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ABSTRACT

SELECTIVE VISUAL ATTENTION IN A SEARCH TASK:

A REINFORCEMENT LEARNING MODEL

By

Silviu D. Minut

This thesis proposes a model of selective attention for visual search tasks, based

on a general framework for sequential decision-making. The model is implemented

using a fixed pan-tilt-zoom camera in a visually cluttered lab environment, which

samples the environment at discrete time steps. The system is a learning agent which

has to decide where to fixate next, based purely on visual information, in order to

reach the region where a target Object is most likely to be found. The model consists

Of two interacting modules. A reinforcement learning module learns a policy on a set

of regions in the room for reaching the target Object, using as Objective function the

expected value of the sum of discounted rewards. By selecting an appropriate gaze

direction at each step, this module provides top-down control in the selection Of the

next fixation point. The second module performs “within fixation” processing, based

exclusively on visual information. Its purpose is twofold: to provide the agent with

a set Of locations Of interest in the current image, and to perform the detection and

identification Of the target Object.
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Chapter 1

Introduction

The problem of visual search is to find an Object in a large, usually cluttered envi-

ronment (e.g. a pen on a desk) [52]. In solving such a problem it is preferable to

use wide field of view images, in order to analyse as much as possible of the envi-

ronment under scrutiny. On the other hand, small objects require high resolution

images, which in combination with the wide field of view requirement leads to a very

high dimensional input array. Foveated vision is nature’s method of choice in solving

this problem and is a dominant characteristic of the vision system of virtually any

vertebrate species with well developed eyes [3]. It consists of processing of the visual

input at non-uniform resolution, due to an increased density of photo-receptors on

a small central patch (the fovea) at the level of the retina. As such, foveated vision

achieves the compromise between the need for a wide field of view and the need for

high acuity.

Foveal image processing reduces the dimension of the input data, but in turn

generates an additional sequential decision problem. Choosing the next fixation point



requires an efficient gaze control mechanism in order to check salient Objects, to

determine whether they are the target or not.

From an engineering standpoint, a sequential attention mechanism is attractive

because it has the potential of requiring only sparse local models [4]. However, the

visual attention mechanism raises a plethora of difficult questions. In the first. place,

since the next fixation point is generally not in the fovea, its selection must be done

based on coarse, low resolution visual information, without a thorough understanding

of its semantics. The question is then, what low level features are necessary in order

to decide what to attend to in the next fixation. Koch and Ullman [22] propose a

saliency map theory which is a task independent, bottom-up model of visual atten-

tion. In this framework, Itti and Koch [16], extract three types of feature maps (a

color map, an edge map and an intensity map) and fuse them together in a unique

map However, the selection of the next fixation must require some top-down control

since low—level visual information is usually not sufficient. Hence the second major

question is how to implement a high level, top-down mechanism to control the low

level, reactive attention? Tsotsos et. al. [46] propose a model Of visual attention

which tries to selectively tune visual processing by means of a top-down hierarchy of

winner-take—all processes. Finally, since the vision system samples the environment,

some information must be retained from one fixation to the next, and integrated

across saccades, to produce a global understanding of the scene. The nature of this

information is the third unknown Of major concern. We propose an overall model that

integrates top-down gaze control with bottom-up reactive saliency map processing,

based on reinforcement learning.



In the remainder of this section we present an outline of the thesis.

In Chapter 2 we introduce the relevant terminology and present some background

and motivation from a cognitive science perspective, as well as give a brief introduction

in reinforcement learning. Some fundamental issues pertaining to visual attention are

outlined.

In light of the problems raised in Chapter 2, we formulate in Chapter 3 the ques-

tions that are addressed in this thesis and we state in mathematical terms the concrete

task being solved.

Chapter 4 is devoted to related work, where a number of representative previously

prOposed models of visual attention are discussed.

The core of this thesis is described in Chapters 5 and 6. Section 5.1 provides an

overview of the model and explains the logical decomposition of our system into two

modules: a reinforcement learning module, which provides the top-down control in

the search task, and a vision module, consisting of bottom-up visual routines that

implement our version of a saliency map and a recognizer used to identify the target

object of the search. We proceed to describe the components of each module in

the subsequent sections, independently of one another. The feature extraction and

the Q-learning routines are described in sections 5.2, 5.2.1 and 5.2.2, while the visual

routines are detailed in Section 5.3. The individual components are then “assembled”

together in Section 5.5, where a detailed description of the algorithm is given.

The performance of the search system is evaluated in Chapter 6, where four ex-

periments are described. The results Show that (1) the number of fixations to the goal

decreases during training, (2) after training, the system can find the target Object in

3



a Slightly different location within one region of the enxdromnent, (3) the agent can

be re-trained to find another object in the same environment withought fine tuning

any parameters. Finally, a comparison with a random search agent and with an ex-

haustive search agent is done, indicating that the learning agent performs better in

both cases.

Chapter 7 summarizes the strengths of the system, as well as its shortcomings.

Some technical issues regarding the implementation are presented, and some possible

improvements to feature extraction. Finally, Chapter 8 outlines a few promising

directions for further work.



Chapter 2

Background

2.1 Biological Motivation

Broadly speaking, computer vision is a research area with the practical goal of build-

ing a machine that (understands what it) sees. In doing so, researchers Often find

their inspiration in biological systems, and often propose computational models that

try to explain or approximate the observed biological evidence. One of the first com-

prehensive theories of computer vision was formulated by David Marr [26]. It was

the dominant paradigm in computer vision of the 80’s and it continues to be a major

one even today. The aim of computer vision, according to this theory, is to recover

the 3D structure of the external world, from 2D images, in an attempt to form a

stable, detailed, spatiotopic representation of the world. Attempts to implement such

a system failed to perform well in realistic environments. A few researchers have used

psycophysical evidence to argue for new biologically inspired approaches in computer

vision [4]. We shall describe some of this evidence and its in'Iplications to vision, but

~
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in order to do so, we shall briefly introduce some terminology first.

It is estimated that more than half Of the neurons in the brain Of the macaque

monkey are devoted to vision (though fewer in the human brain) [11], [32]. This is

indicative of the importance and the complexity of vision. The brain must analyse

the sensory input, then synthesize the information in an attempt. to “make sense” of

the world, and act in an appropriate, optimal way. However, given that the human

field of view is about 180°, it is a highly nontrivial task to process and interpret

all the visual information at constant, high resolution, even for a massively parallel

super-computer such as the brain, for dimensionality reasons. It is also not necessary

to keep detailed information about every single point in the visual field.

The biological solution starts with the design of the eye and consists in a trade-

ofl' between high visual acuity and amount of processing. The fovea is anatomically

defined as a small, central region on the retina, with a very high density of receptive

cells (cones). The density of the photo-receptors (and with it the visual acuity as

well) decreases exponentially from the fovea towards the periphery. To compensate

for any potential loss of information incurred by the decrease in resolution in the

periphery, the eyes are rapidly re-oriented via very fast (up to 900°/s ) ballistic

motions called saccades. The length of the saccade varies with the task, but in

general, the order of magnitude is a few degrees (see [35]). Fixations are the periods

between saccades (about 3 per second) during which the eyes remain relatively fixed,

the visual information is processed and the location of the next fixation point is

selected. In humans, the fovea has a diameter of about 1.5 mm, and accounts for

about 2° of the field of view [32] [35].



This dimensionality reduction leads to a sequential decision problem: rather than

processing all the visual field at once at constant high resolution to produce a detailed

global picture of the whole environment, the visual system devotes a substantial part

of its resources to the processing of a limited region of high resolution, in conjunction

with an efficient attention mechanism, which selects the next fixation point in such a

way that the brain appears to get just the right amount of information necessary for

the task at hand.

In the early 90’s two closely related paradigms started to affect the course of vision

research in computer science: active vision [2] and animate vision [4] In essence, the

active vision paradigm proposes that instead of trying to recover the world in the

form of a task independent, detailed internal representation, one Should try to find

task specific solutions. These solutions could be found by decomposing the particular

task at hand into simpler sub-tasks, with simpler qualitative solutions. As Aloimonos

Points out [2], an algorithm that requires accuracy of a few decimals cannot be robust

under the virtually infinite number of environments, hence the need for qualitative

algorithms.

Animate vision also acknowledges the fact that it is not necessary to create rich

3D 1'epresentations of the world. An animate vision system ideally would be endowed

With anthrOpomorphic features, such as binocular, foveated vision and a high speed

gaze control mechanism. Animate vision systems can take various actions (e.g. move,

or 200m in/out) in order to Optimize or simplify visual search. The computations are

carried out in an exocentric coordinate system (as opposed to an egocentric. coordinate

System in Marr’s paradigm), which has the advantage of being independent. of the

F7
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motion of the observer (robot). The camera is not fixed, but can make approximate

motions to acquire new information. Understanding vision as a continuous process of

mapping perception to action, allows for (reinforcement) learning algorithms which

can provide a vision system with more sophisticated behavior.

O’Regan [30] suggests that only minimal information about the scene is repre-

sented internally. The scene itself could serve as “external” memory. In a now classi-

cal experiment, Ballard [5] confirmed O’Regan’s finding. Specifically, human subjects

were asked to reproduce a configuration of colored blocks displayed on a computer

monitor. The display was divided into 3 regions: the model region, in which the

given configuration was shown, the source, which contained an unordered set of col-

ored blocks, and the workspace, which was the area where the c0py of the model was

supposed to be assembled. Had the subjects built a detailed internal representation

of the model in their mind first (as suggested by the Marr paradigm), one (possibly

long) look at the model would have been enough to produce a COpy in the working

area. Without exception though, the subjects made saccades back and forth between

the model and the workspace, accomplishing the task by selecting one block at the

time. This suggests that it is more economical to retain only the necessary informa-

tion locally both in space and time, and sample the environment as necessary, rather

than keep an internal representation of the scene.

Another piece of evidence against computing and storing a stable internal model

of the world is the change blindness effect [38], [37]. It has been observed that even

significant (sudden) changes in a scene go undetected if they occur during a saccade 1.

 

1It is known that visual input during a saccade is essentially turned Off, a phenomenon termed



Again, had the brain maintained a detailed spatio—temrmral model of the scene, the

changes would have been noticed.

Selective attention is the common feature of biological systems, but it raises a num-

ber of questions, some of which we shall discuss. Rensink [37] points out that there

are two categories of problems. One category addresses questions about retinotopic

representations and processes that occur within a single fixation. Equally important

is what happens from fixatiOn to fixation in terms of how and what kind of informa-

tion is integrated across saccades, as well as how this information is coordinated with

the task at hand. We shall point out some fundamental questions from each category.

First, the “within fixation” questions.

Yarbus [54] and subsequently several other studies (see [35] and the references

therein), showed by tracing the fixation points in a scene, that the human scan pat-

terns vary with the task. Figures 2.1 and 2.2 shows human scan patterns recorded

with an eye-tracker at the MSU EyeLab. Despite these variations, the fixation traces

have some common characteristics. It is noteworthy, for instance, that people almost

always fixate on Objects, both in indoor images and in outdoor images, and almost

never on flat, uniform, empty spaces (eg. floors, walls). It has been postulated [49]

that there are (at least) two fundamental Operations that a visual system must be

able to perform: first it must be able to tell “where” in the image the interesting

regions are, and then, once attention is devoted to one of these regions, it must tell

“what” that region represents. 111 general, coarse, peripheral information is not. suffi—

cient for Object recognition. For instance, surprising as it may seem, color perception

 

saccadic suppression [35].



 
Figure 2.1: Human fixations (the red dots) in an indoor scene. Most of the fixations

fall on objects. There are almost no fixations on large, flat, uniform surfaces (floor,

walls). Courtesy of the MSU Eye—Lab. Images in this thesis are presented in color.

is heavily depreciated beyond 20-30 degrees off the optical axis, due to the decrease

in cone density [32]. The peripheral information is used mainly to select the next

fixation point, after which recognition occurs based primarily on fovea] information.

In light of these facts, a logical paradox occurs: how does the visual system decide

where something interesting is in the scene, before knowing what it is? Trying to an-

swer the “wha ” question first seems equally hopeless, for how can it be decided what

an object is, before looking at it (La before knowing where it is)? One theory that

attempts to explain the selection mechanism is the saliency map framework, which

we discuss in some detail in the next section.

One fundamental problem in gaze control, part of “across fixations” research is

10



 
Figure 2.2: Human fixations (red dots) in an outdoor scene. Courtesy of the MSU

Eye-Lab.

how integration across saccades is performed, i.e. what information the brain retains

from fixation to fixation in order to produce the illusion of a coherent, uniform res-

Olution image, rather than a collection of snapshots of various regions in a scene. It

has been suggested (see [35] and references therein) that information from successive

fixations is stored in a high capacity visual buffer. The main technique used in vi-

sion racarch to investigate this problem is to present human viewers with an object

extrafoveally, and then instruct them to direct their gaze towards the object. During

the saccade the object is replaced with another object which the subjects must name.

Studies in object perception [35], however, show that the visual information is not

stored in a point by point fashion, but rather as relatively abstract representations.

11



 

Integration of information across saccades remains an Open problem [35].

2.1.1 Saliency Map Theory

If the understanding of a scene is a sequential process, then naturally, we must try

to understand the mechanism that allows the shift. of attention from one region to

another.

An initial step is to observe that not all visual processes are created equal. Some

features (e.g. luminance, direction of motion) can be processed quickly and in parallel

over the entire field of view, whereas more cognitive processes such as shape analysis,

or fine recognition, have much higher complexity and require an increased amount

of resources, which necessarily must be carried out locally, on a restricted region

called focus of attention which most of the time (but not always!), coincides with

the fixation point. The former processes constitute the “pre-attentive stage”, whose

role is to select a single region as the focus of attention, which will subsequently be

analysed by the latter processes - the “attentive stage”.

There exists experimental evidence that strongly supports the “selective atten-

tion” theory. In the first place, experiments by Triesman [47], [48] showed that

search for a target defined by a single visual feature (e..g color, or edge orientation)

takes place in parallel over a visual display, whereas targets defined by a conjunction

of several features is done sequentially (e.g. find a vertical red line among many

red and blue lines, vertical or horizontal). It has also been established [7], [20], [47]

that only a limited set of features (e.g. color, edge orientation and curvature) can

12
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be detected in parallel. Physiological evidence based on recordings of neuronal ac-

tivity in awake behaving monkeys also supports the selective processing of the visual

data [8], [12], [13].

In light of these facts, Koch and Ullman [22] proposed a model of visual attention

called saliency map, aimed at explaining the shift of attention and the saccadic eye

movements. We describe their model in the remainder of this section. The result of

the processing in the pre-attentive stage is a. set of topographical cortical maps (pos-

sibly at different spatial resolutions), which are based on low-level visual information

(color, edge orientation, texture, contrast, disparity, direction of motion) and provides

an early representation of the environment. Each of these feature maps codes for con-

spicuity within one feature: the more different a location is from its surrounding, the

more conspicuous (i.e. more salient) it is. The feature maps are then combined into a

saliency map by computing at each location a weighted sum of the saliency in each of

the features. We must point out that it is nontrivial to compute such a weighted sum,

because some of the features are inherently not comparable (e.g. it is not. obvious

how to compare color conspicuity with edge orientation). In fact, it is quite possible

that these weights may vary, and may get top-down (semantic) influence from some

higher cortical centers.

Once a salient location has been selected, more abstract. properties of that region

are created and a central, non-topographical representation of that region is formed.

A “winner-take-all” network is proposed for finding the most. salient region in the

saliency map. A second network is also necessary for building the abstraction of the

attended region into a central representation.
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Since the saliency Of a region in the field of view is based on low—level visual

features, it is extrinsic to the visual system, i.e. it is entirely determined by the

environment. Then, the most salient region in the early representation, remains the

most salient also after that region has been attended. Naturally, then, the question is,

if the maximum saliency region is always selected, how does one ever move the eyes

to another location? Koch and Ullman suggest that higher cortical centers decrease

the saliency of the attended region, so that after some time, that region is no longer

the most salient in the field of view, and another maximum is selected elsewhere.

A few comments are in order here. In the first place, as we have already men-

tioned, it is not trivial to combine the various feature maps into a single saliency map.

Secondly, in the saliency map framework, it is not clear when the high level processing

occurs. The saliency map only tries to explain how the next focus of attention is cho-

sen, and, as presented above, semantics are given little consideration. In the absence

of semantics, the selection of the next fixation point is a reactive, deterministic pro-

cess (once an environment is given), which does not require any voluntary, cognitive

actions; in other words, it is a reflex. While this may be the case during the first

few fixations when presented with a new scene, we believe that as the scene is being

gradually understood, semantics, and the specific task at hand have an increased role

in selecting the next fixation point.

We close this section by mentioning that while there is biological evidence for

the existence of various feature maps, not all researchers accept the idea of a unique

topographic map to represent the most salient stimuli [10].
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2.2 Reinforcement Learning

We emphasized in the previous section the necessity of a top-down control mechanism

to obtain the functionality of a gaze control system. Since we treat visual attention

as a sequential decision problem, we shall use reinforcement learning techniques [43]

to implement the top-down control in a task specific way. In this section we present

the basic formalism of sequential decision-making.

An agent is a system which can be in one of a finite set of states, and which can

take actions. Depending on the problem at hand, the information used to define the

states could be extrinsic to the agent, describing properties of the environment (e.g.

location information, “obstacle ahead”, “rainy day”, etc.), or intrinsic, internal to the

agent (e.g. “hungry”, “happy”, “angry”, “sure”, “unsure”, etc). In general, there is

one set of actions for each state, but for simplicity, we shall assume that at each state

the agent can choose from the same set of actions. The actions change the state of

the system and the agent must re-estirnate the state by observing the environment.

The agent gets rewarded for each action it takes, and tries to learn what action is

the best in each state, with respect to some optimality criterion, by moving from one

state to another until some termination conditions are met.

Typically, the components of a sequential decision making problem are as follows:

0 States: S = {81,152, . ..s,,}.

0 Actions: A = {a1,a2, . ..am}.

0 Transition probabilities: P(s'|s, a) of reaching state .5" given that the agent
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was in state 3 and has taken action a. In general, the transition from s to s’

by executing action a depends not only on s and a, but on the whole sequence

so, (11, . . . , 3,, = 3 up to the current state. In many sequential decision problems,

however, the transition from a state to another does not depend on history, i.e.

P(5n+l Ian-+1737“ - - - :a1230) : P(3n+l|an+1: 8n) (21)

Equation (2.1) is called the Markov property and systems in which it is satisfied,

are called a Markov Decision Processes (MDP). We assume the Markov property

throughout this thesis.

0 Reward: R(s, a, s’) for transiting from state 3 to s’ as a result of action a. The

reward can be positive, zero, or negative (cost). We assume that rewards are

bounded in absolute value. Since the action a. puts the system in state 3’ with

probability P(s’ Is, a), the quantity

r(s,a) = E(R(s,a,s')]s,a) (2.2)

= :P(s'|s,a)-R(s,a,s’) (2.3)

represents the one step expected reward for executing action a in state 3.

0 Objective function: A function depending on long term reward, which the

agent must optimize. For instance the agent might try to maximize the sum of
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rewards:

r(s0, a1) + r(sl, a2) + . ..

where a,- is the action taken at moment i, s,- is the state at time step i and so

is the state the agent starts from.

TO guarantee that the above series is finite, we assume the rewards are bounded

and we discount each of the terms by a factor 0 < 7 < 1. We require the agent

to maximize at each state the expected value Of the sum of discounted rewards:

E("§:7 r(st_1, at)) (2.4)

i=1

See [21], [24] for more examples of optimality metrics.

A (stationary, deterministic) policy is a function it : S ——> A. The agent follows

a policy if in each state s it always chooses the same action a = 7r(s). Given an

Optimality metric and a policy 7r, we can define for each state 3 a value V”(s). For

instance, for the optimality metric (2.4), the value of state 3 is

V“(s) = E(i(':”l r(st 17r( 1)]5 7r) (2 5)

= rs.( ))+’7'- ZPLS([s,7r(s)))V(s') (26)

where so = s and sl = s’.
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By “Optimizing” the objective function we mean that the agent must find an

Optimal policy, i.e. a policy 7r* such that

V7r(s)>V“(s.)\7’s€S

For simplicity we denote V" = V’". By (2-6) we have that

V'“(s)2 man [Is, a+)7 Z P(s(Is, a))V*((')] (2.7)

GAE s’ES

for any state s. Equations (2.7) are called the Bellman Optimality equations,

and there are two known dynamic programming algorithms that can be used to solve

them: value iteration and policy iteration [21], [24], [33], [43]. These algorithms can be

applied when we have a model Of the MDP, i.e. when the transition probabilities and

the reward functions are known a priori. This may be the case in some manufacturing

problems, but it rarely happens in real robotics problems. Indeed, a robot does not

know the outcome of an action until it has completed that action.

There exists, however, an algorithm called Q-learning due to Watkins [50] which

can be used to solve the Bellman equations even when the transition probabilities or

the rewards are not known. The algorithm is iterative, it is proven to converge, and

finds a solution of the Bellman equations.

To begin with, suppose that V“ is a solution of (2.7). For each pair (s, a) define

a function
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one = we + 7- Z W .s,a)v*(s') (28)
3’65

 

which is precisely the quantity under max in Equation (2.7). Clearly then,

V*(s) = Tea? Q*(s, a) (2.9)

Substituting (2.9) back into (2.8) we get

Q*(s, a) = r(s, a) + 7- Z P(s’|s,a) £1,133] Q*(s’,a') (2.10)

3’65

Unlike in the Bellman equations, in equations (2.10) the transition probabilities

are not under max. The quantity

2 P(s'[s, a.) max Q*(s’, a')
a’EA

s’ES

is the expected value of maxareA Q(s’, a’). The Q-learning algorithm tries to find

the function Q*(s, a) through successive approximations. Once Q" is found, we can

find an Optimal policy by

7r*(s) = arg mea‘x Q*(s, a)

Let (2,, be the approximation at time step n. Q0 is initialized randomly, or it is

identically 0. The iterative step is given by the following update equation:
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Qn+l(3a a) = Qn(3: (l) + O’nIW'Sa a) ‘l‘ ’7 ' 2,123: Q-n-(SII all) — Qn(3: all (2'11)

where an is a. learning rate parameter. The transition probabilities are not present

in the update equation (2.11). It can be proven rigorously [50] that the sequence (2,,

is convergent to a function Q“ which satisfies (2.10), provided that 2a,, z co and

2 (1,2, is finite and provided that all (state, action) pairs are visited infinitely Often.
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Chapter 3

Problem Definition

3.1 Research Questions and Task Definition

Now that we have introduced the basic ideas in active vision and reinforcement learn-

ing, we can formulate more precisely the theoretical questions that we investigate in

this thesis.

The first question is, how can perception and action be unified in a. coherent,

possibly task dependent visual behavior. In other words, given that the agent recog-

nizes (with some certainty) an image, how does it decide what to do afterwards? We

propose a model of visual attention which comprises a low level, reactive layer, which

essentially implements a saliency map, controlled by a high level, semantic layer. The

addition Of the tOp layer goes beyond previous gaze control models, in which the

emphasis was on selecting the most salient point in a task independent way.

Secondly, we investigate to what extent reinforcement learning can be used to
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integrate information across saccades. We propose that only minimal visual infor-

mation about a region in the erudrournent is retained, together with the direction

of the saccade from that region towards some goal. This is analogous to landmark

navigation that organisms (from insects to humans) are known to perform.

Finally, we ask whether it is possible to learn relationships between Objects. For

instance, if the agent is searching for a pen, then, to restrict the search, we would like

it to know from prior experience that a pen is likely to be found on a desk. Many

examples from real life, Show that peOple do use this kind of prior knowledge: we

look for keys in certain places, we look for a book in a bookcase, etc. We believe

that reinforcement learning can partially answer this question, but a more complete

solution relies heavily on the ability of the agent to recognize classes Of objects, rather

than specific Objects (e.g. the agent can recognize “books”, or “pens”, not just “this

book”, or “this pen”).

A visual search for a relatively small Object which is not necessarily in an exact

location, but which can usually be found near some other larger fixed Object in a

cluttered environment, seems to have the necessary complexity to address the above

issues. At any given moment the system can only process a limited region in the

environment, at high resolution, and knowledge about each Of the regions visited

must be “remembered” from one visual frame to another. Also, moving to another

region requires some way of finding a new fixation point, which requires solving the

aspect of visual saliency. The fact that the target Object is generally in one region

of the room, requires that the saccades be directed consistently towards the target

region, hence the problem of tOp-down control.
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Formally, we define the search task as follows.

 

3.1 (b)), using a fixed, pan-tilt-zoom camera.

Input: An RGB image of the target object T.

on L for finding the target T.

 (but fixed) position, until it finds the target T.

Task: Find a pre—specified object (Figure 3.1 (a)) in a fixed position in a room (Figure

Output: A set L = {L1, L2, . . . , Ln} of landmarks (regions) in the room, and a policy

Performance Metric: Number of saccades the camera makes from an arbitrary
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Figure 3.1: (a) RGB image of the target object. (b) Panoramic image of the environment.

Images in this thesis are presented in color.

The general approach is to create the set L incrementally, by using an instance

based approach of clusterng the images. Each image is represented by means of color

histograms. Q-learning is used to learn the policy on the set L. The next fixation

point is chosen by using two feature maps (rather than a single saliency map): we

do a low resolution search for a candidate location, based on color, followed by a
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high resolution match at each candidate location. If the target is not found, then we

compute symmetries in the image using an adapted version of the symmetry operator

described in [36], and choose the maximum in a given direction as the next fixation

point.

We want to emphasize here that although a gaze control system involves a great

deal of image processing and pattern recognition techniques, we do not attempt to

build a (nearly) perfect, general purpose recognizer, nor the perfect saliency map.

What we strive for, is to introduce task dependent, top down control in visual at-

tention. Improvements both in the image processing component, as well as in the

reinforcement learning component will be added subsequently, based on the insight

gained from the current work. For now, however, we see this work as the first step

towards understanding the computational issues involved in building a gaze control

system capable of operating in realistic environments.
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Chapter 4

Related Work

4.1 A Saliency Map Implementation

A number of approaches to visual attention, visual search and gaze control have been

proposed [1], [9], [16], [22], [29], [34], [39], [46], [53]. We shall succinctly describe some

of them in this section.

Perhaps the most comprehensive implementation Of the original saliency map

theory proposed by Koch and Ullman was done by Itti and Koch [16], [15] who

implemented a model of a task independent, pre—attentive selection mechanism. A

saliency map is built using a bottom—up approach. To this end, three types of feature

maps are built and combined into a unique map: a color map, an edge-orientation map

and an intensity contrast map, each at different scales in a pyramidal scheme, yielding

a total of 45 feature maps. Each of these features uses a center-surround structure that

mimics the visual receptive fields, which is meant to pick up regions that are in sharp

contrast with their surrounds. For the color contrast, for instance, the difference
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between the red value at one pixel and the green value Of surrounding pixels at a

different. scale is computed, resulting in a red-green contrast map. Similarly, blue-

yellow contrast maps are computed and then combined with the red-green maps. The

same center-surround, bi-scale scheme is used to compute the intensity contrast maps

and the edge orientation maps. A great deal of effort is directed towards combining

these features into a unique saliency map. In [15], the same authors showed that a

simple way to combine the features by normalizing them to a fixed range and summing

up, did not work well. In [16], strongly motivated by biological evidence, Itti and Koch

use a two dimensional difference-Of-gaussians (DOG) to model inhibitory-excitatory

interactions between neurons. First, each feature map is re-scaled between 0 and 1.

Iteratively, each map is convolved with a DOG filter, the original image is added to

the result and the negative entries in the result are set to 0. This “within feature”

competitive process produces a conspicuity map (for each feature) with a few peaks

left, each peak marking a location in the image most contrasting with its surround.

Finally, these three conspicuity maps are summed up linearly and the most salient

point in the image is the one with the highest peak.

Another important model Of visual attention is the one proposed by Rao, Zelinsky,

Hayhoe and Ballard in [34]. The idea here is to define saliency based on iconic

representation of each location in the image. An iconic representation at a location is

nothing but visual information from a patch in the image, centered at that location.

Then, given also an iconic representation of a target object, one could search for that

Object in the image by defining the saliency at each location as the correlation between

the representation at that location and the representation of the model. Encoding

26



icons literally as raw images, is clearly prohibitively expensive, so the authors propose

an efficient way Of iconic encoding, as the response around each pixel to a number Of

different filters, at different scales. Specifically, for a fixed scale, a gaussian is used

to generate 3 first order, 2 second order and 4 third order derivatives, for a total of

9 filters. Three scales are considered, yielding a total Of 27 multi-scale filters. Each

of these filters is applied to each Of three (modified) chromatic channels of an RGB

image, producing at each location in the image a vector of 81 responses. Given a

similar representation of a target object, one essentially defines the saliency at each

location (:13, y) in the search image as the L2 norm between the response at (r, y) and

the model representation. The next fixation point is selected as the one with the

smallest norm. Unlike the Itti and Koch model, which is purely bottom-up and task

independent, this model requires knowledge about the task, in that it uses the iconic

representation Of the target Object to define saliency in the search image.

4.2 Reinforcement Learning

-
I

Trevor Darrel [9] applies McCallum’s nearest sequence memory (NSM) algorithm [27]

to implement a gaze control system for gesture recognition. Darrel’s system consists of

two cameras: one that provides a static, low-resolution, wide field Of view image, and

another one with pan-tilt action, which provides high-resolution, narrow field Of view

images. Part Of the world state is fully observable by means of low resolution images.

However, the hand gestures and facial expressions can only be Observed from the high

resolution images provided by the active camera. The various low-level routines can
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perform person tracking, and can guide the active camera to saccade from one body

part to another, based on the global, low resolution images. Other visual routines

perform the gesture recognition based on the high resolution images taken by the

active camera, provided that the camera has been directed towards the relevant body

parts (e.g. hand or face). The system is supposed to learn how to choose the next

fixation point in order to obtain new images of gestures or expressions, and maximally

discriminate a particular gesture. The low level routines extract at each time step

9 features from the low resolution and high resolution images: (person-present, left-

arm-extended, right-arm-extended, face-expression, left-hand-pose, right-hand-pose,

left-hand-foveated, right-hand-foveated, head-foveated). The state is hidden because,

for instance, the left-hand-pose (which can be neutral, point or Open) cannot be

known unless the active camera is pointed to the left hand. At any time, the system

can choose between 4 (primitive) actions: look—body, look-head, look-left-hand and

look-right-hand. Since the state is hidden, the system can be treated naturally as a

partially observable MDP (POMDP). The system keeps track Of memory sequences

(mt)0gtSTa where each element mt is a triple mt = (at, rt, at) of action, reward and

observation at moment t, and associates with each such sequence a Q-value, to decide

the utility of that sequence in dis-ambiguating the state of the world. The system

does manage to learn how to perform the task, but despite the small number Of states

and actions, it takes a considerable amount of time to train.

An interesting idea is presented by Rimey and Brown [39] where Hidden Markov

Models (HMM) are used by an artificial gaze control system to learn saccadic move-

ment sequences. In one example, the pan-tilt camera is assumed to move in small
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constant increments in 8 directions. Let v0, . . . , v7 be these motions. An 8-state H.\-*I.\"I

is trained, in which the symbols (Observations) are precisely the v.,-’s. Observation se-

quences are now produced, for instance, by drawing a scan path with the mouse on a

computer screen, or by monitoring human eye movements. At time t = 0 the system

“perceives” Observation vto, at moment t = 1 Observation vt,, etc. Thus, a given scan

path produces Observation sequences which can be used to train the 8 state H.\I'l.\:’l,

i.e. to learn the transition probabilities a,,- between states and the observation prob-

ability densities b,(-). The learned HMM is then used to generate symbols from the

learned distributions, which drives the camera to moving along a path similar to the

one used for training. Obviously this scheme does not use any visual information,

so the learned path is independent of the underlying image. However, the authors

modify the path generation after the HMM has been trained, to include saccades

towards the most salient points in the image. Moreover, they develop the formalism

for training augmented-HMMS (AHMM). As an application, the authors train two

HMMS (a “where” HMM and a “what” HMM), to implement two separate behav-

iors and combine them using the newly defined notion of AHMM to create a more

complex behavior.

Finally, we shall describe a reinforcement learning solution to Object recognition

due to Bandera et. a1. [6]. Suppose we have a foveated vision system whose task is

to recognize Objects from a finite number of classes. TO fix the ideas, suppose the

classes are “cube”, “cone” and “pyramid”. Suppose also that the system can detect,

fixate and recognize various visual features that are present in all these classes. For

instance, a feature could be a 90 degree angle as it is indicative of a cube; vertical
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and horizontal edges are also features present in a cube; a circular curve is indicative

of a cone, etc. In general. recognition with sufficient confidence requires the presence

Of a conjunction of these features. The various features have different importance

for the classification task, since the more Objects share a common feature, the less

discriminant power that feature has. The system must learn which features are the

most discriminant for the given set Of Objects. At discrete time steps, the system

chooses one feature to interrogate. As the various regions of the Object are being

fixated on, a confidence measure is associated with each of the features in the “feature

database” which indicates the presence or the absence of that feature in the Object.

The state of the recognition process is defined intrinsically, as the vector Of these

measures. These confidence measures are readily transformed into probabilities and

the system must reach a state of minimal entropy by choosing the feature to be fixated

next, based on its discriminant power. The one-step reward for choosing a feature

is equal to the decrease in entropy it produces when interrogated. A neural net is

then used to implement the residual Q-learning algorithm. Although implemented in

simulation, we consider this work of great importance, because it is an example of a

system in which the states are internal, reflecting the stage of the recognition process,

rather than properties of the environment. Moreover, we believe this approach has

great potential in automatic feature selection.
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Chapter 5

Model Description

5.1 The System Overview

The system consists Of a Sony EVI-D30 pan-tilt-zoom camera placed in an elevated

location in our lab, controlled through the serial port. by a PC with a Pentium II 400

MHz processor. TO grab images we use an inexpensive BT848 board. The pan and

tilt Of the camera (measured in ticks) range in the interval [~860, 862] x [—281,283].

In degrees, these ranges translate into [—100°,100°] x [~25°,25°]. At the lowest

resolution, the largest field of view of the camera is approximately 48° x 33°.

Figure 5.1 shows the architecture of the system. The target object is provided

to the system in the form of two template images: one at low resolution, used for

coarse search, and the other at high resolution, used for fine matching (see Figure

5.2). The camera takes low resolution images from the lab and feeds them, one at

the time, into the two layers of the system. Each low resolution image is processed

along two streams - the two main modules of our model (see Figure 5.1). The top
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Figure 5.1: Overall architecture of the system. The top module performs the feature

extraction necessary to cluster the images online. The resulting regions are used as

states in a Q-learning program and a policy for moving towards the target region

is learned. The bottom module implements the “within fixation” visual processing,

consisting of computation of interesting regions in the image and object recognition.

  

 

     
   

module (which uses reinforcement. learning) learns a set Of clusters online consisting

Of images with Similar color histograms. The clusters represent physical regions in the

environment, and are used as states in the Q-learning method. This module learns a

policy for saccading from one region to another towards the region(s) most likely to

contain the target object. By selecting the gaze direction according to its utility (the

Q-value), the reinforcement learning module provides top-down control to a lower,

purely vision-based module. The vision module consists of low-level visual routines

and its purpose is to compute two feature maps (color map and symmetry map) for
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(a) 1 (b) 2

Figure 5.2: (a) Low resolution template of the target object. (b) High resolution template.

representing saliency 1 in an area of interest in the image, and to recognize the target

object, both at low resolution and, if need be, at high resolution for high confidence.

All computations in this module are performed in exocentric coordinates 2. Unlike

[16], at this point we do not attempt to combine the feature maps to form a unique,

task independent saliency map, but rather use them sequentially, first the color map

(for finding candidate target locations), then the symmetry map (if the target was

not found and a new saccade is necessary).

The output is a set of landmarks L = {L1,L2, . ..L,,} specific to a particular

environment, and a policy on the set L which directs the camera one fixation at the

time, starting from any point in the room, and moving towards the region(s) where

the target object is normally found. Each element in the set L is a cluster of images

representing the same region in the room. The set of landmarks is learned online,

and the clustering is solely based on visual input from the camera (i.e. not based on

the pan-tilt coordinates of the camera). Although desirable, we don’t expect/require

 

1The next fixation point is the resulting most salient point.

2Obviously, image coordinates must be transformed to camera coordinates, in order to physically

carry out the saccade, but the decision making does not use pan-tilt information.
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that the landmarks learned he a faithful representation of the environment (i.e. they

may not correspond to physical objects in the room).

5.2 The Q-learning Module

5.2.1 Feature Extraction

In any image classification problem, treating the raw images as vectors is unfeasible

due to the very high dimension of the resulting vectors. Dimensionality reduction

techniques (e.g. principal component analysis [28]) and feature extraction must be
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Our first attempt to reduce the size of the observation vectors was to compute the

wavelet transform [42] of the images. Wavelet coefficients produce good dimension-

ality reduction (an order of magnitude better than JPEG compression, with similar
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Figure 5.4: Top: feature vectors (4 concatenated color histograms) for two similar

images (bottom)

quality), but are too sensitive to small changes in the pan-tilt of the camera, as the

wavelet transform is not translation invariant. Small changes in the x,y position of

the camera produces large variation in the feature space, which makes any clustering

attempt useless.

A set of features that changes slowly as a function of the direction of gaze is

provided by the (color) histogram. For an introduction to the computer representation

of colors and color spaces see for instance [18], [19], [41]. Binarizing each channel in

the RGB space into 16 bins, we get 4096 colors. However, for a given environment,
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Figure 5.5: Top: feature vectors extracted from two different images (bottom)

many of the colors occur with zero or very small probability. We can then build a

histogram on all 4096 colors of 100 random images from the whole lab and retain

only the colors with a count of at least 0.5%. The number of colors retained this way

was 49. Henceforth, these colors will be called dominant colors.

Histograms do have the advantage that they change little when the viewing angle

changes, but they may introduce perceptual aliasing: there may be very different

images (locations in the environment) which produce the same histogram. To alleviate

(but not necessarily eliminate) this problem, we divide each RGB image in 4 quadrants
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and concatenate the histograms on the dominant colors on each of the squares. The

resulting observation vector has then dimension 196 = 4 - 49.

Having defined the feature vectors, a suitable metric needs to be chosen, in order

to tell whether or not two images are similar. Given a pair (11,12) of images, two

situations can occur: either I1 and 12 represent the same region in the enviromnent,

or not. If we define two classes

Csimilar ={(11,12)|112 12}

Cdifferent = {(Il-.I‘2)|Il ¢ [2}

then a metric on pairs of images becomes a feature which can distinguish the two

classes. We, therefore, choose a metric that maximizes the inter-class separation.

After trying the Euclidean metric and correlation, we chose the symmetric Kullback

distance, which we describe next.

The amount. of information produced by an event A which occurs with probability

P(A) is defined as

log2 —(l/U (5.1)

Given two probability distribution functions p(.r) and (1(1) of a random variable

x, then the Kullback contrast [17] between p and q is defined as the expected value

with respect to q of the difference of information between p and (1. That is
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kip-.11) — EqUng I-)—(—‘l_)_ — 1082 _<1(4L‘)) ( .2)

_ . , W) ,. —
_ /(1(.L) 10g2 p($)d.r (0.3)

It can be proven [17] that k(p, q) is positive definite, but. it is not symmetric. To

transform the above Kullback contrast into a metric, we symmetrize it in the standard

way:

me = Mm) 2: rap) (5,)
 

A histogram represents the probability distribution that a certain color occurs

in an image, and so, it makes sense to use the Kullback distance to measure the

similarity between the two histograms. To see the effectiveness of the Kullback metric,

we grabbed 50 random images from our lab by choosing the fixation points uniformly,

and 50 images from one region in the lab, i.e. by choosing the fixation points from

a gaussian distribution with a small variance, centered around a pre-specified point.

We formed all the pairs within each class of images, and for each pair we computed

the Kullback distance. Figure 5.3 shows the Kullback distance as a feature on each

of the similar/non-similar classes of pairs of images.

The separation threshold between pairs of similar images and non similar images

is around 2. However, there is a significant overlap between the two distributions, so,
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in order to reduce the false accept rate we moved the threshold to the left, at 1.5, at

the expense of the false reject rate.

Figure (5.4) shows a pair of similar images, and their feature vector representation

as the concatenation of color histograms on each of the 4 quadrants in each of the

images, while Figure (5.5) shows the feature vectors for two non—similar images.

5.2.2 States, Actions and Reward

We define a state to be a cluster of images representing the same region in the room.

As explained in the previous section, from each image, an observation vector is ex-

tracted by concatenating the histograms on the dominant colors in each of the 4

quadrants. The similarity metric between two observation vectors is given by the

Kullback metric.

Q-learning requires that the set of states be known a priori. However, due to the

sequential processing of a scene, understanding must be incremental. For this reason,

we start with an empty set of clusters of images, and form new clusters as the agent

fixates on new regions in the room. The clusters are spherical (with respect to the

Kullback distance) , and have a radius of at most 1.5 (see feature extraction). The

center of each cluster is the very first observation vector used to initiate creation of a

that cluster, and it is not updated as new observation vectors are added.

We define 9 actions. A0 is a saccade to the most salient point in the whole image.

Further, we define 8 more actions A1, . . . , A3 as follows. Choose a cartesian coordinate

system with the origin at the center of the image and for each k = 1...8 let Rk be
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Figure 5.6: The shaded region represents a sector in image A. The most salient point is

computed (the blue square) and a new image B, centered at the new location is taken.

the ray through the origin which makes an angle 45° x (k — 1) with the x axis. Let

5,, be a 90° sector in the image, bisected by Rk. Then we define action A), to be

the saccade to the most salient point in sector 5],. The shaded region in Figure 5.6

represents sector S, in image A. The small blue square is the most salient point in

5,. Once its coordinates are computed, the camera is directed toward the new point

and a new image B is taken. The actions A] . . . A8 always force the camera to be

directed away from the current fixation point. Action A0 is justified by biological

evidence that human subjects sometimes make a series of very short saccades within

the same region of interest, perhaps for the purpose of acquiring more information.

If the agent chooses to execute A0 and if the most salient point is near the optical

axis, the agent need not move towards a point in the periphery.

Early in the development of this system we had two extra actions: a search action

and a saccade to a random point. We realized, however, that the search for the

target object is part of the “within fixation” processing, and consequently, it should

be carried out at each time step, and should not be considered a separate action.
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The random saccade was also eliminated, because if the outcome of an action has a

uniform distribution, then the agent has no way of learning whether it should execute

that action or not. Also, before defining the actions using 90° sectors, we tried 45°

sectors. However, we have Opted in favor of the current size of 90° because by using

too narrow angles, some objects might not be entirely comprised within those angles,

so their symmetry will be influenced in a negative way.

 

 

  
   

A 

B

Figure 5.7: If the reward is found in the periphery (image A) then upon subsequent visits

to the same region (image B) the reward could be missed, despite the fact that the agent

executed the “right” action.

The reward function depends on the current state 3, the action a taken in s and

the next state 3’, and is given by:

:2

100-e“2—7 if target is found in state 3'

A

O
I

C
)
!

V

r(s, a, s') =

—4 otherwise

In the above equation, a: is the distance from the center of the image (the current

fixation point) to the target object and the variance 0 controls the size of the gaussian

defining the reward. The reason we reward more for bringing the target in the center of

the image than for finding it. in the periphery, is that. the latter situation is unreliable.
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Consider the following scenario: the agent is in state 3, takes action a and lands in

state 5’, where it perceives the target somewhere near the periphery. If the agent gets

a significant reward, then the action (1 becomes Optimal in state 3 and will be chosen

upon subsequent visits to 3. By using solely visual information, the fixation points

can only be computed approximately. Thus, often, when the agent revisits state .9

and takes action a, the target object is just out of the field of view, and the agent gets

penalized for the same action that previously brought a large reward. See Figure 5.7.

The optimality metric (i.e. the function that the agent tries to maximize) is the

expected discounted sum of rewards:

W) = 19(thma...» (5.6)
:20

5.3 The Vision Module

The vision module (see Figure 5.1) implements some routines, as part of the “within

fixation” processing. We build a color map using histogram back-projection [44], [45]

to obtain candidate locations for the target object in low resolution/wide field of view

images. To assess the value of each of these locations we use a recognizer based on

histogram intersection [45]. If any of these locations turns out to be a. good candidate,

the camera is directed to that location, zooms in, and, for high confidence, another

match is performed using the same recognizer and the high resolution template of

the target object. Finally, if the object was not found in the current frame then a

new saccade is necessary. The camera returns to the pan and tilt prior to inquiring
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the candidate locations, and a new fixation point is selected. To this end, we use

a context free symmetry operator [36] to build a symn‘ietry map and select the next

fixation as the point with the highest synnnetry. For the sake of completeness, we

shall briefly describe these routines below.

5.3.1 The Symmetry Operator

Man-made objects tend to have more symmetry than natural objects. In an indoor

environment such as a lab, most of the objects are man made, so it is natural to try

to employ a symmetry operator in an attempt to fixate on the centers of objects.

 

e.

I I, pj

,n’ pi+pj

VIi 2

6i or..
I l

D

Figure 5.8: Two edge pixels p,- and p, will vote for their midpoint. The strength of the

vote depends on the distance between p, and pj, and on the length and the orientation of

the intensity gradient at each of the two pixels.

Following [36], for a graylevel image, we compute the edge map, and then we
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let each pair of edge pixels vote for their midpoint. The vote is modulated by the

distance between the pixels, and by the direction and the length of the gradient of

the intensity. -More specifically, if I (1:, y) is the graylevel image, for each edge pixel

p,- define

rr =10s(1+|V1(Pz-)|) (5-7)

For any edge pixel p, let 6 be the argument of VI, i.e. the oriented angle between

the horizontal and the vector VI. For any two edge pixels p,- and p,- let (2,, be the

angle between the horizontal and the line pm, (see Figure 5.8).

The phase factor for pixels p,- and p,- is defined by

P(i,j) = (1 — 005(0, + 6,- — 2 . 04,-,» - (1 — cos(0,- — 0,)) (5.8)

We define the distance factor for edge pixels p,- and p,- by

 

1 (llzvi-pl-Il-m)2

D(lj) : ' 6'— 2” (59)

27m

The vote of the edge pixels p,- and p,- is then defined as

The gaussian in equation (5.9) achieves its maximum when the distance between

p, and p,- is equal to a user specified parameter a, giving pixels at distance a an

increased vote. See Figure 5.9.

44



  
(a) (b)

Figure 5.9: (a) Sample image. (b) Symmetry map obtained by maximizing the vote for

pixels at distance a = 130.

By equation (5.8), the phase factor P(i, j) achieves its maximum when

05+0j—201 ll :
1

05—91' = 7r

which is the case when the two gradients are parallel to the line pm,- and point in

opposite directions. On the other hand, P(i, j) achieves the minimum when. for

instance, 9,- = 0,, i.e. when the two gradients are parallel and point in the same

direction.

5.3.2 Histogram Back-projection

In addition to symmetry, we use color to define saliency. We do not try to build a task

independent, bottom-up color map which would pick up regions contrasting in color
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with their surrounds (as in [16]), but rather try to find in the image locations with

similar color distribution as the target template. To this end, we use the histogram

back-projection algorithm [44], [45].

 

Figure 5.10: (a) Sample search image. (b) Model (target) image. (c) Histogram back-

projection of (b) onto (a).

Given two color images I (the search image) and M (the model, provided a priori),

this algorithm finds the locations in I where M is likely to be found. First, one must

build the color histograms HM and HI of M and I respectively, on the same set of

color bins. For improved performance, we use the L". u“, 11* color space [18] rather

than RGB, given by:

 l

I

1001/ a
L" — 25-( )—16

Yo

u‘ = 13-L’(u’—uo)

v‘ = 13~L‘(v'—vo) (5.11)
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1n the above equations

 

 

, , _ , _ 4X

u _ u _ X +15r'+ 32

v' = 1.52) = 9y

X +15Y + 32

( X \ ( 0.490 0.310 0.200 \ K R \

Y = 0.177 0.813 0.011 - G (5-12)

      (Z) (0.000 0.010 0.990} (B)

and Y0, no, 00 are the reference white values for Y, a, '0, respectively.

The color bins are precisely the colors that occur in I . Two different source images

I and I’ have different sets of color bins, and so these bins must be re-computed

for each pair (I, M). For an efficient implementation we use look-up tables for the

RGB —+ L*u*'o* transformation. After computing HM and H1 we compute the ratio

histogram R, by

RU) = mm(HM(I)/H1(I)= 1) (513)

for each color bin j. This ratio histogram is back-projected onto a gray-level image

B (the color map) of the same size as the source image I by

303.31) = R(1(:r.y)) (5-14)

That is, for each pixel (:r, y), we determine what bin I (1:, g) falls in, we look up the
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value of R on that bin, and set B(:r, y) equal to this value. The most likely locations

of the target object represented by the model M are the pixels (1:. y) for which B(.r., y)

is the largest.

The histogram back-projection algorithm works well if the target object is present

in the source image, but it cannot distinguish whether the target is at all present. or

not. The reason is that in the back-projected image B there is always a 111aximum.

Therefore, after having found the candidate locations in the source image, we must

run a recognizer to match the model template M at each location. The recognizer

we used is based on the histogram intersection.

5.3.3 Histogram Intersection

For the recognition of the target object with sufficient confidence, we use a classifier

based on the histogram intersection [41] [44].

Let I and T be two images of the same size, that we want to match. Mathemati-

cally, neither image has a preferred significance, but in practice T is a high resolution

template of a given object (in our case the object is a software box) and I is an un-

known image that we want to classify as similar to T or not. As with the histogram

back-projection, we compute the color histograms HI and HT. Here, since T is given

a priori, and large enough3, we choose the color bins to be precisely the colors that

occur in T. Define the histogram intersection distance between H1 and HT by

 

3At high resolution an object appears larger.
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Zmin(H1(j)-.HT(I))
(5.1") .dH.H =1—(1, r) 2,1,0.)

 

If I and T have the same size, then obviously

Z H[(j) = Z HT(j) = length x width

so d is symmetric. h’loreover, note that for each color bin j

111114500), HT(J')) S 2 H10) (516)

with equality iff H; (j) 2 H70). Summing up after j, we get

2 minU'IIU): HTU» < 1

ZHIU) _

with equality iff all inequalities in (5.16) are equalities, i.e. when HI 2 HT. Hence

0 S d(H{,HT) S 1 and d(H[,HT) = O Iff HI : HT-

The template image T is chosen to be about the size of the target object, and if

its histogram is rich enough, a recognizer based on the above distance has very high

accuracy. Certainly, given a template T we can produce an image I with the exact

same histogram as T by re-shuffling the pixels in T, but this is rarely the case in

realistic situations.
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5.4 More Visual Routines

In addition to the feature maps produced using the symmetry operator and the his-

togram back-projection described in the previous section, we have experimented with

a few other feature maps, in an attempt to produce fixation points similar to recorded

human fixations. These maps have not been incorporated in the current implemen-

tation. Nevertheless, we consider them good starting points in selecting visually

important regions in an image, and for this reason we shall describe them briefly in

this section.

Variance map. Recordings of human scan patterns [14] show that people almost

never fixate on flat, uniform surfaces. Obviously, then, we can use the variance of

the intensity to detect non-uniform surfaces: the larger the variance in a region, the

more non-uniform that region is. We cover a gray scale image with a grid consisting

of square cells. On each cell, we compute the variance of the intensity and we retain

only the cells with variance within some interval (21mm, om”). Figure 5.11 shows an

indoor image with the recorded human fixations marked by the green dots, and the

results of our variance map on the gray scale equivalent of the original image. The

red squares are the ones selected by our algorithm. The drawback with the variance

map is that the thresholds am," and om”, as well as the size of the cells in the grid

must be set a priori by the programmer.

Another idea in defining saliency is to declare a pixel salient if and only if it is

sufficiently different from the mean, in some feature (e.g. intensity). To fix the ideas,

let V(x,y) be the intensity at pixel (x,y). Let my and UV be the mean and the
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Figure 5.11: (a) Indoor image. The dots represent the recorded human fixation points.

Courtesy of the Michigan State University EyeLab. (b) Intensity image of (a). The red

squares are the cells with large variance.



standard deviation of the intensity I" over the whole image. Construct an intensity

map I by defining

11/013331) * mvl if [W13 31) — "Wl > 0V

103.31) = (5.17)

0 otherwise

The intensity map obtained from Figure 5.11 (a) is presented in Figure 5.12 (a). The

darker a pixel, the more salient it is. If instead of intensity we use contrast, which we

define at each pixel by

f —— r

0(1), y) = If (15,31) ”Ll/l
 

mv

we obtain the map depicted in Figure 5.12 (b), which we term contrast map.

The last feature map that we describe is a color opponency map. Unlike the

previous maps, this map is biologically motivated by neuro-physiological evidence

observed in humans, primates and cats [23],[31], [40],[51]. Some of the retinal pho—

toreceptors are highly sensitive to red light (R cones) others to green light (G cones)

and yet a third category of cones is sensitive to blue light (B cones). Impulses from

these photoreceptors are transmitted to the bipolar cells, which project to the gan-

glion cells of the retina. The axons from the ganglion cells converge at the Optic disk

to form the optic nerve, which projects to the lateral geniculate nucleus (LGN). It has

been observed that some of the ganglion cells (loosely called the red-green Opponent

cells) have receptive fields consisting of a. center of R cones and a surround of G cones.

Given an RGB image, we model the red-green Opponency by computing at each pixel

(:r, y) a response



 
Figure 5.12: (a) Intensity map for the image in Figure 5.11 (a). (b) Contrast map. The

brighter regions are the most salient. Compare with the human fixations in Figure 5.11 (a).



RG(1:, y) = [f t, R(u. v)g(.,.,,,,.,.(;c — u, y — v)d'a(lo —

// C(u, v)g,,,,.,.0,,,,d(;r — u, y — 1:)(l'adv (5.18)

surround

where R(.r,y) and C(r, y) are the red and green values at pixel (.r, g), game, is

a gaussian with a small standard deviation and g,.,,.,.,0,,nd is a gaussian with a larger

standard deviation. The first integral in equation 5.18 is the sum of the red values near

the pixel (.r, y), weighted by a gaussian peaked at (:c, y) and represents the excitatory

component. The inhibitory component comes from the surround, and is the sum of

the green values weighted by a gaussian of a larger size. See Figure 5.13. We also

compute a green-red response GR by using the same procedure. Clearly then, we can

iterate this process by letting R +— RG and G (— GR. The results are presented in

Figure 5.14. The brightest spots represent the regions in the input image where the

contrast between the red center and the green surround (or vice versa) is maximal.

Another color opponency observed in the ganglion cells is the blue-yellow Oppo-

nency. The receptive fields of these cells are not separated in the center/surround

dichotomy as in the red-green cells, but for the purposes of a computer implementa-

tion one could use similar IGCllIllunS.
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Figure 5.13: Gaussians used to model color opponency. The red curve weighs the responses

of the central red cones, while the green curve weighs the (inhibitory) responses of the

surrounding green cones. The blue curve is the difference of the two gaussians.

 
(d) (6)

Figure 5.14: (a) Original RGB image. (b) Red-green opponency map. (c) Green-red

Opponency map. ((1) Red-green opponency using (b) and (c) as the red and green channels.

(e) Green-red opponency using (b) and (c) as the red and green channels. The brightest

regions are the ones in which the center- surround opponency is the largest. The green-red

Opponency picks up the flag and the computer chair, while the red-green opponency picks

Up the red box.
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5.5 Algorithm

The system starts with an empty set Of clusters of RGB images, and with a. low

resolution template MW, and a high resolution template il-Ihigh of the target object.

The camera is pointed at a random initial location and a 384 x 384 image Io is

taken at the widest field of view Of the camera (hence, at the lowest resolution). An

observation vector 00 is extracted from 10 (as described in Section 5.2.1) and cluster

C0 = {00} is formed. An array Q(C0, - ) of length 9 is defined and initialized to 0,

and a scalar To = 00.

Suppose now, that after n steps, the system has clusters CO, . . . Cm representing

various regions in the room, and Q-values Q(C’0, - ), . . . Q(C,,,, - ). Suppose also that

the system has inferred it is in state OWN", based on the latest low resolution image

In grabbed by the camera.

An action acumm is chosen 6 — greedy. That is, with probability greater than

1 — e, we choose acmrem = arg maxa Q(Ccm.,.em, a), and with probability less than c, a

random, exploratory action is chosen.

Execution of action acumn, is only necessary if the target object is not present

in the current image In, so the agent tries to detect the object first. TO this end,

we build a color map 13,, by back-projecting the low resolution template Mm, onto

In. (see Figure 5.10). Note: we do not back-project Mm, on all of In, but on a

central patch in In, of size 192 (half the size of In). The reason is twofold: in the first

place, we reduce the processing time; secondly, since in the retina the cone density

decreases tremendously towards the periphery [32] [35], color perception is severely
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impaired far from the optical axis. Let pl, 192, p3 be the brightest points in B". We

match the model 111,0,” with a neighborhood of p,- for each i = 1,2,3 usmg histogram

intersection, producing distances d|,d2,d3. At low resolution, however, histogram

intersection is not reliable enough, and the separation threshold varies from frame to

frame. To solve this problem, the camera must zoom in at each of the p,s, grab a new

image I,’, and do a fine match, this time at high resolution, using the model Mmgh.

However, since histogram back—projection produces candidate locations whether or

not the target is present, the camera will have to zoom in three times per frame, most

of the time unsuccessfully. We reduce substantially the number of times we zoom in

by scoring each of the points p,- by

(5.19) 

where Bn(p,-) is the gray level of p, in Bn (the color saliency), and d, is the

histogram intersection distance (5.15). The lower the score 3,, the better the candidate

p,. Using these scores (rather than just the histogram distances d,), it is possible to

separate the good candidates from the bad ones in most images from the same cluster,

but we could not find a unique separation threshold across clusters. The solution is

to have each cluster keep track of its own threshold (call it T) and dynamically adjust

it as follows. First, in a newly created cluster set T = 00. At each time step, one of

the following two cases can occur: either (a) some of the candidates p,- have scores

3,- < T, or (b) all s, 2 T. In case (a) the camera is pointed to p, and zooms in. A high

resolution image 1;, is taken and a high resolution model Mmgh is back-projected onto
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1;. A fine match of Mm), is performed, again using the histogram intersection. At

high resolution, histogram intersection works remarkably well, since images in which

the target is present can be readily separated from images which do not contain the

target, as can be seen in Figure 5.15
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Figure 5.15: Red: distribution of high resolution images containing the target Object

Green: distribution of high resolution images not containing the target object.

If the object is found at p,, the agent is rewarded according to Equation (5.5),

and a new training epoch starts with the clusters and the Q-values learned so far,

by directing the camera to a new random initial location. Otherwise, if the object. is

not present at p,-, the camera zooms back out, and proceeds to interrogate the other

points pj with score 3,- < T, if any. When all candidates p,- have been examined,

the threshold T is set to T = 111i11{.s,}, the camera returns to the pan and tilt it had

before investigating the p,s and we are in case (b). See Figure 5.16.
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Low resolution image High resolution image

Figure 5.16: Left: Low resolution image. The points p1,p2,p3 are produced using the

histogram back-projection of the low resolution model Mlow. At each p,, a score 3,- is

computed using histogram intersection. Right: High resolution image centered at p3. The

high resolution model MMgh is first back-projected onto the image, and then matched using

histogram intersection. If the target was not found at any of the p,s then the camera returns

to the pan and tilt coordinates it had before the local search, and the threshold T is set to

mm 3,.



So far, the system has decided that the target Object is not present in the current

image In, either because all candidates p, had scores s, 2 T, or, because the fine match

recognizer ruled out all the candidates. At this point, a new saccade is necessary, so

finally, action acurrmt is carried out (from state errm). The next fixation point

is selected based 011 the symmetry map. The winner is the point with the largest

symmetry vote (Equation 5.10) from all the edge pixels in the image In if one“ = A0,

or, from the edge pixels in one of the 8 central 90° sectors, if ovum", = Ak for some

I: = 1,. . .8. The camera is pointed to the new fixation point and the action is

complete.

Knowing now whether errem contains the target or not, the agent is rewarded

according to Equation (5.5) for the transition from state 0,,”st to Cmrrem, as a

result of some action amevms. Action acmrmt will be rewarded at the next iteration,

because only then will the agent know whether 06mm“ brought the goal in the field

of view or not. Q(Cp,,.v,ou,,aprev,m) is updated by Equation (2.11). A common

technique for speeding up the propagation of the reward is to update more than a

single (state, action) pair. Our agent keeps track of the previous five pairs visited,

and updates in one step all the corresponding Q-values.

After the update, the camera grabs a new (low resolution) image In“, and the

agent estimates the state. More specifically, a feature vector 0,,“ is extracted from

In“, and the closest cluster to 0,,“ is found (with respect to the Kullback distance

(5.4)). Denote this cluster by Cplosest, and its center by 0610388,. If the Kullback

distance K(0,,+1,Od0,,.,,) < k,,,,-,, = 1.5, then 0,,“ is assigned to cluster Cdosest,

and the agent is in state Cum = Cdosest. No adjustments are made to Cdosm, so
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that at any time, each cluster consists of a single vector, namely the initial vector

used to create that cluster. If K(O,,+1,O,.,0,,.,,,) > km, = 2.5, then the current

observation is not sufficiently close to any of the existing clusters, and a new cluster

Cum 2 {011“} is created. With this new cluster, a scalar Tum = 00 is defined.

Uncertainty occurs when km,” s K(0M1, 0610,83,) 3 km”, since this is the case when

the overlap between the two curves in Figure 5.3 is significant. In a situation like this,

it is not clear whether the images that produced the observations On+1 and 00,056,,

should be considered similar, or non-similar. The system could very well be “looking”

at a previously visited region, but is unable to recognize it, due to noise. Certainly,

we could simply create a new cluster whenever K(0714.1, 061088“) _>_ kmm, but in doing

so, the system unnecessarily ends up keeping multiple clusters representing the same

region in the environment. Therefore, before creating a new cluster, the system gets

a second chance at estimating the state, by making a small number of very short

saccades around the current fixation point. If still none of the new observations falls

within distance km,“ from the closest cluster, then the system has no choice but create

a new cluster. A new action is chosen and the process repeats until either the Object

is found, or until a maximum number of iterations has been reached.

In what follows, we use the term “epoch” to refer to a sequence Of at most

nMAX = 100 fixations. If either the goal has been reached, or all 100 time steps

have elapsed, a new epoch is started by pointing the camera to a random location,

in order to ensure sufficient exploration of the whole state space. We summarize be-

low the algorithm used for a single training epoch. Some Of the technical details are

omitted in order to keep the presentation simple.
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l) Initialization. Choose the gaze direction of the camera randomly. Set the

number of iterations n = 0. Get a low-resolution image I and extract an Observation

vector 0 (see Section 5.2.1). Define a cluster Co = {0}, define To = 00, and an

array Q(Co , - ) = 0 of Q-values.

WHILE object not found and n < nMAX

2)

3)

4)

5)

6)

Choose an action acurrmt, e — greedy.

Color map: back—project a low resolution target template onto I. Score each

of the top 3 candidates p1,p2, p3 by (5.19). Zoom in at each p,- with s, < Tn,

grab a high resolution image, and match the high resolution target template

using the histogram intersection. If object found, go to step 6. Else, zoom

out, adjust Tn = min{s,-} and go to next step.

Symmetry map: compute symmetries on the sector corresponding to action

acurrent and direct the camera towards the most salient point in that sector.

Clustering: get new feature vector 0. Find the closest cluster Cdosest to O

in Kullback distance K. If K is sufficiently small, 0mm = 0610,83,. Else, if K

is sufficiently large, create a new cluster Cm“ = {0}, define Tnext = 00 and

initialize an array Q(a,,..xt , - ) = 0. Finally, if K is near the decision boundary

(see Figure 5.3), make a few short saccades and re-compute K. If the new

image still cannot be unambiguously classified, create a new cluster.

Q-update: compute reward for action aprekus using equation (5.5). Update

the last 5 Q-values according to equation (2.11). Set it <— n + 1.

END WHILE
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Chapter 6

Experimental Results

We describe in this section a number of experiments designed to determine in the first

place if any visual learning is at all possible with our reinforcement learning agent,

and if so, how good the learning was. We also compare the performance of our agent

with the performance of a random agent.

6.1 Learning a Policy for Finding the Target

In the first experiment, we trained the agent to learn in which direction to direct its

gaze in order to reach the region where the target object is most likely to be found,

in trials of 400 epochs each. Every 5—th epoch was used for testing, i.e. the agent

simply executed the policy learned so far. The performance metric was the number

of fixations to the goal. Within a single trial the starting position was the same in all

test epochs.

Figures 6.1 and 6.2 show the number of steps to goal for two initial starting
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Figure 6.1: Average number of fixations for every 5—th epoch over five trials of 400 epochs

each. At every 5-th epoch, the policy learned was tested starting from pan=500, tilt=—100.
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Figure 6.2: Average number of fixations for every 5-th epoch over five trials of 400 epochs

each. At every 5-th epoch, the policy learned was tested starting from pan=200, tilt=0.
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positions. The results were averaged over several trials. It is apparent that. in general

the number of fixations decreases with the number of epochs. Occasionally, there are

long fixation sequences towards the end Of the trial, but the agent recovers quickly.

SCAN PATTERNS BEFORE AND AFTER TRAINING
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Figure 6.3: Initial scan path (green) and learned scan path (red). The rectangle

{—860, 860] x {—290, 290] represents the actual pan-tilt range of the camera. The search

starts at (300, 50) and the target object is found around (—380, 30).

We plotted in Figure 6.3 two sample scan paths, one at the beginning of learning,

which is very convoluted and has a large number of fixations, and another one after

the system was trained to find the object. Figure 6.4 shows a sequence of regions “as

seen” by the camera, as it fixated from the starting position (rightmost image) to the

target (leftmost).

Figure 6.5 plots the centers of the learned regions (states) (the blue dots) in the

pan-tilt coordinate system as well as the best actions in each region. Only states

with more than 15 visits are shown, out of a total of 104 states. The position of
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(a) 6 (b) 5 (c) 4 (a) 3 (e) 2 (r) 1

Figure 6.4: The sequence of fixations corresponding to the learned path (red) in Figure

6.3. The camera starts from region (1) and gradually moves towards the goal region (5),

Here, a sufliciently good candidate is found at low resolution (1), the camera zooms in (6)

and does a high resolution match. This sequence of images corresponds to the red scan

path in Figure 6.3

Figure 6.5: States learned (the blue squares) and the best actions. Action A0 is represented

by a red square around a state. Actions A1 —A3 are represented by a red segment originating

at the state. The target is the green square.
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the target is marked by the green square. Action AD is represented as a red square

around the state and actions A, — A8 are represented as a red segment originating

from the center of the state. Note that the length of each segment does not. represent

the length of the saccade. The actual saccade was directed at. some salient point in

a sector around a red segment. This explains why the field of the red segments does

not point directly and uniformly towards the target (the green square).

6.2 Executing the Learned Policy

NUMBER OF FIXATIONS FOR DISPLACED TARGET
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Figure 6.6: Number of saccades per epoch in finding the object inverted, displaced by 60

cm from the training position. Testing from pan=500, tilt=—100.

The purpose of our second experiment was to determine what changes in the

location of the target the system could manage. After the agent was trained to

find the target upright in its usual location, the object was turned upside down and
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NUMBER OF FIXATIONS FOR DISPLACED TARGET
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Figure 6.7: Number of saccades per epoch in finding the object inverted, displaced by 60cm

from the training position. Testing from pan=200, tilt=0.

displaced to a new location (about 50-60 cm from the training position), while the

agent was executing the learned policy. Again, we tested starting from a few initial

locations and we averaged over several test trials. The agent successfully found the

Object in a small number of fixations, as shown in Figures 6.6 and 6.7.

6.3 Re—training for a Different Target

To estimate how sensitive the system was to the various parameters in the visual rou-

tines, we re-trained the agent to find a different object (the green flag in Figure 6.8)

without changing any parameters. Somewhat surprisingly, there is no noticeable qual-

itative difference between the performance in this experiment and in experiment 1.

Figures 6.9 and 6.10 show the number of fixations for finding the flag, starting from
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(500, —100) and (200,0), respectively.

 

Figure 6.8: (a) The target object in the third experiment was the green flag. (b) Low

resolution template. (c) High resolution template.
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Figure 6.9: Average number of fixations for finding the MSU flag (Figure 6.8) for every

5-th epoch over five trials of 400 epochs each. At every 5-th epoch, the policy learned was

tested starting from pan=500, tilt=—100.
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SACCADES TO FLAG, STARTING FROM (200, 0)
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Figure 6.10: Average number of fixations for finding the MSU flag (Figure 6.8) for every

5—th epoch over five trials of 400 epochs each. At every 5-th epoch, the policy learned was

tested starting from pan=200, tilt=0.

6.4 Comparison with Random Search

Finally, in our fourth experiment, we compared the performance of the reinforcement

learning agent, with a random agent i.e. an agent which performed random search.

The actions in the random agent were exactly the same as in the reinforcement learn-

ing agent, but their selection was random, rather than based on the Q-values. The

results are presented in Figures 6.11 and 6.12. On average, the number of fixations

in the random search was between 50 and 70, substantially larger than the average

number of fixations in the previous experiment (6—7 fixations), where the agent was

only executing a learned policy.
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NUMBER OF FIXATIONS IN RANDOM SEARCH
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Figure 6.11: Number of saccades per epoch in a random search. Testing from pan=500,

tilt=—100.

6.5 Comparison with Exhaustive Search

Besides the comparison with the random agent, we shall present, for the sake of

completeness, a comparison between the learning strategy proposed in this thesis,

with an exhaustive search agent. By exhaustive search we mean that the camera

starts exploring its pan-tilt universe from one fixed location (e.g. the upper left

corner) and moves in fixed increments one step at the time, until the whole pan-tilt

space has been searched, or until the target has been found. To this end, let us recall

that the pan—tilt range of our camera is [—100, 100] x [—25, 25] degrees, and that the

widest field of view for one frame is about 48 x 33 degrees. We assume that all the

visual processing is the same in the search agent as in the learning agent, so first a low

resolution search is carried out, and then a high resolution search, around the most
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Figure 6.12: Number of saccades per epoch in a random search. Testing from pan=200,

tilt=0.

promising locations detected at low resolution, as described in Section 5.5. Recall

from the same section, that within one frame, the search is not performed on the

whole image, but rather on a central patch of half the size. Thus, each low resolution

color search covers a visual field of about 24 x 17 degrees. The pan-tilt range of the

camera can then be tiled by approximately 8 x 3 = 24 search regions. As the target

object could be in any of these 24 regions, the system would make at most 24 fixations

for finding the object, in the worst case, and (1 + 2 + . . . + 24) /24 = 12.5 fixations on

average. These results are summarized in Table 6.1.

 

 

 

Start Training (box) Test (box) Training (flag) Random Exhaustive

(500,—100) 15.8 6.7 18.7 66.9 worst: 24

(200,0) 11.41 6.6 12.8 51.1 avg: 12.5        
 

Table 6.1: Average number of fixations for the three experiments starting from two test

points. In experiment 1 testing was done every 5—th epoch. The rest of the epochs were

training epochs. Experiment 2 consisted only in executing a learned policy, with the target

object inverted and slightly displaced. In experiment 3, a random search was done.
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Chapter 7

Discussion

The set of experiments presented in the previous section is by no means comprehen-

sive. NO systematic analysis is done to explore the effect of the learning parameters

(the learning rate a, and the exploration rate 6), nor to observe the effect of the var-

ious parameters from the visual routines. Although no further tuning was necessary

to find the flag, after the software box was found, we do not expect this to be the case

for any target Object. What the experiments do show, however, is that learning does

occur, and that the system is able to find the target reliably, and that the search is

robust to affine transformations (translations and rotations) of the Object within one

region. We discuss below some technical issues that we encountered.

Visual saliency. Color and symmetry were the means of defining saliency in our

implementation. The symmetry operator used picks up objects fairly well, provided

the rough size of the objects is known. Tuning the operator for objects of a particular

size, will not work well for objects of different sizes. This is one reason why the

fixations of our agent, in general, do not cluster 011 objects, the way human fixations
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do. Moreover, the symmetry map is influenced by the fact that we apply the symmetry

operator on a rather limited sector of the image. Symn‘ietric objects that simply do

not fit in that sector, will have lower saliency.

Although back-projection histogram is a. good way of detecting objects by color,

it is not biologically plausible. As the evidence for color Opponency shows, biological

vision systems use feature contrast, rather than feature values. Histograms, of course,

use values. Some effort was required to distinguish genuine candidate locations of the

target object from noise, in low resolution images, but back-projection histogram in

conjunction with the histogram intersection is a fast and effective way of building a

color saliency map, provided a template of the target object is given.

Clustering. To our knowledge, an artificial general purpose classifier with nearly

perfect rate does not exist, and we did not attempt to build one. Due to the prob-

abilistic nature of Q-learning, however, an imperfect (but reasonable) classifier will

suffice. If the classifier has accuracy of, say, 90%, then, statistically, the agent will

receive the correct reward most of the time, which is all it needs to learn the correct

best action.

We opted to represent images by means Of color histograms, in order to categorize

pairs of images as “similar” or “non-similar”. The loss of the spatial distribution

of the colors in an image leads to perceptual aliasing, but we found that perceptual

aliasing is unlikely to occur in a cluttered environment such as a lab, particularly

if we subdivide the image into smaller pieces, and compute the histogram on each

piece. The real problem that we believe is at the core of our clustering algorithm, is

more mathematical in nature. Let V be the feature space produced by our feature
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extraction method. Each observation is a vector in V and has dimension 196 in this

implementation. For each pan-tilt (:11, y) of the camera, we get a vector 0(33, y) E V,

namely the observation extracted from the image taken when the camera is pointed at

(:c, y). For a given environment, we get this way a mapping from the two dimensional

euclidean space into V

0:R2——>V

hence a surface in V. Since the histogram is known to change slowly with (:L', y),

this surface is continuous, which entails that there are no natural clusters in V to

represent different regions in the room. By choosing a threshold for the similarity

metric (the Kullback distance), we effectively used spherical clusters in the feature

space V.

We preferred to lower the Kullback threshold used to cluster the low resolution

images in order to reduce the false accept rate (i.e. to reduce the number of images

classified as “similar” when in fact they were “non-similar”). Inherently, this increased

the false reject rate, that is, often two genuinely similar images were classified as

non-similar, and a new cluster was started, representing in fact a region that had

been visited previously. After 400 training epochs, we ended up with about 80-

100 clusters, out of which about 40 were distinct by visual inspection. Although

“duplicate” clusters are wasteful and unnecessarily increase the number of states, they

are harmless for the Q-learning algorithm, unless their number increases indefinitely,

because in that case, the (state, action) pairs would not be visited sufficiently many
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times.

The way we propose to approach this problem is to invoke an alternative similarity

metric when (and only when) the Kullback distance is indecisive. Certainly there

will be an interval (a,b), in which the alternative metric cannot distinguish well

between similar and non-similar image, just like the Kullback metric does not work

well between (1.5, 2.5), but it is crucial that (a,b) and (15,25) be disjoint. Good

candidates would be metrics on edge pixels (edge density, curvature, etc.), because

edge information and color information are uncorrelated.

An alternative idea1 is to modify the feature extraction. Instead of dividing each

image into quadrants and compute the color histogram on each of the 4 regions, we

can extract visual information (e.g. color histogram, or some iconic representation in

the sense of [4]) locally, from around the top salient points. This way, the visual infor-

mation will be more “anchored” to the environment, and consequently, less sensitive

to (small) changes in the camera pan and tilt. The problem that this approach raises

is that, unlike in the case of the 4 quadrants where we can always impose a fixed

order, there is no canonical way Of defining an ordering on salient points, which is

absolutely crucial if local observation vectors are going to be concatenated to produce

an observation vector for the whole image.

 

lJon Connell, IBM, personal conununication.



Chapter 8

Conclusions and Future Work

We have built a reinforcement agent which learns the region where a given object

can usually be found. Learning occurs by choosing the direction of the next saccade

according to its utility (the Q-value). Once the direction has been chosen by the

reinforcement learning module (see figure 5.1), low level visual routines find the most

salient point in that direction and aim the camera at it.

The experimental results show that the agent is capable of learning, even with

an unsophisticated reinforcement learning mechanism. In comparison with random

search, our agent is about ten times better (see table 6.1), which shows the usefulness

Of learning. Certainly, exhaustive search is always an Option, but it defeats the

purpose of our study.

Our agent comes short of learning spatial relationships between objects. It cannot,

for instance, learn that a painting is usually on a wall, or that a pen is usually on a

desk. It can learn, however, relationships of the form this pen is in this region (which

happens to be a table).
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In the current implementation, the information that is being integrated across

fixations is color information (through histOgrams), and the direction of the next

saccade. No deep image understanding takes place at each fixation, except to decide

whether the current region has been seen before, and whether or not it contains the

target object. In this sense, the information we retain is minimal, but sufficient for

the search task.

The visual information used to define saliency in an image is based on color and

symmetry. If the symmetry operator is task independent and context free, the back-

projection histogram is not, in that it uses a template image of the target object.

The performance of our system can be improved in a number of ways. In the

first place, different variants of Q-learning should be investigated. For instance, one

could use eligibility traces [43], which are temporary records of occurrence of an event

(e.g. visiting a (sate,action) pair), used to selectively assign credit to the events that

were marked as eligible. Secondly, the bottom-up visual attention mechanism must

be improved for a better selection of the fixation points. We prOposed in Section

5.4 a number of other feature maps, but understanding how to combine them into

a unique saliency map requires further investigation. Thirdly, the classifier used to

cluster images should be improved by adding one more feature, “orthogonal” to the

Kullback metric, or by using iconic representations around the top salient points in

the image, as already discussed at. the end of Chapter 7. Our clustering algorithm tries

to group together similar images, irrespective of their utility. A more SOphisticated

algorithm [25] which clusters observations using both a metric in feature Space and

the Q-values could be used for improved performance.
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We view this work as an initial exploration towards the implementation of a gaze

control mechanism on a mobile robot. We purposefully avoided the use of pan-tilt

information in the decision making process, because due to the robot motion, the

target object (such as an exit sign, or an elevator door) changes its position with

respect to the agent. A more sophisticated recognizer capable of identifying the

target at different distances, and from various points of view will be needed.

We foresee some interesting applications of this system on a real robot. For

instance, by visually finding a fixed Object in a room, the robot could automatically

align itself, which is a necessary step before navigation. Or, the robot could simply

find the door, and exit the room. A more complex behavior would be to train the

search system to recognize several objects in several rooms, and then have the robot

tell what room it is in, based on the confidence with which it finds the expected

objects.
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