It 44 . . A: («anY . E. “1‘ 1-051 ,..:I,:.§ 2 in . ‘K‘IDS b vlL 5.. hr... iii}... L. . l? I. .0. .. z . "Kai... |‘ I r it: A V . \ ‘ . , I , 9 52-33.. i‘ . . .4 . ‘ . _ { . . v . , , . n v , fl , . A . .. . z . , u. , . . . ‘ . . 0 . . . , V . ‘ : nv‘uflwai75 Imu {1 . . . ‘. . . ..I=..A§n.!l2,:~|r ob... ‘ . . 1......llfrl. ‘Splvrlii. . , . a- O 5.39%”. a... Jul-JILIL‘ .. . t. n. v 9. .I‘ A .I. . . .. .I .. . u... . Inflvl , .. 3.10.6: .0: ..I. v w ~ 2 . a Fate... 3 , V3.3. I. i 1“»: .. a Rs: L 25:1 .. ‘ an»: WM; gamma}; :ttfiamf : . . Iii... . 3.1.5.5.)“ .35: R»! u n . . 3» "Ems...”n . .5...qu ... a. L A ., ad‘iZL.‘ . I? a» , . . . . . , , . . .3.“ .L . . . ‘ . , . » . 2mg“ . g . 31:2...» . ‘ I I . Fl. ‘ ‘QD . . J. 5%; an? .iic ltd». . V ;..xw¢..fi§dwi 5;... .49...th ti... .. ‘13)?‘1...’ . fr. 3:11.]? , , . ‘ .. . 31:313.,9, .V «3.3!...» , . la “\yohhhuv‘ra . 1.11% 1...: 41.1) I p lei-153.11% “nauti- . I. :I :35; I ’ i3.:.l , J 61!! .‘ ‘ .40 “Av... 9 ‘vlril lufiu ‘1). «I 8.1.9. [It {nu-l ‘1‘ . than)» (3.050. 3.1}? yr. ‘ :3 Lb . .V: 1.x: 511:4: 3‘ ‘ 2.9%.} 3 vb" ‘M‘ivv 1.. , EM' 1| v .32.. ‘ n t .n 1 :al? 9' aulh THESlS : COO This is to certify that the thesis entitled An Experimental Study on the Effect of Static and Dynamic Impulsive Blade on Turbulent Slit Jet presented by Tahir Z. Hakim has been accepted towards fulfillment of the requirements for MS degree in Mechanical Engineering “Cl/xfiiéaw U Major professor Date 8M0“? 97’ 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE IN RETURN Box to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 11100 W.“ AN EXPERIMENTAL STUDY ON THE EFFECT OF STATIC AND DYNAMIC IMPULSIVE BLADE ON TURBULENT SLIT JET By Tahir Z. Hakim A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Mechanical Engineering 1997 . 1mnw v I.-., ur l . 4:9") ‘0', ‘ UNIS\ s&\d ‘ " iV“! s.lu}'.l.' . ABSTRACT An experimental study was performed to determine the effect of a static and impulsive blade on a free jet. The study showed that for both the cases the free jet defected, but there was a lag in the defection of the flow when under the influence of the Dynamic impulsive jet. Although the ratio of the speed of the impulsive blade to free jet was 0.03, the free jet angle of deflection did not coincide with the Static mode of operation of the impulsive jet and lagged by 10 to 20 degrees at various down stream locations. hit, \\.7_\_\ J ’JJ TABLE OF CONTENTS LIST OF FIGURES ................................................................................ v NOMENCLATURE ............................................................................ viii English ................................................................................. viii Greek .................................................................................... viii Symbols .................................................................................. viii Definitions ............................................................................... viii 1 . INTRODUCTION ........................................................................ 1 1.1 Motivation ............................................................................ 1 1.2 Objective ............................................................................. 5 2. EXPERIMENTAL APPARTUS ....................................................... 6 2.1 Flow System ......................................................................... 6 2.2 Slit Jet ................................................................................. 8 2.3 Deflector Blade ..................................................................... 8 2.3.1 Operation of DB Assembly ........................................... 9 2.3.1.1 Positioning of the Deflector Blade ................................. 9 2.3.1.2 Running of the Deflector Blade ...................................... 10 2.4 Deflector blade Detection Device ................................................ l I 2.5 Pressure Transducer ................................................................. 13 2.6 Hot Wire Anemometers ............................................................ 13 2.7 Visualization ........................................................................ 14 2.8 Data Acquisition and Processing ............................................. 15 2.9 Traverse Control .................................................................. 15 3. DATA PROCESSING ................................................................. 27 3.1 Introduction ........................................................................ 27 3.2 Digital Camera Processing ....................................................... 27 3.3 X-Array Calibration and Processing ............................................ 28 3.4 Transient Velocity Calculations ................................................ 32 3.5 Normalization of Data ............................................................ 33 4. RESULTS AND DISCUSSION ...................................................... 34 4.1 Introduction ......................................................................... 34 4.2 Steady State Measurements ...................................................... 34 4.2.] Velocity Profile with out DB .......................................... 34 4.2.2 Velocity Profile for Yb/Wj = -O.5 ..................................... 35 4.3 Velocity Profiles For Deflected Flow ............................................ 36 4.3.] Velocity Profile for Yb/Wj = -0.1 ..................................... 36 4.3.2 Velocity Profile for Yb/Wj = 0.125 ................................... 37 4.3.3 Velocity Profile for Yb/Wj = 0.175 ................................... 37 4.4 Transient Motion (DB) Study ................................................... 38 4.4.1 Introduction ............................................................... 38 4.4.2 Velocity of Deflector Blade (DB) ...................................... 39 4.5 Comparison of Steady State Results with Transient .......................... 40 4.5.1 Flow Angles .............................................................. 40 iii .IPPE. '12 4.5.2 Velocity Profiles .............................. 41 5. UNCERTAINTY CONSIDERATIONS ....................... 129 5.1 Pressure Transducers ................................ 129 5.2 Uncertainty in positioning of DB ........................ 129 5.3 Traverse control - Uncertainty .......................... 130 5.4 DB Assembly ..................................... 130 5.5 Optical Encoders ................................... 130 5.6 Hot Wire Anemometers .............................. 131 6. SUMMARY AND CONCLUSION ......................... 132 7. RECOMMENDATIONS ................................ 133 8. REFERENCES ...................................... 135 APPENDIX A: DEFLECTOR BLADE ASSEMBLY .................. 136 iv h-n 0T1 :11 p. a . n O 4' Ir: nu "Q ”q ”'1 F‘- n. "’8' "If; ._4 r Fig Fig F1; F1; n. n; LIST OF FIGURES Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Schematic representation of an Induction System-MAPS ......... 3 Schematic representation of an Induction System fitted with an auxiliary supply source ......................... 4 Air flow apparatus. (Wind tunnel) ...................... 16 Schematic of reversible blower used in wind tunnel ........... 17 Calibration Curve to estimate speed(m/sec) in the wind tunnel for a given Voltage (volts) of reversible blower ...... 18 Slit jet assembly .................................. 19 Experimental facility ............................... 20 Set up for transient detection of DB ..................... 21 Optical encoder voltage response ....................... 22 Optical encoder voltage response to moving blade ............ 23 Schematic of X-array hot wire probe ..................... 24 Tuft probe used for measuring the steady state angles .......... 25 Nominal Angle of deflection measured by DYCAM for Yb/W ' = «x ................................... 26 Velocity distribution < U > on at X/W j = 1.5 and Yb/Wj=o< ..... 42 Velocity distribution /Uo at X/Wj=1.5 and Yb/Wj=o< ..... 43 U-rms.at X/Wj=1.5 and Yb/Wj=o< ..................... 44 V-rms.at X/Wj= 1.5 and Yb/Wj=o< ..................... 45 Velocity distribution /Uo at X/Wj= 1.5 and Yb/Wj=-O.5 . . . 46 V-rrns. for X/Wj=1.5 and Yb/Wj=-O.5 .................. 47 U-rms. for X/Wj= 1.5 and Yb/Wj=-O.5 .................. 48 Velocity distribution < U > on at X/Wj= 1.5 and Yb/Wj=—O.l (Nominal deflection angle of jet=30°) .................... 49 Velocity distribution /Uo at X/Wj=1.5 and Yb/W j =-0.1 (Nominal deflection angle of jet=30°) .................... 50 U-rms. at X/Wj= 1.5 and Yb/Wj=-O.1 (Nominal deflection angle of jet=30°) .................... 51 V-rms.at X/Wj=1.5 and Yb/Wj=-0.l (Nominal deflection angle of jet=30°) .................... 52 Velocity distribution < U > /Uo at X/Wj= 1.5 and Yle j =0.125 (Nominal deflection angle of jet=45°) .................... 53 Velocity distribution < V > /Uo at X/Wj = 1.5 and Yb/Wj=0.125 (Nominal deflection angle of jet=45°) .................... 54 Velocity distribution < U > on at X/Wj=1.5 and Yb/W j =0. 175 (Nominal deflection angle of jet=48°) .................... 55 Velocity distribution /Uo at X/Wj=1.5 and Yb/Wj=0.175 (Nominal deflection angle of jet=48°) .................... 56 Schematic representation of locations, of the hot wire probes used during the transient motion of the DB. For given Yp/W j and Yb/W j, Independence of < U > No measured Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. with respect to dYb/dt .............................. 58 For given Yp/Wj and Yb/W j, Independence of < V > /Uo measured with respect to dYb/dt .............................. 59 For given Yp/Wj, difference in measured angle between the steady state and transient (for transient Vb/Uo=0.03) ................................... 60 Histogram of flow angles at Yb/Wj=-O.525 and Yp/Wj=—0.5 . . . . 61 Histogram of flow angles at Yb/W j =-0.4 and Yp/Wj=-0.5 ...... 62 Histogram of flow angles at Yb/Wj=-O.275 and Yp/Wj=-O.5 . . . . 63 Histogram of flow angles at Yb/W j =-0. 15 and Yp/Wj=-0.5 ..... 64 Histogram of flow angles at Yb/Wj=-0.025 and Yp/Wj=-O.5 . . . . 65 Histogram of flow angles at Yb/Wj= +0.1 and Yp/Wj=—0.5 ..... 66 Histogram of flow angles at Yb/Wj= +0.175 and Yp/Wj=-O.5 . . . 67 Histogram of flow angles at Yb/Wj=-0.525 and Yp/Wj=-O.2 . . . . 68 Histogram of flow angles at Yb/Wj=-O.4 and Yp/Wj=-O.2 ...... 69 Histogram of flow angles at Yb/Wj=-O.275 and Yp/Wj=-O.2 . . . . 70 Histogram of flow angles at Yb/W j =-O. 15 and Yp/Wj=-0.2 ..... 71 Histogram of flow angles at Yb/Wj =-0.025 and Yp/Wj=-O.2 . . . . 72 Histogram of flow angles at Yb/Wj= +0.1 and Yp/Wj=-O.2 ..... 73 Histogram of flow angles at Yb/Wj= +0.175 and Yp/Wj=—0.2 . . . 74 Histogram of flow angles at Yb/W j =-O.525 and Yp/Wj=0.2 ..... 75 Histogram of flow angles at Yb/W j =-0.4 and Yp/W j =0.2 ...... 76 Histogram of flow angles at Yb/W j =-0.275 and Yp/W j =O.2 ..... 77 Histogram of flow angles at Yb/Wj=-O. 15 and Yp/Wj=0.2 ...... 78 Histogram of flow angles at Yb/Wj=-0.025 and Yp/Wj=0.2 ..... 79 Histogram of flow angles at Yb/W j = +0.1 and YhWj=O.2 ..... 80 Histogram of flow angles at Yb/Wj= +0.175 and Yp/Wj=0.2 . . . . 81 Histogram of flow angles at Yb/W j =-0.525 and Yp/Wj =0.4 ..... 82 Histogram of flow angles at Yb/Wj =-0.4 and Yp/Wj=0.4 ...... 83 Histogram of flow angles at Yb/W j =—O.275 and Yp/Wj=0.4 ..... 84 Histogram of flow angles at Yb/W j =-0. 15 and Yp/Wj=0.4 ...... 85 Histogram of flow angles at Yb/W j = -0.025 and Yp/W j =0.4 ..... 86 Histogram of flow angles at Yb/W j = +0.1 and Yp/Wj=0.4 ..... 87 Histogram of flow angles at Yb/Wj= +0.175 and Yp/Wj=0.4 . . . . 88 Histogram of flow angles at Yb/Wj=-O.525 and Yp/Wj=0.6 ..... 89 Histogram of flow angles at Yb/W j =-O.4 and Yp/Wj=0.6 ...... 9O Histogram of flow angles at Yb/W j =-0.275 and Yp/W j =O.6 ..... 91 Histogram of flow angles at Yb/W j =-O. 15 and Yp/Wj=0.6 ...... 92 Histogram of flow angles at Yb/W j =-0.025 and Yp/W j =O.6 ..... 93 Histogram of flow angles at Yb/Wj = +0.1 and Yp/W j =O.6 ..... 94 Histogram of flow angles at Yb/Wj= +0.175 and Yp/Wj=0.6 . . . . 95 Histogram of flow angles at Yb/W j =-O.525 and Yp/W j =0.8 ..... 96 Histogram of flow angles at Yb/W j =-O.4 and Yp/W j =O.8 ...... 97 Histogram of flow angles at Yb/Wj =-O.275 and Yp/W j =O.8 ..... 98 vi 31"“?! 'r: "’3 ":3 '13 "'1 "'3 "a "a. "'2. ”a. "a "a "'3 "a "a 3'? 1'" ('v3 In mg ”n m m . '1'? '5‘? '59 . I" TIP... 2'"? (m I rm ' n" l r.‘ r4 3’5".” . HI I. . "Q In HQ 0 r'.‘ ‘ ‘ L‘: r .2!" l' 3" Flgu Figure 71. Histogram of flow angles at Yb/Wj =0 15 and Yp/Wj=0.8 ...... 99 Figure 72. Histogram of flow angles at Yb/Wj=.0.025 and Yp/Wj=0.8 . . . . 100 Figure 73. Histogram of flow angles at Yb/Wj= +0.1 and Yp/Wj=0.8 . . 101 Figure 74. Histogram of flow angles at Yb/Wj= +0.175 and Yp/Wj=0.8 . . . 102 Figure 75. Velocity distribution < U > /Uo at X/Wj= 1.875 Yb/Wj=o< . . . . 103 Figure 76. Velocity distribution < U > on at X/W j = 1.875 Yb/Wj=-1.025 . . 104 Figure 77. Velocity distribution < U > /Uo at X/W j = 1 .875 Yb/Wj=-0.9 . . . 105 Figure 78. Velocity distribution < U > on at X/W j = 1.875 Yb/Wj=-0.775 . . 106 Figure 79. Velocity distribution < U > on at X/W j = 1.875 Yb/Wj=-0.65 . . 107 Figure 80. Velocity distribution < U > /Uo at X/Wj=1.875 Yb/Wj=-0.525 . . 108 Figure 81. Velocity distribution < U > /Uo at X/Wj= 1.875 Yb/Wj=-0.4 . . . 109 Figure 82. Velocity distribution < U > on at X/Wj= 1.875 Yb/Wj=-0.275 . . 110 Figure 83. Velocity distribution < U >/Uo at X/Wj= 1.875 Yb/Wj=-0.15 . . 111 Figure 84. Velocity distribution < U > /Uo at X/Wj=1.875 Yb/Wj=-0.025 . . 112 Figure 85. Velocity distribution /Uo at X/Wj= 1.875 Yb/Wj=0.1 . . . . 113 Figure 86. Velocity distribution < U > /Uo at X/Wj= 1.875 Yb/Wj=0. 175 . . 114 Figure 87. Velocity distribution /Uo at X/Wj= 1.875 Yb/Wj=o< . . . . 115 Figure 88. Velocity distribution /Uo at X/Wj=1.875 Yb/W j =-1.025 . . 116 Figure 89. Velocity distribution < V > /Uo at X/W j = 1.875 Yb/Wj=-0.9 . . . 117 Figure 90. Velocity distribution IUo at X/Wj=1.875 Yb/Wj=-0.775 . . 118 Figure 91. Velocity distribution (V > Mo at X/Wj= 1.875 Yb/Wj=-0.65 . . 119 Figure 92. Velocity distribution /Uo at X/Wj=1.875 Yb/W j =-0.525 . . 120 Figure 93. Velocity distribution /Uo at X/Wj= 1.875 Yb/Wj=-O.4 . . . 121 Figure 94. Velocity distribution < V > /Uo at X/W j = 1.875 Yb/Wj=-0.275 . . 122 Figure 95. Velocity distribution < V > /Uo at X/Wj=1.875 Yb/Wj=-0.15 . . 123 Figure 96. Velocity distribution < V > /Uo at X/Wj= 1.875 Yb/Wj=-0.025 . . 124 Figure 97. Velocity distribution /Uo at X/Wj=1.875 Yb/W j=0.1 . . . 125 Figure 98. Velocity distribution < V > /Uo at X/Wj= 1.875 Yb/Wj=0.175 . . 126 Figure 99. Velocity profiles (< U > /Uo) as a function of position of DB (-0.525 s Yb/Wj s -0.15) ............................. 127 Figure 100. Velocity profiles (< U > /Uo) as a function of position of DB (-0.153Yb/stO.175) ............................. 128 Figure A-l. Deflector Blade design ............................. 147 Figure A-2. Deflector Blade carriage ............................ 148 Figure A-3. Center rod used for carrying the DB-carriage .............. 149 Figure A-4. Center rod with locking nut .......................... 150 Figure A-5. Center rod holder ................................ 151 Figure A-6. Spring loaded pullers (Primary drivers) .................. 152 Figure A-7. Deflector blade-knife edge under pulling force ............. 153 Figure A-8. I-beam used to connect the DB with the DB carriage ......... 154 Figure A-9. Stops for the main spring. ........................... 155 Figure A-lO End plates for holding the DB assembly .................. 156 Figure A-ll Remote mechanism used for the release of the DB ........... 157 vii 1(Tslnfl1<|flfll( r\ R ”I m .. .. :s 1. .. m .. .. a. i. :tm m....o.:b.J.o.PS .. GR. B M.) h. ABQDW.DKYLL.HPPQS.STLL\\“\AISZ <>. NOMENCLATURE ENGLISH A : Coefficient in Collis and Williams B : Coefficient in Collis and Williams CR : Center Rod DB : Deflector blade g : Force of gravity IM : Interrupter module K : Spring stiffness Lm, : Deflector blade length L,: Length of the Slit jet n : Coefficient in Collis and Williams Pm: Atmospheric pressure P1,: Pressure Transducer Q : Magnitude of the velocity measured by the hot wire Sj : Slit jet Std.dev : Standard deviation TDB : Thickness of DB U : Mean Velocity in X-direction U0 : Velocity in wind tunnel V : Mean Velocity in Y- direction Vb : Velocity of DB Wj : Width of the slit Jet Yb : Position of DB Yp : Position of the probe S.S : Steady State Z : Vertical height in the Bemoulli’s equation GREEK D : Angle between a slant wire and the probe axis, generic velocity measure. y : In plane flow angle 1] : Ratio of voltage of a hot wire at an angle divided by the voltage of the same wire my=0. SYMBOLS < > : Average value of the velocities ~ : RMS value of the velocity viii ‘7 .._.— .1 DEFINITIONS Deflector blade : The knife edge that deflects the flow field coming from the slit jet. Impulsive blade : Same as above. ix 1.1 M.‘ swan imakeu Imnitor him’m .L'mtca stIISora km... comm RDOWD I Ifihf 1. INTRODUCTION 1.1 Motivation: Thebasicmofivafionbehindtheexperhnemismlatedtoanmnomobileinducfion system. IntheMomobfleindmfionsystem,seeFigmel,thehnakeairpassesthrough thermnator,aheleaner,massflowairsemor,andthrofilebodybeforeiterfiemintothe itnakenmnifoldoftheengine. Theamountofairthatisconfingintotheengineis mnitoredbytheMAFS(massairflowsensor). Thissensorutilimsmallhotwire sensorgwhich measnmthespeedoftheincomingair.Thenmssflowgoingtotheengine isinferredonthebasisofdatatakenfi'omtheMAFS. TheemrMpmblemistoexactlymeasmethemassflowmehtheinducfionsystem .Umteadyflowefi‘ects,wfihthewaespondmgdifl‘eremminthemfiobehveenthe masmedwbchyanddwdesfiedspmialavmgevalue,mkwmereadingoftheMAFS sensoranunreliableindicatorofthemassflowrate.Conversely,ifthetruennssflowis known,thenthesensoreanbecahhrated.Forthisifwehaveanamdliarysupplysouroe connected to the induction system, see Figure 2 and monitor the mass flow (in) air in the auxiliarysupplysystemthenthesensoroutputE,(t)canbecah’bmtedasafimctionofthe knownnnss flow E .(m° (t)). chewrdfimympplysomceismainminedmaconstamwessme,mepecfiveofthe mmrpmthentheinflowfiomtheauxfliarysystemwmbewnealymoduhtedandwe system deflec comin willhaveknownmassimotheengineatalltimes. Thiscanbedonebycontrolling theair comingintotheinletoftheauxiliarysupplysystem. Thisexperincmisthefirststeptotheknowledgeflntoneneedsmbufldupsucha systemasstatedabove. Inthisexperimentweseehowthefluidfieldbelmveswhenitis deflectedbyanimpubiveblade. Itisanalogoustowhatwewoulddotocontrolthefluid comingimotheauxiliarysupplyplenumwiththehelpoffineblades. Theexperimentis,firstlyastudyofthesteadyanalysisoftheproblem,thatis,when thebladeisinafixedpositiomandsecondly,itisastudyofthetransientcondition,when thebhdeisinmotion.Thelatterdepictswhatwmtldoccmwhenthebladesmoveintothe flowmthofthejetwhichwouldothemiseMerhtotheamdfiarymplnyold. Inthe experiment,wehaveasannedthewidthoftheinletducttobeanalogoustothewidthof thejet. Hence wedoourexperimentby keepingtheaboveapparatus inmindandby visualizingtheefi‘ectofhighspeedbladesastheypartiallyopenorclosetheinlettothe mndliaryairsupply. _j 1 . 1.. |\ MUG... L3M #07: “‘ 92218: .Euim c2835 5 no 32.5.1889”. nausogum ; .uE Lomcmw .39... LE mmdz .. mug... (6:930 LE 1 04. Lovecommm I a ecu—=2335 c5 2: be .6232 u... use": . .3: «an... BEE—cue... u a. ”862 .358 :9...“ bum—22:. E. 5.3 3:... 5893 .5226... .6 be 5:55.358. cause—um “m .3.— comcmm 30E LE mmdz I MIEZ (6:ch (.3. I u< Lovdcommm I m m£3.o> .ocwcoo o... #23 I ._. ascgd .0225: I n5 n5 .4 ............................. . n “ \‘fil” .n u \ /\ positio 1.2 Objective. Theobjective ofthisthesisworkisto determinehowthetm'bulentjetbehavesunder theinfluenceofanimpulsiveblade. Thischaracteroftheflowfieldcanbestudiedintwo ways: 0. To observethedeflection ofthejetwhenthedeflector/impulsive blade ispre- positioned inthe flowfield. ii). To recordthemainflow ficldwithdekctor blade intransient state. I‘n bio clos “1" Wm A rel in Fig 3c Wm: equark 2. EXPERIMENTAL APPARATUS 2.1 Flow System As shown in Figure 3 ,for the experimental work, a high-flow device/apparatus was used,. 'I'hisdevicehaddimensionsof2090x95x95mmThefanwaspoweredbyareversible blower ofCincinnati Fan ModclNo. PB-141A,runbya3 hp, 3450rpmmotor (Balidor model no. M36101). 'I'heflowratestln'oughtheblowerwasadjustable manuallyby closing andopening of the suction duct of the blower, Figure 4. Therefore, the control of theinflowspeedthroughtheSj (Slitjct)canbemonitoredtotherequirementofthe experiment.Thevelocity,atthevenacont1actawasselectedtobe35mlsee.’l‘his limitationwasimposedbythecah’bmtingunitpresentinthelab. Thespeedofmemflowwasdeterminedbythepresmnedropbetweentheambiemmd thatinsideofthewindnmnekUsingtheBemoulfiequafionandknowingthemn presmrevahtewithinthettmneltheinflowvelocity couldbeealculated(asshownlater). Arclationbetwecnthevoltageandthevclocityinthcwindttmnel,thusobtainedisshown inFigme5.whichisusedtomamtainedtherequiredspeedinfl1ewindnmnel. Sothroughtheexperhnemthepressmenansducermonfioredthevebcityatvem contactausedtonormlizethemeasuredvelocitiesintheflowfield. LetPubethenmospheficpmssumandPnbcthemeasmedpmmebythcpressme tramducer (having a certain mp value in inches of water/volts).me the Bernoulli equation; we have: L'sir NW 51" “he. “acre PAN-Pu =pV2/2 Usingtheaboveequation; v=[(PATM'P1'x)X2]/p p=densityofair. nowlet(PAm.P1-x) =P’ asP*isthepmssummeasmedbythepmssmenansducer,mdeachpmssmenansdmer hasitownmp.ValueinchH20/volts.AlsothisP’=p.gz and p.=densityofwater Therefore combining all the equations we have; V=(22(p~/p)2)°" Where Z= inofwater/ volts ‘ volts =Mpvalueofo*volts. Nowhyflerpohfingthedensfiyofairandbrhgingthevahiesinthesametmits (m/sec)we havetheresulting equation to calculatetheveloeity ofairasaresultofpressme dmpbetweenambiethhepmssmeinsidethewindnmnelmeasmedbytherTx v = (2 ‘ 9.81*1.94/.00232*.0254* Mp value 0fo * volts)“ = m/ sec Therefore with the help of the above equation, knowing the voltage generated by the Px.Tx(preesm'etransducer), wecanfindtheresultantvelocityatthevenacontracta. DH (1: 2.2 Slit Jet Theslitjetassemblyshownin Figure.6 .Itischaracterizedbyaslitwidthoij)of 40mandalengthof300mmforthepresentexperiment.Thcplenum,whichisopento theaunosphereupsu'eamofthejet, ischaracterizedbythedimensions 775mm(or 12.916 timesthewidth)x475mm(or 1.583 timesthelength)x460mmastheupstreamdimension. 2.3 Deflector blade . Auavelingdeflectorbhde,guidedbynmnerssuchthmitshadmgedgcwasatX/Wj =l.5anddrivenbytensionedspringsasshowninFigme.7,isusedtointerruptthejet flow. Thcapparatugtoachievethisdymmichnenupfionofthejegwasdesignedand fabricatedaspartofthepresentthesisefl‘ort. Adetaileddescriptionofthisunitis preeentedinAppendbtmabriefdescriptionisgivenbelow. 'I'hedeflectorbladewaspositionedatvarious insertiondcpthstorecordthesteady staterecponseofthejet. Initsdynamicmde,thetensionedspringspropelledthe deflector blade from its initial position: Yb(0)=-101 mm=-2.525‘Wj, to a desigmted final position. The fimlpositions, y(oo), of y(ao) = -4mm=-0.l"Wj +5 mm = 0.129% = +7mm=0.175“Wj WET .‘lx 2.3,‘ 9 wereselectedforfirrtherstudy. Itwasdeterminedthatafimlpositionoflmmor y(ao)/Wj=0.175wascompatiblewiththe objectivesofthisinvestigationandthisvaluewas usedforthedynanncmeaanements. Anmestingtechnique,whichst0ppedthebladeatfl1edeshedlocafionwasan importantaspectofthisdesign. SeeAppcndixA. ThreeIR(Infi'ared)photocellsoropticalencodcrs(OP),wcreused,asshownin Figure 8. andasdescribedinsection 2.4,todeterminethevelocity ofthc blade: dyaldt. The second and-third photo cell provided the relevant blade velocity information for the measurements reported in this thesis. 2.3.1 Operation of DB assembly AsMedearlierJhNtheDBassemblyismaddifionddwicefittedoverthesfitjet apparatus. The mode of operation is as follows: 2.3.1.1 Positioning ofthc DB FirstofalLtheDBhastobepositionedatthevem-conhactathewidthofthe Sj is40mm(Wj). Asthefluid flomtheplenumcntersthewindttmnelintheformofa jeLavem-conuactaisformeddownstreamtheexitplaneoij.Incaseofanideal flufithejawidthwnfinuectodecremeandsueamlnnsbecomeasasymptoticafly parallel [Valentine (1967)]. In case ofa real fluid, however, the vena-contracta 2.3.1 10 (minhmnnjetwidth)formswithinslitjetwidth,downstreamtheeidtplane. In additiondependhgupontheReymldsnumberofflnjegsymneuicvonexmotionis developed; these motions make significant contributions to the spread ofthejet [BW, ClarkandKit(l980),FossandKorschelt (1983)]. Forthisparticularexperimenth= 40mm,meansthat vena-contracta wouldoccurat60mm,(= 1.5‘Wj) downstream theexitphne. So,theDBhadtobepositionedat60mmfi'omtheknifeedgesofthe Sj. Forthisthefomscrews(intheendplates)wereusedtopositiontheDB. As Mgthesescrewsmughthesanephchbdmthevaticalmovememoftheuppcr twohalveawhichthenmovedthewholeDBassemblyupordown. Thus,thevertical positioningoftheDBassemblycanbedoneeasilyinthismamer. Thelateralplaeing oftheDBoverLj(lengthofthejet)isdonebyplacingthebottomhalfofthcend platesoverthesupportplate(wooden)oftheSj. Oncetheadjustmemhasbeenmadc, whhthehelpoftheveMermidtheadjusfingscmwsnencomesthermnmgofthe DB overthe rails. 2.3.1.2 Running ofthe DB Oncethewholeset-upisdone,theDBisreadytonmoveritslength. Forthis,the twopullersarepoppedontotheDB, andthentheDBispulbdbackagainstthe springforcctoapredeterminedpositionandthenreleased. AssoonastheDBis releaseditaccelcratestowardsitsterminationpoint,whichistheendofthecenterrod. ThealignmentoftheDBtipandthatofthetipoftheknifeedgeofthe Sjisdonebya 2.4 Fe c011 11 thinthreadpendulum. ThependuhunisplacedontheSjknifeedgeandthethread withaweightattachedhangsdownundertheinfluenceofgravity. Thecenterrodis placedinmhawaymylooseningthenmsinthemmdholdenthatwhenthe DBisleckcdinposition,thetipoftheknifeedgeoftheDBjusttomhesthettnead pendulum. Inthisway,boththetipsoftheknifeedgeeoftheSjandtheDBarc ahgmdandthisdetemmesmestmtposhionoftheDBknifeedgewfihrespeatoWi (.20 :26 a 818%... 88m 2. 32...... 2 2:8 5:228 .m a... VP Né r 0.0 ed «.0 Nd 355... as; .8 :50 5:35.30 9. me ON mm on mm ov me OBS/W NI 033118 19 Slit jet Plenum Fig 6. Slit Jet Assembly . / Escmi L3. O 2 .EuEtomxm 2: 5 comb biog EoEtonm .N. 23w... \\fl\\\\\\\\\\N\\\\\\\N\\\\\N\\W\~\\\_\\ \ \ 7 fl 1 “ . - . . \ \ \ _“ _ r “ mmcm>ech A? \ \ \ “ 9.2.. tr... co... x .393 m a go um o v \ m 339 \ Lmn£d£0 cozbsw “ covumimn \ \ fl “ \ \ \ \ “ ($305 cozbsm ] \ mzwocaad awn vzw / mmcmEc 203m Lovumimn / 23cmE L3. DB. C9n+ ~er 21 > Y L._101_.. \/ X Metal Strip) passes through Optical Encoders Slit Jet L ‘ / \ ' I #5 D\ fl El #2 Optical Encoder #3 DB - Carriage DB _.... | +7 Center Rod DP #1 L# "141 > DB Motion Direction Figure 8. Set up for transient detection of DB $722.75: .s......::> 5.22.52 2.5.31: 22 9:83.. oma=0> concoem 28.50 .o at 00m I DEC. «.9 and ad and «.9 9.6 .6 8.0 o I o n o . 0 pi a 11L— and i i l i i i n36 .. |II iii Ili 111111111. 11 Ii. 1.1111, . ii «Go “gag no.0 omcommom amazo> cocoocm REED suti - 982110 A 0%.... 50.00.50! 0:30p: O. OItOQIIs LOVOOCO .tu:QO 23 3.0 '6 —n.aolal «Eel-I .261 .03... 9.39.. 2 8:88. 8.52.... 28.30 .c. m... «on . 2...» 8.0 8.9 3.0 b .1... can... 330:... 9.30:. 3 02.2.... concoc- .3330 N06 MO' MA 24 Fig l 1. Schematic of X-array hot-wire probe. 1hcir; . a. . . ._ . .. 3.2.... . .. .. .2...— .\/\< / TuFt p 25 Needle holdlng the TuFt § . ' I ’ 1 // g/m Tut-‘1: Probe TUFT PRDBE Figure 12. Tuft probe used for measuring the steady state angles 1‘ z =< ~‘CsEO so UOuUO—560 §° .~° . a A.“ ”v u 26 mud Nd s I .92.; a. 2485 S 859...). 8.32.8 .o 0&5. 3582,. .2 saw... Se. 2 on use... 3 8:58 8.92. .2 2.6 to mod o mod. to. 9.0. No. mwd- Fem. .3. 8.8.3.. .o 292 35:32 sembep uI eIBuv 3.1 In 3.5: 3.2 gel 10 3. DATA PROCESSING 3.1 Introduction Themfornnfionprovidedmthefoflowmgsecfiondescribesflrdmawquisifionand process’ng. Section3.2describeshowthemeanflowanglesweieachievedforthesteady statemeasurcments. By“steadystate”wemeanthatthebladewasplacedatacertain position inthe flow field. Section 3.3 describes the processing algorithm for the probes. Section 3.4 describes howtheposition of the moving deflector (DB)wasdeterminedand 3.5dealswithfitrtherdetailsforthereductionofthedata. 3.2 DigitalCameraProcessing Aninifialsctofobservafiomwiththedignalcamemwemrecordedmestabfishthe generic attributes of the deflected jet. Followingtheseobservations, theDB was positionedatthelocations: -10mmSy3510mm(or-0.25SYb/Wj$0.25)andthetufiwas usedtoidentitytheflowangleswithinthedeflectedjet. (Aseriesofypositio-wasused forthisassessment,theindividualtufiangleswereaveragedtorecord‘the”ang1eofthe 561-) 'I‘hesedataarepresentedinfigmell Asshown,thereisasystematicincreaseofthe deflectionangle with respect to the DB position (yg). 27 3.3 X-I An) 28 3.3 X—Array Calibration and Processing An X-wire was used to provide two components ofthc velocity in the plane of deflectionofthemainflow. Theplaneoftheprobcistheplaneparalleltothetwowires oftheprobe, Figurell . TheprocessingoftheX—arrayhot—wireproberequiredtwo voltagesfi'omthewiresintheprobetobeknownatthesameinstant. Thesevoltages werethenprocessedtogethertoprovideflowspeed,Q(t)andalsoy(t)theprobeangle. TheshnplestX—amypmcesshgalgorithmisbasedonthe“cosmehw”anddealswhh the concept of efl‘ective cooling velocity (Bradshaw (1975)). This concept suggests that thehotwiresintheX-arrayareonlycooledduetothevelocitycomponerfiperpendicular tothewire,theflowcomingatananglcnearlyparalleltotheinclinedwireisignored; in this concept. The efi‘ective cooling velocity “Qefl” is givenby the relation. Qeir=QCOS-(l3-Y) (1) Intheaboveequationy-anglewastermedasthcflowangle,andisdefinedastheangle betweentheaxisoftheprobcandthe inplane velocityvector,theangleflistheangle betweentheaidsofthepmbeandthelmeperpendicuhrtothehotwneflheabove equationcanthenberewrittenas, Qua = Q 1 C08. (15) C08- (7) + Sin (13) Sin (7) ] (2) Substitt We get HE [Mr Uand) 29 Substituting the values, U= Q C08- (1) (3) V = Q Sin (7) (4) We get the following equation, Qeir= U Cos. (B) + V Sin ([3) (5) Thetwo scmorsintheX-an'ayaretheusedtosolvetheaboveequationfortheunknown Uandbe, Q: = U (308- (B) + V Sin (15+) (6) Qea=UCos.(B-)+VSin (B-) (7) Thevalueofthe“fl” isdeterminedfiomthecalibrationdata,theabovetwoequationcan betransformedas; Wher inca: W1 30 Qeir=[(F«2+A(Y=0))/(B (i=0)/ COS-(W1 WI“) (8) Qw=[(E2--A(Y=0))/(B (Fm/CO?» (13-)")l "HT” (9) Wherethe-and-i-indicatethevoltagesandcoefl‘. associatedwith-Band+flsensors,but incaseofanX-arraywe haveQ=CU2+V’)”2 andtan"(v/u)=y,also. Theabove“law”isvalidforflowanglesupto+/—12degrees(Fosset.al(1986))butfor lugeranghsofdeflectionorvariationintheflowangles,thecosinelawhastobe modified;becausethentheinfluenceoftheflowcomingtothehotwireatalargerangle, i.e.paralleltowirewouldalsoadded.ThustheCosinelawcanbemodifiedto Qea=Q(COSZ(B-’Y)+k28in2(l3-'Y)) (10) wheretheadditional term Psm 2(Ii-y) takesinaccountthecooling ofthc hotwiredueto the‘tangcmialzvebcity,andthetermk2isdetemmedbyfliecah’brationdam. Alternatively,thealgorithm describedinFoss et.al (1995) providesamethodbywhichthe magnitude(Q)anddhecfion(y)ofthebcalvebchycanbedeternfimd.hthis,the conceptofspeed-wireandanangle-wircisused. Thatis,thewirewhichismorc perpendicularto flowdirectionisnnreresponsivetothevelocitymagnitudeandthiswas designated dcsignaied 111': pic angle of Ih was repeat 1). Thesei In combinai '5 POSStble i c(”weight 0‘5 degrees In this a‘ Wmlfihip of the “lies 31 designatedasa“speed-wire”.Thesecondwire,whichismoretangentialtothevelocity,is designatedasthe“ang1e-wiie”. Thpmcessmgalgorhhmmquhedmextendedcalflnafiondatasetmpecificaflythe mgleofthepmbcwhhmspectmtheflowwasvmiedatagivenspeedandthispmcess wasrepeatedforsixflowspeeds. ThisprovidesthespeedandtheanglewiredataasHQ, y). 'I'hesedatawerefittoamodifiedtheCollinsandWilliamrelationshipas: E’(Q. r) = Am + 3(7) Q‘” (1 1) wheren=n.also. AtagivenspeedQ,thereisauniquevalueoftheanglewirevoltagez E(Q,0)anda measured voltage: E(Q,y). These values are combined to define n as may) = —"————l 12 " 1549.0) 1 ( ) Incombination, (11)and(12) provideapairofrelationsthatcanbeiteratively solved. It ispossibleto showthatthenatureofthe smoothedcalibrationdatacausethistobea convergent calculation. The iterations are continued until convergence to a change in y of 0.5 degreesisobtained. mthisdgorhhmthemhialyvahwisdeternnnedbyusmgthemsmeefi‘ecfivemofing relationship andthe technique of Bradshaw (1975) to infer (Q, 7) fi'om E. andE; (voltages ofthc wires), as stated earlier as: 32 512 = AI + BI 11‘) Cos. (MW! E22= A. + 132le Gas (132 m" Convergenceisachieved fortherange -36Sys36 degrees. ThusknowingTandthevelocityvectorisspeedwire. Thevalueonmfi‘om previouscalculationaisthefirstestimateoftheflowspeed. Theyiscomputedasy=y(n) andnisgivenbytheEqu. l2.wereE(y,Q)isthemeasuredvoltageoftheanglewireand E(O, Q) is computed, forthe angle wire. The flow speed can be computed fi'om equation 8,and9. Usingspeedwirevoltageanddistinct‘?” valuesclosertothatinterpolated resultsbetwecnthetwoequations. Thcspeedwire/anglewirepmcessingalgofithmhasbeenshowntoimmersethe sensitivityoftheprobetoi36degrees. ThroughoutthisexpcrimenttheX—arrayhasbeen used to take measurements: given the two-component velocity fields. 3.4 Transient Velocity Calculations WhentheDBisinthemotionfi'omOPl to 0P3 ,itisdesiredtoknowtheUandV velocitycomponentofthejet,whichis beingdeflectedbymovingDBwiththehelpofa staticprobe(X-array).'I’hespeedoftheDBmiderthespringforceisnotuniform. But withthehelpoftheOP,sweareableto determinethepositionatacertaininstantintime, byanalyzingthc timeseriesofvoltages. using const 60118 As i each 3.5 l E 33 ThenbycorrelatingthepositionoftheDBoth/M,withthetimeseriesofthehotwiie using quadratic polynomials of “t” in the form of , AtA2+Bt+C ( where A,B,C are constants of the equation), We were able to find the two velocity components corresponding to a specific position ofthc DB in space. Asthcreweievariationinspeedofthe DB overeachrun,so individualco-relations for eachdatasetwhererequiiedtoestimatetheUanchomponents. 3.5 Nornnlization of Data Allthedatainthisstudyispresentedinnon-dimensionalform. Themeasurement locationsarenormalizedbythetotal widthoijandthevelocitycomponentsaie mrmfizedbythemcommgwbcuy,msmedbymepressmeuamduccrandmflizingthe Bermmfieqmtionhpmssmedifieremialismkenbetweentheamwphemandthewmd ttmnelandisusedintheBernomliequation). 4. RESULTS AND DISCUSSION 4.1 Introduction Theexperimentwasconductedintwoparts. Resultsofthefirstpartdealswiththe steadystatemeasmememOftheSjundertheinflmnceofthepre-posfiionedDB. The resultsofthisisthenusedasthebasisoftlrseeondpartoftheeaqaerimeutwhentheDBis intransientmotion. Sections4.2-4.3dealswithsteadystatemeasmementsandsection 4.4 throughthe endofthe chapter, dealwiththetramient study. 4.2 Steady State Measurements 4.2.1 Velocity profile with out DB Townduathesteadysmtemeasmennmghwasfirstmbedecidedwhatspeedofthe jetistobeusedinthewindtunnel. Asthepre—existingcalibrationunitintheturbulem shearflowlaboratoryhasalimitationof37meters/seoondonit,sothespeedselectedfor themeamn'ementhadtobelessthanthisinordertohaveapropercah‘brationdoneforthe hotwire. Thespeedwasthensebaedto35meters/second,andthesamewasmahnained inthewindttmneLwiththehelpofthecah'brationcurvechosenforit. Thehot-wire semarwascdihatedforsbmpeedsmngingfiomltoflnflsandthenhsefledhnothe wind tunnel. 34 35 'l‘hevelocitysm'veywasearriedomfi'om-ISYp/MSIatX/Wj=l.5inthewind tunnelusingthehotwireprobemhesymbolYprepresemstheYlocationoftheprobe. The ondist1ibutionisshowninFigmel4. Fromthisitcanbeobservedthattheslit-jet flowisnotsymmefiicalaboutthecenfialaids,andthemostlikelyreasonforthisisthe pressmeofthesuctionbloweronthey<0 sideofthettmneLTheshifiintheprofileofthe jetisfoundtobeZ unnfi'omthecenterlineinfen'edfi'omthefigmeslllto 17. 4.2.2 Velocity profile for Yb/Wj = -0.5 TheDBwaspositionedatYb/W=-0.5,andthevelocityprofilewasobtainedwithl mmincrementaltraverseofthe x-arrayprobe; seeFigure 18.Thenon-synnnetrical behaviorofthejetisagainevidentinthesedata. (Notethattheprobewaslimitedto Yp/Wj=-0.5becauseofthe DB’s position). ByplacingtheDBat-O.5weobservetlnt thefluctuationofUandVcomponentshasdroppedby36%and35%respectively;see FingOanle.ItisinferredthattheDBlmsimermptedtheregularformtionofthe smallscalemotionsthatareknowntoexistattheedgesoftheshearlayer. Itisthese motionsthatareassumedtoberesponsibleforthelargefluctuationlevelsoftheslitjet; seeFigure l9and20. 4.3 V 4.3.1 fluct featu ‘Elut Nete 3 6 4.3 Velocity Profile for Deflected Flow Foradeflectionangle of30°offlow, the probe waspositioned parallelwiththe jet axis ,sineetheX-anaylndaeoneof136degreesinwhichitcancapnn'ethevelocity.Forthe 45° deflectiontheprobewasorientedat25° givingacone ofobservationz9t081 degrees. 4.3.1 Velocity Profile for Yb/Wj = -0.1 WhentheDBisplacedath/M=-0.ltheangleofdeflectionwas30 : 4degreesas obtained fiomtheDYCAM. Theresulting velocity profile figure21,showsthat/Uo hasdeflectedtoonnnfiomthecenteraidsoftheslit-jetinthedireetion oftheinsertion. Furthermore, Figure 21 and Figure 22 revealareductioninthe U-component ofthe velocity with an increase in the V-component. However, looking at the / Uo ,see figme24,we observethatthejetprofileismaintained,as thereisminimumvalueof fluctuationinthchomponentwhenthevah1eatitsmaxinnnn. Anotherdistinet featureofthe deflectedjet isthatthey-component velocity: onlyexhibits positive valueathenngnitudeof which(ascomparedtothepreviousplot) hasalsoincreased. Note tint the peak rmgnitude of is halfof. 37 4.3.2 Velocity Profile for WM = 0.125 Adeflectionof45°i 1.5 degrecsresultswhentheDBisplaceath/Wi=0.l25. For thiscondition,theprobeisorientedat25°sotlntthedeflectedjetcanbecaptm'edbythe hot wire sensor. The velocity profiles obtained are restricted to 0.125 componentofthe velocityisindicatedbythesedata. Note that ~;seeFigures 25andFigme 26. In bothofthesefigmesweobservethatthejethasbecomebroader,asthestreamlincsofthe jetarenowunderastronginfluenceoftheV-componentofthevelocitywhichcauscsthe wideningofthejet. Thejetedgehasshifiedtoy/szo.4,i.e.,l6mmfi'omthecentral line of the slit-jet. 4.3.3 Velocity Profile for Yb/Wj = 0.175 FortheDBatYb/Wj=0.l75,theangleofdeflectionis48°.'l'heinereaseofthe deflectionangleisassociatedwithafiu‘therreduction of the componentand component. However, the component is comparable to that of . For Yb /W = 0.175, isreducedbyabout 30%andisincreasedto about 25% of U0. The magnitudeofthedeflectionforthiscasewaslargeenoughtosatisfytheinitialobjectiveof acompletelateraldisplacementofthejetcolumn. Hence,thiscasewasselectedforthe studyofthetramientefi‘ectgseefigm'es27t028. 38 hthehnendedpracficetherewinbeasetofnmvingbladesthatwouldbeusedfor guidingthea'nflowinoromoftheamdliaryplenum,thnsmaintainingtheplenumata constantpressure.(Refertofig l ). Therefore,inthe following sectiomastudyfl‘ransient) iscarriedomtodeterminethejet flowcharacteristiesofthedymmicimertionoftheDB. 4.4 Transient-Motion (DB) Study 4.4.1 Introduction ForthefiansientstudyoftheexpethheDBwasnmintheraflsunderthe influenceofthesprings; andattheendofthetravelitwasstoppedatapre—determined positionintheflowfieldtocauseadeflectionofthejet. Withtheknowledgefi'omthe steadystateanalysis,weknowthatwhentheDBisat0.l75,thejetwouldbetotally deflected out of the slit-jet projected areato they>0 side. AstheDBwasnmfiomoneextremetotheother,seeFigure08,thedistancebetween thethreeIMwasfixedandtlntofmefirstMmdthestmtposifionwasalwfixed. The distancebetweenOplandOP2was60mmand0P2toOP3was48mm,soonee,theDB triggered 0P1 it traveled 108 mm before st0pping at +0.175 Wj. 3 9 4.4.2 Velocity of DB Therearesixarbitrarilychosen positions fortheX-arrayprobcs, i.e., Yp/Wj=-0.5,- 0.2, 0.2, 0.4, 0.6, O.8.asshowninthefigme29.Allthemeasmementswereexecuted usingtheselocations. AsingleexperimentwasexecutedbyreleasingtheDBath=~200 mm=-5"Wj. 'I'hetimingfortheexperimentwasstartedasispassedtheOPl detectorand continuedtmtilitcametorcstatthetermimtion: Yb=0.175‘Wj. Twelve such experimentswere executed for each position of the probe. Hence, ‘72 experimentswere usedtocreatetbetransientdatareportedherein. For each run of the blade corresponding to the specific YP/Wj position, DP and hot- InthestudyofthethneseriesoftheOPoutprfis,weobsewethatthevebcityin betweenanyspecifictwo OP’sisnot constant. Ofthetotalmunberofmns(72), the meanvelocityoftheDBcalculatedbetweenOPlandOP2wasl.03m/swithastandard deviation of 0.1487 m/secandthemeanvelocity between OP2and0P3 was 1.06ch withastd.dev of .0139 m/sec,givingnominal Vb/Uo of 0.03. Fromthenumericalvalues,itisobviousthattheDBdoesnothaveauniformvelocity butitisinacceleratedmotion. Hence,asimplecorrelationbetweenthebladespeedand thatofthehotwiretimeserieswasnotpossible. Thecorrespondencebetweentheblade speedbetweenOP2and0P3andtheposition(Yb)wascstablishedas 4.5 Com; 4.5.1 Flow 40 y. = yawn) + 130 - «0P2» 4.5 Comparison of Steady State Results with Transient Results 4.5.1 Flow Angles. 'I'heflowangles,recordedfi'omthehot-wirereadingsfortheerunsatcachYp location, permit the averaged angle fiom the transient condition to be evaluated for a giveanvalue.Thetransient anglewascalculated fiomtherespectiveUandVvelocity components.ForeachthheflowangleisdependentuponthepositionoftheDBandis independentofthespeedofitasshowninfigure30and31respectively.1nwhichitis revealedtlmtforanychosen YpandYb/annd/Uoisindependent of dYb/dt .Thus with the help ofthese two velocity components the angle obtained as fimction ofthc Wmanbecomparedwiththedefleaionmgleobtamedfiomthemfimthesteady state. Thisdhectcompafisonrevealsasystematicfiendwhereintheflowangle<95¢> for thetransientconditionlags_be;_hmdthevalueof<9j..>forthesteadystateconditionsee figure32.'I'heaveragevalueofthe<9jet>transient,isobtainedfromthehistogramof angles,seefigme33to74.Allthesehistogramsareconstructedfi'om12runs.Seeing theseplotsitwouldbeforthmentioningthat,whentheanglesforcachrunisdifi‘erent,it ismdicafiveofthevorficesshededbymeja.Andwhenmeangkissamefornmdmum runsthatisthemeanflowangleoftheflow. ltls'u thcpres 4.5.2 \ Vel Yp Val profile thede 4 1 It is instructive to realize that this lag occurs for the low velocity ratio: V3/Uaas0.03, of the present experiment. 4.5.2 Velocity Profiles Vebcfiyprofileshthefiansflcasecanbereconsfiuaedfiomthemhermsateach vaahre.’l'heseprofilescanbecomparedwiththesteadystateprofiles.Thevelocity profilesofandareshowninfigure 75 to 98,andanoverallbehaviorofthejet astheDBmovesacrosstherisshowninfigure99and100,inwhichonecanobserve thedeflectingtrendofthe Sj. .‘ ‘l{“l‘ 3.2 034.7 2:05 3.00.0) 42 w 06 c6 b ’ d .6 N6 3.55 a mm 53 a do 58:232. 5&8 a oan e_oo_o> m2 31> a N6. 7 n v.0. 0.0. x "53> o5 2qu a oEAav 8.595... b_oo_o> .2 oswm 0.0. p. P v............... 0. O. O O O 0 co .. p6 .. N6 1.. n.° .3 '.° 4 ad . too I 7 ”0° I :oo .1 ad 09!... u _ -DDO .0 00 1 09009009: .00 6.». can? scan 3.8.; 0W 43 3 LE o5 Bugs" 3 oEA>v 822.22.. §oo_o> .2 2&5 55...: «a mm— 53 .8 he engage—o EES .a 3:95 3628/ m.Z «o : 0.0«6» 0.0. o 990 099099 9 ed. 9!! A 0. 4? "MW 00.7 3.9 o2$v 2.3a 2.8.3 3.». Oaxatav so 0505.. 44 w r h . 0.0 0.0 . 09000900000009000 co L3}; 2:. 97.2.; oo 2.7.72 3.3:... 55.5 a ma 5? ado Eoooeoeoo 55% a oaea e_oo_o> mi «.0 0 «.0. 0.0. 0.0. .7 Foo . 1v Noc .:. n.° 0.0. p. 00090990909+ OHM-0’ no? 3». .53.? .o .32.. F b ’ ““ a0.h~ ODxAl>V uO 3:0:- x u 53> Ea n. 12x 3 29> .2 some. 55...: a ma .23 a .o 585.5% 5&8 a 2ch a_oo_o> m2 o... a... .3 n... , . o «.o. 0.? 2.. 9o. .. ‘ l. ’ ‘ d 45 4. q + l 4 ur 000000000000 4vQ0 O v000000 9 A A I 4. 8.5 . O. Ofll¢~A> 5. Foo 0 9 .. 3... 0 00 000 .. o3 A10 6.». oatsv .o .28.. 46 3. "53> .5 2L: 3 oakav gaseous 362$ .2 some 31> ad 0.0 0.0 0.0 «.0 . . v «.0. 1.0. o L. a . . o a . 0000000000000 9 O O O 0 0 9 0 0 .. No 0 0 0 iv '.° 0 9 0 . 17 0.6 0 0 0 0 O O O 0 0 000¢w9900bb900 9 863.? 9 .8 .58.. 3.23.5 °W<fl> 47 p 0.0 3. "53> o5 3 u .95 .3 ...._§-> .2 2:9". as.» No a «.o. 0.? 0 0 q» 1» ' $6. 0.0. VOOOOOOOOO 000 .09 i) O O O 0 - t .00 .r «0.0 3.9 0.6. a» 3. macs oak-Io 48 p 0.0 b no- u SS» 2.. n. u .95 .3 31> V0 «.0 0 «5..-: .0N 950$ «.0. 0.0. 0.0. 00000000090000 000 0 0 O O b b 4 . 0 . . 00.0 db 0 «t ED 6.» . 3.. er 3. maze ORR-fl) 49 p 0.0 A o 0n n 8‘ ..o 0.05 508:"... 35:82 0 S- "32> Ea 03.95 3 BR? 823.5% b_oo_o> .3 2am 31> to 3 a «.0. F I ..0000000 0 IF I) 0 D G c «.0 .3. noc .y “.0 .. 0.0 gr “.0 0 00 0 0000000000 0 6.9 to. a> 3. .22.. 3.8.; 50 A o 0n u .030 0.98 50800.. 35:82 0 _.0- new»); 0.3 0.. "SEX .u 02A>v 503:3? b_uo_o> .«N 050E p 0.0 D I 31> . ad . to «.o up -+ ’ Cl «.0. .. v.0 .. 9.0 .. 0«.0 4 0.0 .. 00.0 4 0.0 3.9 to. 9.8. .32: 2.8.5 010 51 E- "33> o5 2 u :Ex 3 2..-: .8 2:3... .E§ 0.0 0.0 «.0 0 «.0. 000 0000 .- 0 O .T 00.0 .. 00.0 .. «'0 O .7 0rd P P ¢.| d 8.». to. 9 3. use... 0. .u °fll<-fl> 52 3- "33> o5 n. u .52 a .eE-> ...~ 2:9“. 3.9. 3. 9 3. macs 31> . 9o 0.: 0.0 «d a «d. 1 1 J 1 . . . . 0 v 0 0 0 0 .. «a... 0 0 0 0 0 0 0 0 0 O O . 1r Soc 0 0 0 0 0 0 .86 0 0 0 0 or 8.° 0 0 0 0 0 9 1r '-0 O O 0 0 ~10 "IR-A) 53 n. we u .030 0.0.6 5:00:00 65:52 0 mfid ".92.; 0.6 n; u a; .u oEADv 5:20:36 b_oo_o> .nu Bani 33> a... a... 3 o... no .3 no we 3 .L 4F b H '1'- b d an- up 4r d 00...... O .r v.0 .. N.° .. 0.0 .1 ”.6 .. 3 6.6. 3.... a> 3. 0:33. 3.8.; 0.0 mm» 54 . r. 3 u .030 0.0.6 5:00:00 63:82 0 n. .c "35> .23 2 u mix a o2A>v gaseous §oo_o> .8 2:3..— 31> 3 o... 0.6 to no a... to F D I L dr- db I 1 d d I ‘ O. —. .. ... . O. 1. Foo . «.0 .. 0.0 I 0' can» .. 0.0 .3 @.° 6.662... a> 3. 2:93 3.8.; 0.0 55 A... «V n 3.20 0.0.6 20:303. BEEOZ v n: .c "35> =5 n. u S .R 2&5. 33> 0.0 0.0 «.0 0.0 0.0 0.0 0.0 «.0 9.0 h I I ’ Ll b F b I C Q I ‘ .Q ‘ q 1 0000000000 0 Ar Noo .. 0.0 .v ‘.° 1' °.° 6.66:... a> 3. .22.. 2.8.5 «.0 mm» Ao we u .030 0.0.6 558:2. 33:82 0 Ed "35> as 2 u 92x 3 oEA>v 5.3%... b_oo_o> .6 2:? 31> a... a... 3 o... no to a... No S .7 I ’ ’ 1 1 dl 56 000000000 0 6.6. at... .3 .3. 3:21 2.8.; «.0 «.0 . 0.0 0.0 0.0 can» S7 Slit Jet Def-‘lector Blade / l_ 7¥ “j x = Array probe locations / XXXXXX DeFlector Blade -—>Y Figure 29. Schematic representation of locations, of the hot wire probes used during the transient motion of the DB. 58 63>: o. 82.8. 5.3 3.33:. oEADv he 082.53%:— . 92.; EB .92.; :93» 8a dm Bani .o 3.0 8.9 8.0 3.0 86 and 3.0 $6 a. 9 a... .2. 32a 2.. .o 52.2. > =3... .3 9.0 s6 06 a m . .6 u.— 59 ochre o. .0232 5.3 3532: o2A>v be oucoecoaocfi . .929» tea .923. :93» 8”— ..m Bani 5g 3.0 8.0 00.0 3.0 00.0 «0.0 3.0 0.0 I) db lb IF I P 1 IF I. 1 O. O a. a» 2.12.395... 5:32. > :3... a .4 i-l III. '0'. - l .0 0.0. 0W 60 293 .8532: :83th- ofiea 92:39: m.m 0 mud «.0 80.0 H oDB> 3389: 5.. v .5352. 05 22m :52» o... :35”... 035 c9532: 5 3:285. . :52; :03» a com .Nm 2:»...— .2...» m3 3 86 o 8.? 3. no 2.0.2.8». 0:. 88m.“ .5. 00:00:00 .0 no.0:- .0550: 9.0. «.0. mat-15w 61 8 gal-50+ Bee-62ml «80.0— . $8.0“ . $8.0m r $8.0v . $8.00 : $00.0» $8.8 A .: $8.8 $8.8. no- "53> Ea neeugcfi 3 3.95 30: co sense: .2 2:5 320.0 m.m.n.a.n.n.m.m.m.n.n.m,m.n.n.n.m,mu w. a u iilil‘ I I I C C I I. ID 9 I. ' 3. 3 .- 23. er .a 29... .o 523...: I. z t o “9'20 rrFF 62 8 (int-50+ gal n0- "35>; 0:.“ v.0-n_.2 E «.0—w..." 3o: 0o EEwofiE .3” Esz .0290 I. mmfiafinmmwnnmnannmfluuumcmuumcavzorr9... "onujtunvnfinuonun a $8.0? . . \il $8.8 800.8 #80. Y J 38.0» : $00.00 $00.05 800.8 $00.8p m6. n> a v.0. a> .o 3.0:- 00 59.082: n0. ur$E> can v.0-u_.>>\s> E “Em...“ 3e: .3 EEon: .3” EswE t WNW”NEW”””flMWWnumRRWRWONflflNOQ720-».r?.r 50' : \‘l’r $8.0m 800.06 88.3 . :l 62 8 333+ gal $00.00 $8.0s $00.8 :88. c “Aw- fl> C '.9. g «I 00—9...- 50 5:30.03. m6- u_.> use mhmdfimg}; E mpg—wen Bo: ..o EEmoE: .2 2:3". 320.0 mmsxnamwmnvmfinnnmuunuum.muu.m99rzo 5. A I} .F $00.0. . $8.0m . $8.0m $00.0v $00.8 63 8 96.—350+ gal $00.00 . $00.05 $00.8 $8.8 . m, $00.8. no. a» a 2a.? a» .a 8.9.- ? 623...: 64 8 sou-50+ gil $00.08 $8.0m . $8.0m $00.01 $8.0m . $8.00 $00.03 $8.8 $8.8 . $00.8p c md- n.9,}; ecu 2.06.65}; 3 ave—we.“ 3o: .0 EEon: .9“ uEwE mamannsmmnnmuanamuhfihfi t o6. n> a 36. a» .a 3.9... .o 2.522: bum; 65 m0- n.5,}; 0:.“ m~0.0-u_.>_ E 8.9:“ 3o: 0: 6537.:— Nm “:sz 32000 .mmnannmwmnamuunnmuunau $8.. ».nvooo.. I. 09977.0???9 I+I+I+I40 $8.0. $00.0N \ $00.00 .. \ $8.0m . $ {RSI-I gil $00.00 $00.05 $00.00 $8.8 $8.2: . 0.0. a; d 0N0.0.a> .a no.0... .0 53030.2 n6. 8» a .6 n> .n 2.3:- .o 5.52:: 66 8 gnu-50+ gul $00.2 . $00.0N $8.0v : $8.0m . $8.00 $00.05 $8.8 $8.00 . $8.8p . n0- L3}; 0.... _.0+u.§>>._> E 33.... >6: .6 EEonE .wm 8:3“— 320.0 mmannummmnnmnunumunnnwm V 9t 9t Zt 0t 9 9 V Z 0 Z' 7. 9" 9' NI a... a» a F... a» .o 8.2.. .o 523...: Mg $8 8. Fit.-- -Ilnl‘1 ad. a.» d as p .u 9» .I .03.:- 3 5.2022: m0- n.5,}; 05. mh_.0+u_.2<0> .a 3.9... >60 00 EaaoEI .3 Esz 67 002000 mmaannmnmnnmnmnumuunaa macovzo. 5.4 dd 1 ° $00.0.. $00.8 $00.8 $8.0... a. ,$00.0n. . $263+ lance-gal $00.00 $00.05 $00.8 $00.00. _ . « $8.8w 0.0.. a; 0 0:30 a; an no.0... so 52020.: «6. a.» .q 26...- a> 3. 538...: 68 $§+ gm' $8.0. .. $8.0m . . $88., $8.8 . 0 $800 ; 8.8 t $8.0m . $8.8. . «.0.. "9.5); 0:. m~n.0.u..>

.a 3.9... >6: .0 5.32%: 0.. 2:3”— mavunouunnnmuuzaaal FPPkPI‘bLP’IP’ DD ‘1‘114‘11111‘ ‘11 1 ‘ 1 u... ..> .. .3... er 3. 583...: d «.0. a> .I 9.0. 9. .0. 5202...: 69 $§+ gal $8.0. : O #88 .. . $800. $8.8 . . $88: 8.8. . . 3- "31> .5. meager .. 8...... 3o: .o 55.2.... .... 2a.... 320.0 wmwwnowuxnumuflnaaa P D ‘ ‘ 1 a... n> .. .3. 3 3. 553...: Ol‘ d «6. S. .. 2w... 8. B. 5.32.... $533+. 55'. 7O «.0. "SS; .2... n..~.0-u_.32> .a 3.»... >6... .0 5200...: .9 2:»... P b D I b F b D r h h b D P b * by b b b ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ q ‘ 1 ‘ $8.0. .. .8... .. 8.8 .. $8.8 $8.2. : $8.8 .. «.0. 0> .- 0hu.0. 0> 50. 5800.0... 71 tin—50+ Bengal #8.... A $8.8 L O #88. I 8 . . #8.. U #88: ' 2 I $8.8 f I A v §.8w . 3. «.92.; Ea Eéucéfi a 8.93 3o: .o .5.»an .9. 05mm o mmwwnvwaflnumflnfiaualt ’DDDbD’FIF’DI’D>FDI {111111{“I‘11I1II «.9. ..> .u 2.... er 3. 883...: P It ' «d. a> .- awed. a> E. EEEE: 72 ill-50+ gal. 38.2 . C #88: O #89. I I A $8.2 . 38.8 i I #88: . 188' . Nd. v... 31 > as. nmcdfimg 3 «.298 30: .3 =5.»an .3. 0.5%”. .8298 W“Oflwawflflflaflflflflflaflflflflumifl'20?r9?m I ‘ i ‘ll ‘ 1 ‘ _ ‘ «6. er .a .3... er 8. 583...: 73 til-6+, FIG-El . $80— : . 88.. C 89... I .88 . . 1.88: C 82... 8.8.. I #88. $8.8- . Nd. n.9,); a... _.o+u.?3> a 3.»g 3o: .8 sense: .9. 2%.". 8808 m.m.o.u.»-u.w.W¢.n a a u a n a a a m m v. «.0. 6> a. 9.9 A; no» 59330.... m, 74 toil-6+ gal 3. «51> 2... m: dies)» 3 8.95 3a: .0 5.322: .2. 2:»... .858 m.m..o.o-waucunu.uuanaaamm 56. i . O #88: 8.8 a O ’88: I 88: . #88. 2.. ‘1‘ t r t z ‘ 997.60%??? 0 t o «a. er .a at... 9 .8 523...: 75 $333+, uni-gal. N... «.92..» .2... «2.9%; a 3.9:. 32. .o 5.2.2.... .2. as... .0890 I I I I III P I .I I I I I I I ‘ ‘ ‘ ‘ I 1 ‘ . ‘ ‘ q ‘ 1 I n bl’ ”I t ’ $8.9 . . I ggA' I g a . V $86.. . $8.8 : . $88: $8.05 . . $8.8 A $8.8, . 1 u... a» a 3...... a» .a 8...... .9 528...: m, 76 $263 in. nu {II 3&3...» .5. 3&3...» a 8...... 3o: .o 55.25: .5. 2...... .0950: 8‘ ‘ nfiflflflhmfiflfiufluuWRROO”H.088?20».r9? pvnoonuonnno‘rnuonoTuonuu 2. a» a t... e. .a 8...... .o 558...: 7 82.-5.3+ 7 gul $8.2 $8.8 (08.2” Y gdv . . $8.9m . $8.90 7 £65 $8.8 $8.8 $8.9: . N... LE; .5 n..~.¢.u..33> a 3...: 3o: .o Saws“... .3 2%.”. 896.: memnvmnxnumunnuummvzmcovzo .TvlrnTnnoovonn .000 FI'P I ‘ N... a» a £3. e. .a 2.9... 3623...: u... 3. ¢ 2.... e. .. 5...: .. - 78 a... «as...» .5... n. .75...» a 3.»... 3o: .o 532...: .8 M5.»... .0200: I. mmfififlhmuwnumuuuaflflmflmnvflfl77.0».r9? $8.. oanrnoonnnnTnnfio ‘ a $8.2 : 88.8 . .3 $8.35. pm It‘ll—50+ gal. . $8.8 .. $8.2 .. $8.8 .. $8.8. % . u a... a» a 2.... a» .a 3.....- .o 523...: a... a» a 98.9 a» .a 3.9... 3523...: N... n.3,...» .5. .8..-qu .. 8...... .2... .o 55.22: .5 2...... .0200: .8.mm»...numunn:muuuuam-mnzoc.o-yz.o. $8.3 . \‘III'I‘I $8.8 $8.8 gdv . 88.8 . 79 $ 5556+ . . gal $8.8 $8.6» . . $8.8 88.8— . a... a» a .8... a» .. 8...... 35:92:: 80 Nd MP»); .2... fang»); .a 3%.... >5: .3 EEon: .3 82E... 00.5.0 mmwwnvmnunumuunnummnumoav.zo....r.... $8.. .nnv. ... . $86— . ‘ I 88.8 \ $8.8 : \ $8.01 . \ .: $8.8 . . - I gag-5+ gil . $8.8 $8.2. : $8.8 . $8.8 $8.8. . «6 n> a .6 a» .a 3.9.. .o 82:22: 81 $ $853+. 55' md "35}. > E... ntd+nm> .a 83.... >6: .o 829...: .2 2.3... .838 mmmmnvmuunnmuunnamm 88.. $8.8 $8.8 . 88.... g . $8.9... . $8.8 . $8.05 . $8.8 . u... a» .. at... a» .. 8...... 3528...: mm; $ 2626+ - im' $8.9 $8.8 $8.8 . $8.01 $8.8 $865 . $8.8 . $8.8. . .8 ".92.; .2... .Nn.c-u.§z> a 3...... as: .o £5.33: .E 2...... a a ’ ’ b P ’ F D b h h F ’ h ’. ’ D d 1 q q a q q d d d I d 1 . IiL+I+I+t111L 1.. .> .- 94.... e. .. 2...... .o £2.33: 0L “9'30 d 10".. 3}. > a... v.c-u_.2 .a 3.»... 32.. .o 5.235.: .3 Bani .0203 ’ A. WfiflflwvmflflnnmuflfluflflmnuMOiv7.07. $8.4r00000.000.00000 $8.9 $8.8 $8.0n $8.0v $8.8 . 83 8 3433+ gil $8.8 $8.2. . $8.8 : $8.8 :l $8.8. . v... a» a to. e. .. 3...... .o £2.22: 84 v... "51> 2... n.~.¢-u_33> a 8...... .6: .o 52.2.: .8 2...... . . W W ” W h n M R N x a W a a W. O 9 V Z 0 Z r 9 m. o v n n n o o o o u .r o o o .50 a a m m n n. m *8. 0 n . $8.9 . $8.8 $8.8 \ $8.9 . 8.8 . . . $268+ . - gal $8.8 . _ $8.2. $8.8 . $8.8 . $8.8. . v... .> a .3... er .. 8.9.. .o 2.32.... 85 8 gun‘s—30+ noel-coil $8.2 . $8.8 $8.8 .. $8.01 . . $8.8 8.8 . $8.9» . $8.8 .. 8.8 . 88.8w . v... n.5,...» E... n. 5&5...» a 3.9.... .6: .o 532...: .3 as»... 00-58 mm » w.»-n.m,u.u.n-u.m.n-u.n a a m m P P 1 ‘ to a» a 2.... a» ... 3.2.. .o 52.3.... 86 x $423+, hula—til $8.9 : $8.8 : 88.2“ 886' $8.6m . 8.8 $8.“: $8.00 8.8 . 8.8p . . w.m.n.».-m.u To ua> can mmod-u_.>

.u 3.9:. >6: .o =3.»an .wn 8:3... .0298 mnnnamuflfluaflo 000.00. q... a» a 2...... a» 2. 8.9.. .o 5263.... :1 87 3 3.8+ Esau-El $8.0. $8.6m $00.3 $09.3 . $8.8 $8.8 $8.95 $8.8 $8.8 $8.8; v6 umza> was _.c+u.q33> E 3.»... >5: .3 :55an .3 8:9... 320.: m-..».».».n-m r. a n u m a a n a a .. .6 a> a 3 a> .. .29.. .o 5.58.... bomb-u; 88 8 sous—50+ git-oil $8.2 $8.0m $8.6m $853 $8.99 . $8.8 $86k $8.8 $8.8 $8.8. Yo "35>; E... m: .c+u_.> .a 3.9... 3o: .0 2550...:— dc 05E... 32.8 “fiflflflb.flflflfiaflflflfiauflflflUNOD'ZO».rpr? ‘. , I. a» a 2.... a» .a 8.9.- ? 533...: 89 8 0.5-250+ ill $8. $09.: : $86N $8.8 . $86? A $8.8 . $8.8 $86.3 $8.8 $8.8 . $8.2: . ed n.5,}; E... nmm.¢-u.q32> .a 3.9... 3o: .0 8.2»an .3 22mm .0236 D D D D ' i u 1 d 1 ‘ m.m.».m.n.m.n.u-n.n muunuummt [II-IIIIIIIIIIIIIIIIII a... e. a 3...... e. .- 2......- .o 583...... 0.9 r... Kan-aha; mew 90 $ iglll gaul edumzn; up... v.0-u_.> .a 3.9:. >6: .3 E5327. .3 Esz .0298 I. m..-»r»-nmunnumuunuamo $8.2 . $8.8 . $8.8 . $8.0v . $8.8 $8.8 $8.“: $860 $8.8 . $8.9: L Nd 0d 9° 0.0 N.— v.— 06 0.. o... a». t... e. .. .39.. .o 528...: 91 x 3550+, FIG-El 9o «.92.; 23 Edagfi a an...“ 3o: .o 53%.: .8 2%.... 32.—on ’ D. I b b C ‘ ‘ 1 C d 1 ‘ ‘ mmw»vmnxfiumuflfla 9993039fzozr nnTnn0. . $86- $86~ A $8.8 $8.3: : 88.3 A $8.60 . $8.2. $8.8 L $8.8 . $8.8p . f 06 &> d 956. a. a; .- 00.9.- .o 5950.2: 6.0 m6 ad a.» mung 92 $ tint-50+ gal ' .6 ed "DEA; E... n _ 6-"..3}; .a 83.... 26: .o .5302: .3 Esz 32000 $8.0. . $8.0m . $09.8 $09.3 . $8.90 3 $8.8 . $8.9. $8.8 $8.8. «3.9». .mnmnumunuaumm a... u> a 2.... a» .a 3...... .9 523...: Nd v6 m6 N.. Y. 0.. 0.. . 93 $353+, gil ed LB}; 9... nmo.o-u..>>\n> .a 3.9... >6: .0 EEwofif .3 22m."— mummnmmnnnmuunuwmmnmocovzo d Q $8.6. . $8.0m $8.0m . $8.09 . $8.8 . $8.8 . $8.6. . $8.8 . $8.8 4 $8.8. .6 ..> a .3... a» .. 8...... .o E2oo...: m6 n. 0... men :1 94 ed "35}; e5 _.c+u.q2 E 8E5 32.. .o 8533: do Ezwi is M“ h ”.3 m R W W a W R a W. a R m N .7. B m 9 9 7 Z 0 no r 9 .r . p . . . c *8. 4 q q . n 0 n o . $8.3 . n6 $8.2 . $8.8 . v r... $8.3 v a 4. , $8.8 : _ ran «a £§+ Eco-Gail $8.3 . n 88.2 men 88.8 . v 88.8 : ad a $8.8. o... a> .- wé a> .- 3.9.- .o £8022: 9o ".92.; as n: .c+.....§2> a 8.95 3o: .o 532...: .5 as»: 39500 mmmnnmuuwumuunaummnzoaorzo $8.2 $8.00 . 86¢ . $8.8 . 95 8 263+ . Belt-El $8.8 . $8.2 $8.8 . $8.8 . W5 $8.8— g a... a» a at... a> .. 3.9.- ? 523...: 96 $253+ 3.33.2“. I a... LE; .2... finches)... .. 8...... .8: .o 523...: .8. 2...... .0230 D b P 1 1 4 WESfiWW”nbMflflnnmunnuwfl 0....iv00009. .1 . $8.9 . $8.8 $8.8 . $8.0v . $8.8 : $8.8 $8.2. $8.8 . $8.8 $8.8« . 9t 92> a 2...... ..> .. 8.3. .o 583...: :l 97 1 326+ soc-32ml mdumzn; .Ea vdfi~33> .a 335 3o: .3 EEwcfiE do 2=wE c.2909 m.a.s.a,m.».m.n n. m n a n a m. a a n a a $86— . $8.8 $8.00 39:: $8.8 $8.8 $865 V $8.8 $8.8 $8.09 . ’ D ‘ ‘ 1 I Y .r V O L O .5 9 a... a» a «6. a» a 8.9... .o 5:922: m; 98 8 2620+ gil $8.2 . $82 $8.90 Y $843 . ' $8.8 $8.05 . $88: $8.8 . $8.8w A ad ".92“; 23 nh~.c-n_.> .a 3.93 >6: ho E5593: .2. 2:3...— 320.: manumnmnvmuunumuunuum D D ’ d ‘ ‘ D d I. g D ‘ I. ' .6 a» a £3. a» .. 8.9... .o 823...: :l 99 isle-6+, gml. $00.0. $8.0m $00.00 $00.01 . $8.00 . $00.0» . $8.00 . $8.8w . ad «35>; :5 n..0-n_><._> .a 3.93 26... .6 EEwSmE .F Eami .0202. t wann.m.n.m.n.umnnnuxuunuusm fl 8 0 U 9 9 Z 0 a... 9, a 26. 9» 2. 3.9.- ? 523...: :l 100 x 2.3+, gal- $8.0— . $00.0.“ . $8.00 . «080' . 88.0» : 88.8 V #805 I $88: 88.8 _. 38.9: L w... "33> Ea 23-.....25 a 3.9; 3o: .o 5323: .fi 2:3 320.0 wmnmmmmnnmnmnumuunammmnumos97.0»...9r .11 a... § a 3...... a» .a 8.9... .o 523...: ad a; u .6 9» .n :3:- 50 2.33:: 101 8 gag-0+ gu' $8.0. . $8.00 . $00.00 $8.0s . $8.8 4 $8.8p g‘Nzn’ ad ".92“; can _.0+u.S .a new...“ Bo: be 5837.5 .3 2:3". 320.0 WfifiamwmnnMRRanoxuudn 99720 o ’86.. \III $8.8. \| $8.8. — o6 A> a v.0 a> .- :3:- 3 8200...: tau-«bug a... a» a 2.6..» .u 5::- B 5.52:: 3 "33> as Ed+u$<§ a 8.9; 3o: .o 53%.: .3 2:»: 320.0 _«sauna»nnmuunnuuunuwmmunmoo.zo $8.. $00.0... 88.0w .8... \ 880' . 88.8 . . 102 8 2635501.... gal $8.00 . $8.2 . $8.8 . O 888.. bum, $8.8u . a... n> a 223» .a 8.9.1.. 523...: nus-\ADV Sta-ht 53:30) x "53> “gigs” a 33V 8:33.. $8.; .2 2:2”. 5.55 a mo .23 a... 52.252. 5:5 a 052.. 23.5 :.z 31> «.o e «.o. 3. ed. 3. .. 103 “I b by D I d ‘ o .. —.0 .. N6 0 . 0.0 . :2. .. 3 C :2. C :2. 024.7 0.09.0 3.00.2, mun... .- a> :2 £205 £323. 104 “8.. - «52> are??? a .5}? 5.5.5:. £8; .8 2%.... PI as.» 85 n 53> Ba: 033 35.52 mi 0.0 0.0 v.0 «.0 0 «.0- v.0u 0.0. 0.0. 0 ii 0 o 0 u 0 0 fl 0 O O A .. ".0 1.. '.° .. 0.0 O .. . °.° o o i p m.» OEADV 0N9... .- A; :0. 0.020 5.00.0) .6. .n 9» 3. 2:8: 332.5 3 - £33» «.2. 3.95 a 533v 83333.. 3_8_o> .2. 2:2". 105 3 : a» 85 n 53> 38% 3.53 .2352 3.2 0.0 v.0 «.0 0 «.0. «.0. 0.0. 0.0. 7 A .r u 0 n 0 V T O O .Y N.° . v.0 O .r 0.0 O: s A 3 V .. 0.0 O O 3v P a...” 0.0- a. a) 50. 0.321 8200—.) 2:2. .3--. 106 E... - "53> Ba??? 3 can? 8:33.... 3.8; 3.. 2.3.... '0 32.» 8... u 53> 82... on“... .2292 3.2 0.0 0.0 v.0 «.0 0 N6. 0.0. 0.0. 0.0. O O .2. ".9 : v.0 O i 0.0 . 0.0 O 0 3 O. *6 0+:ADV :3. .a a» .5. gap... 3.8.5 107 no... - "53> “BESS. 5 2.3V 8.3.3... 5.8.0.» .2. 2a.". a . . a: > 8 c a 53> .82: 0.x... .2252 m z a... o... c... a... a «.9 to. ad. , q... .. .F . . u T u v n f O O 7 «.0 v6 0 t ed 3. o.° O O ., . 1... 8.... .a a» 3. 2:2. 3.8.; onl mum... . "a; n5. . "5.x 3 oaksv 5.59.5... a..uo.o> .8 83m... 108 3 . a» 36 a .5); .82... can... 23.502 m.Z o... v... 2. a _ «.o. to. .3. 2.. v .F o u C u n o «F o o L. N.° ._ r ’.° 0 .. ad or I: v i 0.9 o o r . a.” and. .a 9 3. 5.2.. 2.8.... I. - LB...» 3.13%... 82A? 8.39.56 5.8; .... 2...... 109 3:» 8... a 53> 32... ”.2... .2282 mi 06 v6 «6 e «.9. to. 06. ad. .. 0 n n o W .F T . O 0 «d v... 0 t 06 o a . A a v . v 0.9 0 O . . «6 2.. .a a» .3. .22.. 2.8.... E... - LB...» 3.132... 5.4V coast...v .38.; .3 as»... 110 I...» 8.: u 0:}; .505 3.....— .c...:.cZ m.Z 0.0 v.0 «.9 a N6. v.0. 0.0. 0.0. p. . p . Q T n u .r o .v ~.° o 3 '.° .. 0.9 03 sh : v 0 . 0.6 0 o C. F a.» 2&6. a. a> 3. 0.39.3 5:028; 111 .6 2... - «33> 3..."??? 3 5.5V 8.2.5... 3.8.5 .2 as»... . a: a. . 8... .. 53> .82.. 0.x... 35.82 mi v6 «6 e N? 19 Q? Q? n n ? n . .l .1 T '0 O IVN° :‘e C :00 :N« .5 mud. .- n> 3. 0.39..- 3.00.8, ~A=v 112 ms... - "53> “5......32 3 5.5V ._..............V 3.8.5 .3. 2...... .s . e. 8... u 53> Bu... 02.... 35.82 3.2 06 0.9 .v6 N6 O N6. Q6. c6. 06. w. o J» T J. O or 01 o .1 O O .. N6 0 .. v6 9 .. ed 0: ‘A a v O .3 ‘.° 0 . p fl... 3...... .u ..> 8. .52.. 3.8.5 113 ”to } .... "53> 5.13... a 5.5v 8.53.5... 3.8.5 .3 2:»... Ne 2:n> a N9 8... u 53> .8... 8a... .2. v? D d 99 1‘ =62 m.Z ed. 4 C. “.9 .‘o C :00 . Av ”O .5 Q. 1‘ 2. .a 5 8. 3.8... 3.8.5 snav m2... «.335 as... .55. 3 533 8.53.5... 3.8.5 3.. as»... 114 z...» 8... u 53> .82.. 0.8... .2358: 3.2 0.6 «.6 6 «.6. 0.6.. 0.6. 0.6. v. '0 0 Q o n V 1 O O O O t «.6 .. v.6 ., 2. .f . a v 3. 0.6 4 p a.» 2. .8 .c 9 3. 8:9... 3.3..) 115 x "5.5 2.3. 13... 3 5.5V 8.53.5... 3.8.5 .2. 2.3.... 5:6... 3 an 5.3 .qm .0 5.8.3.5.... 882. .u 0.60... 5..uo_u> 6.2 3...» v.9 .. 8.... .. 3.... 001w : «6.6 .. 8.6 8.9 5...? 3.8... 3.8.5 116 as. . n.5,)... 2..."...5. a o2A>v 5.2.5... 3.8.; a. as... 25>v .s. a» 8... u 53> Bo... 0...... .2352 m2 2 -. O O . .6. . 8.... 6.6 6.6 v.6 «.6 «.6. v.6. 6.6. 0.6. _ - o 0 .T o 6 0 .r 0 0 0 O O A3.6 O O .. F.° 616' 63.? .0 g .3. 0.69... 3.06..) 117 .3 - ".33.. 2.... $95. a o2A>v coasts... 5.8.; .2. as»... 2: e. 8... u 53> .32.. 0...... 35.52 mi ._ ._ .. O .. 2.. O ., 8.... 66 66 16 N6 .. N6. v6. 96. 06. . u w .r . 6 o . T .r A; O O s 8... f .d O :6 ~A>v a... .a e. .3. 2.3... 3.8.... 118 E... - ".33.. 3...“..3... a o2A>v 8.5.3.... 5.8.9... .8 as»... .s . e. 8... u 53> .9... as... .Eecz m.z 9T .. .6. O O .13? 66 66 '6 N6 N9 1? Q? Q? _ . . o . 6 v 0 . . Ga 0 O O 8.6 O .. vo° 92.6. .a a» .3. 0.68.. 2.3.... .A>v 119 26 - ".33.. 2.... 1...... a 629v 86.5.5... 6.8.... .a an»... a. e. 86 u 53> 68... 06.... .2652 6.2 of O O .. .6. .. 86. 66 66 v6 «6 4 «6. v6. 66. 66. _ . . . . T .F . . . la 0 O O O ..56 .. .6 ii ~A>v 66.6. .6 a» .3. 6.62.. 3.3.... 120 an... - "53> 3..."..3... .. 629v 863...... 6.8.; .8 2.6.". 2.. .9 .66 u .5); 600..» 0......— _a.._.....2 6.2 .66.? A. Foe! .. 8.9 ‘F3 6... e6 «6 c «6. .6. 66. 6.? .1 ..° ~A>v 1 616 61.6.6. .6 a> .3. 6.68.. §o> 121 v.6 .. ".62.; mg. 792x .6 62A>v 5636...... »._uo_u> .3 226.... z: e. 86 n 53> 600... 0...... .0552 6.2 O .. p.6. 0 .. 86. O 66 66 to «6 «6. 06. 66. 66. . 0 0 . .r 6 . .r . .r 0.. O O o .. 86 .. .6 3‘! ~A>v 66. .a e. .a .o. 0.68.. 6.8.3 122 . u. .h: .Aliiétw5. 1“ find - n.9,}; n5._u_.>v 5.55:5... b_8_o> .3 2:3". a: a, 8d a 52> 82.» 82.. .2252 mi 01? : .6. .. 8.? O 06 06 v6 N6 .. HQ. 1? Q9 Q9 _ o 0 0 0 o T T w T o.“ O 8... o O :—6 O 017[ ‘A>v and. «a .9 3. 058.. 5.00.5 123 25 - LE 5. 3.922 a o2A>v 8:556 $8.; .8 25mm 3:.» 8... n 53> use 983 35:52 m2 utT .2 3. O A 8.9 06 0.6 v.9 N6 3 N6. v o. 0.0. 06. _- o o o 0 Q o q 7 » O : 86 01 O t pd O O J 96 ‘ «.0 O 2.6. .- n> 3. 0.39:. >:nxzo> ~A>V [ii-Ir?! L“ n86 - ":52; msgumzx a oDR>v 32.5.5... >._uo_u> .3 2:2... 3 . a» 8... n 52> .32.» “.2... .2282 m2 p 0.0 0.6 V... «.6 a N6. v.0. 0.0- 0.0. I I D . P G ‘ ‘ P. F ‘ C K's: . two 0 L~A>v 124 n6 : v.0 n36. .- n> .3 2:9... b.oo_o> 125 rlIl.‘ 1'4 .5 ".332 as??? .5 529v 5:222... 2.8.; .8 95...". a . . a: > 8 .. u 53> .52... 0.2... .2552 m 2 ad 06 96 «6 a N9 1? Q? Q? ’. O O 0 :N6 0 O L '.° 0 .06 as fiQo . Wm rd .0 a» 3. 3:9... B.oo_o> .A>v I {iafithdt 4 L 2.... n.9,...» E...u..... .50.... 0...... .2252 m2 1... 5.... 2.. 0.0 V6 N6 a «.6. —. 126 h b b P d d a I u d 1 ‘b .1 "0° . .. v.0 Av “0° 0 A>v . A'cc d." at... .0 e. 5. .28.. 3.05.... 127 .wmucmnwwmu now haze mum mmcwa vmcmma m.z .nn no acupunoa uo cowuuau o muaoaxaavvuvuuuoua uuwuofiozoo .onamwm Pa m p .05; X msdols ‘ v.65: I mflmdig O 31> ow ed .6 . «d o w? 2? Q9 99 x//n/::/ /_/. 0 / x/ . a . i. . / /. I.” . no 5. . ... // / // o: s / xj. &.. / . . v \>\. I I $'.O \ s X ’ 1/ :VC . . .. . I. z z (a s\ x . \ x x f. :5 ...\ . , A 3. z . x x 7 \5. z . ./ I . / /, no \\\ \ z / / 1» xx \\ \ // / a; .I \ \ \ // I \ x \\ v/ / I \ .\ .\ / /Ial .. J‘a;\.l. \.| \ \U‘. llX‘VA'.1IwHI\.\ 4'! WV“? 128 .mmocmummou new mace who mmcwa cmzmmn m.z an be .538.— ..o 23.2....— a 8 A 03?va .8an a._oo_o>. co H m u am an $.6qu.... ..o-...<..>£ 0.8.9.33..- n. 553.... o 31> 0.0 0.0 v.0 N6 0 N6. . v.0- 0.0. 0.6. n . . . c 0 . 0 .1 ., .71. I '\r“”1u'rl hi“fl“u«““h1.‘..\v\\\\ 1. * a ’ . . .. 2 \. . I \ \ ’ I x \ \ x .. \ z z s s .\ \ I I ~ \ \. \ . ’ I x s x I. a / /O \ s \\ \ z a x \ \ I / ’N us \\ \ z, / .f \ \ .. o... \ x x \ \ I I \\ \ / II, x \ ,/m\ x, x . x ’z I .\ . no .\ / x \ \ , \ é.’ ..\ I I \ \ lqn \ . 0mm 5. UNCERTAINTY CONSIDERATIONS 5.1 Pressure Measurements Forthecalculationofthenormalvelocityinthewindnmnel,lTorrMKSBm'atronwas used; ithasanassociatedunoertaintyof 0.08%ofthemeasmedvah1e(MKSInstnnnents (1994)). Fmthermore,thislevel of uncertainty comparesto 0.04 cm/secinthe msmementotitheapproachvelocity. Butsinoethis experimentwasoonductedatahigh speedof35 m/sec,sofl1eassociateduncenaintywiththemrmalspeedof35mlsecseems to be negligible. 5.2 Uncertainty in the Position of the DB Forthemeasurement,theDBwasalignedwithoneofthelmifeedgesoftbeslitjet. Thealignmentwasdonewiththehelpofthestandardthreadpendulum. OneetheDBwas properlyalignedwiththeknifeedgesoftheslitjegitwasthen nansversebackorforthto thedesirableposition. TbeuncertaintyassociatedwiththeplacingoftheDBattheexact position lessthenbej; 0.3mmasaflertheafigningtheDBMththethh'dpenduhma scalewasusedtotransverseitinandoutofthecenterrodholderwiththehelpofa vernier. 129 1 3 0 5.3 Traverses Uncertainty Thetraverseusedforpositioning thehotwiresandthetufiprobeisrunwiththehelpof asteppermotor. 'I‘hedrivingscrewoftheu'aversedoesnotexactlyhavethepitchof lmmbutO.989mm,sothereisanerrorof0.011mmforeachmmofmovement;whichisa biasederrorandiscalculatedandaddedtothetraversewheninuse. 5.4 DB Assembly T" I l ThebladeDBassemblyismovedupordownwiththehelpofthetwolefl-andright- handedscrewstopositiontheDBatthevenaconu'acta. Thepitchofthesescrewsisnot exactlylnnnforeachmhlt1.5mmforeachtm'n,therefore, everytumtheDB moved 1.5mm. So,againforpositioningofDB,thescrewsweretmnedandtheassembly movedupanddown,andwhenDBwasBSmmabove Sj, thelockingnutswere tightened,andthedistancemeasured withaVemier,the errorinadjustmentwouldthen be:0.01mmMax.)foralltheadjustmentsoftheDBatvenaconn'acta. 5.5 OpticalEncoders AstheopticalencoderpassedastheinformationabomasthepositionoftheDB,when itwastriggered. 'I'hesamplingratewasZKHZ,i.e.,foreve1-y0.0005 seconds,wewere meamn-ingthepulseoftheOP. SotoexactlyknowwhentheDBu'iggeredtheOP,inthat 131 0.005 seconds gapwasdiflicult tojudge, soamiddlevalue0.0025 secondwastaken betweenthe samplesas thcpoint oftriggeringthe OP. 5.6 Hot W'n'e Anemometer Allthedatatakenbythehotwirewaspreandpost ealibratedandwaslimitedby 0.10mm/secforaspeedof35m/sec.forthehotwire. 'I'hesamplingfi'equencywas 2K HZratefor 10seoonds. 'I‘hetime(sampling)wastakenlessastoobservethetriggering ofOP’sbutforhotwirethesampling ratewaslesstogiveusagoodaverage.Thenby changingthe sampling rate ofthe would have madethecorrelation dificuit. Aswe wantedacontinuoussamplingrateofboth hotwireandthatoftheOPsotheyeouldbe CO-related in the same time domain. 6. SUMMARY AND CONCLUSION methepresflresultsobservedfi’omtheexpefimem,weseemObasicthings One thatthejetcouldbetotallydeflectedoutoftheprojectedareaoftheSjwidthwhenthe insertionofthebladewas+5andsecondmostimportantthingweobservedwasthatthe relationbetweenthedynamicandthesteadystatewasafi'ectedbythespeedofD.blade; Le.,althoughwehadamlmivelymflerspeedwimmpeamUo,hneventhenthem wasalagbetweenthedynanficandthestaticresponseoftbejet; Incaseofdynamicthere 12: wasalaginvolved,andthejetdidnotproducethesamedeflectionanglesasthatwhichit didinthesteadystate. SointuitivelyonecansaytlntifDB speedwasismuchslower,thenitwouldhavethe sameresponseasthatofthesteadystate,btnifthespeedofDBbladetendsmincrease thelagfactorplaysanimportantpartandthedeflectionobtainedfromthedynamicdoes notmatchwiththatofsteadystate. Althoughtherespectivemeasmememsofthedynamic fordifl‘erentnmsoftheDBforagivenspeed,areindependentofthespeedofthebladeas Vb./Uofactorisof0.03,soifweareonlyconsideringitdynamicresponseoftheDB,then thevaluesobtainedfortheflowareindependentofthebladespeed. 132 7. RECOMMENDATIONS ThwmcertahhnpoflMreconmndatiomwhichmmadeforthisexpefimem whichwouldhelpintheforegoingstudyofthe same; theserecommendatiomare appended below: 1'I'heexperimentshouldbeconductedforvariablemdsoftheDB,sothattherelation ofdynaniicandstaticcouldbeformulated; andthespeedof Vb./Uo=lcouldbevery helpful for analyzing the jet flow behaviors. For this the mechanical device which was usedhemshofldbemphcedwithanahpistonandlinemmflmechafismasthatwould helptocontrolthespeedtheDBtoanydesiredlevelwithcontrollingoftheairpressme, andthelinearrailswouldofi'erminirmnnfi'ictiontomovementoftheDB.(asitwasnot thecaseinthisexperiment.) 2 ThecalculationsofrelatingthetimeseriesandthatofDBweredonemnually,by usingcalculator, itwouldbemuch betterto designasofiwarethatwould help to correlate thetwo,andforagiveninstantoftimetellsthepositionoftheblade alongwiththe corresponding mgnitudeofthevelocityobtainedbythehotwires. 3. IheappamtususedfortheseexpefimeMwasfixedupsidedowninthewindnmneL whichposedallot ofprobletm forsettingandadjustingthevariousparametersofDB assembly; itwouldbebetterthattheassemblywofldbeplacedstraightasthatwouldhelp 133 .- .I; 134 theerqaerhmmertoeasflyadjmtmypmeroftheDBassemblymthedeshedsetdng withoutanyhassle. 4 Itwouldalsobewonhwhikthattheexperhnemasstatedemfieriscaniedomwith vafiabkjetspeedandalsowithvariabkflowspeedasthatwouldhelpmfindomthe relationbetweenthedynamicandthestaticbehaviorofthe flowfieldtotheDB. 8. 9. 8. REFERENCES . AppliedfluidDynamicsI-IandBookbyRobertD.Belvins Turbulentjets byN. Rajaratnam thid Mechanics By Victor L. Streeter and E Benjamin Wylie Experimental Fluid Mechanics By P. Bradshaw Mechanics Othtid ByI H Shame SyedK. Ahi‘lnstabflityphenomenaintwodimensionalslitjetflow”Ph.D. dissertation MSU HandBookoffluidDynamicsandFluidMechanicsVol. 2. Experimentaland Experimental Fluid Dynamics By Joseph A.Schetz Hot wire and Hot Film Anemometer By Ron F. Blackwelder Hot Wire Anemometry By Comet-Bellot 10. FossJ,F , WallanceJ, Wark,C ‘Vorticity measurement”, Instrmnentation for Fluid Dynamics, Joseph and Allen Fuhs ed. , Wiley and sons, Inc. , pp 1066-1067, 1995 11. MKS Instruments, Inc., Bulletin 120/150510-2/94,1994 12. Topics in Applied Physics Vol. 12. By P.Bradshaw. 135 APPENDD( A: DEFLECT OR BLADE ASSEMBLY Introduction. Asstatedearliatheexperhnemmvolvesmestudyofaphnmrshtjetdeflected impulsively by a deflector/impulse blade. The equipment needed forthe generation of the flowfieldalreadyeadstedinthelaboratory,thatistheflowsystemandtheslitjet apparatus. Bmanintermediatedevicewasdesignedthatwouldfitovertheslitjet assembly,andcarryaDBwithit. Sothenninflowfieldcouldbecutatdifl‘erent incrementaldepths 'I'hisdevicewhichiscalledthedeflectorbladecarriageassembly (DBCA), has the following characteristics: a. Deflector blade position adjustable in x-y-z co-ordinates. b. Positive stop to the transient motion of the DB. c. PrimarydriversdisengageswhentheDBisinposition. d. No pitching or yawing of the DB during its motion. e. Allpartsdetachable. f. Canbeoperatedfromremote. g. Cost-efl‘ectiveness. 136 137 Tocdaforaflflnabovefeatmegadaaibdmclmmcaldedgnwasmdenakentofiilfin thejobandatthesametimebecost-efl'ective. Alistofpm'tsandtheirfimctionsis appended below. Component List Adetaileddesignwasundertakento achievethetargetofmakingtheDBAC,butbeinga mechanicaldevke,flhadsomedisadvamagestoh,mo.1hosedisadvamageswmbe statedlater. Allthemajorpartsoftheassemblywerefabricatedwiththeexceptionsofa few which werelocallypmchased. 'I'hissimpledevicehadfifieencomponents, each componentperformingatmiquefimctionalistofalltheseisasfollows: Description Quantity 1. Deflector blade (knife edged) 01 2. DB extension 01 3. Center rod 01 4. Pullers (primary drivers) 02 5. Rails 06 6. End plates 02 7. Stop—center 01 8. Cushion-center rod 01 10. ll. l2. l3. 14. 15. 1 3 8 Stops-main springs Right/left landed screws Center rod holder End plate clamps (angle iron) I-beam in DB carriage Remote release 11' . Description and Use of Components 02 02 each 01 02 01 01 02 Withtheuseoftheaboveitems,itwaspossiblefortheDBtobereleasedandbe positioned at various locations in the exit plane of the flow field. The function of each is briefly described below and the characteristics of the assembly stated earlier would also be highlighted in the description. Deflector blade The deflector or the “impulsive blade” is used to deflect the flow of the main jet. It’s madeofcurlicueandhasa45- degreeknifeedge.Thelengthofthebladei3360nnn, havingalcnifeedgeof300mm,thatis,150mmoneithersideofthecenterline,anda thicknessofll.5mmawidthof50mm. 'I'heLDBwasselectedtobeBOOmmbecause theLj isalso300mm,sothedeflectorbladecouldfiillybeutilizedtocuttheflow field. OnonesideoftbeDBthereisaknifeedgeandontheothersidethereisa 139 femalepanforthemnnecflonofthebhdeextensionthaththeAflenscmwspass throughthebhdeextensionandgointothefemalepaflofthemahDB. figureA-l. Deflectorbladeextension Anextensionof300xlOOxll.5mmcanbeattachedtotheDBwiththehelpofthe Allenscrewsmentionedabove. 'I'hematerialoftheDBandofitsextensionisthe same. Theonlydifl‘erenceisthattheDBhasaknifeedgeononeside,whereas,the extensionisasimplerectangularpiece. ButinthecomseoftheexperhnenLithas provided(DBextension)averyvitalrole,andthatwas,thattheslingoftheremote mleasewasanachedbytheAllenscmwstomeextensionandhalsoprevemedthe swirlingofairfi'omthetopsideoftheDBtorejointhemainflowstreamwhichwas deflectedbytheDB,buttherewasadisadvantageinhavingtheextension—thatit added extra weight. Deflectorbladecarriage Themostimportantpartofthewholeassemblyisthedeflectorbladecarriage,asit performthehnponammskofcarryingtheDBfi'omitsinifialtoitsfinalstate FigureA- 2. Thedeflector blade carriagehasgotaspring—loaded mechanismandanI-beamto hold theDB. Thepmposeoftheseitemsisquiteunique. Weshallfirststartfrom thespring- loadedmechanism. Therearetwo 10mmspring-loaded steelballsincorporatedinthe sidesofthecarriage Figure.A-2. Thestrengthofthespringsisadjustable; thesizeof thebdhusedhthecmfiageisthesanndiannterasthflofthemdemsonflnmmd. 140 So,itisaprecisefitwhenbothareinposition. WhathflppenSiS,whentheDBisin motionithastobestoppedinaspecificlocationinspace: soundertheinfluenceofthe primaryforceprovidedbythepullers,theDBissetintoanacceleratingmofionastheDB appmachesthepre—determhdpositionmspacefihesprmgbadedbaflsoftheDB carriagepopintopositionandrigidlyholdtheDBatthatparticflarpointinspace.This locationisdeterminedbypositioningofthecenterrod. Ahhoughabigdisadvamageofhavingsuchameclmnismisthatwhentheindemis notpresentonthecenterrodonwhichtheDBisriding,thespringforcepushesthe10 mmsteelballsagainstthesurfaceofthecenterrodwhichcausesfi'ictionandreductionof speedoftheDB. 'I'hestifiiess‘K”ofthespringcannotbereducednmch,asthatwould mducemeretmdmgforceonthecanhgewhenthecardagehnsthehflemonthem mdandapositivestopcouldnotbeachieved. Soacompromisehastobemadebetween thespeedofthebladeand thefrictionposedbythespringshitheDB carriage. CenterRod Acircularsteelrodofdiameter20mmandlengthSlOmmisusedtocarryoutthe firnctionofholdingthecarriage and preventingtheyawingoftheDBwhenintransient motionFigureA-3.'I‘hefigureshowsthewaythecenterrodisconstructed;atoneendof thecenterrodwehavetheindentstoholdtheDBcarriageandacaplikestopisalso attached to preventthccarriage from over shootingtheindent (aswehave reducedthe spring force to reduce the friction) figure A-4. the desire to stop the blade at an exact position. Forthisnumberofadjustmentswerecarriedoutinordertolmveenoughspring 141 forceto stoptheDBatthedesiredpositiononthecenterrodand atsametimetohad minimumof friction. InDBcarriageasmallbrassring isalsofittedontheinsideofthecarriagetoreduce theclearamebeMeentheMerandhself;mecbammeisabomlmou.Bmssmatefial waspreferredforthisringonthebasisofits ability tohavelessfi'ictionwiththesteel centerrod.DuetothistheDBcarriagedoesnotshiverwhenitsisridingonthecenter rod , otherwise the DB would cock on its way towards the Sj. Stoponthecenterrod. Achculardisctypestopisplacedattheendofthecenterrod FigureA-4. andit alsohasacircularfoampackingattachedtoit.Themainpm'poseofthestopistoprevent theovershootoftheDBasthespringsinthecarriagearenotverystifl‘;soitspossible that over shoot, may occur when the DB is speeding towards the its termination position andhasgainingmoMum.WhentheDBcarfiageisinposhiononthecMermdthe clearancebetweenthestopandthecarriageislesstheafiactionofamm. Thecircular pieceoffoamplacedinbetweenthecenter rodstopandtheDBcarriagefillsupthe clearancebetweenthetwo. Thereasonforhavingthiscircularpicceoffoamistoprevent theslammingoftheDBcarriageagainstthestop,sotheDBcarriageisretardedgradually anddoesnotbormceofi‘theendstop. 142 Centerrodholder Anotherveryhnponamdeviceconmctedtothecentermdisthecentermdholder FigureA-S . Itisacirculardischoldingthecemermdinit,withanh1temaldiameterof 20mmandanexternaldiameterof40mm. Theintemaldiameterissfightlygromdsothe centerrodcaneasilybefittedintoit. Twosetsofscrewsareusedatthebottomofthe holdertofightenagainstthecentermitherebyholdinghfigidlyinposition Thiscenter rodholderisthen fittedtotheendplate. Bylooseningthescrewswhichgripontothe Wmiomcmeasilymowthecemamdbackandfonfitherebyadjusfingthe position or the termination point of the DB while it is in motion. Pullers Themaindrivingforceisprovidedbythetwopullers FigureA-6,whicharermde ofTeflonandarerectangularinshapewithagapinbetweentoholdtheDB. Bothtop and bottom of each puller have spring-loadedballs of 2.5 mmdiameter. I-Iavingthis spring-and-ballmechanismhelpstoholdtheDBastheyfitoverthenotchintheDB. 'I‘hestifiressofthesespringsisadjustedinsuchanmnnerthatwhentheDBispulled backagainstthemainspringforce,thepullersrigidlyholdontotheDB,thuswhenthe DBismleasedbythemnntemchanismrmderthemainsprmgfomepotenfialtheDBis accelerated towards the min flow field. The spring force of all four spring-loaded (two in eachpuller)islessthanthatoftheonesintheDBcarriage. Becauseassoonastheballs oftheDBcarriagepopinplaceonthecenterrod,themotionoftheDBisstopped,but thepullersarestilltmdertheinfluenceofthemainspringforceandtheycontinuetheir 143 motionbypoppingofl'thenotchintheDB. OncetheDBisinpositionandmeasmements undenakenhythex-mypmhgtheDBisreadyforthenextnm. Boththeprhnarydfiversmuflemhmposifionedequidistamfiomtheoemflhneof theDBsothereisatmiformpullontheDB FigureA-7. Secondly,itwouldbeworth mentioningthatthepullersaremdeof'l‘eflon,astoreduoetheirweightandtomake memmommbustagamstthemmberofnmsthmmeyhawmgothrougmandheingfigm alsohelpshredwingtheufilimfionofthemahsprihgfimemwmdsovercommgthe inertiaofthedriversandthusmoreforoecouldbeutilizedindfivingtheDB. I-Beam AnI-heam Figm'eA-B isanintermediateoonnectionbetweentheDBandits carriage. TheI-beamismountedsymmetricallyontheDBandisthenslidintotheslotof theDBcarriage. AlsoonthesidesoftheDBcarrhgetherearefomsetsofAllenscrews whichtightenontotheI-heamwhentheI-beamisinpositionintheDBcarriage. Thel- beamdoesnotonlyformtheeonnectionbetweentheDBandthecmiagebutitalsohelps mthesecondaryadjustmentoftheDB. Itactslikeavernier; theminadjustmentofthe finalpositionoftheDBintheexitplaneoftheSjcanhedonebythemovementofthe MummesecondaryadjusunenflfinaladfimhnemCmbedombymovingmeI-heam and the DB carriage. 144 Rails Therem'ethreetypesofrailsusedintheeonstrmtionoftheDBassemhly. Theyare as follows: 1. Bottom and tOpside rails 2. Sidemils Thefimctionofthetopandthehottomrailsistoguidethemotionofthepullers steadilydm'ingitslinearn'avel. Thehottomrailprovidesthemainpathforthemotionof thepuflersandguidesitsteadflyfi‘omthestarttotheendinasu'aightline. Thereisa slightclearancehetweenthewallsofthehottomrailandthe pullers,asthishelpsthe pullers to self-adjust itself during its linear travel. T'hetopmlwhichflmhelpshguidhgflnmotbnofthepulkrshasasecondmy functiontoit,thatis,whenthepullerspopofl'fiomtheDB,itpreventsthepullerfi‘om jmnpingofl'thebottomrail'l‘hethirdtypeofrailarethesiderails. Theyhavean hnportantroletoplayinguidingtheDBthmughitsmotion. Thereisalmmclearance betweenthesidewallsofthesiderailsandthatoftheDB,topand bottomsurface.'l‘he clearanceissuggestedtoheminhmlsothatdmingthetansicflmofionoftheDBover theeenterrod, itdoesnotrolLAflthethreedifi‘erenttypeofrailsusedinthisassemblyare nudeofAhminumbecauseofitsmhemmeenyofbemgfightandmbustaheserafls were locally purelnsed). 145 Stops-MainSprings ThemainspringusedtoprovidethemaindrivingforeetotheDBhaspullersonone sideandastoponthe other. Thesestopsarecircularpinswhichfitmthegroovesdrilled intheupperandthehottomrail FigureA-9. 'I‘hesestopsareadjustableatvarious msfibmontkmkmembymcmasmgordecreasmgthedistamefiomtheposhbnthe blade is released So, indirectly, positioning of the stops determines the spring force. EndPlates 'I'hewholeDBassemhlyisheldinpositionduetotheendplates FigureA-lO. The endplateshavetwoparts:theupperandthelowerpart. Thelowerpartisusedtoform thefigidmthgfortheassemblymdisheldmpositionomothewoodenplatfom carryingtheslitjetwiththehelpofangledironandbolts. Theupperhalfoftheendplate housesthethreerailsonitssidesandthusholdstheDBassembly. Bothoftheendplatesareconnectedtogetherwithfomlongscrewshavingapitchof 1.5 mm. Twoofthescrewsareright-handedandtwoofthemarelefi-handed. Eachset isplacedinbetweentheendplates. Amthersafetydevicefortheupperhalfoftheendplateamthetwohckingnms, whichwhentightenedholdtheendplateinposition, andthuspreventitfi'omeoming downormovingupifaccidentallythescrewsaretamperedwith. l 46 Remote Release 'l‘hewholeassemblyishousedinthewindtunnel. WemounttheDBassemblyand theslitjetapparatusupsidedownonthesuctionplenumofthewindtlmnel Thesuction pkmmaasasamcuumchamberandsuckstheanthroughtlnpknumoftheslfljetand out of the reversible blower; so, it is a problemto operate the deflector blade manually in the suction plenum. So, aremote mechanismwas meded to pull and release the blade. Forthis,aspindleinabearing,FigureA—ll ,wasfittedontopofthewindtunnel. The bearhgwaswpfifledbyachcuhrdixthoughwfichthespmdkpassedandremhedthe centerlineoftheDBassembly. Themtwoequidistantcordswerefittedontherearsideof theDBextensionandconnectedbyasinglenyloncordtothespindle. Turningthe spindlefi'omtheomsideofthewindttmnelcausedthenylonthreadtobewoxmdonthe sleemndthmtheDBwasptflbdbackagamstthesprmgforcetoapredetemmed position. Onrelease,thethreadwasunwoundunderthespringforceandtheDBwas hauled in position, accelerating towards the main flow field out 0ij 147 I I I II\\, T\/ ]:F j:l I I ' II\\ N I” III 1 I 1 1 1 35 1 1:1 111 1 1 l—w} 360 > ' O ‘ f\ _f’\ T \JV' \1 300 360 A _A Wf' \/ | O 11 Deflector Bloole Fig A-l Deflecror blade design. 148 Fr?‘ T 1 ll... ”/3 _____ 9 _____ 40 _"'1 rl\ ——————————— J 50 80.08 45 III II III III ','.J LJ.‘ “(H (.LWH I.\J__YJV_ | I I I 'X 1 l “'10 ( Spring loodeol bolls ) Fig A-2 Deflector blade carriage design. 149 -— 510 . 4+ CENTER RED FDR HDLDING THE DB-CARRIAGE. Fig A-3 Center rod for carrying the DB carriage 150 Locking nut "“ 510 :_/ I 0 —§ 30 l T Center rod —.| +5 CENTER REID WITH THE LDCKING NUT Pig A-4 Center rod with the locking nut. 151 I ...... - . 80 80 40 O 1 “my “ l . , Locking nuts For center rod Fig A-S Center rod holder. 152 18 UN [:31 1,>1 :@ P>l -13-- “Q... <>i >1 1, 85 5 mm spring loaded boll —_—_— Spring Loaded pullers Fig A-6 Spring loaded pullers ( Primary Drivers for the DB) 153 Pulling Force V r\ Pulling f-‘orce l/ k} 45 Fig A-7 Deflector Knife Edge. 154 J I L . r5 i ' 1° £3 F11: HUT fl: {HT T ir—45—‘l 4‘15L l 10 Fig A-8 I-Beam to connect DB with the DB carriage. 155 Stops (holds the spring) Upper Ron i 7 I ‘> i i ] \-Moin Springs (pulls the DB) Lower Ron Fig A-9 Stops for the main springs. 156 .2332 mo 2... 322. 3.. as... Em a _ -< a: A NEBDJ .w mama: v mmijn. mzm Itum mvdfi use 9...». mo ”Eda L951. / mvsc mciuou .wcda Lean: one m>oc ov mzmcum Boom m5. .20.... 09 co_mcmpxu .936 .36 mg». \@ mo P.3d Lean: (6.30: .00; (.3.ch \ 157 Spindle turning Knolo Bearing Housing Bearing / Upper part 0? Wind Tunnel Cord attached to DB -— Spindle Fig A-l 1 Remote mechanism used for the release of the DB. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII iliiliilliiilifliiiiiiiziiligliiiiiiflifliii