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ABSTRACT

MULTISCALE MODELING AND ESTIMATION

OF POISSON PROCESSES WITH APPLICATIONS

TO EMISSION COMPUTED TOMOGRAPHY

By

Klaus Edmond Timmermann

Many important problems in engineering and science are well-modeled by Pois-

son processes, and in many instances it is of great interest to accurately estimate

the intensities underlying the observed Poisson data. This dissertation addresses the

problem of general Poisson process estimation, but the work is primarily motivated

by the photon-limited imaging problem. First, a Bayesian approach to Poisson in-

tensity estimation based on a multiscale framework is presented. It is shown that the

multiscale representation of signals provides a very natural and powerful framework

for this problem. Using this framework, a novel multiscale Bayesian prior to model

intensity functions is devised. The behavior of the new model is characterized by a

study of its correlation properties. The new prior leads to a simple, Bayesian intensity

estimation procedure. Practical fast shift-invariant algorithms for the new estimation

framework are presented and applied to photon-limited data.

We extend the modeling and estimation approaches for general Poisson processes

to the emission computed tomography (ECT) image reconstruction problem. Two

multiscale approaches are introduced. The first approach is based on the geometrical
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properties of the so-called natural pixels of the intensity image. Within this frame—

work, we develop a practical prior model for the sinogram image, which is used to

estimate the underlying sinogram intensity from the raw projection data prior re-

construction. The sinogram estimate is then used in conjunction with the standard

filtered-backprojection algorithm to produce an improved image reconstruction. The

superiority of the new approach over the conventional filtered-backprojection based

reconstruction is illustrated with clinical and simulated data.

The second, more sophisticated'approach to ECT is based on a new multiscale-

based Radon inverse transform. It is shown that the new formulation lends itself

to a very natural discretization of the Radon inverse operator which is especially

amenable to numerical computation. Within this new reconstruction framework,

we develop a prior model for the cumulative sinogram image ——a new intermediate

image representation between a sinogram and the intensity image. The new model is

unique in that it exploits the high degree of redundancy of information present in the

sinogram.We demonstrate the superiority of the proposed method using real data.

As the multiscale framework to modeling and estimation represents the founda-

tion of the methods presented here, we introduce a new approach to characterizing

multiscale models and estimators in order to assess their qualities. This approach is

shown to be more general in nature than classical statistical descriptors ( e. g., bias-

ness, mean-square error, etc.) which are based on limited information. Towards this

end, we introduce the information-theoretic definitions of anomy, accuracy precision,

and resolution power. Based on criteria developed with these concepts, we explore

the advantages of multiscale Bayesian modeling and motivate its application to the

estimation problem.
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CHAPTER 1

Introduction

A great number of important phenomena in science and engineering are modeled as

Poisson processes. Often, it is of interest to estimate the underlying intensity which

gives rise to these phenomena. The intensity estimation problem of Poisson processes

is encountered in many fields including medicine [1], astronomy [2], communications

[3], and networks [4]. This dissertation considers the problem of estimating the in-

tensity of a general Poisson process from a single observation of the process. That is,

we observe counts c which obey1

CIA ~ Poisson()\), (1.1)

and wish to estimate the intensity A. The counts 0 and intensity A are typically

one-dimensional (l-d) signals or 2-d images, but may be of any other higher finite

dimension, in general.

For example, the basic photon-limited imaging process is widely regarded as obey-

ing a Poisson law. The problem is described as follows. We observe photon emissions

in a compact region of the plane. The photon emissions are the result of an underly-

ing two-dimensional intensity function. We are interested in estimating the intensity

 

13M denotes the random vector c given the vector A.
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function from the counts of photon detections. Nuclear medicine imaging is one ap—

plication that motivates our study of the photon-limited imaging problem. The major

limitation of nuclear medicine imaging is the low-count levels acquired in typical stud-

ies, due in part to the limited level of radioactive dosage required to insure patient

safety. Because of the variability of low-count images, it is very common to employ a

post-filtering or estimation procedure to obtain a “better” estimate of the underlying

intensity [5].

In this dissertation we introduce a Bayesian approach to Poisson intensity esti-

mation based on a multiscale framework. It is shown that multiscale representation

of signals provides a very natural and powerful framework for this problem. Us-

ing this framework, a novel multiscale Bayesian prior to model intensity functions

is devised. We look at the nature of the proposed prior by deriving a closed-form

expression for its autocorrelation. Some extensions to the basic model are developed

and shown to possess very desirable properties. With these new priors, a simple,

optimal Bayesian intensity estimation procedure is developed. A practical fast shift-

invariant algorithm for the new estimation framework is also presented and applied

to photon-limited data.

As a second contribution of this dissertation, we extend the above general modeling

and estimation approaches to the emission computed tomography imaging problem.

ECT is an important and very active area of research in many fields. For example,

in functional neuroimaging, ECT is used to map regions of activity in the brain

associated with physical [6] and intellectual [7] tasks; in nuclear waste management,

emission tomographic methods may be employed to determine the activity density

of radioactive material within cemented barrels [8]; and in electron microscopy, ECT

teChniques make possible 3-d image reconstruction of chromosomes’ structures [9].

One important diagnosis method in nuclear medicine is single-photon emission

computed tomography (SPECT). Essentially, the process aims to reconstruct. density
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maps (images) of radiopharmaceutical distribution within a patient from projection

data collected at many angles about the subject. Projection data in SPECT are

well-modeled to be the outcome of Poisson processes, and just as in the case of static

imaging of nuclear medicine discussed above, they are characterized by low-count

levels and, therefore, by low signal-to—noise ratios (SNR). Motivated by its great im-

portance to medicine, and by the challenge posed by its low-count nature, our discus-

sions of tomography focuses throughout on the SPECT problem of nuclear medicine.

However, many results obtained here are directly applicable or easily extendable to

other ECT applications.

This dissertation presents two new multiscale approaches to the ECT image re-

construction problem. The first approach is based on geometrical properties of the

so called natural pixels of intensity sinograms as well as on the high structure of

the sinogram image. Within this framework, we develop a practical prior model for

sinogram images which are used to estimate the underlying sinogram intensity from

the raw projection data prior reconstruction. The sinogram estimate is then used in

conjunction with the standard filtered-backprojection (FBP) algorithm to produce

an improved image reconstruction. We illustrate the superiority of this method over

the conventional FBP-based approach using clinical and simulated data.

We also introduce a second and more sophisticated approach to ECT based on a

new multiscale-based approach to the Radon inverse transform. This new formulation

lends itself to a very natural “discretization” of the Radon inverse operator which is

especially amenable to numerical computation. It will be seen that in fact, in contrast

to Fourier-based numerical reconstruction methods widely used in practice, the new

inversion operator requires no discretization itself, and it is only the data that needs

to be sampled. Fourier-based numerical reconstruction methods require conflicting

approximations to the Radon operator by simultaneously discretizing the frequency

and space planes. In these methods, the intensities must be assumed to be of finite
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support in both space and frequency, and such signals do not exist. The method

presented here avoids such conundrum and reconstructs intensity images without the

associated potential artifacts.

Within the new reconstruction framework, we develop a prior model for the cumu-

lative sinogram image (intensity) (C81). The new model is unique in that it exploits

the high degree of redundancy of information present. in a sinogram to create a very

robust tomographic reconstruction of photon-limited images. We demonstrate the

advantage of the proposed method using clinical data.

Multiscale representation and analysis of signals have been used in the past as

the basic framework in the modeling and estimation of Poisson, Gaussian, and other

types of processes [10, 11, 12, 13, 14, 15, 16]. While in general all these approaches

have been successful, except for the case of Gaussian processes, a clear justification for

their choice has not been offered. In an attempt to explain the advantage of multiscale

modeling and estimation in a most general way, we introduce information-theoretic

measures that quantify the degree of goodness of models in various aspects. For

this, we introduce the concepts of anomy, accuracy, precision, and resolution power.

Based on criteria developed with these concepts we gain insight into the advantage of

Bayesian estimators within the framework of multiscale representation of processes.

The Bayesian approach is shown to give the means for a systematic and maximal

use of the available information at each scale of multiscale models. Additionally, we

give general guidelines for constructing new multiscale linear transformations which

are statistically motivated and applicable to the general Gaussian model. The trans-

formations are potentially better suited than conventional time/frequency multiscale

analysis for estimation purposes, and may also be extended to other models as well.



1.1 Organization and Summary of Contributions

The main objective of Chapter 2 is to motivate the multiscale “paradigm” as an

approach to modeling for Bayesian estimation. Throughout this dissertation the

multiscale modeling of processes and the multiscale representation of signals play very

important roles as they provide the underlying framework for the Poisson models

and estimators presented in Chapters 3 and 4. Therefore, in Section 2.2 we first

present an elementary review of wavelets. Much intuition about multiscale modeling

and estimation is gained from its understanding. Also, much of the notation use

throughout this dissertation is introduced here and in Section 2.3.

In addition, Chapter 2 offers the following three main contributions. First, in

Section 2.3 we present a new, unifying approach to characterize and qualify models

and estimators alike. For this, we introduce four new measures that are more general,

and we believe more natural, than the conventional statistical measures often used

for this purposes. Second, in Section 2.4 the advantages of modeling and estimating

within the multiscale framework in general, and within the multiscale Bayesian ap—

proach in particular, are established for a class of processes. Third, we give general

guidelines to constructing multiscale models which are statistically motivated, and

consequently, are better suited for the estimation problem. These guidelines are de-

veloped for Gaussian processes, but they can be easily extended to other processes.

lVIuch work needs to be done in this respect, but the criteria set forth here opens a

wide range of new and exciting possibilities. In Section 2.5 we conclude the chapter

with a brief review of some important existing multiscale and estimation approaches.

There are four major contributions in Chapter 3. First, in Section 3.4 we describe

a new, multiscale, prior probability model for non-negative intensity functions. This

model employs a multiplicative innovations structure in the scale-space domain. Sec-

ond, based on this new prior, in Section 3.5 we derive a simple and computationally



efficient, Bayesian estimator of the intensity given an observation of counts, under

squared error loss. It is shown through examples that the Bayesian estimation proce-

dure significantly outperforms existing wavelet-based methods. Third, we extend in

Section 3.6.1 the multiscale intensity prior to a shift-invariant one, and develop a fast

shift-invariant estimation procedure. Furthermore, we obtain closed-form expressions

for the correlation functions of both priors, and show that the correlation behavior of

the shift-invariant prior has 1 /f spectral characteristics and is more regular than that

of the shift-variant prior. Fourth, in Section 3.8 we apply the framework to photon-

limited imaging and examine its potential to improve nuclear medicine imaging.

The main contributions in Chapter 4 are three. First, in Section 4.5 we introduce

an extension to the prior modeling approach of Chapter 3 which is especially well

suited for modeling computed tomography sinograms. The new prior is based on geo-

metrical consideration of the inherent structure of sinograms. The excellent match of

the prior to real and synthetic data is seen in the examples. Second, in Section 4.6 we

present a new, multiscale-based, Radon-inverse transform algorithm. The transform

has three major qualities for ECT applications: it admits a very efficient computa-

tional implementation; it allows reconstruction of images at any desired resolution

supported by the data with the corresponding computational savings; and it provides

a very robust reconstruction of images from photon-limited projection data. This last

quality is unique to the new method and is illustrated with an example. Third, in

Section 4.7 we introduce a third extension to the intensity modeling approach devel-

oped for general Poisson processes and apply it to the cumulative sinogram images

of emission-computed tomography. This prior is used in conjunction with the new

Radon-inverse transform to reconstruct highly reliable images from photon-limited

data. The superiority of this modeling, estimation, and reconstruction method is

illustrated with clinical data.

Finally, some comments and conclusions are given in Chapter 5.



CHAPTER 2

The Multiscale Modeling Paradigm

2. 1 Preliminaries

In his book “Conceptual Physics” [17], Hewitt identifies a crucial factor that made

the evolution of human scientific knowledge possible when he writes: “Science had its

beginnings before recorded history when people first discovered recurring relationships

around them. Through careful observations of these relationships, they began to know

nature and, because of nature’s dependability, found they could make predictions that

gave them some control over their surroundings. ”

Hewitt’s recurring relationships refer to the observed patterns of cause and effect

that appeared to dictate the course of nature in many instances. It is evident that

while our ancestors could not make predictions about the exact shape of a flame in a

fire, they could always expect the whole of the flame and smoke to rise. Thus, looked

at on a large enough scale, the phenomenon could be satisfactorily predicted.

Probably one of the greatest successes in science before modern times was achieved

in predicting the movement of the planets. In their observations of the skies, the

Mayans did not have to contend with erratic or chaotic effects, but only had to discover

the patterns manifested at very large scales. It is no coincidence that nowadays

scientists still seek to discover patterns in whatever is under study in order to advance



their knowledge. After all, if the behavior of artificial neural networks is a hint of

how the human brain works, to understand nature means training our brains enough

so as to recognize patterns in our environment, for then we may predict its future

behavior.

As the subjects studied by people became more and more complex, the patterns

to be discovered were less evident and more difficult to perceive. Mathematics then

became the primary tool in this quest. After the experimentation phase, models

were postulated and tested. At first, the mathematical models were deterministic

in nature, but as scientists’ interest shifted towards natural phenomena “belonging”

to sufficiently small scales, probabilistic models had to be introduced. For example,

before the turbulent behavior of the flames in a fire could be understood, statistical

thermodynamic models had to be postulated to explain the molecular behavior of

gases.

Clearly, the new probabilistic models represented more accurate but less precise1

models than their deterministic counterparts. They predicted the outcome of an ex-

periment more reliably while providing less detail about such outcome—gas molecules’

“typical” behavior could be predicted very successfully; however, very little could be

said about any given molecule’s state, e.g., its location and momentum. The reason

for this was that while small scale phenomena were being modeled, the experiments

carried out to undercover their hidden patterns were of much larger scales; conse-

quently, only the patterns displayed at these larger scales provided information about

the underlying phenomena. In the case of gas molecules, only their aggregate behav-

ior could be discerned and so, only probabilistic inferences about individual molecules

could be made.

 

1The terms accuracy and precision are used here in a general sense, meaning, respectively, the

accordance of an assertion with the truth, and the amount of information conveyed by that assertion.

Thus, by forecasting rain over the Pacific Ocean this year, one makes a highly accurate assertion

but of very low precision for not much information about the time or place of the event is given, for

example. In Section 2.3.2 we give precise meaning to these terms.



As advances in technology allowed probing at smaller and smaller scales, the

models created became more and more precise. Nevertheless, to maintain accuracy,

they necessarily had to be probabilistic in nature, for if we accept that every event

in nature has its origins in the smallest of scales, the Heisenberg Principle prevents

us from observing the full state (e. g., displacement/momentum, time/frequency, etc.)

of whatever “lives” at those scales, and so, prevents us from producing infinitely

accurate deterministic models—never mind that our known deterministic “laws” of

nature do not apply at these extremely small scales.

Although in practice we are often content with deterministic coarse-scale averaged

representations of observed phenomena, the above discussion brings to light the in-

tuitive notion that while modeling of phenomena based on coarser scale information

alone may be more accurate, it can only be achieved at the expense of precision.

Alternatively, coarse-scale models may be constructed more accurately than their

fine-scale counterparts, but the coarse-scale models are necessarily less precise.

These two statements are not just reworded versions of one another; however, once

the information-theoretic definitions for accuracy and precision have been introduced,

we will show them to be equivalent. At that point, we will also be able to gain a

greater insight as to their interpretation. Their significance is as follows.

The first assertion establishes that construction of more precise models requires

new information, and that such information may only be found in finer scale patterns.

This implies the futility of trying to improve the precision of estimators beyond what

the observations’ scale supports.

The ability to trade precision for accuracy by modeling different scales of a process,

as established by the second assertion, is of great significance to the point estimation

problem. We will show that under certain conditions the robustness2 of an estimator

 

2In the literature (see, for example [18]) robustness connotes the consistency of an estimator’s

performance under all possible distributions for the observations, that is, under typical observations



can be enhanced by leveraging the estimation process through this trade. The multi-

scale Bayesian estimation approach introduced in Chapter 3 will be shown to provide

an intrinsic way to achieve this.

Given the crucial roll that multiscale representation of signals plays throughout

this dissertation, we next give a brief introduction to the topic. To this end, we make

use of wavelet theory as it gives a natural perspective of multiscale analysis. We

avoid as much as possible the formalities associated with this topic, however, and

emphasize a motivational point of View, as this is the goal of the present chapter.

2.2 Multiresolution through Wavelets

2.2.1 The Fourier Transform and Scales

In the quest to identify the underlying patterns of phenomena and processes, ex-

pressing the signals of interest as a linear combination of more elemental functions

has often proved invaluable. With this approach, features in the signals which are

uniquely characteristic to the event under study have been brought to view and in

this manner have helped to identify the patterns.

For most problems encountered in engineering the sets of functions of greatest

utility have been those which are complete in L2(R) (or more generally, in L2(1RN))3

since they can represent any finite energy signal that might arise.4 Undoubtedly, the

Fourier system has had the greatest of influences in this respect since its discovery in

1807. One reason for this is the orthogonality of the set, which leads to its simplicity

and wide range of use. However, it is the fact that the elementary functions are

 

as well as those including outlayers. Here, we use the term to mean a degree of goodness. Later in

the chapter we will introduce the concept of resolution power and use it for this purpose.

3For the sake of simplicity, throughout this dissertation we focus our attention on signals on the

real line when this suffices to make the desired point.

4Clearly, the fidelity of such a representation is only in the mean-square error sense and so, it is

only accurate to within a set of measure zero. We ignore these technicalities for the most part.

10



eigenfunctions to linear translation invariant operators that has mostly contributed

to its great extent of applications.

The Fourier transform decomposes a function into its frequency components; this

is particularly easy to visualized in the case of periodic functions—clearly, not L2

functions. In this case, the components are denumerable and readily identifiable at

finite intervals along the frequency axis; thus, admitting a series representation for

the signals. For L2 functions, the situation is radically different as no one component

is present in the original signal, for if any one were, it would be so only through its

manifestation of energy in some form, no matter how small this is, but we know that

no energy is born at any given frequency.

An alternate view of the Fourier representation is that the transform decomposes a

signal into a countable number of scales corresponding to an arbitrary partitioning of

the frequency axis. The system in this case is still orthogonal, but the basic elements,

or atoms, are now the functions that the Fourier exponentials integrate to within each

of the frequency intervals. The advantage of this system from the temporal viewpoint

is that L2 signals may now be represented as linear combinations of such atoms, with

each atom contributing a finite amount of energy—if present at all, that is. Fiom the

frequency perspective, we have that the highly frequency-localized analysis of signals

is preserved, although not to the infinite frequency resolution of the original Fourier

system.

As an example, this scale decomposition may be constructed with a set of Gabor-

like functions defined on the frequency line:

. 1 _ ' . . j .

hj.k(w) E —l(w——i€—O) e’kuow‘fi") for all j, k E Z, (2.1)

£0 50

where l() is the indicator function over the {—1/2, 1 /2) interval, i2 = —1, and uo and

{0 are arbitrary parameters. Clearly, the set {hfl}11k partitions the frequency line

11



into adjacent non-overlapping uniform intervals of width £0, and include modulating

factors. Letting uoéo = 27r, it is easy to show that the frequency spectrum f of f

may be expressed as (see Appendix A.1)

fiw) = Z<f’ hjikliljsdwli (22)

with (-, ) denoting inner product. By obtaining the inverse Fourier transform of both

sides of this equality and using Parseval formula we obtain,

The commutation of the summation and integral operators in these steps is assured

since every Fourier series is integrable term by term[19]. Here,

sin {29(t + kuo)

hj.k(t) : £9“ + kilo)

2

 e’jfot for all j, k E Z. (2.3)

The partition of the frequency axis could have been chosen to produce a more

convenient scale.5 The octave scale is especially meaningful in acoustics as it matches

the sensitivity scale of human hearing more naturally, and is obtained by replacing j

by 2i everywhere in the above expressions.

In many instances, the relevant information in a signal is transitory in nature. In

an image, for example, it is the edges and other singularities which often convey the

 

5Throughout, we use the term scale with two different but related meanings: one, to signify a

single element in the partition of the frequency axis, when we want to stress its place among the rest

of the elements in the partition; and two, the partition itself, when we want to stress the specific

structure of the partition.

12



information of interest. This explains why one can frequently discern the content of

an image of a real-world scene solely from its high-pass filtered version; the contour

of a human face and the silhouette of a house convey much of the total informa-

tion. Consequently, parsimonious representations of an image with its short-duration

features require temporally narrow well-localized atoms. On the other hand, in or-

der to achieve fidelity of representation while maintaining conciseness, long-duration

features need also to be represented accurately with only a few atoms. This would

insure, for instance, that the presence of texture in an image would not undo the

economy or the quality of the linear representation.

A most practical system, then, would consist of both arbitrarily narrow time-

localized elements and arbitrarily narrow frequency-localized (temporally long) ele-

ments, as well as everything in between. Clearly, neither the Fourier nor the system

(2.1)~—(2.3) possess these characteristics.

2.2.2 Wavelet Representation of Signals

The theory of wavelets provides a systematic approach to constructing a complete

orthogonal set through iterated dilations and translates of an elemental function if),

called a mother wavelet. When this function is chosen to be fairly well localized in

time, the wavelet system becomes highly efficient in representing singularities and

other local features. This is the case, in particular, with wavelet functions of finite

support. However, for this class of wavelets, the scales necessarily overlap to some

extent and do not strictly constitute a partition of the frequency axis. Nevertheless,

the induced scales are always well defined, if not well localized, due to the inherent

nature of wavelets. For this reason, wavelet analysis of signals offers a versatile

representation which exposes time-frequency patterns or features not discernible in

either the time nor the frequency domain alone.

13



Multi-resolution Analysis

In general, a wavelet representation of an L2(R)-function f has the form

f = ZZ dj.k¢’j.ks (2.4)

jeZ keZ

where d“ _=. (f, liar) and vbj,k(t) E 2‘1/2w(2‘jt — 1:). Meaning is given to this decom-

position through the concept of multi-resolution analysis, which is the foundation of

every wavelet system representation.

IV‘Iulti-resolution analysis consists of a family of closed subspace {V,-},-ez of L2(R)

having the following properties: 6

i) Vj+1§ V]- for all j E Z, and 0,6sz = {0}.

ii) There exists a function a such that the set {o(t — k)}kez is a complete

orthonormal set in V0.

iii) A function f(t) is in V0 if, and only if, f(2’jt) is in V,.

iv) Ujesz is dense in L2(R), i.e., for any f E L2(R), there exists a

sequence {fn}n€N in Ujezvj which converges to f in the L2 sense.

The function a is known as the scaling function. Notice that by ii and iii, o(2'jt—k) E

V,- for all j E Z. It is easy to see that since the set {q5(t — k)}kez is orthonormal,

the set {¢(2“j t — k)}k€z is orthogonal, and, with the scaling of 2‘j/2, orthonormal as

well. Moreover, the set {2‘372,5(2-3' t — klh-ez turns out to be complete in the space

V,. Therefore, any element of V0 can be expressed in terms of this set corresponding

 

6Multi-resolution analysis may be defined for other spaces other than L2(R), for example, Sobolev

spaces W5" 5 {f : Ifflk)(t)|”dt < 00, k = 0,1,... ,m} with 0 < m,p < 00; but we only concern

ourselves with the former.
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to V. 1 since V0 g V_1, i.e., there exists a sequence of numbers {hflkez such that

at) = Z hk21/23(2t — k). (2.5)

1:62

In a similar manner to the definition given earlier for rig-y, let 95,-},(t) E

2’j/2¢(2“jt—k). The conditions for an infinite set of subspaces to be a multi-resolution

analysis were first stipulated by Stéphane Mallat [20], who in turn gave the follow-

ing very important result. Define the sequence {gflkez by gk E (—1)’°"1h‘1‘_,c for all

k E Z, where h; designates the complex conjugate of the coefficient hk in the scaling

equation (2.5). Define

wt) 2 [gal/Wt — k). (2.6)

keZ

Then, {2’j/2w(2‘jt— k)},,kez is a complete orthonormal set. in L2(R), i.e., {w,,k},,kez

is a wavelet system for L2(R). This justifies (2.4). Furthermore, the set

{T/Jj,k}ker{¢,-,k}kez is orthonormal, with the consequence that if

W,- ;-=_ {Z zulyt [(Zklkez E (HZ) la

keZ

then every element of W,- is orthogonal to every element of V,. The “parent” scaling

functions (25, and the mother wavelets 1/2 for the Haar and Daubechies systems are

Shown in Figure 2.1. Dilation and translations of these atoms give rise to the entire

family l¢j,k}keZU{¢j.k}kez-

Mallat also found that {W,-, V,} forms a partition for V,__1, i.e., W,, V,- g V,-_1 and

for every element 12,--1 of V,_1, there exist elements w,- and v,- of W,- and V,-, such that

vj—l = w, + v,-. This is expressed concisely as the direct sums l/,_1 = W,- ® V,-, and

are depicted in Figure 2.2.

An immediate consequence of this relationship is the following. Designate the
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Figure 2.1. The Haar and Daubechies 4—pt scaling and wavelet functions in the

interval. (a) Haar scaling function. (b) Haar mother wavelet. (c) Daubechies scaling

function. (d) Daubechies mother wavelet.

projection of f on V,-_1 by f,_1, that is,

fj—l E ZCj—1,k¢j—1,k. (2.7)

1:62

Where c,_1.k E (f, (151—1.1:). We may then also write

fj—l = 2 (033mm + dj,k¢j.k), (2.8)

1:62

with d“, as in (2.4). Equating these two expressions and writing (by, and w“, in terms

0f (151—1,1, according to the generalized versions of (2.5) and (2.6)——which are obtained

16



——>vj+2 ——'>vj+1 9v] a vj-1 ——>

/® /® /®/ 6-) /

wi+1 w] wj-1W j+2

Figure 2.2. Multiresolution analysis expressed as a sequence of direct sums. Each

space VJ-._1 encompasses the functions living in V, and Wj, and all those functions

formed by the sum of any two elements in V]- U W,—. Since Wj is orthogonal to V]-

and, therefore, to every V1 with l 2 j, Wj defines the scale of L2(1R) functions with

features not representable in any V, with l 2 j.

by the repeated substitution of the argument t for 2t, and in each iteration, multiply-

ing the resulting expression by 21/2—the discrete wavelet reconstruction expression

resuka

Cj—1,k = 2(h'k—21le + 9k—2tdj1), (2.9)

(62

for all j, k in Z. The corresponding discrete wavelet decomposition relations are

Cch = Z hl—2ij—1J (210)

162

and

dj,k = Zgz-mch—u (2-11)

(62

These are obtained by again expressing qt“, and 1?ch in terms of or”, according to

the generalized versions of (2.5) and (2.6) in c“, E <f,¢j.k> and d“. E (fit/5,0, and

Writing the resulting integrals in term of Cj_1’k.

The coefficients hk and 9,, in (2.9), (2.10) and (2.11) are the wavelet filter coef-

ficients, often referred to as quadrature mirror filter (QMF) coefficients within the

17



linear-filter-processing community. It is not difficult to show that the sequences (hk)

and (9,.) correspond to low-pass and band-pass filters, respectively.

Signals’ Finite Representation

The fact that we can express the coefficients at one scale in terms of those at the scale

immediately “above” or “below” without the need of scaling or wavelet functions is

key to the usefulness of the wavelet transform, for otherwise, the wavelet transform

would have gone the way of the Fourier transform before the FFT (Fast Fourier

Transform) was invented. For the transform to be computationally practical, however,

it is also necessary that a function may be representable by only a finite number of

coefficients. The following shows how under very mild conditions this is possible.

We first rewrite (2.4) as

f = EZ dj,kvj.k + Z Z d,,,,z/;,-,k + ZZ d,,,,v,,k, (2.12)

ngVkeZ .fl<jsJkeZ J<jkeZ

where J’ < J, but which are both arbitrary integers otherwise. From Figure 2.2, it is

seen that

f1 = fJ+1+ ZdJnl/Jnrk

keZ

J+2

= fJ+2 + Z Zdj,k¢j,k

j=J+1keZ

J+3

= fJ+3 + Z Zdj,kt/Ij.k

j=J+1keZ

= = ZZde/JM,

J<j 1:62
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and similarly

fJ’ = Z :dj,k¢j,k

J’<j keZ

Therefore, (2.12) can be written as

f = (f — m + Z Zeb-mi. + a (2.13)

J'<ng keZ

It is not hard to show that the projection fj is the best approximation in V]- to f in

the sense that N f — fj“ is minimized over all sums :keZ qujj‘k for any set {zdkez of

real numbers. Then, since a multi-resolution analysis is dense in L2(IR) (property iv),

the sequence (fj);’j, converges to f, i.e., ||f — f,“ —> O as j —> —00. This implies

that if J’ is chosen small enough, the (f — f1:) term can be ignored maintaining an

approximation to f as closely as desired. Doing this in (2.13), and arbitrarily choosing

7
the lowest scale approximation J’ to be scale zero we obtain

f ’31 Z Zdj,k¢’j,k +fJ

0<j_<_J keZ

= Z Z(1)“!ij + Z CJ,k¢J,k

0<jsJ keZ keZ

(2.14)

This expression still involves an infinite number of terms. However, if 11) is of

compact support, then the entire wavelet system {112“}N, is of compact support, and

so, if f is also of compact support, there will only exist. a finite number of wavelet

and scaling coefficients different than zero.

 

7There is no loss of generality here for we may expand or dilate the original function by any

amount required so that the approximation to the newly obtained function at scale J = 0 represents

the desired fit.
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The Discrete Wavelet Transform

When a function f admits a finite wavelet representation, it is often convenient to

think of the set of coefficients {dj,k}k,0<jg U{cJ,k}k in (2.14) as the wavelet represen-

tation itself of the function. In this sense, the scaling coefficients {C0,k}k obtained by

the reconstruction operation (2.9) is viewed as the (discrete) signal of interest. The

operation by which {C0.k}k is transformed into {dj‘khn 0<jsJ LJ{cJ,k};c is known as the

discrete wavelet transform (DWT).

Due to the decimation operations indicated in (2.10) and (2.11), the number

of scaling (and wavelet) coefficients in a scale is always half the number of scaling

coefficients in the prior lower scale. So if the coefficients at scale 0 run from, say, k = O

to N — 1, where N is an integer’s power of two, it takes N/2i scaling and wavelet

coefficients each at scale j to convey the same information. Therefore, whether the

)T are derived from a function of a continuouscoefficients c E co E (60.0, - - . ,cQN

variable, or constitute a discrete signal in their own right, the DWT may be expressed

as

0
.
.

II
I

(1J_l = Wc, (2.15)

  

where, for any j, dj 5 (dj,0,dj,1,--- ,dj,N/23~_1)T, and J = log2 N. ()T denotes the

transpose operation. The elements of the matrix W are linear combinations of the

filter coefficients {hk} and {gk}. These are found by expressing (2.10) and (2.11) in

matrix form, and applying them iteratively up to the highest possible scale J. In
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Figure 2.3. Wavelet-based Signal Processing. A finite-support function f is first

projected to a suitable scale space, e.g., V5. The scaling coefficients c = c0 corre-

sponding to the projection are DWTed. Signal processing algorithms are employed

to generate new wavelet coefficients d from the original. By an IDWT, corresponding

scaling coefficients 6 = (:0 are obtained from which the desired final function f may

be synthesized.

particular, for N = 4, J = 2 and

(ho h, 0 0) (ho h1 h2 123)
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\0 0 0 1} Km 9-1 90 g.)
    

A significant advantage of the DWT in problems involving finite-support functions

of continuous variables is that, once the vector of scaling coefficients on has been

obtained, one may operate solely on the coefficients (1 resulting from the DWT until

the actual desired function is needed; at that point, the new function is synthesized

using (2.14) with the newly obtained scaling coefficients following the inverse DWT

(IDWT) of the processed coefficients, d. This is the basis for discrete wavelet-based

signal processing. A pictorial representation of this idea is shown in Fig. 2.3.

Significance of the DWT coefficients

Each element of the set {dj,k}k=o,...,~-1 is associated with a region of the time—frequency
j=1,...,J

plane according to the location where the energy of the corresponding wavelet is

mostly concentrated. In particular, wavelet coefficient dJ-Jc corresponds to a region
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Figure 2.4. Time-frequency plane. (a) Partition induced by the Haar system, and

(b) partition induced by the system (2.3). Nodes and links in (a) display the func-

tional relationships among the various wavelet coefficients. The uppermost node

represents wavelet coefi‘icient d“), and those at the bottom, represent coefficients

dog, C10,], - - - , d0,N_.1. See text for an alternate interpretation.

centered at (uch, 5M) and of dimensions rj x 0], where a“ E f t IwJ-y,(t)|2 dt, {M E

fwlrfij,k(w)|2 dw, and for any k, r, E [(t — uj,k)2|wj‘k(t)|2 dt, and aj E [(w —

etVIz/Ejtwnww.

The time-frequency partition induced by the Haar system is shown in Figure

2.4(a), and that induced by the system (2.3) is shown in Figure 2.4(b) for referen’ce.

The nodes in (a) represent the wavelet coefficients, and the links represent their

functional relationships according to (2.9), (2.10) and (2.11).

Another useful interpretation of the tree—like structure superimposed onto the

time-frequency plane is that each row of nodes constitutes a projection of the original

signal onto a subspace of NOR). Specifically, the upper most node always represents

c1,0, the second row, the (01-1,0, CJ_1,1) vector, and so on. The bottom row corre-

sponds to the highest resolution representation available, and as was indicated before,

is often taken to be the original signal of interest. In this sense, we speak of the j-scale

representation c,- E (cm, - - - ,cj.N/21_1)T of co, since c,- are the scaling coefficients of

fj whenever co are of f. Notice that under this alternate interpretation, the signal
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represented by the coefficients on any given row, i.e., at any scale, of Figure 2.4(a),

may possess energy within the entire frequency band extending from 0 Hz (top of the

figure) down to the row of coefficients.

As an illustration of these two interpretations, the values taken by the coefficients

in each row of the time—frequency plane are shown in Figure 2.5. At the bottom of

the figure, the scaling coefficients corresponding to scale zero constitute the original

signal of interest. Right above them, the scaling coefficients corresponding to scales

1, 2, and 3 are shown along (to their left) one translate of the scaling functions used

in obtaining them. Each sample on any row corresponds to a node in Figure 2.4

according to the second interpretation. On the other hand, the values taken by each

node conforming to the first view are displayed on the right side of the figure. These

are the wavelet coefficients obtained by the inner products between the signal at scale

zero and the sequence of translates of wavelets shown in the rightmost column. Both

views are valuable depending on what is being sought.

Vanishing Moments

There are many wavelet systems in existence and each is better suited for a particular

set of applications. The systems may be differentiated by a myriad of properties that

they may or may not hold. One very important distinguishing property often stated

is the degree of regularity of the family of wavelets. For important families of wavelets

this may be measured by the number of vanishing moments [21]. A wavelet function

t/J has v E N vanishing moments if 8

ftpw(t)dt=O forp=0,... ,v—1, (2.16)

 

8Throughout this dissertation we avoid writing the limits of integration as much as possible for

simplicity of notation, but every integral indicates a definite integration operation. When the limits

are omitted, the region of integration is the entire space where the variable of integration is defined.
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Figure 2.5. Multiscale Signal Analysis. Scale and Wavelet coefficients (second and

third columns, respectively) of the signal at scale 0 (bottom row) are displayed for

scales 1, 2, and 3. Columns 1 and 4 give one single translate of a scale function

and wavelet used in obtaining the coefiicients. These functions correspond to the

unnormalized Haar system, which we review more extensively in Chapter 3.

but not for p = v.

By a simple change of variable one can easily show that if 212 has v vanishing

moments, then each it“ has v vanishing moments as well. Therefore, any function

f which can be closely approximated by a polynomial of order v — 1 will have all its

wavelet coefficients d“. be zero or nearly zero. This situation represents a high degree

of compression, for only a set of coarse scale scaling coefficients suffices to represent

the function.

Beyond parsimonious representations, a sufficiently regular system may be ex—

ploited in estimating a signal from within noise. If the true signal is smooth enough,

most of the energy in the wavelet coefficients will be from noise, and thus a simple

thresholding scheme may remove much of this noise without seriously altering the

true signal upon reconstruction. We review some of these wavelet-based estimation
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procedures in Section 2.5.

Images

There are various ways to extend wavelet analysis to images or L2(IR2) functions. A

simple approach often taken consists of constructing a separable 2-d multiresolution

analysis Vj2 as the tensor product of 1-d multiresolution counterparts:

V]? E V]- ® V, for allj E Z. (2.17)

The resulting family of subspaces {VJ-2} of L2(R2) possess 2-d versions of the four

properties i—iv given earlier characterizing 1-d multiresolution analyses. Specifically,

the scaling property is satisfied by a scaling function defined as

¢j.k1,k2(t1»t2l 5 (153's: (t1)¢j.k2(t2). (2.18)

In two dimensions, the detail space WJ-2 is the space spanned not by one set of

wavelets corresponding to scale j, but by three sets, each associated with a given

orientation: horizontal, vertical, and diagonal. These wavelets are constructed as

follows.

w2k1,k2(t13 t2) E ¢j.k1(t1)’ll9j,k2(t2)

w;k1.k2(t1’ t2) 5 wj.k1(tl)¢j.k2(t2)
(2.19)

I d

wj,k1,k2 (tlv t2) 5 wj,k1(t1)wj,k2(t2).

Each set of wavelets defines a subspace of L2(R2) such that the projection of a function

f onto it gives the energy (a measure of the amount of detail content) of the function

in that orientation. As an illustration, Fig. 2.6 shows the 2-d wavelet decomposition

of the standard cameraman picture. On the left is a discretized rendering of the
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Figure 2.6. Multiscale representation of images. (Left). The standard cameraman

image: highest resolution scaling coefficients, i.e., co. (Right). Wavelet representation

of the cameraman image: c2 are the scale 2 scaling coefficients, (11 and d2 are the

wavelet coefficients at scales 1 and 2 corresponding to the horizontal, vertical, and

diagonal orientation according to the h, v, and d designations.

original scene; hence, we regard it to constitute the set of scaling coefficients at the

finest of scales available, and which we arbitrarily denote as scale zero.9 The wavelet

analysis of this image up to scale 2 is shown on the right. The representation is

standard: on the upper left, the scaling coefficients corresponding to j = 2 form a

coarser representation of the original image; the horizontal, vertical, and diagonal

wavelet coefficients dfikl‘kz, diam» and dink: at the first and second scales provide

the details of the original image c0 not in c2.

In Chapter 3, we introduce a new two-dimensional multiscale representation of

images which is derived from the 1-d Haar system but which is not separable. The

 

9This interpretation in which each pixel in the picture assumes the value of a scaling coefficient (at

scale zero, in the present case) is justified if Coykl.k2 E (f, ¢O.k1.k2) 2 f(k1. k2). It may be shown that

under proper dilation of the original function f , most wavelet systems. and certainly, all bounded

systems of compact support, satisfy this condition whenever f is Lipschitz, i. e., there exist constants

c < co and o < a s 1 such that If(t’1.t'2) — f(t1-.t2)l : C|<t'1—t1)'2 + (t’2 —t2)21"/2. for an :1,

t2. t’i, and t’2 [22].
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new analysis approach is better suited for the modeling of non-negative 2-d functions

as the estimates obtained are always non-negative. In general, this does not hold for

estimates based on any other 2-d wavelet system.

2.3 Multiscale Modeling and Attributes

2.3.1 The Components of a Model and their Notation

Whether an event is a naturally occurring phenomenon or the result of a man-made

process, it ultimately exists only as a manifestation of re-distribution (or conversion)

of energy in space. The flow of energy, or its final state, forms a discernible pattern by

which the event may be identified. Typically, we record such patterns as signals that

we can later manipulate and study. Thus, these signals convey all the information that

we may ever have about the process, and might well be regarded as the process itself

for modeling purposes. This is reminiscent to the nature of random variables, which

encode underlying random events but are of no essence once the random variables are

defined.

Because there are no truly spontaneous events, every process is simply the continu-

ation of some prior process, and so, we partition the succession of events by recording

signals at intervals of time. Any two consecutive signals constitute the cause and

effect of the process they encompass.10 Denote these signals by A E A and :r E X,

respectively, where in general, A and X are subspaces of VCR”) or l2(ZN). For

simplicity, however, we restrict subsequent discussion to the case where A and X are

subspaces of RN, and to stress this, the signals are shown in bold face to remind us

 

10We note that for some processes the cause and effect parameters or signals may seem inter-

changeable, when in fact, they correspond to two distinctly different processes. For example, in

modeling the behavior of ideal gases one choice would be to have the change of temperature of an

isolated volume of gas be the result of changing pressure. Another possibility would be to consider

the change of temperature to be the cause of the change of pressure.
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that they are vectors.

As indicated earlier, a deterministic model for a process may suffice for many

applications, but a probabilistic model is always much more general. In fact, it can

be argued that the joint distribution p(x|A)p(A) is the right way to convey all known

information about the relation between A and x and, therefore, about. the process

itself.

Although it is often convenient to distinguish between a random variable and its

realizations, for simplicity, we provide no separate symbols for each. Instead, we rely

on the context to make the differentiation. Thus, for example, with E representing

the expectation operator, the expression E[x|A] necessarily implies that x is a random

variable (or a random vector) (rv) while A may be a random parameter or a realization

of it.

By p(x) we denote the probability density distribution of the 7v x if it may take

on an uncountable number of possible values. If the range of x is countable, then p(x)

stands for its probability mass distribution. In general, p(x|A) 75 p(ylA), as we define

the densities solely by their arguments. Only in a few instances will it be necessary

to be more explicit and write, for example, px(y) to mean the density of x evaluated

at x = y.

Our motivation for modeling events primordially comes from the desire to estab-

lish the probable causes of the observed phenomena. That is, given the outcome x we

would like to estimate A. This is often an important task for if we know A we may

predict or estimate the outcome of some other process dependent on it as well; alter-

natively, we may be interested in whatever caused the outcome A in the first place.

For example, in nuclear medicine, the immediate problem consists of establishing the

distribution of radioactive material within the patient given a noisy image of photon

counts. This knowledge later aids the physician in diagnosing the state of the patient.

In view of this, we regard only models in which A represents the statistical mean
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Figure 2.7. Components of a Model of a Process. The overall process is modeled as

a doubly stochastic process in which A is the realization of an unknown process, but

which is modeled by a prior distribution p(A). The output x, in turn, is modeled as

a realization of the process obeying the likelihood p(x|A). The purpose of the model

is to facilitate the construction of an estimator 6 for A based on the observation x,

but the estimator is not a component of the model.

for the rv xlA. That is, x represents a “noisy” realization of A governed by the

likelihood p(x|A), which is parameterized by its mean A. Furthermore, all derivations

in this chapter are made under the assumption that p(x|A) and p(A) are absolutely

continuous; however, most remarks and conclusions are easily extended to discrete

models as well.

A pictorial view of the components of a model are shown in Figure 2.7. In this

figure, 6 represents an estimator for A, the estimate of which is denoted by A. The

estimator is not an element of the model per se; however, since the objective of the

model is to facilitate the construction of the best estimator possible, the chosen model

depends on the desired estimator. Bayesian-based estimators can be shown to be op—

timal over all other types of estimators under most reasonable criteria as long as a

suitable prior distribution p(A) is available [23]. This is often not the case, however,

and constructing one is a difficult problem in general. One very important contribu-

tion of this dissertation is, in fact, showing how to formulate practical prior densities

for general Poisson processes as well as for photon-limited tomographic processes.

In Section 2.4 we aim to show that under the criteria set forth below, the multiscale

framework is the right framework for formulating models of processes suitable for

Bayesian inferences.
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2.3.2 Anomy, Accuracy, Precision, and Resolution Power

Two important concepts widely used in estimation theory for purpose of evalu-

ating the degree of an estimator’s goodness are unbiasedness and minimum vari-

ance. An estimator 5(x) of A is said to be unbiased if E[6(x)|A] = A for all

A 6 A; and it is said to be uniform minimum variance unbiased (UMVU) if

var 6(x) 3 var 6’(x) for all A E A, where 6’(x) is any other unbiased estimator of

A, and var 6(x) E E[(6(x) — A)2|A] [18].11

Thus, a biased estimator is simply one that on average incurs an error in its

estimation, i.e., one which is expected to systematically depart from the truth. On

the other hand, a UMVU estimator is one which, in addition to estimating correctly on

average, the expected departure from the truth (in a square-error sense) is minimum

among all estimators.

Clearly, while biasedness and variance are intuitive and useful concepts, they

represent only first and second order measures of the quality of estimators and cannot,

therefore, give a complete assessment. Other measures exist for this purpose as

well (e. g., equivariance, risk, etc), however, they also give only a partial picture

of the merits of estimators. In order to remedy this problem, we introduce four new

information-theoretic concepts: anomy, accuracy, precision, and resolution power.

Since our interest here is to qualify the degree of goodness of models as well as

that of estimators, we take the following unifying and general approach. First, we

take the view that models exist independently of any estimator, and that estimators

are meaningful only when associated with a model. Second, we only evaluate models

per se, but an estimator may be assessed in relation to a model by augmenting the

model with the estimator and then evaluating the augmented model. And third, in

 

11The tests for unbiasedness and UMVU are most often written as E[6(x)] = A and E[(6(x) —A)2] 5

E](6’(x) — A)2] in books of statistics [18, 24, 25]; but knowledge of A is implicit in these tests since

x is assumed to be the result of a unique non-random A. Here, we prefer to be explicit as A is a

random variable itself, and write the conditional dependencies in the tests.
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order to unify this view with traditional stands where the various measures apply to

estimators rather than models, when necessary we consider the identity estimator,

i.e., 6(x) = x, in conjunction with a model and apply the various criteria to that

estimator. The end result is that whatever is concluded about the estimator applies

to the model itself. In this manner, for example, we could talk about the bias of

a model by considering the value of E[6(x)|A] = E[x|A]. For the restricted class of

models we are considering, this equals A; therefore, this class of models are unbiased.

In a similar manner, when referring to the new concepts to be introduced below, they

will apply to the model to which we have associated the identity estimator.

The simplicity and convenience of the proposed view of the relationship between

models and estimators will become apparent later in the section.

Precision

Let I(X ; A)12 denote the mutual information between the ensembles X and A of all

possible outcomes x and A, respectively. That i513

904*)

10(X)

 I(X;A) E /p(x|A)p(A) log ddi. (2.20)

As is well known, I(X ; A) represents the information that, on average, the outcome

x conveys about the rv A—or that the input A conveys about x—measured in number

of bits, nats, or decimal digits depending on whether the log function is base 2, e,

or 10, respectively. When the input and output (cause and effect) rv’s are scalar, for

example, a realization :1: determines the input A to within I(X ; A) bits of precision, on

average. If this quantity were infinite, we would know with all certainty the precise

 

12For convenience, we sometimes simply write I(x; A); but we must remember this always repre-

sents an averaging process over the entire sample spaces X and A.

13The mutual information can equivalently be written as fp(A|x)p(x)logB-£%i—’)dedA, or

f p(A, x) log 2" )ddi, etc.
pApx
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value of A that caused :c, and we would say that A is known with infinite precision.

Clearly, this occurs when p(:r[A) = 6D(r — A), i.e., a Dirac delta function. Thus, it

appears only natural to define the precision ’P of a model to be the average mutual

information between the cause and effect signals:

79 a I(X; A). (2.21)

The chosen terminology is compatible with the common experience. For example,

the term precision is formally used among the instrumentation community to indicate

the degree of repeatability, over all possible readings, that a measurement can be made

[26]. That is, it represents the amount of information in number of significant digits

that the reading (the rv x) conveys about the true state of events (the realization A).

And this is exactly what I(X ; A) represents: the net information (as an average of

positive and negative information) over all possible realization pairs (x, A) [27].

An equivalent and insightful definition for precision is obtained by interpreting

it as the entropy of the input A when quantized to the number of bits determined

14 The proofby I(X;A), averaged over all possible uniform quantization schemes.

of the equivalence of the two definitions is given in Appendix A.3, where notation

introduced later in this section is used.

The range of ”P is clearly the non-negative real numbers. A precision of 0 indi-

cates that x and A are independent and, therefore, the outcome of one conveys no

information about the outcome of the other. For discrete ensembles X and A, it is

sometimes convenient to talk of the relative precision ’Pr of a model which can only

 

 

14Often we think of quantization of a real variable 2:, for example, as the mapping y = 13,, [10":13] ,

where [-j is the integer part function, and where n determines the number of decimal digits of

quantization: n = 00 => no quantization, n = 0 => quantization to nearest integer no greater than

1:, etc. It is possible to define, however, a more general quantization operation as follows: for any

real .9 > O and r 20, y: %[s(:r-—r)] +r.
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take values between 0 and 1. A useful definition is given by

Pr 5 I(X;A)/H(A),

where H(A), or simply H(A), is the entropy of A, i.e., - f p(A) log p(A) dA. Clearly,

Pr may be expressed as a percentage as well. For the rest of this chapter, however,

only ensembles with absolutely continuous densities will be explicitly considered.

One interesting result. stemming from the adopted definition of precision is the fact

that the precision P of any given model is always equal to or greater than the precision

P5 of any augmented model. That is, if the original model is given by the pair

p(xlA) and p(A), then the augmented model is given by the pair p(d IA) = p(6(x)[A)

and p(A). This is a consequence of the Data Processing Inequality theorem well

known in information theory, and which establishes that I(X ; A) Z I(6(X ); A), for

any transformation 5 [27]. Thus, we have

mgr. an)

As stated earlier, the model p(xlA) = 60(x—A) is associated with an infinite precision.

Inequality (2.22) is reminiscent to the Cramér-Rao inequality, which states that

the mean squared error of any unbiased estimator 6(x) of the parameter A is lower

bounded by the reciprocal of the Fisher information J(A) of A. Writing this in terms

of the reciprocal of the variance, the inequality becomes

 

var-1(6) may be regarded as a second-order measure of precision, but it is clear that

the inequality (2.22) is stronger for it involves the entire model in all its moments.
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Anomy and Accuracy

While precision tells the average amount of information between a model’s input

and output, it does not give any indication about the utility of the information that

either x conveys about A, or that A conveys about x. For instance, it is possible to

construct a model in which the output gives much information about its cause (i.e., a

very precise model), but which is not all that useful as it is not all that accurate. This

would occur, for example, in a model characterized by a multimodal density p(xlA)

with very well defined (“sharp”) modes. Figure 2.8 illustrates one such density when

A and x are scalars.

Assuming a fairly uniform p(A) and that the scenario depicted in Figure 2.8 is

representative of the model in general, the integral (2.20) takes on a high value,

because the regions on which log gills-l becomes large and positive are more likely

than those regions on which it assumes negative values. Thus, the model is highly

precise.

On average, an outcome .7: places the value of the input A to “within” P bits from

its true value. However, since the real line may be partitioned in an infinite number

of ways with any given finite number of bits,15 the model does not necessarily specify

a region which includes the input A, in which case the accuracy of the model is poor.

In the example, the P bits of information conveyed by the realization :1: places A

to within one of the five regions where p(rIA) is greater than p(zr), i.e., within the

neighborhoods of the modes, none of which include the input A. Therefore, the model,

while precise, is inaccurate.

This example illustrates a situation where the realizations {13,} are, on average,

far removed from their input A despite the fact that $327,123,- —+ A as n increases

 

15For example, one bit of information may partition the real line into the positive and negative

halves—the sign bit—or may discriminate between numbers with a fractional part in the [0, .5) or

[.5, 1) intervals—first bit to the right of the binary point—and so on.
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Figure 2.8. The various probability densities defining accuracy. p(xIA) and p(x)

are pdfs associated with the given model, the precision of which is P. pp(x|A) and

pp(x) E f pp(x|A)p(A) dA (not shown) are auxiliary pdfs with the characteristic of

representing the same precision P, while pp(x|A) is the pdf with the smallest support

about A.

without bound—Khinchine’s Strong Law of Large Numbers [28].

It is important to note that the degree of accuracy of a model is not an indication of

its truthfulness. A model, i.e., the joint density p(xlA)p(A), is always assumed correct

given the available information. This is not to say that models of varying degrees

of accuracy cannot be constructed for the same process; the alternate models may

differ in precision as well. Although for particular input-output pairs of realizations

a model may be highly inaccurate, on average a (correct) model will possess some

degree of accuracy, and its precision bits of information will be useful in that same

measure.

If in the example of Figure 2.8, p(a:|A) had been unimodal with a very sharp mode

at a: = A, the model would have been highly accurate, and all information given by

:r would serve to identify the location of A within its neighborhood. This goes to

illustrate that accuracy is some measure of the spread of p(xlA) with respect to the

most accurate (MA) distribution, which we define to be one that conveys the same
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amount of information—one that has the same precision—but whose information

most effectively identifies the neighborhood of each A responsible for each outcome

x. This requirement brings to mind UMVU models, but as was argued earlier, un-

biasedness and minimum variance are only first- and second-order measures of the

desired property in the model.

A most general measure of the “spread” of a distribution is given by its en-

tropy. So, we reason that the accuracy .A of a model must be related to the

difference H(X IA) — Hp(X IA) of conditional entropies corresponding to the ac-

tual conditional density p(xlA) and to the MA distribution, which we denote by

pp(x|A).16 Here, H(XIA) E — fp(x|A)p(A)10gp(x|A) dA dx, and Hp(X|A) E

- fpp(X|A)p(A) log Pp(xlAl d’\ dx.

The MA distribution pp(:r|A) for the particular input A in the above example is

shown in Figure 2.8. In general, pp(x|A) is defined to be a uniform density centered

at x = A and of support the N-dimensional cube C(A; p) of sides 2p. We denote it by

“p(x — A). This choice is motivated by the fact that of all the probability densities

of compact support with a given entropy, the uniform has the smallest of supports,

and thus, is most concentrated around its center [29].

To be meaningful, the MA distribution must. convey the same precision as is

conveyed by the actual model. Denoting the average mutual information between a

process’ input and output under its MA model by Ip(X; A), i.e.,

Ip(X;A) E /p,,(x|A)p(A) logggf—Il—S-A dA dx, (2.23)

where pp(x) E fpp(x[A)p(A)dA, we require that the “radius” p of pp(x|A) be such

that [p(X; A) = I(X;A). Clearly, this requirement. makes sense only if [p(X; A) can

 

16We have departed from the convention of denoting the rv as a subscript for its density function.

The subscript p in pp(x]A) denotes only a parameter.
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be shown to be a one-to—one function of p, for otherwise, p would not be uniquely

determined for a given precision of value I(X ; A). In Appendix A.2 we show this to

indeed be the case.

Although p is not a true radius, thinking of it as such is more descriptive, and

helps to better interpret its significance. We shall call it the equivalent precision

radius or EPR, for short.

Although appealing, measuring the “spread” or “disorder” of the actual model

with respect to that of the most accurate model by the difference of their conditional

entropies presents a fundamental flaw, which we now illustrate with a simple example.

Suppose that p(xlA) also represents a uniform density of support of radius p, but

which for every x, is centered so that it does not overlap with p,,(x|A).l7 This situation

results in a difference H(X IA) — Hp(X IA) = 0, leading us to conclude that the actual

and MA model have the same accuracy as well as precision. This is clearly not the

desired result, as the actual model is completely inaccurate, for its information is

misleading for every outcome x.

We now introduce a new measure of the “disorder” of a model which gauges the

average degree to which the precision bits fragment the IR” space in determining the

probable input sets for each possible outcome. We call this measure the anomy N of

a model, and is defined as

N E D (pp(XI»\)p(A)l|p(XIA)p(A))a (224)

where D(p||q) is the Kullback Leibler distance or relative entropy between the densities

 

l7Strictly, this condition is not realizable if the model is to be correct, however, close approxima-

tions may be constructed.

37



p and q, i.e.,

= , 0 an
D(p(x)|l(I(:r)) —/p( )1 ”(1(1) dx.

More specifically,

D (pp(xIA)p<A)”p(xlA)p(M) = [pawn/u 103571711“) «max. (2.25)

We note that the Kullback Leibler distance is not an ordinary distance in the

mathematical sense, for it fails to meet all the conditions of a metric. In particular,

it is not the case that D(p||q) = D(qllp) for all densities p and q, nor does D(p||q) = 0

imply that p = q. Nevertheless, this information-theoretic measure of the “separa-

tion” between distributions possess several desirable properties. For example, for all

densities p and q, D(p||q) Z 0 and D(pllp) = 0. Furthermore, because pp(x|A) is uni—

form conveying the same average information as p(x|A), D(pp(x|A)p(A)||p(x|A)p(A))

equals zero only if p(xlA) = pp(x|A) everywhere except, perhaps, within a set of mea-

sure zero. This implies that the anomy of a model can not be zero unless it is the

MA model. We prove this assertion in Appendix A.4.

We can establish the similarities and differences between anomy and the difference

of entropies discussed earlier by expressing the log function in (2.25) as a difference

of log functions: on one hand we have

dAdx—/pp(x|A)p(A)log1 dAdx, (2.26)N: fp,(xl.\)p()1og_ WW
1

WIA)

while on the other

H(AIX)- H(=A|X)

1 1 (2.27)

/p(XIA)p(«\)log—WIA) dAdx— / pp(x[A)p(A) log2Wdedx.
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These two expressions are remarkably similar; however, the averaging process carried

out in (2.26) is obtained with respect to the same joint distribution pp(x|A)p(A),

whereas in (2.27), it is not. Thus, the first case represents an average of relative

spreads, while the second case represents a difference of average absolute spreads.

As a consequence, anomy has the desired property of being a most general measure

of separation between actual and the MA model without the shortcomings of the

entropy-difference measure.

Accuracy18 .A of a model may now be defined very naturally as

A E exp(—N), (2.28)

if the anomy of the model is measured in nats; otherwise, we take A = 2‘N or

A E 10‘”, depending on whether the log base being used is 2 or 10. When the

anomy is zero, meaning that the model’s average P bits of information conveyed

by x about A completely determine the input’s neighborhood, the accuracy is 1 or,

equivalently, 100%, as expected. In the opposite instance, for an infinite anomy——

indeed, a complete disorder in the information conveyed—the accuracy is zero.

This extreme case should only occur when the model is erroneous; however, it

is easy to construct a model whose anomy is infinite, and yet contains much useful

information. In a two—dimensional case, for example, if p(xlA) resembles an upper-

half toroid with inner radius greater than J2 p and centered about A so that p(xlA)

is zero within the square C(A; p), N will be infinity.

To remedy this difficulty inherent in the original definition, we give the following

 

18In classical estimation theory, the inaccuracy of an estimator is measured by the corresponding

risk function [18].
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more general definition:

N E D(pp(X)llp(X)) (229)

In Appendix A.5, we demonstrate that this and the definition given in (2.24) are

consistent. That is, for “non—pathological” models, the two definitions are completely

equivalent. If (2.29) ever becomes infinite, we interpret. the model as one of zero

accuracy.

Resolution Power

It is natural to assess the “value” of a model by its ability to effectively convey useful

information about the process. The amount of information conveyed is measured by

its precision, and its utility is measured by the model’s accuracy. Therefore, we may

measure the quality of the model by the product of precision and accuracy. We call

this the resolution power, or simply, the resolution of the model, and denote it by R:

R 2 AP. (2.30)

Essentially, two main mechanisms exist by which one can modify the resolution

power of a model, each requiring the introduction of new information into the model.

One approach consists of replacing the prior model p(A) with one that reflects newly

found information about the behavior of A. This information may come from a

better understanding of the processes that precedes the one of interest, or from simple

observations of the signal and a “frequentist” induction of its behavior, for example.

The second mechanism to modifying a model’s resolution consists of adding an

estimator as shown in Figure 2.7, and incorporating it into the original model. In this

case, the estimator function incorporates new knowledge about the relation between
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the model’s original input and output, knowledge which may be exploited for a better

representation of the input.

Strictly speaking, from the assumption that a process is described by its joint

density p(xlA)p(A), modifying its model results in a different process than the one

intended to be studied. For convenience then, we take the more general view that a

model may be modified by updating the prior density p(A) and/or by incorporating

an estimator 6(x), and still represent the original model, but augmented with the

new information. The key idea here is the invariance of the input and the observable

output under consideration; y is simply a mathematical transformation of x, but not

a new observable output per se.

After the model has been modified by either of the above methods, the resulting

model may have a lower or higher resolution power than the model from which it

originated. To see this, we first consider the prior-modification mechanism, and realize

that it is always possible to find a monotone function g such that Fnew(g(A)) = F(A),

where F and Fnew are the cumulative distributions of the original and new priors,

respectively [30]. Consequently, the new prior simply constitutes a 1v transformation

Anew = g(A) and, by the Data Processing Inequality theorem of information theory,

the new model’s mutual information can only be less than or equal to the mutual

information of the original model [31]. Thus

Pnew S 73-

Updating the prior density of a model, however, can increase, decrease, or leave

unaltered the corresponding model’s anomy by simply enhancing, reducing, or leaving

alone the likelihoods of the sets of A for which the “separation” between pp(x|A) and

p(xlA) are greatest.

As for the second mechanism for modifying a model, we saw in page 33 that be-
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cause an estimator constitutes a transformation of the output, by the Data Processing

Inequality theorem

7353?,

where P5 and P represent the model’s precision with and without the estimator. On

the other hand, we have that since the estimator in essence gives us a new conditional

density p(dlA), this too can modify the anomy upwards or downwards.

Although these results may appear disconcerting at first, for we may anticipate

that new information always increases the resolution power of a model, they are

indeed what we should expect. For example, when updating the prior and finding

the resolution lowered, it indicates that the leverage given by the model in learning

about the input from the output is not as significant as it was before we gained

the new information about the input. Likewise, when finding that the inclusion of

an estimator only reduces the resolution of the model, it indicates that the newly

incorporated information is not constructive, either because it misleads (negative

information), or because its gain in accuracy does not offset the loss of precision.

In Section 2.4.2 we will find that resolution power can be employed as a useful

figure of merit for comparing models.

2.3.3 Two Illustrative Examples

In this section we present two examples that will help to illustrate the newly intro-

duced concepts of anomy, accuracy, precision, and resolution power. These examples

are also intended to give practical results that may be used for further work. In

particular, the results of example 1 are used in the next section.
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Example 1

In this example we calculate the accuracy, anomy and precision of an N-dimensional

Gaussian model. The antecedent or input A is modeled as a vector of jointly Gaussian

elements centered around a fixed vector u. and covariance matrix T. The consequence

or output x is also Gaussian distributed. Its mean is A, and its covariance matrix is

denoted by K.

The entropy H(X IA) is found in [29] to be %10g{(27re)N det K}. Since this

result is independent of A, the conditional entropy H(X IA) 2 E}, [H(X IA)] also

takes this form. Likewise, the entropy of the input is H(A) = §log{(27re)N det T}.

Because AIx is also Gaussian distributed, in this case with covariance matrix

K(K+T)‘1T, H(AIX) = %10g{(27re)N det K(K + T)‘1T}. Therefore, from the

identity I(X ; A) = H(X) — H(X IA) we obtain the corresponding model’s precision:

_ 1 det(K+T)

P —— 5 log{ detK }. (2.31)

The units in this case are nats because the log function is taken to be base e.

From the definition of anomy,

1

ddi—fpp(xIA)p(A)log——— ddi.N: /p,,()xIA)p(A)log-—— p,,x( IA)

PX(1IA)

In Appendix A.2 we show that the second integral evaluates to log ICI. Since

pp(xIA) = Ll,,(—x A) and p(xIA)= Wexpt—é—(X— A)TK-1(x—A)), the first
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integral can be also expressed as

-1

l—Cl p(A)] log p(xIA) dx dA

RN C(Azp)

 

1

= —log{(27re)NdetK} +—1— p(A)/ l{()'C—A)TK_1(x—Al} dXdA
2 IC I RN C(A;.o) 2
1 N 1 2NpN+2 -1

= — log {(27te) det K} + —- p(A) tI‘K 61*
2 IC] RN 6

1 2

= 5 log {(27re)N det K} + 86— trK’1

(2.32)

Therefore, the anomy is given by

1 re N p2 _1

and consequently, the accuracy is

2P2 N/2 p2

A = (7}?) V det K-l exp (_E trK-1) . (2.34)

In general, it is difficult to find an exact closed form expression for the radius p

which satisfies the equality 1,,(X; A) = P. When the models are not specific enough

to apply numerical techniques, we have the option of considering special cases which

allow practical simplifications that make the resolution of p manageable. The next

example is one important case.

Example 2

We consider the same Gaussian model of Example 2, but with the added restriction

that the covariance matrices K and T of p(xIA) and p(A), respectively, satisfy

max{k,-,,- I K = {ki,j}} << min{t,-,,o I T = {tij}}-
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That is, p(A) is a very smooth (slowly varying) function relative to p(xIA).

This model often describes realistic events where x represents the signal A per-

turbed by noise whose power is much smaller compared to the signal’s own power.

In these cases, p(xIA) is the density of the noise, and the diagonal elements km- are

simply the power in the individual noise elements.

In Appendix A.6 we prove that for sufficiently smooth p(A) relative to p(xIA),

[p(X;A) z H(A) — log [C], (2.35)

which we shall write as an equality. Then, from Example 2,

Ip(X;A) = élog{(27re)N det T} — log(2p)N.

From [p(X; A) = P, where P is given in (2.31), the square of the EPR is calculated

to be

 

, ire (detK detT)1/N

’0 = 2 det(K+T)

By applying this expression to (2.33) and (2.34) we obtain the model’s anomy and

 

 

 

accuracy:

1 det(K+T) 7T6 detK detT UN _1
= _ __ _ t K , 2.36

N 21°g( detT )+12 (det(K+T)) r ( l

and

detT 7T6 detK detT 1/N
= __ __ t K"1 . 2.37

“4 I/det(K+T) €pr 12 (det(K+T)) ’ I ( )

To gain insight into the nature of the accuracy and precision of this model consider

the scalar case. With N = 1, let 02 = detK and '72 = det T. From the original
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assumption we have that 02 << 72, and (2.31) and (2.37) reduce to19

 P = 110g (02;???) z log (7)

2 E

A 72 re 02 72 _1

= ————- ex - z e .

02 + '72 p 1202 02 + 72

Thus, for the scalar doubly random Gaussian model where the “noise” power is small

and

a n
N 

compared to the power of the signal, the precision of the model increases logarithmi-

cally to the inverse decay of the noise power. This relationship certainly appeals to

intuition, especially when written in terms of the signal-to—noise ratio and expressed

in bits: P z .166 SNRdB (bits). As an example, we have that in order to achieve a

precision of 8 bits, an SNR of 48 dB is required.

Meanwhile, we observe the peculiar behavior of the model’s accuracy of being

approximately constant for all values of signal and noise powers (within the allowed

ranges.) Therefore, the resolution power behaves like the precision within a factor of

close to one-half, i.e.,

R = AP z .4910g (3).

For example, using this model with an SNR of 48 dB, the outcomes :1: convey, on

average, 4 bits of information about the true value of their corresponding antecedents

A. The other 4 of the 8 bits of precision also discern the inputs, but to within sets

too “dispersed” to be constructive. Only with a detailed study of the forms of p(xIA)

and p(A) could one possibly exploit the extra information for a particular outcome.

In fact, for the models where p(xIA) are not unimodal, on average the extra bits may

be outright misleading.

 

19The square of the EPR becomes p2 = 329 (%2—'—’:,) z 12302, and p z 20.
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2.4 The Multiscale Modeling and Estimation Ad-

vantage

Early in the chapter we asserted that coarse-scale models may be constructed more

accurately than their fine-scale counterparts, but that the coarse-scale models are

necessarily less precise. Our argument was in no way rigorous, and was based only

on an intuitive notion of the concepts of precision and accuracy. Now, we are in a

position to formalize this statement. using the definitions introduced in Section 2.3.2,

and give some insight into the conditions under which it holds.

We shall refer to the ability of trading accuracy for precision (and vice versa)

as we move through scales as the Accuracy/Precision (A/P) property of multiscale

models. Likewise, we shall say that a model having this property is an A/P model

and satisfies the A/P conditions.

Perhaps the major consequence of the A/P property is in estimation. For models

possessing this property, the following estimation approach is possible:

Under the multiscale framework, the estimation process may be started at a coarse

scale, where the model is typically highly accurate. Then, one may proceed with the

next finer scale, leveraging the new estimate with the accurate estimate from the pre-

vious coarser scale. By proceeding in this fashion, moving in each step to the next

finer scale, a sequence of increasingly more precise and highly accurate estimates can

be obtained.

In Chapters 3 and 4, we employ this estimation approach with great success in the

“recovery” of the underlying intensity signals which give rise to Poisson processes.
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Figure 2.9. Multiscale representation of a 1-d model of size N = 8. (a) Observations

xi = (se,-,0, . .. , at]. g _1) at the various scales j, and (b) their corresponding intensities
12]

Aj = (A130,... ,Ajyg_1). In this example, a two-to-one relation between elements

2

of adjacent scales is illustrated; however, more generally the relations are m-to-one,

where 2 S m g N.

2.4.1 A/P Models and their Properties

A model for the highest resolution representations A0 and x0 of the input and output of

a process is given by the joint probability density p(xo, A0) = p(xOIA0)p(Ao). Likewise,

the model corresponding to the j-scale representation of the same process is given by

p(xj, A3) = p(ijAj)p(AJ-). Recall that the subindex 3' denotes the scale, with higher

numbers corresponding to coarser scales (see Figure 2.9.) We denote the anomy,

accuracy, and precision associated with this model by AG, Aj, Pj, respectively.

The estimation process of progressing from coarser to finer scales so that more

precise and highly accurate estimates are obtained at each step, derives from the

Accuracy/Precision conditions assumably satisfied by some multiscale models. These

conditions are summarized below.
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The Accuracy/Precision Conditions

j—scale Model (j + 1)-scale Model

P(ijAilP(’\jl P(Xj+1IAj+1)P(’\j+1)

P,- P,- > 173-+1 79,-“

Aj Aj < Aj+1 Aj+1   
 

Throughout we have confined all discussions to finite length signals and their

models, but we believe extensions can easily be made to models of signals with infinite

lengths, which appear to represent the simpler case; we do not pursue them here,

however.

Whether the A/P conditions are met at any given scale j depends on the form of

the model p(ijAj)p(AJ-) and on the particular transformation used to generate the

next scale model. Thus, a model p(onA0)p(A0) is an A/P model if a set of orthonor-

mal linear transformations {Wj}20 exists such that each of the models p(ijAj)p(AJ-)

satisfy the A/P conditions.

The models of interest here all satisfy (1) EIijAJ-I = A], and (2) p(xj+1IAj+1) =

p(xj+1IAj) (i.e., Aj+1 is a sufficient statistics for xj+1). If in addition to these condi-

tions, we impose the mild restriction that for all scales (3) H(AjIxJ-H) > H(AjIxj)

(i.e., that the model be non-trivial), the inequality Pj > Pj+1 of the A/P conditions

 

20It is understood from our previous discussions that the set of transformations must be such that

A1+1 = . A-

( 9M W] J

where Aj+1 is a “coarser scale representation” and with half the length of Aj. When the transfor-

mation is a wavelet transformation, 0j+1 is the vector of wavelet coefficients at scale j + l.
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is trivially satisfied:

791‘ = I(Xj;1\j) = H(A)) - H(AjIle

> H(Ajl - H(AjIXjHl = I(Xj+1;AJ-)

Z I(Xj+1aAj+1) = 77341-

The second inequality in this expression is due to the Data Processing Inequality

theorem, because the mapping Aj H Aj+1 is non-invertible (see Section 2.2.2).

The idea of non-triviality of a multiscale model is perhaps better understood by

considering the idea of a trivial model. We define a trivial model to be one that for

any valid scale j, the output x,- conveys no more information about the input A,- than

3:)“ does.

This concept is analog to that of finite bandwidth signals, where we regard an

oversampled signal 33- to be a trivial representation of its decimated counterpart 31-“.

In this instance, the oversampled signal conveys no more information than sj+1 does,

and so, it is also the case that H(tJ-Isj) = H(thsJ-H) for any rv tj.

Now we can add to the requirements that a model must meet and show that

under the augmented set of conditions the inequality Aj < A)“ is also satisfied. Our

effort in this direction has only produced conditions which are much less intuitive

than the required and sufficient condition JV]- > JV)“. This is because, in addition

to the already intuitive nature of anomy as a “distance”, this measure is much more

encompassing than more traditional ones involving only a finite number of statistical

moments. Consequently, it becomes cumbersome trying to characterize general A/P

models using conventional statistics.

In Appendix A.7, we develop a sufficient condition for the accuracy inequality.

We use it in the following example as a starting point to delineate a general approach

to finding a set of transformations {Wj} for a Gaussian model such that the A/P
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conditions hold. We use the notation of Example 2 of Section 2.3.3, and those of

Appendix A.7. Please refer to those sections as needed, especially Figure A.1. Also,

recall that [C(AJ; pJ-)I = (2pJ)NJ‘ denotes the volume of the cube C(AJ; pJ) centered at

AJ-, of sides twice the EPR pJ-, and of dimension NJ- = N0/2j.

Example

Condition (A.12) may be simplified by noting that AJ-+l(a) 2 0. So, a new (and more

stringent.) condition for the accuracy condition to hold is

log (—”J ) < /p(A.) {Au-<10) — A.<p>} ab». (2.38)
pj-H IRNJ'

Resolution of the integral— f(p(A p)dAJ- was already obtained1n (2. 32).

2.

—/ P(’\lej(PldAj =llog{(27re)N1detKJ-}+ p—J trKT‘l.

11W 2 6 3

And the integral f p(AJ) A3(p) dAJ can similarly be solved for:

, 1 P2 _
[1th p(AJ)AJ-(p)dAJ- = —§log{(()27re N1 detWJ-KJWJT} — J——+-l trrWJ-KJ- IWJT

= —-;—log{(27re)NidetK-J} — p—Jé-Z‘thtrKJ-'1.

Recall that KJ- is the covariance matrix of the NJ--dimensional Gaussian pdf p(xJ- IAJ-).

tr.‘K
Substituting these two resultsin (2.38) and letting aJ-=_ Ti,— the condition18

p.

log (—J-) < oJ- (p3 — pg“).

Let f(pJ-+1) E log (31:1) — oJ- (p?+1 — sz), then we have as a condition

up...) > 0. (2.39)

51



f(pJ-+1) is a concave function with one maximum at pJ-H = 1/ M23}. The set of

pJ+1 > 0 for which (2.39) is satisfied is always an interval, except when pJ- = 1/ J23},

where there is no solution at all. If pJ- > 1/\/2a—J-, the interval of solutions lies

immediately to the left of pJ-; and if pJ- < 1/\/2TzJ-, the interval of solutions lies

immediately to the right of pJ-. Because pJ- and aJ- are already known quantities at

the time of search for the transform WJ- that satisfies condition (2.39), we can readily

determine whether we should seek a transform that induces a new EPR that is greater

than or less than pJ-.

Let (1 Z 2 (NJ be the eigenvalues of KJ-, and m1, . .. ,mNJ the corresponding

eigenvectors normalized to 1, i.e., IIm,II = 1. Since the axes of the NJ-dimensional

ellipsoid QJ(z) E zKJTIZT = 1 are fl}... ,\/Z_N_J [32], the point 1/\/27J- is the

square root of the harmonic average of the square of the ellipsoid’s axes, scaled by

x/fi.

Ignoring this last factor, this averaging operation heavily favors the smaller axes,

and so, if the number of large axes is not disproportionately greater than the number

of small ones, it is convenient to begin the search for the desired transform by choosing

WJ- to be such that pJ+1 takes the smallest value possible among the values of the

ellipsoid’s axes. By starting with the smallest possible value and incrementing it at

each step of the algorithm, we are assured not to miss the interval of solutions. So

we shall proceed in this fashion of favoring simplicity over optimality of search.

Let us first assume that pJ- > 1/\/2—d;. Then, our initial choice is WJQ = M? E

[m1 , . . . , mNj], which produces the smallest EPR p?H possible because p(xJ-+1|AJ-+1) is

obtained by integrating p(xJ- IAJ-) over the space spanned by the first NJ /2 eigenvectors

m1, . . . , mNJ/2. Again, these correspond to the direction of slowest change of p(xJ- IAJ-)

[32]. Consequently, as p(xJ-IAJ) is projected onto the xJ-+1-(wJ-+1 x xJ-+1) hyper-plane

it becomes the density p(xJ-+1IAJ-+1) with the smallest possible profile. See Figure 2.10

for a depiction of this at one step ahead in the iteration process.
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Figure 2.10. Method for obtaining consecutively increasing EPRs pg?+1, p].+1, . . . for a

Gaussian model. The transform WJ gets updated so that the projections ofp(xJ-IAJ)

onto the xJ-+1-(wJ+1 X th+1) hyper-plane progress from its narrow side to its broadside.

The process is depicted at an intermediate step near the beginning of the algorithm.

If pJ-+1 = p?+1 does not satisfy condition (2.39), we next rotate the axes wJ-+1—AJ-+1

a small angle in a direction which tends to broaden the projection of the density and

make the corresponding EPR bigger. The possibilities of rotation paths increase very

rapidly with NJ; in fact, when NJ- > 2 the number is clearly uncountable. One simple

approach, however, is to take WJl = M}, the first rearrangement of MJQ corresponding

to a reordering of the eigenvalues obtained by interchanging the middle two:

C1 (NJ/24 CN,/2+1 (NJ/2 CN,/2+2 (NJ--

Thus, AIJ-l E [mu , mNj/2—1» mN,/2+1, mpg/2, HIM/2+2, , mNJI-
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If (2.39) is satisfied with the presently computed pJ-+1 = p?+1, we still move one

step forward in the algorithm just as if the condition had not been satisfied. The

idea is to proceed until (2.39) is satisfied with an EPR sufficiently close to 1/m,

since this will insure a large spread between M and M+h21 and therefore, a greater

advantage when estimating within the multiscale framework.

If (2.39) is once again satisfied with the new EPR pJ+1 = p]-H induced by WJ-l =

MJ-l, but [pg+1 — 1/\/2—o_J-I < Ile-+1 — UM], we stop; otherwise, we proceed using

MJ-Q, the second rearrangement of NJ. In this case, we interchange the next two

columns of MJ.1 nearest to the center but which have not been exchanged previously.

This corresponds to the eigenvalue reordering

C1 . . . (NJ/2—2 (NJ/2+2 (NJ/2+1 (NJ/2 (AG/2‘1 (NJ/2+3 ° ° ' (Ni.

We proceed in this manner until (2.39) is satisfied and we can no longer reduce

the distance between the computed EPR and 1/ \/2—aJ.

If at the outset pJ- < 1/ «279-, the approach is the same as before, but in this case

we do not test (2.39) while pJ-+1 < pJ, for we know the solution, if one exists, must lie

to the right of pJ-. Once a suitable transform WJ- is found, the search for Wj+1 may

begin in a similar fashion.

Comments

Several points are worth noting here about the searching approach just delineated.

First is the fact that some intermediate transforms may be required between two

consecutive trial transforms M; and MJ’“ if p311, “overshoots” the target value. It

is easy to envision methods for constructing the sequence of transforms AI; which

 

21Since we are attempting to satisfy only a sufficient condition, it is clear that the optimal EPR,

one for which the difference INJ — .NJ-+ 1] is maximum, may be found to be other than 1/ ,/2oJ-.
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represent finer rotation changes at each step than those provided here. One possible

way would be, for example, to consider all possible permutations of the eigenvalues

of KJ, and construct the transforms MJi of normalized eigenvectors with the corre-

sponding ordering which generates the monotonic rotational increasing sequence from

MJQ to MJivjl—l = [mNJ, mNJ_1, ... , m2, m1]. We shall not dwell on this issue as our

intention is solely to illustrate the general idea as to how one may find the set of

transforms {WJ}. ‘

Another important point is that the sequence of transformations obtained in this

manner, and which guarantee that NJ- ) .A/J+1 at all valid scales, may be viewed as

a new multiscale transform which is statistically motivated. This is in contrast with

wavelet based and other existing multiscale transforms that operate in the time or

space domain. Clearly, the possibility exists that the two types of multiscale filtering

coincide for a class of models, which we would call scale ergodic models. For this class

of models the A/P conditions may be satisfied through the following mechanism.

From the discussions of Section 2.2, we know that the coarser scale representation

xJ-+1 of xJ- is obtained by a linear transformation that produces elements {xJ+1,,-},- that

are more highly correlated than the elements {xj,i}i of xJ are. Consequently, for the

models of interest here, for which E[xJ-IAJ-] = AJ, the density function of xJ-+1IAJ-+1

tends to be sharper than the one for xJ-IAJ-, concentrating a greater probability mass

about its mean. This, in turn, tends to reduce the size of EPRs, leading to a better

match between the densities p(xJ-IAJ) and pp]. (xJ-IAJ), and so, increasing the accuracy

of the model with scale.

On a more general point, determining at the outset whether a model admits trans-

formations WJ such that (A.12) is satisfied at each scale is, in general, a difficult task,

and we believe that each case, or at least, each family of models, needs to be looked at

separately. We defer this effort for future work. However, under the assumption that a

model does admit such a sequence of transformations, we can use condition (A.12) to
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aid us in their search in a manner very similar to what we have done here—although,

this may entail an intensive iterative process. With knowledge of the sequence of

transformations, we can generate the sequence of multiscale representations {xJ} of

the data x0, which can then be used to exploit the estimation advantage referred to

earlier in the section.

Coarse-Scale-Data Limited Models

Earlier in the chapter we stated that “while modeling of phenomena based on coarser

scale information alone may be more accurate, it can only be achieved at the expense

of precision.” We shall say that a model that possesses this property satisfies the

coarse-scale-data limited model conditions, or CSDL model conditions, for short, and

refer to such models as CSDL models. At that time we also asserted the equiva-

lence of this phenomenon to the fact that coarse-scale models may be constructed

more accurately than their fine-scale counterparts, but always at the expense of pre-

cision, which is the defining property of A/P models. We relegate the proof of this

equivalence to Appendix A.8.

2.4.2 Bayesian Multiscale Models and Estimation

In the past section we have seen that an advantage exists in estimating an underlying

intensity within a multiscale framework whenever the model is an A/P model. How-

ever, the advantage is only potential, because whether it is realized or not depends

not only on the model itself, but also on the particular estimator used at each scale.

To illustrate this we take an extreme example.

Suppose the model at hand is indeed an A/P model, and suppose that within

the top-down multiscale leveraging estimation framework we obtain at each scale an

estimate AJ- of AJ by randomly choosing a signal among all those that satisfy AJ-H =

A N' A

WJAJ. Here, WJ E Iii-21"”), and Aj+1 denotes the previously obtained estimate for
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AJ+1, which at the coarsest scale J considered we let A; = xJ. Clearly, the potential

advantage in this case does not, on average, lead to a better estimate of A0 than one

would obtain, for example, by simply letting A0 = x0. It is not hard to see that under

the first estimation scheme one has P0 = 0 and N0 = 1, and thus R0 = 0; while for

the second method, Po and N}, are the original values corresponding to the model

p(xOIAo) p(Ao), which for practical models give R0 > 0.

This example highlights the nontrivial aspect of how to exploit available infor-

mation in a multiscale estimation scheme. So, we ask what is the optimal estimator

6(xJ-) for AJ- that. most efficiently and systematically exploits knowledge of the esti-

mates AJ+1, . .. , AJ? Clearly, the answer must satisfy two conditions: the estimator

must have the means to extract all relevant information (patterns) from coarser scales,

and it must optimally reduce the estimation error.

It is well known that Bayesian estimators are optimal in the mean-square error

sense, and in fact, under various other reasonable criteria as well, whenever a suitable

prior density of the antecedent is available [23]. Furthermore, since a Bayesian-based

estimator can make explicit use of the posterior distribution p(AJ-IAJ-+1, . . . ,AJ)—the

most comprehensive statement of AJ- ’5 dependency on the prior information—they are

the most natural and optimal multiscale estimators of choice. A Bayesian multiscale

estimator 6 E {6(xJ-)}22 can be formulated as follows.

For the desired estimate A0 = 6(x0) to be optimal, each indiviual estimate23

AJ- = 6(xJ-) must also be optimal. The optimal estimate at scale j is the posterior

 

22Note that each estimator 6 is scale dependent, but we let the argument indicate this. That is,

6(Xj) # 6(Xj+() for 1 ¢ 0. A

23When referring to the estimate AJ~ = 6(xJ-), it is clear that 19 is taken to be a realization of

the corresponding random variable, which we also denote by xJ—a clear abuse of notation. Here,

however, the terms estimate and estimator are used interchangeably in order to reduce some of the

repetitive vocabulary.
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mean

A

E [Aj IXJ',AJ'+1,... ,XJ] =/Ajp()\jIXj,Xj+1,... ,XJ)dAj. (2.40)X.-

A Bayesian approach facilitates the solution of (2.40) by expressing it in terms of

the known model distribution of xJ- given AJ. Applying Bayes’ theorem to (2.40)

and using the equalities p(xJ-IAJ,AJ~+1, . .. ,AJ) = p(xJ-IAJ) and p(AJIAJ+1, . .. ,AJ) =

p(AJIAJ+1)24 we obtain the desired form

 

Xj = fAj p(ijAjllXAJiAj-H) dAJ (2.41)

f p(leAj)p(Alej+ll d/‘j

The prior p(AJ-IAJ-+1) can be obtained from the distribution p(AJ-IAJ-+1) allowing

for uncertainty in the deviation of AJ+1 with respect to AJ-H. If the data xJ, and

therefore, xJ-+1, . . . ,XJ, are determined to be reliable (accurate), then p(AJ-IAJ-+1) can

be taken to be well approximated by PMA,-+1(AJ-I’AJ-H). Since for A/P models, the

accuracy of the data increases with scale, the approximation is increasingly better

with scale as well.

This represents an important advantage of the multiscale estimation framework:

While Bayesian estimation facilitates the realization of the multiscale leveraging es-

timation advantage by fully exploiting all available information in the scales, a mul-

tiscale model enhances the reliability of the Bayesian estimator by virtue of the more

accurate data at those higher scales—the A/P property.

Another benefit of the multiscale description of a Bayesian estimator is that the

formulation of realistic priors {p(AJIAJ+1)} is often much simpler than devising the

 

24Clearly, p(AJ-IAJ-+1,AJ-+1,... ,AJ) = p(AJIAJ-+1), and assuming the optimality of the

estimate Aj+1, it is alsci reasonable to assume p(AJ+1|AJ+1,...,AJ) = Ap(AJ-HIAJH).

Therefore, p(AJIAJ+1,... ,AJ) = f£(AjIAj+1,Aj+1,... ,AJ)p(Aj+1IAj+1,... ,AJ)dAj+1 =

fp(Aj|/\j+1)P(Aj+1|X3-+1) dAj+1 = Poul/‘2'“)-
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prior p(AO) alone. In the next chapter, we elaborate this point further, and show how

to construct a practical prior especially suited for general Poisson processes.

Also, within the multiscale Bayesian approach, it is sometimes possible to formu-

late the problem such that the inferences can be computed very efficiently. This is

particularly true if the prior is chosen to be conjugate to the conditional density of

the model [23]. The estimator developed in the next chapter is an excellent. example

of this.

Resolution Power of Multiscale Bayesian Models

We now consider the precisions and accuracies of a model augmented by a Bayesian

estimator outside and within the multiscale framework. We shall refer to the resulting

models as the standard and multiscale augmented models, respectively. With these

formulations at hand, we can gain some insight into the mechanics of the multiscale

Bayesian approach that lead to its resolution power advantage. For simplicity, we

shall assume the estimators to be invertible, which is certainly the case for the Poisson

processes addressed in Chapter 3. One immediate consequence of this assumption is

that the precision of either augmented model is unchanged by the estimators, and

that these precisions corresponding to the standard and multiscale augmented models

are the same.

Since our interest ultimately lies in whatever occurs at the finest of scales, we

restrict the following derivations and discussions to scale j = 0, but all the results

apply equally to every other scale. This is important because the benefits of the

multiscale approach can only be guaranteed if every intermediate scale enjoys similar

benefits. We first consider the standard augmented model.

Let (0 be a Bayesian estimator for A0 without the benefit of any conditioning
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from higher scales:

_ p(XolA )
co = Elelel = / Aopuo) (fi) dA.. (242)

We recognize the factor 1%]? as the ratio in the mutual information log 3%?) of

x0 and A0 at the particular realizations at which the ratio is evaluated. In general, as

we know, this ratio is a measure of the dependence between the two random variables:

when it takes values near one, it indicates highly independent entities; when it takes

large values, it indicates that the variables are highly dependent; and when the ratio

is very small, it indicates near mutual exclusiveness. In our applications we do not

encounter this third case as we assume x to be positively correlated to A.

Inspecting (2.42), we see that the estimator produces an average based almost

exclusively on the information provided by the prior when it deems that the rv x0

conveys very little information regarding A0. On the contrary, when the dependence

between the variables is high, W will de-emphasize those values of A0 which

are far from the regions that make the ratio large so that the computed average

corresponds to the average of those regions that favor the particular outcome x0.

This is the general mechanics of a Bayesian estimator, and gives insight into

its powerful approach to producing an estimate. Now, the mechanics that makes a

multiscale-based Bayesian estimator superior to its standard version can be seen by

computing the difference of the anomie corresponding to their augmented models:

Nc. — M. = [museum1amdcodAo
PfCoIAO)

p90 (60IA0)
— 6 A A 1 d6 dA,[Roof oI 0)P( 0) 0g p(5oIAo) o o

where 60 denotes the estimator (2.41) for j = 0, and C0 is the estimator (2.42).

Note that the EPRs associated with both of these estimators is the same. This is
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a consequence of the invariance of the precision under the standard and multiscale

model augmentation scheme by an invertible estimator. The above difference reduces

to

_ — , 210134191
N20 Mo - /Ppo(00I)\olP(A0)108 PCOWOIAO) €100 €130,

where do is a dummy variable. The ratio of densities may be interpreted in accordance

with the definitions of the estimators 60 and C0:

P60(0’0I)\0l PfEleIXoiAllIAo)

PCOWOIAO) p(ElAOIXOIIAO)

It is intuitive that this ratio is non-increasing as a function of the distance [00 — A0].

That is, while the probability of finding the estimate EIAono, A1] near the true value

A0 is greater than the probability of finding EIAOIxo] in the same region, the prob-

ability of E[A0Ixo,A1] decreases more rapidly than that of EIAOIxo] as their differ-

ence to A0 increases, ie, p(EIAon0,A1]IA0) is more “concentrated” about A0 than

p(EIAon0]IA0) is. Assuming this behavior yields

. 1 P6o(0'oIA0l
NCO MO > /p(A0) 3:12) (2t)N0 ./C(Ao;t)10g pC0(00IA0) duo dAOv

which in terms of the density of xole may be written as

. 1 p(XoIAol/ |J60(Xo)|

o ’No / A l -——-—/ l d dA ,

NC 5 > M Ulti§(2t)No 00.0,.) 0g13(Xole)/|Jc.,(xo)| x0 0

where J50 (x0) E 3% and J¢0(x0) E gli- are the Jacobians of 50 and (0 with respect

to x0. Thus,

. 1 [Jcofxoll
N —N >11m——/ lo ——dx, (2.43)

<° 5° ~00 No a...) gum.” °
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For simplicity, we consider the 2—d case. We let (A1, 01)T = WAG and (x1, w1)T =

on, where W is a linear orthonormal transformation. Then, due to the linearity of

the expectation operator

 

  

I aE[(A1.61)Tlx1.w1]

 

laAlfxmvl) 591(1‘1aw1) _ 511(11401) aélfxlvwfll

[Jcofxoll _
  

   

_ , 6(1'1.w1) 7 7 _ 6171 6w1 81111 82:1

IJ50(X0)I aEIIA1.01)TJI1.W1.A1I 3A1(1‘1.w1.)\1) 891(11,w1,A1) 8A1(2:1,w1,A1) 891(11.w1,A1) .

I - I
6(1‘13111) 62:1 3101 am am

Typically, the dependency of the estimate Al on the crossterm w, and the dependency

of the estimate 5, on the crossterm $1 are weak compared to the dependencies on

2:1 and wl, respectively. Therefore, the behavior of (2.43) may be inferred from the

 

 

approximation

6} , as .

lJco(Xo)|z I 12:1“) ‘22.”)!

IJ50(X0)I l3A1($1.w1.A1) 691(x1.w1.A1) I.

6:131 6w1

 

This ratio is, at least on average, greater than one, for the functional dependency of

A1 on A1, and that of 51 on 61, makes the denominator less sensitive to changes of 3:1

and w. A more rigorous argument can be formulated, but we leave this effort for

future work. Ftom (2.43), we conclude that 1%,, < .A/Co, and so, A50 > AC0. Since

the precision associated with the standard and multiscale formulation of the Bayesian

mode is the same, we conclude that the multiscale-based Bayesian estimator achieves

a greater resolution power than the traditional Bayesian estimator: R50 > RC0-

Although some of the derivations in this section have not been carried out with

all the desired rigour, they lead to plausible results which cast light on the advantage

of the multiscale-based Bayesian estimation framework over the traditional Bayesian

approach. The main objective of this chapter up to this point has been to promote

this approach by establishing, at least in its beginning form, a foundation under

which models and estimators alike can be studied under a common all-comprehensive

set of criteria that applies equally to multiscale and traditional frameworks. These

criteria should not only become useful in comparing various estimation approaches,
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but should also become the basis for designing guidelines for new estimators.

The new characterization of models and estimators also reflects our attempt to

put forward a clearer view of the interplay between scale (space/frequency) resolution

and information resolution (resolution power). Their relation depends on the specific

transformations used in creating the various scale models from the original high-

resolution model, and is reflected in the accuracies and precisions attained at those

scales.

2.5 Other Multiscale Modeling and Estimation

Approaches

In this section we briefly review some other important multiscale modeling and es-

timation approaches. These are the threshold smoothing methods: Hard and Soft

thresholding, Universal, and the SureShrink Method; Cross- Validation Method; and

False Discovery Rate. This list is not all exhaustive, but in conjunction with the

multiscale Bayesian approach, they represent the most important classical methods.

Their importance derives not only from their wide use in practice, but also from the

fact that they represent estimation paradigms from which many other methods have

later derived.

2.5.1 Threshold Smoothing Methods

The standard model used to represent the input-output phenomena of a very large

25'
class of processes 1s

x = A + 17, (2.44)

 

25Clearly, this model is not as general as a Bayesian-based model.
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where x is the “noisy” data, A the underlying intensity, and where n represents

additive noise [33]. Within the thresholding methods, estimation of the intensity

from the data occurs in the frequency-space (wavelet) domain, where the intensity of

typical real-world signals can be projected onto a relatively small subspace compared

to that occupied by the noise’s projection. The segregation of the signals’ energies

is what makes their separation from noise possible. The general approach consists of

the following steps:

Wavelet transform the data, reduce the smaller wavelet coefficients to zero ac-

cording to some thresholding rule and, inverse transform the coefficients to recover

an estimate of the intensity.

The samples of signals of interest (the elements of A) are typically highly cor-

related. This induces a high structure among the wavelet coefficients containing

significant signal energy. Specifically, they exhibit the properties of clustering and

persistence across scales [34]. Clustering is the property of coefficients tending to

take values in the order of those of its neighbors; and persistence across scales means

that large/small values of wavelet coefficients tend to propagate across scales. These

phenomena will be illustrated in Chapter 3. A consequence of this high structure is

the sparseness in the wavelet domain representation of signals, which is to say that

only a relatively few coefficients convey the signal’s features.

Meanwhile, noise samples (the elements of 11) are often well-modeled as being in-

dependent, and therefore, the noise displays a “flat” distribution across the frequency

spectrum where the intensity lives. This causes the noise energy to become distributed

among the wavelet coefficients of a much larger subspace than that occupied by the

signal. Consequently, large wavelet coefficients are associated with signal energy, and

small coefficients with noise contribution. Thus, reducing the smaller coefficients to

zero effectively removes noise from the intensity, with only a minor smoothing effect

on the reconstructed intensity.
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The literature on thresholding schemes often assumes the noise to be independent

of the intensity, and much of that work also assumes it to be Gaussian distributed

I12, 33]. These two points are to be found in high contrast with the methods devel-

oped later on in this dissertation. These assumptions greatly simplify the estimation

problem because the wavelet transform, being a linear orthogonal operator, sustains

the two assumptions over the transformation. These common assumptions are made

in the following descriptions.

Hard and Soft Thresholding

Let W denote the DWT. Applying it to (2.44)

w = 0 + W17 (2.45)

results. Here, w E Wx and 0 E WA, the wavelet coefficients of the data and of

the signal (see (2.15)). For any given threshold r > 0 and an element wk of w,

there are two standard ways of modifying the coefficient. These are the hard and soft

thresholding. Hard thresholding produces a new wavelet coefficient according to the

rule

wk if [wk] 2 r

E
’
)

a
- ll

0 otherwise.

Soft thresholding uses a rule that modifies every coefficient, even those with strong

signal to noise ratios. The thresholding condition is

wk—‘r ifw;c >T

wk = 0 if [1ka S 7

wk +r if wk < -7'

65



When applied to the denoising of images, soft thresholding is claimed to give more

pleasing estimates than the hard thresholding [35]; however, this can be due to over-

smoothing effects, that often has this visual appeal but which in fact may repre-

sent a degraded estimate under most conventional error measures. The smoothing

phenomenon will be illustrated in Chapter 4 within the context of tomographic im-

age reconstruction. For a more in-depth treatment of thresholding techniques, see

[10,12,35,36]

Universal Method

This method can take the form of a hard or soft thresholding rule. In the latter case,

Donoho & Johnson [35], the developers of the method, call it VisuShrink. This is

because the method usually oversmooths the noisy signal, which as we noted before,

tends to produce visually appealing estimates. A more accurate method is also given

in [35], which is a minimax thresholding method that is optimal in terms of L2 risk.

Both universal and minimax based methods are global thresholding approaches

because the chosen threshold is applied to all the wavelet coefficients. In practice,

however, it is typical to threshold only coefficients at the finest resolution (i.e., scale

j = 0), since coarser-scale features of the data tend to belong to the original intensity

signal.

The distinguishing characteristic of the universal method is the basis on which the

threshold is computed. Assuming the noise or error term for each element of w is i.i.d.

normally distributed like N(0, 02), the elements of W11 are also distributed according

to N(0, 02). In this case, the simplest of the universal thresholds is calculated to be

7,. =m.

This threshold insures that as N increases, the probability that all noise coeffi-

cients get “rooted out” tends to one. Clearly, because the threshold TN is derived

from asymptotic arguments, the universal method does not perform well for signals
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of short lengths [33].

SureShrink Method

In contrast to global thresholding approaches, the SureShrink method is a data-

dependant selection procedure. This very popular method, also introduced by Donoho

& Johnstone [12], finds thresholdings rJ~ at each scale j so that the L2 risk of the

estimator A for A will be small. Using the equality EIATA] = EIOTBI, the risk can be

expressed in the wavelet domain:

N-l
A 1 A A

R(A, A) a E IN 2W — 1,.)2] oc E [239“ — 9“,)2] . (2.46)

k=0 M

The wavelet coefficient estimates {aklk are obtained from the data wavelets {wJ-,k})c

by a soft thresholding rule with threshold rJ.

Using Stein’s Unbiased Risk Estimator (SURE) defined as

N—l N—l

SURE(1"J-;wJ-) E N + (TJ-2 - 2) Z I(ijc S Tj) + 2 wire I(wj.k > 7’3),

k=0 k=0

where I() stands for the indicator function and wJ- E (wJ,k)k, an unbiased estimate

of the risk of the wavelet coefficient estimates {fiJ-jchc can be obtained. Then, with

the set of thresholds {13} such that for each j, rJ- = arg min T>0 SURE(1'; WJ), we can

expect that the risk R(A, A) be asymptotically minimized, because due to the Law of

Large Numbers, the SURE criterion is asymptotically close to the true risk [33].

Cross-Validation Method

The general method of cross-validation (CV) was initially adapted to wavelet regres-

sion by Weyrich & Warhola [37] and Nason [38]. Other important related work have

followed since then (see for example [39, 40].) Similarly to the SureShrink method,
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the multiscale CV approach aims to minimize the risk (2.46). Here, however, a global

threshold r is chosen such that the average risk corresponding to two different es-

timates for A is minimized. The first of these estimates, AOdd, is obtained by soft

thresholding the data wavelets corresponding to the odd samples of x; and the sec-

even

0nd estimate, A , is similarly computed from the wavelets associated with the even

elements. The threshold used is one which minimizes

1

MW) E fl {26.3.1.1 _ xix/emf + 2(Xfx'en _ $?dd)2} ,

i

where 135“" and (Bi-”dd are interpolated samples of x required to align the “data” samples

to the even and odd estimates.

Essentially, the CV approach seeks to obtain the threshold value that reduces the

squared error incurred when predicting half of the data samples with estimates that

are based solely on the other half of the data elements. Clearly, due to the required

interpolation of the data, the separation between the portion of the data used in

estimating and that used in testing—that is, used in computing the associated risk—

is not complete in the case of the multiscale approach.

False Discovery Rate

The False Discovery Rate (FDR) approach to computing the required threshold is

due to Abramovich & Benjamini [41]. They structure the problem in terms of a

multiple hypothesis test. There are N — 1 null hypotheses H0 : OJ), = 0, which are

regarded to be highly probable on average. The aim of the approach is to reduce the

erroneous possibility that a coefficient satisfying the null hypothesis is included in the

reconstruction of the signal estimate, or that a coefficient not satisfying H0 is included

with the wrong sign. Thus, if R is the number of coefficients that are included in

the reconstruction (erroneously or not), and Q the number of coefficients incorrectly
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included, then Abramovich & Benjamini attempt to include as many coefficients as

possible maintaining the expected value of Q/R below a user-specified value.

Comparison between this and the VisuShrink method shows that the FDR ap-

proach performs better for signals that include some abrupt changes, while the

VisuShrink method is superior when the function space only includes smooth in-

tensities [41].
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CHAPTER 3

Multiscale Modeling and

Estimation of Poisson Processes

In this chapter, we present and analyze a new multiscale Bayesian framework for the

modeling of Poisson processes. In the previous chapter, we motivated this approach

for arbitrary processes by showing that multiscale representation of signals makes

possible the utilization of all available information in the signal. These results, how-

ever, did not specifically show the way to model any particular process in order to

gain the multiscale advantage. There are always many ways of achieving this even

within the multiscale framework, but not all lead to simple and practical models. The

approach introduced here will be shown to provide a very powerful and natural frame-

work to studying a wide variety of Poisson processes. The new framework makes full

use of the Poisson probability model and enables the incorporation of realistic prior

information into the estimation process. We will also show how it can be applied to

photon-limited imaging.
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3. 1 Preliminaries

The problem of estimating the intensity A of a general Poisson process from a single

observation1 c of the process has been studied in great depth. For example, many

earlier approaches to Poisson intensity estimation were based on the idea of modeling

the variability of the process by Gaussian fluctuations with non-stationary charac-

teristics, e. g., [42, 43]. Recently, simple wavelet-based approaches to this problem

make use of the square-root of the counts (a variance stabilizing transformation that

makes the data approximately Gaussian) and then apply standard wavelet thresh-

olding techniques for Gaussian noise removal [12]. More sophisticated wavelet-based

estimation procedures attempt to deal with the Poisson statistics directly. Kolaczyk

has developed a wavelet-based thresholding scheme for the estimation of a special

class of Poisson processes termed “burst-like” processes [14]. The burst-like Poisson

process is characterized by a homogeneous, low intensity background with spatially

isolated bursts of high intensity, and is motivated by problems in astronomical imag-

ing. Nowak and Baraniuk propose a wavelet-based method for the estimation of more

general Poisson intensities in [44] using the cross-validation estimator developed in

[40]. This method is applied to nuclear medicine image estimation in [45]. Both meth-

ods [14, 44] can provide satisfactory results in certain situations. However, neither

method adopts a Bayesian perspective, and hence they do not explicitly make use

of prior information that may be available. As we noted at the end of last chapter,

several wavelet-based Bayesian estimation procedures have been proposed for Gaus-

sian data, e.g., [46, 34, 11, 15, 47], however, such methods are not applicable to the

Poisson problem considered here.

 

1For completeness, in Section 3.5.4 we address the case of multiple observations of the same and

related processes, but our main thrust throughout will be the single-observation case.
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3.2 Notation

To simplify the presentation we work with one-dimensional intensity functions in the

interval [0, 1]. In a later section, we extend the modeling and estimation approaches

to two-dimensional problems. Furthermore, we assume that the intensity function is

discretized so that A is represented as a vector of length N with elements (Ak)£:10 .

The counts ck are the elements of the vector c, also of length N.

We follow the wavelet. representation and notation introduced in Section 2.2.2

throughout. Specifically, let c0 be the data sequence of counts c of length N, where

N is assumed to be a positive integer power of two, and let CO,k be its kt” element. As

before, the subscript 0 denotes the finest scale (resolution) of analysis. Similarly, let

A0 be the finest resolution representation of the intensity sequence A, i.e., A0 = A,

also of length N. Then,

COIAO ~ Poisson(A0), (3.1)

and the objective is to estimate A0 from the observation co.

From Figures 2.1-(a) and -(b), and expressions (2.10) and (2.11) the wavelet filter

coefficients corresponding to the Haar system are (h0,h1) = (fi, 53) and (go, 91) =

(715,—712-). For reasons soon to be addressed, it is convenient to work with the

unnormalized Haar system. The filter coefficients corresponding to this system are

simply (ho,h1) = (1,1) and (go, gl) 2 (1, —1). Therefore, a multiscale analysis of CD

can be obtained by iterating

Cch = Cj—1,2k+Cj—l,2k+1s
(3.2)

dilk = Cj—1.2k-Cj—1.2k+1.
(3.3)

for j =1,...,J and k = 0, . . .,N/2j — 1, and J = log2(N). As before, J denotes the

72



Figure 3.1. Multiscale scaling coefficients {CM}. At the top, we have scaling co—

efiicients at the coarsest resolution. At the bottom, we have the finest resolution,

expressed by the data themselves. The connecting segments illustrate the functional

dependencies among the various scaling coefficients cJ-j, according to expression (3.2).

coarsest scale of analysis, and CM and de, denote the scaling and wavelet coefficients

of the data, respectively, at scale j and position (shift) k. The scaling coefficients

cJ- = (my):3L1 represent a lower resolution representation of the data cJ-_1. The

“detail” information in cJ_1, which is absent in cJ-, is conveyed by the sequence of

wavelet coefficients dJ- = (dJ,k)JI:I=/3L1. Using (2.9), cJ-_1 can be perfectly reconstructed

from cJ- and dJ-. Figure 3.1 is an annotated version of tree-structured representation

of Figure 2.4-(a), which shows the functional dependencies among the various scaling

coefficients of a sequence c of length N = 8.

Similarly, as for Co, we define the scaling coefficients AJ-‘;,. and the wavelet coeffi-

cients OJ), of the intensity function A0:

AM = ’\j—1.2k+)\j—1,2k+la
(3.4)

011k = Aj—1.2k — Aj—1,2k+1- (3.5)

When the intensity of interest is of a discrete nature, A0 is simply the sequence A
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itself. If, on the contrary, the intensity signal is a function of a continuous variable

t 6 [0,1], say A(t), then A0 corresponds to the sequence of scaling coefficients at

scale 0. That is, in accordance with the definition of the unnormalized Haar wavelet

transform 011 the interval, A01: = (A. 050.1.) E f]; 1)/N A(t) dt, and more generally,

21(k+1)/N

A311- : (A, 2j/2¢j.kl = / A(t) dt (3-6l
22 k/N

3.3 Why the Unnormalized Haar Transform?

Multiscale analysis based on the unnormalized version of the Haar transform has the

unique property that every scaling coefficient is the sum of two finer-scale scaling

coefficients, and consequently, due to the reproducing property of the Poisson dis-

tribution,2 every scaling coefficient is Poisson distributed. Furthermore, it is well

known that given two Poisson variates, c1IA1 ~ Poisson(A1) and CQIAQ ~ Poisson(A2),

the conditional distribution of Cl given A1, A2, and the sum c1 + c2 is binomial [48].

This reveals a very simple “parent-child” relationship between the scaling coefficients

across scales. In Section 3.5, these facts are crucial in the development of the proposed

intensity estimator. Similar attributes (reproducibility and simple parent-child rela-

tionship) do not hold for more general multiscale analyses of Poisson processes based

on other wavelet systems. This is in marked contrast to the Gaussian case, in which

such attributes hold for a wide variety of wavelet analyses (including all orthogonal

wavelet systems). In short, multiscale transforms of Poisson processes other than the

unnormalized Haar transform are much more difficult to analyze and process. The

natural match between the unnormalized Haar transform and the Poisson process is

the primary motivation for choosing it.

The use of the unnormalized Haar wavelet transform to carry out the multiscale

 

2c,|A, ~ Poisson(A,~), c,IA,~ independent => 2 c,-I Z: A,- ~ PoissonQ: A,).
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analysis of the data has additional benefits springing from the following points. Pois-

son processes result from counting independent events occurring in disjoint regions of

time or space of equal size. In such cases, the unnormalized Haar scaling coefficients

correspond exactly to these counts occurring at intervals of sizes varying according

to scale. Thus, the scaling and wavelet coefficient have a very natural interpretation

according to (3.6) and (3.3). The Haar basis functions also have the property of being

completely localized in space. By this we mean that at each scale, scaling functions,

as well as wavelets, do not overlap. Therefore, at each scale, scaling coefficients are

conditionally independent, that is,

P(le’\jl = prcj,kl)\j,kl- (37)

k

Also, Poisson processes are inherently nonnegative; therefore, a good estimator should

always produce intensity estimates that are either positive or zero. An estimator based

on the Haar system may be designed with this quality.

3.4 A New Probability Model for Intensity Images

3.4.1 Multiscale Signal Model Framework

To formulate a Bayesian estimator for this problem, we must first propose a prior

probability model for the unknown intensity A. The observed data c is regarded

as the realization of a Poisson process spawned by the unknown realization A of

some random sequence with prior density p(A). In last chapter’s terms, A and c are

respectively the cause and effect of the process completely determined by p(cIA)p(A),

where p(cIA) is the Poisson probability mass distribution.

Just as we did in the last chapter for general processes, we can formulate the

present model within a multiscale framework, and similarly arrive at. the optimal
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Figure 3.2. Structure of a Haar-based intensity estimator.

estimator (see (2.41))

x, _ f’u P(Cj|)\jlp(’\j|xj+1)d)\j (3 8)
J " A ' '

lP(Cj|’\j)P(AjI’\j+1)dAj

 

This Bayes estimator poses two interrelated problems. First, the specification of

a meaningful and useful prior p(AJIAJ+1), which we deem to be an excellent approx-

imate for p(AJ-IAJ-H) (see Section 2.4.2). Second, the numerical computation of the

estimator. The role the above quantities play in the estimation process is illustrated

in Figure 3.2. The remainder of this section describes a new prior probability model

for the Haar scaling and wavelet coefficients of a non-negative intensity that leads

to a very simple specification of p(AJ-IAJ+1). In Section 3.5, we derive an efficient

algorithm for computing the optimal estimator (3.8).

There are two important reasons for adopting a multiscale approach to this prob-

lem:

0 Prior models that are mathematically tractable, computationally practical, and

empirically supported can be specified very naturally.

o Poisson data is much more reliable (accurate) at coarse scales than at fine reso-
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Figure 3.3. Histogram of perturbation variates (6 = d/A) for scale (a) j = 1, (b)

j = 2, (c)j = 3, and (d) j = 4 of the cameraman image of Figure 3.10(a). The

general invariance of the distributions’ structure across scales illustrates a self-similar

property of real-world image statistics.

lutions (higher counts => higher signal-to—noise ratio). Therefore, more reliable

coarse-scale estimates can be leveraged to improve high resolution estimators.3

The first point is due partly to the fact that multiscale decompositions of real-

world intensities are often statistically self-similar. By this we mean the property

that the various scale representations preserve the major features and characteristics

 

3The good match between the Poisson and Gaussian distributions that occurs at high counts

suggests a similar positive relation between the Poisson models’ anomies and corresponding signal-

to—noise ratios as seen to exists in the Gaussian case of Example 3 of Section 2.3.3.
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of the original object, except for the usual gradual loss of resolution. In particu-

lar, it has been widely recognized that the distribution of the wavelet coefficients of

real-world signals tend to be similar at all scales of analysis, and are usually con-

centrated around the origin and unimodal [34]. The self-similarity captured by the

Haar multiscale analysis is illustrated by considering the distributions of the wavelet

coefficients at various scales. Figure 3.3 illustrates this phenomena. The histograms

in this figure correspond to the wavelet coefficients 4 at scales 1, 2, 3, and 4 for the

cameraman image of Figure 2.6. The similarity between these distributions facilitates

the specification of Bayesian prior for the intensity in a very natural way.

The second point above motivates an estimation process that evolves from coarse

to fine scales (See Chapter 2). It is easily verified that the signal-to—noise ratio (SNR)

in a Poisson process increases linearly with the underlying intensity (signal). Thus,

according to (3.2), cm = 2;? 00.1.. and so the signal—to-noise ratio at scale J is 2"

times as large as that for the average data point cojc. For example, for a 128 by 128

pixel image, this represents a SNR improvement. of 42 dB.

3.4.2 Multiscale Multiplicative Innovations Model

We now describe a new Haar-based probability model for the intensity. Let AJ-j, and

Och denote the random variables corresponding to the j, k-th scaling and wavelet

coefficient of the intensity, respectively. At the coarsest scale j = J, the single scaling

coefficient Aw has a density with support on HF“. In this work, we choose the gamma

density, since it is especially easy to use in conjunction with the Poisson mass function,

and because it provides a reasonable mechanism for incorporating prior knowledge of

the intensity range. However, as noted earlier, the SNR in the count 0,1,0 is typically

 

4More precisely, here we are plotting the histogram of the ratio of the wavelet coefficient relative to

the corresponding scaling coefficient. That is, each wavelet coefficient is divided by the corresponding

scaling coefficient at the same scale and position. If the scaling coefficient is zero, the operation maps

to zero. The motivation for this ratio will become apparent in the following sections.
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very high, and therefore any reasonable prior with support on IR+ will not significantly

influence the estimation of A$0.5

Next, introduce statistically independent perturbation variables {6“,} and model

the wavelet coefficients by

911k = AM 53.1. (39)

Each wavelet coefficient is modeled as an independent perturbation of its correspond-

ing scaling coefficient. Furthermore, the perturbations at all scales and positions are

assumed to be mutually independent. Applying recursions (3.4) and (3.5) to these

coefficients, we find that AJ-_1jc = %(AJ-,W2] + (-1)’° 6J-jk/21), where I] stands for the

integer part of the argument.

To gain some insight into this model, consider the random variable ijc defined by

(1 + 6M). (3.10)

N
I
H

ijc E

The variable 30* can be viewed as the canonical multiscale parameter for Poisson

processes because of the following parent-child relationship. It is well known that

given two Poisson variates c1 and c2 such that c1IA1 ~ Poisson(A1) and c2IA2 ~

Poisson(A2), the conditional distribution of c1 given the sum c1 + c2 is binomial with

parameter y = 13% [48]. In the context of our multiscale analysis, this special

property implies a very simple parent-child relationship. Specifically, the conditional

distribution of child cJ-_1,2k given the parent CM = Cj-1,2k + cJ-_1,2k+1 is binomial with

parameter y“. This relationship demonstrates the fundamental role of yJ-j, in the

multiscale analysis of Poisson processes.

 

5In fact, in practice we often use the estimate Am 2 cm.
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Figure 3.4. MMI model interpreted as a probabilistic tree. The MMI model can be

viewed as a tree-structured probability model in which the intensity AJ-j, at coarse scale

j is refined (split) via the multiplicative innovation yJ-j, to obtain two new intensities

AJ-_1,2k and AJ-_1,2k+1 at the next finer scale of analysis j — 1. The innovations variates

{yJ-Jc} are mutually independent at all scales j and positions k.

Using yJ-J, in conjunction with (3.9) we have

)‘j—lflk = )‘chijm (3.11)

/\j-1,2k+1 = )‘j,k(1"yj.kl' (3-12)

We can interpret these refinements as a multiscale innovations structure, with the

innovations yJ-j, and 1 -yJ-,k entering in a multiplicative fashion, in contrast to the more

standard additive innovations structure encountered in Gaussian estimation problems

[49]. We call this model a multiscale multiplicative innovations (MMI) model. The

model is graphically depicted in Figure 3.4. The following are some key properties of

the MMI model.

So long as the distributions for the perturbations {613k} are chosen to be similar

across scales, the MMI model gives rise to self-similar intensity representations, which

as discussed in Section 3.4.1, are typical of real-world intensities. Also, here we
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only consider temporally homogeneous processes; it would be undesirable if the prior

depended on the observation time interval in a complicated manner. Due to the

multiplicative innovations structure, only the coarsest scale of the prior is dependent

on the observation time interval. Thus, the model is essentially invariant to the length

of the observation time. Moreover, in Section 3.5 the MMI model is shown to provide

a mathematically tractable match to the Poisson nature of the data which leads to a

very simple estimator formulation.

The MMI model is closely related to other models studied in physics and statistics.

The MMI model belongs to the class of cascade models, which are used in statistical

physics for modeling a variety of natural phenomena including turbulence modeling

[50] and rainfall distributions [51]. In fact, because MMI model is a type of cascade

model, it can be shown that the MMI model is a random multifractal [52]. It is also

interesting to note that the MMI model is a special case of a Polya tree [53, 54]. In

the statistics community, Polya trees are used to model probability distributions, a

problem analogous to modeling a non-negative intensity function.

3.4.3 Prior Distribution for Innovations

A prior distribution is determined by the nature of the ensemble of objects to be

modeled, and so, the better defined the ensemble is, the more informative the prior,

and consequently, the better the model. Towards this end, we emphasize photon—

limited images, particularly, nuclear medicine images; however, as noted earlier, a very

large class of other real-world images are well characterized by the same features of the

prior p(6) for the perturbations (SJ-,k: statistical self-similarity across scale, symmetry

about the origin, unimodality, concentration around zero (see Section 3.4.1), and

support on the [—1, 1] interval.

This last property is due to the fact that the range of l9J-Jc is [_Aj,k1)‘j,k]° The rest

of the properties are based on the characteristics of observed wavelet. coefficients’ dis-
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tributions resulting from natural signals [34], and which have been exploited in other

areas including wavelet-based compression [55]. These properties are also illustrated

in the histograms of Figure 3.3. All the properties, however, may equally be inferred

a priori from a few observations.

The images of interest have the common characteristic of being mostly smooth

with a few discontinuities. Typically, these discontinuities form edges that are long

enough to span several scales. On average, neither the edges nor the overall intensity

variations have any preferred orientation, as dictated by nature. It is the slowly

varying intensity typical of images which is responsible for the high concentration of

wavelet coefficients around the origin, and it is its non-oriented nature that causes

their symmetry. The few outlayers coefficients are due to the discontinuities, which

are found nearly in the same numbers in opposite orientations—think about the

silhouette of a phase, for example. The statistical self-similarity is due to the span

of images feature across scales. For example, large regions of smooth intensities and

discontinuities alike are observed unaltered at many scales.

One very general class of probability density functions that possesses the desired

characteristics and which reflect the above image characteristics are beta-mixture

densities of the form

 

(1 _ 62) si—l

219102281-1’ (3.13)

3(81'98

for —1 S 6 S 1, where B is the Euler beta function, 0 S p, g 1 is the weight of the

i-th beta density fi$—%;—ir with parameter s,- _>_ 1, and 211:1“ = 1. Figure 3.5

depicts a mixture of three beta densities. A similar method was also recently proposed

using a prior based on a mixture of a Dirac impulse and a single beta distribution

[56].

Other classes of density functions may also provide the desired characteristics, but
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Figure 3.5. Three component Beta-mixture distribution (solid line) superimposed on

the histogram of the perturbation variates (6 = 0/A) of Figure 2.6 of Section 2.2.2.

The beta mixture parameters here are 31 = 1, 82 = 100, 33 = 10000, p1 = 0.001,

[)2 = 0.400, and p3 = 0.599.

the beta family has a significant computational advantage. As pointed out above, yJ-‘k

parameterizes the conditional distribution of the child cJ~_1,2k given the parent CM.

This conditional distribution is binomial. Hence, from a practical perspective, the

use of a prior that is conjugate to the binomial will greatly facilitate computations

[23]. It is well known that the beta family is conjugate to the binomial. For this

reason, the beta mixture prior described above leads to a very simple, closed-form

estimator which is discussed in the next section. However, for the sake of brevity, in

our derivation of the optimal estimator, given in Section B.2, we directly compute

the posterior means based on a beta mixture prior, without explicitly noting the use

of conjugacy.
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3.5 Estimation

3.5.1 Bayesian Multiscale Intensity Estimator

We shall focus on the posterior mean estimator, although other estimators (e.g.,

MAP) may also be considered within our framework. The posterior mean is the

optimal Bayes estimate under a quadratic loss function. The posterior mean estimate

of an intensity AJ-‘k, given all the information available in the data c0 and the MMI

prior model pg, is the conditional mean AM E EIAchICOI- In this section we derive

simple closed-form expressions for the posterior mean.

First, based on the analysis in Section B.1 of Appendix B,

Ark = EIAMICJ'I-

This implies that a simple coarse-to—fine procedure can be employed in the estimation

process.

At the coarsest scale 3' = J, the intensity is represented by a single scal-

ing coefficient A1,0. Let us begin by considering the estimation of A1,0. We have

A1,0 E E [AJpICo] = E [AJ,0ICJ,0]. As argued in Section 3.4, the corresponding count

cm is itself usually a very good estimate for Ajg provided the total number of counts

is sufficiently large. This choice has the added advantage of insuring the preservation

of total number of counts, i.e., 2,, A0,), = 2k cm,“

The posterior mean estimate for the wavelet coefficient 0J4, is given by

$
3
)

',k E EIHchICOI

= E [Aj,kIC0I E [6j.kIC0l a

where we have used (3.9), and have exploited the independence between AJ-J, and (SJ-9),.
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Now, we may simply write

933k = Xch 6M: (3.14)

with the obvious definition SJ), E E [6J,k|c0].

property of the expectation operator:

>
>
’

The desired form for AJ-j, may be obtained using (3.4) and (3.5), and the linearity

1 k

ii = E - (hulk/21 +(-1) 61+1lk/21l
2 C0I

1 A ,A

= 5 (Aj+l,[k‘/2] + (‘1)’ 6j+1,[k/2]) - (3-15)

 

Here is where we exploit the multiscale framework for estimating the desired intensity.

The estimate for AM is leveraged by the more robust coarser-scale scaling coefficient’s

estimate AJ-ij/gl.

In Section B.2 we show that.

 

 

Z p.3(3i+Cj-l.2ks3i+Cj—1,
2k+1)

A l I B ii i 2 i '

5n. = d“. ’ (s S” “6““) (3.16)
2 .B(S¢'+Cj—l,2k ~51+Cj—1,2k+l) .

i 1 3091.3.)

The parameters {p,-, 3,} are the defining parameters for the beta mixture model in

(3.13). Note that iiJ-j, guarantees nonnegativity of the resulting intensity estimates.

That is, AJJ, 2 0 for j = 0,... , J and all It. To verify this, simply rewrite (3.16) with

 

—d-’4'5—] Slforthe factor dJ-j, inside the upper summand and consider the fact that 28', +CJ k

all i.

The overall algorithm is described below.
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Bayesian Multiscale Intensity Estimation

1. Estimate coarsest scale coefficient

A10 = 0.1.0

2. Forj=Jdowntolandk=0toN/2j—1

Compute:

SJ- 1, according to (3.16)

(7.1 = An- 3...

Refine:

-= i <.+ .3.,)
/\j-1,2k+1=% (AM — 6“)  
 

These simple procedural steps produce posterior mean estimates for finer and finer

representations of the underlying intensity, and terminate with the desired, finest-scale

estimate A0. The complexity of the proposed estimator is 0(N), the same order as

the fast wavelet transform itself.

For large data sets it is possible that the full J = log2(N) iterations over the

scales in Step 2 above are not necessary. For instance, for long data sequences the

estimator may be initiated at a scale J* < log2(N), for which the estimate AP = cJ.

is already very reliable. In practice, even for low-count data, we have found that

J" = 5 provides excellent results. Using J“ other than J is equivalent to dividing

the original data sequence into equal subsequences, estimating their underlying in-

tensities separately, and concatenating the individual results to obtain the overall

intensity estimate. However, in Section 3.6 we introduce a shift-invariant version of

the estimator above, for which the equivalence just described does not hold.
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3.5.2 Selection and Analysis of the Beta-Mixture Prior

Our experiments and analysis with real-world intensity functions have led to several

conclusions.

1. The perturbation densities of many real-world intensities are very well character-

ized by a weighted combination of three beta densities with shape parameters

31 = 1, 32 = 100, and s3 = 10000.

2. The .91 = 1 component is the uniform density, and we have found that fixing the

corresponding weight to a small positive constant (e.g., p1 = 0.001), to insure

that the prior density p; is bounded from below over the entire [—1, 1] interval,

is appropriate in most situations we have studied.

3. The key parameter that distinguishes the characteristics of different intensity func-

tions is the trade-off between the 32 = 100 component and the lower vari-

ance .93 = 10000 component. The trade-off is parameterized by the probability

122 E [0,1 --ml (Note P3 =1- 101- 202-)

To gain some insight into the functioning of the MMI model estimator, consider

Figure 3.6 which plots 313k versus the ratio dJ-,,,/cj,,c for three cases: low (c = 10),

medium (0 = 30), and high counts (0 = 1000). These are, respectively, the dashed,

solid, and dot-dashed curves. The ratio dJ-Jc/cj‘k may be regarded as an empirical

counterpart to the perturbation variate 613k. Figure 3.6(a) and (b) correspond to two

6-priors with 132 = 0.1, and p2 = 0.9, respectively. The rest of the parameters take

the values given in points 1—3 above.

From these figures we can observe the following. At high counts, when the SNR is

high, the estimator regards dec/CJJC to be a good estimate of 5ch for almost every value

of dec /cj,k; thus, the resemblance to the unit-slope linear function. In contrast, for low

counts, the SNR is much lower, and consequently the estimator severely attenuates
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Figure 3.6. Perturbation estimate 3 as a function of d/c for c = 10 (dash), c = 30

(solid), and c = 1000 (dot-dash). The estimator’s defining parameters are 31 =

1, 32 = 100, 33 = 10000, p1 = 0.01, and (a) 192 = 1 - p1 — p3 = 0.100, and (b)

112 =1—p1 -—p3 = 0.900.

dM./Cch. This phenomenon is reminiscent of the behavior of wavelet-domain threshold

estimators designed for additive Gaussian white noise (AGWN) [12], except that the

threshold is adaptive to the local intensity.

The MMI model estimator minimizes the expected squared error with respect to

the MMI model prior. Of course, the error is minimized by balancing the trade-off

between fidelity to the data and fitting to the prior model. If the data are very ‘reli-

able,’ then the estimator favors the data. If the data are unreliable, then the estimator

favors the prior. As noted, at low counts the ratios dJ-Jc/chc are not accurate esti-

mates for 6, and so, the Bayesian estimator attenuates them to minimize the expected

squared error in accordance with the prior. The nonlinearities in Figure 3.6(a) corre-

spond to a lower-variance prior (smaller 192) than that giving rise to the nonlinearities

of Figure 3.6(b). As a result, the nonlinearities in Figure 3.6(a) display a ‘dead—band’

characteristic, since the prior requires that a greater number of dM/CM samples be

mapped towards zero, in contrast to the higher-variance prior which displays a less
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harsh attenuation of small dJ-Jc/chc in Figure 3.6(b). This behavior is similar to that

observed in other wavelet-based Bayesian estimators designed for AGWN [46, 11, 15].

However, the functioning of the MMI model estimator is in contrast to that of es-

timators for AGWN processes. In the latter cases, all wavelet coefficients are typically

attenuated independently and in disregard to the values of the corresponding scaling

coefficients [46, 11, 15]. The MMI model estimator, on the other hand, adapts not

just to the statistics of a particular scale, but also naturally incorporates information

from coarser scales. This is crucial in the Poisson problem since the coarse-scale in-

tensities (scaling coefficients) are indicative of the statistical reliability of the wavelet

coefficient.

3.5.3 Estimation of Prior Parameters

The Haar wavelet coefficient distributions of real-world intensities often fit a profile

which resembles that of Figure 3.5 as previously discussed. However, while many

distributions follow this general characteristic, one expects that subtle variations will

exist from application to application. Therefore, it is of interest to adapt the prior to

the problem at hand. Here we give a very simple approach to fitting the prior based on

a moment-matching method. This adaptation can be viewed as an empirical Bayesian

extension of framework described above.

Recall, we assume that for each scale j, the set {633k} is independent identically

distributed (i.i.d.) with an M—component beta-mixture density distribution with

parameters {pins-Mil. We let the mixing probabilities {p13,} depend on scale to

enable variations of the density across scale. Also note that here the index i does not

refer to shift (as does It in y“ for example), but rather it refers to the i-th component

of the mixture density. Then, by (3.10), at each scale j, {yj,k}£I=/§j_l is also i.i.d.

with an [VI-component standard-beta-mixture density distribution with parameters
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3,—1 1 _ 3,—1

pJ-(y) = [my ( 9) , 0 s y s 1. (3.17)

Since yJ-‘k, is independent of AM, E[A}‘_1‘2k] = E[A;.“k] E[y;‘k] and

E A" 121

E [yfll = —[E[Z)\—k]_]_ (3-18)

The moments E[yj,k] need not be computed using this expression since the prior

model (3.17) gives the mean % for any choice of parameters. For n 2 2, the moments

E[A"j_ 12k] and E[A"k] are easily estimated from the data. Since E[cjklAjk]—— Ajk,

EULA-l = ElEle,k|/\j.kll = Elchcl-

And in general, it can be shown that for all 71 there exists a degree n polynomial pn(-)

such that

Ell/Wk] = Ean(CJ.k)l'

For example,

El)‘;.=kl EClJk ’CJkl ~ [WW-2303',k’CJk)

Substituting these estimates for various 71 into (3.18) we can obtain empirical

estimates for the various moments of y“. Equating these to the moments of the

beta-mixture model (3.17) produces a set of equations that can be solved for the

parameters {pj,,-,s.-}f:1

As mentioned above, we have found that the choice of a three component prior
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beta-mixture model suffices for many real-world intensities. At all scales j, we suggest

the shape parameters 31 = 1, 32 = 100, and 33 = 10000, with weights p“ = .001,

113-,3 = l-ij-pjg, and 13,-,2 adapted at each scale using the second moment estimate for

31M:

 

3.5.4 Optimal Estimation from Large Ensembles

Until now, we have strived to construct an estimator which optimally estimates the

intensities of Poisson processes from a single observation of the process. There are

situations, however, when several observations of the same process are available, or,

when a large set of realizations corresponding to distinct elements of the ensemble

to which the object of interest belongs is at hand or may be created.6 These two

conditions require distinct approaches in order to exploit all information available

and optimally estimate the underlying intensity.

In the first situation, one arrives at a suitable approach by viewing the set of

observations (of the one process) as sub-intervals of a longer integration time for the

process. Then, the counts corresponding to this larger integration interval are simply

the sum of all the counts available on a sample (pixel) basis, and represent sufficient

statistics for the intensity pixels [18]. This well known result is due to the reproducing

property of the Poisson distribution,7 and may be stated as A E E[A|c1, . .. ,cm] =

E[A|c1 + +cm].

 

6Under certain conditions, estimates for the object’s distribution may be obtained from simulated

large scale ensembles, for example, with the use of the bootstrap method [57, 58].

7See footnote 2 in page 74.
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In the second scenario, an optimal estimator would be desirable if, for example,

a large data bank of nuclear medicine images of, say, knees are available from past

clinical studies. These data then could be used to leverage the estimate of the nuclear

images of a new patient’s knees. Situations like this admit two possible solutions.

First, the moment-matching method described in the last section could be employed

with the larger observation data set to obtain very robust estimates of the prior

parameters. A robust prior clearly would lead to a robust estimate of the intensity

of interest.

If the data set is large enough that the ratios

p(Cj—1.2k = C1 +1|Cch = 0 +1)

D(Cj-mk = CIICJJc = C)

 

can be computed sufficiently accurately, a prior-independent optimal estimator for

the innovations {yjjc} can be devised as follows. Abbreviating the indexing notation,

we have

019(qu c)dyg/

=/yp(cllcy)p((gently-
(CIIC)

 

Since p(cllc, y) = (ccl)y"1(1 — y)‘3‘°l (see [48]), and since the innovations are indepen-

dent of any rv at their own and coarser scales,

A f y (f,)yc‘(1 - y)c‘“1p(y) dy
y =

P(01|C)

_cl +1 I (51:11) yc’“(1 -y)c“c‘p(y)dy

c + 1 p(cllc) °
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Thus, we obtain

A _ Cl +1 p(cj-1,2k = C1 +1[Cj‘k = C +1)
y,‘k _

3.20

J c + 1 p(Cj—1,2k = Cllchc = C) ( )

 

Clearly, to compute the ratio of probabilities in this expression we only need,

for example, a table for p(c1|c). For instance, for a realization CM = 0, necessarily

0,4,2], = 0, and the innovations estimate reduces to if”, = p(cj_1,2k = llcjjc = 1),

which typically takes on values close to 5 For very large counts of CM, one would

expect that p(cllc) z p(cl + 1|c + 1). Therefore, for very large counts 17ch z 961,

reflecting the fact that at high counts the SNR is high and the data is, therefore,

reliable.

3.5.5 Example of Estimation from a Single Observation

For our first illustration of the performance of the Bayes’ estimator we give the follow-

ing simple example. We offer more comparative examples in Section 3.7 once a more

sophisticated model and estimator is introduced in the next section. In Section 3.8,

two-dimensional examples are given.

Consider the test intensity function depicted in Figure 3.7 (a). Figure 3.7 (b)

depicts a realization of counts from this intensity. Note that the first “bump” in

the low intensity region of (a) is statistically reliable—it is easily distinguished in

the count data (b). The second bump in the high intensity region is equal in size

to the first bump, but it is not statistically reliable as is seen in the count data in

(b). Therefore, we expect that a good estimator should recover the first bump from

the data and not attempt to recover the second. Figure 3.7 (c) depicts the estimate

resulting from the PRESS-optimal estimator8 proposed in [59]. It is an improvement

 

8This estimator is a wavelet threshold type operation that is derived using the statistical method

of cross-validation [40].
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over the raw data, but still exhibits quite a bit of variability. Figure 3.7 (d) depicts

the intensity estimated by the Bayesian approach introduced in Section 3.5.1.

Due to the very simple—and unnatural—structure of the intensity where the cor-

responding wavelet coefficients may be found in one of only two states, zero and

“large”, a simple two-component beta-mixture density model sufficed for the innova-

tions y“. The parameters of the beta densities were 31 = 1 and 32 = 10000. The

mixing parameter [)1 = 1 — p2 was adapted at each scale using the data-based mo—

ment matching approach proposed in Section 3.5.3. Note that the Bayes’ estimate

does an excellent job at correctly estimating the reliable features (edges and bump

in low intensity region). The experiment shown in Figure 3.7 was repeated in 1000

independent trials. The normalized MSE of the raw count estimate was 1.000, the

MSE of the PRESS-optimal estimator was 0.375, and the MSE of the new Bayes’

estimator was 0.106.

3.6 Stationary Intensity Models and Estimators

One potential limitation of the MMI model is that it is not stationary due to the

fact that the Haar wavelet transform is shift-dependent. That is, the analysis and

estimation depends on the alignment between the Haar basis functions and the data.

Moreover, the coarse scale approximation by Haar wavelets is piece-wise constant,

an unrealistic intensity model. To circumvent such problems, shift-invariant wavelet

transfonns have beenproposed in literature [60, 61, 62, 63, 36, 64]. In this section, we

provide a unified Bayesian framework for shift-invariant analysis and estimation based

on the MMI model. We formulate a fast shift-invariant estimator from this analysis,

and illustrate it with an example. Also, we characterize the autocorrelation functions

of the MMI model (non-stationary) and a shift-invariant MMI model (stationary),

and show that the shift-invariant MMI model has a more regular correlation behavior
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Figure 3.7. Poisson intensity estimation. (a) Test intensity function. (h) Realization

of Poisson process with intensity in (a). (c) PRESS-optimal estimate using algorithm

in [59]. (d) Bayes’ estimate using algorithm described in Section 3.5.1.

which may be better suited for modeling real-world intensities.

3.6.1 A Shift-Invariant MMI Model

Shift-invariant MMI intensity models can be easily constructed within a Bayesian

framework. Specifically, the shift of the intensity function with respect to the Haar

wavelet system can be viewed as an additional degree of freedom in the model, and

a probability measure on the shift parameter can be introduced. It is assumed that

all shifts are circular. If we regard the original model as “unshifted” (shift = 0), then

the standard MMI model introduced in Section 3.4 is denoted p(AIshift = 0). Now
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let p(shift = m) denote a probability mass function for the shift, and consider the

averaged MMI model

p(A) = Zp(Alshift = m)p(shift = m). (3.21)

If p(shift = m) is the uniform distribution, a non-informative prior expressing no

preference for any particular shift, then the averaged MMI model provides a shift-

invariant (stationary) intensity prior and we call it the shift-invariant (SI) MMI model.

It is shown in Section 3.6.3 that the SI—MMI model is more regular than the basic

MMI model.

Estimation using the SI-MMI model is easily carried out by computing the opti-

mal Bayes shift-dependent estimator given in Section 3.5.1 for each shift, and then

computing an average of the results. The complexity of the shift-invariant estimator

is 0(N2) operations. However, note that if we employ a J*-scale SI-MMI model, with

J"‘ < log2(N), then the estimator is invariant to shifts modulo 2].. This is due to the

fact that the scaling functions at the coarsest scale have support over 2". samples.

In general the J*-scale SI-MMI model only requires a uniform shift prior over a 2"

sample region of support, rather than over the entire range of circular shifts. Thus,

if J"' < log2(N), then the complexity of shift-invariant estimation is only 0(N2J).

As pointed out earlier (see Section 3.5.1), in many applications it suffices to take J*

smaller than log2(N).

Note that the fast shift-invariant methods described in [61, 62] are not applicable

in this case due to the dependence between wavelet coefficients across scale. This

dependence stems from the multiplicative relationship between scaling and wavelet

coefficients.9 However, fast shift-invariant estimation algorithms are feasible if not

“homogeneous” (see below). We next present one such approach.

 

9The fast shift-invariant methods treat all wavelet coefficients independently.
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3.6.2 A Fast Shift-Invariant MMI Estimator

Referring to the tree representation of the intensity model of Figure 3.4 in Sec-

tion 3.4.2, we know that the mapping {A0,k}k 1—-+ {AJ‘O} U {ijb—j is invertible. There-

fore, p(A) oc p(AJ,0,yJ,0, . .. ,yl’N/2_1), and so, the shift-invariant model (3.21) may

also be expressed as

p(A) 0< 19010): Hp(yjf’1)p(shift = m), (322)

m j,k

where we have exploited the invariance of A)0 with respect to shift, and the indepen—

dence of the set {yj,k}j,k. The notation p(yfk) is simply a more economical way of ex-

pressing p(yj,k|shift = m). Note that with this notation, Agfo E A1,0 31330 yr}: 1,0 - - @170,

for example, is a component of A0,", and not of A09 in the averaging process.

The shift-invariant model of the previous section is characterized by the assump—

tion that any two distributions p(yfl‘) and p(yjmkz) are equal for all shifts m1 and m2.

If, however, we choose probabilities such that p(ygnk) = 0 for all k 75 0 the above

model becomes

p(A) oc 1901.10): 111903-70) p(shift = m) (323)

m .7

Clearly, this new model is also shift invariant for it is obtained by averaging over all

possible shifts, which we take to be equally likely. However, we say the model is not

homogeneous because a different model results if we choose a new set of distributions

to be the non-zero distributions in (3.22), say, for example, p(yfl.) = 0 for all j and

k, except whenever k # 1.

Despite the lack of homogenity, this intensity model has proved to be valuable as it

leads to an efficient estimator of complexity 0(N). Also, note that more sophisticated

fast algorithms can be created from this general prescription by simply choosing not
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one, but a combination of “legs” of the tree to represent the elements of the intensity

sequence as the tree shifts. We have experimented with these notions and have

formulated the corresponding estimators. Although the resulting models from the

added complexity in the construction process are theoretically more appealing for

they “close” the gap between the homogeneous and non-homogeneous models, we

have found that they add very little as to the quality of the intensity estimates. For

this reason, we have not pursued them here any further.

The procedure for the fast estimator derived from the simpler intensity

model (3.23) is the following.

 

Fast Shift-Invariant MMI Intensity Estimation

1. Estimate coarsest scale coefficient

/\J,0 = CJ.0

2. Form=0toN—1andj=Jdowntol

Compute:

53% according to (3.16)

3137,10 = % (1 + 3‘70)

Refine:

A

m _ Am Am

Aj—1,0 - A130 310,0  
 

The desired intensity estimate is A = 630359,... 35,751). We note that these

procedural steps call for N/2 redundant shifts in order to compute the N elements

of the intensity sequence. Although it is not hard to describe the above estimation

algorithm void of these redundancies, we feel that the description is clearer in the

form presented.
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Figure 3.8. Fast Poisson intensity estimation. (a) Test intensity function. (b) Realiza-

tion of Poisson process with intensity in (a). (c) Bayes’ estimate using the algorithm

described in Section 3.5.1. (d) Bayes’ estimate using the fast shift-invariant algorithm

described here.

Example

In order to illustrate the quality of the estimates obtained by the fast shift-invariant.

estimator we repeated the example of Section 3.5.5. We created a sequence of Poisson

counts from the intensity in Figure 3.8 (a), and used them to estimate the intensity

using the fast algorithm. The result is depicted in Figure 3.8 (d). For comparison,

we reproduced Figure 3.7 (d) in Figure 3.8 (c), which shows the estimate based on

the MMI model of Section 3.5.1.

By repeating this experiment with a large number of different count realizations,
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we found that the quality of the estimate evident in Figure 3.8 (d) was representative

of the fast shift-invariant estimator.

3.6.3 Autocorrelation Functions of MMI and SI—MMI Mod-

els

The underlying beta mixture densities capture the key heavy—tailed, non-Gaussian

nature of wavelet coefficient distributions. However, the shift-dependent nature of the

Haar wavelet transform generates a non-stationary correlation structure as illustrated

next. For the sake of illustration, we focus on the 1-d case. Extensions to higher

dimensions are straightforward. Also, to keep things simple, we assume that the

maximum number of scales J = log2(N) are computed in the analysis, where N

is the length of the intensity vector. The results easily extend to other choices for

J* 7E J.

First, consider that basic MMI model (shift: 0) and let us introduce the following

notation. Let p3 E E[A‘2,’0], the second moment of the scaling coefficient at the coarsest

scale, and let p? E E [yik] = E [(1 — yj,k)2], the second moment of the innovations

variates. Recall that we assume the distribution of y“, does not depend on position

k. The variables y“ and 1— y“, have a common second moment due to the symmetry

of the distribution of yJ-‘k about a

For illustration consider the correlation between the intensities A00 and A0,; in

the MMI model depicted in Figure 3.4 in Section 3.4.2. Note that the finest scale for

which A09 and A03 have a common predecessor above in the tree is j = 2 and the

predecessor is A20. Therefore we can write

/\0,0 = 311.0 312.0 A20,

/\0,2 = yi,1 (1 " 92.0) /\2.0-
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The correlation between the two intensities is computed

E [AQOAOQ] = E [yro 311,1 92,0 (1 " 312,0) A30] -

Exploiting the independence of the innovations variates, we have

E [A0,0/\0,2] = E [311,0] B [311.1] E [92,0 (1 - 3/2,0)] E [A30] -

Examining the individual product terms and making use of the moments defined

above,

Elyml =El311,1] = 24,

E [312,0 (1‘ 3120)] = 1/2 — pg,

E [A30] = #3103-

Hence,

Elhophoal = 2‘2 (1/2 - 03) #3393.

Now consider a general case in which we are interested in the correlation between

two intensities, say ADJcl and /\0,k2. Let j ‘ be the finest scale for which AM, and A0,!”

have a common predecessor (above) A)”, in the MMI model tree. The scale 3'" can

be explicitly calculated using the binary representations of 101 and kg, and depends

on the exact positions of k1 and kg with respect to the alignment of the Haar basis
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functions. Assuming that k1 < k2, we have

r-l

)‘OJci = H 31:31: yj'Jc Awe, (3.24)

i=1

j‘-1

/\o.k2 = H 312,]: (1 — yj‘Jc) Male. (3-25)

i=1

In the expressions for AM, and Auk-.2 above, we use a generic spatial index k, since

the distributions of independent innovations variates do not depend on position. We

do, however, use y“, and yg-‘k to distinguish the independent innovations variates

corresponding to AM, and ADM, respectively. The correlation is given by

j'-1 j'—1

E [Aoalhoazl = E H yank H yik yj'Jc (1 — yj‘Jc) A3231: - (3-26)

i=1 i=1

Again exploiting the independence of the innovation variates and making use of the

moments defined above, we have E [Afk] = #3 Hijzj. +1 p? and

T(k1,k2) E E[A0,k1A0.k2]

J

= 2'2””) (1/2-pf-‘M3 H p? (3-27)

i=j‘+l

Note that because 3'“ depends on the alignment between the intensity function and

the Haar basis, r(k1, k2) is not a function of the difference k1 — k2 alone. This shows

that the intensity distribution represented by the MMI model is non—stationary. Two

columns (fixed 101) of the autocorrelation function of a 256 length MMI model intensity

prior are shown in Figure 3.9. Note also that the autocorrelation function is highly

irregular (piecewise-constant), which is an undesirable model for real-world intensities.

Now consider the autocorrelation function of the SI-MMI model (3.21). Given

a displacement of n between two intensities, say A03 and A0,", we can compute the

probability of the finest scale j * of a common predecessor, with respect to the uniform
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Figure 3.9. Correlation functions for MMI and SI-MMI 256-point (J = 8) intensity

priors. MMI model autocorrelation r(0, k) (dash-dash) and 7‘(55, k + 55) (dash—dot)

plotted as a function of k. Stationary SI-MMI model autocorrelation r(k) (solid).

For both the MMI and SI-MMI models in this example, #3 = 1 and p12- : 0.26, j =

1,. . . , J.

distribution over the shift parameter, as follows. We need to count the number of

shifts that give rise to each possible value of j", or more precisely the probability

of the set of shifts that give rise to each possible 3". For example, suppose n = 1

and consider the tree in Fig. 3.4. In this case, four shifts (out of eight) result in

j“ = 1, another two shifts result in j* = 2, and two shifts (one wrapping around

due to circularity) result in j" = 3. Hence, we compute p(j" = 1|n = 1) = 1/2,

p(j“ = 2|n = 1) = 1/4, and p(j“ = 3|n = 1) = 1/4. Similarly, if n = 2, then

p(j’ =1|n = 2) = O, p(j“ = 2|n = 2) = 1/2, and p(j* = 3|n = 2) = 1/2, where again

we must be careful to account for the wrap-around effect of the circular shifting.

Given a displacement of n = k between two scaling coefficients in a J-scale MMI

model, the probability of the scale 3'“ is determined by inspecting the associated

binary tree. We need only consider |k| S 23"1 due to the periodicity of the MMI.

First note that we have p(j“ _<_ J | n = k) = 1. Next, notice that (2“ - k)+ is the

number of shifts of a length-k sequence that fit within a length-2’" sequence, where
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(3:)+ = max(:z:, 0). In other words, (2m — k)+ is the total number of scaling coefficient

pairs spaced 1: apart at the bottom of a m-level binary tree. Also note that the

number of m-level subtrees, m < J, at the bottom of a larger J-level binary tree is

precisely 2J‘m. Hence, for m < J

130'" S m In = k) = (2m - |k|)+ 2""‘2"

= (2m — |k|)+ 2"". (3.28)

It follows that

p(mlk) E 100'

0, m < [10g2(|k|+1)l

1- 2"'"lkl, m = (10g2(lkl +1)l

2""lkl, [log2(|k| +1)1 < m < J

|k|2‘J+1, m = J,

where [log2(|k|+1)] denotes the smallest integer greater than or equal to log2(|k| +1).

With these probabilities defined, the autocorrelation function is given by

J

7‘(k) E E[/\0,1)\0,1+k] = Zump(m|k), (3.29)

m=1

where

J

um22*2‘m-1’(1/2—p3..)u3 H p? (3.30)

i=m+1

is simply the autocorrelation between two intensities at the bottom of an MMI binary

tree model for which 3"“ = m, as in (3.27). Note that the SI—MMI autocorrelation

is stationary. The autocorrelation function for a 256 length SI-MMI intensity prior
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is shown in Figure 3.9. Unlike the autocorrelation of the MMI model, the SI—MMI

model’s autocorrelation is piece—wise linear (compared to piece-wise constant) and

hence is more regular and potentially better suited for the analysis of natural intensi—

ties. These results are similar in spirit to the analysis in [61], where it is observed that

the shift—invariant Haar wavelet transform is line-preserving.10 Moreover, the results

here suggest possible schemes for choosing the parameters of the SI—MMI model. For

example, the decay of the autocorrelation function may be tailored by appropriate

choices of the pf, i = 1,... ,J. Larger values for the p? cause r(k) to decay faster.

We also note that similar correlation analysis may be carried out for related wavelet-

domain signal models developed for Gaussian data [46, 34, 11, 15, 47]. We also note

that the issue of combining or mixing trees (which is essentially what is being done

in the SI-MMI model) has been studied in the more general setting of the Polya tree.

Some very interesting theoretical results concerning the continuity of densities gener-

ated by mixtures of Polya trees (SI-MMI models are a special case) are given in [54].

These results may provide further insights into the SI-MMI model and may suggest

other extensions of our framework, but we have not pursued this here.

3.6.4 SI—MMI Model and 1 /f Processes

Remarkably, the SI-MMI correlation function has a fractal 1 /f-like character. Fractal

1 /f random process models are commonly used in image modeling, and it has been

observed that natural signals and images often display a correlation structure similar

to that of the SI-MMI model [65, 66]. To see that the SI-MMI correlation is 1 /f ,

consider the simple case in which the second moments of the innovations are constant

 

10Thefie conclusions extend to the SI-MMI model as well.
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independent of scale, i.e., pj = p, j = 1,... ,J. Then

um. = 2'2”“) (1/2 - p?) #319”7’" (331)

= C (2p)-2m, (3.32)

where C is a constant independent of m. Next equate (2p)’2m with 2‘74”" and solve

for ’7. This gives

um = 020*)“, (3.33)

where '7 = —1—log2p2. Note that 1 /4 < ,02 < 1 /2, where the lower and upper bounds

corresponds to the two extreme limits of the beta density: a point mass at 1/2 or

two point masses at 0 and 1, respectively. This implies 0 < 7 < 1. Combining (3.33)

with (3.29) and after some algebra, we have

TU?) .__ C(2(7-1)[log2(|k|+l)] _filkl2(,_2)J

+5| k[2(7—2)110g2(|kl+1)1) (334)

for [kl > 0, where 6 = 5345-}. In the case k = 0, r(0) = H3P2J- Finally, making use

of the approximation 2r10g2('k'+1)] z [k], for [kl > 0 we have

r(k) z C [(1 - fi)lk|<7-1)+ BlklZW'W] . (3.35)

For large J and '7 < 1, the term fi|k|2(7‘2)J is negligible, and hence the correlation

function behaves like |k|("“1) and the power spectrum decays like l-f—IF (see [67] for

the relationship between autocorrelation functions and power spectrums of 1 /f pro-

cesses). That is, the SI-MMI model produces non-negative, stationary processes with

1/f characteristics. For more details on SI wavelet models and 1 /f processes see [64].
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3.7 Numerical Comparison of Wavelet-Based In-

tensity Estimators

Here we compare the performance of the new Bayesian estimation algorithm with

several existing methods. To assess the performance of each method, four test inten-

sity functions were used. These functions were the “Doppler,” “Blocks,” “HeaviSine,”

and “Bumps” test signals proposed in [12]. Each test function is 1024 samples long

(i.e., N = 1024, J = 10). These functions serve as benchmark tests for signal es-

timators, and they were designed to be representative of a variety of natural signal

structures. We refer the reader to [12] for more information‘about the test functions.

Since the intensity functions must be non-negative, each test function was shifted

and scaled to obtain an intensity with a desired peak value and a minimum value of

m. Realizations of counts are generated from each intensity using a standard

Poisson random number generator [23]. We compare the performance of the simple

estimator based on the raw counts (COUNT), a shift-invariant version of the cross-

validation estimator11 (CV) proposed in [44], the SI-MMI model estimator described

in Section 3.6.1 with a three component beta-mixture model for the innovations with

parameters12 31 = 1, 32 = 100, and s3 = 10000, the square-root estimation methods

using a shift-invariant version of the Haar wavelet transform (D2), and the square-root

estimation method using a shift-invariant version of the Daubechies-8 (D8) wavelet.

The method proposed in [14] is not compared since it is derived under a “burst-like”

process model which is not appropriate for these test functions with the exception of

the Bumps function. '

The square-root method first computes the square—root of the counts, then treats

the square-root data as though it were Gaussian, takes the shift-invariant discrete

 

11See footnote 8 in page 93.

12The mixing parameter p1 = 0.001, and parameter p2 (and hence 193) is determined using the

data-adaptive moment-matching method given in Section IV-C.
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Table 3.1. AMSE results for various test intensities and estimation algorithms. Peak

 

 

 

 

 

intensity = 8.

Intensity COUNT CV BAYES D2 D8

Doppler 0.1786 0.0588 0.0154 0.0548 0.0443

Blocks 0.1935 0.0617 0.0178 0.0700 0.0800

Heavz'Sine 0.1833 0.0552 0.0052 0.0294 0.0300

Bumps 0.5207 0.1877 0.1475 0.4570 0.4317       

Table 3.2. AMSE results for various test intensities and estimation algorithms. Peak

intensity = 128.

 

 

 

 

 

      

Intensity COUNT CV BAYES D2 D8

Doppler 0.0111 0.0047 0.0026 0.0095 0.0059

Blocks 0.0120 0.0040 0.0027 0.0077 0.0126

HeaviSz'ne 0.0115 0.0039 0.0007 0.0036 0.0028

Bumps 0.0324 0.0171 0.0143 0.1046 0.0908
 

 

 

wavelet transform [61, 62], applies a soft-threshold nonlinearity to wavelet coeffi-

cients, and computes the inverse transform of the thresholded coefficients. After this

processing, the result is squared to obtain an intensity estimate. For both square-root

methods the universal threshold proposed in [12] was used.

We consider both the D2 and D8 wavelet (which can be applied in the case of

Gaussian data) to demonstrate that the Haar-based method introduced here can out-

perform the square—root method even when more regular wavelets like the D8 are

used. All methods employ a 5-scale wavelet transform. In practice, we could use

full J-scale transforms, but their performances were roughly the same as that of

the 5—scale transforms in the experiments, and the 5-scale transforms are more com-

putationally efficient. Table 1 gives the average mean-square errors (AMSE) of the

various methods for a peak intensity of 8. Table 2 gives the AMSE of each method for

108



a peak intensity of 128. The AMSE is estimated using 25 independent trials in each

case, and each AMSE is normalized by the squared Euclidean norm of the underlying

intensity function. Inspection of the tables shows that all methods offer significant im-

provements over the simple count estimator. Moreover, the SI—MMI based estimator

outperforms all others in every case. We also note that similar tests and compar-

isons were made with the shift-variant versions of each estimator. As expected, the

shift-variant estimators did not perform as well as their shift-invariant counterparts.

However, the MMI model estimator outperformed the other shift-variant methods in

all cases as well.

3.8 Application to Photon-Limited Imaging

In this section we apply the MMI models and estimation procedure to the problem

of photon-limited imaging. Photon-limited imaging arises in many fields including

medicine and astronomy. The fundamental problem in photon-limited imaging is the

variability due to quantum effects in the emission and detection of photons. In many

problems, the photon counts collected during image acquisition are well-modeled by

a temporally homogeneous and spatially inhomogeneous Poisson process.

Assume that we detect photon emissions in a compact region of the plane. The

photon emissions are the result of an underlying two—dimensional continuous intensity

function. We are interested in estimating the intensity function from the photon

detections. For practical reasons. (computing and display), we seek an estimate of

the intensity at a finite scale (resolution) represented by a ‘pixelized’ intensity. A

crude estimate of the pixelized intensity is obtained by simply counting the number

of photons detected in each square pixel region of the plane. This “count” image is

highly variable due to the random nature of the photon emission process. However,

lower resolution images, obtained by counting the number of photons detected in
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larger square pixel regions of the plane, provide better (less variable) estimates of

the low-resolution intensities. This illustrates the advantage of multiscale analysis in

photon-limited imaging. Relatively reliable coarse-scale estimators of the intensity

can be leveraged to obtain finer details using the multiscale Bayesian framework.

To illustrate the effectiveness of the framework in photon-limited imaging appli-

cations, we consider a simulated experiment and a real—world application to nuclear

medicine imaging. Note that the MMI models and estimator are easily generalized to

two dimensions. Specifically, we take the 2-d multiscale parameters to be the factors

corresponding to the multiplicative refinement of a coarse scaling coefficient (inten-

sity) into four finer scaling coefficients by first splitting it vertically (horizontally) into

two halves, then next horizontally (vertically) splitting each half into two quarters.

That is, if A“ is a 2—d intensity function, then we define A0,)” E A“ at the finest

scale j = O and for coarser scales take

 

 

)‘j+1,k,l = Aj,2k,2l + )‘j,2k,21+1 + Aj.2k+1,21 + /\j.2k+1.2z+1,

yr M21321 + /\j.2k.21+1

j+lvkvl
9

More: + /\j,2k.21+1 + ’\j.2k+1,21 + /\j,2k+1,21+1

2 )‘j.2k.2l

yj+1,k,l 9

Amer + )‘j.2k.2l+1

,\.
3 _ 1.2k+1.2l

yj+l.k,l — A A ‘
(3.36)

jolt-+1.21 + j.2k+1.2l+1

 

Note that in the 2—d case we have three sets of multiplicative innovations, one vertical

set y1 and two horizontal sets 3;2 and y3. In the analysis of count images, each

scaling coefficient is the sum of four counts, and each wavelet coefficient is simply the

difference of two counts. Hence, all the machinery developed for the one-dimensional

case, based on sums and differences of pairs of counts, is immediately applicable

to two (or even higher) dimensional data. Note that this 2-d multiscale analysis

defined above differs from the standard 2-d Haar wavelet analysis [68], which involves
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a vertical, horizontal and diagonal differences. We use the alternative 2-d analysis

because, unlike the standard 2-d Haar analysis, it allows us to decouple the Poisson

problem, just as in the 1-d case. In both experiments, the 5-scale Haar transform is

employed and a three component beta-mixture density is used for the SI-MMI model

of Section 3.6.1 with fixed shape parameters .91 = 1, 32 = 100, and 33 = 10000. The

mixing probability p1 is fixed at 0.001, and p2 (and p3) is adapted to the data at each

scale using the moment-matching method described in Section 3.5.3. We have found

these choices of 31, S2, and 33, combined with the flexibility of the data-adaptive p2,

to provide very good results for a wide-variety of imagery.

3.8.1 Photon-Limited Imaging Simulation

Figure 3.10 depicts a typical realization of a simulated photon-limited imaging appli-

cation and the resulting estimates provided by the MMI and SI-MMI models. The

maximum intensity in the image in Figure 3.10(a) is 60.00, and the average intensity

is 25.40. Hence, this simulation models a fairly low intensity (low SNR) imaging

problem. A realization of counts is generated from this intensity using a standard

Poisson random number generator [23]. Note the visual improvement provided by

the MMI and SI-MMI model estimates in Figure 310(0) and ((1), respectively, in

comparison to the count image Figure 3.10(b). Furthermore, the estimate based on

the SI-MMI model appears to be better than that of the MMI model. In fact, in 25

independent trials of this experiment we estimated the average mean squared pixel

error to be 25.28 for the count image, 7.36 for the MMI model estimator, and 4.01

for the SI—MMI model estimator.
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Figure 3.10. Photon-limited image estimation using MMI models. (a) intensity func—

tion, (b) realization of Poisson counts (average squared pixel error = 24.80), (c) in-

tensity estimate using MMI model (average squared pixel error = 7. 36), (d) intensity

estimate using SI-MMI model (average squared pixel error = 3.98).

3.8.2 Application to Nuclear Medicine Imaging

Nuclear medicine imaging is a widely used commercial imaging modality [69]. Un-

like many other medical imaging techniques, nuclear medicine imaging can provide

both anatomical and functional information. However, nuclear medicine imaging has

a much lower signal-to-noise ratio relative to other imaging techniques. Hence, im-

provements in image quality via optimized signal processing represent a significant

opportunity to advance the state-of-the-art in nuclear medicine.
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Nuclear medicine images are acquired by the following procedure [69]. Radioac-

tive pharmaceuticals that are targeted for uptake in specific regions of the body are

injected into the patient’s bloodstream. As the radioactive pharmaceuticals decay,

gamma rays are emitted from within the patient. Imaging the gamma ray emissions

provides a mapping of the distribution of the pharmaceutical, and hence a mapping

of the anatomy or physiologic function of the patient. Gamma rays are detected and

spatially located using a gamma camera, which converts gamma rays into light. Pho-

tomultiplier tubes then detect and locate the emissions. The raw nuclear medicine

data is an image of photon detections (counts). The raw data may be viewed directly

or used for tomographic reconstruction. The major limitation of nuclear medicine

imaging is the low-count levels acquired in typical studies, due in part to the limited

level of radioactive dosage required to insure patient safety. Because of the variabil-

ity of low-count images, it is very common to employ a post-filtering or estimation

procedure to obtain a “better” estimate of the underlying intensity. An excellent

discussion of the potential diagnostic benefits of various frequency domain processing

methods is given in [5]. Advantages of multiscale methods over frequency domain

methods for photon-limited imaging problems are discussed in [59].

To illustrate the potential of our multiscale Bayesian framework in nuclear

medicine imaging, consider the spine and heart studies depicted in Figure 3.11. Fig-

ure 3.11(a) depicts the count image from a nuclear medicine spine study. The radio-

pharmaceutical used here is Technetium-99m labeled diphosphonate. In bone studies

such as this, brighter areas indicate increased uptake of blood in areas where bone

growth is occurring. This may reflect areas where bone damage has occurred. Func-

tional changes in bone can be detected using nuclear medicine images before they will

show up in x-ray images. The maximum count in this image is 178 in the “hot-spot”

at the bottom of the spine. The maximum count in the upper portion of the spine

is 75. Figure 3.11(b) shows the SI-MMI model estimate of the underlying intensity.
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(C) ((0

Figure 3.11. Nuclear medicine image estimation using SI-MMI models. (a) Spine

count image. (b) SI-MMI model estimate of underlying intensity. (c) Heart count

image. (d) SI-MMI model estimate.

Figure 3.11(c) depicts an image of a heart obtained from a nuclear medicine study.

The image was obtained using the radiopharmaceutical Thallium—201, and the max-

imum count is 33. In this type of study, the radiopharmaceutical is injected into the

bloodstream of the patient and moves into the heart wall in proportion to the local

degree of blood perfusion. The purpose of this procedure is to determine if there is

decreased blood flow to the heart muscle. Figure 3.11(d) shows the SI-MMI model

estimate. In both studies, we see that the SI-MMI model estimator preserves the

important image structure and has significantly lower variance compared to the raw
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count image. The intensity estimates provided by the SI—l\»"Il\/’II model may enable

better diagnosis in clinical nuclear medicine.
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CHAPTER 4

Emission Computed Tomography

In this chapter, we extend the MMI models and estimation approaches to emission

tomography imaging. We introduce two extensions: one based on geometrical consid-

erations of natural pixels of images, and the other based on a new multiscale inversion

approach to the tomographic image reconstruction problem. The new models are used

to represent the intensity sinogram of the projected images, from which their optimal

estimation can be computed prior to reconstruction. We illustrate the performance

of the new estimators with examples using synthetic and clinical data.

4. 1 Preliminaries

The first explicit formula for the reconstruction of a function on a plane given its

integrals over lines was first derived by Radon in 1917. Although it was not until the

late sixties that practical applications of the Radon formula started to appear, first in

radioastronomy and then in electron micrography [70], the practical computed tomog-

raphy that it gave birth to has since become one of the most important tools in many

branches of science for processing information that otherwise would be inaccessible.

For example, in astronomy and geology, imaging of the Sun’s and Earth’s internal

structures have been possible only by tomographical techniques [71]. It is perhaps in
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medicine where we have witnessed the greatest impacts of this technology. Imaging

the internal structure of human patients by noninvasive methods is frequently the

safest and most expeditious method in determining their conditions, and thus, often

the most desirable method for diagnosis.

Although our interest is in emission computed tomography (ECT) in general,

in this chapter we focus exclusively on nuclear medicine tomography—more specifi—

cally, in single—photon emission tomography (SPECT)—f0r the following reasons. The

problems encountered in nuclear medicine tomography typify many of the problems

encountered in ECT at large; and, concentrating in SPECT in particular, permits us

to be more specific in the treatment of the subject. Also, nuclear medicine tomog-

raphy represents one of the most challenging applications due to typical low SNR

regimes under which it takes place; therefore, the methods presented here are tested

for robustness. Further, nuclear medicine tomography represents one very important

application that directly affects many people’s quality of life.

There exists a number of tomographical methods for diagnostic imaging. For ex-

ample, x—ray computed tomography (x—ray CT), magnetic resonance imaging (MRI),

positron emission tomography (PET), and SPECT. The physiological basis of emis-

sion computed tomography medical imaging (e. 9., PET and SPECT), opposed to the

anatomic approach of transmission imaging (e.g., x—ray CT and MRI), are unique

in that measurements of functional abnormalities are readily possible from a single

image.1

In nuclear medicine imaging a radiopharmaceutical, which is targeted for uptake

by some specific organs, is administered to the patient. As the process of nuclear

decay takes place in the radiopharmaceutical, gamma-ray photons are emitted in all

directions. Those photons incident to an array of detectors placed in close proximity

 

1Although functional measurements in transmission-based imaging are possible, these require

more complex procedures involving sequences of images obtained at controlled time-intervals that

must be carefully registered [72, 73].
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Figure 4.1. Tomographic data collection geometry. The array of detectors collect and

count the number of photons induced by the arriving gamma rays emanating from

within the subject. The array is repositioned at equal angle intervals about the long

axis of the subject so as to obtain a sufficient number of projections.

to the patient and in the vicinity of the organs of interest are counted. The number of

photon counts are then interpreted as a function of physiological activity or intensity.

For tomographical image reconstruction of a transversal slice of the body, mea-

surements of photon counts are made at many angles about the long axis of the body.

Other image geometries are also possible, in which case, the axes about which mea-

surements are taken are also perpendicular to the images’ planes. Figure 4.1 depicts

a typical data measurement geometry.

In modern non-diffracting tomography (e. g., all the tomographic methods re-

ferred to thus far), Radon-transform, algebraic, and iterative-based reconstruction

algorithms are the main general approaches to image formation. Radon-transform

based methods are almost exclusively used in nuclear medicine because algebraic

and iterative reconstructions generally are more computationally intensive. One very

Popular and efficient algorithm for carrying out the reconstruction process is the

filtered-backprojection (FBP) method, which in effect implements the inverse Radon
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transform [74].

4.2 The Image Reconstruction Problem

A typical data gathering geometry for parallel-scanning tomography in SPECT is

depicted in Figure 4.2. In nuclear medicine, the intensity f(x) represents the con-

centration of radioactive material at a point x in space, and is typically the quantity

of interest. 17 and 9 are orthogonal unit vectors which together define the projection

plane on which the data collection process takes place. The plane contains the detec—

tor array, positioned according to the vector 0. The convergence point of a projection

line (ray) on the plane is identified by s, the number of units along 0. Thus, we speak

of the projection of f at 30. The vector x and the projection rays lie on the n-O

plane.

The geometry in Figure 4.2 depicts a data collection process in which the object,

and not the array of sensors, is rotated in order to capture the projection data. The

two schemes are equivalent as far as the processing of the data is concerned, however,

our choice simplifies some of the notation. During the process, the object f is rotated

through angles —0 about C in the right coordinate frame (11,0, ()2.

The scanning process as just described is an idealization because it models a

process that originates from zero volume of active material—the material “contained”

in the n-O plane. In order for the model to be meaningful, f must be interpreted

as the average concentration of radioactive material within a neighborhood of this

plane: let fvol represent the true volumetric density of this material, and let a be the

 

2Note the slightly overloaded use of the theta symbol: in bold phase, it stands for the array of

sensors’ unit vector, and in plane phase, it denotes the relative rotation of this unit vector and the

object. The distinction is clear and should not cause any problem.
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Figure 4.2. Projection geometry for the intensity f(x): The unit vector 9 defines

the direction of the detector array on a plane perpendicular to C, While 3 identifies a

sensor Within the array. f(x) is the density of radiopharmaceutical at x.

aperture gain (loss) of any one detector’s collimator, then

 

f(x) '3) = / a(:(:{‘:08‘;)tC) fvol(x + tC) dt

is the effective density of radiopharmaceutical which is responsible for the activity

sensed by the detector at 50. If, indeed, this density is a function of s as indicated,

it would prove the poor selectivity of each collimator’s aperture, resulting in blurring

effects. In general, however, the aperture for rectangular collimators may be expressed

as the product of the in-plane gain a1, and the gain or) due to the displacement in the

C-direction, i.e., a(x — 30 + tC) = a1(x — 30) a2(t(). Thus,

f(x) = / a(x) fvol(x+tC)dt (4.1)

Clearly, the narrower the support for a2, the finer the detail conveyed by f in the

C-direction, however, at the expense of lower intensity and greater susceptibility to
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noise.

As photons travel towards the array of detectors from within the subject, many

are absorbed by nuclear interactions with the surrounding matter and only a fraction

of the original number survive to be registered and counted. Let u(z)dt be the

probability that a photon reaching the point z will be absorbed within dt units from

2. Then, the number of photons 09(3) that during a time interval T reach the detector

at 30 due to the radioactivity at a point x with the object rotated an angle —0 is

Poisson distributed:

c9(s)|)\9(s) ~ Poisson(/\g(s)),

where the underlying intensity’s projection A9(s) is given by3

A9(s) = / a(x — se) f(Rg(x))e'I10 ”(Maul-“898‘ dx. (4.2)

f is as defined in (4.1), u is known as the absorption loss coefficient, R9(x) = eK9(x—

17) + n, and K = (‘1’ ’01). The time units have been chosen so that T = 1.

Since ex“ is the transformation that rotates a vector by an angle 8 about C, R9(y)

transforms the vector y by rotating its y—n component by this angle. Thus, f(R4)(x))

is a measure of the radioactivity at x after the object has been rotated by the angle

—8 about C. The exponential efo1 “malfxflhtlaalldt gives the total absorption loss for

the trajectory through the rotated object from x to 30.

Recovering f from the set of projections /\9(8) represents a very difficult problem.

There exists, however, an exact solution to (4.2) when the attenuation function u is

constant on a convex region that includes the support of f (assumed compact), and

if the aperture gain at 39 is zero everywhere off the perpendicular to 0 at 36 [75].

 

3Since all but the unit vector C considered here lie on the (17,0) plane, we restrict the notation

to a two-coordinate format from now on.
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Since in practice the absorption coefficient is generally unknown, it is common

to ignore it and compensate for its effect by postprocessing the reconstructed image.

This approach is computationally intensive and leads to suboptimal results as the

effect from absorption is nonlinear and, consequently, cannot be fully accounted for

independently of the reconstruction process [76]. For this reason, in applications in

which the value of ,u is small, it is often ignored altogether. For the remaining of

this chapter, we only consider examples where it is safe to do so.4 For this simplified

model the solution is

 )=2—7r2‘/‘1r /((—x 77))r(81()90_3d8d6' (4.3)

The superscript T denotes transposition, and Ag(s) stands for the derivative “355—31.

This expression is one incarnation of the celebrated inverse Radon transform and is

the basis for the FBP reconstruction technique—see Section 4.3 and [75].

The assumption of having only those photons counted that strike the detector

array at right angles implies the decoupling of the counting processes taking place

among the sensors. This is an idealization that is invariably made in practice, but

which results in blurred images. Much of this blurring, however, can be removed by

high-pass filtering if noiseless estimates for the projections Ag are available. Since the

actual sensors’ aperture gain a acts as a spatial low-pass filter on the projections, the

linear shift-invariant operation may be reversed by operating on the reconstructed

image given that the inverse Radon transform and convolution operators commute.

For simplicity’s sake, we ignore blurring effects in the examples to follow and concen-

trate on the most detrimental factors in nuclear medicine tomography imaging: data

variability due to its Poisson statistics.

 

4In Section 4.7, however, we show how to correct for the lack of symmetry in the effective

attenuations associated with A9(s) and A9+1800 (s) when present.
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ECT methods aim to recover the function f from a finite set of measurements c9(s).

For example, for K detectors in the array and N projections, s = —%, . .. ,§ — 1

and 8 = 0, 2W”, . .. ,(N — n27}. Sometimes it is helpful to work with a normalized

length for the array of sensors. We choose a length of 2 length-units per aperture

(per array of sensors) so that. now, 3 = —1,—1 + 725, . .. , 1 — %. Also, in the interest

of brevity, we use the alternate indexing c2, which denotes the counts from projection

angle0=iiQW7r andsensors= %k—1. Here, 7220,... ,N—1andk=0,... ,K—l,

where it is always assumed K = 2J for some positive integer J.

The data vectors c" E [c}_1, . . . ,c3]T arranged in matrix form c E [c°, . . . ,cN‘l]

constitutes the data sinogram. The corresponding intensity sinogram is given

by A E [A°,... ,AN'1], where each column vector is similarly defined as A” E

[XI’{_1,... ,A3]T. Note that

2(k+1)/K—1

2:] Azwwn(s)ds, (4.4)

2k/K—1

the highest resolution unnormalized Haar scaling coefficient at position (sensor) k of

the projection at 9 = ~1;—(;-n.A similar relation holds for CE, which is the total photon

count in the (% - 1, @K — 1) interval.

Each set of K measurements in a projection constitute a finite sampling of (4.2),

and cannot strictly satisfy the Nyquist sampling requirement for the object f is of

finite extent, and therefore, of infinite frequency support. Consequently, the quality of

the output of any method that one may devise to manipulate the data is compromised.

Since there exists no recourse to amend this common degradation, we assume the

“K-sampling” to be fine enough that all high frequency features of interest may be

reconstructed without distortion.
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4.3 The Filtered-Backprojection Reconstruction

Technique

The FBP method for inverting the Radon transform of an image may be deduced using

the Fourier Slice Theorem [77]. Using two—dimensional polar notation for the object

function, i.e., writing f(r, ()6) instead of f(x),5 and similarly for its Fourier transform,

this theorem simply states that f(w, 6) = Ap(w), that is, the Fourier Transform f may

be written in terms of the projections’ Fourier transforms.

Since the Fourier inversion formula can also be expressed as f (r, (t) =

47; f0 f0; f(w 6)e|w|“”05“4’) dwd6, a simple substitution leads to

f(r, 46): é]; TAO(rc-os(6 ¢))d6 (4.5)

where TA9(s _ 27f0; /\,9(w)[w] e’“ did. This transformation represents a high-pass

filter operation on the projections A9. The frequency response of the filter is [w].

The integration (4.5) suggests that f (r, Q5) is the result of a projection operation on

TAg, thus, the name filtered-backprojection method. This projection, however, is not

equivalent to the projection process by which the set of Ag’s are formed, for some

non—linear weighting is implicitly applied to 7A9, but we shall not elaborate on this.

Practical Radon inversion algorithms often begin by discretizing the expression

in (4.5). Although radically distinct in nature to algebraic approaches (ART), these

methods may become similar in form [78]; but, most often, (4.5) is implemented by

means of the FFT for computational efficiency reasons. When this is done, band-pass

filters are chosen to replace the high-pass filter so that excessive noise amplification

 

5The various parameters relate as follows. Referring to expression (4.3), (x - n)TeK96 is a dot

product of the vectors x — n and eK96. Their magnitudes are Ix — n] = r and 1, respectively. Thus,

(x — n)TeK96 = rcos(u), for some angle 11, and <5 = 6 — u.
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will not occur past the object’s main frequency band. These filters by necessity

represent a compromise between recovering high resolution details and minimizing

high-frequency noise.

4.4 Some Limiting Aspects of Conventional Re-

construction Methods

Classical reconstruction methods applied to SPECT produce undesirable and highly

variable image reconstructions due to the Poisson statistics of the projection data.

In practice, it is common to postprocess the raw reconstructions with a low-pass

smoothing filter to improve the images. This approach often produces visually ap-

pealing results, but can lead to detrimental loss in resolution and fine detail structure.

More advanced methods estimate the intensity sinogram A from the noisy data. For

example, Wiener filtering [79] approaches have been applied to the projections prior

to reconstruction. Furthermore, (fully) Bayesian approaches to this problem have

been proposed based on Markov random field models, e. g., [80, 81]. However, these

methods are very computationally expensive.

One possible remedy to these methods’ complexity consists of simply estimating

the individual intensity projections A" from the set of counts, and then applying an

inversion method (e.g., FBP) to obtain an approximation to the function f. This

method is widely used in ECT [69, 75, 77], and in practice, the estimation is carried

out by simply low-pass filtering the data. This approach, although straightforward,

is highly suboptimal for the following reasons:

1. Due to the Poisson distribution of the data, the noise is signal dependent,

and so, the linear filtering process cannot optimally remove it everywhere—see

Chapter 3.
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2. High frequency intensity details in the underlying signal projections are as at-

tenuated as the noise.

3. Useful information that may exist in adjacent and nearby data projections is

not exploited towards leveraging the estimation process.

4. The greater residual noise in the projection estimates due to points 1 and 3 leads

to a degraded performance of any subsequent restoring operation, including the

inverse Radon transformation. For example, a deblurring filter (essentially a

high-pass filter) will emphasize noise in high-frequency bands.

One very simple approach to improving the quality of the estimates for the un-

derlying intensity’s projections is to impose the 1-d MMI model on each individual

projection, and estimate accordingly. Doing this, however, induces the strong con-

dition that any two consecutive projections X’ and An“ be independent. Since the

n+1,and
actual projections’ estimates are driven by the corresponding data c" and c

since these data projections are correlated, the effect of this assumption is lessened.

Nevertheless, given that in nuclear medicine the data’s SNR is typically low, the un-

realistic prior model tends to exert a strong influence on the estimator’s outcome.

Our own studies indicate that this does in fact occur, with the consequence of having

highly detrimental circular artifacts appearing in the reconstructed images.

A step towards correcting for the projections’ independence condition consists of

imposing the 2-d MMI model on an image in the projection space (i.e., sinogram.)

In the following sections, we introduce two extensions to the basic 2—d MMI modeling

approach introduced in the last chapter, and which lead to estimators that produce

well—coordinated estimates of the intensity sinogram and improved reconstructed in-

tensity image.
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(a) (b)

Figure 4.3. Shepp—Logan head phantom. (a) Phantom intensity. (b) Phantom inten-

sity sinogram.

4.5 First Approach to Multiscale Modeling and

Estimation of ECT Intensities

One important characteristic of a sinogram A is that point sources in the original

object f correspond to sinusoids in the sinogram (thus, its name); each point corre-

sponds to a unique amplitude-phase pair, but all have the same period. As a result,

a very strong correlation exists among consecutive projections. This phenomenon is

clearly displayed in Figure 4.3(b), which is the intensity sinogram of the Shepp-Logan

head phantom image in Figure 4.3(a).

Correlation among neighboring pixels suggests that a MMI-like model may be

applicable to the intensity sinograms as they appear to be characterized by smooth

intensity variations with a few discontinuities. To understand the mechanism by

which this characteristic emerges in sinograms corresponding to intensity images that

are themselves well—modeled by the MMI paradigm, the concept of natural pixels

(NP) is helpful. Originally developed for the incomplete data tomographic problem

[78, 82], NPs give us the means to visualize the relationship of corresponding samples
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Figure 4.4. Natural Pixels. (a) Projection samples at scale j are obtained by integrat—

ing the object over strips 2j “sensors” wide. Thus, the highest resolution achievable

is determined by the sensors’ apertures, and correspond to samples at scale j = 0.

(b) Natural pixels are delimited by the overlap of the integration strips corresponding

to the same sample position It at two consecutive projection angles 71 and n + 1.

in consecutive projections. We use this newly gained insight to extend the basic MMI

approach of Chapter 3 to the ECT modeling and estimation problem.

4.5.1 The SI-MMI Method

In emission tomography, sinograms are 2—d positive functions, and so we may represent

them at multiple scales just as we did the intensity images of Chapter 3. As before,

the representation at scale j is denoted by A,-, where for j = 0, A0 E A. Clearly,

A,- may be obtained directly from the object f by simply projecting through wider

swaths.

The set. of projection strips belonging to two consecutive projections A? and A?“

at scale j are shown in Figure 4.4(b). The overlap of the two samples A2,, and

A}? delimit the natural pixel NPg",c shown at the center of the figure. It is clear
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that, under the smooth-intensity—variation-with-a—few-discontinuities assumption, the

greatest contribution of the object to these samples comes from the Nng region,

and only a small fraction AA?)c is contributed by the regions outside it. That is,

3’), = NP},c + AAZk where typically Nng >> AAy‘k; except at fine scales, where

the residuals AAg-fk’s may take on significant values as the areas of integration they

encompass increase and those of the NP’s decrease.

In the object’s sinogram, A?)c and AZ? appear as two horizontally adjacent pixels

at the kth row. The perturbation 5 associated with these pixels can be written in

terms of the natural pixel they define:

AA}, — mg?

6 = n n n z 0 (4.6)

AA“, + AAJ-jtl + 2NPM

 

This shows that the “horizontal” perturbations will tend to be concentrated around

zero, and given the symmetry of the NPs, these will be symmetrically distributed

as well. Note that for the perturbation to take on an extreme value of 1 or -1, it is

necessary that either AAg-fk or AAEII, but not both, assume the -NP value; a very

unlikely situation as demonstrated by the geometry of integration.

Perturbation variates corresponding to differences between vertically adjacent

samples in the intensity sinogram also behave in the desired manner. This is be-

cause the projections themselves enhance the smoothness characteristic of the orig-

inal object through the integration process (see Fig. 4.4(a)). Specifically, since a

projection sample is simply a scaled value of an average taken over an integration

strip, a projection sample represents, within a fixed factor, the “typical” intensity6

that the object assumes in the integration strip. Therefore, the perturbation 6 asso-

ciated with any two typical and adjacent samples of f behaves in similar manner to

those perturbations associated with the object itself. Histograms for perturbations

 

6Note that these “typical” values need not ever occur.
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between vertically adjacent pixels in synthetic and clinical data have verified this

general behavior, and resemble the histograms in Figure 3.3.

The behavior of the perturbation (innovation) variates according to the desired

prior does not on itself warrant the suitability of the MMI model, for the intensity

variation in sinograms is arranged in a highly structured fashion, and so, the assumed

independence of the innovations in the model may not apply. We have taken a

practical approach and have sought to empirically justify the model’s applicability.

The steps taken are:

1. Form sinogram c from raw projection data {c2}.

2. Obtain optimal estimate A of underlying intensity sinogram A from data

sinogram c using the 2-d SI-MMI-model based estimator of Chapter 3.

3. Reconstruct intensity image estimate ffrom sinogram estimate A by the

FBP method.

We call this the sinogram-image-SI-MMI—model—based filtered-backprojection recon-

struction method, or the SI-MMI approach to ECT, for short.

4.5.2 Example

To demonstrate the performance of the new approach to SPECT, we have applied it to

two sets of data: the Shepp—Logan head phantom and real data from a human pelvic

clinical study. The two data sets have been processed in three different ways so that

comparisons can be made and a relative degree of performance can be determined.

In Figure 4.5(b), an (unprocessed) reconstruction of the phantom data based on

Poisson data projections is presented. Figure 4.5(c) shows a lowpass filtered7 version

of Fig. 4.5(b). The smoothing process removes high frequency noise at the expense

 

7A 2-d Butterworth filter with cut-off 7r/3 rad. was used in both examples of this section.
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of some loss of high definition detail in the image. Finally, Figure 4.5(d) displays the

reconstructed image using the new sinogram estimation method. In this new image,

high definition features (e. 9., edges) are clearly preserved despite the high degree of

noise reduction.

Figures 4.6(b), (c), and (d) of the pelvic bone study were obtained by the same

processes used in the corresponding phantom figures. Note that in Figure 4.6(d), the

high definition image structure becomes evident after processing according to the new

approach. This is in contrast with the result in Figure 4.6(c), where the image is seen

to be oversmoothed to achieve a similar degree of noise removal.
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Figure 4.5. Shepp-Logan head phantom image reconstruction. (a) Phantom. (b)

Phantom reconstruction from noisy data. (c) Lowpass filtered image from (b). (d)

Phantom reconstruction from MMI-processed sinogram.
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(C) (d)

Figure 4.6. Pelvic bone study image reconstruction. (a) Sinogram ofpelvic bone. (b)

Pelvic bone reconstruction from noisy data. (c) Lowpass filtered image from (b). (d)

Pelvic bone reconstruction from AVIAN-processed sinogram.
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4.6 A New Multiscale-Based Tomographic Inver-

sion Method

Despite the substantial improvements in quality and fidelity of reconstruction that the

SI-MMI approach represents, we recognize that the always present sinusoidal struc-

ture of sinogram images has not been fully exploited by this method, when it could

be used to leverage the reconstruction process. The second method to ECT to be

introduced in Section 4.7 is based on the tomographic reconstruction approach devel-

oped here and which itself evolves from considerations of this sinusoidal extructure.

As a result, the new inversion formula reconstructs the desired images not from their

corresponding sinograms, but from their cumulative sinogram intensities. This will

be especially important in the ECT problem, where for low SNR data sinograms the

high variability of the data significantly undermines this structural constraint in sino-

grams. In Section 4.6.3 a fast implementation algorithm for the new Radon-inverse

transform is also presented.

There exist other multiscale-base tomographic reconstruction techniques [83, 84,

85, 86], but none is statistically motivated and offers no advantage to the ECT re-

construction problem.

4.6.1 The Multiscale Reconstruction Formula

We begin with the inverse Radon transform (4.5), which may also be expressed in

terms of the Hilbert transform8 of the derivative 13(3) of the intensity projections:

f(r, ct) = 217;]: ’HAz,(r cos(9 - ¢)) (16. (4.7)

 

8See Section CI of Appendix C for the definition of the Hilbert transform and some alternate

representations.
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This is equivalent to (4.3). For simplicity, and without loss of generality, we assume

the support of f to be contained in a disc of radius rmax < 1. Additionally, differen-

tiation of the intensity projections are assumed to exist everywhere in [—1,1], with

1;,(1) = Ag(—1) = 0. Differentiation at the boundaries are of left and right type.

In Section C.1 we prove that 7119(3) = —%fol{A’0(0’2(T)) - A;,(01(7'))}“7T with

01(r) = (—1 4 s) r + s and 02(7) = (1 — s) r + 3. Substituting this into (4.7) results

in

where

fo"{At(t(r)) — X9(t(—T))} d6, for —1_<_ T g 1

90", a); T) E (4.9)

0, otherwise

and t(r) _=_ T + (1 — |r|) rcos(6 — (b) for all r in IR.

In arriving at (4.8) we have made use of the Fubini-Tonelli Theorem [28], which

guarantees the interchangeability of the integration operations as we assume f to be

of finite energy. In the rest of this chapter, however, we generally make no special note

when appealing to this theorem, and give as understood that the required conditions

are met.

Since 9 is real and odd in 7', its Fourier transform Q is imaginary and odd. Then,

with g, E Im{§},

_1 00

90333:?) g.(r,¢;w)sin<wr)w. (4.10)
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and

1

g,('r,¢;w) = —2/ g(r, (15:7) sin(wr) dr. (4.11)

0

Thus, (4.10) into (4.8) proves that

1 °° . 1sin(arr)

f(r~0)- 475i 9i(T.d),w)/O T drdw
 

1 f: (4.12)

= 473 g,(r. (tun) Si(w) den,

where Si(w) denotes the sine integral.

Since t(r) is differentiable everywhere except at r = 0,

, (A 0 t)'(T)
MUM) = “lg—('77—

(4.13)

: (1, 0 two
1 — sgn(r) rcos(6 — as)

for 0 < |r| _<_ 1. Note that since [r] < 1, the ratio is well defined. Using (4.13) in

(4.9), and recognizing that g(r, ()5; 0) = 0, gives us

 

 

" (A9 0 t)’(T) (A9 0 t)’(-T)
' = d6

g(r, ¢’ T) [0 {1 — sgn(r) rcos(6 — o) + 1 + sgn(r) rcos(6 — o)

for 0 < [7'] S 1, and zero otherwise. Once this expression is used in (4.11), an

integration by parts over 7' results in

at, a...) = 2 f0" {/01 “i°i‘i:3,§?5:’)§” d. + [0‘ “33:33:32.35.) 3.} d9.  

This expression accounts for the fact that (A9 0 t)(1) = (A9 0 t)(—1) = 0. Here, 0

denotes the composition operation.
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We may express Ag ot separately in the intervals [—1,0] and [0,1] in terms of

Haar wavelet expansions (see Chapter 2). With p;k(r, <15; 6) and p;k(r, a); 6) denoting

its wavelet coefficients corresponding to these intervals at scale j and shift 19, the

expansions are

(Aeot)- )=Zp;..(rcb; outta)

j,k

(Aoot)(ijirrtimd)

jk

both for 7' E [0, 1]. Substituting these in the above integrals yields

 

. . _ 7' LUZ:k pjk(7‘ ¢;6))fo wjk(rT)cos(wr)dr

gi(r,¢,w)—2/0 {w 1—rcos(6— 4;)

+2212” p;k(r, (i); 6) fol 2,15,),(7') cos(wr) dr d6

1 + rcos(6 -— 45)

 

(4.14)

——2w 2 2jij(r,q)()/0 2i)(2"jr - k)cos(wr)dr

j<0

o<1~<2-1- 1

+ 2 sin(w) Z 2’1 Qj,o(7“, (25),

321

where -w f012,l(2,l(2‘jr— k) cos(.or)dr = sin(23kw)— 2sin(2j(k+1/2)w)+sin(2j(k+1)w)

and

  

+ _

. = '/2 1r pj.k(ra 65; 6) pj,k(r1 ¢i 6)

03.1.6.8) _ 21 f0 {1_TCOS(6_¢) +1+TCOS(9_¢) d6. (4.15)

The factor 21/2 is required in this definition so that QM is independent of scale for

1'21.
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Now, (4.14) into (4.12) becomes

f(mb) = 5’; Z mama) + 47172 c2100: 4).
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0932-141

where

7/27r forj=0, k=0

3/7r-2‘23 forj<0, k=0

ajk E _21 .

l/VT'kTE—Ejmj f0fj<0,0<k<2_J—1

2421—4) -1 . _ _-
1/27r-2_3_2,+4,2J forj<0,k—23—1.

Define the unnormalized Haar wavelet and scaling coeflicients

~ t(21(k+1/2)) t(2~’(k+1))

gij-(T', d); 6) E / A9“) dt -/ Ag(t) (it

t t((211:) 22‘(k+1/2))

foerOandOSkS2‘j—1,and

1

5x030”, CD; 6) E / A9“) dt.

rcos(6—4))

(4.16)

(4.17)

(4.18)

(4.19)

These and the (normalized) wavelet coefficients in (4.15) are related according to

2—j/2 échU', (l); 9)

1 — rcos(6 — 96)

 

p;k(r1¢16) =

and

p;k(r1 Cb; 6) = p;k(fr1 <15; 0 + 7T).

The last expression is due to the equalities A9(-t) = A9+,,(t) and 1+r cos(6 — ab) =

1 — r cos(6 + 7r — ()5), which hold for all intensity sinograms void of attenuation effects.
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In Section 4.7, we make use of this equivalence to introduce a simple strategy for

mitigating attenuation effects in real data. By assuming this condition, the following

more compact notation for the coefficients Qj,k(r, d)’s is possible:

 

 

_ 27f éj,k(r1 ¢, 6)

Qj.k(r, 45) —/0 (1_ rcos(6 _ 65))2 d6 (4.20)

foerOandOSkS2‘j—1, and

_ 27f X0.0(7'1 4516)

621,221.21) _ f0 (1_TCOS(0_ 2))? d6. (4.21)

Expression (4.16) together with (4.17), (4.20) and (4.21) give the means to recon-

struct the intensity f in a scale-by-scale basis from the unnormalized wavelet (and

the one coarse scale) coefficients (4.18) and (4.19) of the “warped” projections A9 0 t.

Figure 4.7 depicts the wavelet 230,0 superimposed on the projection A9,, as well as

the wavelets 219-1,0 and it-“ superimposed on the projection A92. The coefficients

60,0(r, d); 61), 6-1,0(r, cf); 62) and 6-1,1(r, a); 62) are the coefficients associated with these

wavelet functions.

Formula (4.16) may be used as a starting point for further theoretical analysis

on the tomographic reconstruction process; however, since it requires a continuum

of projections, it is of very limited practical use. As is conventionally done with

other reconstruction methods, one may discretize formula (4.16) by straightforward

sampling. Clearly, the reconstructions obtained in this manner will be a visually

appealing approximation at best, but of poor reliability for delicate studies, e. 9., di-

agnostic medicine. In general, it seems very difficult to predict a priori the sampling

resolution required to achieve a desired image quality, and to determine after recon-

struction which features are real and which are artifacts, often proves to be a bigger

task yet.
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Figure 4.7. Wavelet functions for image reconstruction. The contribution to the

sinogram of an intensity image from a single point appears along a sinusoidal path.

The point intensity can be determined from the unnormalized Haar wavelet coeffi-

cients of each projection. The associated wavelet functions are defined in intervals

[7‘ cos(6 — 43), 1] according to the (r, (1)) location of the intensity point, and the projec-

tions’ angles 6 ’5. Three such wavelet functions are depicted here over vertical axes.

Below, we use the sampling theorem to represent the new reconstruction formula

in terms of a finite number of projections. The resulting expression will also represent

only an approximation. There exists, however, an important difference between our

sampling approach and that of traditional methods used to account for the sampled

nature of the data. In traditional methods, it is not only the data that is discretized

by the sampling, but also the inverse Radon transform operator. This leads to errors

on two counts: one, from the loss of information due to aliasing effects, and two, from

the degradation of the conditions under which the inverse transformation holds true.

By using the sampling theorem to incorporate the sampled data into our otherwise

perfect inverse transformation, the errors are limited to aliasing effects. However, for

these types of errors there exist prefiltering steps that one can apply to the data to

minimize their adverse effects.

Let A0 5 27r/N be the angular sampling interval. Then, assuming that only little
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of the sinogram’s frequency content in the 6 direction falls above N/47r cycles per

radian (half the sampling frequency), we have

-1

6j.k(r,¢; 6)‘26,“,6; nA6)Sa(£—6-(6 —— nA6))

and

~ N—l ~ 7r

10,00, a; a) = 10,0(7, <1; nA6) Sa(-A—0(6 — mm) ,

n=0

 where Sa(:1:) E Sinai”. Substituting these into (4.20) and (4.21) results in

2 —1

~ 2" Sa 6 A6

Qj.k(7', cl?) = j,k(7', ¢;nA6)/O (1 £—:gcfos(—6n $332 d6 (4.22) 

3 II o

foerOandOSkSZ‘j—1,and

 

”"1 ‘2" Sa(l(6 — mm)
Q10(7", a):-2A00((,7" a, nA6) f0 (1 -Ar6cos(6 _ as»? d6. (4.23)

2,r Sa( 739(0—mm)

The integral f0 (1-—r—cos(6¢—))

 
d6 defies a close-form solution, but an excellent ap-

proximation may be obtained if N Z 32 and rmax = .96. These conditions are easily

met. In particular, studies often cite values N Z 64, or even N Z 128. The spec-

ification for rmax can always be met by simply padding the projection vectors with

a few extra zeros. In fact, the condition for the number of projections N required

can be further relaxed by simply making rmax yet smaller by this same procedure.

For instance, if N Z 16, an excellent approximation is achieved with rmax S .8. In

appendix C.2 we show under what conditions

  (16 z (4.24)

[2" Sa(&(6 — 71136)) A6

0 (1 —rcos(6----<Z3))2 (1 —’rcos(nA6-'¢)l2
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for n = O, 1,... ,N — 1. Since the approximation can always be made as good as

needed, from now on we regard it as an equality.

Using (4.24) in (4.22) and (4.23), and in turn, substituting these into the recon-

struction formula (4.16) we obtain

f(r 45) = _1_ E 2i1r X30016) + 2350 2099-14 01311: 621-0395) (4 25)

l N ":0 (1 — rcos(6 - Zgn»? ’ '

 

where 6;k(r, (15) 5 6,1036; €T’rn) and X300, (1')) E 5.0.00, ct; 317571). That is,

~ 21(k+1/2)+(1—2J(k+1/2))rcos(¢—%n)

n (73¢) _/

2

j.k A21rn(t) dt

J'k+(1—2Jk)rcos(¢—2W”n) N

21(k+1)+(1—2j(k+1))r cos(rb-zfin)

— / 144,,(4) dt (4.26)
23(k+l/2)+(l—2J(k+1/2))rcos(¢—2W"n) N

forjfiOandOSkS2'j—1,and

1

43,064) = / A4,...(ndt (4.27)
r cos(qb- 2W’rn)

(see (4.18) and (4.19)), and a“. as given in (4.17).

This formulation shows that the intensity image at any point (13¢) may be ob—

tained by filtering and adding the wavelet coefficients of each warped projection

A216" 0 t, and then averaging them together over the projection angles. One sig-

nificant advantage of this method is that it bypasses altogether the need for the ramp

filter le, characteristic of backprojection approaches. As already noted, these filters

are known to enhance high-frequency noise in the projection data.

Another advantage of the proposed formulation surfaces when denoising and de-

blurring the projection data: multiscale—based filters and estimators that adapt to

specific regions of the intensity image may be applied during the reconstruction pro-

cess (4.25). This is a valuable feature not offered by conventional tomographic inver-
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sion schemes. Since we are always free to coordinate any filtering done on consecutive

projections, (4.25) also enables us to exploit the sinusoidal structure characteristic of

sinograms. This could be useful when compensating against non-uniform attenuation

effects, for example.

4.6.2 Computation of 62k and 23,0

Formulas (4.26) and (4.27) do not lead to practical evaluation of the coefficients 6;}

and 23.0 because the signals A 21%,, are never available. Instead, in practical tomo—

graphic processes the set of values A}: is produced. These are the integrals defined

in (4.4), and represent samples of a scaled moving averaging process which may be

described by

2(t+1)/K—l

Al‘s] A211,,(s) ds

2t/K—1 N

_ S w —i-’i(K—1)w‘ K V
-( a(§)e 4 1%,,(3449 (4.28)

for t in [0, K — 1]. ()V denotes inverse Fourier transformation.

We would like to know under what conditions the sampling interval supports the

“nomina ” bandwidth9 of the signals A} This bandwidth could be no more than gK

radians per length-unit, for the sampling interval is 2/K length-units. In turn, this

implies that the bandwidth for each of the signals MT”, can be no more than §K2

radians per length-unit, as dictated by (4.28). For example, if K = 32, the bandwidth

of any /\_2_N_1gn can be no more than 256w radians per length-unit, or equivalently, 256

cycles per aperture (per length of array of sensors).

These estimates have not accounted for the effect of the “envelope” |Sa(§)| since its

 

9Strictly, no sampling interval could ever be small enough to satisfy the Nyquist criterion given

that the projections are of bounded support. Nominal bandwidth refers to that which if “recon-

structed” would represent an acceptable signal.
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frequency contribution extends to infinity. However, beyond 6471’ radians per length-

unit, its contribution, and therefore, that of /\2_«,,, has been reduced by over 40 dB

from its peak value at d.c. Consequently, the sampling need only satisfy the Nyquist

requirement for, say, 647r radians per length-unit;10 and this occurs for K _>_ 16. Since

this is the case for practically all tomographic studies of interest that we may be

concerned with, we conclude that each A? can be recovered from the K samples A2.

Thus,

{:1}; Sa((lg—(t — 72(1)) (4.29)

The projections A2Tv1; ,, are finite in extent and so, we can think of them as consisting

of zeros beyond the aperture’s boundaries, if necessary. Then, any integration of A2W7r

over an arbitrary interval [51, {2], where {1 S 52, can be computed as

52

— n — n

A Ai—Tn(5) d8 _ (A%(l+£1)+l %(1+€2)+l)

1
1:0

= i A:{Sa(w[<%>2<1+el>+§z—ki)—Sa(vr[<%>2<1+a>+%z—ki)},

With L—_ [g (1 " 51” Equivalently,

£2
L_l A

to; E— 2 1 iw E. 2
V

/ A2an(8)ds = Z (A: rect(w/27r) (e < 2) (1+1C ) _ e ( 2) (1+£2)))

£1
[:0

271 _, ‘1’ sin(wK/4) e

 

2 2

1 7' i" sin(wKL/4) _,ng;—nw (64%) (1+a) (BM-’5) magi)

where 3:, denotes the discrete-time Fourier transform of the extended projection

 

”Here, we assume that A?“ has most of its energy concentrated below 64 cycles per aperture.
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(- -- ,0, A3, A32 - - - ,/\’}\,_1,0, - - - ). This expression leads to the desired result:

52

f X51 ‘

n(8) ds =
(if, 8:1(21

3235)
)v

 

z
l
'
:

 k- K2(1+g)—K(L—1)

— 4

 

 

— < 2:112:21? 7  

(4.30)
 

k- K2(1+52)—K(L—1)

- 4

Expression (4.30) allows us to compute the integral of A 2%,, over any chosen interval

by means of the fast Fourier transform. In general, the integration values obtained

are only approximations, but this is of no concern for they may be made as accurate

as necessary by simply extending the length of the FFT by zero padding.

The coefficients (9'21: and X31, can, therefore, be computed accurately by applying

(4.30) to (4.26) and (4.27). Unfortunately, (4.30) cannot be computed efficiently since

the indicated inverse Fourier transformations must be recomputed for every change

of the integration’s lower limit 51, as the parameter L is a function of it. Next,

we introduce a new formulation that avoids the computation of these coefficients

altogether, and which leads to a very efficient inversion algorithm.

4.6.3 A Fast Multiscale Radon-Inverse Transform Algorithm

Define the nth cumulative projection as

W '

53(3) 5 [1 /\2n,,(t) dt (4.31)

for —1 S s S 1, and every n. = O, . . . ,N — 1, and the associated (normalized) quantity

u" r = /-\"(2jk + (1 — 23k) rcos(cb — 21%,,» 4.32

J'k( ’05) — (1 — [21k + (1 - 21k)rcos(¢ — gfinfl)2 ( )

 

~

for j S 0 and 0 S k 3 Ti — 1. Note that :\"(rcos(q§ — 2W5?» = 300345), 01‘

e(luivalently, (1 — rcos(gb — 2W’ln)2 V8;0(T, gb) = 5‘3’0(r, ()5), with X3.0(r,¢>) as defined in
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(4.27).

The normalized wavelet coefficients in (4.26) corresponding to the warped projec-

tions A135,, 0 t may now be expressed as
N

31,147”, 95)

(1 — rcos(d) — —.—n))2

—(1 - 231k +1/2))2v;-‘;.+1/2(91>) + (1 — 2"(k- +1))21v;fk+1(r,¢).

 

=(1—2jk)21/j,k(7‘,¢)

Substituting this into (4.25), the following reconstruction formula results.

23—1

N:{m+z:a..[1—2jk>2u.7172(4)
j<0k=0

— 2(1— 2% +1/2»? Van/2v, <1) + (1 — 2% + 1))?ama] } (4.33)

In practice, we are always interested in a discretized reconstruction formulation

for computer implementation purposes, and so, the reconstructions are necessarily of

finite resolution; thus, it suffices to work with only a finite number of scales. With

J _<_ 0, we denote by fJ the intensity image reconstructed from the —J coarsest scales

in (4.33). The scale-limited inversion formula may be written in simpler form if we first

gather the VJ’fk(r, gt) terms with equal value for all allowed combinations of parameters

j and It For example, it is always true that V_3k(r qb)=|k 1 = VEQ‘k+1/2(r,q§) =

k=0

V33’k+1(7‘, (15)] k=0' Doing this yields

1 — 2J_lk)2 5J1: 1131110”. <15) (4-34)m. ¢)—— ".2137 (

where

fiJfl : 41-J/71' (4.35)
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and, for 1 S k S 2‘J+1 — 1,

—2QJ‘(k_1)/2 for [6 Odd

(311. = —2aJ+m.(2_m-k_1)/2 for It even. (4-36)

J+m‘ —la

+ 2.1;] Qj2-j+J—1k 'i” aj‘Q—j+J-1k_1

Here, m‘ E max{m E N U {0} I2’mk E N}.

The reconstruction formula (4.34) represents a fast multiscale inversion algorithm

for the Radon transform, and to our knowledge, is the most efficient algorithm to-

day. Its complexity is less than that of fast-Fourier-transform based approaches by a

factor of log K. This estimate assumes that all the coefficients are precomputed to

reconstruction, an easily satisfied condition.

Figure 4.8 displays the general behavior of the coefficients (1 — 2J‘1)2 BM used in

(4.34). The plots correspond to the case of J = —5, but the fast decay behavior of

the coefficients as a function of k is observed whenever J < 0. From Figure 4.8 (b),

it is evident that at k = 8, the factor (1 — 2"“)2 )6”, has been reduced by over 50 dB

from its value at k = 0. This and the fact that the data V3_1,k(r, ()5) is non-increasing

with k, justifies the simpler reconstruction formula

'
2

H a
.
.
.

O

I
y
—
a

(1 — 21—116)? ,By‘k Vii—1,147" (b), (4.37)
fJ(T9¢) : 1%f

I! c a
-

II on

where [to is a small positive integer, say, k0 = 8. For values of J much smaller than

-5, however, k0 needs to be increased accordingly.

As mentioned before, an important advantage of the new formulation is that it

allows us to selectively reconstruct an image at any desired scale supported by the

data. Also, since the algorithm does not assume a discretized integration process in

the data collection stage, it is better suited for real-world applications. In fact, our

experiments have shown that for simulated data where the projections are the result
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Figure 4.8. Tomography reconstruction-formula coefficients. (a) (1 — 2’"1)2 ,8“,

versus k. (b) 1010glfiJ,k/fiJ,0l and 1010g(1 — 2"“)2 IfiM/fiyol versus 1:. In both

cases (a) and (b), J = -5. These graphs reveal the rapid decay of the coefficients’

magnitude as k increases.

of a simple counting process, not a true integration operation, the new formulation

does not perform as well as conventional discretized algorithms. Here, however, we

are mostly interested in ECT applications, to which the fast tomographic inversion

formula is especially well suited as we show next.

4.7 Second Approach to Multiscale Modeling and

Estimation of ECT Intensities

The SI-MMI modeling approach to ECT applications relies on the proximity of adja-

cent pixels in the intensity sinogram. In Section 4.5, it was argued that such proximity

typically exists in the vertical direction (same projection vector) due to the proximity

often encountered among adjacent samples in the intensity image f, which when inte-
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grated together, only reinforces this characteristic. On the other hand, the proximity

of pixels in the horizontal direction was justified by the large overlap of the integra-

tion swaths corresponding to consecutive pixels. The regions of overlap defined the

natural pixels.

We also noted that the inequality NPg“,c >> AASPJC, which validated (4.6), could

not be justified for narrow integration swaths (high-resolution scale projections). Only

as the increment angle between projections is significantly reduced, does the difference

NPR}. — AA}; become large. Therefore, the SI-MMI method can only be justified for

low resolution projections when the angular sampling is also coarse. Certainly, in

these cases, it would be suboptimal to have to work with coarse scale representations

even though high-resolution projection data are available.

To circumvent this restriction, we introduce a new approach to modeling, esti-

mating, and reconstructing the intensity image from its Poisson data sinogram.

4.7.1 The CSI-MMI Method

We define a discretized version of the cumulative projection (4.31) as X" E

[_’,‘{_1,... ,X3]T, with elements 5.2 E X"(%k — 1) for k = 0,... ,K — 1. Then,

we let the cumulative sinogram image (CSI) corresponding to these projections be

X E [ie, . .. ,XN-l].

The cumulative projections making up the CSI represent integrations of the object

f over increasingly wider swaths, starting at the top end of the projection vectors.

Therefore, the natural pixels associated with horizontally adjacent samples (pixels)

increasingly approximate more accurately the value of these samples as we move from

top to bottom in the CSI. Consequently, the intensity profiles (X2, 5d,, . . . if”) be-

come smoother as we choose smaller values of k. In fact, in an ideal tomographic

projection process, integration over the entire object is the same regardless of projec-

tion angle, and so, 3.8 = - -- = X)“, i.e., a constant intensity profile.
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From this, we may model the intensity versus angle corresponding to each row

of the CSI by a 1-d MMI model, each with a different prior. For example, the

prior corresponding to (X2+1, X},+1, . . . ,5»?+31) would have parameters that reflect the

greater variability of the intensity than, say, the intensity (X0, X1, . . . , XX‘1). In terms

of the various beta density components of the mixture prior for the perturbation

variate 6 introduced in Chapter 3, those representing high variability, e.g., those

defined by small values of the shape parameter 5,, will have higher contribution to

the model for high values of k than for those of low values of k.

The modeling of the CSI’s intensity variation in the vertical direction, i.e., X",

proves more problematic than for the case of the standard (non-cumulative) sino-

gram. This is because in the cumulative projections, the consecutive pixels may not

be modeled by independent innovation variates—as is characteristic of MMI-based

models—given their strong dependence due to their construction, particularly for low

values of k. We have carried out numerous experiments where we have neglected this

fact in a pragmatic pursuit of the “what if”, just to be reminded by the very poor

results that in this case the fact is not to be ignored.

The need for a suitable model for the individual cumulative projections result-

ing from ECT studies arises only from the necessity to estimate their underlying

intensities before reconstruction. In Section 4.5 we saw the great impact that a

good model can make to the tomographic reconstruction process. However, because

the multiscale—based tomographic reconstruction approach developed in the previ-

ous section only makes use of the cumulative sinogram—as opposed to the standard

Sinogram—the Poisson-distributed data is an excellent representation of the underly-

ing intensity themselves. To justify this, we make the following observations:

1. Much of the CSI Poisson data have high SNR due to the rapid accumulation of

high counts obtained by construction.
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2. CSI data characterized by low counts enter the reconstruction process with little

weight due (i) to its relative low magnitude, and (ii) to the weight given by the

coefficients of the reconstruction formula (4.34) (See also Figure 4.8.)

Modeling the CSI’s intensity by the data has the advantage of simplicity, but

more importantly, it helps to maintain a higher degree of truth in the reconstructed

image. Moreover, due to the accumulation process by which the CSI is formed, the

coordination of the estimation of the underlying intensity in the vertical direction—as

k varies—is assured despite the fact that we only impose the 1-d MMI model in the

horizontal direction—as the angle varies. With this model at hand, the underlying

intensity can be estimated using the Bayesian estimator introduced in the last Chap—

ter. We call this approach to modeling, estimation, and reconstruction the CSI-MMI

method.

4.7.2 Example

Figure 4.9 is a pelvic bone study obtained using the CSI-MMI method. Fig-

ure 4.9 (c) shows the pelvic bone reconstructed image obtained from raw data using

the multiscale-based inversion approach of Section 4.6. In Figure 4.9 (d), the under-

lying intensity of the same raw data used in (c) has been estimated and reconstructed

by the CSI-MMI method. For purposes of comparison, we have repeated the images

of Figures 4.6 (b) and (d) in Figures 4.9 (a) and (b), respectively. These images

correspond to the first pelvic study presented in the example of Section 4.5.

The CSI-MMI processed image in Figure 4.9 (d) reveals a greater amount of detail

than does the SI-MMI processed image of Figure 4.9 (b). In particular, note that what

appears as two bright blobs in the upper left of the SI-MMI image, it becomes better

represented in the result obtained by the CSI-MMI method. In this case, the features

preserve the structure found in the unprocessed image of Figure (a). Likewise, the
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three bright areas easily distinguishable in the lower left of Figure 4.9 (d) are almost

impossible to pick out in the SI-MMI image, although their existence is well suggested

by a narrow band of bright pixels.

The images reconstructed directly from raw data using the FBP algorithm and

the new multiscale reconstruction method display greater detail than either image in

Figures 4.9 (b) and (d); however, the variability of intensity of their pixels is large

enough that makes it very difficult to determine the true structure within the images.

Clearly, this is especially true of Figure 4.9 (a), demonstrating the great advantage

of the multiscale inversion algorithm alone.

In addition to the above differences of image quality among the set, there exist

several other features in the CSI-MMI image that are hardly discernible in the SI—

MMI and the raw filtered backpropagated images of Figures 4.9 (a) and (b). One

example is the very prevalent small dark region near the center of the image which

lies on the diagonal going from the lower left to the upper right corners. While in

Figures 4.9 (a) the region is well defined, the variability of pixels surrounding it makes

it an unreliable feature. In contrast to the virtual disappearance of this feature in

the SI-MMI image, the region is well defined in the image constructed with the new

multiscale approach.

Although we deem the CSI-MMI methods superior to the SI-MMI approach from

the above results, we believe that in practical nuclear medicine and other emission

tomgraphy studies, there is a real advantage by working with both type of processed

images that we have introduced in this chapter. While the CSI-MMI method offers

greater fidelity of images, the SI-MMI-based images displays the greater structures

of objects in a more visually appealing manner without unduly sacrificing too much

small detail.
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 (01)

Figure 4.9. Second pelvic bone study image reconstruction. (a) Pelvic bone from

noisy data using a FBP—based reconstruction. (b) Pelvic bone from SI-MMI—processed

sinogram using a FBP-based reconstruction. (c) Pelvic bone from raw data using

the multiscale-based reconstruction of Section 4.6. (d) Pelvic bone from CSI-MMI-

processed sinogram using the multiscale-based reconstruction.
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CHAPTER 5

Conclusions

We have introduced a view of the multiscale structure of processes that succinctly

expresses the limitations of models constructed from limited—scale information. At

the same time, this view has made apparent the potential advantages of modeling

within the multiscale framework for estimation purposes. For this, we introduced a

unifying approach to characterizing models and estimators alike. The measures of

anomy, accuracy, precision, and resolution power were introduced in order to char-

acterize models and quantify their degree of goodness as estimators. While formally

defined using the information-theoretic concept of distance, the new concepts reflect

our common-day sense of the terms, and so, they are appealing to use and general in

nature. Also, the new characterization of models and estimators has given a clearer

view on interplay between scale (space/frequency) resolution and information resolu—

tion (resolution power).

We have given general guidelines for obtaining linear transformations to construct

Gaussian multiscale models that are potentially better suited for estimation purposes.

Much work needs to be done in this respect, but a wide range of possibilities has been

opened by the idea of constructing transformations that are statistically motivated by

using the criteria set forth here. We argued the various advantages of the Bayesian es-

timators within the multiscale framework, and showed how this framework facilitates
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the formulation of practical priors.

We have developed a Bayesian approach for Poisson intensity estimation, and in-

troduced a novel MMI prior model for intensity functions based on a multiplicative

innovations structure. The MMI captures many of the key features of real-world in-

tensity functions and provides an excellent match to the Poisson distribution. The

MMI model facilitates a multiscale Bayesian estimation procedure that proceeds in

a natural fashion from coarse-to-fine resolutions. The estimator has a simple closed

expression and can be implemented in 0(N) operations, where N is the dimension of

the finest resolution of the discretized intensity. The issue of choosing the parameters

of the prior model was addressed, and a simple moment-matching method was pro-

posed for fitting the parameters to a given set of data. The MMI model was extended

to a shift-invariant (stationary) model called the SI—MMI model, and it was shown

that the SI-MMI model has a 1/f correlation structure that is more regular than that

of the MMI model. We developed a fast version of the SI-MMI which leads to a very

efficient algorithm of complexity 0(N).

We have illustrated the performance of the multiscale Bayesian estimator by com-

paring its performance to other wavelet-based approaches on several benchmark prob-

lems. We have also studied the application of the framework to photon-limited imag-

ing problems, and examined its potential to improve the quality of nuclear medicine

images. The framework also appears to have potential in other applications such as

network tomography [4] and network traffic modeling and synthesis.

We have introduced two new approaches to the estimation and reconstruction of

emission computed tomography images. The SI—MMI method is a simple, computa-

tionally efficient, extension to the 2-d MMI approach which similarly incorporates a

Bayesian estimator in a very natural way. Its MMI-based prior model is well justified

based on the sinogram formation process. The superiority of the SI-MMI over the

commonly used FFT-based-reconstruction post-filtering approach was demonstrated
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with comparative examples using real and simulated data.

The second method introduced was the CSI-MMI method. This method is based

on the new multiscale approach to tomographic reconstruction also presented here.

The reconstruction method was statistically motivated on the ECT problem and facil-

itates the robust reconstruction of ECT images. The new Radon-inversion transform

formulation allows incorporating some local filtering within the reconstruction steps,

which leads to a more efficient “one-step” process. In future work, we plan to exploit

this feature to develop methods to mitigate attenuation and blurring effects. We

developed a fast algorithm that implements the reconstruction more efficiently than

FFT-based inversion methods. The new inversion approach has the advantage over

more traditional reconstruction methods of allowing efficient reconstruction at any

desired scale. Fitting the reconstruction scale to the highest resolution supported by

the data is important to the efficiency of reconstruction, and to the accuracy and

precision of the final image. In future work we will investigate further the application

of the new reconstruction method to simulated data, which from our very limited

trials, proves not to perform as well as FFT-based inversion approaches.

CSI—MMI method estimates the cumulative sinogram image by imposing l-d MMI

priors to each of its rows, and adapting them individually using the data. The robust-

ness of the data column-wise in the cumulative sinogram justifies this one dimensional

approach and helps the reconstructed image stay true. Also, the one dimensional ap-

proach in conjunction with the new inversion method makes the CSI—MMI method

a highly computationally efficient alternative to the image formation process from

photon-limited projection data.
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APPENDIX A

Appendix to Chapter 2

A.1 Proof of Expression (2.2)

Recall that

lar,-tho):— 51—01(w——_€0j€0>e”WW—jg") for all j,k E Z, (A1)

and that f is an L2(IR) function. Thus, by Plancherel formula, f is also in L2(IR).

Since

  

w—jéo W_%Ek—j€0 _

21( £0 ) 1( £0 ) _ 1 (A2)

.7

whenever k = O, and zero otherwise, with 21.060 = 27r

f(w)—:—7T—Zl(w—j£0) l w-—-k- J50 f(w—2—7rk)

u050 £0 “20 u0

_ w— J50 “J50 27f _2_7r r_ 2).—W)/f(w)1(L—€O_)uozcs(—w w' uOk)dw.
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Using the Poisson formula and the fact that every Fourier series’ component is indi-

vidually integrable [19], the expression may be rewritten as

—0.750 w, - .760 ikuO(‘-"_W,) I

1 —— do)

)fmflw)(( 50 > :8
k

{Egg-Z ::J(_;__00j(:0)) eikqu/f(w’)1(w___:_0j€0) e—ikuow’dwl (A.4)

],k

=2((,fizjk )jizk

j.k

 

A.2 On the Monotonicity of Ip(X ; A)

In this section we show that the average mutual information 1,,(X ;A) is a strictly

decreasing function of p, and thus, bijective and invertible; consequently, that p is

uniquely determined for each value of Ip(X; A) = 1’. We assume an absolutely con-

tinuous model, one with absolutely continuous densities.

By defintion

1mm = [a(xwpo) loggggfgldxdx.

where pp(x|A) E “p(x — A), i.e., a uniform density with support of which is the

N-dimensional cube C(A; p) centered at A and sides 2p, and

Here, * denotes convolution. It is not difficult to show that if yp is an independent

ru distributed according to up, then A + yp ~ pp [30].

A well known relation for mutual information establishes that Ip(X ; A) = Hp(X ) —
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Hp(X IA). In this case, Hp(X) is the entropy of pp(x), or equivalently, the entropy of

the rv A+yp. Thus, we write H(A+yp) E Hp(X), when it is clear that H(A+yp) must

be understood as a functional over the sample space A x C(A; p). The conditional

entropy Hp(X IA) is given by

 Hp(X|/\) = [a(xmm 10g(1|A) ddi

Up((—x A) 10 ddi

=”(/"/ g7“—upxl(—A)

=/ p(A)/00‘ log|C| (1di

RN A;p) '0'

This entropy evaluates to log(2p)N, which is the entropy of yp. Consequently,

[p(xiA) = H(A +Yp) _ H(Ypl-

Let p2 > p1 > 0, and consider the difference of entropies H(A+yp,) — H(A+yp2),

where ym, ypz, and A are all independent. Clearly,

H(A'l'ypi) — H(A+YP2)=(H(A+y/J1)- H(A'l'ypilA»

- (H(A+yp2) - H(»\+yml>\)) +H(z\+ypilz\) - H(A+yml>\)

= I(A+yp.;>\) - 1(/\+yp2;>\)+H(ym)- H(yP2)'

In order to arrive at this expression we have made use of the fact that for any two

independent m’s A and y, H(A+y|A) = H(ylA) = H(y). Subtracting H(yp,)-H(yp._,)

from every term in this expression, and writing [m (X; A) for H(A + y,,,) — H(ym),

and Ip2(X; A) for H(A + ypz) — H(ypz), we obtain

1p.(X;A) - 1p2(X;A) = I(A+ypl;z\) - I(A+yp2;>\).

By hypothesis, out of the 171’s yp1 and ym, the latter induces greater uncertainty

into its corresponding sum with A, and so, the information that A conveys about
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A+ yp2 is less than that conveyed about A +yp1. Thus, I(A+yp,; A) > I(A+ ypz; A)

and, therefore,

I,,,(X;A) > Im(X;A).

A.3 An Alternate Interpratation for Precision

By definition

1p(X;A) = [pp(XIA)p(A)10gM dA dx,

pp(x)

where p,,(x|A) is a uniform density the support of which is the N-dimensional cube

C(A; p) centered at A and sides 2p, and

a(x) = [a(xwpw dA

=ICIf(pa...,. (A5)

:l—CIP(’\ e C(x; p))

Here, |C| stands for the volume of C(x;p), i.e., |C| = (2p)N, and P() denotes prob—

ability mass.

Writing Ip(X ; A) in terms of these expressions yields

(X A) =/ / dAdx

IRN a(x, p) ICI)10 P(A 6 C(x; 12))

P(A E C(x; p))logP(A E C(x; p))dx

 

=|_10| RN

—1

= _ / P(A e C(x;p))10gP(A 6 C(x;p)) dx
ICI 1, mm )

where the summation is over all vectors k = (h, . .. ,kN) with k1, . .. ,kN integer
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numbers. So,

—1

[p(xiA) = a
Z] P(A 6 C(x + 2pk;p)) log P(A E C(x + 2pk;p))) dx.

1‘ C(in)

Clearly, P(A E C(x + 2pk; p)) are probability masses on k parameterized by x,

“2,,(A E C((x+ 2pk; p)) = 1 and P(A E C(x+ 2pk;p)) Z 0 for all x and

k. Thus, the entropy Hp,x of the discrete ru’s {H(A) E Papa] with probability

distributions

Pu... = k) = / p(A) dx (A 6)
C(x +2pk )

are

H... E — 2 PM...) log as...) (M)

e...

Rewriting the mutual information in terms of these entropies,

1

Ip(X;A) = |_C'-l-/CO Hp‘x dx. (AB)

:P

This expression says that [p(X;A) is an average of entropies corresponding to

discrete m’s obtained by partitioning the N-dimensional space into cubes of sides

2p each, and assigning them probability distributions corresponding to the volume

of p(A) “under” each cube. The entire partition set of cubes are shifted by x E

C(0; p) to obtain the uncountable set of distinct discrete rv’s over which the averaging

process is carried out. This justifies the alternate and intuitive interpretation given

in Section 2.3.2 for a model’s precision, and which we restate below. Its equivalence

with the original definition is clear for in both cases we have ’P = Ip(X ; A) = “X ; A)-
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P is the entropy of the m A when quantized to the number of bits determined by

I(X ; A), averaged over all possible quantization schemes.

A.4 Only an MA Model has Anomy of Zero

To prove that only an MA model has anomy of zero, we let

GPA“) E — [ppb‘lAl 10g(tP(XIA) + (1 - t)pp(XlA)) dX

for all values oft in [0, 1], and show that N = f(ap,g(1) — ap,A(0))p(A) dA > 0,

unless p(xIA) = pp(x|A).

By repeated differentiation of ap,),(t) with respect to t, we obtain

.. _ p.<xIA)—p<xIA) "

OW ‘ ‘" ‘ 1” fpix'” (MAXIM + <1 — t)pp(xIA)) ‘1’“
 

Suppose that pp(x|A) 79 p(x|A). Then, it is clear that GSA“) > 0 for all t. Since

0;,A(O) = 0, a;’,((t) > O for all t > 0. Thus, ap,A(1) > ap,,\(0) and, consequently,

N > 0. When p(xIA) = pp(x|A), ap,),(1) = ap,),(0), and the desired result is obtained.

A.5 Equivalence of Anomy Definitions

We want to show that

D(Pp(X)llP(X)) = D(pp(X|)\)P(A)llP(X|/\)p(}\)).

Let W be a linear mapping A I—+ A1, where A 6 IR”, A1 E R3 and N a positive
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even number. We only consider those mappings W for which the N by N matrix

3
:
.

“
I

W

is invetible. Here, I and 0 are the 1;- by g]— identity and zero matrices.

Denote by A‘ and Ab the first (top) and last (bottom) N/2 elements of A, respec-

tively. Then, assuming all the following ratios to be well defined,

MAXIM) _ MK) MMIX) _ pp(X) pp(/\‘I>‘1IX)

P(XIAI) p(X) P(AIIX) _ P(X) p(A‘IAIIX)’

  

where the last equality is obtained by multiplying and dividing by p(AtlA1,x). Recall

that in general, meaning is given to pp(x|¢) by the integral fpp(x|A, (p) p(AIqb) dA

(= fpp(x|A)p(A|¢)dA.) Since (i) = A (:2) = AA,

pp(X|/\1) = PIA") pp(AIX) = _e(_x|_)‘_) (A.9)

p(XIAI) p(X) P(AIX) p(XlM'

  

Since the derivation could have equally been started from this last ratio of densities

and concluded that removal of information from the conditioning of the densities is

inconsequential,1

rib}; = p(XIA) (A.10)

p(X) p(XIA) '

 

1Note that by choosing W = [0,1] and Ab a constant vector independent of x, the desired result

is explicitly obtained.
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Now, from the definition of the information-theoretic distance D(--||) and (A.10)

A x =
pp(XIA)D(p.(xIA)p<A)IIp< IMAM) /MX'MW) 10g "p(xIA) M" (A.11)

—' 0 WM X: X X—fp,.pp<x)1g;—(—")d D(pp()llp())-

A.6 Proof of Expression (2.35)

We shall prove that for a sufficiently smooth (slowly varying) density function p(A)

relative to p(xlA) the parameterized mutual information 1,,(X ; A) can be well approx-

imated by H(A) — log IC'l. We present two different proofs, starting with the simplest.

Although the proofs are essentially the same, they begin from the two different in-

terpretations given to the quantity [p(X;A). The first of these interpretations was

introduced in Section 2.3.2; the second interpretation was introduced in Section A.3

of this appendix.

First Proof

We know that Ip(X;A) may be written as the difference Hp(X) — H,,(X|A), where

H)=p(X- -fpp1(0gpr)dX and H(XIA- -fppXIA)p(A)10gpp(XIA)ddi

In Appendix A.2 we showed that Hp(X|A) = loglCl, where [CI = (2p)N and N is

the size of the signals x and A. Now, since

a(x) = fpp(X|/\)p(>\) dA.

by the assumption of smoothness of p(A) the 2p width-per—dimension of pp(x|A) =

ZIP(x — A) is of the order of the width-per-dimension of p(x|A).Therefore, p(A) may
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be regarded constant within the N-dimensional cube of sides 2p, and

1

pp(X) = — p(A) dA % pA(X)-

ICI C(x;p)

Therefore,

HAX) z — [mm logmx) dx = H(A).

Second Proof

From Appendix A.3 we known that 1,,(X ; A) can be written as

1

I X;A =— H ,.d,

p( ) lClv/Cmm) p, X

where

H... a - Z) P(é...) log me...)

6...

and

P05... = k) = / p(A) dA.
C(x +2pk;p)

From the assumption of smoothness of p(A) the 2p width-per-dimension of pp(x|A) =

Up(x -— A) is of the order of the width-per-dimension of p(x|A). Therefore, p(A) may

be regarded constant within the N-dimensional cube of sides 2p, and

POE... = k) % PA(X + 20k)lCl-

Then,

Hp... % -- ZPMX + 2pk)|C|108(P>.(X + 2pk)|0|)-

k
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Applying this result to the expression for Ip(X ; A) gives

I.(X;A) z — 2: / 19>.(X + 2.1.) Iogpxx + 2.1.).A
k C(0;P)

— log ICI Z] p,\(x + 2pk) dA

k C(OHO)

z —Z/ p(A) Iogpo) at).
k C(x+2pk;p)

—log C j p A dA

I I; C(x+2pk;P) ( )

=- / p(A)logp(A)dA—loglC| / pom,
RN

R”

which is the desired result.

We note that the approximations made here are reminiscent to those often used

within the context of high resolution quantizers in computing their mean-square errors

(see for example [21].)

A.7 A Sufficient Condition for the A/P Accuracy

Inequality

As usual, we let |C(Aj;pj)| = (2pj)NJ be the volume of the cube C(Aj;pj) centered

at A], of sides twice the EPR pj, and of dimension NJ- = N0/2j. For brevity of

notation, in the next few steps below we use the notation particular to scales j = 0

and j + 1 = 1, but the development applies to any two consecutive scales in general.

From definition (2.24) and equality (2.25)

A)
Nz-lo CA; -/ _p(_1_/ lo xAddi.

1 gl ( 1p1)l IRNIIC(Al;p1)| C(A1;pl) gp( 1| 1) 1 1
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If W is an orthonormal transformation such that2

01 W1

= WAO and = on,

A1
X1

where 91 and wl are simply the “error” vectors A0 — A1 and x0 — x1, respectively,

the above inner-integral can be expressed as

/ Iogp<x1IAI)de
C( 1:01)

2/ log/ IXGIIAQZ/ p(X1,W1|A1,01)dW1d01dX1,

C(Amm) RNI k C(01+2Plkipl)

where the summation is over all vectors k = (k0, . .. ,kN,_1) whose elements are

integers. C(91 +2p1k; p1) are the cubes centered at 01+2p1k with sides 2p1. Refer to

Figure Al for a representation of the various components in these expressions. Note

that in the figure the point (91, A1) is the same as the point A0. '

Now, define

 a(X1IA1,91)E

With the aid of the Jensen’s inequality we obtain

/ logp(x1IA1)dX1 Z ICQIIPIHIOEICQUPIH

C(Al :01)

+/ / p(91|A1)1og(1+a(X1|A1I91))d91dX1

C(Alipl) RNI

I f f

(3' A
p 6 A / 10gp(x IW IA ,9 )dw d0 dxl.

l ( lip1)l C(Aimll lRNl ( 1| 1) C(91;P1) 1 1 1 1 1 1

 

2For later convenience, we have departed from writing in the customary order the projection

vectors A1 and x1 first, and the “errors” 01 and wl second.
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X1

   

 

M1 - Col-1,91 ; Pl)
WI

COM ; P1)

M

C(91; P1)

  
Figure A.1. Simplified geometric representation of EPR cubes at consecutive scales.

For simplicity of notation only those cubes corresponding to scales 3' = 0 and j +

1 = 1 are represented (e.g., C(Ampo) and C(A1;p1)). Here, x0 = (xflmxgjl)? By

integrating p(xole) over adjacent copies of C(A1, 01; p1) as shown, a useful relation

between the anomies No and M can be obtained (See text for details.)

Then,

M .<. -logIC(A1;p1)|'~’

P(AI) / /

_ _ OAlo 1+axA,0 ddedA

/R~1|C(>‘1;p1)| C(A1;p1) MM 1' I) g( ( 1| 1 1)) 1 1 1

P(AI) / f f

’ — 9" lo x,WA,9 dwdedi,
[Rn/l |C(’\1;P1)|2 C(A;;pl) RN11“ 1| 1) C(91;p1) EM 1 1| 1 1) 1 1 1 1

01'

 

A

N1 _<_ —IOEIC(A1,01;P1)I—/ M" 10g(1 + a(xllAODdxldAO

1R~o |C('\11P1)| C(Axm)

P(Ao)
— 10 x A dx dA.
AND |C(A1,91;pl)l C(Al,91;pl) gp( 0| 0) 0 0
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Since

N0 = - log |C(A0;p0)l _/
P(Ao)
—— logp x A dx dA ,

IRNo IC(A0;P0)|/C(Ao;po) ( 0| 0) 0 0

 

No

No - N1 2 log (E) +/ p(AO) / log(1+ a(xllA0))dx1 dAo

1R C(ANPI)po ”0 (200M

1

+ pA {—f 10 px A dx[R < 0) (MN, CMW g < 0| 0) o

1
_W/C:(% )lng(X0lA0) dXo} dAo.

:PO

So, for a model to satisfy the A/P conditions, it suffices that for all scales

 

NJ

log(-"—) < / p(A.){A,-+1<a)+A’j<p)—Aj<p>} dx., (A.12)
Pj+1 IRNJ'

where

Alp) = 1 / 10gp(X-lr\')dx-

J _ (ijle C(A;;pj) J J J,

1

A"(p)E—-+/ logpx°A- dx-

J (2pj+1)NJ C(Ag'+1.91+1;Pj+1) ( Jl J) J

and

A- (a)=—1—-——/ log(1+a(x- |A-))dx-
J+l _ (2pj+l)Nj+l C(A9'+1:pj+1) J+1 J 2+1

are the averages of log p(ijAj) over C(Aj; pj) and C(Aj+1, 9j+1;pj+1), and the average

of log(1 + a(xj+1|AJ-)) over C(Aj+1;pj+1), respectively.
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A.8 Coarse-Scale-Data Limited Models

We want to prove the equivalence between A/P and CSDL models. The following

depicts the conditions associated with CSDL models.

 

 
 

The CSDL Model Conditions

j-scale Model j-scale CSDL Model

P(XjIAle/V‘) P(Xj+1|)\jlp(’\jl

7’1“ 7’1 > 7”#14 PJ'HJ

A1 ~41 < Ania Ajay   
 

Although the conditions have been stated in terms of data belonging to one coarser

scale than that of the intensity’s, it equally applies to observations obtained at any

number of higher (coarser) scales above the scale of the intensity.

Recall that all the models under consideration satisfy p(xj+1|Aj) = p(xj+1|Aj+1).

Motivated by this relation, we define pp(xj+1|AJ-) E pp(xj+1|AJ-+1), which is a logical

choice. Clearly,

pj+1J E I(Xj+1;Aj) = I(Xj+1;A,-+1) = 792'.

Since similarly 1,3(Xj+1; A3) = [p(Xj+1;/\j+1),

Ip‘(Xj+1§Aj+1) = Pj+l,j = 733' = Ip(Xj+1;Aj+1)
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and so, ,5 = ,0. On the other hand we have

_ pfib‘j-HIAJ'). .2 - . ,\. A-l ___ . d .N+13/Pp(xy+1| .)p( .) og MMI,» dx,“ A.

Pp(Xj+1lAj+1)
= ~x~ A. A. 10 dx- dA.fpp(3+1lg+1)p(3+1) gp<xj+llxj+1>

= . . . Pp(xj+1|)\j+1) . _ ___ .

fpp(xJ+IIAJ+l)p()‘J+-l)log p(xj+1|Aj+1) dXJ+1 dAJ-H My

 

 

Thus, P34,”- = 79,- and A34,”- = A], establishing that if a model satisfies the A/P

conditions, it also satisfies the CSDL model conditions, and vice versa. Therefore,

the two sets of conditions are equivalent.

Consequently, for models for which (1) E[xj|Aj] = Aj (2) p(xj+1|AJ-) =

p(xjHlAJ-H), and (3) H(Aj|xj+1) > H(Ajlxj) hold at every valid scale—the same

three conditions adopted in Section 2.4.1—finer scale patterns in the data convey the

required information for a more precise model, but modeling based solely on this new

information necessarily produces a less accurate representation.
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APPENDIX B

Appendix to Chapter 3

B.1 Posterior Distributions

In this section we show that

f(AjICO) = f(Alej) (B-1)

and

f(5j,k|Co) = f(6i.lej-1»?kicj—l,2k+l)- (32)

These are proved in the following two propositionsl

Proposition 1 p(AJ-lco) = p(Ajlcj) for j = O, - -- ,J

Proof: Since the same information contained in the set {Co} is contained in {CO, cj},

 

1Throughout this dissertation numerous has been the instances where use of a table of integrals

and other mathematical expressions has been made. Our main source of information in this respect

has been the tables compounded by Gradshteyn and Ryzhik (see [87]).
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applying Bayes’ theorem f (Ajlco) may be written as

P(Ajlcj)
f(AjICo) = f(AjICo»le = P(CO'Cj’Ajlmcoch-i

Thus, it suffices to show that p(colcj,AJ-) = p(colcj) for j = 1, - ~ , J.

Define sequences of even and odd elements of cj_1 and Aj_1: €311 =

(Cj—1,O~.Cj—1,21"' aCj—1,1’V'/2J-1—2) and 0311 = (Cj—1,11Cj-1,3a ' " ,Cj—1,N/2j—1_1), and sim-

ilarly for Aj_1 and A34. Clearly,

p(C‘- .C"- IAj) .

l = #mch'IJAJ-l) 1fc3?_1= (:1- elf—1 2 Q
119—1|ch (8.3)

0 otherwise.

Then, with the aid of the total probability theorem we may write for the non-trivial

case

.) = fp(c§_1.c,- — c§_1IA,-, ;_,)p(,\;_,|A,-) dA§_1

P(lehj)

f Hk p(Cj—1,2k|/\j—1.2k) Hk 19(0ch - Cj—1,2kl)\j,k - Aj—1,2k)p(A"?_1|AJ-) clA‘3._1
= 2 J

Hkp(cj,kl)‘j,k)

fHk e-Aj— 1.21: (Aj— 1,c2klJ 12" I'Ike—Aj.k+Aj—12k("j,k")‘j-1,c2k)”‘
c1 12kP(A;__1|Aj)dA;_1

(Cj- 12kl' k(cjk-Cj- 12k)‘

_,\.k.._J.1__

Hk e (A(Cchc)!

Cj’k )‘j-i2k)c’—l’2k ( )‘j-12k)c""_cj“'2"

= —' 1-—-’— A"; A- (0.2,

[I];
( AjJt

Ach
p( 7 1| 3) J 1

Cj-l.2k

 

p(cj_1|CJ-, A

  

where all the indicated products are over k = 0 through N/21 — 1. In these expressions

we have exploited the conditional independence of the data scaling coefficients at any

specific scale given their corresponding intensity scaling coefficients.

Since the innovation variates are given by y“, = 52f? (see (3.11)), the condi-

tional densities within the integral signs may also be written as pA;_1W(A;_1|Aj) =
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1,-
.

11,11,117” (( A1;2k)k| ()‘j.k)k)9 where Yj = (yj,o,yj,1,°" ,yj,N/2j_1). Then, With a

change of variables and recalling the mutual independence of yj and Aj, we obtain

the equivalent expression

CM c-12k C'k_C'-l2k

p(Cj—llcjv A3) = H (wk) ’ ' (1‘ Wk) " J ' P(YJ‘) dy)‘ (BA)

k Cj-l.2k

The absence of A]- in this expression indicates that cj_1|cj is, at least explicitly,

independent of Aj. However, one may argue that Aj intervenes only functionally to

define the probability mass p(cj_1|cj, A,-). That is, if we denote the right side of (8.4)

by g(cj-1, cj), we must. still verify whether g(cj_1,cj) = p(cj_1|cj). We may achieve

this as follows.

P(Cj—llcj) = [P(Cj—llcjaAjlpo‘lej)dAJ‘

= [g(cj_1,cj)p()\jlcj)d/\j = 9(C1-1’CJ)'

Therefore, p(cj_1|cj, A3) = p(cj_1|cj).

Using this result, one arrives at the desired final conclusion p(colcj, A3) = p(colcj)

using induction: Let I be any integer such that O S l g j — 1, and assume that

P(Cj—zlcj, A1") = P(Cj—zlcjl- Clearly,

P(Cj—z—ilcj,z\j)

: /Zp(Cj—l-1|C
j-11Aj—la Cj,Aj)p(Cj_l|A

j_l,Cj,Aj)p(Aj
_llcj,A1.)dAj~

l

Cj_(

= Z/p(cj_z_1lc,-_z,A,_z)p(cj_zlA,_,,c,,A,)p(A,-_,|c,,A,)d.\,_,

91.1
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Now, since p(cj_1|cj, Aj) = p(cj_1|cj) and the assumption,

p(Cj-l—l le, A1) = Z: P(Cj-z-i lcj—l)p(Cj—llcja Aj)

Cj_z

= Zp(ci-l-lle-lvlel)(Cj-llcjl = P(Cj—z—ilcjl-

Cj_(

Taking l = j — 1 completes the proof. Note that we made use of the fact that

given scaling coefficients at a given scale, knowledge of the corresponding scaling co-

efficients at a coarser scale (greater value of j) does not alter the likelihood of an event.

Proposition 2 f (6,,klc0) = f (6,,klcj_1,2k,cj_1,2k+1) forj = 1, - -- ,J

Proof: In order to keep the mathematical notation as clean as possible in these and

subsequent derivations, we introduce the following simplifying notations: c1 = cj_1,2k

and c2 = cj_1,2k+1, c;_1 = cj_1\(c1,c2), and y; = yj\yj,k. Now, since y“, = %(1 +

51k) (see (3.10)), it suffices to show that p(yj,k|c0) = p(yj,k|c1,c2) forj = 1,~- ,J.

This may be done as follows.

By the total probability and Bayes’ theorems,

p(ymlCo) = [p(yj,,\,|c0)dy;d,\,-

p(c0|y,-,A,-) .
————-—— .,A' d .dA-.

/ p(CO) p(yJ J) y] J

Since the information conveyed by {y}, A1} is the same as that conveyed by {Aj_1},

P(ColyJ'aAj) = p(COIAj-l) = P(Aj—llcolmcol/PQj—ll- Using PFOPOSitiOTl 1, this be-

comes P(Colva‘j) = P(Aj-1le—1)P(Co)/P()\j—1) = P(Cj—l|’\j—1)P(Col/P(Cj—1)- Upon
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substitution in the above integral

 

pom--1) .
p(yj.k|Co) = / 13(ch p(dey, d1,-

P(Cj—1IYj,/\jl ..
= - -,,\. d .dA-
/ P(Cj-il p(yJ J) y] J

 

p(03_1ly;, *1)

P(Cj—ll

P(Cl—l lAj)
— . , . A- __J__
- P(yml [p(cl, cglym, 1k) (Ci-1)

A61 +Cze-A pc(*

 

= [P(Cleczlyjk1 AM) p(yj’ Al) dy; dAj

P(I‘v‘) dAJ’

Cj_1j|/\ )
C1! C2! m) p(AJ- )dAj.

C

= p(yj.k)y,-,l(1 -yj.1-)C2 /

Thus, p(ijchO) = p(yj.k|01» 62)-

B.2 Optimal Estimation of the Multiplicative In-

novation

In this section we find a closed form for the optimal estimate 6M of the innovation

coefficient 5j.k° For the sake of simplicity, in the few steps that follow we will disregard

the indices j and k, and simply write 6 for 513k and similarly for other quantities.

The minimum mean square error (mmse) optimal estimate of the innovation co-

efficient 6, given all the information available in CO is given by

E[6|=c0] /:()6p6|c0)d6:]:(61)6|c1,c2)d (8.5)

in accordance with (B2). Applying Bayes’ theorem to this expression we obtain

3 = filamctczlopww = fl,fo°°6p(c1,c2|6,i)p(xla)dAp<6>d§

f3, p(cl, c2|6)p(6) d6 f_1, f0°°p(c1,c2|6,1)p(1|5) dAp(6) d6

  

Here, p(Al6)= pA( ) due to the independence of Ajk and 6Jk. Also, notice that Cl and
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C2 only depend on A and 6 by way of their respective statistical means A1 = -;—A (1 + 6)

and A3 = %A (1 — 6) (See (3.11) and (3.12)). Given A1 and A2, A and 6 do not convey

any further information on the behavior of Cl and c2. Moreover, given A1 and A2, c1

and C; are independent. Therefore,

fl, I,” 6p (ctcz (114311—32) p(AMpr) d6

_1 °°p c1.c2 Ah? Al-zé (A) dAp(6) d6
0

1:11 fooo 6pe__—_-A(cll+6)/2 (A#)C1 £32242 (A1——(5)62 p(A)dAp(6) d6

00 e____-A(1+6)/2 c1 e—Ml 6)/2 c '

L11 lo c (”T”) 72—01345) 2 P(AldAP(5)d5

o
n
)

 

It is now possible to factor out every A-dependent term from the integrals in 6. Doing

this, the resulting integrals in A in the numerator and denominator cancel out leading

to

 

3,—[_116(1+6)cl(1—6)c’p(6)d6

L11 (1+5)c‘(1-5)c’p(5)d5° (8'7)

Substituting the beta mixture model (3.13) into this expression and carrying out the

integration we obtaine the desired result:

 

 

 

22' p B(8:+C181+C2)

A _ 3 B(s,-, s.))(23.+c)

6j,k "- dj,k Z B(3i+C1 3i+C22 . (8.8)

ipi B(8;‘,8;‘)
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APPENDIX C

Appendix to Chapter 4

C.1 The Hilbert Transform as a Continuous Av-

eraging Process

The Hilbert transform of an L2(IR) function f is defined as

Hf(t) a 1 0° fldT, (e1)
7r _oot-T

which is the convolution of f and %. For functions with finite support, it is possible

to give a more intuitive meaning to this operation. In particular, if supp(f) = [a, b],

where a < b, then

_ l

b a / mm,a,<r>dn (0.2)
7r 0

 

”f(t) = —

where

f(02(T)) — f(UIW) (C.3)
02(7) — 01(7)

"101.02 (T)
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and 01(7) E (a — t)T +t and 02(7) E (b — t)T + t. Note that 01(0) = 02(0) = t, while

01—> a and 02 —» b linearly as 7' —-> 1.

Clearly, if the derivative of f exists everywhere in (a, b), mmmh) is the average

derivative of f in the interval (01(7),02(‘r)) C [a,b], i.e.,

 

1 02(7)

mom 7' = ’ a do. C4

2( ) 02(T)-01(T)/a,(1) f( ) ( )

Proof: Substituting C.3 into C.2, and replacing the definitions for 01(7) and 02(7),

we obtain

Hf(t)=—%/O f((b—t)T+t)C:_—T+%/0 f((a—t)'r+t)£:_:

Now, in the first integral let u = (a — 107 + t, and in the second integral let u =

(b — t)7’ + t. In both cases we have that $7 = 1%, which upon substitution we get the

desired result C. 1:

  

u—t u—f
Hick—five) d“ +71;[m 0’“

C.2 Proof of Expression (4.24)

In this section, we investigate the nature of the approximation

 

[2” Sa(—12!0—7m) d6~ 21r/N (0.5)

0 (1— rcos(6 — 45))2 I ~ (1 — TCOS(¢ — $73371»?

for n = O, 1,. . . ,N — 1, and find the conditions under which it is adequate.

Let rect(;r) be the function that is 1 in {—33, g], and zero otherwise. Then, the
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Fourier transform of Sa(‘-§-6) is Freedfi). Thus, Sa (%6) = fi is? e‘wodw, and

2" Sa(-Iy-6 - 7m) ”/2 21f ewe

/ _/ 8-11—1. / dBdw

0 (1 — rcos(6— (1)))2 :N Mg 0 (1 - TCOS(9 - (25))2

N/2 _ w 00 211’ t ’

1 eWTn/ N rec (02;1r) e—sz dOdw,

=2” -N/2 —oo (1 " 7005(9— 99))?

  

 

Of

  

A

f” 3341219 _ 7m) do = .1— m ivflrec‘fi—U eaten dw (c 6)
0 (1 —rcos(6—¢))'~’ 27r _N/2 (1—rcos(6—¢))2 ? -

where as“usual, ()A denotes Fourier transformation. Clearly, if the “bandwidth” of

2_7r

(1N, cos(693¢»? were less or equal to N/2, the right integral of (C6) would reverse its

      

Fourier transformation, giving (C.5) with equality. This, however, can never occur

_2__r 9— 1r

since (1”,,€056?4);), has compact support, and so, its bandwidth is never finite. Note 

that C.6 is simply a restatement of the Nyquist Sampling Theorem and the recon-

struction series which derives from it [88].

Although we must content ourselves with an approximation, we can choose the

parameters in (CS) such that its two sides are as close as desired. To see how this

N"92;rect(

(1--rcos(9—fl¢)))2

 is possible, first note that the bandwidth of does not change with N,

2_ (9-1r)

and so, the right-side integral of (C6) monotonically approaches (INTE(E)))7 as N 

increases. Variations on (15 only affect the phase of the Fourier transform and does

not modify the bandwidth. On the other hand, as the value of 1" goes from O to

1, (lwrr::((0%-(:9)? goes from a constant to a U shape function on its support [0, 2w], 

drastically increasing its high-frequency content. A detailed analysis would show

that this increase is monotonic because the energy increase in the signal continuously

adds towards building up the singularities at the interval’s boundaries.

In order to find values for r and N that make (C.5) a good approximation, nu-

:37”(t—rec“2;

(1—rcos(G— ¢>)))

 merical solutions were obtained. The Fourier magnitude of 2for four
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Figure C.1. Magnitude frequency content of (INT::((;—_¢))F (abscissa in radians/s) for

¢=0and(a)N=16,r=.8,(b)N=32r=.,9(c)N=32,7‘=.961811d(d)

N=64,7‘=.96,

 

combinations of N and r are shown in Figure C.1.

It. is seen from these graphs that the right-hand side integration operation of CG

would change very little if it were over IR rather than over [—%, g]; although Figure

C.1(c) probably corresponds to an acceptable upper limit for 7' when N = 32. The

2—" rect(9—2"—K")

(1-NTCOSU’ 21:15))

integration —7 and % in each graph1S as follows: (a) 38 dB, (b) 53 dB, (c) 30 dB,

and (d) 67 dB.

 decay in the frequency response of 2 at the lower and upper limits of
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