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ABSTRACT

A CROSS SECTION ANALYSIS FINITE ELEMENT CODE

FOR TUBE HYDROFORMING

By

Yabo Guan

Hydroforrning of metal components is widely used in several industries. While

numerous variations of hydroforming exist, the basic principle remains the same: utilize

fluid pressure to form a component. In tube hydroforming, interrml pressure is applied to

form a tubular metal blank into a structural component having a closed cross section.

The thesis presents a "cross-section" analysis method for calculating tube

stretching and bending followed by hydroforming and expansion to fill the die in the

hydroforrning process. The material is assumed to be elastic-plastic and to satisfy the

plasticity model that takes into account rate-independent, work hardening and normal

anisotropy. Based on the virtual work principle and constitutive equation, the equilibrium

equation can be derived. Numerical solution obtained from a Total-Lagrangian

formulation of a general shell theory is employed. The boundary friction condition is

introduced into the formulation in the form of penalty fimction, which imposes the

constraints directly into the tangent stifl‘ness matrix. The Newton-Raphson algorithm is

used to solve the nonlinear equation.
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INTRODUCTION

Hydroforrning offers a way to cut material and manufacturing costs while

improving product performance in a variety of applications. Advantages include material

savings, making shapes that cannot be made by conventional manufacturing methods,

and the ability to shape dissimilar tailor-welded materials. It reduces tooling, part, and

labor costs, while Significantly improving product performance (Anon, 1997).

The process currently is either being used or being considered for making a wide

range of complex cylindrical, flat and tubular components. Cylindrical parts include gas

cylinders, washing-machine drums, and cooker cavities. Flat components include auto

body panels, fuel tanks, and aerospace parts.

Tube hydroforrning is receiving the greatest attention, especially in the auto

industry (Vari-Form Inc, 1998), because existing multi-piece, stamped/welded assemblies

in auto body and frame structures potentially can be replaced with less expensive

hydroforrned parts that are lighter, stronger and more precise (Figure 1.1).

In tube hydroforming, internal pressure is applied to form a tubular metal blank

into a structural component having a closed cross section. As shown in Figure 1.2, a

straight or prebent tube is placed in an open die, the die is closed, the tube ends are

sealed, and the tube is filled with a hydraulic fluid. Internal hydraulic pressure forces the

tube to conform to the shape of the die cavities, producing a part having different cross-

section shapes.



BOI



 

Figure 1.1 --- Representative hydroformed components and assemblies

From left to right: instrument panel support beam, engine-cradle assembly.

Photo courtesy Vari-Form, Woodstock, Ontario, Canada.

.Punch plate centering

   

  

_' Top tool

Top die Base plate

Horizontal cylinder

_ Pivotable

Cylinder bracket

Sealing punch

Bottom die

Bottom tool

Base plate

Table plate ASE component

Figure 1.2 --- Principal hydroforming tooling diagram

Courtesy Schafer Hydroforrning, Wilnsdorf, Germany.



The thesis presents a "cross-section" analysis method for calculating tube

stretching and bending followed by hydroforming and expansion to fill the die in the

hydroforming process.

The present method employs a number of simplifying assumptions. The principal

geometrical assumption is that the cross-section of the extrusion can be of any shape

consisting of straight-line segments and circular arcs. All segments making up the cross-

section are assumed to be relatively thin and of constant thickness. The deformation of

the member is assumed not to vary along the length. Hence, the analysis can be

considered to be a "section" analysis.

The material is assumed to be elastic-plastic and to satisfy the plasticity model

that takes into account rate-independent, work hardening and normal anisotropy

(Pourboghrat et a], 2000).

At the tool-tube interface, the frictional stress is assumed, on the basis of ordinary

Coulomb friction, to be proportional to the contact pressure whenever relative sliding

occurs.

By using the virtual work principle and constitutive equation, the equilibrium

equation can be derived. Numerical solution obtained from a Total-Lagrangian

formulation of a general shell theory is employed. The boundary friction condition is

introduced into the formulation in the form of penalty function, which imposes the

constraints directly into the tangent stiffness matrix. The Newton-Raphson algorithm is

used to solve the nonlinear equation.
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CHAPTER 1

LITERATURE REVIEWS

1.1 Hydroforming Concept

Hydroforrning has been one of the fundamental sheet metal forming processes for

quite a long time, having been developed at least since pre-World War H, when it was

applied to the German aircraft industry (Zhang, 1997). About 30 years ago, the first

hydroformed parts were fabricated by expanding a straight or prebent tube to make

manifold elements and components of similar geometry for sanitary use. Today, many

hydroformed parts are already in mass-production in the automotive industry. Well-

known hydroformed automotive applications include exhaust manifolds, exhaust pipes

and subframes, such as radiator enclosures, space frames, dash assemblies, frame rail,

engine cradles, etc.(Dohman et al, 1997)

According to its features, hydroforming can be classified as the following

processes (Zhang, 1999 and Siegert et al, 2000):

1. Flat sheet hydroforming or hydroforming deep drawing

2. Tube hydroforming or hydrobulging of tubular components

3. Hydromechanical deep drawing process

4. New variation of hydroforming including the integral hydrobulge forming

(IHBF) of sheet shell products and viscous pressure forming (VPF) processes

In this thesis, we focus on tube hydroforming that has become an economic

alternative to various stamping processes with the availability of advanced machine

design and controls.
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Tube hydroforming offers several advantages as compared to conventional

manufacturing via stamping and welding (Ahmetoglu et al, 2000). These include:

(a) part consolidation (stamped and resistance welded two or more pieces of a

box section can be manufactured in one operation from a hollow component)

(b) weight reduction through more efficient section design and tailoring of the

wall thickness

(c) improved structural strength and stiffness

(d) lower tooling cost due to fewer parts

(e) fewer secondary operation (no welding of sections required and holes may be

punched during hydroforming)

(f) tight dimensional tolerances and low springback

(g) reduced scrap

While numerous variations of hydroforming exist, the basic principle remains the

same: utilize fluid pressure to form a component. Both traditional high-pressure

hydroforming and pressure sequence hydroforming are presented in Longhouse (1998)

and Morphy (1997).

If hydroforming technology is to be applied economically, it is essential to have

knowledge of the avoidance of failure cases as well as of the behavior of the tube in the

tool under the compressive stress and forces that are exerted by the machine (i.e., axial

feed). Several failure modes, buckling, wrinkling and bursting are shown in Dohmann

(1996).
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1.2 Numerical Simulation

Kobayashi (1989) has worked on several sheet forming problems including

drawing, bulging, stretch forming and bending, solving the problems using a finite

element method based on incremental strain theory. In his work, the material was

assumed as rigid-plastic and anisotropy and work hardening characteristics were

included. An elastic-plastic FEM formulation of stretch forming for a punch and a die of

arbitrary shape was introduced by Wang and Bundiansky (1978), which is a classic

example verified by ABAQUS. A rigid-viscoplastic material model FEM formulation

was presented by Germain, Chung and Wagoner (1989).

All the numerical analyses mentioned above were obtained using simple

membrane theory which does not include the variation of stresses through the sheet

thickness. This approximation is justified when the thickness of sheet material is small

compared to the curvature of the sheet surface, the radius of either the punch or the die,

and when in-plane stretch dominates bending. However, in order to simulate bending

phenomena such as the early deformation in stretch forming, spring-back etc., inclusion

of the bending stress is necessary. A total Lagrangian formulation based on an extension

of a thin shell theory which takes into account large membrane and bending strain was

derived by Wang and Tang (1988). An updated Lagrangian and plane-strain bending

formulation based on nonlinear thin-shell theory was employed by Choudhry and Lee

(1994). A general purpose finite element program for analysis of forming processes,

which was implemented in MARC, was introduced by Nagtegaal and Rebelo (1988).

Built on the successful application of finite element method on sheet metal

forming, explicit finite element method is being applied to hydroforming of tubular parts



by Ni (1994), bulging process by Hu et al. (1997), and a sheet metal operation involving

punch stretching, drawing and hydroforming by Hsu and Chu (1995). In Noh and Yang

(1998) work, a general formulation for hydroforming of arbitrarily shaped boxes was

expressed.

1.3 Friction and Contact Problem

Friction and contact between sheet and die play an important role in hydroforming

processes. Classical Coulomb’s law is capable of describing only friction effects between

effectively rigid bodies and gross sliding of one body relative to another, However if

Coulomb’s law is applied pointwise in contact problem, then the contact stress developed

normal to the contact surface is ill defined. In Oden and Pires (1983), nonlocal and

nonlinear friction laws and variational principles for contact problems were introduced.

A method of discretizing the die boundary condition considered for the analysis of metal

forming processes with arbitrary shaped dies was employed by Oh (1982).



 
I
N
)

Iii:

the

Wt.

the

In}



CHAPTER 2

THIN SHELL THEORY

The deformation of the mid-surface of an element in the plane containing the meridian

curve will be considered. The deformation of the element will be obtained from the

theory of thin shells and Figure 2.1-2.2 Show the mid-surface of an element of the sheet at

the initial time to, reference time °t and at the current time t as it bends and stretches.

Derivation of principal curvatures, stretches of a shell element undergoing an

axisymmetric deformation was discussed in (Pourboghrat, F. et al, 2000) using both total

and updated Lagrangian formulations. These formulations are used in the program.

2.1 Principal Stretch (Total Lagrangian Formulation)

Figure 2.1 shows a flat element at the initial time t0 and at the current time

t(=°t+At) as it bends and stretches. By referring to Figure 2.1, the following relationship

between the current and the initial position vectors and the total displacement vector for

the mid-surface of the element can be written:

x = X+ U (2-1)

where the initial position vector X and the total displacement vector U are, defined in

the global coordinate system,

X—X‘ 11—" (22
~—O’ -—w .)

In Eq.(2.2), u and w are the total displacements of the mid-surface. By substituting from

Eq.(2.2) into (2.1) , the position vector x becomes

[X1 +u]

f: (2.3)

W



To calculate the principal stretch in the radial direction, we will consider the unit tangent

vector, 6 , of the current mid-surface, i.e.

dx dx dx 1+“

= ~ ~d5 ~_1_=[ “ii (2.4)

where A? = ds/dS . Here, 3 and S are travel length of the current and initial surfaces from

center, respectively, and the comma stands for the differentiation with respect to X,.

Then, by calculating the magnitude of vector ii from Eq.(2.4) and setting it equal to

unity, A? can be calculated to be:

"a" = a- a = 1.0 (2.5)

N
I
—

13 = [(1+ 14.x, )2 + win] (2.6)
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Figure 2.1 Shell element at original time to and current time t(Total Lagrangian)
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Figure 2.2 Shell mid-surface at reference time °t and current time «Updated Lagrangian)
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2.2 Principal Curvature and Stretch (Updated Lagrangian)

After bending and stretching, the principal mid-surface curvature, k1 , of a shell

element at the current configuration, t(=°t+At), can be calculated from the known

information about the element at the reference configuration (time °t, see Figure 2.2), as

follows:

r=R+uA+wIV (2.7)

where R is the reference configuration at time °1: and u and w are incremental

displacements defined in Figure 2.2. In Eq.(2.7), the unit tangent vector A and the unit

principal normal vector If] to the mid-surface of the reference are defined as

l
b
)

ll

m
I
Q
J

“
I
”

ll

'
7
0

l
>
)

.S
10:

’i
|

I

where K1 is the curvature. Therefore,

10. A = o

and

11

(2.8)

(2.9)

(2.10)

(2.11)



i
n

To calculate the current curvature, k], the unit tangent vector ‘ = and the

I
D

    

    

n

unit principal normal vector of the mid-surface of the shell " = 4 are calculated.

n

Using Eq.(2.7), the tangent vector 0 is found as:

a r ,. .. . ..

9=E=f5 :5,+u~5 A+uAS+wJIV+w1VJ (2.12)

By substituting from Eqs.(2.8), (2.9) and (2.11) into (2.12), and re-arranging, the

following expression results:

a=—”—= S =(l+u.s—K1w)A+(w.S+K,u)1i/=cA+dIV (2.13)

The principal incremental stretch of the mid-surface in the radial direction calculated

from the magnitude of the base vector a in Eq.(2.13) is

’11:

    

a = [9-9 =ch +212 =[(l+u.s —1<,w)2 +(w, +K,u)2]i (2.14)

The current length of the mid-surface of the shell in the radial direction, ds, is calculated

from the reference length, dS, and A; as follows:

('15 = Ads 2.15)

The unit principal normal vector of the surface of the current shell, ii , is

7‘: =-———:———"- 2.16)

12



which, from Eqs.(2.l3), (2.14) and (2.16), shows that pic? =0. The current principal

curvature of the shell, k1, can now be found as:

~73 =-r ~fi =——a-fi (2.17)

where a is given by Eq.(2.12) and ti can be derived from Eq.(2.l6):

~ ~ .5

dr’i 2, (d, 21+ c, 10- chA— Irwin—2,, -(-d A+CIV)

—~= * ~ ~ 2 ~ ~ ~ (2.18)
.s S ,1]

 

1
3
>

In Eq.(2.18), A” is assumed to vanish within an element and the above expression

simplifies as :

(d, + ch) 21+ (—c,, + K,d)1i/

'5 = - A (2.19)

By substituting from Eqs.(2.13), (2.14) and (2.19) into Eq.(2.17), the current centerline

 

1
3
>

curvature of the shell, k), can be found:

Cd's -dc.s + K1212

= a:

It should be noted that it is possible to recover Eq.(2.6), for total Lagrangian formulation,

k, (2.20) 

From Eq.(2.14). This is done by setting the reference curvature K1 equal to zero for a flat

sheet, replacing S with X; and treating the incremental displacement u and w as total

displacements in Eqs.(2.13) and (2.14). Similarly, the current curvature of the shell, k1,

can be calculated from the initial configuration by setting K1 equal to zero, replacing A,

with if and S with X1 and treating u and w as total displacements in Eq.(2.20)

_[_w'xlu-X1x1 + (1+u.X. )M’Xflfl ]

k, 3 2.21

(2:) ( ’
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CHAPTER 3

KINEMATICS

Based on the general thin shell formulations in Chapter 2, the formulations for

finite strain and small rotation have been derived for the straight line segment and are

segment that are used in the program. (Derivation in details can be seen in Appendix A).

The formulation in Corona and Pourboghrat (1998) focuses on a closed structural

member, such as a thin-walled hollow tube, that is subjected to combined tension and

bending loadings. The cross-section of the tube can be of any closed or open shape

consisting of straight-line segments and circular arcs (see Figure 3.1).

 

Arc Element

f \/

 Y { d—Straight Element

Bending Surface

3.   
 

 
L J

////vZ////

Figure 3.1. A rectangular tube and the assumed global coordinate system.

For the purpose of modeling, all segments making up the cross-section are

assumed to be thin and of constant thickness. The length of the straight segments should

be greater than ten times the thickness, while the radius of the circular arcs should be

greater than eight times the thickness. The deformation of the structural member is

14



assumed not to vary along its length (in X-direction). Hence, the analysis can be done for

a section along the axial dimension, as shown in Figure 3.1.

3.1 Straight Segment

The rectangular cross-section shown in Figure 3.1 lies in the plane defined by the

Y and Z-axes, while the X—axis is in the axial (length) direction of the member. This figure

indicates that the curvature K2 of a tube bent about the Y-axis will match that of the

bending surface. A simultaneous bending about the Z-axis is also possible in order to

impart an additional curvature K, to the tube. In this formulation, the initial geometry of

the cross-section is specified by first defining the Y-Z coordinates of a set of nodes and

then defining the segments. Two nodes must bind each segment.

For the straight segment in Figure 3.2, the local coordinates of the segment are 5 along

the segment and z in the through-thickness direction. The initial segment geometry is

defined by the location of the points = 0 given by Y0 and Z0 , the orientation angle 0, the

length 10 and the thickness t of the segment. The position 2:0 is located at the mid-surface

of the segment, indicated by the dashed line. The displacement components of the mid-

surface are u and w along the original 3 and z directions respectively. The rotation of a

line is given by B

B = —— = —w. (3.1)

The axial strain component of a point is given by:

E, = £3 + K25 — Ky?) (3.2)

where 81’ is the axial strain (axial feed) along the length of the tube (X-direction) and

15



f = Z0 +(s+u)sin0—wcos€+z(-cost9+fisin 6) (3.3a)

17 = Y0 +(s+u)cosl9+wsin0+ z(sin6+flcos6) (3.3b)

The strain component 8, along .9 is given by

83 = a? + K32 (3.4)

where £3 is the membrane strain component given by

0 1 2 1 2

a, = uJ + Eu" + 5w" (3.5)

where the local curvature is given by

W

xx = ——‘”2—, (3.6)

(1+ wJ )3

3.2 Circular Arc Segments

For the circular arc segment shown in Figure 3.3, the local coordinates of the

segment are the angle ¢ and the through-thickness z. The initial geometry of the

segment is specified by 1) the coordinates of the center of the arc, Y, and Zc, 2) the

angle (00 , which locates the line where (I) = 0 , 3) the radius R, 4) the angle spanned by the

arc A¢ , 5) and the thickness of the segment t. As in the straight segment, the mid-surface

is the origin for z and is indicated by the dashed line. The rotation of a line, ,8 , can be

 

given as

dw

“—25 u—w
.a

= = 3.7I3 R R ( )

The axial strain of a point is given by Eq.(3.2), but for an arc

16



f = Z( +(R+w)sin$+ucos¢7+ z(sin(I)-+flcos$)

77 = Y( +(R+w)cos(5—usin¢7+z(cos$—,Bsin(3)

where 5 = ¢o +¢ . The tangential strain is given by

8, =62+K,z

where

   

2 2

u +W u-w w+u
6:): .¢ +_1_ .¢ +1 .¢

R 2 R 2 R

Cd -dc +2R

and IQ: " A; 11/
 

where c=l+%(u" —w), d=-I-l€(w" +14) and It, =\/c2 +612

17

(3.8a)

(3.8b)

(3.9)

(3.10)

(3.11)



 

 

 
 

  VZ
Figure3.2 Geometry of a straight segment

 

 

 

 

 

  
Figure3.3 Geometry of a circular arc segment
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3.3 Constraints

Since the cross—section is made of several independent segments which have their

own local coordinate systems and variables, it is necessary to enforce compatibility of

deformations at junction of two or more segments. Two constraint equations are used to

ensure compatibility of displacements and one to ensure compatibility of rotation

between two segments. Therefore, at a junction where M segments come together, 3(M-

1) constraint equations need to be enforced. At a junction between two straight segments

having orientation angle 61 and 62 and components u,,wi and u2,w2 , the two

displacement compatibility conditions can be written in terms of the displacement

components in the Y and Z directions as follows:

u2 00502 +w2 sintfil2 —ul costSl1 -wl sin 6, =0 (3.12)

u2 sine2 —w2 c036?2 —ul sint9l +wl c036l =0 (3.13)

The rotation constraint requires that the angle between segments at a junction

remain unchanged. For the current example, if the rotations of the two members at the

junction are ,6, and [32 , compatibility condition is

,6, — ,6, = 0 (3.14)
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CHAPTER 4

CONSTITUTIVE EQUATION

The elastic-plastic model which has been implemented in the program has been

developed by Pourboghrat et a1 (2000). It is based on the isotropic hardening model. The

uniaxial stress-plastic strain curve of the material is given by

a = K(E+Eo )” (4.1)

where a is the effective stress and E is the plastic strain. Parameters K, N and 50 are

material constants. The elastic strain increment is related to the stress increment through

the equations of linear, isotropic elasticity with Young’s modulus E and Poisson’s ratio.

The yield function allows for anisotropic yielding of the material. The yield function is

given by

2+ 2+R — 2
= 0x 0': (0.x 0', ) — 0': = 0 (4'2)

1+ R

 

f

where 0'y is the yield stress and R is an anisotropy parameter.

During loading, Hooke's law is used to calculate stress below the elastic limit; i.e.,

5" 5 0y , where o" is the initial yield stress of the sheet obtained from a uniaxial tensile

test. Beyond the elastic limit; i.e., E > 0,, the co—rotational time derivative of stress

(Jaumann stress rate) is calculated, for a given strain rate, from an elasto-plastic

constitutive equation (Becker, 1992):

 a: L— .i : :D (4.3)
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V

Here 0' and D(= D‘+D” ) are the Jaumann rate of stress and strain rate tensors,

respectively, 0' is the stress tensor, 5 is the material flow strength, h(= 83/35) is the

plastic hardening parameter, L is the fourth order elastic tensor and
an

 

Ii: (Mi/3 g/"341/3 o"), where “am 9'“ = Jim/do : 6¢/Bg , is the second order tensor

representing the unit normal to the flow potential surface. The plastic strain rate,

associated with Eq.(4.3) , is calculated from the following expression:

V

. P:L: -P:0’

5:” ” ” ‘ " (4.4)
 

The fourth order elastic tensor L(= LU“) used in this work is the standard tensor for the

isotropic elasticity, which has only two independent components.
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CHAPTER 5

CONTACT ALGORITHM

The simulation of hydroforming processes requires the ability to model the contact

phenomena. The analysis of contact behavior is complex because of the requirement to

accurately track the motion of multiple geometric bodies, and the motion due to the

interaction of these bodies after the contact. The numerical objective is to detect the

motion of the bodies, apply a constraint to avoid penetration, and apply appropriate

boundary condition to simulate the frictional behavior (Marc’s Theory and user

information).

5.1 Numerical Procedures for Contact

Two widely used procedures are available, namely the Lagrange multiplier

method and penalty method, which will be introduced here briefly. Both, the Lagrange

multiplier method and penalty method operate on variational formulation of problem

under consideration (Bathe, 1982).

For purpose of demonstration, consider the total potential energy IIp of a discrete

system for steady-state analysis,

11, =%UTKU—UTR

The constraint equations can be expressed as

CU = 0

In the Lagrange multiplier method we amend the r.h.s. of (5.1) to obtain

11; =—;-UTKU-UTR +x TCU
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where ,1 contains as many Lagrange multipliers as there are constraint equations, and

invoke that 5 II; = 0 , which gives

T U R

K C = (5.4)

C 0 l 0

The second of Eq.(5.4) is Eq.(5.2), the equation of constraint. Eq.(5.4) are solved for both

U and A. The l i may be interpreted as force of constraint.

In the penalty method we also amend the r.h.s. of (5.1) but without introducing an

additional variable. Now we use

n; = éUTKU-UTR+%tTat (5.5)

in which t = CU , and t = 0 implies satisfaction of the constraint. The usual potential IIp

of the system can be augmented by a penalty function ét'rat , where a is a diagonal

matrix of penalty numbers a". . The condition 5 I]; = 0 now yields

[K + cTac J{U} = {R} (5.6)

If 0. =0, the constraints are ignored. As a grows, U changes in such a way that the

constraint equations are more nearly satisfied.

It is difficult to assess which method, the Lagrange multiplier method and penalty

method, is better in the finite element implementation. However, it can be mentioned that

the Lagrange multiplier method introduces a large number of independent variables.

Also, the diagonal terms of the stiffness matrix corresponding to the 2. always become

zero and special attention is required during the assembly of the stiffness matrix so that

an equation corresponding to any A does not become the first one in the stiffness
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equations after applying the boundary conditions (Kobayashi et al, 1989). In comparison

with Lagrange multiplier, penalty functions have the advantages of introducing no new

variables and requiring no special care for the order of unknowns for successful equation

solving. Their implementation can be as easy as assigning a high modulus for an element

already in the program. Thus, we use penalty functions to implement the constraints in

contact problem.

Effectively, the penalty procedure constrains the motion by applying a penalty to

the amount of penetration that occurs in the hydroforming processes. The penalty

approach can be considered as analogous to a nonlinear spring between the two bodies.

Using the penalty approach, some penetration occurs with the amount being determined

by the penalty constant or function. The choice of the penalty value can also have a

detrimental effect on the numerical stability of the global solution procedure.

5.2 Detection of Contact

During the contact process, each potential contact node is first checked to see

whether it is near a contact segment. The contact segments are either edges of the other

2D deformable bodies, faces of 3D deformable bodies, or segments from rigid bodies

that stand for the dies in tube hydroforrrring process. The motion of the nodes is checked

to see whether it has penetrated a surface by determining whether it has crossed a

segment. The determination of when contact occurs and the calculation of the normal

vector are critical to the numerical simulation. In this part, the normal vector of potential

contact node has been pre-defined and a so-called cross-product algorithm is used to

determine which segment is associated with the potential contact node.
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5.2.1 Contact Tolerance

During the contact process, it is unlikely that a node exactly contact the surface.

For this reason, a contact tolerance is associated with each surface (Figure 5.1). If a node

is within the contact tolerance, it is considered to be in contact with the segment. The

contact tolerance is calculated by the program as 5% of the thickness of segment.

 

2 x Tolerance
 

///////f/////////}

Figure 5.1 Contact tolerance

5.2.2 Normal Vector and Tangential Vector

In order to track the motion of each potential contact node, it is important to

define the normal vector and tangential vector of the node (Sheet-S).

The normal and tangential vectors of the nodes of the mesh (Figure 5.2(a)) can be

calculated as follows: The element 1 has nodes i and k and length Li , The element j has

nodes k and j and length L j . The unit normal vector, 11 , at the contact node k, as shown

in Figure 5.2(b), is evaluated by averaging the normals of elements i and j, Ni and Nj ,

as follows:

Ni +Nj

n:| (5.7)

|Ni +le|

By rewriting the normal vector, n, in the following component form:

2

"bl—Ni ’1}; ZN=,/z§+1 (5.8)
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(b)

Figure 5.2 (a) The computational mesh and

(b)The normal vector and tangent vector
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where Zx which is interpreted as the slope at node k, can be obtained from Eq.(5.7), in

terms of the coordinates, (x,z), of the nodes i, k and j, as follows:

_ Lj(zk —zi)+Li(zj —zk)

" Lj(xk —xi)+Li(xj -xk)

 (5.9)

where Li and L J. are respectively lengths of elements i and j. As seen in Eqs(5.8) and

(5.9), the normal vector, n, at the contact node k, can be expressed in terms of the

neighboring nodal coordinates.

The tangent unit vector, t, at the node k, whose direction is normal to the normal

vector, 11, and which is oriented opposite to the sliding direction, is expressed using the

orthogonality as follows:

t—i 1 (510)
—ZN z, ’

where ZN and Z, are defined in Eq.(5.8) and Eq.(5.9), respectively.

Actually, as we can see in Appendix B, when the Fourier series expansion is used

to approximate the nodal coordinates, it is easy to exactly define the normal of a node by

differentiating the Fourier series without any numerical difficulty.

5.2.3 Condition for Contact Violation

As shown in Figure 5.3, when a node is within the contact tolerance, it is

considered to be in contact with the segment. The location of the closest point on the die

corresponding to the contact node needs to be determined by using the cross-product

algorithm. B“, B, and BM are die nodes, A), is one of the contact nodes and n is its

normal vector.
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If (AkBi-l xn)-(A,‘Bi xn)>0 (5.11a)

 

and (AB, xn)o(AkB xn) < 0 (5.11b)
i+l

Then, we define segment Bi Bmto be the segment associated with contact node A...

 

  

 Sheet Segment

/
/DieSegment

 

Bi+l

Figure 5.3 The associated die segment with contact node

5.3 The Projection Algorithm

A nodal position produced by the trial solution may penetrate the die. By using

the cross-product algorithm, the closest point on the die corresponding to the node can be
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found. The nodal coordinates are then modified by a projection scheme such that the

node just touches the die surface. There are two ways to bring the penetrated node back

to the die surface.

5.3.1 The Iterative Method

The position of a penetrated node is changed to locate it at the tool (die) surface

where the normal vector for that node intersects it. After calculating the normal vector,

n = (nvnz) , using Eq.(5.8), the tool surface point to be projected (t-nx,t-nz) can be

iteratively found by solving for the length parameter, t, from the nonlinear equation:

S(t-n,‘)-—t-nz =0 (5.12)

where S(x) is the tool surface equation.

5.3.2 The Directive Method

As shown in Figure 5.4, PQ is assumed to be the tool segment associated with the

penetrated node A, point B is the intersection point between normal vector and PQ , and

O is the original point. Based on the following vector equation, the coordinate of point B

could be calculated:

5P+P§=DX+TB (5.13a)

firm—£2, , 23:47; (5.13b)

IIPQII

where 771,172 are scalar. Once I], , 772 are solved from Eq.(5.13), the coordinate of B could

be determined.
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2 / Sheet Segment

Q

‘/ Die Segment

P 711

0%

Figure 5.4 The projection Algorithm

5.4 Implementation of Constraint

A node located on the sheet at time t +At , is constrained to move in the tangent direction

defined by the trial solution, Au'. The tangent direction incorporates the Zx in Eq.(5.9).

The constraint on 6 u = (8 u, ,5 u) , for contacting nodes is then:

5 u -n = 0 (5.14)

which by substituting in Eq.(5.8) we will have

6n 2 = 2x ~6u x (5.15)

Actually, Eq.(5.15) is the alternative constraint equation, Eq.(5.2), in the contact

problem.
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5.5 Friction Model

Friction is a complex physical phenomena that involves the characteristics of the surface

such as surface roughness, temperature, normal stress, and relative velocity. The

numerical modeling of the friction has been simplified to two idealistic models.

The most popular friction model is the Coulomb Friction model. This model is used for

most applications. The Coulomb model (Marc’s Theory and user information) is:

ofiS—uon-t (5-16)

where o n is the normal stress

0 f, is the tangential(friction) stress

it is the friction coefficient

t is the tangential vector in the direction of the relative velocity

V
f

t = l— , vr is the relative sliding velocity.

vl’  

The Coulomb model is also often written with respect to forces

f,S-1.rfn-t (5.17)

where f, is the tangential force, fn is the normal reaction.

For a given normal stress, the friction stress has a step function behavior based upon the

value of vr (see Figure 5.5).
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T Slip

Figure 5.5 Coulomb Friction Model

This discontinuity in the value of of, can result in numerical difficulties so a

modified Coulomb friction model (Oh, 1982) is implemented:

f, =—mk£— =-3mktan"[Av’] (5.18)
lAv: 7t u0

 

 

where Av, is slipping velocity, m is friction factor, k local flow stress in shear and uo is

very small positive number compared to Av, .

When the Coulomb model is used with the Stress based model, the integration point

stresses are used to calculate the normal stress component of the contact node. The

tangential stress is then evaluated and a consistent nodal force is calculated.
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5.6 Separation

After a node comes into contact with a surface, it is possible for it to separate in a

subsequent iteration or increment. Mathematically, a node should separate when the

reaction force between the node and surface becomes tensile or positive.

When contact occurs, a reaction force associated with the node in contact balance

the internal stress of the element adjacent to this node. When separation occurs, this

reaction force behaves as a residual force (as the force on a free node should be zero).

This requires that the internal stresses in the deformable body be redistributed.
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CHAPTER 6

NUMERICAL SIMULATION

In this chapter, based on the virtual work principle, the equilibrium equation can be

derived. The numerical solution obtained from a Total Lagrangian formulation of a

general thin shell theory is employed. In contrast to traditional finite element method, the

nodal displacement approximate function based on Fourier series is used. The boundary

friction condition is introduced into the formulation in the form of penalty function,

which imposes the constraints directly into the tangent stiffness matrix. The Newton-

Raphson algorithm is used to solve the nonlinear equilibrium equation.

6.1 Principle of Virtual Work

An equivalent approach to express the equilibrium of the body is to use the principle of

virtual work. This principle states that the equilibrium of the body requires that for any

compatible, small virtual displacements imposed onto the body, the total internal virtual

work is equal to total external virtual work. In the Lagrangian incremental analysis

approach we express the equilibrium of the body at time t+At using the principle of

virtual work as:

J‘HArTij‘sHA’eU ”de _—_ Il+~f-B&¢it+~dv + J'HArfiSaliS ”Aids (61)

1

HA» I+~y t+Als

Where l.h.s is the total internal virtual work and r.h.s is total external virtual work. The

"”1”. are the Cartesian components of the Cauchy stress tensor, the ”A, e”. are the

Cartesian components of an infinitesimal strain tensor, the ”‘37." and "mfs are the

components of the externally applied body and surface force vectors, respectively, and

fin, is the ith component of the virtual displacement vector.

34



6.2 Newton-Raphson Algorithm

Substituting the element coordinate and displacement interpolation into the principle of

virtual work expression Eq.(6.1), the equilibrium equation can be written as

HA! R - HAIF = O (6.2)

where the vector ”‘5’ R lists the externally applied nodal point forces in the configuration

at time t+At , and the vector ”A’F lists the nodal point forces that correspond to the

element stresses in this configuration. For the nonlinear problems, the basic approach for

an incremental step-by-step solution is to assume that the solution for the discrete time t

is known, and that the solution for the discrete time t+At is required, where At is a

suitably chosen time increment. Hence, considering (6.2) at time: + At we have

f(U') = 0 (6.3)

where f(U') = ”A' R(U') - ”A’ F(U’) (6.4)

Assume that in the iterative solution we have evaluated "A“ U('"’ ; then a Taylor series

expansion gives

f(U’) =r('*~ U““’) + [35-] (U'—"“ U“’”) (6.5)

3U  MN UU-l)

where higher-order terms are neglected. Substituting from (6.4) into (6.5) and using (6.3)

we obtain

a_R_ar
O: t+AtR_ t+AtF(i-l) + __

[6U 8U

] (u‘ _t+At Uu-u) (6.6)

0+6! UU-l)

when we assume that the externally applied loads are independent of the displacements,

which means 113‘ = 0 , (6.6) becomes

MAI UII-l)
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3F . . ._
__ U _t+Atu(t-l) : t+AtR_ t+AtFt 1 6.7

[an]...u.-.,( ) ( >

We now define

AU“) 2U. _ t+Atu(i-l) (6.8)

and 3: ="A’ Km” (6.9)

MN UU-I)

where "“'K“"’ is the tangent stiffness matrix in iteration H, which we assume to be

nonsingular. Thus (6.7) can be written as

HA: K(i-1)AU(1) = (+4! R _ t+At F(i-l) (6.10)

Since (6.5) represents only a Taylor series approximation, the displacement increment

correction is used to obtain the next displacement approximation

t+At u“) = t+Atu(i-1) +AU“) (6.11)

The relation in (6.9) and (6.10) constitute the Newton-Raphson solution of (6.2).

6.3 Three Types of Modeling

Three different models, i.e. for bending, pressure loading and frictional contact,

are derived respectively.

6.3.1 Tube Bending Modeling

Based on the kinematics and constitutive equation discussed in Chapter 3 and Chapter 4,

the principle of virtual work is used to satisfy equilibrium and takes the following form:

:3in (0,185; +£13.58; )dA‘ +£21.56}. =raef (6,12)

,.i=1
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where I is the number of segments in the cross-section, J is the number of constraint

equations, AJ. are Lagrange multipliers, Cj are the constraint equations(from Eqs.(3.12-

3.14), T is the tension (compression) applied, dA‘ = dsidz, for the straight segment or

dAi = Ridoidz, for arcs.

The displacement component w, ,u, for each straight segment are approximated using the

following Fourier series expressions:

       

            

w = a0 + ”261' cos— (6.13a)

n=l 1011'

. N‘

u, = y; + 2y; (6.13b)

n=l "=1

while for an are, they are given by

w =a' + N26? cos—‘+ 2 ,8; mo
0 Sin— (6.143)

n=1A¢¢lAl¢

u = yo +:y; cosl—IZH'Z‘S‘ sinnA— (6.14b)

=1

After substituting from Eqs.(6.13a-b) and (6.14a-b) into the principle of virtual work

Eq.(6.12) , a nonlinear expression of the following form will result

r(c,1c,,xZ ,T) = o (6.15a)

where c={agozfij,y3,y;,6j,ef,lj} (6.15b)

Eq.(6.15) should be solved for c for given values of dKY ,dK'z and dT.

Since Eq.(6.15) is highly nonlinear, it will be numerically solved by the Newton-Raphson

method. The Newton-Raphson iterative method used to solve c will look like this:
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(6.16)
Int11511414151: F... — F

where K is the stiffness matrix, (5c is the incremental c and R is the force residual.

FE,“ is externally applied nodal forces, F,m is the nodal forces that correspond to the

element stress in this configuration ( Internal forces).

6.3.2 Pressure Loading Modeling

Pressure loading is modeled as an external force to expand the tube. The external work

done by a pressure p applied to the inside of the tube is equal to

3(Au‘)

C

 

I . . . I .

Milwwm; =21pfi' 6921.4; (6.17)

where 6(Au‘) is the virtual displacement increment having two components 6(A w‘)

and 6(A v‘) , 73' is the unit outward normal to the surface AL.

The principle of virtual work for bending and pressure loading modeling becomes

fig“; 585. +0.1. 58)dA'+Z/1 5C =1’T58 +2jpn 6(Au )dA‘ (6.18)
P

[=1 A;

The variation of the virtual external work due to internal pressure loading is

F15. = p2] ITEM (6.19)

Due to the follower forces effect (Hibbitt, 1979), the load stiffness matrix is

 

' 6A .,32A" ,.K§u=P21 Barz"c‘)(u‘)+ (u)

 

i=1 A, dc n 829 p

I 301Minn)

6.20=12}. a? a? dA; ( )

b

P
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Eq. (6.19) and (6.20) will appear on the right-hand and left-hand side of the Newton-

Raphson expression (Eq. (6.16)) respectively, namely,

[15+ K3,][d€]=[13]= Ff,“ + F5, — Fm (6.21)

When we implemented above formulations into the code, we found that the load stiffness

matrix Kg, has nearly no effects on the solution which leaded us to simplify the

formulation. Actually, if we approximated fi‘dmu‘) = 5(Aw‘) , the whole formulation

32 (Aw‘)

82

 above can be simplified. The proof can be seen in Appendix B. Since = O , there

C

will be no stiffness matrix due to pressure (Kg, ) going to the left side of the Newton-

Raphson expression (Eq.(6.21)). Both methods are implemented in the code, the results

are almost the same.

6.3.3 Frictional Contact Modeling

The most challenging task when developing a numerical code for metal forming

processes is to model frictional contact. To model the tooling-workpiece frictional

contact correctly, the following two conditions must be continually checked during each

equilibrium iteration:

1. Penetration of the workpiece nodes into the tooling.

2. Nodal contact forces becoming tensile at the contact boundary (separation).

Once the penetration of the workpiece nodes into the tooling has been detected, the

penetration nodes must be returned to the tooling surface and constrained to stay on the
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tooling surface for the remainder of the equilibrium iterations. The nodes, which are

returned to the tooling surface, are constrained to move only tangent to the tooling

surface and only condition 2 stated above can cause a contacting node to be detached

from the tooling surface. Figure 6.1 shows an example of a typical contact check during

the Newton-Raphson equilibrium iteration.

Tooling Surface

Workpiece (

 

P1 ‘

  
 '

—
.
_
I
—
I
-
I
-
.
_
.
_
.
_
.
—
.
-
.
—
I
-
C
_
.
-
O
—
I

.

:
.
.

I

(a) (b) (C) ((1)

Figure 6.1 A schematic oftool-workpiece contact check

(a) shows the tube and the tooling, (b) shows initial penetration ofsome ofthe nodes,

(c) shows how those nodes are returned to the tooling surface and finally (d) shows how

the equilibrium shape is obtained afier several iterations.

The external work done by the frictional contact is added into the virtual work principle

equation (6.12) as following:
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I J I l

2L5(‘7;65;+0;.651.}1Ai +£21.59. = was +2 Pfi,5(Au')dA; +2 I 1,561.." )dA; (6.22)

i=1l=l [=1 I=l A;

where 1,. is the traction on the surface of the tube and 6 (Au‘ )is the virtual incremental

displacement of the contacting nodes.

In order to improve convergence, a special algorithm is introduced (see Figure 6.2). For

each trial set of contacting and non-contacting nodes, equilibrium iteration is performed.

After equilibrium is satisfied, the nodes are reexamined for non-penetration condition.

The contact set is then updated by releasing or projecting certain nodes and another

equilibrium iteration is initiated.

In each contact iteration, the trial displacements are first updated according to the

Newton-Raphson procedure and the non-penetration contact condition is then applied to

these trial values by projecting the contact nodes to the tool surface along the normal

vector. The modified trial solutions are used for Newton-Raphson iteration. Within this

force equilibrium iteration, the internal force is calculated. The signs of the sheet normal

force at contact points are checked so that the nodes having non-compressive force are

released.
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Figure 6.2 Flow chart for contact iteration
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CHAPTER 7

PROGRAM STRUCTURE

The program includes input file, main program and output files.

7.1 Input File

The input is divided into two parts. The first part contains all the geometric, numerical

and material information for a run. It is written in an input file that is read by the program

prior to specification of the loading. The second part contains the loading history. This

input is provided interactively by the user. All input is free-formatted.

7.1.1 Geometric, Numerical and Material Input

1. Title of this case

TITLE

 

   

TITLE: Array of 72 characters used to identify a case.

2. Number of nodes

NODE

 

   

NODES: Number of nodes in the cross-section. Each segment in the cross-section is

bounded by two nodes. Maximum: 20.

3. Node coordinates. Input this record NODES times before proceeding to 4.

 

  
YN.ZN
 

YN: Y global coordinate of the location of this node.

ZN: Z global coordinate of the location of this node.

4. Number of segments.

NSEG. MU. DELTAV
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NSEG: Total number of segments in the cross-section. The segment may be straight lines

or circular arcs. Maximum: 40.

MU: The frictional factor.

DELTAV: The relative sliding velocity

5. Type of segment. Input NSEG item {5,6} pairs before proceeding to 7.

 

STYPE
   

STYPE: Enter str if the segment being described is straight or are if it is a circular are.

6. Segment parameters.

For straight segments input the following record:

 

  
INODE. JNODE. T. NCOEFF. IS. IZ
 

INODE: First node of the segment (3:0).

JNODE: Second node of the segment (szlo ).

T: Thickness of the segment (I).

NCOEFF: Number of terms in the Fourier series expansions for the displacement

components(N). Maximum: 10. Recommended: 4 to 6.

IS: Number of Gauss integration points along the segment. Maximum: 48.

Recommended: 8 to 12.

ll: Number of Gauss integration points along thickness of the segment. Maximum:

48. Recommended: 3 to 7.

For arc segments input the following record:

 

  
INODE. JNODE. T. NCOEFF. IS. IZ. YC. ZC. IAO
 

INODE: First node of the segment (¢=0).



JNODE: Second node of the segment (¢=A¢).INODE and JNODE must be chosen

so that the coordinate ¢ has a counterclockwise direction.

T: Thickness of the segment (t).

NCOEFF: Number of terms in the Fourier series expansions for the displacement

components(N). Maximum: 10. Recommended: 4 to 6.

IS: Number of Gauss integration points along the segment. Maximum: 48.

Recommended: 8 to 12.

ll: Number of Gauss integration points along thickness of the segment. Maximum:

48. Recommended: 3 to 7.

YC: Y-coordinate of the center of the arc(Yc).

ZC: Z-coordinate of the center of the arc(Zc).

IAO: Input a if A¢S 7trad., input 0 if A¢>7£rad.

7. Number of point constraints

 

NPC
   

NPC: Number of point constraints. At least three constraints are needed to prevent rigid

body motion. Also input the constraints needed to maintain contact with the mandrel or

symmetry conditions. All constraints are enforced at nodes.

8. Point constraint information. Input this record NPC times before proceeding to 9.

 

NSPC. IVARPC
   

NSPC: Segment number for which the point constraint will be enforced.

o If NSPC is positive, the constraint is enforced at the node with s = O or ¢ = O.

o If NSPC is negative, the constraint is enforced at the node with s = lo or (D =A¢.

IVARPC: Variable which will be constrained.
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0 To constrain the rotation 13, input 1.

0 To constrain the displacement component u, input 2.

0 To constrain the displacement component w, input 3.

9. Iteration parameters:

 

  
TOL. ITEMAX. JEVAL
 

TOL: Convergence tolerance of Newton-Raphson iteration. Recommended:0.0001.

ITEMAX: Maximum allowable number of iterations.

JEVAL: Multiple of the iteration count at which the Jacobian is evaluated. If JEVAL =

1 the Jacobian is evaluated every iteration, If JEVAL = 2 it is evaluated every other

iteration, etc.

10. Material properties.

E, V. SIGMY. R, XK. XN. EPSO

 

   

E: Young’s modulus.

V: Poisson’s ratio.

SIGMY: Initial yield stress.

R: Anisotropy parameter.

XK: Material constant.

XN: Hardening exponent.

ESPO: Initial plastic strain.

1 1. Input I Output options.

IWR. IZSYMM

 

   

IWR:

- IWR = 1: print coefficients and Lagrange multipliers.
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0 IWR = 0: do not print coefficients and Lagrange multipliers.

IZSYMM: This variable indicates whether the cross-section defined by the input above

is a whole section or on-half of a symmetric section. The value of IZSYMM affects input

/ output operations only.

0 IZSYMM = 1: the cross-section is symmetric about the Z axis.

0 IZSYMM = 0: no symmetry about the Z axis exists.

7.1.2 Loading Input

The input of the loading parameters is interactive. Loading is prescribed in an

incremental manner. The loading record below may be repeated as many times as

necessary.

Loading parameters

NINC. CZINC. CYINC. TINC. PINC

 

  
 

NINC: Number of increments. Input 0 to stop execution.

CZINC: Increment size of the variable [(2. Note that the sign of CZINC must be

decided by the location of the mandrel. For example, CZINC must be negative for

the case shown in Fig.4.1.

CYINC: Increment size of the variable X, . This will usually be zero.

TINC: Tension increment.

PINC: Internal pressure increment.

7.2 Program Flow Chart

The program includes a main program and 24 subroutines.

Subroutine input: input geometric and material parameters.

Subroutine store: store integration, trigonometric and second derivative information.

Subroutine newrap: solve system of nonlinear equations using Newton-Raphson method.

47



Subroutine build: evaluate the system of equation and the jacobian.

Subroutine constr: add constraint contribution to system of equation and jacobian matrix.

Subroutine decomp: find the inverse matrix using Gauss-Jordan method.

Subroutine disp: evaluate displacements and their derivatives with respect to s at

integration points along a segment.

Subroutine dstrn and dstrnC: derivatives of displacement components and their

derivatives with respect to the coefficients of the series expansions at one point along s

for straight and are segment respectively.

Subroutine d2curvature: evaluate the second derivatives of curvature.

Subroutine incm: increment of all variables.

Subroutine solve: solve the nonlinear equations.

Subroutine stndsp: find strains at the integration points along the local coordinate.

Subroutine stsstn: find stress increments and force residual at integration points.

Subroutine cnstutv: constitutive equation.

Subroutine contact: deal with contact problem.

Subroutine coloumb: use Coloumb friction model.

Subroutine dieinfo: calculate die geometric information.

Subroutine forcecheck: check nodal force at each contact point.

Subroutine getcoord: calculate the coordinates of each integration point.

Subroutine nodalf: calculate nodal force at each contact point.

Subroutine setpenalty: set penalty function.

Subroutine violation: check each integration point to see if it violate contact.

Subroutine bringback: bring each contact point to die surface.

48



Following is the flow chart of the program:
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Figure 7.1 Flow chart of the program

 



7.3 Output File

The program has three output files: betges.out, betgesmk, betges.coeff. The contents of

each file are described below:

betges.out: This file is formatted and contains the output of the program in the form of

tables. The first part of this file is written prior to the specification of the loading and

contains an augmented echo print of the input. It is useful to look at this part of the file to

ensure that the input file was read correctly. The second part includes a list of the

curvature, axial strain, bending moments, tension and internal pressure at each loading

step. If the variable IWR is set to 1 then the file will also contain the coefficients of the

trigonometric series expansions for each segment. If the variable IZSYMM is set to 1

then the value of T and My are reported for the full section, while M2 is set to zero.

betges.mk: This file contains one line per loading step containing the value of the

following parameters:

KZ,K,,£f,M,,MZ,T,P

betges.coeff: This file contains information necessary to make plot of the deformed

cross-section of the member at any loading step. It also contains information to plot the

shape of the cross-section prior to loading. The file is organized as follows:

Line 1: (Format: i2)

Number of segments.

For each segment, the file contains the next set of three records:

50

 



Line 2.1: (i3, e135, a4, 3el3.5)

Number of terms in this segment, length of the segment, type of segment, location

of the segment in Y, location of the segment in Z, radius of the segment. For straight

segments, the location of the segment is partially given by the coordinates Y0 and Z0 as

shown in Figure 3.2. The radius is assigned a value of one. For arc segments, the length

of the segment is in angular measure, the location of the segment is partially given by the

coordinates of the center Yc and Zr as shown in Figure 3.3.

Line 2.2: (4e13.5)

Coordinates of the nodes bounding this segment in the following order: Y-

coordinate of first node, Z—coordinate of first node, Y-coordinate of second node, Z-

coordinate of second node.

Line 2.3: (2el3.5)

Sine and cosine of the angleB defined in Figure 3.2 for straight segments. For

arcs,sin 19 = cos ¢0 and cost? = —-sin ¢o , where ¢ois defined in Figure 3.3.

This concludes the part of this file which contains the original, undeformed description of

the cross-section. The second part of the file contains, for each loading step, additional

information necessary to describe the deformed shape of the cross-section. For each

loading step, the file contains the following:

Line 3.1: (i2)

Step number.

Line 3.2: (i2)

Segment number.
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For each segment in the cross-section the output file contains the following set of four

records:

Line 3.3.1: (6(e22.14))

a0 ,( an , n = 1, number of terms).

Line 3.3.2: (6(e22.14))

(flu , n = 1, number of terms).

Line 3.3.3: (6(e22.14))

70 .( 7,. . n = 1, number of terms).

Line 3.3.4: (6(e22.14))

( 5n , n = 1, number of terms).

52



CHAPTER 8

EXAMPLES

There are several examples shown in this chapter, including stretch-bending, expansion

under internal pressure and contact example.

8.1 Bending Examples

Example 1 : Stretch-bending a tube with rectangular cross-section

This example concerns a tube with rectangular cross-section. The section is 1.97 in. wide

and 1.18 in. high (outside dimensions). The wall thickness is 0.07 in. See Figure 8.1. The

material properties in plasticity implementation 0' = K(E + 8,, )N are: E = 10 x 106 psi, v:

0.33, a, = 5,500 psi, R=0.7, K = 64 x 103psi, so = 0.0 and N = 0.25 .

The input file used to run this case is shown below:

’ Rectangular section ’

4

0.950,0.555

0.950,-O.555

-0.950,-O.555

-0.950,0.555

4,0,0

str

1,2,0.070,4,8,3

str

2,3,0.070,4,8,3

str

3,4,0.070,4,8,3

str

4,1,0.070,4,8,33

1,2

1,3

—1,3

0.0001,20,1

l.e7,0.33,5500.,O.7,64000,.25,0.0

0,0
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The loading history consisted of the following

1. Apply tension to 4200 lbs.

2. Bend to a radius of 20 in.

The interactive input records were as follows:

21, 0., 0., 200., 0.

100, -0.0005, 0., 0.

Example 2: Stretching I bending a tube with circular cross-section

This example concerns a tube with circular cross-section. The diameter is 0.6092 in. The

wall thickness is 0.0356 in. See Figure 8.2.

The material properties(aluminum-alloy 0' = K(6 + £0)” ) are E = 10.295 x 106 psi, v =

0.3, 0', =19,618psi, R = 1.0, K: 83,634 psi and N = 0.3593, 80 = 0.01658.

The final state is x = 0.064 in“ and T = 1000 lb.

The input file used to run this case is shown below:

’Circular case’

2 .

0.0001,20,1

10.295e6,0.3,l96l8,l.0,83634,0.3593,0.01658

0,1
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Example 3: Bending a tube with circular cross-section to collapse

Figure 8.3 shows example of bending a tube to collapse. The material and dimension are

similar to the one in example 2.

8.2 Free Expansion Case

Example 4: Formulated, implemented and tested the internal pressure loading and

expansion of the tube.

Figures 8.4 shows examples of expanding symmetric tube with internal pressure. The

material and dimension are similar to the one in example 2. Final internal pressure is

lMMpfi.

Same example was run in ABAQUS by using 3D shell element. Maximum hoop strain

are 16% and 18%, axial strain are —8% and —9% and the change of diameter are 0.183in

and 0.2m, in this 2D-Hydroforming code and ABAQUS respectively. It shows that

results are in good agreement.

8.3 Contact Examples

Example 5: A round aluminum tube expanded into a square die with sharp-corners.

Final internal pressure is 7,000 psi, material is similar to aluminum-alloy in example 2.

Final shape is seen in Figure 8.5a. Compared with the results of ABAQUS(see Figure

8.5b). The final shape is in good agreement. Twenty-six S4 shell elements were used in

ABAQUS.
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Example 6: Hoop strain distribution and intermediate shapes in a specialized

contact example (Compared with GM experiment data)

The material properties (aluminum—alloy 0' = K(8 + £0)” ) are E = 10.3 x 106 psi, v: 0.3,

0’, = 20,000 psi, R = 1.0, K = 63657 psi and N = 0.25, 80 = 0. 0.

Figure 8.6a shows hoop strain distribution and Figure 8.6b shows the intermediate

shapes. Figure 8.7a-b are the experiment data of strain distribution.
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Figure 8.3 Bending a tube to collapse
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Figure 8.5b Final shape from ABAQUS
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CHAPTER 9

CONCLUSIONS

Based on the formulations presented in the thesis, a cross section analysis finite element

code had been developed. This code is very efficient in calculating tube stretching and

bending followed by hydroforming and expansion to fill the die in the hydroforrrring

process. The code has been tested for several cases. The results from this 2D code were in

good agreement with both commercial code ABAQUS and the limited experiment data

available to us.

In the future, the failure model and instability (bifurcation, post-buckling etc) analysis

will be implemented into the code. It is also planned to extend this code for the 3D

analysis tube hydroforrrring process.
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APPENDIX A

According to the total Lagrangian formulation discussed in Chapter 2 (Thin shell theory),

we derived the membrane strain, rotation of normal vector and the current principal

centerline curvature used in Chapter 3 (Kinematics) and compared with the formulation

developed by Corona and Pourboghrat (1998) and Brush and Almroth (1975).

1. Membrane strain

For straight segment, the curvature K1=0, then from Eq.(2.14) ,

,1] =[(l+u.s)2 +w‘25]é =[1+u‘25 +2115 +w.25]% (1)

Let’s approximate the square root as:

(1+x)% =1+%x—-~ forx<<1, Eq.(l) becomes:

1 1 2

A] =l+u.s +5113; +EW.S (2)

Since, A, = ds/dS and the engineering definition e =fl=fl--1 = 2., —1

d3 dS

We have the membrane strain:

1 l

e z “.5 +5225 +2“): (3)

which is used in Chapter 3 as Eq.(3.5) and Eq.(l.6) in Brush and Almroth (1975).

For circular arc segment, the undeformed shell is non-flat and has an initial curvature Kr,

then rearranging Eq.(2.14) and approximating the square root , we obtain

__ 1 2 2 2 _ _ 2 2 2
A] ~l+—2-[u.s +2145 +K1w 2Klw 2K1wu5 +w,s +Klu +2K1uw‘s] ,

then membrane strain is
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e zémi +w‘25)+%K12(u2 +W2)+u.s +Kl(uw.S ’Wus _W) (4)

Consider the circular arc segment shown in Figure 3.3 Since Rd¢ = dS , then

30 _ 1 at) 30)
BS R W) ‘30:, Eq.(4) becomes:

e e $16204; + w;) +%K,2 (u2 + w2 ) + K,u,, + K,(K1uw.¢ — Klwu, - w)

=-;-K,2[(u.2, -l-wi,)+(u2 +w2)+ 2(uw, —wu.¢)]+ K1(u', —w)

: u,,—w +1 u+w.' 2+1 w—u, 2 (5)

R 2 R 2 R

As shown in Figure 3.3, if the positive w direction is the opposite direction of the normal

   

to the mid-surface vector, fi , then Eq.(S) becomes:

2 2

e: u',+w +1 u—w, +1 u',+w (6)

R 2 R 2 R

which is used in Chapter 3 as Eq.(3.10) and Eq.(4.3) in Brush and Alnrroth (1975).

   

Based on the following assumptions, we could derive the normal vector rotation and

current principal centerline curvature for both straight segment and circular arc segment.

Assumption 1: The rotation angle B is very small,

Assumption 2: Bending deformation is dominant and stretching is negligible, namely,

11.320.14.55 =06r/l, fig-=1.
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2. Rotation of normal vector

We assumed the angle between the current normal vector ii and the S (arc length) is or,

the angle between the current normal vectorri and normal vector 19 at the reference is B.

Then, we have B +32E =01 , and fl- A = cosa = -sinB (7)

Substituting Eq.(2.16) into Eq.(7), we obtain:

  

 

 
 

w + K w + K
SinB =i = .S I“ = .5 I“ (8)

2, 11. Mm, -K,w)2 +(w,_. +K,u)2

For straight line segment (K1:0), according to assumptionl, Eq.(8) becomes

. W s
smB z = ‘ (9)

According to assumption 2 and wi <<1, Eq.(9) becomes: B = w‘s , for the coordinates -

shown in Figure 3.2, we have the normal vector rotation for straight segment

13 = -W,s (10)

which is used in Chapter 3 as Eq.(3.1).

For circular arc segment ( K1 it 0) , according to assumption 1 and 2, Eq.(8) becomes:

B = K,u +w.s Since d5 = Rd¢ and K1 =% , we obtain

 

 

_ u + w", (11)

_ R

For the coordinates shown in Figure 3.3, we have

B-"-”‘ an
- R

which is used in Chapter 3 as Eq.(3.7) and Eq.(4.4) in Brush and Almroth (1975).
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3. The current principal centerline curvature

For straight segment (K1:0), the centerline curvature at the current configuration, k, will

  

be obtained from Eq.(2.20):

, = Cd'sédc's : (1+u5 )WZ: — w‘Su‘SS (13)

According to assumption 2(u_S = uss = O ), x1, =W, the Eq.(13) becomes:

k. =$7- (14)
(1+ W.25 )3

which is used in Chapter 3 as Eq.(3.6).

For circular arc segment, it seems not easy to get the simplified curvature from

Eq.(2.20).We begin from Eq.(12),which is based on the small rotation, however, for finite

rotations, we use

u—w
I

R (15)
 sinB =

According to Flugge (1973, pp.362), we have the change of curvature:

K, =% (16)

By differentiating Eq.(lS) , we obtain:

_“¢

- Rcosfi

“W” (17)

where

 

 cosfl=‘/l-sin2,l3=‘ll—(uuRwfi)2 (18)

Substituting from Eqs.(17),(18) into Eq.(16), we have
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x = R (19)

_ u—w‘c, 2

RJ1 (———R)

which is Eq.(l l) in Corona and Pourboghrat (1998) for small rotation case.
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APPENDIX B

Here we try to prove the equivalence of two formulations in the pressure modeling, ie:

F;,=pZIMd/t~—p2j ig‘gja; (1)

From the Chapter 3 kinematics, for the point on mid—surface (circular segment), we have

5’ =26 +(R+w‘)sin$+v‘cos¢7

77‘ = Yc +(R+w’)cos$—visin¢7

where (3 = (00 + (I) . Replacing the w, u with w‘ , v’ respectively from Eqs.(3.8a-b).

Define ii’ is the unit outward normal to the surface A; , then we have

 

 

(_a__§' _3___77'

’3‘ in)Bel

(_ _8_§' 877'

51¢ 8(1)

where

3¢_ 29¢ srn¢ (R+w)cos¢ B¢COS¢+V srn¢

L22=WcosJ—(R+w‘)sin¢7-%%lsin5-Vi005$

.9:er _ aw' av .."( a(1),a¢)"_{(a—¢—--v‘2) +[(R+w‘)+a¢]2“} R+w

Wealsohave

amu"): 6017;") am?)

a? 39 ’ a?

where
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(2.a)

(2.b)

(3)

(4.a)

(4.b)

(4.c)

(5)

 



A? = Aw‘ sin 07 + Av' cost; (6.a)

A77‘ = Aw‘ cosE—Av‘ sin (3 (6b)

Combining (3), (4.a-c),(5) and (6.a-b), we have

    

 

 

 

fi,a(Au)=_ l . (R+w,)3(Aw)+v,-8(Av)+av 3(Aw)_0w 8(Av)

a c R + w‘ 8 c a c d¢ a c 59¢ a c

3(Aw’) ‘
,_ _

7 E

ac ( ) 7

For the straight segment, same expression can be obtained. Thus, we have proven the (1). E

. 32 (Aw’) . . . . .
Srnce 32 c = 0 , there wrll be no strffness matrix due to pressure gorng to left srde

of Newton-Raphson expression.
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