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ABSTRACT

A SIMPLIIFIED DISCRETE-TOW MODEL FOR MODELING STIFFNESS AND

FAILURE WITHIN WOVEN COMPOSITES

BY

Craig Ryan Carrier

Using a simplified discrete-tow model of a woven composite structure, it is

possible to accurately predict the stiffness of a woven composite. The simplified

discrete-tow model is based on the idea of discretely representing the fiber tows

and resin independently as beam and shell finite elements respectively. The use

of the discrete-tow model in progressive failure allows for the ability to better

predict the behavior and physical orientation of the tows throughout the analysis

in a manner that is more computationally efficient than a fully three-dimensional

model. In the present study progressive failure is conducted using stiffness

reduction in both the beam and shell elements of the discrete-tow model to

represent fiber and matrix damage respectively.
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Chapter 1

INTRODUCTION

1.1 Introduction

The popularity and interest in composites has grown considerably in

recent years. Today laminated composite structures are engineered lighter,

stronger and stiffer than their traditional counterparts. Typically, laminated

composites are ideal for situations where the majority of the load is applied in the

plane of the composite. The use of composites in structural applications has

been revolutionized by the introduction of woven textiles composites. While

traditional unidirectional composites have great strength and stiffness in the

direction of the fibers, woven fabric composites (WFC’s) have high strength and

stiffness in both the warp and fill directions. Additionally, the woven nature of

WFC’s makes them less likely to fail due to delamination while increasing a

structure’s ability to carry large transverse loads.

The goal of the present research is to develop efficient methods and tools

for the analysis of woven composite structures. First, an efficient stiffness

prediction model is developed using traditional beam and shell finite elements for

use in analyzing two-dimensional woven fabrics. This stiffness prediction model

was then combined with a progressive failure algorithm to model the progressive

failure of large-scale woven composite structures.

A brief review of literature concerning the various stiffness prediction

models and modeling techniques is presented below.
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1.2 Literature Review of Stiffness Prediction Models

Due in large part to integrated multi-directional fiber reinforcement, textile

composite materials have many advantageous mechanical properties, including

excellent out-of-plane strength and impact resistance. The ability of textile

composites to conform to irregular shapes (i.e., to drape) and to integrate several

parts into one piece makes them especially appealing for many applications.

However, the same features that give rise to these sought-after mechanical

properties also make it very difficult to analytically predict the mechanical

response of these materials, thus complicating the design process.

Textile composite materials contain a very complex microstructure, where

here the term microstructure is used to refer to the geometry and path of tows

that create the fiber network and the resin regions that lie within and between the

tows. The standard definition of the term microstructure does not always apply to

textile composite materials, since often the tow size and the size of a repeating

unit cell of the tow network are of the same order as the size of important

structural features. Therein lies the primary difficulty in analyzing many textile

composite materials: the microstructure is too complicated to be represented

explicitly throughout the structure yet extremely large tows may be too large to

homogenize.

Numerous analytical models have been developed to predict overall

stiffness and strength of textile composite materials. Excellent reviews of the

many classes of models and their assumptions are given by Cox and Flanagan

[1] and by Tan, et al. [2].
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Early research conducted by lshikawa and Chou [3-5] led to the

development of three homogenization techniques. The first was the mosaic

model [3], which idealized a textile composite as an assembly of asymmetric

cross-ply laminates. The mosaic model divided the two—dimensional problem into

two one-dimensional models, the series (iso-stress) model and the parallel (iso-

strain) model. The mosaic model however did not account for the undulation or

continuity of the fibers.

The Fiber Undulation Model (FUM) [4] was developed to consider the

continuity and undulation of the fibers in one direction. The FUM is essentially a

series model, however, the extension, bending-extension, and bending stiffness

matrices of CLT are a function of the coordinate along the axis of the undulating

tow.

lshikawa and Chou [5] also developed the bridging model for predicting

- the behavior of satin weave composites. The bridging model idealizes the

hexagonal shape of the unit cell as a square to simplify calculations. The unit

cell is then divided into five regions, four of which are simply treated as cross-ply

laminates, while the remaining region contains the interlaced fibers. The

continuity and undulation of the warp fibers is ignored due to the fact that the

load is applied in the fill direction and the effect of the warp fibers is expected to

be small. The lower stiffness of the warp fibers in the direction of the loading

causes the fill fibers to carry more of the applied load and act as a “bridge" to aid

in the load distribution throughout the structure.
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Pastore and Gowayed [6] proposed a self-consistent Fabric Geometry

Model (FGM). This model was a modification to the original FGM [7] that treated

the fibers and matrix as composite rods with its correct orientation and local

stiffness tensor. The local stiffness tensor of each rod is then transformed into

the global coordinate system and assembled to obtain the global composite

stiffness tensor based on each rod’s relative volume fraction (stiffness

averaging). The FGM was also used with an energy-based analysis by Ma, et al

[8] to predict the effective properties of three-dimensional braided textiles.

The Fiber Inclination Model (FIM) introduced by Yang, et al. [9] is another

method based on laminate theory. In the FIM the fiber tows are represented as

inclined unidirectional lamina. Because of this idealization the FIM does not

account for fiber interlock and bending.

Naik and Ganesh [10], Raju and Wang [11], and Aitharaju and Averill [12]

developed improved laminate theories that did not make the simplifying

assumptions associated with the mosaic model, the fiber undulation model, or

the bridging model. Without these simplifications these new theories could

account for undulation in both the warp and fill directions along with fiber

continuity. Each method divided the unit cell of a textile into subregions.

Effective properties for each subregion were calculated and then reassembled

into the global model.

Two new modeling techniques that were introduced by Naik and Ganesh

[10] were the slice array model (SAM) and the element array model (EAM). The

SAM discretized the unit cell into slices along the direction of loading. The
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effective properties of the unit cell were obtained by analyzing each slice

separately and then reassembled the slices using the isostrain formulation. The

second method, the EAM, also discretized the unit cell by slicing it, but the slices

could be made either parallel or transverse to the direction of loading. The slices

were again subdivided into elements, and the individual elements were

assembled in parallel or series to obtain the slice properties. The slices were

then assembled in series or parallel to obtain the effective properties of the unit

cell.

Raju and Wang [11] developed improvements to the fiber undulation and

bridging models, while retaining their simplicity without making any simplifying

assumptions. The unit cells of a textile composite were divided into subregions. ‘

Effective properties for these subregions were calculated through laminate theory

and reassembled using stress averaging.

Aitharaju and Averill [12] also subdivided the unit cell. Each subregion

was modeled as an eight noded brick element. The material properties of the

constituent material in each element were transformed into a local coordinate

system and combined through the use of an effective modulus. The finite

element method was then utilized to perform the analysis of a textile composite

mat.

Sankar and Marrey [13] used the selective averaging model (SAM) which

was similar to the slice array and element array models of Naik and Ganesh [10].

However, the SAM allowed the stiffness or compliance coefficients to be

averaged selectively based on either an isostress or isostrain assumption.
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Finite element models of the explicit textile structure are tedious to

construct and computationally very expensive to solve. Some research has been

conducted on the fully three-dimensional geometry to study the effect of various

parameters on the effective moduli [14, 15]. Several other techniques exist that

are hybrids of homogenization and the finite element method. This is achieved

by homogenizing the material properties on the microscale level and

representing them with finite elements on the macro scale.

Dasgupta et al. [14] developed a two-scale homogenization method

that fully discretized the unit cell of a plain weave in the form of a finite element

model. The macroscale stress and strain fields were volume averaged over the

structure yielding the homogenized composite properties.

Whitcomb [15] applied the finite element method to the study of the effect

waviness ratio on the effective moduli. Predicted moduli for waviness ratios of

0.167, 0.25, and 0.5 were studied and quantitative comparisons were made with

a [0/90]3 tape laminate.

Whitcomb et al [16] also introduced the use of macro finite element

analysis to study woven composites. The macro element was subdivided into

subregions or subelements that modeled the fiber tows explicitly. A single

approximation for the displacement field was used throughout the macro element

rather than a multiple field approximation that would assume a different field

within each subelement. In some instances the single field approximation gave

very poor results compared to a multiple field approximation. However, the

single field method was computationally much cheaper than the multiple field
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approximation. Despite the single field approximation's shortcomings, it can still

be used with good success on a wide range of problems.

Woo and Whitcomb [17] also used the macro element combined with a

local/global finite element analysis. The scale of textile composites contributes a

great deal to the difficulties that arise in their analysis. Often, the microstructure

of a textile composite is far too complex to model explicitly, while at the same

time it is too large to model as a single homogenized material. A local/global

finite element analysis can be used to obtain the overall response of the structure

with a coarse global mesh, then refined meshes are used to capture local effects

of interest.

Finite element analysis was used by Marrey and Sankar [18] to determine

the laminate A, B, and D matrices along with the thermal expansion coefficients

of a textile composite. The unit cell of a textile composite is modeled with three-

dimensional finite elements. The effective properties of the unit cell are

computed by assuming a uniform state of strain at the macroscale level.

Blackketter et al. [19] used the finite element method to model nonlinear

material behavior. This was combined with a progressive failure algorithm to

represent the effects of damage through the use of stiffness reduction. The

three-dimensional model of the unit cell represented the fiber tows and resin

individually for examining tensile and shear loading.

The Binary Model developed by Xu et al. [20] idealizes a three

dimensional weave using finite elements. Two-noded line elements are used to

represent the axial properties of the fiber tows while the transverse stiffness,
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shear stiffness and Poisson’s ratio of the composite are model with three-

dimensional “effective medium” elements.

Lei et al. [21] combined computer aided geometric modeling (CAGM)

along with finite element procedures to represent three—dimensional braided

composites. The identified unit cells of a braided composite were modeled as

space structures and discretized using finite elements. A finite element analysis

was then performed to predict the elastic behavior of the composite stmcture.

In the present study, a model is developed for simulating the structural

behavior of textile composite materials throughout a wide range of scale sizes —

from tow level to structural level. The model attempts to capture the essential

features of the material behavior in the simplest possible form in order to allow

modeling of large sections of a textile composite structure. The main objective in

developing such a model is to allow the investigation of geometrical irregularities

such as uneven tow spreading or compacting, tow waviness, spatial variations in

tow cross-section due to tow pinching, spatially varying tow twist, etc. Here, the

basic formulation of the discrete tow model is discussed in detail and its utility is

demonstrated for the prediction of effective properties and progressive failure for

a variety of plain weave and triaxial braid materials.

1.3 Organization of the Thesis

The goal of the present research is to develop fast and efficient tools for

use in analyzing woven fabric composites. Chapter 2 describes a simplified

modeling technique for a woven composite which is faster in terms of man hours

needed to build the model and computational solution time required. Rather than



 

 

 

 

explit

 eleme

tow.

hexahe

repress

repress  
discret

low we

Ofa cur

mOdeI

SIIUCtL

from

piESei

Each‘



explicitly model the fiber tow and resin matrix as fully three-dimensional

elements, traditional beam and shell elements are used to represent the fiber

tow. These tow elements are then ‘woven’ through a repeating array of

hexahedral brick elements that represent the resin matrix.

Chapter 3 extends the idea of using a simplified model by again

representing the fiber tow with beam elements. However, the resin matrix is

represented using traditional plane stress shell elements. While this simplified

discrete-tow model is two-dimensional, it captures the three-dimensional effect of

tow waviness through a stiffness reduction factor that is derived using the theory

of a curved beam on an elastic foundation.

Using the simplified discrete-tow model, Chapter 4 introduces the concept

of combining this modeling technique with a progressive failure algorithm to

model damage and failure propagation within a large-scale woven composite

structure.

The final chapter, Chapter 6, presents the conclusions that can be drawn

from the present research. Recommendations for future study are also

presented in this chapter.

In an effort to facilitate ease of reading this thesis, tables and figures of

each chapter can be found immediately following the corresponding chapter.
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Chapter 2

Three-dimensional analysis of a woven composite

2.1 Introduction

The problem of analyzing woven composites is an issue of two conflicting

scales. The micro-level represents the scale of the weave. Tow shape, spacing

and waviness ratio are examples of dimensions on the order of the microlevel.

The overall shape and geometry of the global structure is considered macrolevel.

However, the size at the microlevel is such that it is small compared to the overall

size of the structure itself, but often it is not small enough that the microstructural

behavior and effects can simply be smeared together and represented as one

homogenized material. This means that small changes or variations at the

microlevel such as a change in tow spacing or a variation of the fiber volume

fraction can have a significant impact on the overall behavior of the global

structure.

Currently there are two dominant approaches used in the analysis of

woven composites. The first method has been to create fully three-dimensional

models of the woven fabric and its underlying microstructure. However, building

these models is extremely time consuming and requires a prohibitive amount of

computational time and resources for everyday use. The second method is to

use some form of homogenization scheme to simplify the analysis. Although

these methods require significantly less computing resources, they in general

make simplifying assumptions that either degrade the quality of the results or

limit their robustness.
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Currently there is a great need for a modeling technique that combines the

computational benefits of homogenization approaches with the robustness of a

fully three-dimensional analysis. Clearly some form of tradeoff is necessary

between the two approaches. This chapter presents two novel methods for

modeling a woven composite structure. The first method models the fiber tows of

a woven composite as one-dimensional beam elements while the second method

represents the fiber tows as two-dimensional shell elements. In both methods

the resin matrix is modeled using hexahedral brick elements. The appropriate

beam or shell element that is used to discretize the fiber tow is then woven

through the three-dimensional grid of resin elements along the fiber tow

centerline. The attachments of the tow and resin elements are maintained

through nodal connectivity. The discrete modeling of the tows and resin gives

rise to several advantages of both the traditional homogenization and fully three-

dimensional methods currently used. The discrete models allow for the easy

visualization of the structure and the locations of the fiber tows after deformation

has occurred. Additionally, these models can be easily expanded to model large

composite structures in a computationally efficient manner.

2.2 Model Description

The general model that was the basis for assessing the models in this

study consisted of a rectangular composite cantilever beam, that is intended as

an idealized section from a woven composite. The composite cantilever beam

was assumed to be a strip of resin with a single fiber tow woven along the axis of

11



the beam (Figure 2.1). Three models were derived from the base model. The

first of these was a brick and beam model (Figure 2.2), which represented the

fiber tows and resin as beam and hexahedral brick elements respectively. The

second model was the brick and plate model (Figure 2.3), which used the same

hexahedral brick elements to represent the resin as in the brick and beam model.

However, in this case, the fiber tows were modeled using two-dimensional shell

elements. The final model was a fully three-dimensional model (Figure 2.4),

which used tetrahedral elements to discretize both the resin and the fiber tow as

fully three-dimensional objects. The fully three-dimensional model was to serve

as a means of validating the previously discussed models.

2.2.1 LOADING

Four load cases were used to study the proposed finite element models.

Each case was intended to analyze a specific characteristic of the proposed

model and its ability to predict the fully three-dimensional equivalent behavior.

The four load cases are summarized in Table 2.1 and graphical illustrations of

each respective load case can be seen in Figure 2.6 - Figure 2.9.

2.2.2 GEOMETRY

The geometrical description of the model is found in Figure 2.1. The same

exterior dimensions were used for each of the three models. Parameters specific

to the geometry of the fiber tow were dependent on the type of model used.

12



The undulation of the fiber tow was assumed to be sinusoidal along the axis of

the beam. The cross-sectional shape of the tow was assumed to be lenticular

and to have the same sinusoidal shape as the tow centerline. The equations for

the tow shape and other pertinent data are summarized in Table 2.2. In each of

the models the path line of the beam or shell elements followed the centerline of

the fiber tow.

In the case of the brick and beam model it was only necessary to assign a

cross-sectional area and moments of inertia to the beam elements.

Consequently, the tow cross sectional area and moments of inertia were directly

assigned to the beam elements.

Modeling the fiber tow with shell elements in the brick & plate model

involves more consideration. It is desirable for the shell elements to have both

the correct axial stiffness along with the bending stiffness. However, the cross-

sectional shape of the fiber tow is assumed to be lenticular, while the cross-

sectional shape of a shell element is rectangular. This mismatch in cross-

sectional shapes makes it impossible to capture the correct axial and bending

stiffness of a lenticular cross-section with a simple rectangle. Noting the previous

argument, it is possible to make a sacrifice in the model’s accuracy to help

improve its ease of use. Therefore, the width and cross-sectional area of the

shell element and the lenticular fiber tow were chosen to be identical. Knowing

the width and area of the rectangular cross-section, the element thickness could

then be easily found.

13



2.2.3 MATERIAL PROPERTIES

The goal of this study was not to compare with experiments, but rather to

investigate the viability of the proposed models. To simplify the analysis process

the material properties used in this analysis are approximate values that are

typical of a glass/epoxy woven composite. Additionally, to aid in the

simplification of the problem, the materials were assumed to be linearly isotropic.

The properties used in the analysis can be found in Table 2.3.

2.3 Finite Element Models

In total, six finite element models were created for the purposes of this

study, and their properties are summarized in Table 2.3. For the fully three-

dimensional, brick and beam and brick and plate cases studied, two models were

created of each case with different mesh refinements. Similar models with

different levels of mesh refinement serve several purposes. At the most basic

level, multiple models of the same problem help to eliminate possible user errors,

which could be noticed if large discrepancies appeared between the solutions.

Secondly, it is possible to conduct a convergence study with models of varying

mesh refinement. This allows for the ability to see what level of refinement is

needed when solving similar problems and to make sure that the solution is

converging in the right manner.
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2.3.1 FULLY THREE-DIMENSIONAL

A complete three—dimensional representation of the geometry was created

using 10 noded tetrahedral elements (see Figure 2.4). The finite element mesh

of the fiber tow and resin were created as separate objects. However, at the

tow/resin interface mesh connectivity was maintained.

2.3.2 BRICK AND BEAM

The brick and beam concept is an idealized version of the composite

beam. The first step in creating the model was to construct a three-dimensional

block of 8-noded hexahedral elements with the same dimensions as the

composite cantilever beam. The hexahedral brick elements were arranged in a

simple stacked configuration that resembled boxes placed next to and on top of

each other (see Figure 2.5). The fiber tow was then added by ‘weaving’ 2-noded

beam elements through the block of hexahedral resin elements along the fiber

tow centerline. The connectivity between the beam elements with the brick

elements was accomplished by simply attaching the elements at coincident

nodes. As a result of the stacked configuration of the brick elements, it was quite

rare that the nodes of the brick elements coincided with the path of the tow

centertine. Therefore, it was necessary to attach the beam elements to the

nodes of the brick elements that were closest to the tow centerline. This

approximation, combined with the linear shape of the beam elements, resulted in

the path of the actual fiber tow being represented as piece-wise linear (see
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Figure 2.10). Therefore, as the model is refined, the approximation of the tow

path converges to the actual path of the fiber tow. Coarse and refined models

were built in order to examine the necessary levels of refinement required for

accurate results. The combination of the brick and beam elements to form the

composite beam model is illustrated in Figure 2.2.

2.3.3 BRICK AND PLATE

Similar to the brick and beam model, the brick and plate model uses the

same background mesh of hexahedral brick elements to represent the resin

matrix (see Figure 2.5). However, the fiber tow is modeled with 4~noded shell

elements (see Figure 2.3). As with the brick and beam model, the brick and plate

model also represents the path of the fiber tow as piece-wise linear. The brick

and plate model was conceived in order to overcome certain shortcomings of the

brick and beam model. These shortcomings are discussed later in this chapter.

2.4 Numerical Results

The differences between the brick models and the fully three—dimensional

models, such as the fiber volume fraction and the fundamental difference

between the finite element models, made it difficult to compare results. For this

reason two different forms of the results are presented. First, fiber tow path-line

deflection results are compared and followed by deflection results of a single

point located on the structure.
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Path-line deflection results of the analyses for each of the models are

shown in Figures 2.11 through 2.30. Each of the figures depicts a particular

displacement component of the fiber tow centerline along the axis of the

composite beam for a specified loading condition.

Table 2.4 contains deflection data from the top of the mid-span of the

composite beam. This location was chosen because its distance from where the

boundary conditions and loads were applied was great enough that their effect

on the solution results would be minimized. It is also important to note that the

three models were fundamentally different from each other and large variations in

the analysis could occur. This was most evident where the loads were applied.

In the models where the resin was represented with brick elements, extremely

large displacements occurred because the resin is more compliant than the fiber

tow and there was a considerably larger amount of resin in the brick models due

to the resin volume fraction equaling one.

2.4.1 LOAD CASE A: AXIAL LOADING

Figures 2.11 through 2.14 illustrate the fiber tow path-line displacement

along the beam axis under an axial load of 5 N. Table 2.4 contains displacement

data of two fixed points A and B located on the top of the composite beam at its

mid-span (see Figure 2.6)

As can be seen from the figures, both the brick and beam and the brick

and plate models follow the same trends as the fully three-dimensional model.

For this case the axial displacement, u(x), is predicted quite well by both the
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coarse and the refined models (Figure 2.11 and 2.12) However, the normal

displacement, v(x), is not captured as well in the coarse model as in the more

refined model (Figures 2.14 and 2.14), which agrees with the fully three-

dimensional model quite well. Additionally, the trend in solution convergence of

the normal displacement in the coarse and refined models demonstrates that the

finite element solution is indeed converging in the correct manner from below.

Results for the transverse displacement, w(x), are meaningless as a result

of the displacements being essentially zero in comparison to the displacements

that occur in the other directions.

2.4.2 LOAD CASE B: BENDING ABOUT THE Y-AXIS

Figures 2.15 through 2.18 illustrate the fiber tow path-line displacement

along the beam axis under a transverse (2) load of 5 N. Table 2.4 contains

displacement data of two fixed points A and B.

The axial displacement of the brick and plate model follows the same

trend as the fully three-dimensional model and agrees quite well except close to

the end of the beam where the loads were applied. This most likely can be

attributed to the boundary conditions affecting the results. The coarse and

refined brick and beam models do not agree well with the fully three—dimensional

model when x > 6 in.

The normal displacement (see Figure 2.17 and 2.18) is predicted well by

both brick and plate models except near the location where the load was applied.
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The brick and beam models again do a poor job of predicting the correct

displacements when v is greater than 6in.

The transverse displacements for both the coarse and refined versions of

the brick and beam and brick and plate models agree well with the fully three-

dimensional model.

2.4.3 LOAD CASE C: BENDING ABOUT THE Z-AXIS

For the case of bending about the z-axis, Figures 2.19 through 2.24

illustrate the fiber tow path-line displacement along the beam axis under a normal

(y) load of 5N. The displacement data for points A and B can be found in Table

2.4.

Both the brick and beam and the brick and plate models follow the same

general trends as the fully three-dimensional model (see Figures 2.19 through

2.24). The axial displacement, u(x), of both the brick and beam and brick and

plate models agree well with each other, however, the two models seriously over

predict the axial displacement. This could be attributed to the fact that in the

brick models the interaction of the tow thickness with the surrounding resin plays

an important role in the overall behavior of the structure. However, the normal

displacement, v(x), is captured well in both the coarse and refined models.
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2.4.4 LOAD CASE D: TORSIONAL LOADING

Figures 2.25 through 2.30 depict the fiber tow path-line displacement

along the beam axis under a torsional load of 5 N*cm and Table 2.4 contains

displacement data of two fixed points A and B.

In the case of the axial displacements (Figures 2.24 and 2.25), the brick

and beam and brick and plate models follow the same general trends, with the

largest deviations occurring near the end of the composite beam where the load

was applied. The normal displacements are closely predicted by the brick and

plate model and most accurately in the refined model while the brick and beam

model does not predict the displacement as accurately near the end of the beam.

The transverse displacement, (z), is not captured very well by either the brick and

beam or the brick and plate models, however, the basic trends are present. Most

notably, the brick and beam model results are poor due to the fact that the beam

elements have no length in the z direction and therefore respond poorly to any

form of an applied torque.

2.5 Conclusions

The intent of this study was to show the validity of representing the fiber

tow in the simplest yet most accurate form to expedite the model building

process and to decrease solution time by decreasing the number of degrees of

freedom. However, in the majority of the cases studied, it was evident that the

brick and plate model outperformed the brick and beam model. Consequently,
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the more accurate brick and plate model contained more degrees of freedom

within the problem.

In the cases where the brick and plate model performed poorly it was

evident that a fully three-dimensional representation of the model was best

suited. This of course is the paradox encountered with simplified modeling

techniques. With each simplification some information is lost in the process.
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Table 2.1 Load case summary.

 

 

 

 

 

    
 

 

 

 

 

Load Case Description Force Applied

(N) Direction

A Axial Loading 5 +x

B Bending about y 5 -z

C Bending about 2 5 -y

. 2 -y
D Torsron 2 +y

Table 2.2 Tow geometrical properties.

Property Value Location

Centerline Equation: y=% sin £575 x + 0.5 z=0

Cross section top: = %sin 2?” z + 0.8 x=0

. 1 . 27r

Cross section bottom: y=z srn?z + 0.7 x=0

 

 

 

 

 

   

Width: 21.7 mm

Volume: 5463 mm"

Area: 54.6 mm2

lxx: 46.5 mm“

lyy: 124.0 mm“

lxy: -4.014E-02 mm“  
 

Table 2.3 Material properties of the constituent materials of the woven

composite beam.

 

 

 

   

Young’s Modulus Poisson’s Ratio

(GPa)

Resin 4.3 0.34

Fiber Tow 72 0.2  
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Table 2.4 Mid-span deflection data of points A and B for each load case.

 

Displacement
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Dercti'idpetion MOSh 1.22:: P‘fim PoBint % Error

- A 9.35E-08 9.35E-08 N/A

Fw'lfijfiig‘l’ff' 7858 10-noded B -3.96E-05 -3.96E-05 N/A

fiber tetrahedrons C -4.84E-06 -4.84E-06 N/A

D -1 .88E-06 1 .88E-06 N/A

Fuuvsomodel 2304010 3 itiiiii .2133: Eli
w/lenticular noded C A , . .. . , N/A

fiber tetrahedrons k. 4W g

D -1.65E-06 1 .65E-06 N/A

1500 8-noded A 9.75E-08 9.75E-08 -4.29%

Brick and Beam hexahedrons B -3.88E-05 -3.88E-05 2.02%

coarse 40 2-noded c -4.24E-06 -4.24E-06 12.53%

beams D -8.86E-07 8.86E-07 52.94%

12300 8-noded A 9.49E-08 9.49E-08 -1.47%

Brick and Beam hexahedrons B -3.90E-05 -3.90E-05 1.67%

refined 80 2-noded C -4.28E-06 -4.28E-06 11.66%

beams D -1.03E-06 1.03E-06 45.13%

1600 34.0090 A 9.58E-08 9.58E-08 -2.44%

Brick and Plate hexahedrons B -3.91E-05 -3.91E-05 1.34%

coarse 160 4410de C -4.10E-06 -4.1OE-06 15.47%

quad o -1.75E-06 1.75E-06 6.99%

12300 3410090 A 9.35E-08 9.35E-08 -0.03%

Brick and Plate hexahedrons B -4.01E-05 -4.01E-05 -1.23%

refined 80 4-noded c -3.76E-06 -3.76E-06 22.32%

quad D -1.77E-06 1.77E-06 6.00%
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Figure 2.1 Geometry of the cantilever beam with a single undulating fiber.
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Figure 2.2 Refined brick and beam model

 



 
Figure 2.3 Refined brick and plate model.
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Figure 2.4 Fully three-dimensional finite element model.
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Figure 2.5 Arrangement of the brick elements in the brick and beam and brick

and plate models.
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Figure 2.6 Axial loading condition applied to each model.

 
Figure 2.7 Normal (X-Y bending) loading condition applied to each model.
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Figure 2.8 Transverse (X-Z bending) loading condition applied to each model.

 
Figure 2.9 Torsional load case applied to each model.
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Figure 2.10 Piece-wise linear approximation of the fiber tow path-line using

beam and shell elements (a) coarse model, (b) refined model.
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Figure 2.11 Axial displacement (u) along the tow centerline of the coarse brick &

beam and brick & plate models due to an axial load.
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Figure 2.12 Axial displacement (u) along the tow centerline of the refined brick &

beam and brick & plate models due to an axial load.
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Figure 2.13 Normal displacement (v) along the tow centerline of the coarse brick

& beam and brick & plate models due to an axial load.
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Figure 2.14 Normal displacement (v) along the tow centerline of the refined brick

& beam and brick & plate models due to an axial load.
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Figure 2.15 Axial displacement (u) along the tow centerline of the coarse brick &

beam and brick & plate models due to a normal (y) load.
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Figure 2.16 Axial displacement (u) along the tow centerline of the refined brick &

beam and brick & plate models due to a normal (y) load.
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Figure 2.17 Normal displacement (v) along the tow centerline of the coarse brick

8 beam and brick & plate models due to a normal (y) load.
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Figure 2.18 Normal displacement (v) along the tow centerline of the refined brick

& beam and brick & plate models due to a normal (y) load.
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Figure 2.19 Axial displacement along the tow centerline of the coarse brick &

beam and brick & plate models due to a transverse (2) load.
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beam and brick & plate models due to a transverse (2) load.
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Chapter 3

The simplified discrete-tow model

3.1 Introduction

In most fiber-reinforced polymer-matrix composites, the fibers are much

stiffer than the resin material. Therefore, the majority of the load in the structure

is carried by the fibers while the resin serves to transfer load among the fibers. it

is evident that the deformations and relative motions of fibers dictate the

deformation of a fiber-reinforced composite stnlcture.

3.2 The Simplified Discrete-Tow Model

Based on the above observations and experience with other modeling

approaches, the present simplified discrete-tow model was conceived. The

current model is constructed by representing the fiber tows using bar (or beam)

elements and the resin using plane stress (or shell) elements. Repeating unit

cells (RUC’s) of plain weave and triaxial braid are shown in Figure 3.1a and 3.2a

respectively. The RUC’s of both weaves can be further broken down into

repeating volume elements (RVE’s), which can be seen in Figure 3.1b and 3.4.

The two-dimensional discrete-tow models of the same unit cells are shown in

Figure 3.4 and 3.7. As a result of the periodicity of the triaxial braid (Figure 3.5a),

the triaxial braid model can be further simplified by modeling half of the RVE as

shown in Figure 3.50

In the discrete-tow model, the true material properties of the resin and

fiber tow cannot be assigned directly to the elements. This is a result of a beam
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element’s inability to represent the transverse stiffness, shear stiffness, and

curvature of the tow. The resin in-plane and shear moduli must be modified to

account for the transverse and shear stiffness of the tows. Also, the axial tow

stiffness must be reduced to account for tow curvature. A general method has

been derived that can be used to calculate the effective resin moduli for plain

weave and triaxial braid materials. The effective resin properties are found

through the use of a laminate analogy while the axial tow stiffness reduction is

calculated using the theory of curved beams on elastic foundations in the same

manner that Naik [22] used. It is important to note that the calculation of the

effective resin properties for a plain weave is actually a sub-problem of the

triaxial braid calculations. For this reason the effective moduli calculations will be

derived for a triaxial braid starting with the geometrical definition of the triaxial

braid.

3.2.1 GEOMETRY OF A TRIAXIAL BRAID

A half-model of the RVE of a triaxial braid is shown in Figure 3.5b. The

geometry of this half-model RVE can be fully described through the use of the

iterative procedure described by Naik et al. [23]. Using the same method as

[23], it is only necessary to know do, w, t, 0b,, V), pd, no, and rib, to describe the full

geometry of the RVE of a triaxial braid. Where do is the axial tow spacing, w is

the width of the half-model of the RVE, t is the total thickness of the individual

lamina, and 6],, is the braid angle. Additionally, V, is the overall fiber volume

fraction, pd is the packing density of the fibers, while no and tip, are the number of

fiber filaments in the axial and braider directions.
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In order to simplify the number of unknowns in the geometrical description

of the triaxial RVE, Naik et al. [23] make several assumptions. The axial tows

are assumed to be straight with no undulation (see Figure 3.2 b 86), while the

braider tows are assumed to follow a sinusoidal path-line in the direction of the

braid. It is also assumed that the axial and braider tow thicknesses, to and t3,

respectively, must satisfy the relationship t = to + 203,. The assumption is also

made that the cross sectional area of the axial and braider tows (A0 and AB,

respectively) remains constant when sections are taken perpendicular to the tow

path-line. The cross sectional area of the axial tow is idealized as a combination

of straight and curved sections which correspond to the straight and undulating

regions of the woven braider tows. The curved portion of the axial tow’s cross

section is assumed to follow a path that is parallel to the sinusoidal path of the

braider yarn.

3.2.2 EFFECTIVE RESIN PROPERTIES OF A TRIAXIAL BRAID

Once the geometry of the RVE for the triaxial braid is fully described, it is

then possible to calculate the effective resin properties needed to account for the

transverse tow stiffness and shear stiffness. The RVE of a [0/10]triaxial braid is

divided into two regions. The first region has a width equal to the width of the

axial tow (w) as can be seen in Figure 3.7. This region is assumed to contain

the entire volume of the axial tow (Va), along with a portion of the braider tows

and of the resin material. The second region contains the remainder of the

braider tows and resin volume that was not contained in the first region. Each

region is then assumed to be an assemblage of lamina, with each ply
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representing one of the region’s components (tow or resin). This laminate

analogy is represented graphically in Figure 3.6. From Figure 3.7 it can be seen

that the materials within each region are treated as a parallel model using

classical lamination theory (CLT) while the two regions are considered to be in

series with each other.

The material stiffness matrix [Q] for each of the constituent (or ply)

materials takes the following general form:

 

 

i E11 V12511 0 -

1- V1EV21 1 -[:_12V21

V
[Q]: 1 12 11 1 22 0 (1)

-V12V21 -V12V21

0 0 G12

  
where E11, E22, v12 and G12 represent the material properties of the constituent

(ply) material under consideration. Recall that the current model discretely

represents the axial stiffness of each tow within a beam element. Because the

axial tow stiffness is already accounted for explicitly in the model, it is necessary

to set E:1 = 0 in the tow plies used to calculate the effective resin properties.

This assumption also requires Viz = 0. The tow transverse and shear stiffness

are not modified. The stiffness matrix of the tow plies can now be written as:

  

'0 0 0‘

PF 0 652 0 (2)
t

_0 0 G12_

where the superscript, t, denotes properties of the axial or braider tows.
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The orientation of the tows is taken into account by transforming the

material stiffness matrices (Jones [24]):

i51= [TI-1010’T (3)

where,

_ 00829 sin29 —2sinecose -

[T] = sin2 9 0082 9 28inecos6 (4)

- sinecose sinecose cos2 6 — sin2 6

  

and 6 is the orientation angle of the ply (tow) under consideration. For a [0/145]

triaxial braid, 6 is 145° for the braider tow plies, 0° for the axial tow ply, and 0° for

the resin ply. Using CLT, the effective stiffness properties for region one, [6]“),

are given by

_ _ v“) _
1 — 1

[QLU = Vf(0) [QAXNL + —f28C—(IQBI' 1+9 + [QBr i—O )+ Vfin) [Qm] (5)

where the tow volume fractions of the constituent materials are defined as

v“)

 

v“) = 0

f0 1

vtbt)

v“)

(1) _ Br

VfBr T v(1) (6)

tot

(1) _ (1) (1)
vfm _1_vf0 —VtBr

and the following definitions are used to calculate the respective volumes of the

materials

1
vgl=Aor
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 v“) = A “’0 7

Br Br Sin(98r) ( )

(1) _
Vtot — [Wot

where I is the length of the RVE and t is the thickness. In a similar manner, the

effective properties for region two can be calculated with

_ viz) _ _

[QL2) = quQBr 1+9 +[QBr1—9)+ VfifiUQm] (8)

where the tow volume fractions of the constituent materials in the second region

are defined as

v(2)
2 B 2 _ 2

Vf(Br) = v(g) Vin) _1—v,(B) (9)

tot

 

and the volumes of the respective materials in region two are

W — W0

Sin(98r)

 viz) = It(w—w0) (10)(2) _

VBr ‘ ABr tot

The effective resin properties of regions 1 and 2 can now be combined in a

series model to compute the overall effective properties. Using the relation

[Si—145], the effective compliance matrices for each region are found and the

effective material properties are found as:

1 1 2 1

Eir)=_ 51(1):—"‘ 1 _ 281(1) 31(1)

1 1

E“) = —— 5‘” = _—
22 1 22 2

852) 32(2)

1 1 — 1 2 2 "' 2

Viz) = ’Ei1)51(2) Viz) = “Ei1)31(2) (11)
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1 1—1 2 2—2

Vii = {£2351} V21) = ‘E£2)32(1)

1 1
6“) =— em =_—
12 1 12 2

3(6) 86(6)

Using the equations of mechanics of materials, the combined effective resin

stiffness in the axial and transverse directions, E1’1and E52 respectively, are

 

given by

5(1)E(2)

r _ (1) (1) (2) (2) r _ 11 11

E11 va E11 +Vt E11 E22 ‘V(1)E(2)+V(2)E(1) (12)

f 11 f 11

where

1 VOI1 2 Vol
vft ) = vft )= 2

VOItOt VOItOt

In the same manner the combined effective Poisson’s ratios, v,"2 and v;,, are

found using

(1) (1) (2) (2) E22V1r2I’ I‘

V12 =V12 V12 “’12 V12 V21 =—E‘,— (13)

11

Finally, the effective shear modulus, 61’2, is given by

6(1)G(2)

 

1 2 2 1

Vr()Gi2)+Vr( )Giz)

48



_
“



3.2.3 EFFECTIVE RESIN PROPERTIES OF A PLAIN WEAVE

The effective resin properties of a plain weave are calculated in a manner

very similar to the method previously discussed for the analysis of triaxial braids.

Note that a plain weave can be completely represented by region two of a triaxial

braid that only contains i6 braider tows. The effective stiffness matrix can then

be defined by:

via
2, (ifiang +[6m L6)+Vfin[—6m] (15)[6F
 

where the volume fractions of the constituent materials are defined as:

VfBr =_ me =1‘VfBr (16)

and the volumes of the respective materials are:

V

VBr = _fvtot Vtot = ”W (17)

Pd

3.2.4 TOW CURVATURE MODIFICATION

In the finite element representation of the simplified unit cell, the curved

tows are modeled with straight beam elements. Consider both a curved and

straight tow of the same axial length as pictured in Figure 3.7. The beam

elements should be assigned a modulus such that the end shortening of the

straight beam is the same as the end shortening of a curved tow when subjected

to the same in-plane load. A stiffness reduction factor can be derived from the

theory of curved beams on an elastic foundation [22]. This theory makes it
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possible to include some of the three-dimensional tow curvature effects as well

as the tow shape in a two-dimensional simplified model.

Figure 3.8a depicts the undulating portion of the fiber that is to be

considered, while Figure 3.8b describes the load applied to the fiber tow. The

fiber tow path-line is assumed to be sinusoidal. Taking the x-coordinate along

the tow axis, the tow path-line is defined by the following equation

20 = A0 sin(px), where B =L (18)

Lab

where Lu), is the length of the undulating portion of the fiber tow and A0 is the

amplitude of the sine wave. As shown in [20], the axial strain of the curved fiber

 

 

 

is given by

ex = —:1-(,82A1(A1+2A0)I1+cos(28x)]+e,-_s (19)

where

—F 2

A1 = t 43 A02 (20)
EHIYB +F[3 +k

a=3+-t2'- (21)

A0

Art2
I = Br

4E A a a

k = 22 ’7 [ 4] (23)

ttBrAO V82 —1

F

€i—s = t (24)

E11At‘t
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E; is the effective through thickness modulus of the woven composite, 51‘, is the

axial modulus of the tow, and to, is the thickness of the undulating tow. The fiber

tow cross-sectional area An can be estimated from the following

_ fl— VO/tot

Arr

Pd LT

(25)

where V, is the fiber volume fraction, pd is the tow packing density, Vol10, is the

total volume of the RVE and L7 is the total length of the undulating fibers in the

RVE. The axial component of displacement in the curved tow (uc) is

 

au

uc= Iexdx+ [7'0 (26)

0 511AT

where the total cross-sectional area A7 of the RVE can be calculated using Ar =

th. The axial component of displacement in the straight tow (us) due to an

applied load is given by

_ FL

" t

E11AT

 

Us , L = Lub + Lo (27)

The stiffness reduction factor (R.F.) necessary to model the effective curved tow

deformation correctly using a straight beam finite element is taken to be the ratio

of the displacements calculated above

R. F. = 5e- (28)
Uc

For many practical materials, R.F. takes a value above 0.9.
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3.2.5 DETERMINING EFFECTIVE PROPERTIES

The effective properties of the RVEs for the weave geometries studies in

this work were determined through the use of three sets of boundary conditions

applied to a single RVE. For each boundary condition set a finite element

analysis was performed. The results of the analysis can then be used to

determine the effective properties of the various weave geometries under

consideration. The three boundary condition sets and the simplifying stress-

strain relations for each are summarized below

Boundary condition #1: (a1 = 1, 32 = 0, 712 = 0)

01 = 61151 (29)

02 = 61251 (30)

Boundary Condition #2: (61 = 0, 82 = 1, yrz = 0)

c’1 = 52152 (31)

02 =cm (32)

Boundary Condition #3: (61 = 0, 82 = 0. 712 = 1)

T2 = 666Y12 (33)

where the stresses 01, 0’2, and 112 are found using

P F F

"—21 02 =——§2 T12 =——§1 (34)
2 2

Knowing both the state of stress and strain from the analysis and

boundary conditions respectively, the effective stiffness matrix of the RVE can be
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calculated using Equations 29-33. After calculating the effective stiffness matrix,

the effective compliance matrix can be found through

— — 1

[SI =loi <35)

and the effective composite properties of the RVE can be determined using the

following relations that are similar to those found in Equation 11.

E11 i;-

11

1

E =—
22 —

822

V12 = "51512 (36)

V21 = ‘522321

1

G =—
12 —

S66

3.3 Numerical Results

3.3.1 ANALYSIS OF A PLAIN WEAVE

The first case considered is the prediction of the effective stiffness of two

plain weave composites. As an example of the input used for the properties in

the finite element analysis of this plain weave unit cell, the following effective

resin properties were found to be E11 = E22 = 7.27 GPa, v12= -.258, 612 = 2.69

GPa. These properties were then assigned to the shell elements in the model.
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The tow stiffness reduction factor was found to be 0.968. Therefore, a value of

140.13 GPa was assigned to the axial stiffness of the beam elements.

Results from the current model are compared with results from Sankar

and Marrey [13], Naik [25], and Foye [26]. The material and geometric properties

are summarized in Table 3.1. The results for the two cases are presented in

Table 3.2. It can be seen that the effective stiffness, E", and the shear modulus,

Gr2, predicted by the discrete-tow model agrees well with the other models. The

Poisson’s ratios predicted by the current model are lower than the other results

presented in cases 1 and 2, however all of the results are small compared to

unity.

3.3.2 EFFECT OF WAVINESS RATIO ON EFFECTIVE MATERIAL

PROPERTIES

The ability of the simplified discrete-tow model to capture tow curvature

effects makes it possible to investigate the effect of waviness ratio on the

predicted effective properties. The waviness ratio, 11., is defined as

Lab Lab
= 37

L Luo + l-o ( )

where L, La, and Lab are defined in Figure 3.9 for a plain weave. Three waviness

ratios of 0.167, 0.25, and 0.5 were examined and compared to results presented

by Raju and Wang [11], Whitcomb [15], and Aitharaju and Averill [12]. The

waviness ratio for the three cases was deterrrrined by holding Lu), constant, while

varying L0. The geometric and material data for the three cases is found in Table

3.3 and Table 3.4 respectively. The predictions of effective modulus, Poisson’s



ratio, and shear modulus are shown graphically in Figures 3.12 through 3.14 and

in tabular form in Table 3.5. The current predictions of the effective stiffness, E11,

(Figure 3.10) and shear modulus, 612. (Figure 3.12) for the various waviness

ratios agree well with those in the literature. Predicted Poisson’s ratios are lower

than the other models (Figure 3.11), however, all of the results are quite small

compared to unity. All of the present results follow the expected trends as the

waviness ratio is increased. The effective stiffness and the shear modulus both

decrease with an increase in waviness ratio while Poisson’s ratio increases.

3.3.3 ANALYSIS OF A TRIAXIAL BRAID

Four different triaxial braids were examined using the current model, and

overall stiffness predictions were compared to the numerical and experimental

results of Naik et al. [23]. The study investigates the effect of braid angle ((93,),

relative tow sizes and axial tow content on the predicted effective properties.

The material and geometrical data for each of the cases is summarized in Table

3.6 and Table 3.7. A comparison of the numerical results of the four cases can

be found in Table 3.8. The present results, in general, compare very well with

the numerical and experimental data found in Naik et al. [23].

3.4 Conclusions

A simplified discrete-tow model has been formulated and validated for

predicting overall mechanical stiffness properties of plain weave and triaxial braid

textile composite materials. In this model, the fiber tows and resin are discretely
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represented using beam and shell finite elements, respectively, resulting in a

simple, accurate and computationally efficient approach. Overall stiffness

predictions using the current discrete-tow model agree very well with other

analytical and experimental results found in the literature.
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Table 3.1 Material properties for comparison of predicted stiffness

 

 

 

 

 

 

 

 

 

 

 

 
 

      

 

 

 

 

 

 

 

 

 

 

 

Case1 Case2

(Glass/Epoxy) (Graphite/Epoxy)

Length (mm) 1.1679 3.9909

UnitCPll Width (mm) _ 1.1879 3.9909

Dlmenswns Height (mm) 0.226 0.2557

51? (GPa) 56.61 144.6

52 (GPa) 14.49 11.73

W2 0.25 0.230

TOW G12 (GPa) 5.36 5.52

pd 0.7836 0.75

vf 0.26 0.64

E (GPa) 3.45 3.45

Matrix v 0.37 0.35

G(GPa) 1.26 1.28

Table 3.2 Comparison of results for a plain weave-

E11(GPa) V12 612(GPa)

[Present Study 12.97 0.075 2.03

Case1 bankers Marrey (1997): S.A.M 12.46 0.162 1.67

(Glass/Epoxy) [SankaraMarrey (1995): F.E.A. 11.61 0.161 2.15

IDasgfiupta et al (1990) 14.36 0.167 3.94

Present Study 65.356 0.003 4.696

Gas” ISankar& Marrey (1997): S.A.M 63.41 0.027 4.24

(Graphite/Epoxy)ISankar&Marrey(1995):F.E.A. 53.61 0.126 4.72

[vark (1994): TEXCAD 64.36 0.027 4.67

[Foye (1992): F.E.A. 63.76 0.031 4.62

[Foye (1992): Test 61.92 0.11 NA    
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Table 3.3 Geometric data for the three waviness ratios studied

 

 

 

 

    

i. 0.167 0.25 0.5

llh 24 16 8

V2 0.580 0.569 0.520

pa 6 6 6
  

Table 3.4 Material properties for all waviness ratios studied

 

 

 

 

 

 

 

   

IE11 (GPa) 134

Tow I522 (GPa) 10.2

km (GPa) 0.3

I612 (GPa) 5.52

IE (GPa) 3.446

Matrix Iv (GPa) 0.35

lo (GPa) 1.28
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Table 3.5 Comparison of predicted effective properties for a plain weave

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

  
 

composite.

). 0.167 0.25 0.5 |

IP 511 66.6 67.1 60.2]

resent Study v12 0.001 0.001 0.003]

612 5.38 5.30 4.95]

5,, 67.7 65.1 56.2]

ltharaju & Averill (1999)) v12 0.043 0.044 0.044]

[A 612 5.36 5.29 5.08]

. 5,, 66.7 63.6 54.4]

ilvnitcomb (1991) v12 0.037 0.034 0.026]

612 5.30 5.19 4.80]

511 66.4 66.2 57.1]

item 6 Wang (1994) v12 0.045 0.046 0.052]

612 5.34 5.24 4.80]

511 72.5 72.5 72.5]

0,90). v12 0.043 0.043 0.043]

r 612 5.52 5.5 5.52]    
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Table 3.6 Geometric and braid data for triaxial weaves.

 

 

 

 

 

Case Material Sxflngrrvim) Ply 12$?ess Vr pa

1 [2339,1323] 6.05 0.7075 0.55 0.75

2 [36552523113] 11.04 0.935 0.59 0.75

3 [gagé‘fgigf] 5.52 0.94 0.56 0.75

4 [ggggi‘igi] 5.52 0.556 0.56 0.75      
 
 
Table 3.7 Properties for the constituent materials of the triaxial weaves.

- Err 522 Grz

Meier'a' (GPa) (GPa) V12 (GPa)

AS4/1895 Yarn 144.8 11.73 0.23 5.52

1895 Matrix 3.45 3.45 0.35 1.28
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Table 3.8 Comparison of effective properties for a triaxial weave with numerical

and experimental methods.
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EL ET GLT

(GPa) (GPa) V” V“ (GPa)

Present Study 54.16 46.77 0.12 0.10 9.39

[om/1706,] Naik 55.67 49.30 0.15 0.13 9.66

46%-axial Naik Measured 60.25 47.50 0.20 0.09 11.65

Naik Measured] 59.15 43.60 ‘ ' '

Present Study] 56.67 51.13 0.11 0.10 10.16

[om/17015,] Naik | 59.63 53.36 0.15 0.13 10.36 |

46%-axia| Naik Measured] 62.46 46.12 0.16 0.05 11.03

[Naik Measured] 59.77 45.77 nana...

Present Study] 61.69 19.64 0.61 0.20 17.54

[om/14515..) Naik ] 62.67 20.76 0.65 0.21 18.04 ]

46%-axial Naik Measured] 65.63 19.30 0.57 0.22 16.96

iNaik Measured] 61.70 19.23 na na na

Present Study] 27.35 19.45 0.72 0.51 25.63

[Oak/$4515k] [Naik ] 27.92 20.13 0.73 0.53 26.00 |

12%-axia| [Naik Measured] 33.92 20.55 27.92

[Naik Measured] 29.92 27.92
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tBr 0

(b)

Figure 3.2 (a) Geometry of a triaxial braid (b) cross section of the triaxial braid

made perpendicular to the axial tows (6) cross section of the triaxial

braid made alone the direction of the braider tows.
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K Axial Yarns j

Figure 3.3 The area enclosed by A,B,C,D represents one possible RVE for a

[0&0] triaxial braided composite.
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(a) (b)

Figure 3.4 (a) Assembled finite element model of the unit cell and (b) exploded

view of the finite element model for a plain weave material system.
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Figure 3.5 (a) Discretized representation of a RVE in a triaxial braid. (b)

Assembled and (c) exploded views of the finite element model for a

triaxial braid.
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I 0° Ply

Resin

 

 
Figure 3.6 Division of the RVE of a triaxial braid into two regions for calculation of

the effective properties (a) plan view (b) side view.

(b)
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Figure 3.7 (a) Curved fiber tow. (b) Straight fiber tow.
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(a) (b)

Figure 3.8 Curved beam on an elastic foundation (a) geometry of the undulating

region and (b) applied load.

69



  

  

  

    
     

0 C O Q 0 C Q C O C O O O C 0 C O C O C

so“... sevs sevs 2?. ssss sés sacs ssss sevs ss ss
ssss sews so"... ...“.s so“... ssss so“... sacs sés so“... ...“...

. ssss ...”.s ...”... 2?. sows sets ...“.s 3:. 3:. sacs 34s
. sows ssss sad. s¢s sows ssss 3... 3... sews ssss ss..s s s
3:. .3... 3... sovs sacs s9. sacs ssss Ros ss s ...“.s sows

n . $m¢¢w¢¢m¢shss he"... cuss... seas... cuss. ts cvs

.vmeeweems. . A A . . . .,
asses“? .

     
  
    o

a        

          

 

macaw Po 08305 3.45:6 3o Emsaomm Eco 9 ups. \5

.3



 

— I

 

 

  

 

 

 

 
 

 

 

   

E11 vs Waviness Ratio ()t)

l 80

70

r 60 f g . (:1 Aitharaju&Averill(1999)

1 Ti 50 ___._. A Whitcomb(1991)

1 8.5 40 _r _ o Raju&Wang(1994)

E, 30 _ _ 9 Present Study

”J
—(0,90)s Laminate

20
.

10 ~—

0 . .

0 0.2 0.4 0.6

Waviness Ratio (9,)   
 

Figure 3.10 Plot of the effective stiffness E11 as the waviness ratio (9.) is

 

 

 

 

 

  

   
 

    

increased.

v12 vs Waviness Ratio (A)

0.06 -

__ Q

0'05 F, L Ci :1 Aitharaju a Aserill (1999)

i 0-04 “A‘ X A Whitcomb (1991)

' g 0.03 . —— o Raju & Wang (1994)

0 02 _ A 9 Present Study

' —(0, 90)s Laminate

0.01

0.00 +. c . ’

0 0.2 0.4 0.6

Waviness Ratio (1.)     (___’____ ##2—
Figure 3.11 Plot of the effective Poisson’s ratio v12 as the waviness ratio (A) is

increased.
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Figure 3.12 Plot of the effective shear modulus 612 as the waviness ratio (A) is

increased.
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Chapter 4

Modeling progressive failure using the simplified discrete-tow model

4.1 Introduction

Using the simplified discrete-tow model presented in Chapter 3, it is

possible to model progressive failure in woven composites. The simplified

discrete-tow model discretely represents the fiber tows and resin independently

as beam and shell finite elements respectively. The use of the discrete-tow

model in progressive failure allows for the ability to better predict the behavior

and physical orientation of the tows throughout the analysis in a manner that is

more computationally efficient than a fully three-dimensional model.

In this Chapter, the utility of the simplified discrete-tow model developed

previously is expanded. Through the use of a stiffness reduction algorithm it is

possible to model the progressive failure that occurs in both the beam and shell

elements of the discrete-tow model to represent fiber and matrix damage

respectively.

4.2 Progressive Failure Model

When using the finite element method to predict progressive failure it is

necessary to accurately capture the energy release associated with the material

failure throughout the analysis. In a nonlinear analysis, if errors are made early,

they may propagate and result in erroneous results. The discrete-tow model has

the advantage of representing the energy release associated with damage in the
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matrix or fiber tows independently because the matrix and fiber tows are

modeled discretely.

4.2.1 FINITE ELEMENT MESH

In order to effectively use the discrete tow model it is necessary to

carefully consider the finite element mesh that will be used to model the woven

composite structure. A finite element model of a single repeating volume

element for a plain weave and triaxial braid were developed previously and are

depicted in Figure 3.4 and 3.7. However, there are several competing

mechanisms occurring within the model that must be discussed. First, due to the

connectivity that exists between the shell and beam elements, singularities result

due to the application of point loads from the beam elements. Knowing this it is

desirable to have a finite element mesh that is coarse enough that the effects of

these singularities are effectively averaged out of the volume of the element.

Secondly, it is advantageous to use the discrete-tow model because of its ability

to explicitly model the fiber tows and their deformations within the woven

composite. Finally, if this model is used in a contact analysis, it is desirable to

have smaller element sizes to better capture the contact behavior that occurs.

4.2.2 MODELLING PROGRESSIVE FAILURE

Material damage within the tows and resin was modeled through the use

of stiffness reduction at each integration point within each element. Typically, in
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a progressive failure analysis the integration point could be in one of three

stages, undamaged (a < err). damaged (air, < a < 6') , and completely failed (3' <

a). The stress vs. strain plot as shown in Figure 4.2 demonstrates the three

stages associated with progressive failure. However, for the purposes of this

study, the tows and resin were assumed to transition nearly instantly from

undamaged to completely failed (on, s 5') as illustrated in Figure 4.3.

Another advantage to the discrete-tow model is that it allows for different

failure criteria and values to be applied to the fiber tow and resin individually. In

the case of this study the fiber tow failure was based upon the maximum principle

strain failure criterion while the maximum principle stress failure criterion was

used in the resin. The actual values used in the current analysis are summarized

in Table 4.1. When a particular constituent material completely failed, its material

properties were reduced by several orders of magnitude (essentially zero, but not

exactly zero, to avoid numerical singularities in the analysis).

4.2.3 PROGRESSIVE FAILURE ALGORITHM

The progression of the failure in the finite element model is captured

through the use of an incremental iterative procedure associated with a standard

nonlinear analysis. This method of modeling progressive failure was first

introduced by Dodds et al. [27] to model crack growth in concrete structures. In a

nonlinear analysis the applied load or displacement is applied in small

increments. For an implicit analysis, it may be necessary for the analysis to

iterate several times before an equilibrium position is found. Once equilibrium
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has been satisfied within an acceptable tolerance, the next increment of load or

displacement is then applied. When a material point has failed, its stiffness is

reduced by calculating a new secant modulus and the analysis must iterate in

order to redistribute the load around the point of failure before the next increment

is started. The current progressive failure algorithm was implemented via a user

material subroutine in ABAQUS [28], a commercially available finite element

package. The subroutine implementation is summarized graphically in Figure

4.1.

4.3 Numerical Results

In order to validate the implementation of the progressive failure algorithm, RVEs

of both a plain weave and triaxial braid were constructed. Each RVE was then

subjected to four geometrically nonlinear analyses. Two analyses were

conducted without implementing the failure algorithm. The remaining two

analyses were completed with the failure algorithm turned on. In both cases,

with and without failure, one analysis was conducted using tensile loading while

the other used compressive loading. The geometry of the plain weave and

triaxial braid RVE’s are summarized in Table 3.1 and Table 3.6, while the

boundary conditions for each analysis can be found in Table 4.2 and illustrated

graphically in

Figure 4.4.

Results of the analyses of the plain weave are found in Figures 4.5

through 4.12, while results for the triaxial weave can be seen in Figures 4.14
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through 4.21. When examining the results from the materially linear analysis of

the plain weave (Figures 4.5 through 4.8), the local and global behavior is nearly

linear as would be expected from a sample as small as one RVE. When failure

is included, and a geometrically nonlinear analysis is conducted of the plain

weave (Figures 4.10 through 4.12), the resulting nonlinear trends clearly

demonstrate that failure must be occurring within the constituent materials.

It is also important to note the significant behavioral differences between

the plain weave and triaxial braid. Figure 4.9 and 4.12 illustrate how the majority

of the initial load is carried by the resin. Upon failure of the resin the load is

redistributed and carried by the tows until complete failure occurs. The load

carrying behavior of a triaxial braid (Figure 4.17 and 4.21) differs from the plain

weave due to the fact that the initial load carrying is accomplished by the axial

tow. This, of course, is dependent upon the loading conditions, however, in this

case the load was applied along the axis of the axial tow. Once the axial tow

fails in the triaxial braid, the braider tows assume the role of carrying the load

until complete failure occurs.

4.4 Conclusions

Using a standard nonlinear finite element analysis as a foundation, it is

possible to add the ability to predict progressive failure in woven composites

using the discrete-tow model. A progressive failure algorithm that represents

failure in the form of material stiffness reduction was combined with the discrete-

tow model to predict progressive failure of a plain weave and triaxial braid RVE.
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Based upon the results of this study, it is quite reasonable to assume that this

simplified methodology of modeling damage in woven composites could be

extended to structures much larger than a single RVE.
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Table 4.1 Failure criteria used in the resin and tow.

 

Case Resin Tow

Tensile Failure 81 = 0.138 GPa E1=0.02

Compressive Failure S3 = 0.138 GPa E3=0.02

 

 

     

Table 4.2 Applied boundary for the linear and failure cases studied.

 

 

 

 

Linear (without failure) With Failure

Tension Compression Tension Compression

8x 8y 8x 8y 8x 8y 8x 8y

0.126 0 0.126 0 0.126 0 0.126 0          
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. . Determine appropriate failure

Determrne material type —> criteria for each constituent

and test each for failure :

(Update property if failure I Calculate the new effective

has occurred properties

 

(Calculate the new material Calculate the new state 0f

stiffness matrix for the stress and return It to the

element
calling subroutlne

I

O’ij

Figure 4.1 Implementation of the progressive failure algorithm.
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Figure 4.2 Stress strain curve illustrating progressive damage (not immediate).
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Figure 4.3 Stress strain curve illustrating immediate material failure.
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(b)

Figure 4.4 Illustration of applied boudary conditions to (a) a plain weave and (b)

a triaxial braid.
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Figure 4.5 Force deflection curve for a plain weave under tensile loading
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Figure 4.6 Force deflection curve for a plain weave under compressive loading

(without failure).
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Figure 4.7 Linear validation of one RVE of a plain weave under a tensile load.
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Figure 4.8 Linear validation of one RVE of a plain weave under a compressive

load
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Figure 4.9 Force deflection curve for a plain weave under tensile loading (with
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Figure 4.10 Force deflection curve for a plain weave under compressive loading

(with failure).
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Figure 4.11 Failure validation of one RVE of a plain weave under a tensile load.
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Figure 4.12 Failure validation of one RVE of a plain weave under a compressive

load.
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Figure 4.13 Force deflection curve for a triaxial weave under tensile loading

(without failure).
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Figure 4.14 Force deflection curve for a triaxial weave under compressive

loading (without failure).
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Figure 4.15 Linear validation of one RVE of a triaxial weave under a tensile load

(without failure).
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Figure 4.16 Linear validation of one RVE of a triaxial weave under a

compressive load (without failure).
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Figure 4.17 Force deflection curve for a triaxial weave under tensile loading (with

failure).
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Figure 4.18 Force deflection curve for a tn'axial weave under compressive

loading (with failure).
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Figure 4.19 Failure validation of one RVE of a triaxial weave under a tensile

load.
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Figure 4.20 Failure validation of one RVE of a triaxial weave under a

compressive load.
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Chapter 5

Conclusions

5.1 Conclusions

A method for efficiently modeling two-dimensional woven composites was

successfully developed. This simple discrete-tow model has the ability to

accurately predict the stiffness of RVE’s for plain weave and triaxial braids. The

discrete-tow model also significantly decreases the number of degrees of

freedom within a finite element model while greatly simplifying the model building

process.

The utility of the discrete-tow model was also demonstrated by applying it

to the problem of damage prediction within a woven composite. Although it is

necessary to validate this process with experimental results, it does prove to be a

promising tool for the analysis of woven composites.

5.2 Future Work

Although the discrete-tow model was shown to agree well with other

stiffness prediction models and with experimental results, the model has yet 0 be

applied to a large composite structure much larger than a single RVE. When the

discrete-tow model is used to model larger sections several addition items must

be addressed, including; variation of fiber volume fraction, tow cross-sectional

variation, and tow crimp. Each of these alone is not a trivial matter and should

be examined thoroughly.
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Currently the application of the discrete-tow model to progressive failure

needs to be validated with experimental results. In practice, the failure algorithm

and subroutine derived from it perform correctly for single RVE models, however

a detailed analysis should be conducted to gain confidence in its use for larger

structures.
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