid redesigns

Implementation: automate code generation, reuse 95% of 20% 95% of 20%

code, automate software/system integration, avoid re-

implementations

Testing: reuse test specifications, automate test 90% of 20% 95% of 20%

code generation, automate trace/coverage analysis,

avoid re-testing unmodified units. .

Documentation: automate document generation, 50% of 20% 80% of 20%

reuse document boilerplate

Total 75% of 100% 90% of 100%

(4X reduction) (10X reduction)  
 

Table 3. Impact of applying DSSA methods to DICAM

3.5. Function-Based Reasoning

The core idea of the described approach is based on associating a

computer system with the engineered device and applying methods of function-

61

 



 based reasc

D'og'ams. T'

reasoning and

3.5.1. C

The net

 

when a desgcr

fetched lunch:

rEr'iSO'lillg hefps 
of the device car

The work

aid Chandrase.

Causal reasoninr

‘ l

lrflct

“"3” and re

mail-i
V I

Odology is



based reasoning and modeling developed for such devices for computer

programs. This section overviews the theory and practice of function-based

reasoning and presents current state in this field.

$5.1. Qescrjption of Function-based Reasonind

The notion of function is in many ways central for practical engineering.

When a designer designs a device, he/she is concerned with the delivery of a

required function. When a system does not perform its function, diagnostic

reasoning helps identify the reason for the malfunction. Predicting the behavior

of the device can include reasoning about its functionality.

The work of Sembugamoorthy and Chandrasekaran (Sembugamoorthy

and Chandrasekaran 1986) was rooted in research in qualitative physics and

causal reasoning (de Kleer 1977; Hayes 1979; Kuipers 1986; Forbus 1988). This

research resulted in the theoretical framework for representation of a device’s

function and reasoning about a device in terms of its functions. This

methodology is called Function-based Reasoning (FR). In this framework, a

device is modeled through its decomposition into constituent sub-devices, each

with clearly defined function(s)/role(s). The combination of functions of all sub-

devices is targeted to achieve the stated function of the overall device.

The core idea of the approach is to enable capturing the causal

understanding of the device in modular packets where each packet is an

explanation of a purpose/role of the device. A device hierarchy captures the

decomposition of the device into interacting subsystems. The layers in the

device decomposition are linked by annotations in the causality packets to roles

62

 



of lower levei I

for which sud“

Thai is.

clerics al the r

frictions of the

rates (or char.

islunctlon, anc

4393 points to a

been in the form

We goes in

933‘196 lo the fur  
device') I.

sub-

that explain

There are

research. Belcw i.



of lower level sub-devices. This plays a central role to any computation purpose

for which such a functional representation is used.

That is, when one "reads" a functional representation, one starts with a

device at the highest level in the device representation. One is then shown the

functions of the device. These functions are abstract statements of start and end

values (or changes to values) of state variables obtained when the device meets

its function, and the terms under which the function is applicable. Each function

then points to a causal fragment (a behavior of the device) which has typically

been in the form of a state variable description of the changes through which the

device goes in order to achieve its function. This device is annotated with

pointers to the functions of lower level sub-devices:

device9 function 9 behavior 9

sub—device 9 function 9 behavior

9 . . .

that explains the device functionality from top to bottom.

There are several major notions and terms often-used in FR related

research. Below is the presentation of a compilation of definitions of a subset of

these terms, which will be used throughout this paper.

1. A device is a decomposable entity. Each component of a device is also a

device. A device has associated with its loci or ports of interaction with the

outside word. In many particular cases a port is associated with a substance

it handles (e.g. fluid, gas, electrical current, or data of a certain kind).

63

  



 

 Suggested

Control to If.

FR methOdo

1998).

5' A ft-li'lCthlrl c

devices of ti

6' A DGhavior jr

9700833 Ge:

device folCt

7. EVEry devicr

Fu"cum



2. Connections between devices use ports as points of interface and carry a

designated substance.

3. A partial description of a device or its environment is called state of the

device. A state is defined through the collection of state variables.

4. Types of functions of a device are distinguished according to the set

suggested by (Keuneke 1989) Control, to Prevent, Control to Make, and

Control to Maintain. This set is being augmented with new applications of the

FR methodology (Lukibanov, Martinez et al. 1998; Martinez, Lukibanov et al.

1998).

5. A function of a device is achieved by the behaviors of its constituent sub—

devices or the laws of the domain of discourse.

6. A behavior is a description of state changes in the device and is called causal

process description (macroexpansion) and it captures causal story of the

device functionality.

7. Every device in the FR representation is shown through the quartet of slots:

Function <ToMake l ToMaintain l. . . >of device <device>

Preconditlon <precondition(s) on state variable values>

Postcondltlon <change(s) in state variable values after function>

By <causal fragment which produces desired post-

condition>

Traditionally, the device’s functionality is represented through the name of

the function it performs, preconditions that should be satisfied before the device

starts, postcondition expression which becomes TRUE after the device finished

64



its operation.

pence. W-‘TC

subordinate C.

The nc

reasoning pa'

Deng carried t

dance. The L

changed, moot

perform these .

path of the slug

Function

Causal story of

FR that has
b81

' FR methoc

dBVice in 0."

Functional

queStion' ar



its operation, and By clause. By clause is the pointer to the behavior of the

device, which achieves the device function through the functions of the

subordinate devices or by means of world10 knowledge and definitions.

The notion of slug of matter is in many ways central for the functional-

reasoning paradigm. The slug is an indivisible fragment of a substance that is

being canted through the causal network that explains the functionality of the

device. The Laws of Conservation dictate that the slug of matter cannot be

changed, modified, or destroyed without applying specific operators that explicitly

perform these operations on it. One “reads” the causal network by tracing the

path of the slug of substance through the functional representation of a device.

Functional representation of a device along with the ability to understand

causal story of the device’s function brings to light several important qualities of

FR that has been leveraged in numerous FR applications:

0 FR methodology supports functional and structural representation of the

device in one model, where one is naturally related to another.

a Functional representation supports reasoning which answers a ‘What if?’

question, and allows tracing consequences of an arbitrary action, manifested

through the changes in state variables.

- FR supports variable granularities of knowledge in the same model. That is,

there is no bottom level granule for device decomposition. The

decomposition can go on until infinity or until the developer decides that a

 

‘0 The "world knowledge" term here refers to the knowledge about the universe

of discourse

65



paarticular

 can be i9“

. The abH

Chan from

required by

FR metl'

653'-

be exam: 
3.5.2 F:\

Pegah's

Band and Pega

an example cf

tenses for sin

band in (Kaine?

is an automatic



particular level is sufficient for the description of the device’s behavior. This

can be leveraged in another attractive quality of the FR approach:

. The ability to explain achieved results by backtracking through the causal

chain from the state that is needed to be explained at the level of explanation

required by the user or a level maximally achievable by a system.

FR methodology is flexible enough to be adapted to various areas. Next,

describe examples of application of FR techniques in different domains are:.

_3.5_.2. FR for Devices

Pegah’s and Bond’s (Pegah, Bond et al. 1992; Bond and Pegah 1993;

Bond and Pegan 1993) FR model for jet fighter FA-18 fuel system can serve as

an example of the application of the FR methodology to modeling physical

devices for simulation purposes. Another example of such modeling can be

found in (Kamel, Sticklen et al. 1989; Sticklen, Kameletal. 1991). The test bed

is an automatic cruise control system, which is schematically represented in

Figure 7. In order to model the device for numerical and qualitative simulation

authors extended FR approach with the addition of a new type of function to

calculate and integrate qualitative and quantitative reasoning in a functional

model.

Hawkins (Hawkins, McDowell et al. 1993) has shown that FR can be used

as a tool for the troubleshooting devices. The authors used an augmented FR

approach for diagnosis in the External Active Thermal Control System for space

station Freedom which transfers accumulated heat from inside the station to the

outer space and maintains climate inside the station. The core idea of the

66



 approach ist

dense and,

necessary die

example of us

I'Pnce1996), v.

acar is used tc



approach is that the inherent properties of FR enable causal reasoning about the

device and, therefore, once the FR model of the device is complete, the

necessary diagnostic information could be automatically generated. Another

example of using the FR approach to troubleshooting devices was described in

(Price 1996), where the author showed how FR model of the electrical system of

a car is used to identify sneak electric paths.

 

 

 

Command Speed

Control Electronics Throttle Actuator

Proportional Summing fl!” \

Amplifier Amplifier Cm‘

f VIM

Bra. Voltage To

.. .. ...,Am 'l'fi" ConverterJ

Maseru

  

 

  
 

 

  r

 

 

    

     
 

Figure 7. Schematics of automatic cruise control

 

(Modarres 1998) approached the problem of modeling nuclear plants from

the functional viewpoint. The model of a plant consists of several hundred

thousand functional units, which perform main and support functions that are

combined in a functional model. While his approach is somewhat different from

that of the mainstream FR community, it demonstrates important pragmatic

issues: the scalability of functional approach, use of libraries of devices, and

67

 



)\

t!

\(J:

(r. 1.

_
_
e

(
(
3

(
C
)

I
r
.
1

- .
.
-



functional decomposition of a device through the ‘goal-tree success-tree

approach’.

The FR approach was traditionally focused on modeling dynamic

behaviors of devices. A theoretical augmentation allowing FR methodology to

cover the modeling of static devices was proposed in (Lukibanov, Martinez et al.

1998). The authors demonstrated how knowledge of the mechanical structure of

a device coupled with the available functional information could not only capture

the design intent, but also aid in the re—design and in the reverse engineering of

the device.

Another attempt to use FR techniques for design purposes was presented

in (Lossak, Yoshioka et al. 1998). The paper reported joint efforts of Japanese

and German researchers, which resulted in a framework that allowed the use of

libraries of devices for design. Devices are represented functionally with

rudimentary geometrical data that allowed further manual detailing when design

commitments are made.

All previous examples dealt with the engineered entities. However, the FR

approach was successfully applied to modeling biological systems (Sticklen

1987; Sticklen and Tufankji 1992) and medical diagnosis (l'sumoto and Tanake

1995).

3%. FR for Processes

It was noted (Chandrasekaran 1993; Chandrasekaran and Kaindl 1996)

that process modeling is an open problem for the FR approach. However,

processes (engineered or biological) that deal with the transformation and/or

68



iarspoll 0’ 3

 example L3

approach as:

 

extension of 1

al. 1998). T

parameters of

describe how 8

not only deterrr 
hemanufactura

The malr

al.. models the

Oh the other he

itself is the sobje

3.5.4. FR

A ompo

frictionality
and

hat could be UllC

Computer
progr

*‘SD’Og'ams (for

D’s-rt
'red program

tee
we from the

l“art .
man and l

fir.

@379
't'J 'DOSEJOI') m



transport of some kind of substance could benefit from the FR approach. For

example, Lambert in (Lambert, Riera et al. 1997) presented a functional

approach applied to modeling nuclear reprocessing. Another application and

extension of the FR methodology was demonstrated in (Martinez, Lukibanov et

al. 1998). The center of the authors’ attention is the dependencies between

parameters of a manufacturing process and manufactured artifact. The authors

describe how a functional model of a manufacturing process can be leveraged to

not only determine the parameters of a manufactured artifact, but also estimate

the manufacturability of the design.

The main difference between these two approaches is that Lambert .et.

al.. models the process through modeling the objects that perform this process.

On the other hand, in the approach proposed by Martinez et. al.. the process

itself is the subject of modeling through FR techniques.

3.5.4. FR for Software Design and Understandind

A computer program is a special kind of device with well-established

functionality and interfaces. Software systems have strong flavor of causality

that could be understood by following the input data through the software system.

Computer programs in general have well-established decomposition into

subprograms (for procedural or functional programming) or objects (for object-

oriented programming). These properties allow treating a software product as a

device from the FR point of view. (Allemang and Chandrasekaran 1991)

(Hartman and Chandrasekaran 1995) applied the ideas of functional

decomposition to computer programs. The goal of the above research is to aid in

69



  

    

automatic p."

“plied the is

functional arc

aware of its re

for agents car

agents operate

approach using

Solenson
1995

designing
and

D’3.~I>erties
of Fl

licleneniaoon

Wing the FR

of 20 system (l

555/:

“d SOf’Mare



automatic program understanding and debugging. (Murdoc and Goel 1998)

applied the results of these studies and augmented them in research towards a

functional architecture of reflective agents. A reflective agent is an agent that is

aware of its reasoning. The authors claim that leveraging the FR representation

for agents can greatly improve performance of the system within which these

agents operate. The authors also demonstrate the performance of the proposed

approach using meeting scheduling software as a test bed. Stroulia (Stroulia and

Sorenson 1998) demonstrated the applicability of the FR methodology to

designing and re—deslgning software. The authors leverage the diagnostic

properties of FR models to find “bottlenecks” in software systems, where the

implementation does not meet the design specifications. Another example of

applying the FR methodology to software design can be found in the description

of 20 system (Liver and Allemang 1995). The authors advocate component-

based software engineering. They show how the FR approach is used to

describe the functionality of software components and make binding decisions

during system integration. The FR approach also gives the possibility to describe

the software architecture, automatically generate a Data Flow Diagram, and

ultimately, capture the design rationale.

3.5.5. State of the Art

The current state of the art research on functional reasoning is focused on

two major points — automatic generation of functional models and incorporating

time into functional models. The first point is directly associated with following

issues:

70



Model completeness, which is a twofold problem itself:

— The causal model must be “true”, that is every “rule” in the model must be

correct with respect to the variables of the model.

- At every possible state, the model has to have enough information to

generate the next set of possible states, i.e. the model should be self-

sufficient.

Libraries of devices. This issue has been addressed from both theoretical

and practical points of view in many researches and applications. However,

there are still problems remaining. These problems are concerned with

library organization, device instantiation, property inheritance in the

hierarchical libraries, etc.

Model description. This is the problem of ‘faceplates’, i.e. how to describe the

device with the “right” amount of information for the model assembler to make

an educated decision on using a particular device from the library in the

assembled model.

Incorporating explicit time into the functional representation is an open

problem. Yet, resolving this problem is very important for many different

theoretical and practical purposes, and is essential for the practical

applicability of FR methodology for great many different real life problems.

Such as combining different time sensitive devices (e.g. a model of the cruise

control and a model of climate control) with different time scales into a bigger

model (e.g. a model of a car).

71



 

T
)

A
.
)

(
”
a
n



Problems of designing libraries of device were addressed in (Pegah,

Hawkins et al. 1994) and now are being revisited and extended in ongoing

research at Intelligent Systems Laboratory at Michigan State University. In the

same research, Hawkins addresses the problem of incorporating time into the

functional models and associated sub-problems.

There are a number of problems directly or indirectly associated with the

described venues of the research. Some of them will be addressed in the

proposed research.

3. 6. Conclusion

I would like to re-iterate the important theoretical and practical sources

that prompted and contributed to this dissertation research.

1 Introduction of reusable problem-solving methods and task-specific

architectures in the KBS research allows concentrating on the

decomposition of a problem into the set of manageable units, where each

unit has predefined functionality and inference strategy.

2 The Generic Task branch of TSA and the legacy software package

(GT ITS) proved to be an effective tool for building practical small-scale

KBSs.

3 Advances in integration methodologies and inter-object communication

techniques allowed identification of generic control architectures and

methods that allow integration of distributed units into a functional system.

4 Ontological research enabled the development of domain ontologies

that are used to share knowledge between separate parties.

72



Tl

mEli‘QdQ:

Sisters.



5 Universal Modeling Language and component-based software

 
engineering take a black box point of view at the software modules, which

allows concentrating on the modules’ functionality and treating the

problem of integration of this modules separately.

6 The Function-Based Reasoning paradigm provided a functional

perspective on any engineered or biological device. The extension of the

FR paradigm on software systems enables their functional decomposition

thus allowing concentrating on the function of every participating module,

gradual problem decomposition, and progressive knowledge acquisition.

The next section will show how the listed above theories are used to build

methodology that supports the development of integrated knowledge-based

systems.

73

 



J.



4. ANALYSIS AND A THEORY BEHIND APPROACH

4. 1. Introduction

To build a knowledge-based system that solves a domain problem is to

create a software system that will model the functionality of the domain expert,

i.e. solves the tasks usually performed by domain expert. More often than not

this means that an internal l-KBS architecture should copy (at least partially)

experts’ thought structure. The process of eliciting this structure and underlying

domain knowledge - knowledge acquisition — is the core problem that has to be

solved during the construction of a knowledge-based system. In the case when

building a knowledge system involves reuse of existing problem-solving modules,

the task of system building expands to include issues of integrating disparate

problem-solving modules. Generally, the whole system building process could

be divided into five major stages:

1. Assess the problem at hand and decompose it into manageable sub-

problems.

2. Organize them in problem - sub-problem structure (so the solution of sub-

problems leads to the solution of a larger problem)

3. Acquire problem-solving units responsible for solution of sub-problems

4. Determine information flow between problem-solving units by explicitly or

implicitly connecting problem-solvers’ inputs and outputs as well as

designating a working vocabulary and structure of messages that are being

passed between units

74



5. Define necessary control that would manage activation of each participating

problem-solving unit.

The next Section lists issues that are not covered in this research and its

reasons. The rest of this Chapter describes how the approach developed as a

part of the research effort and covers the described above stages.

4.2. What is Not Covered by the Approach?

This dissertation intentionally omits problems of developing domain

ontology. A domain ontology serves, as a backbone for building Integrated

Knowledge Based Systems by providing working vocabulary that is syntactically

and semantically understood by all participating units. The reason for leaving out

such an important issue is that recent progress in ontological research resulted in

the number of methods and tools for generating robust domain ontologies

(Section 3.3). In addition, eXtensibIe Markup Language (XML) became de facto

industry standard for developing domain vocabularies that in many cases play a

role of ontologies by allowing store and reuse domain factual knowledge in

flexible pre-defined structures. The application side of the dissertation (redesign

of Socharis) is based in part on the ontology of manufacturing with composite

materials that was developed as a part of the Socharis project.

Another major KBS problem that is excluded from the scope of the

research: is the problem of building individual problem-solvers (a substantial part

of I-KBS building process). The reason for this is that research in Task-Specific

Architectures (TSA) already produced a well-populated group of problem-solving

methods that could be successfully applied to solve isolated problems of ordinary

75



complexity. However, the practical issues of integration of multiple problem

solvers in to a working system were not in the focus of the research community.

This research instead, centers on methodology that uses these problem-solving

methods to develop large integrated KBSs. In fact, this dissertation is built on the

foundation of one of schools of TSA - Generic Task approach - which supplies

the unitary problem-solvers for building l-KBS in the described framework.

4.3. Theoretical Premise

Sticklen’s Knowledge-Level Architecture Hypothesis, Steels’s Know/edge

Use Level, and Van de Welde’s Modeling Libraries have one thing in common: all

three of them consider the structural organization of problem-solving units

(methods) as a crucial step in designing, describing, or modeling an intelligent

system. The main thought behind these theories is that given the functionality of

each agent and all the connections among the agents in the system it will be

possible to understand the behavior of the system, and its sub-parts. While

intuitively accurate, neither of these theories suggests how to organize agents,

how to provide communication channels, and how to control execution order. ,

except for Van de Velde in (Velde 1994) where he suggested using any of the

available methodologies (CommonKADS, Vital, etc. ) to do so. However, he

stopped short of describing a mechanism that could lead to the realization of the

Modeling Libraries. This dissertation is based on the premise that Function-

Based Reasoning/Function-Based Modeling is able to model such structures in

all their richness.

76



The Generic Task methodology serves as another important theoretical

cornerstone of the described approach. Generic tasks proved to be a convenient

instrument in knowledge acquisition along with development and deployment of

knowledge-based systems. However the brittleness of GT templates caused the

developers of KBSs programmatically alter the pre—defined inference engine

and/or knowledge representation to adapt them to the problem at hand.

Extending generic tasks, this dissertation capitalizes on the large-grain view of

the problem-solving process at the same time allowing modifying control among

the cooperating entities without re-programming problem-solving templates. In a

sense, this approach enforces guidelines for designing an I-KBS using the set of

pre—defined templates. The basic principle is to divide the problem into a number

of smaller more manageable parts that could be solved by an application of a

single template without altering it. Then integrate the resulting knowledge-based

systems into a functioning l-KBS by defining control and information flow

between them.

However, it is important to understand that the only quality of Generic

Tasks that has been heavily leveraged here is the possibility to apply the black-

box point of view on any GT-based problem-solvers. This is because of the fact

that each GT-based unitary KBS is self-sufficient in the sense that it contains all

knowledge necessary for problem-solving as well an inference module. The

significant conclusion is that any self-contained problem-solver could be used in

the extension of the described methodology as long as its functionality could be

"black boxed”.

77



.2....
. C

s.
I.

A]

$me

7.3.1...

.e. r(_

”3‘ . Jo.

i(((



4.4. FR as a Structure Modeling Methodology

Inherent properties of the FR methodology - that sees a device as a

recursive hierarchy of sub-devices — allow considering a software system (such

as an integrated knowledge-based system) as a hierarchy of sub—systems.

Along this line, the FR modeling mirrors the Rational Unified Process (RUP)

(Fowler and Scott 2000) that considers structural decomposition of the software

system as one of the stages of software development. RUP recently has

become an industry standard for development of large, well documented

software systems. Having its roots in Capability Maturity Model (Section 3.4.3)

and Object Modeling Technique (Section 3.4.1), RUP goes beyond structural

modeling and defines documenting policy, use-case models, block diagrams, etc.

By following the Rational Unified Process the designer ideally finishes by

generating skeletal code for the software system being designed. One of the

RUP’s shortcomings in modeling knowledge-based systems comes from its

ability of transforming the design intent into the code. Often, when dealing with

knowledge-based systems the code is not important (inference engine is already

written and being reused), but knowledge representation is not. However, RUP

does not have facilities to operate with complex knowledge models often intrinsic

for knowledge-based systems.

Meanwhile, the use of the Function-Based Modeling techniques for

problem decomposition allows the l-KBS designer concentrating on knowledge

structure and representation, rather than on low-level methods for data handling.

In addition, the natural for FR ability to arbitrarily choose the level of

decomposition and explicitly define functionality of every participating subsystem

78



  

or“

> 3

‘
5
4



comes particularly handy when modeling the system out of the readily available

components.

4.5. Limitations of the Traditional FR Approach

In spite of the adequacy of the traditional FR methodology in modeling l-

KBS’ structure this theory suffers from several limitations:

0 The lack of an adequate ontology capable of describing the functionality of

problem-solving units.

a Inability to distinguish between different parts of the substance that is being

passed through the functional model, i.e. treating it as an inseparable slug of

matter.

- Weakness of the pre-condition clause that made it very difficult to state

complex conditions on the activation of parts of the functional model, which

adds to the absence of complex control structures within the functional model.

These drawbacks limit application of the FR techniques to modeling

software systems to primitive ones. Systems with a simple information flow and

straightforward functionality.

4. 6. Extension of Function-Based Reasoning Methodology: Functional

Ontology

The implemented in this dissertation extension to the function-based

reasoning methodology deals with the issues outlined in previous section. The

problem of insufficient ontology is managed thorough augmentation of functional

ontology with new types of functionality and behavior (Section 5.2.1). The

addition to the functional ontology in the presented research agrees with the use

Of GT-based problem-solvers as bottom-level modules. That is, the functional

79



ontology is extended to describe functionality and behavior of specific types of

problem—solving methods: hierarchical classifier and multiple routine designers.

It is possible to carry on this extension further to include any other types of

problem-solvers should they be chosen as a building block, therefore extending

the usefulness of the methodology beyond the Generic Task framework.

The use of augmented functional ontology not only helps to accurately

describe the functionality of every component of modeled I-KBS, but also directs

the problem decomposition process by suggesting available problem-solving

methods and, by doing that, implicitly guiding the l-KBS designer to dissect the

problem into the chunks manageable by available problem-solving methods.

Another advantage of using such augmented functional ontology is as

follows. According to the theory of task-specific architectures, every problem-

solving method has a specific knowledge structure associated with it. Therefore,

definition of a method automatically specifies an associate with this method

knowledge representation. If we turn this argument around, than it could be said

that one could identify an applicable problem-solving method by analyzing

available knowledge and its representation. Consequently, a fixed set of

problem-solving methods (an explicit enumeration in the functional ontoldgy)

enables matching of knowledge structures in domain of interest to available

knowledge representation. This also could be used as an instrument in problem

decomposition process.

The implementation of this extension to the FR methodology is described

in detail in Section 5.2.1 of this dissertation.

80

  



4. 7. Extension of Function-Based Reasoning Methodology:

Information Processing

Conventionally, 3 FR model deals with a slug of substance (Section 3.5)

that travels through a causal model. This slug of matter cannot appear,

disappear, or transform (by changing in nature and magnitude) without

application of specifically stated operations. While this is sufficient for the

majority of engineered devices, a software system requires different approach.

Information, that travels through the software system is not a monolithic slug but

rather a collection of information streams each of which travels by a different

(possibly independent) trajectory and could be created or destroyed without

contradicting to any of conservation laws (which are of concern when dealing

with physical devices).

This dissertation introduces Port Managers that address both of the listed

above concerns. Port Manager is an auxiliary device associated with every

component of functional decomposition. Its main role is to supervise input and

output variables of the device, translate them into internal representation if

needed, connect with other port managers, and control activation of the

corresponding device depending on the current problem-solving context. Port

managers envelop their respective devices, therefore enforcing the black box

point of view. The only way to access a device is through the input and output

variables that are published in the device’s port manager.

Any part of the I-KBS could be connected (dynamically or statically) to any

number of co-operatlng modules. Any sub-set of input or output variables can

participate in such connections. To support this quality of software systems port

81

  



(
T
,



managers should be capable of performing multiple variable mappings, linking

output variables of one device/problem-solver to input variables of another.

Exercising multiple mapping mechanisms, the l-KBS developer can effectively

model arbitrary information flow among the participating problem-solving

modules. This feature could be related to the objectoriented programming

techniques where the designer encapsulates data and methods and provides

interfaces to access them from outside.

Another problem that was listed as a shortcoming of the traditional FR, is

the weakness of the control structures - preconditions - a Boolean expression

on model’s state variables. Precondition is the only way to gain dynamic control

over the execution: when precondition is satisfied the sub—device activates.

While satisfactory for modeling engineered devices where the amount of

modeled through variable substances small enough, this form of control seriously

hinders adequate modeling of software systems.

Port managers can considerably strengthen FR techniques in this respect.

Port managers could not only perform all types of precondition checking, but also

add controls, specific for problem-solving types participating in an l-KBS

construction. This could be justified by the fact that different problem-solvers

produce results of different structure that may require specific attention (e.g.

enumerating and filtering). These different kinds of results might in turn be used

by other problem-solvers. It is the task of port managers to recognize these

structures and act correspondingly so that the problem-solver would receive input

parameters of structure that agrees with it interface specification.

82

  



 

Idea

to achieve

tastert

offset

50 ‘ lhis OI

filterso:



Ideally, a well-planned l-KBS should conform to a single domain ontology

to achieve uniform understanding among participating entities. In case this rule

is compromised, port managers should provide translating capability that would

transform the outputs of one module to the input of another.

In short, a port manager could be compared with a plug

adapter/transformer kit that a sawy traveler caries around the world to plug to

different electrical and telephone outlets with different voltages and configuration,

so his or her device keeps receiving energy and data in different locations from

different sources without being concerned of device’s malfunction.

4.8. Conclusion

The combination of the described in previous sections augmentations to

the traditional Function-Based reasoning paradigm allows adequate description

of the architecture of an Integrated Knowledge-Based System capitalizing on the

functionality of the participating units, functional task-subtask decomposition, and

explicit direction of the information flow. The major change that allows

description of the I-KBS is the addition of the facility of port managers that handle

the information and control flow. Without this change the application of the FR

methodology falls short in competent modeling of l-KBSs because of its inability

to express multiple flows of the substance through the functional model as well

as deficiency of the control mechanism.

Augmentation of the functional ontology, on the other side, lets the l-KBS

designer concentrate on the directed decomposition of the problem at hand into

chunks that could be handled by the units whose functionality is expressed in the

83



81;ng

permit:

heel:

resell

hood;

alnm

U3 lle



augmented functional ontology. A flexible nature of this functional ontology

permits its extension to include description of different problem-solving modules

therefore adapting to new problems.

The next step is to present a consistent methodology that if followed, will

result in the l-KBS that solves the problem of interest. The next chapter

introduces such a methodology and describes each proposed theoretical

augmentation from the practical, implementational standpoint.

84

 



 

S

a

K.
m5)...

.(rr

v6.99



5. PROBLEM STATEMENT AND APPROACH

5. 1. Problem Statement

The goal of this research is to develop a framework for design and

deployment of integrated knowledge-based systems. This research addresses

the following problems:

1. Rapid modeling of system architecture for development of problem-solving

architectures and on-the-fly modifications of existing systems.

2. Guiding the task decomposition process by assisting in the identification of

the constituent sub-parts of the system, mapping the identified sub-tasks to

the existing problem-solving methods, and re-using of existing problem-

solvers.

3. lntegrating pre-built problem-solvers into the target system, leveraging control

knowledge and using the domain ontology for the inter-agent communication.

5.2. Approach

Following the proposed approach, building of an l—KBS is divided into

three stages. Each stage corresponds to the construction of one of three l-KBS’

models:

1. Task-subtask decomposition model or Problem-Solving Hierarchy (PSH): a

recursive division of the problem into smaller problems that could be tackled

by unitary problem solvers.

2. Functional Model: shows a function (or a role) of each part of the l-KBS in the

problem-solving process.

85



 

m. _a.

__m.

“use.

33..

won...“

s3

8 ...g

a 80

0.. 3m m

33.... g

”was;

.2552

a»... .
..l... .1 .

.9 _m :

.._
or mpsfof

(s.

(



3. Information—Processing Model: shows how information (variables and control)

is used and is passed between the different parts of the l-KBS.

PSH can be understood as a recursive, domain dependent division of an

overall problem into sub-problems that bottoms at the level where every identified

sub-problem can be solved by some a priori identified method. This Problem

Solving Hierarchy does not reflect a problem-solving flow but rather is a static

decomposition, similar to the device-sub-device decomposition of the

conventional FR. PSH allows the user and the designer to immediately assess

all problem-solving units of an I-KBS, to see problem-sub-problem decomposition

of the task at hand, and to access other models of the l-KBS.

The Functional Model enables the designer to look at the function of each

node of the PSH, where the function/role of every leaf of PSH is tied to a

particular unitary problem solver or a formula. The function(s) of every

intermediate node and the function(s) of the root of the PSH are composed of the

functions of the other nodes of PSH. The Functional Model is used to generate a

macroexpansion of the I-KBS: a network that shows a causal chain of firing

different parts of PSH. This macroexpansion gives a high-level picture of the

functionality of an I-KBS by imposing partial temporal order on the execution of

the components of PSH.

The traditional FR is usually concentrated on a particular slug of matter

that passes through the functional model. In the case of l-KBS, this slug of

matter is information that is being passed from one node of the Functional Model

to another. The Information-Processing Model is used to unambiguously

86

  



5....

83m

.5.. m.“

031T... )

ccd

em...”(I

’

.mommwnaw

an

2.)...
:_ <94 MO

Um».. ..
(ILU!)

_ 7(3



determine the direction of each stream of the information flow as well as to define

some control data used to manage the nodes of the Functional Model.

5.2.1. Integrated Knowledge-Based System as 3 Device: Functional

_ Ontology

I use a metaphor of a device to describe a problem-solver. According to

the approaches described in previous section, its input data, output data, and a

problem-solving behavior (which achieves a function of a problem-solver) can

characterize any problem—solver. This characterization mirrors the functional

characterization of a device, thus enabling use of the FR methodology on

software systems including problem solvers.

Following FR methodology an integrated KBS can be decomposed as

follows:

Problem-solver 9 function 9 behavior9

Sub-problem solver 9 function 9 behavior. .

The decomposition goes further on until the developer reaches the level of

granularity, where a type of each leaf-level sub-problem solver is matched to the

one from the pre-defined set.

One of the advantages of the FR approach is the possibility of estimating

the overall behavior of the device, based on the behaviors of the sub-devices,

and knowledge of connectivity of devices. To leverage this property of FR it is

necessary to define bottom level behavior of every problem solver. However, it is

difficult to describe precise behavior of an arbitrary problem—solver. Such

description is bound to be very general and therefore, will not give good leverage

87

 



 

florist

olecis

deini‘

Fit“, In

Vail Iv

places

1. su;

Sill.

2. by



during task decomposition. Focusing on specific types of problem-solvers allows

precise defining of function and behavior for each of selected PS. These

definitions are reflected in the proposed augmentation to the current functional

ontology. The changed functional ontology will aid in the task decomposition

process by:

1. supplying the guidelines for choosing a particular PS method for a given

situation and,

2. by directing decomposition of a task into sub-tasks whose PS architecture

matches to that of predefined problem-solving methods.

In the research, I focus on classes of problem-solvers that are covered by

a sub-set of GT problem-solvers: Hierarchical Classifier, Multiple Routine

Designer, and Structured Matcher. However, there are no theoretical limitations

on the type, size, etc. of bottom level problem-solver.

The proposed functional ontology for the set of GT problem-solvers is

shown on Table 4.

88

 



 

 

ire—bl

Solver

llLf’.

Hierar

I Clan

W

Design

m

Matcher

\

“tooth

CPS

\

APIOblt

stiller



 

 

 

 

 

 

 

Problem Function State Pre—condition Post-

Solver Variables condition

Type

Hierarchlca To A set of All symptom Class

I Classifier Classify Symptom variables are set Variable is

To Select variables; Or specific set of set

Class symptom variables is Or

Variable set classification

failed

Routine To Design A set of Design requirements All Design

Designer To Set design variables are set parameters

Parameter requirements are set

3 variables; Or

A set of Design

design Failed

parameters

Structured To A set of All characteristic Matched

Matcher Establish characteristic variables are set Or hypothesis

variables; Specific set of found

Set of characteristic Or

hypothesis variables is set Matching

failed

Algorithmi To A set of input All input variables Output

c PS Calculate variables; are set Or variables are

A set of Specific set of input set

output variables is set

variables

A Problem To Solve A set of input All input variables Output

Solver variables; are set variables are

A set of Or Specific set of set

output input variables is set

variables    
 

Table 4. Function ontology for GT based problem solvers

89

 

 



 

3 8......

..m $6

.. m5



5.2.2. Auomentinq Precondition Clause

In order to seamlessly apply the FR methodology to designing and

modeling l-KBSs it is necessary to overcome several theoretical and

implementational shortcomings.

In the traditional FR approach, the set of preconditions is the only method

to control a device. According to this methodology, every function of the device

is described as follows:

1. Function: <ToMake I ToMaintain l. . . >of device <device>

2. Precondition: <precondition(s) on state variable values>

3. Postcondltlon: <change(s) in state variable values after function>

4. By: <causal fragment which produces desired postcondition>

The precondition generally takes the form of logical propositions on state

variables. If the precondition is satisfied then the function is performed and the

postcondition is set. In many cases, when FR is used to model a simple

engineered device this control method is adequate and sufficient. However, for

more complex devices with elaborate behavior(s) it is not enough to state simple

Boolean preconditions. If we are to model moderate complexity KBS using FR

methodology, we need to be able to express complex conditional and causal

relationships between different parts of the system, conditional activation of

problem-solvers, translating outputs of one module to another, etc. To tackle

these issues I introduce the notion of port managers, an auxiliary mechanism

associated with every device in the FR model, that would control its. Control

functions of a port manager include, but not limited to: converting input to a

90

 



wit?

(m:

a

(
r
)

C
“
)

:
‘

‘
_
)

fig.

v . .

2.. 0‘.

gm? .0"

amgmm

$05.

03 3:

1....

wPQmm



device from one ontology to another, performing elaborate problem-solving

procedures on inputs (e.g. deciding on defaults according to a specific problem

solving context), conditional transferring of control to parent or children devices,

etc.

Where each module performs self-activation based on the current problem

solving-context, the use of port managers will enable an adequate modeling of

flexible and semi-restricted control. In fact, port managers will play the role of

distributed control units associated with each device. In the cases, where the

developer chooses to use a centralized control scheme, the function of port

managers will be reduced to the traditional checking of Boolean preconditions.

In addition to performing operations on inputs, the port manager might

execute some actions on the output of the device. An example situation where

one might use the output port manager is when the result of the device is not

satisfactory and it would be preferable to run the device again. In this case, the

port manager would modify the input data for the device and run the device

again. Another use of a port manager for output may be the conditional

activation of subordinate devices, when the developer elects to center the control

at the parent device instead of transferring it to the sub~devices.

The introduction of port managers will enable the modeling and designing

integrated KBS with arbitrary architectures. Nevertheless, in order to provide

advanced design and modeling capability it is necessary to overcome another

shortcoming of the current FR implementation: its inability to perform internal

cycles.

91



MUD;).x

(L..(K

twas

55min

5;“

90E

F“E

L3...)2

cc.....tm:



5_.2.3. Tvino it All Together

In the proposed framework, the construction of an l-KBS starts with

developing a problem-solving hierarchy, which is a direct application of a

traditional FR methodology augmented as described in Section 5.2.1. The PSH

is built top-down by specifying a root of hierarchy first and then working down.

This creates branches and sub-devices where the leaf nodes are associated with

a unitary problem-solver, executed through “by knowledge” or “by definition”

behavior, or simple formula. The result of this process is the hierarchy that

shows the decomposition of the problem into subproblems as perceived by a

knowledge engineer.

The next step is the development of a Functional Model of an l-KBS. This

is usually done bottom-up by assigning the functionality to the leaf nodes and

then composing the functionality of the intermediate nodes from already defined

functional chunks. A macroexpansion of a Functional Model gives a view on the

causal network of the interoperation of the parts of the l-KBS. In fact, the causal

net defines partial execution order; where the nodes located farther from the

source are being executed after those nodes located closer to the source. It is

important to know that the execution order defined in macroexpansion does not

necessarily express the real activation of the nodes, since the activation of the

node depends also on preconditions and conditional operations defined through

the port managers.

Following the development of the Functional Model the I-KBS designer

defines the Information-Processing Model that determines the activation

conditions for every node of the functional model as well as variable mappings

92



between different parts of PSH. Described in Section 5.2.2 port managers

perform these tasks by allowing the designer to access the variables of each port

connect output variables of another port and arrange for their values to be

passed to the internal variables of the node. Port managers enables the

designer to create elaborate preconditions that not only include a series of

predicates but also define collections of variables that have to be determined

before the node is being activated. In addition, the port managers allow

prescribing sets of default values to the variables to support standard reasoning

as well as reasoning with incomplete data. On top of that, port managers provide

a number of features that aid the designer in the process of developing l-KBS.

The detailed illustrated example of building I-KBSs using the developed

shell is given in the Chapter 6. In that Chapter I discussed not only the

particularities of implementation of the proposed methodology, but also give a

tutorial on building an l-KBS according to the described approach.

5.3. Framework Restrictions

To correctly design an l-KBS using the described approach it is important

to understand restrictions that it applies to the design process and the resulting

architectures. The nature of the restrictions lies in the position that the described

approach takes towards a unitary problem-solving unit. The unitary problem-

solver is considered a black box. That is, a problem-solver is being looked at as

an entity with known inputs, outputs, and functionality. There is not any other

information known about a particular problem-solver. That means that an l-KBS

designer manipulates problem solvers as LEGO® blocks without knowing their

93



internal structure, knowledge, and etc. This point of view is close to object-

oriented and component-based software engineering from the object or

component handling perspective. Therefore, it is reasonable to expect that the

benefits of these methodologies to be extended to the described framework.

These benefits include ease of components’ reuse, painless upgrade of

components’ functionality as long as it does not affect its input and output

specifications, ease of modeling and developing. However, software-engineering

practices do not necessarily cover all the possible approaches to the designing of

an l-KBS.

Lets take for instance a generic problem that can be solved by problem-

solver A, that in turn needs the result of problem- solver B to solve one of the

intermediate steps. Three possible problem-solving architectures would perform

a task at hand:

1. Large Black Box. To incorporate problem solver B into problem solver A

therefore creating a bigger problem solver AB that performs functions of both

problem solvers, A and B (Figure 8)

 

 
 

Figure 8. Large Black Box

 

94

 

 



2.l

  

Va

 



2. Multiple Black Boxes. To divide problem solver A into a number of smaller

problem-solvers {A11 A1i; A21 A2j}. Where problem solvers A11 A1i

generate inputs for problem solver B and problem solvers A21 A2]- work

with the results of A11 AH and B to produce final result (Figure 9).

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 
 

A21 l—~

-—1 A12

A22 _.

—~ n
A... L_.

-——.l A

A2j -~
 

    
   

Figure 9. Multiple Black Boxes

 

3. Gray Box. Using this architecture the I-KBS designer can access the internal

variables of the problem solver A and re-rout them to the inputs and outputs

of problem solver B (Figure 10Figure ).

 

 

 

 

B n

A

Internal Variables

 

 

T

L
1
1
1

1

   

Figure 10. Gray Box
 

95

 

 



The first method, Large Black Box, however convenient, poses three

major problems. '

First, this architecture makes it difficult to reuse problem solver B in another I-

KBS. That is, the reuse of B can be effected by two ways: a) by re-

implementing it using acquired knowledge or b) by calling the problem solver

A8 with the set of inputs that will allow run of problem solver B and then filter

the results (if possible). Both methods require considerably more efforts than

case of separate implementation of B.

Secondly, knowledge acquisition for one complex problem solver often is

more elaborate than knowledge acquisition for two separate problem solvers.

The reason for this lies in the shift in knowledge engineering where instead of

developing problem solver A and B separately and then integrating them, the

designer needs to work on these three issues simultaneously. Consider for

example a problem of diagnosing of a malfunction (of a Mars probe) where

several sub-problems require determining of some value. Suppose that a PS

for determining such a value exists and provides an answer in metric units.

Then the designer needs to incorporate this PS into the structure of the

diagnostic PS remembering not only to provide all necessary integration, but

also to convert units from metric to SAE within the same problem solver.

This leads to the third problem.

Problem-solving architecture of AB problem solver is more complex then the

respective architectures of problem solvers A and B separately, which may

lead to difficulties with l-KBS’s maintenance.

96

 



The second architecture, Multiple Black Boxes, addresses three above

problems by chunking the problem solver into smaller black boxes with simpler

internal architecture. Nevertheless, in turn, states another two.

. First, knowledge engineering for developing Multiple Black Boxes architecture

for this problem might be “unnatural” for customary domain problem-solving

practice. That is, the problem at hand might need a finer slicing (in

knowledge and problem-solving methods chunks) then usual for the domain

specialist. Lets look at the problem, introduced in the previous example and

consider how it could be solved using Multiple Black Boxes architecture.

First, every part of the diagnostic PS that uses the results of value setting PS

becomes a separate problem solver and is being dealt with separately.

Secondly, the part of diagnostic PS that prepares the data to be run by value

setting PS also becomes a separate PS. Lastly, it is necessary to introduce

an additional module that will convert units from metric to SAE.

. Secondly, the growth of the number of cooperating problem solvers in an I-

KBS may lead to a more complex architecture, which may hinder the

system’s maintainability.

The Gray Box solution is very popular nowadays in multi agent

architecture. However, its implementation requires knowledge of internal

structure of problem solver A and changing a point of view at a unitary problem

solver from black box to gray box with the possibility to access internal variables

and manipulation with them. Yet, in many cases the insides of a unitary problem

solver are not visible to an I-KBS designer, especially in the case when the

97



system is being built by integrating readily available components. In addition to

that, changing of the internal structure of a problem solver that is being used in

several l-KBSs leads to an avalanche of changing code and/or knowledge in all

co-operating problem solvers.

Constant trade-off between ease of implementation, ease of maintenance,

and ease of re-use drives the I-KBS designer to choose the most appropriate

integration structure. The described approach leans towards the black box point

of view at the unitary problem solver, therefore excluding Gray Box structures

from the list of alternative solutions to an integration problem. Consequently,

implementational framework that supports the development of l-KBSs using the

described approach drives the designer to use Large Black Box or Multiple Black

Boxes solutions to the integration problems. Yet, it is possible to escape to the

Gray Box architecture using legacy implementation of MRD and HC.

98



6. ILLUSTRATED APPROACH

To better understand the advocated approach it is helpful to walk through

the process of building an l-KBS step-by-step using the developed Shell for

Constructing Integrated Knowledge-Based Systems (S-Force). As an example, I

will use the simplified problem statement for Socharis: to generate a family of

applicable conceptual manufacturing plans from a conceptual description of a

composite assembly. The knowledge-based kernel of this system deals with the

problem of selecting, instantiating, and estimating a number of modern

manufacturing technologies used to produce composite parts and consists of

more than thirty unitary problem-solving modules. To make a walk through the

system building process using S-Force readable I will limit the number of

technologies that are considered for instantiation to Hand Lay-up and Resin

Transfer Molding (RTM). In addition, I will reduce the number of estimation

metrics to Part Turnaround Time and Tooling Cost metrics. Such limiting by no

means lessens the control complexity of the l-KBS but instead it only reduces the

number of problem-solvers that are being governed by the similar control and

mapping structures. The description of full version of re-designed Socharis can

be found in Section 6 and Appendix B.

Similarly to the original, the problem of Socharis* - an abridged Socharis -

is divided into three major parts: the technology selection, the technology

refinement, and the technology estimation. At the first stage Socharis* chooses

the manufacturing process according to the description of the composite part:

99



shape, material, tolerances, etc. Then, if RTM and/or Hand Lay-up technologies

are selected, Socharis* sets the manufacturing parameters suitable to

manufacture the composite part (multiple results are likely). Finally, for each of

the parameterized manufacturing technologies, Socharis* calculates normalized

metrics for the part’s turn around time and the tooling cost to help the designer to

decide between multiple alternatives.

The number of GT-based problem-solvers was developed to solve

different subtasks of the overall Socharis’s problem. All separate problem-

solvers were built using a consistent ontology of manufacturing with composite

materials constructed as a part of the Socharis project. A list and short

description of problem-solvers that are re-used in this example are shown in the

 

 

 

 

 

 

   

Table 5

Name Type Responsibilities

OperationSelector Hierarchical select manufacturing technology

Classifier

RTMRefiner Multiple Routine Set parameters for the RTM process

Designer

Lay-upRefiner Multiple Routine set parameters for the hand lay-up

Designer rocess

Part'l'l' Multiple Routine calculate metrics for the part turn

Designer around time

ToolingCost Multiple Routine calculate metrics for the cost of tooling

Designer used to manufacture the part
 

Table 5. Problem-solvers, participating in Socharis *.

Building of an l-KBS using S-Force is done in stages, by constructing

three models:

100

 



 

6|

“A

W



1. Task-subtask decomposition model or problem-solving hierarchy that shows a

recursive division of the problem into smaller problems that could be tackled

by unitary problem-solvers.

2. Functional Model that shows a function (or a role) of each part of the l-KBS in

the problem-solving process.

3. Information-Processing Model that shows how information (variables and

control) is used and is passed between the different parts of the l-KBS.

In the following sections, I will describe the steps that the developer of the

l-KBS takes to build these models and completes l-KBS in the S-Force

environment.

6. 1. Building the PS Hierarchy

The first step in building of an l-KBS using the developed shell is to

construct a decomposition of the l-KBS into PS-subPS hierarchy: problem-

solving hierarchy (PSH). This PSH is not a functional l-KBS, but rather a model

of it that shows all available parts of the l-KBS organized in the meaningful

clusters. These clusters represent task-subtask decomposition of the problem as

it had been elicited from the field expert. Another way to look at PSH is that the

solution of the problem defined for a node in PSH depends on the solution of its

children (but may depend as well on the solution for other nodes). However, the

actual order of subtasks’ execution and the restrictions on variable passing are

defined in other models: functional and information passing.

101



6.1.1. Socharis* Example

The problem-solving process for Socharis* could be divided into three

parts: Technology Selector, Technology Refiner, and Estimator. Two latter also

are divided into smaller parts: Lay-up Refiner and RTM Refiner, Tooling Cost

Estimator and Part Turnaround Time Estimator respectively. This decomposition

reflects problem-solving procedures usually performed by the manufacturing

engineer while assessing alternatives for the part production:

1. Assess all possible spectrum of applicable technologies.

2. Consider possibility of altering different parameters. It is possible that one

needs to consult different experts to set the correct parameters (in our case

RTM and Hand Lay-up experts. )

3. Evaluate choices according to the set of pre—defined metrics. The set of

metric has to be pre-defined and normalized in order to provide fair estimation

of alternatives (e.g. Tooling Cost and Part Turnaround Time).

To start working in the S-Force environment, the I-KBS designer launches

a correspondent VisualWorks image FRIPS. then clicks on the F button in the

launcher toolbar to start Generic Task Integrated Toolset. Figure 11 shows the

cascaded set of interfaces that guide the user through the process of creating

new l-KBS:

1. Select PS -) New from the menu bar

2. Enter the name of the new l-KBS

O
D

. Select the type of problem-solver "FRIntegratedProblemSolver"

4. Click 0k

102



Following, the designer creates the root of the hierarchy and subsequently

adds subs to it in the "FR -) Device Hierarchy" editing window. Addition of

a root is done by selecting "Relation -) Add root" from the top menu

followed by entering the name of the node in the correspondent dialog window

(Figure 12). PSH can have multiple roots if this is required by the particularities

of the problem at hand.

 

 

F:

‘ PS My 1123134” '

Choonotholypodl’loblomsmm

M11:31:09¢n

 

 

 

Name or new Ploblom Solver: < Fm”

Tr cw“ " 4' ‘ :.:._' 9‘14 -

Lunch I i '

  
 

 

 

Figure 11. Cascaded set of interfaces guiding the developer through the

rocess of creating new I-KBS

 

  
 

 

 

 

Socharis Refiner

__—J: What I: the name of the sub device 2

T_e—_chnologySe I Mal

i_iflfli
I."

Figure 12.Addingasub tothe node of PSH        
103



Attaching subs to a parent node is done by action-clicking11 on the node

where the sub is to be added, selecting Create Sub Device from the pop-up

menu and entering the desired name (Figure 12Figure ).

 

 

 

 

Part TT £311me A
l

Estimator|<

Tooling Cost Estimator] ‘

1 Example Socharis] W

Layup Refiner I

Technology Selector |\ i

i

RTM Ret'nerl

 

 

 

 

  \
l

 

\I I/

Figure 13. Problem-Solving Hierarchy of Socharis *

   
 

Figure 13 shows complete PSH of Socharis* that mirrors task

decomposition described earlier in this section. However, it is impossible to

make any conclusion about run time order of activation of PSH nodes. This

order is determined through functional and information passing models

6.2. Functional Model: Assigning Functionality to the Nodes of PS

Hierarchy

The next step in building an l-KBS is to define the Functional Model for its

every part. Traditionally the list of behaviors' types consisted of “by Knowledge”,

“by Definition”, “by Function of Device”, and “by Behavior of Device”. l

augmented this list with the “by Problem-solver” type that allows associating a

GT-Based problem-solver with a particular node of PSH. This behavior type

 

n Action-click is middle button on 3-button mouse or Ctrl + right button in Win X environment, or

command Click in Macintosh environment.

104

 



enriches the current implementation of FR modeling framework by allowing

complex problem solving procedures being executed at the unitary device level

instead of simple one-step operations. The distinction between types of

behaviors is explained in Table 6.

 

Type Description

 

By Knowledge Unitary behavior. ls based on the common to particular

domain knowledge.

 

By Definition Unitary behavior. ls based on the domain definition of

particular device.

 

By Function of Device Complex behavior. Calls other device’s function

 

By Behavior of Device Complex behavior. Calls particular behavior of another

device.

 

 
By Problem-solver Unitary behavior. Calls an associated with the node GT-

based problem-solver  
 

Table 6. Description of types of behaviors employed in Functional Model

of l-KBS

To facilitate l-KBS building and maintaining, every node of PSH is

associated with a variable - <node name> Number (stage counter) - which

serves as a counter of problem—solving stages. This helps in supporting

necessary bookkeeping as well as marks the meaningful milestones. As a rule,

before the node is activated for the first time during problem-solving process, the

value of stage counter is set to zero (unless otherwise specified by the system

developer or the user). Each step in problem-solving process (or state change in

traditional FR) is being marked by incrementing stage counter value. For

example, if a device A has a function an with a behavior bhA of the type "by

105



Problem-solver: psA", then the state change that occurs in the bhA

correspondent to the function an of the device A is as follows:

A Number = 0 -) by ProblemSolver psA -) Set A Number to: 1

This information can be used to check if a particular node had been

invoked during the problem-solving process and to check the status of the

problem solving in case of multiple state-changes in a behavior of a node.

On practice, the assignment of functionality is the bottom-up process. The

developer associates the unitary functions with the lower level of PSH and then,

builds the functional definitions of the upper nodes using the lower nodes

functions and behaviors as building blocks.

In this implementation, l limited the types of invoked GT-Based problem-

solvers to Hierarchical Classifier and Multiple Routine Designer to support legacy

software. On the other hand, these two types of problem-solvers cover broad

enough spectrum of classes of problem to be exclusively used in the

development of Socharis. However, as was noted earlier, there is no theoretical

limitation on the type of unitary problem-solver that could be used in the

advocated approach.

§._2.1. Socharis* Example

To define the functionality of each of the leaves of PSH the developer

performs the following sequence of actions:

1. Action-clicks on the correspondent node and chooses "Browse device"

from the pop-up menu

2. Action-clicks on the upper pane and selects "Add function" and Enters

the name of the function

106

 



 

3. Calls the behavior interface by double clicking on the added function name in

the upper pane

4. Adds behavior similarly to adding function

5. Invokes behavior relation interface by double clicking on the name of the

behavior

6. Finally, action-clicks on the Name Number node and chooses "Add state

change" from the pop-up menu and then, selects the type of the state

change link.

 

 

 

'11. swarm page». Bohaviou was:

 

 

 

 

 

 

 

5 .

Examle Socharis Refiner I . .
1 . r

t V . Relation any

v t , Bahaviors A

Technology Selector ‘ Technology Selector Number - OJ

5 sun Davim ’ A

i By ProblemSolver ‘0pemtion_saector

i ""2‘ Set Technology Selector Nutrber T01

i -. .

("I , ‘ , ~ {‘1 l     
 
 

Figure 14. Sequence of interfaces leading to behavior definition

 

Figure shows the cascaded sequence of interfaces that result in the

definition of the behavior for the Technology Selector. PS Hierarchy window

shows PSH of Socharis“. FRIPS Device window provides interface to

information about a device (in this case, to the device Technology Selector)

its functions and sub—devices. By selecting browse function (or double clicking

on a function name), the user invokes function interface: a window with title

FRIPS Function that shows all constituent behaviors of the function. The last

107

 



window - stBeh Behavior — was called from FRIPS Function. This

interface represents behavior that leads to achieving a correspondent function.

Below are the descriptions of functionality for each node of PSH for

 

 

 

 

 

 

   

Socharis*.

Device Function Behavior

Operation Select by problem-solver Operation_Selector_New.

Selector Technolog SimpleHCP Set operationSelector Number to 1

Y

Lay-upRefiner Refine by problem-solver: Lay-up.

Lay-up BasicRDProblemSolver Set Lay-upRefiner

Number to 1

RTMRefiner Refine by problem-solver: RTM. BasicRDProblemSolver

RTM Set RTMRefiner Number to 1

PartTT Estimate by problem-solver: PTT. BasicRDProblemSolver

P'l‘l’ Set PartTT Number to 1

ToolingCost Estimate by problem-solver: ToolingCost.

Tooling BasicRDProblemSolver Set ToolingCost Number

Cost to 1.   
The functionality of upper level node is assembled from the functions of

the lower level node as follows.

 

 

 

 

Device Function Behavior

Estimator Estimate by function Estimate PTT of device PartTT

Technology and

by function Estimate Tooling Cost of device

Tooling Cost Set Estimator Number to 1

Refiner Refine by function Refine Lay-up of device Lay-upRefiner

Technology and

  
by function Refine RTM of device RTMRefiner Set

Refiner Number to 1   
It is easy to change the functionality of the device by editing the

correspondent behavior. For example, to accommodate the particularities of

problem-solving process in Socharis* it is necessary to perform estimation of the

technological process right after the refining stage. Consequently, the updated

functions of Lay-upRefiner and RTMRefiner are represented as follows:

108

.
-



 

Device Function Behavior
 

 Lay-upRefiner Refine Lay- By Problem-solver: Lay-up.

 

   

up BasicRDProblemSolver Set Lay-upRefiner

Number to 1

by function Estimate Technology of device

Estimator Set Lay-upRefiner Number to 2

RTMRefiner Refine RTM By Problem-solver: RTM. BasicRDProblemSolver

Set RTMRefiner Number to 1

by function Estimate Technology of device

Estimator Set RTMRefiner Number to 2
 

Finally, the description of the functionality of the root device is described

through the functionality of its children nodes:

 

 

 
 
5*   

Device Function Behavior

Socharis Socharis by function Select Technology of device operation

Example Function Set SocharisExample Number to 1.

by function Refine Technology of Device Refiner

Set SocharisExample Number to 2.
 

6.3. Functional Model: Macroexpansion

The functional description of each node does not give the full picture of the

functionality of the overall l-KBS: to look at the full-blown Functional Model of the

l-KBS it is necessary to generate its macroexpansion. Macro-expansion is the

net (a directed graph with one or more sources and sinks) that represents causal

(and therefore partial temporal) relationships between different parts of the PSH.

There is an explicit succession in the execution of the nodes that are located on

different levels of the network: nodes closer to the source are being executed

before those farther from it. However, the execution order of the nodes that are

IOcated on the same level of the macroexpansion cannot be determined from this

109

 

 



.l

ou‘r.

v.)

(I.

5
. a.

. I).

‘

u
v

I. ’
v

p.
o

u

a /r

(r

.t

w 1. _

o \.

‘-

I

n

I?

I I

‘

v
.

"

a v

I 'l

t.



model. In addition, macroexpansion does contain neither information about

variables passing between different parts of l-KBS, nor control knowledge about

conditional nodes invocation, conditional looping, etc. The role of Information-

Processing Model described in the next section is to explicitly define this kind of

knowledge.

_6_.§.1. Socharis* Example

In order to assess the global causal story correspondent to the developed

l-KBS the designer builds macroexpansion by selecting "PS -) Build

Macroexpansion" in the menu. The macroexpansion of l-KBS Socharis*

(Figure 15) can be browsed by selecting "Browse -) Browse

Macroexpansion" from the top menu.

To better understand what macroexpansion represents, let us examine

Figure 15 more closely. This macroexpansion is read top—down (or left-to-right in

case the user flipped the macroexpansion using one of the available commands).

An explanation to this macroexpansion of I-KBS Socharis* could be given as

follows.

If Example Socharis Number equals 0 (i.e. the system has not been run

yet) and Technology Selector Number equals 0 (Technology Selector has not

been invoked before) then S-Force runs problem-solver Technology Selector

which sets the Technology Selector Number to 1 (i.e. acknowledges that this

node has been invoked once. ) According to the behavior of the Example

Socharis node, this finalizes the first stage of the problem solving process by

setting the Example Socharis Number to 1. Then the systems checks if Refiner,

110

 



 

Lay-up Refiner, and RTM Refiner have not been called yet and if this is true,

invokes the problem-solvers Lay-up and RTM. Further, after testing the

invocation of Estimator, Part TT Estimator, and Tooling Cost Estimator, the

system runs problem-solvers Part_turnaround_time, and ToolingCost. Finally,

after all nodes finished successfully the system sets correspondent <node

name> Numbers: Part TT Estimator Number and Tooling Cost Estimator Number

to 1, Estimator Number to 1, Lay-up Refiner and RTM Refiner Numbers to 2,

Refiner Number to 1, and at last Example Socharis Number to 2, therefore

finishing problem-solving process.

 

Example SocharisWfll

| l
Technoloqy Selector Number 2]

By ProblemSolver ‘Operdion_Selector' Set Technology Selector Number To3

SetExampleSocher‘isNurberTM]

Ref’nerNurnber-O

 

 

 

 

Layup RefinerW- o] RTM Refner Mmberfl
 

 

By ProblemSolver. ‘Leym' Set Laytp Refner Mariner To 1 I By ProblemSolver: 'RTM' Set RTM Refiner Number To 1J

\

Estwnetor Nimber -0

 

 

PartTTEst'thorMmeer-Ol ToothostEst'mdorNumber-OJ
 

 

» By ProblemSolver. Pat_tuneromd_time‘ Set Part TT Est‘mator further To 1J By ProblemSolver: 'Tooling_cost' Set Tooling Cost Estimator Nunber T01 I

SetEstimdorNunberTMJ SetEstrmatorNumberTo1]

 
 

SetLeyupRemeerberTo2] SeIRTMRer’nerMmeerTo2]

SetRet'nerMmberTofl sanerinermmoerroil
 
   SetExernpleSochenstberTofl

    

 

Figure 15. Detailed macro-expansion of Socharis*
 

111

 



 

This is a detailed macroexpansion that shows both, pre— and post-

assertions on <node name> Numbers. On practice however, it is more

convenient to use condensed form of macroexpansion that displays only pre-

assertions as shown on the Figure 16.

5" Macro [mention I
Emmi

 

mmmfl

l

l
TWSelectorW-OI

l

l

ByProblemSONer ‘Operuion_Selector‘SetTec
moloqy Selector WTot aTme 0|

l
me-Ol

LeytpRefnerW-OI RTMRemM

 

 By ProuemSolver: Layw' Set Leyw Ret‘ner further To 1 dTime 0| By ProblemSolver 'RTM’ Set RTM Refiner Mmber T01 atT'me 0

EMUW-O

.
PutTTEmoerber-OI

ToothostEstIIuorW-OI

1

i ByProblemSolver. Pdf_tunermjme'SetPut TT Estmotorfumer T01 nrmLo] eyprouomsaver 'Toohgjoa'Set rooingcw Est-Maw Tot dT‘mezfl I:

b—

4 /

Figure 16. Macroexpansion of Socharis*

     
 

 

6.4. Information-Processing Model

In order to define Information-Processing Model of an l-KBS it is

necessary to perform six tasks:

1. Define input and output for every node of PSH. l.e. explicitly specify all

variables that participate in a particular node prescribing whether the variable

is input, output, or neither.

2. Determine whether or not the result should be passed to an upper device in

PSH.

112

 



3. Define default values of input variables. I.e. assign values to the variables

that will be used in this node in case a user or previous problem-solving

activity has not assigned them.

4. Define mapping between different nodes. If a node takes its input values

from the other node(s), it is necessary to explicitly specify that variables of the

node take their values from a different node(s).

5. Define all preconditions to the nodes. l.e. specify qualitative, quantitative, and

existential predicates that should be satisfied in order for the node to be

activated. Qualitative and quantitative predicates are the tests on qualitative

and numerical l-KBS variables respectively. In case of multiple predicates the

system performs logical AND operation for all qualitative and quantitative

predicates. Existential predicate is the table in which the designer indicates

what variables should have values (be set) for the initiation of the node. It is

possible that a particular node could be initiated with different sets of input

variables therefore, S-Force performs logical OR operation for all existential

predicates of the node.

6. Define the node’s activation control that depends on multiple output of other

node(s). There are two types of this kind of control implemented in S-Force:

iteration on the multiple output of other node(s) or conditional activation of a

node using multiple output of other node(s) as a test expression.

Port managers introduced in this dissertation resolve these tasks through

convenient interface and automation of l-KBS building.

113



6.5. Information-Processing Model: PSH

S-Force gives two ways to define input and output information for every

node of PSH:

1. Manually: by filling database with variables as its normally done within

Generic Task Integrated Toolset and then updating port managers’ contents

from this database.

2. Semi-automatically. In this mode S-Force automatically imports variables

from the databases of cooperating problem-solvers and fills in internal

variables for the ports. The designer then adds more variables if necessary,

distributes variables into input and output variables’ lists, etc.

Semi-automatic mode takes part when the I-KBS designer associates a

behavior of a node with a particular existing GT-based problem-solver. S-Force

imports all the variables from this problem-solver, converts variable types to the

necessary standards, updates l-KBSs database with these variables, and adds

these variables to the set of internal variables of the node. After all the variables

of a problem-solver are imported into the l-KBS model, each variable is given a

flag that indicate whether this variable is input, output, or neither.

Finally, for each node of the PS hierarchy the designer identifies default

output variable: a special kind of variable that holds values of the result of the

node’s execution and whether or not this variable should be passed up the

problem-solving hierarchy.

There is no strict limitation on the direction of the variable assignment

process: top—down or bottom-up traversal of PSH. On practice, the designer

uses a mix of these strategies to see which study matches better to a specific

114



part of the PSH. Generally, it is a good idea to start with the node that is called

first in the macroexpansion, and works its way down the macroexpansion

network.

$5.1. Socharis* [gamble

Updating l-KBS’s database with variables imported from a problem-solver

is done automatically at the time the designer develops the Functional Model of

the I-KBS and uses state change link type “by Problem-solver", as was explained

in previous section. In order to access information about node’s variables it is

necessary to action-click on the node in the PS Hierarchy Window and

select Browse Port Manager as shown in the Figure 17.

The Figure 18 represents the top pane of the Port Manager

Interface for Lay-up Ref iner node that provides front end to Port

Manager’s functions for managing variables.

 

 

5” PS Hierarchy HE]E

 

Part TT Estimator] -\

Estimator|<

Tooling Cost Estimator |

Example Socharis M

vLaWP R8“ Create Sub Device

Technology Selector | Browse Device

RTM Refine

 

   
 

 

 

Browse Port Manger

l4 Inspect Ream

' Standard Operations ,

 

 

 

Figure 172. Opening Port Manager interface

 

115

 



 

 

  

 

 

    

5" Port manager for: Layup Refiner HE]B

All Variables Odput Variables

r— -

Layup Refiner ldurrme .5 __> I ltoolingLisi J

Layup Refine—i Fiesull <-. I Tool complexly

Lat/Lip Refiner l‘Itil postcuring

curing type Browse Layup Refiner Resul

martin labor

reel-Liz: 3" mm resin prepreghvet

lunchcnal rental ftiirj‘r' _ termerature

ct Md curing type
labor Md l menTechList

post-runny ILoyup Refiner ltunbt

are: 5 we 970W“ I “presswe

rrouumor .—
/ Remove I I      
 

Figure 18. Upper pane of the Port Manager Interface that allows

manipulating with the node’s variables
 

The central list is the list of all variables of the node: input, output, and

internal. By clicking on the buttons at the right lower corner of this list the user

can browse or remove a selected variable. To add a variable to the list of

internal variables the designer clicks on Add button and chooses a variable from

the database or by selecting ‘—another name—‘ from the list has a possibility

to add a new variable to the l-KBS. A variable from the central list could be

redirected to the input or output lists by selecting a variable and clicking on the

left (to transfer to the input list) or right (to transfer to the output list) arrow.

Button operation is associated with the input variables’ list. It enables

the designer to assign actions that have to be done with the variables before the

node is being activated (preconditions, defaults, mappings, and controls). The

detailed description of each of mentioned operation would be given in the next

Sections. Button Propagate Up is mostly used in the development stage when

it is necessary to propagate the variable to the upper level node (for variable

mapping purposes for example. ) To unload a variable from the input list the

116

 



designer selects it and click on the right arrow button located above Browse

input variable button.

Right hand side of the variable pane contains the list of output variables

and four buttons:

1.

2.

left arrow for unloading a selected variable from the output list

Browse to browse a selected variable

. Set Default to set the selected variable a default variable for the resulting

value of node's operation, and

. Pass result up button. This button sets the flag on the output variable

that it should be passed to the upper node after the node finished operation.

 
 

 

' I

Add l Lewaefher Resrl

Br , Toolcomplexty

   

  

 

l
  

 

 

  

    

  

 

We Doyou want to create a new variable

1 functional requremt it database? I SmallTalk Variable I

fiberList . :

depth i” E I  
Enter the name of variable

I Layup Resuli I

OK I Cancel I I

 
 

Figure 19. Adding new variable to a node

 
 

If the node functionality ls achieved through the “By Problem-solver”

behavior, then result of, problem-solver is saved in to a variable of Smalltalk type

Dictionary. In this case the designers executes the following sequence of actions

117



to determine where the result of problem-solver is being stored and how it is

being passed up.

1.

2.

Create new variable by clicking Add button and Selecting “another name‘

In the following dialog window, click on the Smalltalk variable button and enter

the name of this variable. Figure 19 shows the cascaded set of interfaces

that result in creating new variable Lay-up Refiner Result

The next step is to move this variable to the output variables’ list. This is

done by selecting Lay-up Refiner Result variable in the list of all variables and

clicking on the right arrow at the upper right corner of the all variables’ list.

Then, it is necessary to make this variable the Default output variable.

Selecting this variable in the output variables’ list and clicking Set Default

does this.

Finally, if the designer decides to pass this variable up one level he or she

selects this variable and clicks Pass result up and then, selects the

output variable of the upper node where to pass the result. Note 1: the output

variable of the upper node should already exist. Note 2, if a node receives

results from more than one of its children it concatenates them, no

intermediate result is lost. Figure 20 shows the set of interfaces that result in

passing the value of Lay-up Refiner Result to the Refiner Result.

118



 
 

 

 

 

 

I. A ' - ‘ of“ v\‘

r _ ,

...r' .. M' ‘3. , . "‘9.“ ,. ...I.‘

I o

 

 

WWW . Choose the Port to map to:

 

 

 

 

 

 

Figure 20. Passing the result variable up one level

 

The description of input and output variables for port manager for Lay-up

Refiner is shown in the Table 7.

 

Input Variables Internal Variables Output Variables

 

 

Lay—up Refiner Number Lay-up Refiner Number Lay-up Refiner Number

Lay-up Refiner Ctrl Lay-up Refiner Result Lay-up Refiner Result

Depth Lay-up Refiner Ctrl curing type

FiberList curing type labor

Functional requirements depth postcuring

Geometrical Complexity FiberList pressure

Production functional requirements resin prepreg/wet

ResinList Geometrical Complexity temperature

Size labor Tool complexity

Surface Quality postcuring toolingList

Tolerances pressure manTechList

production

resin prepreg/wet

ResinList

size

Surface Quality

temperature

Tolerances

Tool complexity

toolingList

manTechList  
 

Table 7. Variables of Lay-up Refiner Port Manager.

119

 

 



All variables but Lay-up Refiner Ctrl, Lay-up Refiner

Result, Lay-up Refiner Number, and manTechList are the variables

from the correspondent problem-solver Operation_Selector_New.

SimpleHCPS. Lay-up Refiner Result contains the result of the execution

of this node. In this case, it will hold the name of the established specialists of

hierarchical classifier. Lay-up Refiner Number is a bookkeeping variable

that helps keep track of PS stages. Lay-up Refiner Ctrl is the control

variable that controls the execution of this node. Finally, manTechList is the

output control variable that holds input control value that activated this node.

Descriptions of input/output/internal variables of other port managers for

Socharis* can be found in Appendix A.

6. 6. Information-Processing Model: Input and Output

Default values of input variables are used in cases where an existential

predicate requires the presence of this variable but it was not supplied to a node.

This feature of S-Force gives the designer an ability to develop robust systems,

which are able to work with incomplete data. However, it is not a necessary step

in the l-KBS development and might be skipped.

6.6.1. Socharis* Example

To access an interface that allows various manipulating with input

variables including definition of default variables the designer clicks on the

operation button. This opens the bottom pane of the Port Manager

Interface (Figure 21). At the lower right corner of this pane located the

Default Values interface: a table with the left column containing all input

120



variables and right column representing their default values, where question

mark (‘?’) means undefined.

If the designer wants to set a default value for a variable he or she:

1. Clicks on the row in the Default Values table containing the desired

variable

2. Selects the default value from the pop-up menu

3. Clicks Ok

To reverse default values to undefined state the designer clicks Set to

‘undefined’ bunon.

It is important to exercise caution in using this feature. If used improperly

it could mask problems in the I-KBS architecture such as gaps in variable

mapping. In fact, it is better to develop the system first without employing default

values’ tables and only then add them.

Figure 21 shows that the default value for Res inList variable of Lay-up

Refiner node is set to DGEBA. This means that if the value of Res inList was

not set by previous problem-solving activity it will be set to DGEBA.

121



 

 

 

  

 

 

 

 
  

 

 

 

       
 

 

 

 

 

 

 

)2 Port manager [or Layup Rulrrrcr

hpu Variable: NI Variables 7 Output Variables l

tberLlst A <.. I Eeyup Refiner Name I: n) I empereture .i

Layla: Bother Name Layup Refiner 6142qu <.. I Layup Ref’ner Nanbt

Tolerances Layup Refiner Ctrl manTechList

Layup Refl'rer Ctrl curing type Browse J ooimList

GeornetricalCompIext‘ dept“: pressure

proclrction fiberList 5" 0““ l Layup Ref‘ner Result

functional reqtiemerr _q) functional requiremen _ Tool cornplexiy

depth —J Geometric at: ornplertrt‘ h“rm '43 I postcuhg

resinList Browse I labor Md I law

size ' postcuring rash preprenget I

SufoceQudy mm I pressure 9'0“" l citing type

_II PrW. Up I production I Remove I 7

Preset-rations WtWU”

iQudtdive

Qua'tldive

Exidence

WW I

l 5‘ to Wharf |

 

   
Figure 21. Interface for definition of default values of input variables

 

6. 7. Information Processing Model: Mapping

The next task is to specify how the information flows from one node of

PSH to another during the problem-solving process. That is, to determine

variable mapping between different parts of PSH. S-Force gives the ability to do

so by using Mapping feature of Port Managers.

Any node could receive information from many different sources during

the problem solving. Moreover, depending on the problem-solving context a

node could receive different kinds and type of information from the same node at

different times. To accommodate this, S-Force enables the designer to create

multiple variable mappings. At run time the mapping works as follows: once the

122

 



node is reached during the problem solving, S-Force iterates over the list of

mappings and fills the values of all the variables that are defined there.

There are two things that the l-KBS developer should keep in mind while

mapping variables from one node to another:

1. Both variables (source and destination) should be defined using the same

working ontology. Failure to do so will lead to a non-functional l-KBS since S-

Force does not have enough information to translate the values. One of the

solutions to this is to create translator problem-solver and map the variables

through it.

2. If the mapping to be done from multiple output of a particular node then it is

necessary to appoint a variable that would control mapping from this multiple

output. The exact procedure of how to use multiple outputs to control a node

is described in the Section 6.9.3 (RD Control).

6.7.1. Socharis* Example

After clicking the operations button in the Port Manager’s window the

designer accesses the interface that allows manipulating with input variables of

the node before the node’s activation (Figure 21). To start working with

mappings the designer clicks on the Mapping button, which calls mapping

managing interface in the middle of the bottom pane. Then, to create mappings

the designer repeats the following sequence of actions for each desired mapping:

1 . Clicks on the Add button

2. From the appeared list of ports managers associated with every node of PSH,

the designer selects the port manager to make mapping from (source port).

123



3. Enters the suffix (usually a number) to differentiate between multiple

mappings from the same port and clicks 0k.

4. The interface that allows defining a mapping is similar in feel to the Default

Values interface. That is, by clicking on the row containing the name of the

destination variable in the left column the designer calls list of all available

source variables from the source port.

The Figure 22 shows the cascaded set of interfaces that result in addition

of mapping RefinerPort@1 for Lay-up Refiner Port Manager (a

destination) from Refiner Port Manager (a source).

 

 

 

    

 

 

 
   

 

.,

. Layup Ret'ner Reed! ?

W I iRTM RefnerPort Layup Refner Ctrl 7

mnemm Emerarlflxlorthismappha c . W 7

‘ lwI M“. 2.    
l
l

l

l
l

I

 

 

 

 

      

  L Figure 22. Adding of mapping

 

124



Lay-up Refiner node has two mappings:

1. One from Refiner node: all input values necessary for running the Lay-up

multiple routine designer.

2. Secondly from Technology Selector node. This mapping indicated that

input control variable of Lay-up Refiner is to be taken from output variable

TSResult. The detailed description of setting up this kind of control is given in

the Section 6.9.

The designer can also delete and edit a selected mapping by clicking on

buttons Remove and Edit correspondingly.

6.8. Information Processing Model: Preconditions

One of the roles the Port Managers play in an l-KBS is the setting and

testing the preconditions. This role is inherited from the precondition clause of

the traditional FR. The precondition clause usually contained a set of qualitative

and quantitative predicates, all of which should be satisfied before the node is

allowed to be executed. Meanwhile, the described framework augmented the

precondition clause with a new kind of precondition: existential predicate.

Existence predicate contains names of input variables whose presence is

necessary for running the node. This ensures that the node with multiple

functionality and/or behaviors each of which uses just a subset of the data runs

as soon as it receives enough data to execute some of its paths.

6.8.1. Qualitative and anntitative Predicates

Qualitative predicates are designed to test l-KBSs variables that take

value from a predefined collection of legal values, whereas quantitative

125



predicates test the values of l-KBSs numerical variables. A test expression for

quantitative precondition may include complex formulas that could contain other

l-KBSs variables. One important thing to remember while writing testing

formulas for quantitative predicates is that precedence of arithmetic operations in

these formulas is governed by the Smalltalk laws: all formulas are read left to

right and no implicit precedence is stated (that is 2+3*5 = 25. )

§.8_.2._I_Existential Predicates

As it was mentioned earlier, existential predicates are used to specify sub-

sets of input variables that should be set in order for the predicate to be satisfied.

If there are more than one existential predicate defined for a particular port

manager, then the collection of existential predicates is satisfied if either of

members of this collection is satisfied.

In addition to the function of activating the node whenever it has enough

defined input variables to activate some of the behaviors, existential predicate

play another important role. In a case when the node is called but there is not,

enough information to run the node S-Force uses existential predicates as a

template to fill in values of input variables from the default values table.

6.8.3. Skocghafls' Example

To access interfaces for manipulating predicates the designer selects a

Qualitative, Quantitative, or Existential from the predicate types list

located in the upper left corner of lower pane of Port Manager Interface as shown

in the Figure 23.

126



 

 

 

Delaut Values 

SYM33830Pre A

Surface

Refiner ?

fiberList

Refiner

 

 L
_
_
_
_
H

  \
L

 

 Add I Remove I Browse I

 

Sdto 'mddinod’ I

 

  
Figure 23. Predicate types list located at the upper left corner

 

 

 

 

 

W“ SYM3383OPre IS.

[a

 

Variable Mater Value

resbllst —‘I ~' __.I unknown -JI 

     
Figure 24. Qualitative predicate interface

 

 
 

After the predicate type is selected, the central window shows the list of

defined predicates of this type. The designer can add new predicate, remove, or

browse selected predicate. To add a qualitative predicate the l-KBS designer:

I. Selects Qualitative in the predicate types list

2. Clicks Add in the central window

127

 



. In the appeared interface (Figure 24) the designer selects a qualitative

variable from the Variable drop list, equals on not equals sign from the

Operator drop list and a desired value of this variable from the Value drop

list.

. Clicks Ok

To add a quantitative predicate the I-KBS designer:

. Selects Quantitative in predicate types list

. Clicks Add in the central window

. In the appeared interface (Figure 5) the designer selects a Quantitative

variable from the upper left Variable drop list, equal on not equals sign from

the Operator drop list. In the right hand side calculator the designer enters

the necessary formula using the Variables drop list to enter variables in the

formula (operator precedence agrees with Smalltalk standards).

. Clicks Enters and 0k

128



 

 

. _———————————'————————_———h

WW“ 5” Quantitative Predicate Node Browser HEB I

fuurorrel reqriemen

Tolerances

prochrction

 —rl- elf
 

Vow. Opener I

 

 

   
  

liliJilil—me

Guardians——l

k
—
w
-
.
w
w
‘
~
-
M
—

.
.
a
—
o
-
fi
-
-
.
—
-
’
~
—
n
-

.
F
~
.
_

 

 

 

Figure 25. Quantitative predicate interface

 

To add an existential predicate the l-KBS designer:

1. Selects Existence in the predicate types list

2. Clicks Add in the central window

3. In the Existential predicate interface (Figure26) the designer clicks on the

rows that contains necessary variable therefore changing "2’ (not needed) to

‘*’ (should be set)

- 4. Closes table

129

 



 

 

 

 

 

 

 

   
   

 

 

 

 

 

 

”1......St" lily ; Exrstence Predicate BE

Loyw Refiner Ctrl resinList * J

Layup Refiner Nurnbe depth a

GeometricalCornplexlt' L R f' Ct I 7

functional requiremen 8WD 3 mar r '

Tolerances functional requirements '

production Tolerances ‘

7 SurfeceQuality '

GeometricalComplexity '

'- production .

fiberLIst "

Layup Refiner Number ?

I

size

 

 

      
Figure26. Existential predicate interface

 

6.9. Information Processing Model: Activation Control

Predicates’ mechanism allows testing preconditions for single valued

variables and does not account for multiple results and multiple valued variables

that are produced by problem-solvers employed in an l-KBS. However, it is

highly desirable to have this feature to enhance the control over the l-KBS's

execufion.

S-Force operates with two basic types of GT problem-solvers, each of

which could produce multiple results: Hierarchical Classifier (HC) and Multiple

Routine Designer (MRD). Hierarchical Classifier results in a set of parameters

with values: ‘matched’, ‘neutral’, ‘against’, etc. These values correspond to the

HC’s confidence of how a particular parameter fits to the situation described

through input variables. MRD’s output is a collection of sets of instantiated

130

 

 



parameters. Each set of this collection represents a valid solution to a given

problem. It would be reasonable to allow the designer of an I-KBS to use these

output to control the problem-solving process by either iterating over the MRD’s

output or selecting a next part of l-KBS to activate based on HC’s output.

In addition to above S—Force enables the designer use boosting, i.e.

combining the results of a number of problem-solvers into a single result by

selecting the results intersection (in a set theoretic notation). This technique is

widely used in the many areas of artificial intelligence including machine learning

(Schapire, Singer et al. 1998; Schapire and Singer 1998). In S-Force’s version,

the designer can perform boosting of results of several hierarchical classifiers.

This technique saves the time at the knowledge acquisition stage by allowing

solving a given problem using different perspective in the multitude of problem-

solvers in cases when the structure and knowledge architecture of a single

problem-solver (that considers all aspects of the problem) is complex or unclear.

6.9.1. HC Control

The result of Hierarchical Classifier (HC) is the list of its leaf specialists

with their respected established values (e.g. matched, neutral, against).

Hereafter, I will refer to all the specialists with values ‘matched’ as established

specialists.

It is often the case that the further l-KBS execution depends on the

established specialists (e.g. a particular HC selects one or several named parts

of an I-KBS to execute next. ) This behavior is very useful in implementing and

modeling blackboard like mechanisms in an l-KBS, where the context defines

131



activation of the next module at the run time. S-Force enables the designer to

use this kind of control over the I-KBS behavior in the run time through the HC

Control. The designer creates a special input variable (a control variable) that is

being mapped to from the source node - the node that produces multiple result.

Then this control variable is associated with a set of values. When at least one

of these values are matched to one of the values that are mapped from the

source node the current node will be activated. To finalize definition of the HC

control the designer should designate a variable that will keep the value that

caused the activation of the node. This helps to keep current problem-solving

context up-to-date.

While the HC control is most suited to be used in adjunct with Hierarchical

Classifier type of problem-solver it can also be used with any node that produces

multiple results similar in nature with the result of HC. The use of the HC control

with the booster is one of the examples of such operation (Section 6.9.5).

6.9.2. Socharis*Exalee

In the described example, the Lay-up Refiner node is being activated if the

. Technology Selector node is HC Operation_Selector_New. SimpleHCPS

has Lay-up as one of the established specialists. In previous section, I showed

how to use the Lay-up Refiner Port Manager to execute mapping from a

node to a node of PSH. The Figure 27 shows the mapping of the resulting

variable of Technology Selector TSResult to Lay-up Refiner Ctrl.

132



 

 

 

 

 

   
 

'0F Illons ; Variable Mapprng

, ., ,._-i::_. 3' 7 .i

waive .

mm Refiner Reset ?

Existence Ctrl ‘

?

ll '00 I I

Cartel J       

Figure 27. Mapping of HC Input Control   
The designer assigns the control and appoints the variable that will hold

the value that activated the node as follows:

1. Adds new variable from l-KBS’s database manTechList and transfers it to

the output variables’ list (this variable will hold the value that activated the

nodel

2. Adds new SmallTalk variable Lay-up Refiner Ctrl and transfers it to the

input variables’ list (this variable will hold values mapped from the other

node)

3. Clicks on the operations button to access input operation interface.

4. Creates mapping from port Technology SelectorPort — Technology

SelectorPort@l — as described in Section 1. 7. 1 and maps the variable

Lay-up Refiner Ctrl from TSResult.

5- Clicks on the Control button. Then clicks the Add button and selects Lay-

up Refiner Ctrl from the list of available control variables and click 0k

6. Selects Lay-up Refiner Ctrl and clicks the HC control button

7. Clicks Yes to confirm choice of established specialists from the list.

133



8. Selects TSResult from the list of result variables of Technology

Selector Port.

9. Selects Lay-up from the list of available leaf specialists and clicks OK, then

clicks Cancel to stop selection.

9.1.lf the designer needs to select more then he or she specialist repeats

step 8 until he or she selects all necessary specialists, then clicks Cancel

9.2.lf the designer wishes to input names of specialists by hand, he or she

can do it by selecting No at the Step 7 and then entering desired values

by hand using ‘%' as delimiter.

10. From the list of output variables of current port selects variable where to send

the value that activated the node. In our case manTechList.

The set of cascaded interfaces in the Figure results in the assigning HC

control to the Lay-up Refiner Ctrl. This control will be satisfied if

TSResult will contain Lay-up as one of the established specialists.

6.9.3. RD Control

RD Control is associated with the typical multiple routine designer output:

a collection of sets of design parameters with established values. One can

expect to have the system iterate over the collection of the parameters using

each set in problem solving to explore the solution space.

In S-Force the designer is able to set this kind of the control of the node by

mapping output variable of a node producing such kind of result (e.g. a node

whose behavior is linked to a multiple routine designer) to an input control

variable.

134

 



 

 

 

 
 

 

  

 

  
 

 

 
 

            

  

: II I. .. A

W
, 1)

mm

, a 31¢: ti}? ‘2";

Use cushioned specialists of tho ml:

med port own: control? :

r ?

IL] _"°_l
‘7 L" I

x m

 

 

cmwmmmmmu—El new.” 1
I

.1133 Choosetestmwanceltoon

Musicn " toholdthouhndthecommt

EM -332.le

 

 

 

    

 

 

 

 

Figure 28. Adding HC Control

 

Similar to the HC Control, the RD Control can be used not only with the

nodes whose behavior is achieved through the MRD problem-solver. In fact, the

result of any node can be used to control iterations if this result complies with the

structure of the output of MRD node.

It is important however to take care of variable naming and used ontology.

That is the names of the parameters in MRD output sets should correspond to

the names of the input variables defined in mapping. The same is true for the

used ontology: ontologies of the source node and the destination node should

agree in the variables used for mappings. Otherwise, the problem-solving

process would be compromised.

135

 



 

 

Output Variables

,—

resin prepregMet A

<-. labor

curing type

3'0““! J temperdure

Layup Refiner Numb:

3" ”“3“" I manTechList

toolingList

pressure

Tool complexity

postcuring

‘J'c.

 

Passrcsuup I
 

      \
l

  
Figure 29. Output Variables of Lay-up Port Manager

 

6.9.4jochajis’ Example

The assignment of the RD Control to an input control variable is relatively

straightforward task. In our example Tooling Cost Estimator should run for all

sets of parameters set by either or both Lay-up Refiner and RTM Refiner nodes.

The following sequence demonstrates how the l-KBS designer creates a RD

Control from the Lay-up node to the Tooling Cost Estimator node.

1. Confirms that Lay-up Port Manager’s list of output variables includes all

necessary information: all Lay-up. BasicRDProblemSolver output variables

and the node’s designate output variable that holds the result of MRD run

(Figure 29)

2. Creates new SmallTalk variable tceLay-upCtrl for Tooling Cost Estimator port

manager and transfers it to the input variables’ list.

3. In port manager for Tooling Cost Estimator creates new mapping Lay-up

Refiner Port @1 as shown in the Figure 30. Notice that the designer maps

not only the variables that are needed for the run of the MRD associated with

136

 



the node, but also the control variable. Again, it is important to have Lay-up

Refiner resulting variables match Tooling Cost Estimator input variables

compliant in names and ontology

 

 

 

 

 

    

 

 

 
 

Preconditions Mappings

. . f .819pr £le Ad |
Qualitative matinerpcfl?‘ “ l

Quantitative $5 Variable Mapping

Existence

Cost Estimator ?

manTechList manTechList

material cost ?

Tool Tool

. T cost ?

Mapping I

cm I Result

 

‘ Ctrl

RTm Ctrl   
Figure 30. Mapping of Lay-up Result onto Tooling Cost Estimator input

and control variables
 

1. The next step is the assignment of the RD Control to the tceLay-upCtrl

variable. To do so the designer accesses operations Interface and clicks on

the Control button to invoke control manipulating interface.

2. Clicks Add button and select tceLay-upCtrl from the list of available variables.

3. Selects tceLay-upCtrl in the central window of operations interface and clicks

RD Control.

4. Select Lay-up Refiner Port Manager from the list of available ports to specify

that control is indeed passed from the Lay-up Refiner Node.

137

 



6.9.5. Boosting

Combining the results of several different problem-solvers working on the

same task from different perspectives proved an effective technique; this not only

saves the time during the knowledge acquisition stage, but also tends to

outperform a traditional approach. This method of combining the results is called

boosting.

S-Force employs a form of boosting that allows taking the results (in form

of lists of values) of two nodes and combining them by finding their intersection.

By applying this procedure iteratively, one can perform boosting for multiple

nodes.

6.9.6. Socharis* Example

Socharis* does not use this capability of S-Force, however in the original

project this feature was used when the result of two Technology Selectors were

combined to prune the list of applicable technological processes. Each

Technology Selector chooses a list of appropriate manufacturing processes

depending on: first - part geometrical and functional description; second - part

material.

To assign a node to a booster function it is necessary to perform the

following steps:

1. While defining behavior of a booster node, define state change as “By

Definition” and enter ‘of booster’ in the input field.

2. Open port manager interface of this node and create three Smalltalk variables

listl, list2, and resulting variable. Note, naming list1 and list 2 is

obligatory

138



3. Transfer listl and list2 to input list, resulting to output list

4. Make resulting variable a default output variable

5. Make two mappings from port managers corresponding to two nodes that

produce results for boosting. Map output variables of these nodes to listl

in one mapping and to list2 in another

The result of booster node is similar in nature to the output of the node

associated with HC: list of established specialists. Therefore, it can be used in

another boosting operation.

6. 10. Final Remarks

After the l-KBS developer built three models: problem-solving hierarchy,

Functional Model, and information processing model, he or she can run the

system by creating a new case (an instantiated set of I-KBS’s input variables)

and selecting PS 9 Run from the S-Force Launcher window. The result of

problem-solving process could be browsed by selecting Inspect Result in

action-click pop-up menu for every node in PSH. If designed correctly then the

global result will be located in the root of the PSH.

6.10.1. Meme of noggs’Jactivation and mapping seguence

To build a fully functional l-KBS it is necessary to understand how S—Force

works while running an l-KBS. The run of an l-KBS is a breadth-first traversal of

the macroexpansion with performing precondition check, mapping, and defaults

assignment. The sequence of actions that S-Force executes when it decides on

an activation of a node are as follows:

1. Check if it is necessary to perform HC, RD, or Booster control and mapping.

139

 



2. In case when no control is specified:

2.1 .Assess all input variables

2.2. Do mapping if exists

2.3. Check Existential predicate and set defaults if necessary

2.4.Test remaining preconditions

2.5. Execute node (e.g. run associated problem-solver, perform state change)

3. In case when HC Control is specified:

 

3.1.Assess mapped control values and compare them to the list of values that

activate the node

3.2. If the condition satisfied then perform steps 2. 1 through 2. 5

4. In case when RD Control is specified:

4.1 . For each sets in input MRD result collection

4.2. Map input sets

4.3. Execute steps 2. 1 through 2. 5

5. In case when boosting is specified:

5.1 . Map two input lists and find their intersection

6. Pass the result to the node up in the hierarchy if specified

7. Update l-KBS current case with the obtained as a result of the node run

values

6.1 0.2. Color-coding

While building a complex l-KBS it is important to keep track of what parts

of the system has been assigned functionality and if assigned what it is. S-Force

provides a special color coding of the nodes in PSH to quickly overview the

140



system in design. By selecting Utility -)Show 93 Types in the ps

Hierarchy window, the designer accesses the interface where the nodes of

the PSH are colored according to the specified function and/or behavior:

RD or HC is associated with a behavior of the node

the node’s functionality is achieved using “by Knowledge” or “by Definition”

behaviors

the node exhibits multiple functionality or behavior

node does not have a function associated with it yet.

Another color coding information available to the S-Force's user is the

coloring of the nodes after l-KBS run. In this case, the color of each node

corresponds to the status of node’s activation during the problem-solving

process:

no precondition is specified and node has been activated

precondition is satisfied

precondition is satisfied and internal mapping was executed (e.g. mapping

multiple routine designer's output to the input of this node)

precondition(s) is satisfied after the default values were invoked

preconditions are not satisfied

the node was not called

This color-coding enables fast tracking of gaps in functionality and

information passing in an l-KBS.

141



7. RE-IMPLEMENTATION OF SOCHARIS

The original Socharis consists of four major parts: the graphical user

interface, the ontology editor, the conceptual composite assembly structure

parser, and the knowledge-based kernel. This chapter describes how the

framework for developing l-KBSs is used to redesign the knowledge-based core

of Socharis.

The main knowledge intensive section of Socharis is the part which is

responsible for generating of manufacturing alternatives, instantiating them with

the sets of technological parameters and estimating the merits for each

generated alternative as was discussed in Section 4.2. The problem-solving

architecture of Socharis and its parts (depicted on the Figure 1) was hard coded

in Smalltalk, therefore restricting the maintenance of the system to the people

intimately familiar not only with Socharis’s problem and Smalltalk, but also with

the legacy software that Socharis is built on.

The use of S-Force, the Shell for Constructing Integrated Knowledge-

Based Systems, allows re-implementation of Socharis’s knowledge—based core

(SocharisKB) in a framework of an advocated methodology that allows the

designer and the user accessing the system, its knowledge-level architecture,

and problem-solving architecture of its components.

7. 1. Problem-Solving HIerarchy of (Te-Designed SocharisKB

Following the domain dependent decomposition of the Socharis’s problem

(Section 2.2) the Problem-Solving Hierarchy (PSH) of Re-Designed SocharisKB

(Re-SocharisKB) is divided into three major parts: Technology Selector,

142



Technology Refiner, and Technology Estimator. Represented in the Figure 1

PSH of Re-SocharisKB follows the stationary task-subtask decomposition of the

problem from the domain specialist’s viewpoint. Where each of three major sub-

problems is‘further decomposed into a number of smaller sub-problems that

could be handled by a GT-based problem-solvers or being solved through unitary

operations like Boosting.

Besides playing the role of task-subtask hierarchy, the PSH provides an

access to every part of the I-KBS through the set of functional menus as well as

enables system building and maintaining functions.

7.2. Functional Model of Fla-Designed Socharis

The macroexpansion of Re-SocharisKB (Figure 32"“) illustrates causal

order of activation of node. Particularly it shows that first, the system selects

technologies, then boosts the results of two selectors. Next, it instantiates the

selected technologies by running correspondent problem-solver and finally, it

estimates the parameterized technologies by activating nodes responsible for

running estimator problem-solvers.

 

‘2 Due to the large size of the macroexpansion, I substituted a system screenshot with its copy rearranged so

it fits the space allotted.

143

 



 

 
 

’4’ PS Hleralchy BEE

Relation UtiIity

  

GeomRep A

Labor

MechProp

OperExposure

panTT

Sk illLevel

ToolingCost

Estimator I ToollngTT

Socharis I Refiner I Compression Moldor

Selector I ilamentWinding

lnjectionMoldlng

TM

matSel

I
I
I
l
I
l
L
I
U
t

t7
5 2 i .3

"

2 3

”

opermlonSelector  selectionBoostor  \l

 l
l
L

I-J

 

Figure 31. PSH of SocharisKB

 

144

 

 



S-Force treats a macroexpansion as a network with distributed control

where every node is being invoked as soon as the system reaches the node’s

layer of the network. However, the node does testing the self-applicability

through the mechanism of port managers. Macroexpansion gives an access to

high-level information flow in an l-KBS, the level where the information is being

treated as a monolithic slug of matter passing through the device’s (l-KBSs)

Functional Model.

 

 

 
 

 

  

 

 

opemimSelecwr Number- 0 I-—¢I?y PS:'Operaion_Selecuor' Set opaumSelecror Number to I I——

I Socharis Number- 0

m By PS:'materfalTechnology' Set matSelNumber to l I'—

—~[Ref'mer Number- oI¢—-I By Definition oft‘Booster’ 5a aeleaionBoouer Numbertol IG—I relecumaower- o It-4

—uI CornpreuimMoidm‘ Numberw by”momma Momm' Set CommienMold‘ng Number lot I—-—

  
 

 
 

 

 

  

  

  

  

 

 

 

 
 

 

 
 

  
 

 

 
 

 
 

 

 

 

 
 

 
   
 

 

 
 

 

 

 

 

  

 

  

 
 

 

 
   
 

—oI FilamemWinding Number - o I_—’I By rs: 'fibmemwmamg' Set FilamentWinding Number toq—

fljecumuomm. Number - o I——uI By PS: ‘InjectimMolding’ Ser lnjectionMoldin; Number in I I-——

-OI LayupNumbet-OI {Byl’sruyup'SetuyupNumbenol I——

-uI Rennlnfision Number -0} :1I By PS: ’Res‘mlnfmion' Set Recinlnfusion NumberflI—_‘

@ firByW‘Rm'SetRTMNumbertoII-—

I 8y PS 'GeometncalRepumbility’ Set SeornRep Number to I I¢———L6eomnep Number - oIm

IByPS’Labor'SetlaborNumbenolIt IuborNumber-oIo-

IBy PS 'Mecrmicupropeniee' Set mechProperties NumberfiIfi—-'I mechProperties Number - 0 I«

I ByPS 'OpemorJarpouue' SetOpetExponue Numbato I Io————I Operaxpoaue Number-o Io-ILIW,Maw-”

IByPS'Pan_T\mmm_tirne'Set pan‘lTNumbenol I: pufTTNumber-O

I By PS ‘SkilLLevel’ Set Skilllzvel Number to I I: Eduard Number- 0 I04

I By rs ‘ToolinLCost' Set ToolingCos Number to If I ToolingCost Number - o I“

I By PS ”ToolinLWIime' serToounm Humberto l Io——I ToolinflTNumber- 0 I04
 

 

Figure 32. Macroexpansion of SocharisKB

 

7.3. Information-Processing Model of Flo-Designed Socharis

In spite of the telltale nature of the macroexpansion, it does not show all

the information necessary for understanding the problem-solving behavior of Re-

SocharisKB. Information-Processing Layer is specifically designed to show how

information is used and processed by every node of the functional model

145

 

 



therefore exposing the problem-solving behavior of an l-KBS. Port managers are

used to access the Information-Processing Model. Through the mechanism of

port managers, the designer and the user can access individual nodes, their

preconditions, mappings, and specific control.

Organization of port managers for operationSelector, RTM, and Labor

(Appendix B) nodes of PSH could illustrate three distinctive examples of control

structures that are used in Socharis.

Port manager for operationSelector indicates input and output

variables of the node as well as existential conditions and default values. This

port manager does not impose any mappings and dynamic control. That means

that this node will activate the correspondent problem-solver if the existential

predicate is satisfied. This node is directly and unconditionally mapped to

Booster node that makes it an example of the Rigid Control architecture where

the communication channels as well as the order of execution are being defined

before the system has run.

If we look at the RTM node, then besides the information about the

input/output variables and mapping we can see that the node is being controlled

by that variable rthoostCtrl which is mapped from boosterResult.

rthoostCtrl has a type of HC control, which tells us that the node will be

activated when the value of boosterResult will contain value “Resin

Transfer Molding’ designated in control field of the rthoostCtrl.

The similar control structure could be found at every node responsible for running

individual technology refiners, which directly maps to the domain-derived strategy

146



for identifying perspective technologies. On the other hand, the problem-solving

architecture of the part of Re-SocharisKB responsible for technologies’

instantiations is an example of the blackboard architecture. Blackboard is being

modeled viabroadcasting variables’ values through the communication channels.

Each refiner node (a knowledge source in blackboard terms) filters the necessary

values through the mapping and activates the respective problem-solver if the

value of the control variable triggers it.

Macroexpansion of Socharis does not show that the nodes responsible for

the estimation of a particular merit have to be executed as many times as a

number of alternatives generated by Re-SocharisKB. However, if we take a look

at the Information-Processing Model of SocharisKB (Appendix B) at one of the

estimator nodes (e.g. Labor) we notice six control variables, each responsible

for manipulating the node’s activation in case of a particular problem-solving

context. Lets’ take a closer look at the control variable RTMCtrl. This

variable is being mapped from the RTM Port from the RTMResult output

variable and contains the result (likely to be multiple result) of the RTM refiner. In

the case when the control is being handed to this node by the RTM node, the

Labor node effects the mapping of the variables using RTMPort@1 mapping and

iterates the Labor node for all values of the RTMResult. This is a clear example

of Semi-Rigid Control Architecture, where one defines the communication

channels but activation of the node and number of node’s iteration are

determined only during the run time.

147



The above instances demonstrated the ability of the S-Force to re—produce

three different kinds of control architectures (Section 3.1.1) using mechanism of

dynamic control provided by port managers within the Information-Processing

Model.

7. 4. Ontology, User Interface, Pre-, and Post-processing

S-Force does not cover problems associated with the development of

domain ontology, user interface, and algorithmic pre- and post-processing.

The development of domain ontology in every particular case is a process

where the KBS developer might use a number of available shells (e.g.

Ontolingua server tool (Fikes 1997), ProtégéWin (Eriksson, Fergerson et al.

1999)) and then parse the result in to the knowledge structure convenient for

building l-KBS. For Socharis, we developed a Manufacturing Ontology Editor

(Martinez, Lukibanov et al. 1998; Martinez, Lukibanov et al. 1999) that allowed

creating and modifying ontology of manufacturing with polymer composite

materials. This manufacturing ontology is a four-level deep class-subclass

hierarchy (Category -) Class -) Attribute -) Value) that describes a part as well

as manufacturing technology used to produce it.

Alternatively, I used ProtégéWin tool to create a similar ontology and

output it into the balanced parenthesis list that could be easily parsed to re-create

an existing ontology. However, ProtégéWin goes one step further by allowing

creating interfaces that help produce instances using the developed ontology.

These instances then can be sent to an external application for the processing.

Unfortunately, as recognized by the team of creators of ProtégéWin,

148



development of a good interface is not a problem that could be undertaken by a

general—purpose tool. The interfaces, generated by ProtégéWin are fair for the

development purposes; however, they are totally unacceptable for the end-user.

Similar reasons motivated my research to forego features of S-Force that would

allow developing the end-user interface for a front-end application and

concentrate on the development of an interface suitable for the developmental

purposes.

A particular domain— and application-dependent user interface can be

developed in a Smalltalk environment using back-end of the S-Force that

contains a list of pointers to all variables participating in the problem-solving

process. It is also relatively straightforward to write CORBA or ActiveX interface

definitions for the back—end of a developed I-KBS to use it as a server accessible

by external applications.

Algorithmic pre— and post-processing in a KBS are usually operations that

prepare input data for the l-KBS and transforming the output data for user’s

understanding. If some of these procedures are knowledge intensive they can

be imported as parts of the l-KBS. However, for the most part of these

procedures are highly domain, application, and user dependent hence, similar to

end user interface and are left out of the scope of the described research.

7.5. Dlscusslon

Chapters 6 and 7 demonstrated the possibility of implementation of l-KBS

using the framework that supports the described approach. The approach is

based on the Function-Based Reasoning theory, augmented with new functional

149

 



ontology and addition of the Information-Processing layer that allows not only

explicit assigning of input and output information for every node of Functional

Model but also defining mapping, advanced preconditions, default values, and

dynamic control.

Section 7.3 demonstrated that the problem-solving architecture of Re-

SocharisKB leverages Rigid Control, Flexible Control, and Semi-Rigid Control

architectures at different points of a problem-solving process depending on the

available information, which allows close fitting of the l-KBS problem-solving

architecture to the domain engineer problem-solving strategy and tactics.

150



8. CONCLUSION

This dissertation addresses two major problem areas consequently

divided into the number of sub-goals:

1. In the knowledge-based systems area (KBS): development of methodology

and implementing the supporting software framework for constructing

integrated knowledge—based systems.

KBS-1. Augmentation of the Function-Based Reasoning methodology that

allows functional decomposition of a real world problem using as building

blocks a limited set of types of unitary problem-solvers.

KBS-2. Addition of an Information-Processing layer to the functional modeling

methodology, which enables an explicit assignment of information and control

flow through the Functional Model.

KBS-3. Addition of the capability of describing dynamic device control over the

parts of the Functional Model of the l-KBS, therefore enabling implementation

of arbitrary distributed control structures and problem-solving units within the

l-KBS.

KBS-4. The development of a shell which supports building l-KBSs in the

described framework.

2. In the area of composite materials (CMD): re-design of the knowledge-based

core of the system Socharis whose goal was to generate a family of

applicable conceptual manufacturing plans for assemblies made of polymer

composite materials.

151



CMD—1. .Possibility of on-the-fly change in the system’s architecture, the

architecture of its components, and the knowledge content. Re—designed in

the developed shell Socharis will provide graphical interfaces to examine

every part of the system and to modify them if necessary. Modification

cannot only affect the knowledge encoded in the system, but also the control

flow that governs the order of the problem-solvers’ activation.

CMD—2. Explicit definition of the information and control flow between the

components of the system that lets the user to understand the problem-

solving strategy of Socharis. This, in turn, may be used as an educational

instrument for teaching manufacturing in polymer composites.

This chapter reports on the accomplishments and the contribution of the

dissertation research specifically covering the listed above sub-goals.

8. 1. Contributions to the KnoMadge-Based Systems Field

8.1.1. Preamble

The major KBS goal of this dissertation research was to develop a

methodology for constructing integrated knowledge-based systems. The

foundation of the proposed approach is the Function-Based Reasoning theory. A

number of qualities of the FR methodology such as explicit causal network,

hierarchical device decomposition, and the ability to arbitrary vary the level of

granularity of the decomposition prompted this researcher to consider it as the

methodology for description of the integrated problem-solving architecture. In

addition to that, application of the FR techniques to component-based software

engineering described in (Liver and Allemang 1995) justified the use of this

152



methodology to describe integrated knowledge-based systems However, the

function-based reasoning theory required certain modifications to accommodate

the specifics of the modeled subject: an integrated knowledge based system.

The main obstacles that prohibit direct application of the FR methodology

to decomposition and modeling I-KBSs could be listed as follows (Section 3.2):

o The lack of an adequate ontology capable of describing the functionality of

problem-solving units.

0 Inability to distinguish between different parts of the substance that is being

passed through the functional model, i.e. treating it as inseparable slug of

matter.

0 Weakness of the precondition clause that made it very difficult to state

complex conditions on the activation of parts of the functional model, which

adds to the absence of complex control structures within the functional model.

The additions to the current FR framework which have been proposed in

this dissertation augment traditional FR and particularly to its implementation in

the Intelligent Systems Laboratory’s legacy software package attacks these

issues by:

0 Introducing changes to the functional ontology, including functional

description of bottom-level devices/problem-solvers (Section 3.2.1)

0 Adding the notion of port managers that allow description of the information-

processing layer that directs information and control flow in an l-KBS, and

(Section 3.2.2)

153



0 Using port managers as the distributed control units that expand the notion of

pre-condition in the traditional FR (Section 3.2.2)

These augmentations allow using the FR techniques to describe l-KBS

emphasizing task-subtask decomposition and the function of each separate or

integrated component of the functional model.

Below I summarize the specific accomplishments in the areas listed

above.

8.1.2. Functional Ontology

The modification to the traditional functional ontology (Section 3.2.1)

includes description of functionality of GT-based problem-solving types. This

ontology is best leveraged when the designer attempts to approach a new

problem, which does not have a clear task - sub-task decomposition. In this

case, the functional ontology guides the designer in identifying the role of

subordinate units as one of the available problem-solving types. Moreover, it

provides the designer with predetermined configuration of input and output data,

specific for each type of problem-solver. This affects the process of building I-

KBS since types of dynamic controls explicitly depend on the type and structure

of this information. The result of multiple routine designer is a collection of sets

of parameters that would satisfy the described in the inputs requirements the

reasonable operation that could be performed on this result is consecutive look-

up. On the other hand, the result of hierarchical classifier is the list of

predetermined names with correspondent confidence value: “matched”, “neutral”,

“against”, etc. The reasonable operation on this rather output structure is to

154

 



compare it with specified a priori test expression. Therefore, the structure of the

available information may hint the KBS designer to choose one problem—solving

unit over the other.

In the-case of explicit or known task breakdown, the functional ontology of

problem solving does not play its guiding role in task-decomposition process. In

turn the designer is faced with the task of finding an available off-the-shelf

problem-solving unit capable of tackling each identified sub-task. This problem

spurs a challenging branch in the research in the theoretical and practical FR: 3

problem of concise and sufficient definition of a device and its functionality. Such

definition or a template should enable automatic or semiautomatic retrieval of a

device from the library of devices. The research toward creating such a universal

template for a device description is currently undenivay in Stanford University‘s

Knowledge Systems Laboratory and Ohio State University’s Laboratory for

Artificial Intelligence Research.

8.1.3. Information-Processing Layer and Port Managers

The most important innovation in the research reported is the introduction

of an information—processing layer to the functional model (Section 3.2.2). This

layer allows treating information flowing through the functional model as a flow of

divisible streams of data and control, rather than as an inseparable slug of

substance: a representation common for the traditional FR approach.

Information-processing layer is accessible to the l-KBS developer through the

mechanism of port managers, introduced in Section 3.2.2. Port managers

govern the inputs and outputs of every device/problem-solver in the functional

155

 



model. They are able to perform testing of preconditions, checking assertions,

assigning default values to the ports (input and output variables), map ports form

one device to another, control device’s activation, etc. Using port managers,

information flow through the functional model could be separated, unified,

mapped from one module to another, and re-directed.

Association of port managers with every device/problem-solver of the

functional model allows associating of distributed control units with every part of

the functional model. These control units enhance the functionality of their

predecessors - precondition clauses - but also enable the development

architectures with complex control structures including iteration and boosting.

8.1.4. S-Forcg_a_3hell for Develoging l-KBSs

Following the proposed changes to the FR framework, the shell for

constructing I-KBSs - S-Force (Chapters 6 and 7) — was implemented on the

basis of legacy software package (GT ITS) suitable for the development of stand-

alone or hard-wired GT-based problem-solvers. The legacy of GT ITS was the

main reason for using the GT-based problem-solvers as base-line problem-

solving units. Another consideration in favor of exploiting GT-based problem-

solvers was the fact that they have been successfully applied to the development

of the number of KBSs in the Intelligent Systems Laboratory at Michigan State

University over the last decade.

It is important to understand that in spite of use of GT-Based problem-

solvers in S-Force, the methodology developed in this dissertation does not

impose any restriction on the type of the problem-solving modules that serve as

156



basic building blocks. The main criterion is to be able to look at the problem-

solving unit as at a black box with clearly identifiable input, output, and

functionality.

S-Force provides the developer with the graphical environment that allows

on the fly designing and building l-KBSs by defining and systematically

describing three layers of an l-KBS: the Problem-Solving Hierarchy, the

Functional Model, and the Information-Processing Model (Chapter 6).

Development of an l-KBS is finished when each leaf of the Problem-Solving

Hierarchy is associated with a specific problem-solving unit. S-Force allows re-

use previously built in the GT ITS framework units as parts of an l-KBS as well as

supporting the design of the problem-solving units from scratch.

8.1.5. Practical Application of S-Force

The practicality of S-Force was studied on several examples including re-

designing knowledge-based core of Socharis system (Chapter 7 Appendix B)

and building of an exemplary tutorial system (Chapter 6, Appendix A). S-Force’s

features are proved adequate for designing and modeling integrated knowledge-

based systems. In fact, it took approximately four hours to re-design KBS core of

Socharis consisted of thirty cooperating entities, if all problem-solving units were

available in advance.

S-Force gives access to the knowledge level architecture of I-KBSs

designed in it by the means of graphical user interfaces that disclose every part

of the problem-solving architecture, functionality and internal structure of the

constituent parts of an I-KBS, and an l-KBSs information-processing layer.

157

 



8.1.6. Summry an4d Venues of Future Research

There are some implementation-level shortcomings of S-Force that should

be addressed in future research. Current implementation of S-Force does not

take advantage of possibility to distribute the problem-solving modules across the

network. However, it is possible to locate modules on the different machines and

call them asynchronously using one of available protocols and broker

architectures. One thing that has to be kept in mind is the synchronization of

results of multiple problem-solvers working on the same problem.

One of the features of port managers unexplored in the current

implementation is the possibility to post-process results of the run of the node.

The addition of the post-processing capability can considerably increase the

power of the shell to develop more complex problem-solving architectures.

To summarize the features and the capabilities of the reported in this

dissertation research towards developing methodology and the tool for

constricting l-KBSs Table 8 below compares it with the existing methodologies

and shells for building l-KBSs. The comparison is done along the lines

presented in the Section 2.2.5 that underscores the explicitness of the knowledge

level architecture, implemented control strategies, and the existence of the shell

supporting the methodology.

158



 

 

 

 

 

 

 

 

 

 

  

Explicity of Global Local Ability to handle Shell

KLA (1 - 5) control control multiple control

strategy strategy structures

BBI, BBK 1 FC SRC No Yes

PROTEGE-ll 3 FC All Somewhat Somewhat

(programming

required)

Generic Task 5 RC RC No Yes

Toolset (programming is

needed)

TIPS 4 SRC RC No No

GT SOAR 3 RC SRC No No

CommonKADS 5 SRC RC Some Several

VITAL 5 RC, some RC No Yes

SRC

CoMoMAS FC SRC No No

Conventional FR SRC RC No Yes

Augmented FR RC, SRC, RC, SRC, Yes Yes

s-Force PC PC     
 

Table 8. Comparison of the S-Force with other methodologies and shells.

The above discussion leads to the conclusion that the goals KBS-1

through KBS-4 were achieved in this dissertation.

opened new research paths that could be investigated in the future:

a Development of the device/problem-solver definition template

However, the research

- Augmentation S-Force to allow development and modeling distributed

problem-solving architectures

- Improvement of port-manager’s functionality with the addition of post-

processing.

159

 



8.2. Contributions to the Application Domain

Redesigning the knowledge-based core of Socharis using S-Force

accomplished the stated in the Introduction to the dissertation application domain

goals CMD-l - CMD-2 by enabling the direct access to the control structures

governing problem-solvers’ activation process. These control structures were

previously hidden in the Smalltalk code that disallowed effortless alteration and

augmentation of Socharis. Use of S-Force enabled the designer to directly

access the decomposition of the problem of the conceptual manufacturing

planning as it is perceived be a domain specialist. The major benefit of a re-

designed system is that the control and information flows through a problem-

solving process and are directly exposed to the designer through the graphical

user interface. Such open architecture enables the designer making changes in

the problem-solving architecture in the case of necessity to adapt future versions

of Socharis to new deployment sites.

Another important contribution of work on Socharis and re-designed

Socharis in the application domain area is the hypothesis introduced in

(Lukibanov, Martinez et. al.. 2000), which asserts that a high-level problem-

solving architecture developed for Socharis is a high-level problem-solving

architecture of the conceptual process planning task in general. Given this, the

problem-solving skeleton of the redesigned Socharis can serve as a backbone

for the process-planning intelligent systems in domains others than polymer

composite materials. It would be challenging and engaging to take on the

problem of manufacturing process planning in the area of metal- or woodworking

160

 



using the-Socharis’s problem-solving architecture implemented in S-Force as a

starting point.

8.3. Concluding Remarks

By taking the hypothesis introduced in (Lukibanov, Martinez et. al.. 2000)

- that supposes that problem-solving architecture of Socharis is, in fact, the

problem-solving architecture of the conceptual manufacturing planning - one

step further it is reasonable to suggest that there exists a number of problem-

solving architectures commonly used in the problem-solving activity. The PSMs

of Second-Generation Knowledge-Based Systems (Section 3.2) serve as

templates for building solutions for homogeneous tasks, tasks that require a

single method. In contrast, integrated problem-solving architectures can be used

to approach heterogeneous problems that are impossible to solve by application

of a single problem-solving method but rather by their combinations.

The challenge is in identifying such architectures. Extracting and

categorizing problem-solving architectures could be done only after analyses of a

great number of different tasks and approaches or by generalizing on a

successful implementation in a particular area. One of the sources where such

an analysis is possible is the Domain Specific Software Architectures (DSSA)

research (Mettala 1992) (Section 3.4.4). Five-year long DARPA sponsored

research was aimed to identify common software architecture in six different

areas:

1. Avionics Navigation

2. Guidance and Flight Director

161

 



3. Command and Control

4. Distributed Intelligent Control and Management (DICAM) for Vehicle

Management

5. Intelligent Guidance, Navigation and Control

9
’

Hybrid Control, and Prototyping Technology

Research was distributed among several contractors: IBM Federal Sector

Division, GTE Federal Systems, Tecknowledge Federal Systems, Honeywell

Systems and Research Center, ORA Corporation, and TPW. This research

resulted in the set of methodic and tools that defined specification, design, and

validation of software systems specific for each domain. One the

accomplishments of the DSSA project was the conclusion that mature software

architecture should possess three basic elements:

0 well-defined notation for capturing architectures

o well-defined methods for producing and analyzing formal models from

specification, captured in notation

- a well-defined method for producing implementation from a specification

captured in the notation.

However, no study was performed to identify similarity(s) between the

developed software architectures and processes. The reason for this is that at

that time, the researchers lacked the necessary methodology to describe the

software architecture and processes in the unified way. Nowadays, Rational

Unified Process (RUP) developed as a result of research in Capability Maturity

Model, Personal Software Process, and Object Modeling Techniques can help in

162



capturing organizational flow and architectural details. Analyzing RUP models, it

might be possible to recognize similarities in the overall organizational process

as well as software architecture. However, knowledge-intensive processing is

beyond the RUP covered area since it does not support knowledge modeling

techniques.

The information presented in this dissertation methodology provides

means to model such knowledge-intensive tasks by describing problem-solving

architectures that could be compared along three axis: problem decomposition,

functional decomposition, and information processing. This feature enables

comparison between a difference modeled in S-Force systems. Such an

analysis followed by generalization could lead to definition of a number of useful

problem-solving architectures that would serve as backbone for the next

generation of knowledge-based systems consisting of multiple cooperating

entities and featuring accessible knowledge level.

163

 



APPENDICES

164



KNOWLEDGE STRUCTURE OF SOCHARIS‘

Device: Example Socharis

APPENDIX A

Function: Example Socharis Fn

Beahvior: Example Socharis Beh

Port Manager: Example SocharisPort

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

All variables:

Example Socharis Number input output

Example Socharis Result output

Technolgqy Selector Number input

Fiber_Architecture input

size input

Wall_Thickness input

Aspect_Ratio input

Shape input

partMaterial input

Layup Refiner Number input

Tolerances input

SurfaceOuality input

GeometricalComplexity input

functional requirements input

Refiner Number input

Layup Refiner Number input

RTM Refiner Number input

Production input

Tooling Cost Estimator Number input

Part TT Estimator Number input

fiberList input
 

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

Controls:

165

 



Device: Estimator

Function: EstimatorF

Beahvior: EstimatorB

Port Manager: EstimatorPort

 

 

 

 

 

   

All variables:

Estimator Number input output

EstimatorResult output

depth input

ToolingCost Estimator Number input

Part 1T Estimator Number input
 

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

Example SocharisPorth

 

 

Estimator Number ?
 

EstimatorResult ’7
 

   depth Wall_Thickness
 

Controls:

166



Device: Refiner

Function: Refinean

Beahvior: RefinerBh

Port Manager: RefinerPort

All variables:
 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

  

Refiner Number input output

RefinerResult output

Tolerances input

SurfaceQuality input

size input

resinList input

Production ingit

GeometricalComplexity input

Fiber_Architecture input

RTM Refiner Number input

dgath input

functional requirements input

Layup Refiner Number mut

fiberList input

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Production ?

resinList ?

Fiber_Architecture *

depth *

Refiner Number ?

GeometricalComplexity *

functional requirements *

Layup Refiner Number ?

Tolerances *

SurfaceQuality *

RTM Refiner Number ?

size ”

Default values:

Mappings:

Example SocharisPort@1

Refiner Number ?

RefinerResult ?

Tolerances Tolerances

SurfaceQuality SurfaceQuality

size size

resinList partMaterial

Production Production 
 

167

 

 

 



 

GeometricalComplexity GeometricalComplexity
 

Fiber_Architecture FiberLArchitecture
 

RTM Refiner Number
9

 

depth Wall_Thickness
 

functional requirements functional requirements
 

 Layup Refiner Number  ?
 

Controls:

168

 



Device: Technology Selector

Function: SelectTechnology

Beahvior: stBeh

Port Manager: Technology SelectorPort

All variables:

Tech Selector Number

Ratio

Fiber Architecture

erial

8

size

Wall Thickness

TSResult

Qualitative predicates:

partMaterial ~= unknown

Shape ~= unknown

Quantitative predicates:

Existential predicates:

partMateriaI

Walljhickness

Aspect_Ratio

Shape

TechnologSelector Number

Fiber_Architecture

  
 

 

 

 

 

 

fi
'
0
0

I
:

t
I
'

I

 

    

 

 

 

 

 

 

 

     

size

Default values:

Mappings:

Example SocharisPort@1

Technology Selector Number ?

Aspect_Ratio Aspect_Ratio

FibertArchitecture Fiber_Architecture

partMaterial partMaterial

Shape Shape

size size

Wall_Thickness Wall_Thickness

TSResult ’?

Controls:

169



Device: Part TT Estimator

Function: Estimate PTT

Beahvior: epttBeh

Port Manager: Part ‘I'I' EstimatorPort

All variables:

Part T'T Estimator Number

CMtem

curi

FWtem re

IMtem re

manTechList

Part turnaround time

resin

resinList

RTMHeati method

size

Wall Thickness

La Ctrl

RTM Ctrl

Result

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

 

  

Mappings:

Layup RefinerPort@1\

Part TT Estimator Number 7

CMtemperature ?

curing type curing type

FWtemperature ?

lMtemperature 7

manTechList manTechList

Part turnaround time ?

resin prepreg/wet resin prepreglwet

resinList resinList

RTMHeating method ?

size size

Wall_Thickness depth

ptte Result ?

ptte Layup Ctrl Layup Refiner Result

ptte RTM Ctrl 9

EstimatorPort@1

Part TT Estimator Number ?

CMtemperature ?

curing type ?  
170

 

 



 

FWtemperature
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

 

 

   

 

7

lMtemperature ?

manTechList ?

Part turnaround time ?

resin preprenget ?

resinList ?

RTMHeatirgmethod ?

size ’?

Wall_Thickness depth

ptte Result ?

ptte Layup Ctrl ?

ptte RTM Ctrl ?

RTM RefinerPort@1

Part ‘I'I' Estimator Number ?

CMtemperature ?

curing type CurinLtype

FWtemperature ?

lMtemperature ?

manTechList manTechList

Part turnaround time ?

resin prepreg/wet ?

resinList resinList

RTMHeatingmethod HeatirLg method

size size

Wall_Thickness ?

ptte Result 7

ptte Layup Ctrl ?

ptte RTM Ctrl RTM RefinerResult

Controls:

ptte Layup Ctrl

type rdlmutControl

control name Lite Layup Ctrl

control Layup Refiner Result

ptte RTM Ctrl

type rdlnputControl
 

control name ptte RTM Ctrl
 

 control  RTM RefinerResult
 

171

 
 

 





Device: Tooling Cost Estimator

Function: Estimate Toolig Cost

Beahvior: etcBeh

Port Tooling Cost EstimatorPort

All variables:
 

Tooling Cost Estimator Number input output
 

manTechList input
 

material cost
 

Tool complexity
 

Tooling cost
 

toolinflst input
 

tce Layup Ctrl input
 

tce RTm Ctrl input
  tce Result  output
 

Qualitative predicates:

toolingList ~= unknown

Quantitative predicates:

Existential predicates:
 

manTechList
 

tce RTm Ctrl
 

ToolinLCost Estimator Number
 

tce Layup Ctrl
 

 toolingList  fi
e
O
e
r
Q
I

 

Default values:

Mappings:

Layup RefinerPort@1
 

TooanCost Estimator Number
I)

 

manTechList manTechList
 

material cost 9
 

Tool complexity Tool complexity
 

Tooligqcost
I,

 

toolingList
 

tce Result

toolingList

9
 

tce Layup Ctrl
  tce RTm Ctrl  

Layup Refiner Result

9
 

RTM RefinerPort@1
 

 

 

 

 

 

 

 

  

ToolingCost Estimator Number ?

manTechList manTechList

material cost ?

Tool complexity Tool complexity

Toolig cost ?

toolingList ToolingMateriaI

tce Result ?

tce Layup Ctrl ?

tce RTm Ctrl RTM RefinerResult 
 

172

 

 

 

 



Controls:

tce RTm Ctrl
 

type rdlnputControl
 

control name tce RTm Ctrl
 

control RTM RefinerResult
 

tce Layup Ctrl
 

tYPe rdlnputControl
 

control name tce Layup Ctrl
  control  Layup Refiner Result
 

173

 



Device: Layup Refiner

Function: Refine Layup

Beahvior: rlBeh

Port Manager: Layup RefinerPort

All variables:

La R Number

La Refiner Result

La Refiner Ctrl

curi

fiberList

functional irements

GeometricalCom

labor

resin

resinList

size

SurfaceQual

tem re

Tolerances

Tool com

tooli List

manTechList

Qualitative predicates:

Quantitative predicates:

Existential predicates:

 
 

resinList
 

depth
 

Layup Refiner Ctrl
 

functional requirements
 

Tolerances
 

SurfaceQuality
 

GeometricalComplexity
 

production
 

fiberList
 

Layup Refiner Number
  size e

.
g
e
e
e
e
e
e
g
e
e

  
 

Default values:

I resinList

Mappings:

Technology SelectorPort@1

I DGEBA

174



Refiner Number

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

7

Refiner Result ?

Refiner Ctrl TSResult

curi ?

’?

fiberList 7

functional irements ?

GeometricalCom ?

labor ?

ri ?

re ?

?

resin ?

resinList ?

runS ?

size ?

SurfaceQual ?

tem re ?

Tolerances ?

Tool com ?

tooli List ?

manTechList ?

RefinerPort@1

Layup Refiner Number ?

Layup Refiner Result ?

Layup Refiner Ctrl ?

curing type ?

depth ?

fiberList fiberList

functional requirements functional requirements

GeometricalComplexity GeometricalComplexity

labor ?

postcurirm ?

pressure ?

production Production

resin prepreglwet ?

resinList resinList

runSystem ?

size size

SurfaceQuality SurfaceQuality

temperature ?

Tolerances Tolerances

Tool complexity ?

toolingList ?  
175

 



 

I manTechList T? J
 

 

 

 

 

Controls:

Layup Refiner Ctrl

type hclnputControl

control name Layup Refiner Ctrl

output . - manTechList

control %Layup    
  

 
176



Device: RTM Refiner

Function: Refine RTM

Beahvior: rrtheh

Port Manager: RTM RefinerPort

All variables:

RTM Refiner Number

RTM RefinerResult

RTM Refiner Ctrl

Curi tern re

Curi time

Curi

FiberFormi

Fiber Architecture

GeometricalCom

Heati method

labor

Postcu ired

Production

resinList

runS

size

SurfaceQuaI

Tolerances

Tool com

Tooli rial

manTechList

Qualitative predicates:

Quantitative predicates:

Existential predicates:

 
 

RTM Refiner Ctrl
 

RTM Refiner Number
 

size
 

Tolerances
 

Production
 

resinList
 

SurfaceQuality
 

GeometricalComplexity

n
e
e
»
.
e
e
.
g
.
g

  Fiber_Architecture   
Default values:

Mappings:

TechnologpSelectorPorth
 

RTM Refiner Number ?
 

RTM RefinerResult ?
 

 RTM Refiner Ctrl  TSResult 

177

 

 



 

Curing temperature
 

Curing time
 

Curinflpe
 

FiberFormingethod
 

Fiber_Architecture
 

GeometricalComplexity
 

Heating method
 

labor
 

PostcuripgRequired
 

Production
 

resinList
 

runSystem
 

size
 

Tool complexity
 

ToolingMaterial '
Q
'
Q
Q
-
Q
'
Q
'
Q
'
Q
-
Q
N
J
-
Q
-
Q
-
Q
'
0
'
0
'
0

 

RefinerPort@1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

RTM Refiner Number ?

RTM RefinerResult ?

RTM Refiner Ctrl ?

Curing temperature ?

Curing time ?

Curing type ?

FiberFormianethod ?

Fiber_Architecture Fiber_Architecture

GeometricalComplexity GeometricalComlexity

Heatimethod ?

labor ?

Postcuring Rewired ?

Production Production

resinList resinList

runSystem ?

size size

SurfaceQuality SurfaceQuality

Tolerances Tolerances

Tool complexim ?

ToolianMaterial ?

Controls:

RTM Refiner Ctrl

type hclnputControl

control name RTM Refiner Ctrl

output manTechList

control %RTM  

178

 
 



APPENDIX B

KNOWLEDGE STRUCTURE OF RE-ENGINEERED SOCI'IARIS

Device: Socharis

Function: Socharian

Behavior: Socharith

Port Manager: SocharisPort

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

All variables:

Socharis Number input output

socharisResult output

Selector Number input

operationSelector Number input

Aspect_Ratio input

Fiber_Architecture input

partMaterial input

Shape input

size input

Wall_Thickness input

matSeI Number input

GeometricalComplexity input

production input

Compression Molder Number input

SurfaceQuality input

Tolerances input

Layup Number input

fiberList imut

functional requirements input

RTM Number input

Resin Infusion Number input

FilamentWinding Number input

inserts input
 

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

Controls:

179

 



Device: Estimator

Function: Estimation

Behavior: EstimatorBeh

Port Manager: EstimatorPort

All variables:
 

Estimator Number input output
 

 estimatorResult  output
 

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

Controls:

180

 

 

 



Device: Refiner

Function: refinean

Behavior: refinerBh

Port Manager: RefinerPort

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

All variables;

Refiner Number input output

refinerResult output

GeometricalComplexity input

production input

Compression Molder Number input

fiberArchList input

resinList input

SurfaceQuality irmut

Tolerances input

Layup Number input

fiberList input

depth

size input

functional requirements input

RTM Number input

Resin Infusion Number input

FilamentWindirlgNumber input

inserts input

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

SocharisPort@1

Refiner Number ?

refinerResult ?

GeometricalComplexity GeometricalComplexity

production production

Compression Molder Number ?

fiberArchList Fiber_Architecture

resinList partMateriaI

SurfaceQuality SurfaceQuality

Tolerances Tolerances

Layup Number 7

fiberList fiberList

depth Wall_Thickness

size size

functional requirements functional requirements

Controls:

181

 

 



Device: Selector

Function: Selectoan

Behavior: SelectorBh

Port Manager: SelectorPort

All variables:

Selector Number

selectorResult

ector Number

Ratio

Fiber Architecture

size

Wall Thickness

matSeI Number

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

SocharisPort@1

 

 

Selector Number
 

selectorResult
 

operationSelector Number
 

Aspect_Ratio
 

Fiber_Architecture
 

partMaterial
 

Shape
 

size
 

Wall_Thickness
  matSel Number  '

Q
Q
-
Q
-
Q
-
Q
N
D
-
O
-
Q
-
Q
N
D

 

Controls:

182

 

 



Device: GeomRep

Function: ngun

Behavior: grBeh

Port Manager: GeomRepPort

All variables:

Geom Number

GeometricalCom

Geom R

manTechList

resin

GeomR

RTMCtrl

cmCtrl

imCtrl

watrl

riCtrI

Qualitative predicates:

Quantitative predicates:

Existential predicates:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Default values:

Mappings:

LayupPort@1

GeomRep Number ?

GeometricalComplexity GeometricalComplexity

Geom_Rep ?

manTechList manTechList

resin prepreg/wet resin prepreg/wet

GeomRepeatRslt ?

layupCtrl lyupRslt

RTMCtrl ?

cmCtrl ?

imCtrl ?

watrl ?

riCtrI ’?

FilamentWindingPort@1

GeomRep Number ?

GeometricalComplexity GeometricalComplexity

Geom_Rep ?

manTechList manTechList

resin prepreg/wet ?

GeomRepeatRsIt 7

IayupCtrl ?

RTMCtrI ?

cmCtrI ?  
183

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

imCtrl ?

watrl waesult

riCtrl ?

Compression MolderPort@1

GeomRep Number ?

GeometricalComplexity GeometricalComplexity

Geom_Rep ?

manTechList manTechList

resin prepreg/wet ?

GeomRepeatRslt ?

IayupCtrl ?

RTMCtrI ?

cmCtrI cmResult

imCtrI 7

watrl ?

riCtrl ?

RTMPort@1

GeomRep Number ?

GeometricalComplexity GeometricalComplexity

Geom_Rep ?

manTechList manTechList

resin prepreg/wet ?

GeomRepeatRslt ?

layupCtrI ?

RTMCtrl RTMResult

cmCtrl ?

imCtrl ?

watrl ?

riCtrI ?

Resin lnfusionPort@1

GeomRep Number ?

GeometricalComplexity GeometricalComplexity

Geom_Rep ?

manTechList manTechList

resin preprpg/wet ?

GeomRepeatRslt ?

layupCtrl ?

RTMCtrl ?

cmCtrI ?

imCtrl ?

watrl ?

riCtrl riResuIt

InjectionMoldiinort@1

GeomRep Number ?

GeometricalComplexity GeometricalComplexity  
184

 

 

 

 



 

 

 

 

 

 

 

 

 

   
 

 

 

 

  
 

 

 

 

  
 

 

 

 

 
 

 

 

 

 

 

 

   
 

 

  

GeomLRep ?

manTechList manTechList

resin prepreg/wet ?

GeomRepeatRslt ?

layupCtrl ?

RTMCtrI 9

cmCtrI ?

imCtrI imResult

watrI ?

riCtrl ’7

Controls:

imCtrl

type rdlnputControl

control name imCtrI

control im Result

cmCtrl

type rdlnputControl

control name cmCtrI

control cmResult

riCtrl

type rdlnputControl

control name riCtrl

control manTechList

RTMCtrI

type rdlnputControl

control name RTMCtrl

control RTMResult

layupCtrl

type rdlnputControl

control name IayupCtrl

control Iyurfislt

watrl

type rdlnputControl

control name watrI

control waesult 
 

185

 

 

 

 

 

 
 



Device: Labor

Function: Iaboan

Behavior: laborBeh

Port Manager: LaborPort

All variables:

Labor Number

labor

Labor estimation

manTechList

l

laborResuIt

RTMCtrl

cmCtrI

imCtrl

watrl

riCtrl

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

LayupPort@1

Labor Number ?

labor labor

Labor estimation 7

manTechList manTechList

IayupCtrl lyupRslt

laborResult

RTMCtrl

cmCtrl

imCtrl

watrl

riCtrl

FilamentWindingPort@1

Labor Number

labor

Labor estimation .

manTechList

IayupCtrl

laborResuIt

RTMCtrl

cmCtrl

imCtrl

watrl

riCtrl

  
 

 

 

 

 

 

 

 

 

 

  Q
'
Q
-
Q
Q
Q
'
O

 

 

 

 

 

3
o
-
o
o
o

anTechList
 

 

 

 

 

 

Result
    '

Q
g
'
Q
’
Q
'
Q
'
Q
'
Q

 

186



 

 

Compression MolderPort@1

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

 

Labor Number ?

labor labor

Labor estimation ?

manTechList manTechList

layupCtrl ?

laborResult ?

RTMCtrl ?

cmCtrl cmResult

imCtrI ?

watrI ?

riCtrl ?

RTMPort@1

Labor Number ?

labor labor

Labor estimation ?

manTechList RTMResult

IayupCtrl ?

laborResult ?

RTMCtrl RTMResult

cmCtrl ?

imCtrl ?

watrl 7

riCtrl ?

Resin lnfusionPort@1

Labor Number ?

labor labor

Labor estimation ?

manTechList manTechList

IayupCtrl ?

laborResult ?

RTMCtrl ?

cmCtrl ?

imCtrl ?

watrl ?

riCtrl riResult

lnjectionMoldiinort@1

Labor Number ?

labor ?

Labor estimation ?

manTechList manTechList

IayupCtrl ?

laborResult ?

RTMCtrI ?

cmCtrl ?  

187

 

 

 

 
 



 

 

 

  
 

 

 

 

  

 

 

 

  
 

 

 

 

  
 

 

 

 

  
 

 

 

 

  
 

 

 

 

 

imCtrl im Result

watrl ?

riCtrI ?

Controls:

cmCtrl

type rdlnputControl

control name cmCtrl

control cmResult

watrl

type rdlnputControl

control name watrl

control waesuIt

RTMCtrI

type rdlnputControl

control name RTMCtrI

control RTMResult

riCtrl

type rdlnputControl

control name riCtrl

control riResult

imCtrl

type rdlnputControl

control name imCtrI

control imResult

layupCtrl

type rdlnputControl

control name layupCtrl

control lyupRslt 
 

188

 

 

 
 

 



Device: MechProp

Function: mpFun

Behavior: mpBeh

Port Manager: MechPropPort

All variables:

MechP Number

MachanicalP es

manTechList

resin

mechP Result

RTMCtrI

imCtrl

cmCtrl

watrl

riCtrI

Qualitative predicates:

Quantitative predicates:

Existential predicates:

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Default values:

Mappings:

InjectionMoldinLPort@1

MechProp Number ?

MachanicalProperties ’?

manTechList manTechList

resin prepreg/wet ?

mechPropResult 7

IayupCtrl ?

RTMCtrI ?

imCtrl imResult

cmCtrl ?

watrl ?

riCtrI ?

FilamentWindingfort@1

MechProp Number ?

MachanicalProperties ?

manTechList manTechList

resin prepreg/pet ?

mechPropResult ?

layupCtrl ?

RTMCtrl ?

imCtrl ?

cmCtrI 7

watrI waesult

riCtrl ?     
189



Compression MolderPort@1
 

 

 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

MechProp Number ?

MachanicalProperties ?

manTechList manTechList

resin preprpg/wet ?

mechPropResult ?

IayupCtrI ?

RTMCtrl ?

imCtrI ?

cmCtrl cmResult

watrl ?

riCtrI ?

LayupPort@1

MechProp Number ?

MachanicalProperties 7

manTechList manTechList

resin prepreg/wet resin prepreg/wet

mechPropResult

layupCtrI lyupRslt

RTMCtrI ?

imCtrl ?

cmCtrl ?

watrl ?

riCtrl ?

RTMPort@1

MechProp Number ?

MachanicalProperties ?

manTechList manTechList

resin prepreg/wet ?

mechPropResult ?

layupCtrl ?

RTMCtrI RTMResult

imCtrl ?

cmCtrl ?

watrl ?

riCtrl ?

Resin lnfusionPort@1

MechProp Number ?

MachanicalPrcmerties ?

manTechList manTechList

resin prepregiwet ?

mechPropResult ?

layupCtrl ?

RTMCtrI ?

imCtrl ?  
190

 

 

 

 



 

 

 

  
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cmCtrI ?

watrl ?

riCtrl riResult

Controls:

imCtrl

type rdlnputControl

control name imCtrl

control imResult

cmCtrl

gpe rdlnputControl

control name cmCtrl

control cmResult

RTMCtrl

type rdlnputControl

control name RTMCtrI

control RTMResult

IayupCtrI

type rdlnputControl

control name IayupCtrl

control lyuLRslt

riCtrl

ype rdlnputControl

control name riCtrl

control riResult

watrl

type rdlnputControl
 

control name watrI
  control  waesult 

191

 

 

 

 

 

 



Device: OperExposure

FuncfionzoeFun

Behavior: oeBeh

Port Manager: OperExposurePort

All variables:

Number

Fiber

fiberList

manTechList

Value

resin

resinList

Solvents&Corrosives

Toxins

oeResult

RTMCtrl

cmCtrl

imCtrl

watrl

riCtrl

Qualitative predicates:

Quantitative predicates:

Existential predicates:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

 

Default values:

Mappings:

LayupPort@1

OperExposure Number ?

Fiber ?

fiberList fiberList

manTechList - manTechList

OperatorExposeValue ?

resin prepregiwet resin prepregiwet

resinList resinList

Solvents&Corrosives ?

Toxins ?

oeResult ?

IayupCtrl lyupRslt

RTMCtrI ?

cmCtrl ?

imCtrI ?

watrl ?

riCtrl ?

FilamentWindigPort©1

I OperExposure Number I ? I
 

192



 

Fiber
 

fiberList
 

manTechList 3
0
-
5

anTechList
 

OperatorExposeValue
 

resin prepregwet
 

resinList
 

Solvents&Corrosives
 

Toxins
 

oeResult
 

layupCtrl
 

RTMCtrl
 

cmCtrI
 

imCtrl
 

watrI Result
  riCtrl  .

0
g

.
0

.
0

.
0

.
0

.
0

.
0

.
0

.
0

.
0

.
0

 

Compression MolderPort@1
 

OperEiposure Number
 

Fiber
 

fiberList
 

manTechList 3
0
-
0
-
0

anTechList
 

OperatorExposeValue
 

resinpreprefivet
 

resinList
 

Solvents&Corrosives
 

Toxins
 

oeResult
 

layupCtrl
 

RTMCtrl
 

cmCtrl mResult
 

imCtrl
 

watrl
 

riCtrl '
Q
-
Q
N
D
O

Q
-
Q
-
Q
-
Q
N
J
'
Q
-
Q
-
Q

 

RTMPort@1
 

OperExp—osure Number
 

Fiber
 

fiberList
 

manTechList 3
o
-
o
-
o

anTechList
 

OperatorExposeValue
 

resin prepreg/wet
 

resinList
 

Solvents&Corrosives
 

Toxins
 

oeResult
 

IayupCtrl
  RTMCtrI  m

-
o
-
o
-
o
~
o
-
o
-
o
-
o

TMResuIt
 

193

 

 

 

 



cmCtrI

imCtrl

watrl

riCtrl

Resin lnfusionPort@1

'
0

'
0

w
)

“
‘
2

 

 

OperExposure Number
 

Fiber
 

fiberList
 

manTechList anTechList
 

OperatorExposeValue
 

resin prepreg/wet
 

resinList
 

Solvents&Corrosives
 

Toxins
 

oeResult
 

layupCtrI
 

RTMCtrI
 

cmCtrl
 

imCtrl
 

watrl '
Q
Q
'
Q
N
D
-
Q
-
O
-
Q
Q
-
Q
'
Q
‘
Q
B

O
-
O
-
Q

 

riCtrl riResult
 

lnjectionMoldinLPort@1
 

OperExposure Number
 

Fiber
 

fiberList

9

7
I)

 

manTechList manTechList
 

OperatorExposeValue
 

resin prepreg/pet
 

resinList
 

Solvents&Corrosives
 

Toxins
 

oeResult
 

IayupCtrl

I)

I)

I)

?

9

7

7

9

 

RTMCtrI
 

cmCtrl
 

imCtrl

?

i
 

watrl
  riCtrl  m?? 
RefinerPort@1
 

OperExposure Number ?
 

Fiber ?
 

fiberList fiberList
 

manTechList
I)

 

OperatorExposeValue
 

 resin prepregiwet  
9

9
 

194

 

 
 



 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

resinList resinList

Solvents&Corrosives ?

Toxins ’?

oeResult ?

IayupCtrI ?

RTMCtrI ?

cmCtrl ?

imCtrI ?

watrl ?

riCtrl ?

Controls:

IayupCtrl

type rdlnputControl

control name layupCtrl

control lyupRslt

riCtrl

type rdlnputControl

control name riCtrl

control riResult

watrI

type rdlnputControl

control name watrl

control waesult

RTMCtrI

type rdlnputControl

control name RTMCtrl

control RTMResult

cmCtrl

type rdlnputControl

control name cmCtrl

control cmResult

imCtrl

type rdlnputControl

control name imCtrl

control imResult  

195

  

 

 

 



Device: partTT

Function: partTTfn

Behavior: partTTBeh

Port Manager: partTTPort

All variables:

TT Number

CMtem re

curi

FWtem re

IMtem re

Part turnaround time

resin

resinList

RTMHeati

size

Wall Thickness

manTechList

Result

method

rthtrl

imCtrl

cmCtrl

watrl

riCtrl

Qualitative predicates:

Quantitative predicates:

Existential predicates:

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Default values:

Mappings:

LayupPort@1

partTT Number ?

CMtemperature ?

curing type curinptype

FWtemperature ?

lMtemperature ?

Part turnaround time ?

resin prepreg/wet resin prepreg/yvet

resinList resinList

RTMHeating method ?

size size

Wall_Thickness depth

manTechList manTechList

pttResult ?

lyupControl lyupRslt

RTM Number ?  
196

 





rthtrl

imCtrl

cmCtrI

watrl

riCtrI

FilamentWindingPort@1

 

 

LartTT Number
 

CMtemperature
 

curingtype
 

FWtemperature emperature
 

lMtemperature

9
'
0

 

Part turnaround time
 

resin prepreg/wet delivery system
 

resinList resinList
 

RTMHeatingmethod ?
 

size size
 

Wall_Thickness
I)

 

manTechList manTechList
 

pttResult
 

lyupControl
 

rthtrl
 

imCtrI
 

cmCtrl
 

watrl Result
  riCtrl '

0
g
‘
°
0
°
\
)
'
\
)
-
0
-
\
3

 

Compression MolderPorth
 

partTT Number s
)

 

CMtemperature F
0
-

emperature
 

curing type
 

FWtemperature
 

lMtemperature
 

Part turnaround time
 

resin preprenget
 

resinList
 

RTMHeatinmethod
 

size
 

Wall_Thickness
 

manTechList 3
o
-
o
-
o
-
o
-
o
o
o
-
o
-
o
-
o

anTechList
 

pttResult
 

lyupControl
 

rthtrl
 

imCtrl
 

cmCtrl mResult
 

watrl
  riCtrl  '

0
'
0
0

w
)
'
0

'
0

'
0

 

197

 

 

 



RTMPort@1
 

partTT Number
 

CMtemperature
 

curing type
 

FWtemperature
 

lMtemperature
 

Part turnaround time
 

resin preppeg/wet
 

resinList
 

RTMHeatinwethod I
-
o

-
o

-
o

'
0

-
o

«
a

«
a

-
o

eatinwethod
 

size
 

Wall_Thickness
 

manTechList 3
-
o
-
o

anTechList
 

pttResult
 

I upControl
 

rthtrl :
n
o
-
o

' TMResult
 

imCtrl
 

cmCtrI
 

watrl
 

riCtrI '
0

'
0
'
0
“
Q

 

Resin lnfusionPort@1
 

partTT Number
 

CMtemperature
 

curing type 0
0
-
0

urinp type
 

FWtemperature
 

lMtemperature
 

Part turnaround time
 

resin preprenget
 

resinList
 

RTMHeatinwethod

Q
'
O
'
Q
-
Q
'
Q
-
Q
-
s
)

 

size
 

Wall_Thickness Wall_Thickness
 

manTechList manTechList
 

ttResult ?
 

I upControl
 

rthtrl
 

imCtrl
 

cmCtrl
 

watrl \
D
N
J
-
Q
-
O
-
Q

  riCtrl  riResult 
Moldi

TT Number

CMtem re

In P
     

curi

FWtem re

    

 

 

 

 



 

lMtemperature
 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

  
 

 

 

 

  
 

temperature

Part turnaround time ?

resin prepreg/yvet ?

resinList resinList

RTMHeating method ?

size . size

Wall_Thickness ’?

manTechList manTechList

pttResult ?

lyupControl ?

rthtrI ?

imCtrl imResult

cmCtrl ?

watrl ?

riCtrl ?

RefinerPort@1

artTT Number ?

CMtemperature ?

curipqptype ?

FWtemperature ?

lMtemperature 7

Part turnaround time ?

resin preprgq/wet ?

resinList ?

RTMHeatinmethod ?

size ?

Wall_Thickness depth

manTechList ?

pttResult ?

lyupControl ?

rthtrI ?

imCtrl ?

cmCtrl ?

watrl ?

riCtrl ?

Controls:

riCtrl

type rdlnputControl

control name riCtrl

control riResult

rthtrI

type rdlnputControl

control name rthtrl

control RTMResult

imCtrl

199

 
 

 



 

 

 

   
 

 

 

 

   
 

 

 

 

   
 

 

type rdlnputControl

control name imCtrl

control im Result

watrl

e rdlnputControl

control name watrl

control waesuIt

I upControl

type rdlnputControl

control name lyupControl

control lyupRslt

cmCtrl

type rdlnputControl
 

control name cmCtrl
 

 control  cmResult  
 

200

 

 

 

ll“



Device: SkillLevel

Function: leun

Behavior: slBeh

Port Manager: SkiIILevelPort

All variables:

SkillLeveI N mber

manTechList

runS

Skill level

isesult

l

RTMCtrI

cmCm

imCtrl

watrI

riCtrl

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

lnjectionMoldiinort©1

SkilILevel Number 9

manTechList manTechList

runSystem 9

Skill level 9

isesuIt 9

IayupCtrl 9

9

9

 

 

 

 

 

 

 

 

RTMCtrl

cmCM .

imCtrI im Result

watrI 9

riCtrl 9

FilamentWindingPort@1

SkillLevel Number 9

manTechList manTechList

runSystem

Skill level

isesult

layupCtrl

RTMCtrI

cmCtrl

imCtrl

watrl

riCtrl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result

'
0
g
‘
°
0
-
0
'
0
-
J
'
~
)
-
0
-
0

    
 

201



Compression MolderPort@1
 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

SkillLeveI Number 9

manTechList manTechList

runSystem 9

Skill level 9

isesult 9

layupCtrl 9

RTMCtrl 9

cmCtrI cmResult

imCtrl 9

watrl 9

riCtrl 9

LayupPort@1

SkiIILeveI Number 9

manTechList manTechList

runSystem 9

Skill level 9

isesuIt 9

layupCtrI lyupRslt

RTMCtrI 9

cmCtrl 9

imCtrl 9

watrl 9

riCtrl 9

RTMPort@1

SkillLevel Number 9

manTechList manTechList

runSystem 9

Skill level 9

isesult 9

layupCtrl 9

RTMCtrl RTMResult

cmCtrl 9

imCtrl 9

watrl 9

riCtrl 9

Resin lnfusionPort@1

SkillLevel Number 9

manTechList manTechList

runSystem 9

Skill level 9

isesult 9

layupCtrl 9

RTMCtrl 9

cmCtrl 9 
 

202

  

 
 

 



 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

imCtrl 9

watrl 9

riCtrl riResult

Controls:

RTMCtrl

type rdlnputControl

control name RTMCtrI

control RTMResult

cmCtrl

type rdlnputControl

control name cmCtrl

control cmResult

layupCtrl

type rdlnputControl

control name layupCtrl

control lyupRslt

imCtrl

type rdlnputControl

control name imCtrl

control imResult

riCtrl

type rdlnputControl

control name riCtrl

control riResult

watrl

pipe rdlnputControl
 

control name watrl
  control  waesult 

203

 

 



Device: ToolingCost

Function: tooligCost

Behavior: toolingCostBeh

Port Manager: ToolingCostPort

All variables:

Tooli Number

manTechList

material cost

Tool com

Tooli cost

tooli List  
too“ esuh

RTMCtrl

cmCtrl

imCtrl

watrl

riCtrl

Qualitative predicates:

Quantitative predicates:

Existential predicates:

  

 

 

 

 

 

 

  
 

 

 

 

 

    
 

 

 

 

 

 

 

  

Default values:

Mappings:

lnjectionMoldingPort@1

Toolianost Number 9

manTechList manTechList

material cost 9

Tool complexitL tool complexity

Tooling cost 9

toolingList toolingList

tooliantResult 9

layupCtrl 9

RTMCtrl 9

cmCtrl 9

imCtrl imResult

watrl 9

riCtrl 9

FilamentWindingflart©1

TooliryCost Number 9

manTechList manTechList

material cost 9

Tool complexity 9

Toolipgpost 9

toolingList toolingList

toolinLCostResult 9   
 

204





l

RTMCtrl

cmCtrl

imCtrI

watrl

riCtrl -

Compression MolderPort@1

 

 

 

 

ToolinLCost Number 9

manTechList manTechList

material cost 7
 

Tool complexitL Tool complexity
 

 

 

 

 

 

 

 

   
 

 

 

 

Tooling cost 9

toolingList toolimList

toolingCostResult 9

layupCtrI 9

RTMCtrI 9

cmCtrl cmResult

imCtrl 9

watrl 9

riCtrI 9

LayupPort@1

ToolingCost Number 9

manTechList manTechList

material cost 7
 

Tool complexity Tool complexity
 

 

 

 

 

 

 

 

   
 

 

 

 

Toolinpcost 9

toolingList toolingList

tooliquCostResult 9

IayupCtrl lyupRslt

RTMCtrl 9

cmCtrl 9

imCtrl 9

watrl 9

riCtrl 9

RTMPort@1

ToolingCost Number 9

manTechList manTechList

material cost 9
 

Tool complexity Tool complexity
 

 

 

 

 

  

Toolinpcost 9

toolingList ToolingMaterial

toolingCostResult 9

layupCtrl 9

RTMCtrl RTMResult

cmCtrl 9 
 

205

 

 

 

 

 

 



 

 

 

  
 

 

 

 

imCtrl 9

watrl 9

riCtrl 9

Resin lnfusionPort@1

ToolinLCost Number 9

manTechList manTechList

material cost 9
 

Tool complexity Tool complexity
 

 

 

 

 

 

 

 

   
 

 

 

 

  
 

 

 

   
 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

  

Toolinflzost 9

toolingList toolingMaterial

toolingCostResult 9

layupCtrl 9

RTMCtrI 9

cmCtrI 9

imCtrl 9

watrl 9

riCtrl riResult

Controls:

watrl

type rdlnputControl

control name watrl

control waesult

riCtrl

type rdlnputControl

control name riCtrl

control riResult

RTMCtrl

type rdlnputControl

control name RTMCtrl

control RTMResult

layupCtrl

type rdlnputControl

control name IayupCtrl

control lyupRslt

imCtrl

type rdlnputControl

control name imCtrl

control imResult

cmCtrl

type rdlnthControl

control name cmCtrl

control cmResult 
 

206

 

 
 

 

 

 



Device: ToolingT'l’

Function: tttFn

Behavior: tttBeh

Port Manager: ToolingTTPort

All variables:

Tooli T'I' Number

GeometricalCom e

size

Tooli Turn Around Time

tooli List

toolinTTResult

RTMCtrI

cmCtrl

riCtrl

watrl

imCtrl

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Mappings:

lnjectionMoldinLPort@1

ToolingT‘l‘ Number 9

GeometricalComplexity GeometricalComplexity

size size

Tooling Turn Around Time 9

toolingList toolingst

toolinTTResult 9

IyupCtrl 9

RTMCtrl 9

cmcm 9

riCtrl 9

watrl 9

imCtrI imResult

RefinerPo@

ToolingLT Number 9

GeometricalComplexity 9

size size

Tooling Turn Around Time 9

toolingist 9

toolinTTResult 9

lyupCtrl 9

RTMCtrl 9

cmCtrl 9 
 

207

 



 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

riCtrl 9

watrl 9

imCtrl 9

FilamentWindingPort@1

ToolipgTT Number 9

GeometricalComplexity GeometricalComplexity

size size

ToolingTurn Around Time 9

toolingList toolingList

toolinTTResult 9

IyupCtrl 9

RTMCtrl 9

cmCtrl 9

riCtrl 9

watrl waesult

imCtrl 9

Compression MolderPort@1

ToolingTI’ Number 9

GeometricalComplexity GeometricalComplexity

size 9

Toolipq Turn Around Time 9

toolingList toolingList

toolinTTResult 9

lyupCtrI 9

RTMCtrI 9

cmCtrI cmResult

riCtrl 9

watrl 9

imCtrl 9

LayupPort@1

ToolingTT Number 9

GeometricalComplexity GeometricalComplexity

size size .

Tooling Turn Around Time 9

toolinLList toolfiglist

toolinTTResult 9

lfllpCtl’l lyupRslt

RTMCtrI 9

cmCtrl 9

riCtrI 9

watrl 9

imCtrl 9

RTMPort@1

ToolingTT Number 9

GeometricalComplexity GeometricalComplexity 
 

208

 

 

  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

size size

Toolig Turn Around Time 9

toolingList ToolimMaterial

toolinTTResult 9

lyupCtrl 9

RTMCtrl RTMResult

cmCtrl 9

riCtrl 9

watrl 9

imCtrI 9

Resin lnfusionPort@1

ToolingTT Number 9

GeometricalConpexity GeometricalComplexitL

size size

ToolinLTurn Around Time 9

toolingist toolingMaterial

toolinTTResult 9

lyupCtrl 9

RTMCtrl 9

cmCtrl 9

riCtrl riResult

watrl 9

imCtrl 9

Controls:

cmCtrl

type rdlnputControl

control name cmCtrl

control cmResult

riCtrl

type rdlnputControl

control name riCtrl

control riResult

watrl

type rdlnputControl

control name watrl

control waesult

RTMCtrl

type rdlnputControl

control name RTMCtrI

control RTMResult

lyupCtrl

type rdlnputControl

control name lyupCtrl

control lyupRslt

imCtrl

209

 

 

 
 

 



 

tYPe rdlnputControl
 

control name imCtrl
 

 control  imResult 

210

 



Device: Compression Molder

Function: cmFunction

Behavior: cmBehavior

Port Manager: Compression MolderPort

All variables:

Com Molder Number

fiberArchList

GeometricalCom e

labor

re-ksi

ction

resinList

te re

Tool com

tooli List

boosterl

cmResult

manTechList

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

   

Mappings:

selectionBoosterPort@1

Compression Molder Number 9

fiberArchList 7

GeometricalComplexity 9

labor 9

pressure-ksi 9

production 9

resinList 9

temperature 9

Tool complexity 9

toolingList 9

boosterlnputControl boosterResult

RefinerPort@1

Compression Molder Number 9

fiberArchList fiberArchList

GeometricalComplexity GeometricalComplexity

labor 9

pressure-ksi 9

production production

resinList resinList

temperature 9

Tool complexity 9  
211



 

Itoolingist l 7 J

Controls:

 

 

 

 

boosterlnputControl

e hclnputControl

control name boosterlnputControl

output - manTechList

control Compression Molding   
 

212



Device: FilamentWinding

Function: wan

Behavior: aneh

Port Manager: FilamentWindingPort

All variables:

FilamentWindi Number

cure

del' s m

functional irements

GeometricalCom

ure

resinList

size

tem re

tooli List

waesult

fwBoosterCtrl

manTechList

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings:

selectionBoosterPort@1

 

 

FilamentWindingNumber
 

cure type
 

delivery system
 

functional requirements
 

GeometricalComplexity
 

pressure
 

production
 

resinList
 

size
 

temperature
 

toolingList
 

waesult

0
'
0
'
0

'
0

'
0

'
0
'
0

'
0

“
Q
'
0

'
0

'
0

 

fwBoosterCtrl boosterResult
 

RefinerPort@1
 

FilamentWindinLNumber
 

cure type
 

delivery system

0
-
0
-
0

 

functional requirements functional requirements
 

GeometricalComplexity GeometricalComplexity
 

pressure  9
  

213

 

 



 

 

 

 

 

 

 

  
 

 

 

 

 

 

production production

resinList resinList

size size

temperature 9

toolipqList 9

waesult 9

fwBoosterCtrl 9

Controls:

fwBoosterCtrl

type hclnputControl

control name fwBoosterCtrl

output manTechList

control Filament WindiptL 
 

214

 

 
  

 



Device: lnjectionMolding

Function: ian

Behavior: imBeh

Port Manager: InjectionMoldingPort

All variables:
 

lnjectionMolding Number input output
 

GeometricalComplexipI input
 

heated tool output
 

inserts input
 

pressure-ksi output
 

roducflon input
 

resinList input
 

size input
 

temperature output
 

tool complexity output
 

toolingList output
 

im Result output
 

imBoostingtrl input
 

manTechList output
 

Qualitative predicates:
 

Quantitative predicates:
 

Existential predicates:
 

GeometricalComplexity
 

size
 

inserts
 

lnjectionMolding Number
 

resinList
  production a

n
.
0
e
e
t

 
 

Default values:

Linserts

Mappings:

selectionBoosterPort@1

Inone

 

lnjectionMolding Number
 

GeometricalComplexity
 

heated tool
 

insens
 

pressure-ksi
 

production
 

resinList
 

size
 

temperature
 

tool complexity
 

toolingist
 

imResult Q
'
Q
°
Q
°
Q
-
Q
°
0
°
Q
°
Q
°
Q
°
O
'
Q
°
Q

  imBoostingCtrl boosterResult 
 

215

 

 

 

  



RefinerPort©1
 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

lnjectionMoldingNumber 9

GeometricalComplexity GeometricalComplexity

heated tool 9

inserts inserts

pressure-ksi. 9

roduction production

resinList resinList

size size

temperature 9

tool complexity 9

toolingList 9

Controls:

imBoostingCtrl

pe hclnputControl

control lnjpction Molding

output manTechList 
 

216

  

 

 

 



Device: Layup

Function: LayupFn

Behavior: LayupBeh

Port Manager: LayupPort

All variables:

La Number

curi

fiberList

functional irements

GeometricalCom e

labor

ri

ction

resin

resinList

runS m

size

SurfaceQual

tem re

Tolerances

Tool corn e

tooli List

Rslt

manTechList

Qualitative predicates:

Quantitative predicates:

Existential predicates:

 
 

fiberList
 

size
 

depth
 

Layup Number
 

resinList
 

GeometricalComplexity
 

Tolerances
 

functional requirements
 

SurfaceQuality
 

IyupBoostCtrl

'
0
0

C
I
t

i
I
*

i
I
t

I
D

I
t

  roducfion  
 

Default values:

Mappings:

selectionBoosterPort@1
 

LLayup Number
 

217

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

curi 9

9

fiberList 9

functional irements 9

GeometricalCom 9

labor 9

ri 9

ure 9

9

resin 9

resinList 9

runS 9

size 9

SurfaceQual 9

tem re 9

Tolerances 9

Tool com e 9

tooli List 9

boosterResult

Rslt 9

manTechList 9

RefinerPort@1

Layup Number 9

curingtype 9

depth depth

fiberList fiberList

functional requirements functional requirements

GeometricalComplexity GeometricalComplexity

labor 9

ostcuring 9

pressure 9

production production

resirpprepeg/wet 9

resinList resinList

runSystem 9

size size

SurfaceQuality SurfaceQuality

temperature 9

Tolerances Tolerances

Tool complexity 9

toolinggst 9

lyupBoostCtrl 9

lyupRslt 9

manTechList 9

Controls:

218

 



l

hcl

control name I

o manTechList

control La

 
219



Device: Resin Infusion

Function: riFn

Behavior: riBeh

Port Manager: Resin lnfusionPort

All variables:
 

Resin Infusion Number input output
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

   
 

curimp/pe output

fiberArchList input

FiberFormingMethod output

fiberList input

functional requirements input

GeometricalComplexity input

labor output

postcuring output

pressure output

production input

resinList input

runSystem

size input

SurfaceQuality input

temperature output

Tolerances input

Tool complexity output

toolingMaterial output

Wall_Thickness input

riBoosterCtrl input

riResult output

manTechList output

Qualitative predicates:

Quantitative predicates:

Existential predicates:

resinList *

Wall_Thickness *

functional requirements *

Resin Infusion Number 9

riBoosterCtrl 9

fiberList "

SurfaceQuality *

production *

fiberArchList *

size *

Tolerances *

GeometricalComplexity *

Default values:

Mappings:

220

 

 

 

 
 



selectionBoosterPort@1
 

Resin Infusion Number
 

Gurmtyne
 

fiberArchList
 

FiberFormingMethod
 

fiberList
 

functional requirements
 

GeometricalComplexity
 

labor
 

ostcuring
 

pressure
 

roducfion
 

resinList
 

runSystem
 

size
 

SurfaceQuality
 

temperature
 

Tolerances
 

Tool complexity
 

toolingMaterial
 

Wall_Thickness
 

 

   '
0
'
0
0
"
0
'
Q
-
Q
°
O
'
Q
-
0
°
\
)
-
Q
°
O
'
\
J
'
Q
'
Q
'
Q
-
Q
N
D
N
J
'
Q
'
Q
-
Q
'
Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

riBoosterCtrl oosterResult

riResult

manTechList

RefinerPort@1

Resin Infusion Number 9

curing type 9

fiberArchList fiberArchList

FiberFormi‘ngMethod 9

fiberList fiberList

functional requirements functional requirements

GeometricalComplexity GeometricalComplexity

labor 9

mstcurinL 9

pressure 9

production production

resinList resinList

runSystem 9

size size

SurfaceQuality SurfaceQuality

terpperature 9

Tolerances Tolerances

Tool complexity 9

toolin Material 9

Wall_Thickness depth
 

221

 

 

 

 



 

 

 

  
 

 

 

 

 

 

riBoosterCtrl 9

riResult 9

manTechList 9

Controls:

riBoosterCtrl

type hclnputControl

control name riBoosterCtrl

output manTechList

control Resin Infusion 
 

222

 

 



Device: RTM

Function: RTMFn

Behavior: RTMBeh

Port Manager: RTMPort

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

  

All variables:

RTM Number input output

Curingtemperature output

Curing time output

Curipgtype output

FiberFormingethod output

Fiber_Architecture input

GeometricalComplexity input

Heatingmethod output

labor output

Postcuring Required output

Production input

resinList input

runSystem

size input

SurfaceQuality input

Tolerances input

Tool complexity output

ToolingMaterial output

rthoostCtrl input

RTMResult output

manTechList output

Qualitative predicates:

Quantitative predicates:

Existential predicates:

Default values:

Mappings: .

selectionBoosterPort@1

RTM Number 9

Curingemperature 9

Cunpg time 9

CuriLCLtype ?

FiberFormingMethod 9

Fiber_Architecture 9

GeometricalComplexity 9

Heatirngethod 9

labor 9

PostcurinLRequired 9

Production 9

resinList 9

runSystem 9 
 

223

 

 



 

size
 

SurfaceQualim
 

Tolerances
 

Tool complexity
 

ToolingMaterial
 

 

 

'
0

'
0
U
'

'
0

'
0

'
0

w
}

w
)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

rthoostCtrl oosterResult

RTMResult

manTechList

RefinerPort@1

RTM Number 9

Curing temperature 9

CurinLtime 9

Curing type 9

FiberFormiggMethod 9

Fiber_Architecture fiberArchList

GeometricalComplexity GeometricalComplexity

Heatipg method 9

labor 9

Postcuripg Required 9

Production production

resinList resinList

runSystem 9

size size

SurfaceQuality SurfaceQuality

Tolerances Tolerances

Tool complexity 9

ToolingMaterial 9

rthoostCtrl 9

RTMResult 9

manTechList 9

Controls:

rthoostCtrl

type hclnputControl

control name rthoostCtrl

output manTechList
 

 control  Resin Transfer Moldin
 

 

 
 



Device: matSel

Function: matSean

Behavior: matSelBh

Port Manager: matSelPort

 

 

 

 

All variables:

matSel Number input output

resinList input

matSelResult output 
 

Qualitative predicates:

resinList ~= unknown

Quantitative predicates:

Existential predicates:
 

resinList
 

  matSel Number 9
 

Default values:

Mappings:

SelectorPort@1
 

matSel Number 9
 

resinList partMaterial
 

  matSelResult 9
 

Controls:

225

 

 

 

 

 



Device: operationSelector

Function: opSean

Behavior: opSeIBh

Port Manager: operationSelectorPort

All variables:

nSelector Number

Ratio

Fiber Architecture

al

S

size

Wall Thickness

Result

Qualitative predicates:

size ~= unknown

Aspect_Ratio ~= unknown

partMaterial ~= unknown

Fiber_Architecture ~= unknown

Shape ~= unknown

Wall_Thickness ~= unknown

Quantitative predicates:

Existential predicates:

 

 

size
 

Fiber_Architecture
 

Shape
 

operationSelector Number
 

partMaterial
 

Wall_Thickness
 

Aspect_Ratio

I
t

‘
.

.
0
0

i
i

I

 

Default values:
 

Fiber_Architecture quasilsotropic
 

 

 

 

   
 

Shape casting

Aspect_Ratio medium

size medium

partMaterial DGEBA

Wall_Thickness medium

Mappings:

Controls:

226

 

 

 



Device: selectionBooster

Function: boostean

Behavior: boosterBh

Port Manager: selectionBoosterPort

All variables:
 

selectionBooster Number input output
 

list1 input
 

list2 input
 

 boosterResult  output
 

Qualitative predicates:

Quantitative predicates:

Existential predicates:
 

selectionBooster Number
 

list1
 

 list2  
 

Default values:

Mappings:

matSelPort@1
 

selectionBooster Number 9
 

list1 matSelResult
 

 

  
 

 

 

 

 

  
 

list2 9

boosterResult 9

operationSelectorPort@1

selectionBooster Number 9

list1 9

list2 opSelResult

boosterResult 9

Controls:

227

 

 
 

 

 

 



APPENDIX C

MANUFACTURING ONTOLOGY REDESIGNED IN PROTEGE FRAMEWORK

(defclass PartTechnology

(is-a Root)

(role concrete)

(slot techname

(type STRING)

(create-accessor read-write»

(slot tech-description

;+ (allowed-classes Technology)

(type INSTANCE)

(create-accessor read-write»)

(defclass Technology

(is-a Root)

(role abstract)

(multislot tool-complexity

;+ (allowed-classes ToolCompIexity)

(type INSTANCE)

(create-accessor read-write»

(slot name

(type STRING)

(create-accessor read-write»)

(defclass ResinTransferMolding

(is-a Technology)

(role concrete)

(multislot postcuring-required

;+ (allowed-classes Postcuring)

(type INSTANCE)

(create-accessor read-write»

(multislot curing-temperature

;+ (allowed-classes Temperature)

(type INSTANCE)

(create-accessor read-write»

(multislot heating-method

;+ (allowed-classes HeatingMethod)

(type INSTANCE)

(create-accessor read-write»

(multislot fiber-forming-method

;+ (allowed-classes FiberFormingMethod)

(type INSTANCE)



(create-accessor read-write»

(multislot curing-time

;+ (allowed-classes CuringTime)

(type INSTANCE)

(create-accessor read-write»)

(defclass Sprayup

(is-a Technology)

(role concrete)

(multislot labor

;+ (allowed-classes Labor)

(type INSTANCE)

(create-accessor read-write»

(multislot cure-type

;+ (allowed-classes CureType)

(type INSTANCE)

(create-accessor read-write)»

(defclass Extrusion

(is-a Technology)

(role concrete»

(defclass Pultrusion

(is-a Technology)

(role concrete»

(defclass CompressionMolding

(is-a Technology)

(role concrete)

(multislot pressure-ksi

;+ (allowed-classes PressureKSl)

(type INSTANCE)

(create-accessor read-write»

(multislot labor

;+ (allowed-classes Labor)

(type INSTANCE)

(create-accessor read-write»

(multislot temperature

;+ (allowed-classes Temperature)

(type INSTANCE)

(create-accessor read-write)»

(defclass Layup

(is-a Technology)

(role concrete)

(multislot pressure

229



;+ (allowed-classes Pressure)

(type INSTANCE)

(create-accessor read-write»

(multislot labor

;+ (allowed-classes Labor)

_ (type INSTANCE)

(create-accessor read-write»

(multislot postcuring

;+ (allowed-classes Postcuring)

(type INSTANCE)

(create-accessor read-write»

(multislot cure-type

;+ (allowed-classes CureType)

(type INSTANCE)

(create-accessor read-write»

(multislot resin-prepreg-wet

;+ (allowed-classes ResinPrepregWet)

(type INSTANCE)

(create-accessor read-write»

(multislot temperature

;+ (allowed-classes Temperature)

(type INSTANCE)

(create-accessor read-write)»

(defclass TechnologyMisc

(is-a Root)

(role abstract»

(defclass CureType

(is-a TechnologyMisc)

(role concrete)

(slot cure-type

(allowed-values autoclave microwave oven room press)

(type SYMBOL)

(create-accessor read-write)»

(defclass CuringTime

(is-a TechnologyMisc)

(role concrete)

(slot curing-time

(allowed-values days hours minutes)

(type SYMBOL)

(create—accessor read-write)»

(defclass DeliverySystem

(is-a TechnologyMisc)

230

 

 

 



(role concrete)

(slot delivery-system

(allowed-values prepreg wet winding wet rolled)

(type SYMBOL)

(create-accessor read-write»)

(defclass FiberFormingMethod

(is-a TechnologyMisc)

(role concrete)

(slot fiber-forming-method

(allowed-values braiding cut and place directed fiber stamping

textile preforming)

(type SYMBOL)

(create-accessor read-write»)

 

 

(defclass HeatedTool

(is-a TechnologyMisc)

(role concrete)

(slot heated-tool

(allowed-values yes no)

(type SYMBOL)

(create-accessor read-write»)

(defclass HeatingMethod

(is-a TechnologyMisc)

(role concrete)

(slot heating-method

(allowed-values electric heat blanket heated platens microwave oil

oven steam no heating)

(type SYMBOL)

(create-accessor read-write)»

(defclass Labor

(is-a TechnologyMisc)

(role concrete)

(slot labor

(allowed-values high medium low)

(type SYMBOL)

(create-accessor read-write)»

(defclass Postcuring

(is-a TechnologyMisc)

(role concrete)

(slot postcuring

(allowed-values yes no possible)

(type SYMBOL)

231



(create-accessor read-write)»

(defclass Pressure

(is-a TechnologyMisc)

(role concrete)

(slot pressure

(allowed-values low moderate high)

(type SYMBOL)

(create-accessor read-write»)

(defclass PressureKSl

(is-a TechnologyMisc)

(role concrete)

(slot pressure-ksi

(allowed-values 0. 5-2 0. 5-1. 5 1. 5-3. 5 2-5 5-10 10-20)

(type SYMBOL)

(create-accessor read-write»)

(defclass ResinPrepregWet

(is-a TechnologyMisc)

(role concrete)

(slot prepreg-wet

(allowed-values prepreg wet)

(type SYMBOL)

(create-accessor read-write)»

(defclass Temperature

(is-a TechnologyMisc)

(role concrete)

(slot temperature

(allowed-values 25-50 25-100 50-150 80—150 100-200 150-200

150—300 200-250 200-300 250-350 300-450)

(type SYMBOL)

(create-accessor read-write)»

(defclass ToolCompIexity

(is-a TechnologyMisc)

(role concrete)

- (slot tool-complexity

(allowed-values veryhigh high medium low)

(type SYMBOL)

(create-accessor read-write»)

232



APPENDIX D

MANUFACTURING ONTOLOGY REDESIGNED IN XML

«header id="Manufacturing Ontology">

<class id="Tooling with Parameters">

<category id="Aluminium"/>

<category id="Nickel EIectroforms"/>

<category id="CRP"/>

<category id="Ceramics"/>

<category id="Polymers"/>

<category id="GRP"/>

<category id="Cast Iron"/>

<category id="Tooling Foam"/>

<category id="Steel"/>

</class>

<class id="TechnoIogies with Parameters">

<category id="Sprayup">

<parameter type-"oneOfVar" id="cure type">

<value id="autoclave"/>

<value id="microwave"/>

<value id="oven"/>

<value id="heated tool"/>

<value id="room cure"/>

</parameter>

<parameter type-"oneOfVar" id="pressure-psi"/>

<parameter type-"oneOfVar" id="labor">

<value id="intense"/>

<value id="medium"/>

<value id="low"/>

</parameter>

<parameter type-"oneOfVar" id="temperauture"/>

<parameter type-"oneOfVar" id="time"/>

</category>

<category id="Extrusion">

<parameter type-"oneOfVar" id="pressure—psi"/>

<parameter type-"oneOfVar" id="time"/>

<parameter typea-"oneOfVar" id-"temperature"/>

</category>

<category id-"Filament winding">

<parameter type-"oneOfVar" id="temperature">

<value id="25-50"/>

<value id="50-150"/>



<value id="150-200"/>

<value id="200-300"/>

</parameter>

<parameter type="oneOfVar" id="delivery system">

<value id="prepreg"/>

<value id="wet winding"/>

<value id="wet rerolled"/>

</parameter>

<parameter type="0neOfVar" id="pressure">

<value id="low"/>

<value id="moderate"/>

<value id="high"/>

</parameter>

<parameter type="oneOfVar" id="cure type">

<value id="autoclave"/>

<value id="microwave"/>

<value ids"oven"/>

<value id="room"/>

<lparameter>

</category>

<category ids-"Resin Transfer Molding">

<parameter type-"oneOfVar" id="Postcuring Required">

<value id="yes"/>

<value id="no"/>

<value id="possible"/>

</parameter>

<parameter type-"oneOfVar" id="Curing temperature">

<value id="100-200"/>

<value id="200-300"/>

<value id="25-100"/>

</parameter>

<parameter types-"oneOfVar" id="Heating method">

<value ids-"electric"/>

<value id="heat blanket"/>

<value id-"heated platens"/>

<value id="microwave"/>

<value id-"oil"/>

<value id-"oven"/>

<value id="steam"/>

<value id="no heating"/>

</parameter>

<parameter type-"oneOfVar" ida'Tool complexity":-

<value id="high"/>

<value id="low"/>

<value id="medium"/>

<value id="very high"/>

234



</parameter>

<parameter type="oneOfVar" id="FiberFormingMethod">

<value id="Braiding"/>

<value id="Cut-and-Place"/>

<value id="Directed Fiber"/>

<value id="Stamping"/>

<value id="Textile Preforming"/>

</parameter>

<parameter type="oneOfVar" id="Curing time">

<value id="days"/>

<value id="hours"/>

<value id="minutes"/>

</parameter>

</category>

<category id="Compression Molding">

<parameter type="oneOfVar" id="pressure-ksi">

<value id="0. 5-1. 5"/>

<value id="1. 5-3. 5"/>

</parameter>

<parameter type="oneOfVar" id="labor">

<value id="high"/>

<value id="medium"/>

<value id="low"/>

</parameter>

<parameter type="oneOfVar" id="temperature">

<value id="150-200"/>

<value id="200-250"/>

<value id="250-350"/>

<fparameter>

<parameter type="oneOfVar" id="Tool complexity">

<value id="high"/>

<value id="low"/>

<value id="medium"/>

<value id="very high"/>

</parameter>

</category>

<category id="Layup">

<parameter type="oneOfVar" id="pressure">

<value id="low"/>

<value id="moderate"/>

<value id="high"/>

</parameter>

<parameter type="oneOfVar" id="labor">

<value id="high"/>

<value id="medium"/>

<value id="low"/>

235



</parameter>

<parameter type="oneOfVar" id="postcuring">

<value id="yes"/>

<value id="no"/>

<value id="possible"/>

</parameter>

<parameter type="oneOfVar" id="curing type">

<value id="oven"/>

<value id="autoclave"/>

<value id="microwave"/>

<value id="press"/>

<value id="room"/>

</parameter>

<parameter type="oneOfVar" id="Tool complexity">

<value id="high"/>

<value id="low"/>

<value id="medium"/>

<value id="very high"/>

</parameter>

<parameter type="oneOfVar" id="resin prepreg/wet">

<value id="prepreg"/>

<value id="wet"/>

</parameter>

<parameter type="oneOfVar" id="temperature">

<value id="25—50"/>

<value id="50-150"/>

<value id="150-200"/>

<value id="200-300"/>

</parameter>

</category>

<category id="Pultrusion">

<parameter type="oneOfVar" id="pressure-psi"/>

<parameter type="oneOfVar" id="time"/>

<parameter type="oneOfVar" id="temperature"/>

</category>

<category id="Resin lnfusion">

<parameter type="oneOfVar" id="pressure">

<value id="low"/>

<value id="moderate"/>

<value id="high"/>

</parameter>

<parameter type="oneOfVar" id="labor">

<value id="high"/>

<value id="medium"/>

<value id="low"/>

</parameter>

236



<parameter type="oneOfVar" id="postcuring">

<value id="yes”/>

<value id="no"/>

<value id="possible"/>

</parameter>

<parameter type="oneOfVar" id="curing type">

<value id="oven"/>

<value id="microwave”/>

<value id="press"/>

<value id="room"/>

</parameter>

<parameter type="oneOfVar" id="Tool complexity">

<value id="high"/>

<value id="low"/>

<value id="medium"/>

<value id="very high"/>

</parameter>

<parameter type="oneOfVar" id="FiberFormingMethod">

<value id="Braiding"/>

<value id-"Textile_Preforming"/>

<value id="Directed_Fiber"/>

<value id-"Stamping"/>

<value id-"Cut-and-Place"/>

</parameter>

<parameter type="oneOfVar" id="temperature">

<value id="25-50"/>

<value id-"50—150"/>

<value id="150-200"/>

</parameter>

</category>

<category id="lnjection Molding">

<parameter type="oneOfVar" id="pressure-ksi”>

<value id="0. 5-2"/>

<value id="2-5"/>

<value id="5-10"/>

<value id="10-20"/>

</parameter>

<parameter type="oneOfVar" id="heated tool">

- <value id="yes"/>

<value id="no"/>

</parameter>

<parameter type="oneOfVar“ id-"temperature">

<value id="80-150"/>

<value id="150-300"/>

<value id="300-450"/>

</parameter>

237



<parameter type="oneOfVar" id="tool complexity">

<value id="very high"/>

<value id="high"/>

<value id="medium"/>

<value id="low"/>

</parameter>

</category>

</c|ass>

<class id="Joining Technologies with Parameters"/>

<class id-"Joinings with Parameters">

<category id="Washer"/>

<category id="Bushing"/>

<category id="Rivet"/>

<category id="Strap"/>

<category id="Lap"/>

<category id="Fastener"/>

<category id="Bolt"/>

<category id="Bearing"/>

<category id="Weld"/>

<category id="Pin"/>

<category ids-"Snap Fit"/>

<category id="Screw"/>

<category id="Adhesive"/>

</class>

<class id="Features with Parameters">

<category id="blind hole">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

</parameter>

</category>

<parameter typ'e-"singleValued">radius</parameter>

<parameter type-"SingleValued">depth</parameter>

<category id="flange">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

</parameter>

</category>

<parameter type-"singleValued">height</parameter>

<parameter type-"singleValued">length</parameter>

<parameter type="singleValued">width</parameter>

<category id="wall/web">

<parameter type="oneOfVar" id="tolerance">

<value id-"loose"/>

<value id="tight"/>

238



</parameter>

</category>

<parameter type="singleValued">thickness</parameter>

<category id="insert">

<parameter type="oneOfVar“ id="numberOf">

<value id="none"/>

<value id="1"/>

<value id="&gt;2"/>

</parameter>

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id-"tight"/>

</parameter>

</category>

<category id="bridge">

<parameter type="oneOfVar" id-"tolerance">

<value id="loose"/>

<value id="tight"/>

</parameter>

</category>

<parameter type="singleValued">height</parameter>

<parameter type="singleValued">length</parameter>

<parameter type="singleValued">width</parameter>

<category id-"bend">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

</parameter>

</category>

<parameter types-"SingIeValued">radius</parameter>

<parameter type="singleVaIued">angle</parameter>

<category id-"blind slot">

<parameter type="oneOfVar" id-"tolerance">

<value ida"loose"/>

<value id-"tight"/>

</parameter>

</category>

<parameter type="singleValued">depth</parameter>

<parameter type="singIeValued">length</parameter>

<parameter type-"SingleValued">width</parameter>

<category id-"marking">

<parameter type="oneOfVar" id-"tolerance">

<value id-"Ioose"/>

<value id="tight"/>

</parameter>

</category>

239



<category id="groove">

<parameter type="oneOfVar" id="machining">

<value id="yes"/>

<value id="no"/>

<lparameter>

<parameter type="oneOfVar" id="molding">

<value id="yes"/>

<value id="no"/>

<lparameter>

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

<lparameter>

</category>

<parameter type-"singleValued">depth</parameter>

<parameter type-"singleValued">length</parameter>

<parameter type="singleValued">width</parameter>

<category id="hole">

<parameter type="oneOfVar" id="machining">

<value id="yes"/>

<value id="no"/>

</parameter>

<parameter type="oneOfVar" id="molding">

<value id-"yes"/>

<value id="no"/>

<lparameter>

<parameter type="oneOfVar" id="tolerance">

<value id-"loose"/>

<value id="tight"/>

<lparameter>

<lcategory>

<parameter type-"SingleValued">radius<lparameter>

<parameter type-"singIeValued">numberOf</parameter>

<category id-"step">

<parameter type="oneOfVar" id="tolerance">

<value id-"loose"/>

<value id="tight"/>

<lparameter>

</category>

<parameter type-"singleValued">width</parameter>

<category id="depression">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

<lparameter>

</category>

240

 

 



<parameter type="singleValued">depth</parameter>

<parameter type="singleValued">length</parameter>

<parameter type="singleValued">width</parameter>

<category id="blind pocket">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

</parameter>

</category>

<parameter type="singleValued">depth</parameter>

<parameter type="singleValued">length</parameter>

<parameter type-"SingleValued">width</parameter>

<category id-"internal thread">

<parameter type="oneOfVar" id="tolerance">

<value id-"loose"/>

<value id-"tight”/>

<lparameter>

</category>

<category id="tolerance">

<parameter type="oneOfVar" id-"range”>

<value id-"High"/>

<value id-"Medium"/>

<value id-"Low"/>

<lparameter>

<parameter type="oneOfVar" id="tolerance">

<value id-"loose"/>

<value id-"tight”/>

<lparameter>

</category>

<category id-"fin">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id-"tight"/>

<lparameter>

</category>

<parameter type-"SingIeValued">height</parameter>

<parameter type-"SingleValued">length</parameter>

<category id="finish">

<parameter type-"oneOfVar" id="quality">

<value id="High"/>

<value id-"Medium"/>

<value id="Low"/>

<lparameter>

<parameter type="oneOfVar" id="tolerance">

<value id-"loose"/>

<value id="tight"/>

241



<lparameter>

<lcategory>

<category id="cutout">

<parameter type="oneOfVar" id="complexity">

<value id="high"/>

<value id="medium"/>

<value id="low"/>

<lparameter>

<parameter type="oneOfVar" id="size">

<value id="medium"/>

<value id="small"/>

<value id="large"/>

<lparameter>

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id-"tight"/>

<lparameter>

<lcategory>

<category id-"chamfer">

<parameter type="oneOfVar" id="tolerance">

<value id-"loose"/>

<value id="tight"/>

<lparameter>

<lcategory>

<parameter type="singleValued">radius</parameter>

<category id="slot">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

<lparameter>

<lcategory>

<parameter type="singleVaIued”>depth</parameter>

<parameter type="singleValued">length</parameter>

<parameter type-"singleValued">width</parameter>

<category ids-"extruded hole">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

</parameter>

<lcategory>

<parameter type="singleValued">radius</parameter>

<parameter type-"SingIeValued">height</parameter>

<category id="external thread">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

242



<lparameter>

<lcategory>

<category id="boss">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

<lparameter>

<lcategory>

<parameter type="singIeValued">height</parameter>

<parameter type="singleValued">lenght</parameter>

<parameter type=”singleVaIued">width</parameter>

<category id=-"pocket">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

<lparameter>

<lcategory>

<parameter type-"sfngleValued">depth</parameter>

<parameter type-"SingIeValued">length</parameter>

<parameter type-"sfngleValued">width</parameter>

<category id-"rib">

<parameter type="oneOfVar" id="tolerance">

<value id="loose"/>

<value id="tight"/>

<lparameter>

<lcategory>

<parameter type-"singleValued">height</parameter>

<parameter type-"SingleValued">length</parameter>

<parameter type-"SingleValued">width</parameter>

</class>

<class ids-"Matrix Material with Parameters">

<category id-"Aluminum"/>

<category id-"PA66"/>

<category id="PAl"/>

<category id-"PEI"/>

<category id-"PC/PBT"/>

<category id="MetaI"/>

<category id-"ABS"/>

<category id="ABS/PBT"/>

<category id-"PSU"/>

<category id="PMR 15 Monomers"/>

<category id="Epoxidized Phenolic Novolac"/>

<category id-"Chlorendic Resin"/>

<category id-"PC/ABS"/>

<category id-"PBT"/>

<category id="PPS"/>

243



<category id="PET"/>

<category id="TGETPE"/>

<category id="PC"/>

<category id="VinyI Ester Resin"/>

<category id="DGEBA"/>

<category id="TGMDA"/>

<category id="BPA Fumarate Resin"/>

<category id="Phenolic Novolac Resin"/>

<category id="Phenolic Resole Resin"/>

<category id="4,4’-MDA-BMl"/>

<category id="lsophthalic Resin"/>

<category id="PPO"/>

<category id-"Orthophthalic Resin"/>

<category id="Thermid 600 Oligomers"/>

<category id="PAS"/>

<category id="PEEK"/>

<lclass>

<class ida-"Fiber Type with Parameters">

<category id="AS-4 Carbon"/>

<category id="P-100 Graphite"/>

<category id="Kevlar-29"/>

<category id="C-Glass"/>

<category id="P-55 Graphite"/>

<category id="Kevlar-149"/>

<category id="SiC"/>

<category id="Boron"/>

<category id="None"/>

<category id="E-Glass"/>

<category id="Kevlar-49"/>

<category id-"S-Glass"/>

<category id="Quartz"/>

<lclass>

<class id="Fiber Architecture with Parameters">

<category id="continous SM"/>

<category id="woven"/>

<category id="braided"/>

<category id="chopped"/>

<category id-"unidirectional"/>

<category id="quasilsotropic"/>

<category id="chopped SM"/>

<category id="special"/>

<lclass>

<class id-"Shape with Parameters">

<category id="casting">

<parameter type="oneOfVar" id="Aspect__Ratio">

<value id="high"/>

244



<value id="medium"/>

<value id="low"/>

</parameter>

<parameter type="oneOfVar" id="size">

<value id="big"/>

<value id="medium"/>

<value id="small"/>

<lparameter>

<parameter type="oneOfVar" id="GeometricalComplexity">

<value id="High"/>

<value id="Medium"/>

<value id="Low"/>

<lparameter>

<parameter type="oneOfVar" id="Wall_Thickness">

<value id="thick"/>

<value id="medium"/>

<value id="thin"/>

<lparameter>

<lcategory>

<category id-"beam">

<parameter type="oneOfVar" id="Aspect_Ratio">

<value id-"high"/>

<value id="medium"/>

<value id="low"/>

<lparameter>

<parameter type="oneOfVar" id="size">

<value id="big"/>

<value id="medium"/>

<value id="small"/>

<lparameter>

<parameter type="oneOfVar" id="GeometricalComplexity">

<value id="High"/>

<value id-"Medium"/>

<value id="Low"/>

<lparameter>

<parameter type="oneOfVar" id="Wall_Thickness">

<value id="thick"/>

<value id=-"medium"/>

<value id="thin"/>

<lparameter>

<lcategory>

<category id="rotation_figure">

<parameter type="oneOfVar” id="Aspect_Ratio">

<value id-"high"/>

<value id="medium"/>

<value id-"low"/>

245



<lparameter>

<parameter type="oneOfVar" id="size">

<value id="big"/>

<value id="medium"/>

<value id="small"/>

<lparameter>

<parameter type="oneOfVar" id="GeometricalComplexity">

<value id="High"/>

<value id="Medium"/>

<value id="Low"/>

<lparameter>

<parameter type="oneOfVar" id=‘Wall_Thickness">

<value id="thicl<"/>

<value id="medium"/>

<value id="thin"/>

<lparameter>

<lcategory>

<category id="closed_shell">

<parameter type="oneOfVar" id="Aspect_Ratio">

<value id="high"/>

<value id="medium"/>

<value id="low"/>

<lparameter>

<parameter type="oneOfVar" id="size">

<value id="big"/>

<value id="medium"/>

<value id="small"/>

</parameter>

<parameter type="oneOfVar" id="GeometricalComplexity">

<value id="High"/>

<value id="Medium"/>

<value id="Low"/>

<lparameter>

<parameter type="oneOfVar" id="Wall_Thickness">

<value id="thick"/>

<value id="medium"/>

<value id="thin"/>

<lparameter>

<lcategory>

<category id="shell">

<parameter type="oneOfVar" id="Aspect_Ratio">

<value id="high"/>

<value id="medium"/>

<value id="low"/>

<lparameter>

<parameter type="oneOfVar" id="size">

 

 

246



<value id="big"/>

<value id=”medium"/>

<value id="small"/>

<lparameter>

<parameter type="oneOfVar" id="GeometricalComplexity">

<value id="High"/>

<value id="Medium"/>

<value id="Low"/>

<lparameter>

<parameter type="oneOfVar" id="WaIl_Thickness">

<value id="thick"/>

<value id="medium"/>

<value id="thin"/>

<lparameter>

<lcategory>

<lclass>

</header>

247



BIBLIOGRAPHY

248



9. BIBILOGRAPHY

Allemang, D. and B. Chandrasekaran (1991). Functional Representation and

Program Debugging. 6-th Annual Knowledge Based Software Engineering

Conference.

Balder, J. and H. Akkermans (1992). “Formal Methods for Knowledge Modeling

in the CommonKADS Methodology, A Compilation. ” Netherlands Energy

Research Foundation ECN(December).

Ben-Natan, R. (1995). CORBA: a Guide to Common Object Reguest Broker

Archiecture, McGraw-Hill.

Bickerton, S. , H. C. Stadtfeld, et al. (1998). Active Control of Resin Injection

for the Resin Transfer Molding Process. American Society for Composites

Thirteenth Technical Conference, University of Maryland Press.

Bond, W. E. and M. Pegah (1993). “Automated Model Selection for Simulation

Based on Relevance Reasoning. ” IEEE Expert.

Bond, W. E. and M. Pegan (1993). “Representation and Reasoning about the

Fuel System in the McDonnel Douglas FA—1 8 from a Functional Viewpoint. ”

EEEI Expert Aprll.

Brazier, F. M. T. ,Wijngaards, N. J. E (1997). A Puzppse-Driven Methom

the Comparison of Mgpeling Frameworks. 7th Workshop on Knowledge

Engineering: Methods and Languages (KEML '97), Open University, Milton

Keynes, UK.

Brooks, R. A. (1986). “A Robust Layered Control System for a Mobile Robot. ”

IEEE Journal of Robotics and Automation RA-2(April): 14-23.

Brown, D. C. (1987). Routine Design Problem Solving. Knowledge Based

Systems in Engineering and Architecture. J. Gero, Addison-Wesley.

Buchanan, B. G. and E. H. Shortliffe (1984). Rule-Based Exgrt Systems: The

MYCIN Experiments of the Stanford Heuristic Prpgramming Project.

Cambridge, MA, Addison-Wesley.

Carver, N. and V. Lesser (1992). The Evolution of Blackboard Control

Architectures. Amherst, University of Massachusetts.

Chandrasekaran, B. (1983). “Towards Taxonomy of Problem-Solving Types. ”

Al Magazine 4(1): 9-17.

249

 



Chandrasekaran, B. (1993). The Functional Representation Language: A

Framework for Reasoning, Ohio State University.

Chandrasekaran, B. and T. R. Johnson (1993). Generic Task And Task

Structures: History, Critique and New Directions. Second Generation Exgrt

Systems. J. P. K. J. M. David, and R. Simmons, Springer Verlag.

Chandrasekaran, B. and H. Kaindl (1996). Representing Functional

Requirements and User-System Interactions. AAAl-96 workshop on Modeling

and Reasoning about Function, Portland, OR.

Chandrasekaran, B. ,S. Mittal,etal. (1979). An Approach to Medical

Diagnosis Based on Conceptual Structures. lJCAl-6.

Chen, Y. and B. H. C. Cheng (1997). Formalizing and Automating Commnent

Reuse. IEEE international conference on Tools with Al, Newport Beach, CA,

IEEE Press.

Clancey, W. J. (1985). “Heuristic Classification. ”Artificial Intelligence XXVII:

289-350.

Clancey, W. J. (1989). “Commentary on Sticklen's 'Problem Solving

Architecture at Knowledge Level'. ” Jogrnal of Experimental and Theoretical

Artificial Intelligence 2.

Committee, A. H. ,Ed. (1987). Engineered Material Handbook. Composites.

Metal Park, OH, ASM International.

DARPA, P. H. (1998). HPKB Introduction, Teknowledge. 1999.

de Kleer, J. (1977). Mpltiple Representations of Knowledge in a Mechanics

Problem-Solver. IJCAI-77, Cambridge, MA.

El-Sheikh, E. , C. Penney, et al. (1997). Intelligent Tutoring for Polymer

Composite Molding. 1997 Symposium on Low-Cost, High-Speed Polymer

Composites Processing, Michigan State University, East Lansing, MI.

El-Sheikh, E. , J. Sticklen, et al. (1996). Nepgr Wheat: Integrating Expert

Systems and Crop Modeling Technology. 6th International Conference on

Computers in Agriculture, Cancun, Mexico, American Society of Agricultural

Engineers.

Eriksson, H. ,R. W. Fergerson, etal. (1999). Automatic Generation of

Ontology Editors. Twelfth Banff Knowledge Acquisition for Knowledge-based

systems Workshop, Banff, Alberta, Canada.

250



Erman, L. ,F. Hayes-Roth, etal. (1988). The Hearsay-ll Speech-

understanding system: Integrating Knowledge to Resolve Uncertainty.

Blackboard Systems. R. E. a. T. Morgan. Reading, MA,Addison—Wesley: 31-

86.

Ferguson, P. ,W. S. Humphrey, et al. (1997). “Results of Applying the

Personal Software Process. ” Computer(May): 24-31.

Fikes, R. , A. Farquhar, & J. Rice. (1997). Tools for Assembling Modular

Ontologies in Ontolingua, Knowledge Systems Laboratory, Stanford University.

Finn, T. ,Y. Labrou,etal. (1997). KQML as an Agent Communication

Language. Software Agents. J. Bradshaw. Menlo Park, CA, AAAI Press.

Forbus, K. (1988). Qualitative Physics: Past, Present and Future. Exploring

Artificial Intelligence. H. Shrobe, Morgan Kauffman: 239-296.

Fowler, M. and K. Scott (2000). UML Distilled. Reading, MA, Addison-Wesley.

Friedman-Hill, E. J. (1997). Jess, The Java Expert System Shell. Livermore,

CA, Distributed Computing Systems at Sandia National Laboratories.

Genesereth, M. R. (1998). Knowledge Interchange Format draft proposed

American National Standard (dpANS). San-Francisco, CA, Stanford University.

Genesereth, M. R. ,R. E. Fikes, etal. (1992). Knowledge Interchange Format

Version 3. 0 Reference Manual. Stanford, Ca, Stanford University.

Gennari, J. H. ,D. E. Oliver, etal. (1995). AWeb-Based Architecture fora

Medical Vocabulam ServerServer. Nineteenth Annual Symposium on Computer

Applications in Medical Care.

Ginsberg, M. L. (1991). “Knowledge Interchange Format: The KIF of Death. ”

Al Magazine(Fall 1997): 57-63.

Glaser, N. (1996). Contribution to Knowledge Acquisition and Modeling in a

Multi-Agent Framework (The CoMoMAS Approach). Doctorat de l'Universite

Henri Poincare, l'Universite Henri Poincare.

Gruber, T. , R. (1993). “A Translation Approach to Portable Ontologies. ”

Knowledge Acquisition 5(2): 199-220.

Gruber, T. R. (1992). Ontolingua: A mechanism to Support Portable

Ontologies. , Knowledge Systems Laboratory, Stanford University,.

251

 

 



Hartman, J. and B. Chandrasekaran (1995). Functional__rRepresentation and

Understanding of Software: Technology and Application. 5th Annual Dual-Use

Technologies 8 Applications Conference, IEEE and Rome Lab, Utica, NY, IEEE

Press.

adaptaion of FR to representation of software

Hawkins, R. ,J. McDowell, K. ,,etal. (1993). Function-Based Modeling and

Trogbleshooting. AAAI Workshop on Reasoning about Function.

Hayes, P. (1979). The Naive Physics Manifesto. Expert System in the

Microelectronic Agp. D. Michie, Edinburgh University Press.

Hayes, W. and D. Zubrow (1995). Moving On Up: Data and Experience Doing

CMM-Based Process Improvement. Pittsburg, Software Engineering Institute,

Carnegie Mellon University.

Hayes-Roth, F. ,L. D. Erman, etal. (1992). Domain-Specific Software

Archittectures: Distributed Intelligent Control and Communication. SEI at

Carnegie Mellon University, SEI at Carnegie Mellon University.

Hidlum, D. W. , N. M. Sadeh, et al. (1996). Mixed-Initiative Management of

Integrated Process-Planning and Production-Scheduling Solutions. Artificial

Intelligence in Manufacturing Research Planning workshop, Albuquerque, NM,

AAAI Press.

Honeywell (1999). What are the Benefits of Using a DSSA9, Honeywell. 1999.

Johnson, M. V. and B. Hayes-Roth (1987). Integrating diverse reasoning

methods in BBL Annual Conference of the American Association for Artificial

Intelligence, Seattle, Wa.

Johnson, T. R. (1991). Generic Tasks in the Problem-Solving Space Paradigm:

Building Flexible Knowledge Systems while Using Task Level Constraints.

Columbus, Ohio State Univarsity: 166.

Kamel, A. ,O. Lukibanov, etal. (1997). ATask Spfiific Arghitecture for

Conceptual Fabrication Seguence Planning for Structural Assemblies made from

Commsite Materials. Interfaces 1997, Montpellier, France.

Kamel, A. ,J. Sticklen, etal. (1989). A Model-Based Approach for Organizing

Quantitative Computations. Model-Based Diagnosis workshop, Paris, France,

AAAI Press.

Keuneke, A. , M. (1989). Machine Understanding of Devices Causal

Explanation of Diagnostic Conclusions. Computer Science Department.

Columbus, Ohio State University: 103.

252



proposed to make, to maintain, to prevent function

Kuipers (1986). “Qualitative Simulation. ” Artificial lntelligence(29): 289-338.

Laird, J. E. ,A. Newell,etal. (1987). “SOAR: An architecture for general

intelligence. Artificgiaj lntelliggice 33(3).

 
Lambert, M. , B. Riera, et al. (1997). Application of Some Functional Analysis

Techniques on molear Reprocessing System. 5th International Workshop on

Functional Modeling of Complex technical Systems, Paris-Troyes, France, The

Center of Technology Risk Studies at University of Marilnd College Park.

Lenat, D. and Guha (1990). Building Large Knowledge-Based Systems,

Addison Wesley.

 

Lenz, T. ,M. Hawley, etal. (1998). “Virtual Prototyping in Polymer

Composites. ” ournal of Thermopplastic Commsite Materials 11:394-416.

Lenz, T. ,J. K. McDowell, et al. (1996). “The Evolution of a Design Support

Architecture for Polymer Composite Design. ” IEEE Expert Intelligent Systems

and Their Application 11(5): 77-83.

Liver, B. and D. Allemang (1995). “A Functional Representation for Software

Design. ” International Journal of Software Engineering and Knowledge i

Engineering 5(2): 227-269. '

Lossak, R. , S. ,, M. Yoshioka, et al. (1998). A Comparative Analysis of

function modeling in the design systems DIICAD-Entwurf and FBS/KIEF—System.

Functional Modeling and Teleological reasoning Work shop at AAAI-98, Madison,

WS, AAAI Press.

Lukibanov, O. and I. Martinez (2000). “ Socharis: The lnstantiation of a

Strategy for Conceptual Manufacturing Planning. ” Journal of Aritficial

Intelligence in Engineering Design and Manufacturing(Fall).

Lukibanov, O. ,I. Martinez, etal. (1998). Metal to Commsites Structural

Assemblies: Developing Appropriate Functional Modeling Frameworks for Static

Analysis. FMfI'R Workshop at AAAI-98, WI.

MacGregor, R. (1991). The Evolving Technology of Classification-Based

Knowledge Representation Systems. Principles of Semantic Networks:

Exploration in the Representation of Knowledge. J. Sowa, Morgan Kaufmann.

Martinez, l. ,O. Lukibanov, etal. (1999). Augmenting Conceptual Design with

Manufacturing: an Integrated Generic Task Approach. DETC-99/DFM99, Las

Vegas, NV, ASME.

253



Martinez, I. , O. Lukibanov, et al. (1998). Function-Based Modeling of

Fabrication Plgrfi for Structural Assemblies. Special Interest Group in

Manufacturing Workshop: State of the Art and State of Practice (SlGMAN-98),

Albuquerque, New Mexico, AAAI, Press.

McDermott, J. (1988). “Preliminary Steps Towards a Taxonomy of Probglem

Solving Methods. ” Automated Knowledge Ackuisition for Expert Systems.

McDowell, J. K. ,J. Sticklen,etal. (1997). Conceptual Design of

Mangfacturing Seguences for Commsite Assemblies. ACCE, Dearborn, MI.

Mettala, E. , M. Graham (1992). The Domain-Specific Software Architecture

Program. Pittsburg, PA, SEI at Carnegie Mellon University.

Mill, H. , F. Mili, et al. (1995). “Reusing Software: Issues and Research

Directions. ” IEEE Transactions on Software Engineering 21(6): 528-561.

Modarres, M. (1998). Functional Modeling of Physical Systems Using the Goal

Tree-Spccess Treg Framework. Functional Modeling and Teleological reasoning

Work shop at AAAI-98, Madison, WS.

Motta, E. , K. O'Hara, et al. (1994). A VITAL Solution to the Sisyphus ll

Elevator Design Problem. 8th Knowledge Acquisition for Knowledge-Based

Systems Conference, Banff, Canada.

Moy, B. ,J. K. McDowell, et al. (1995). Integrated Design and Agile

Manufacturing in Pglvmer Matrix Composites: The Role of Intelligent Decision

Supmrt Systems. SAMPE-1995, CA.

 

Murdoc, J. and A. Goel (1998). A Functional Modeling Architecture for

Reflecting Agents. Functional Modeling and Teleological reasoning Work shop

at AAAI-98, Madison, WS, AAAI Press.

Newell, A. (1980). The Knowledge Level (Presidential Address). AAAI-1980,

Stanford, CA, AAAI.

Pegah, M. , W. E. Bond, et al. (1992). “Representing and Reasoning about

the Fuel System of the McDonnell Douglas F/A-18 from a Functional

Perspective. ” IEEE Expert: in press.

Pegah, M. , R. Hawkins, et al. (1994). Functional Modeling gsing Standard

Parts: Suppgrting Conceptual Design. AAAI Workshop on Functional Reasoning,

Seattle, Washington.

Price, C. J. (1996). “Identifying Sneak Paths though Function.

254

 

 



Punch, W. F. (1989). A Diagnostic System Using A Task Integrated Problem

Solver Architecture (TIPS), Including Causal Reasoning. Computer Science

Department. Columbus, Ohio State University.

Riley, G. (1998). CLIPS a Tool for Building Expert Systems, Gary Riley. 1999.

Schach, S. R. (1997). Software Engineering with JAVA. Chicago, Richard D.

Irwin, a Times Mirror Higher Education Group Inc.

Schapire, R. ,Y. Singer, etal. (1998). Boosting and Rocchio Applied to Text

Filtering. SIGIR’98, Melbourne, Australia.

Schapire, R. E. and Y. Singer (1998). Improved Boosting Algorithms Using

Confidence-rated Predictions. COLT-98, MAdison, WS, AAAI press.

Sembugamoorthy, V. and B. Chandrasekaran (1986). Functional

fipresentartion of the_Devices and Compilation of Diagnostic Prtlilem S_olving

Systems. Hillsdail, NJ, Lawrence Erlbaum Associates.

Slator, B. M. (1989). “Decomposing Meat: a Commentary on Sticklen's

'Problem Solving Architecture at Knowledge Level'. ” Journal of Experimental

and Theoretical Artificial Intelligence 2.

Steels, L. (1990). “Components of Expertise. ” Al Magazine(Summer): 28-49.

compares generic task approach to KAD

Stevens, W. P. ,G. J. Myers, etal. (1974). “Structured Design. ”_IB_

Systems Journal 13(2): 115-139.

Sticklen, J. (1987). MDX2: An Integrated Medical Diagnostic System, Ohio

State University.

University Microfilm Number 87-17732

Sticklen, J. (1989). “Problem Solving Architectures at the Knowledge Level. ”

Journal of Experimental and Theoretical Artificial Intelligence 1: 1-52.

Sticklen, J. and B. Chandrasekaran (1985). Use of Deep Level Reasoning in

Medical Diagnosis. Government Symposium in Expert Systems.

Sticklen, J. , A. Kamel, et al. (1991). “Integrating Quantitative and Qualitative

Computation in a Functional Framework. ” Engingering Applications of Artificial

Intelligence 4.

255

 



Sticklen, J. , A. Kamel, et al. (1992). “Fabricating Composite Materials: A

Comprehensive Problem Solving Architecture Based on a Generic Task

Viewpoint. ” IEEE Exgrt 7(2): 43-53.

Sticklen, J. , A. Kamel, et al. (1992). An Artificial Intelligence-Based Design

Tool for Thin Film Composite Materials. East Lansing, Michigan State University.

Sticklen, J. and R. Tufankji (1992). “Utilizing a Functional Approach for

Modeling Biological Systems. ” Mathematical and Computer Modeling 16: 145-

160.

Stroulia, E. and P. Sorenson (1998). Supmrting Software Redesign: Functional

Reasoning meets Meta-Case tools. FM/TR Workshop at AAAI-98, Madison,

Wisconsin, AAAI Press.

Tsumoto, S. and H. Tanake (1995). “Interpretation of Medical Laboratory Data

Based on Functional Model. ”.

Tu, S. W. , H. Eriksson, et al. (1995). “Ontology-based configuration of

problem-solving methods and generation of knowledge -acquisition tools:

Application of PROTEGE-II to protocol-based decision support. ” Artificial

Intelligence in Medicine 7: 257-289.

Tu, S. W. ,M. G. Kahn, etal. (1989). “Episodic skeletal -plan refinement

based on temporal data. ”Communications of the ACM 32(12): 1439-1455.

Uschold, M. and M. King (1995). Towards a Methodolmy for Building

Ontologies. lJCAl-95.

van Heijst, G. ,A. T. Schreiber, etal. (1997). “Using Explicit Ontologies in

KBS Development. ”Int. Journal Human-Computer Studies 45: 183-292.

Velde, W. V. d. (1994). A Constuctivisst View on Knowledge Engineering ECAI

%. A. Cohn, Wiley 8 Sons, Ltd.

Velde, W. V. d. (1991). “Tractable Rationality at the Knowledge Level.

Velde, W. V. d. (1993). Issues in Knowledge Level Modelling. Second

Generation Expert Systems. J. -M. David, J. -P. Krivine and R. Simmons.

Berlin, Springer Verlag.

Vranes, S. and M. Stanojevic (1995). “Integrating Multiple Paradigms within the

Blackboard Framework. ” IEEE Transactions on Software Engineering 21(3):

244-262.

256



Wang, E. Y. and B. H. C. Cheng (1998). Formalizing and lntegating the

fictionfialeflnto Object Oriented Design. 10th International Conference on

Software Engineering and Knowledge Engineering, San Francisco.

Wang, E. Y. ,H. A. Ritcher,etal. (1997). Formalizing and Integrating the

Dynamic Model wit_hin QMT. IEEE International Conference on Software

Engineering.

Wielinga, B. J. and A. T. Schreiber(1994). Conceptual modeling of large

reusable knowledge bases. Berlin, Germany, Springer Verlag.

Zhou, K. ,T. J. Lenz, etal. (1999). A Problem Solving Architecture for Virtual

Prototyping in Metal to Polymer Composite Redesign. ASME-99, Las Vegas,

NV.

257


