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Abstract

SOME ASPECTS OF POLYA TREE AND DYKSTRA - LAUD PRIORS
By

Liliana Draghici

In this dissertation we develop some properties of tailfree processes and Dykstra -
Laud processes, used as prior probability measures in some Bayesian nonparametric
problems.

The first chapter of the dissertation contains a characterization of tailfree processes
based on DeFinetti’s theorem for a sequence of exchangeable random variables.

Special cases of the tailfree processes are the Polya tree processes. In the second
chapter, in the context of Polya tree processes, we obtain conditions for the prior and
posterior to be mutually absolutely continuous, as well as conditions for the prior and
posterior to be mutually singular.

Chapter 3 deals with prior probability measures introduced by Dykstra and Laud
(1981). First, the L,-support for these priors is established. The later parts of the
chapter are devoted to the consistency of the posterior distribution, weak consistency

and strong consistency.
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Introduction

A common statistical model consists of real valued observations X;, X5, ... which
are independent with common distribution P, where P is unknown. The goal is to
make inference on P based on the observations. Typically P is assumed to lie in a
subset M of M(R) - the set of all probability measures on R. In this thesis we look
at situations when: (1) M is all of M(R), (2) M is the set of densities on R, or
(3) M is the set of all densities with nondecreasing hazard rate.

Our approach is Bayesian. That is, we assume there is prior knowledge about
P and this is represented by a probability measure on M, called prior distribution.
Inference is then based on the conditional distribution given the observations - the
posterior distribution.

One of the main issues in this approach is the construction of priors on the set of
all probability measures. Ferguson [11] notes that such priors should

e have large support with respect to some suitable topology

e the corresponding posterior distribution given a sample should be tractable.
The Dirichlet processes constructed by Ferguson [11] fulfill these requirements. Even

though the Dirichlet process has many appealing properties, it has one major draw-
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back. It gives mass 1 to the set of discrete distributions.

Ferguson [11] also introduced Polya tree processes. These include Dirichlet priors
and depend on a large family of parameters which can be chosen to ensure that
the Polya tree prior sits on continuous distributions and even on densities. Tailfree
processes further generalize Polya tree priors.

In Chapter 1, after introducing and briefly describing some known properties of
tailfree priors, we give a characterization of tailfree priors. It is known (Doksum,
[4]) that if for all Borel sets B the posterior distribution of the random variable
P — P(B) depends only on the number of observations that fall in B (and not on
the exact values of the observations) the prior must be a Dirichlet process. We give
a similar characterization of tailfree priors. We also obtain necessary and sufficient
conditions that a sequence of exchangeable random variables should satisfy so that
the prior arising from DeFinetti’s theorem is tailfree.

A Dirichlet process has the disturbing property that, except for trivial situations,
the prior and posterior are mutually singular. In Chapter 2 we obtain sufficient con-
ditions for the Polya tree prior and the resulting posterior to be mutually absolutely
continuous, as well as conditions to be mutually singular. It turns out that conditions
which ensure that the prior is concentrated on densities, also ensure that the prior
and posterior are mutually absolutely continuous.

Another class of priors on densities was introduced by Dykstra and Laud [7].
These priors give mass 1 to the set of densities with nondecreasing hazard rates.

In Chapter 3 we consider a special case of the Dykstra - Laud prior which is in-
duced by the Gamma process. After introducing the prior we study the (topological)

2



support of the prior. The later parts of Chapter 3 deal with consistency of these
priors. A prior is consistent at P if the posterior probability of any neighborhood U
of P goes to 1 with P-probability 1. Posterior consistency is a kind of frequentist
validation of the Bayesian method and has received much attention in recent times.
Doob [5], Freedman [12], and later Freedman and Diaconis [13], showed that even
simple priors can be inconsistent at some P’s. It is then important to describe those
P’s for which consistency holds.

Consistency depends on the kind of neighborhoods under consideration. If U is
a weak neighborhood then it is called weak consistency and if U is a total variation
neighborhood then it is called strong or L, consistency. Consistency properties
for tailfree priors and Polya tree priors have been studied (Barron, Schervish and
Wasserman [1], Ghosh and Ramamoorthi, [18]). In Chapter 3 we describe a class of
distributions under which the prior considered is weakly consistent. The main tool
for this is a theorem of Schwartz [24]. However, since the Dykstra-Laud prior sits
on densities, L, consistency is more appropriate. In the final part of this dissertation
we investigate strong consistency for Dykstra-Laud priors using a result of Ghosh,
Ghosal and Ramamoorthi [16].

Parts of this thesis are published in [6] and [3].






Chapter 1

Characterization of tailfree

processes

1.1 Prior and Posterior

Let R be the real line and let M(R) be the set of all probability measures on R. The
o-algebra considered on R is the Borel o-algebra B(R). Denote by By the smallest
o-algebra on M(R) which makes the functions P — P(B), P € M(R), measurable
for any Borel set B C R.

The Bayesian setup requires a prior distribution on (M(R), Bys). After observing
the data X, ..., X, the prior is updated and the result is called posterior distribution
given X1, ..., X,. That is the conditional distribution of P given the data X,, ..., X,.
We will think of the observations X, X, ... as being the coordinate random variables
defined on = R*, endowed with the Borel o-algebra B(R>).

Let II be a prior distribution on M(R) and given P € M(R), let X;, X, ... , X,

4



be i.i.d. P. Let P} denote the joint distribution of P and the data X,,..., X,,. Then

PO x {X] €Ay Xn € A)) = / [[P4)dn(p),
Ci=1

where C is a set in By, and Ay, ..., A,, are Borel scts of R.

The marginal distribution P" of X,,..., X, is given by

P"({X, € A},.... Xn € A,}) = [ P(A)an(p),
M(R) j—]

where, as before, Ay, ..., A, are Borel sets.
The posterior given n observations X\, ..., X,, denoted by Il x, . x,, is the condi-
tional distribution of PJ; given the o-algebra B* generated by M(R) x o (X}, ..., X,).

A formal definition is given in the next lines.

Definition 1.1. A function Ijx, x,.(-|:) : By x Q@ — [0,1] is called a posterior

distribution given X,,..., X, if
1. For each w € Q, Il|x,..x,(-|w) is a probability measure on (M(R), Bas).

2. For every C € By, Ilix,..x,(C|") is a version of Epﬁ(lcxg|3‘). That 1is, for

every set A € a(X,,...,Xy),

[ s, (CL)P™ @) = PHC x A)

The posterior is unique only up to P" null sets. However, in most situations of

interest there will be some natural candidate for the posterior distribution and we
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will refer to it as the ”posterior”.

1.2 Tailfree processes

Dirichlet processes were introduced in 1973 by Ferguson who presented many of
their basic properties and applied them to some nonparametric estimation problems.
Dirichlet processes form a class of prior distributions on the space of probability mea-
sures on the real line. For every finite measure a on the real line, one can define
a Dirichlet process denoted by D,. We say that D, is a Dirichlet process of pa-
rameter « if for every finite Borel measurable partition By, ..., B, of R, the random
vector P — (P(B,), ..., P(By)) has under D, a Dirichlet distribution with parameter
(a(By),...,a(Bp)). If a(B) =0 then P(B) = 0 almost surely under D,.

Dirichlet processes could be seen as an infinite dimensional analogue of the finite
dimensional Dirichlet distribution, which in turn, is a multivariate generalization of
the Beta distribution.

Dirichlet priors form a conjugate family of priors, in the sense that when the prior
is a Dirichlet process D,, the posterior distribution given a sample of observations
X,..., X, is also a Dirichlet process and its parameter is «a + Z'l' dx, (Ferguson,
(11]). Here 4, is the measure giving mass one to z. A disadvantage of the Dirichlet
priors is that they choose discrete distributions with probability one. Therefore more
general priors, that could give mass one to continuous distribution or even to densities,
are introduced. These are the Tailfree processes, (Freedman, [12], Fabius, [8]) which

we describe next.



Let (7x)k>1 be a sequence of nested partitions of R where

ni: By, Bi, BonB, =¢, ByuB, =R

T2: B, Bo, Bw, Bo

where By, By, is a partition of By, By, Bj; is a partition of B;, and so on. For
each i, let E; = {0,1}* be the set of all sequences of 0's and 1's of length i and let
E* = U2 E;. We can then conveniently write the partition 7; as {B, : ¢ € E;}.
In general B, B is a partition of B,. We assume that the sets B, are nonempty

intervals and they generate the Borel o-algebra on R.

Definition 1.2. A prior distribution I1 on (M(R), Bys) is said to be tailfree with

respect to the nested sequence of partitions (7 )k>1 if the random vectors

{P(Bo)},{P(Bw | Bo),P(Bio | B\)},... ,{P(Bew | Be) : € € Ej},...

are independent for all 1 > 1.

When P(B,) = 0, we make the convention that P(By | B,) = 1.

Some properties of tailfree processes

1. As we will see in the next chapter, there are examples of tailfree priors that
give probability 1 to the set of continuous distributions or even to the set of

absolutely continuous distributions.






2. Tailfree processes form a class of conjugate family of priors for M(R), that is,
if the prior is tailfree with respect to some sequence of nested partitions of R,
the posterior given some observations will be tailfree with respect to the same

sequence of partitions (Ferguson, [11]).

3. Except for some trivial types of processes, Dirichlet processes are the only ones
that are tailfree with respect to any sequence of nested partitions (Doksum, [4]).
In other words, for these processes the subdivision points chosen to form the

nested partitions do not play any essential role in the behavior of the process.

1.3 Characterization

Let II be a prior on M(R). Let X, X5, ..., be a sequence of random variables which
are, given P € M(R), independent with common distribution P.

For ¢ € E;, let N/, be the number of observations out of X, ..., X, which fall in
B.. Formally N} =377, Ip (X;). Denote by N[ the vector (N, : € € E;).

For the prior IT, I1} x, . x,, will stand for the posterior given X1,..., X, and Iy~ for
the posterior given N'. For a function g on M(R), we will write L(g(P) | IIjx,..x,)
to denote the ‘law’ or distribution of g(P) under Iljx,  x,. Similar notation will be

used for the measures IIjy».



Theorem 1.1. Suppose I1{0 < P(B,) < 1} =1 for all € € E;,;i > 1. Then the

following are equivalent:
1. T1 s Tailfree;

2. Foralln and all1 > 1,

LUP(B) : € E} | My, .x,) = L{P(B) : e € E} | Tap).

Proof. Fix n and ¢« > 1. For proving that (1) = (2), first note that under the

posterior [Tjy», {P(B,) : € € E;} has the density

NT

e P(B) ™

N7, '
fM(IR) ngsi P(B.) “dII(P)

(1.1)

Also P(By) = P(B)P(Bw | B.), P(Ba)= P(B.)(1 - P(By | By)), P(B,) is
independent of P(B | B), and N} o + N[}y = N/

Let C € o{P(B,) : € € E,}. Then 1¢ is as well independent of {P(B | B,),€ €
E;}. The above observations and the assumption of the theorem give that

T

A|+l.¢
HEGE:'+I P(B§) ’

= Atn 1,e
¢ fM(lR) HgEE,H P(B) " “dII(P)

NP NI NP s
ngE.- P(Bg) i+1,e0t '+"9‘P(B§0 I B{) :+1.so(1 _ P(Bgo I Bg)) i+1.el dH(P)

:/v N'n € +N|n € N‘n € N':" €
€ fuw s, P(BY) T P(Be | B) (1 P(By | B)) " dII(P)

= HN,"(C)v



everywhere. Hence

L({P(B,):e€ E} |y, ) = L{P(B,) : e € Ei} [ Twp),

and therefore

LUP(B): ¢ € B} | Tins) = LUP(B,) : € € B} | p)

for any j > 1.

Since the sets B, generate the Borel o-algebra, we have that o-algebra generated by
N}, o(N}), increases to a(X), ..., X,). Using the Martingale Convergence Theorem,
we obtain relation (2).

For (2) = (1) we first prove a lemma.

Lemma 1.1. For any i@ > 1, under (2),
(a) {P(B,): € € E;} and {P(Bq | B.) : € € E;} are independent.
(b) {P(Be | B;) : € € U;;:)Ej} and {P(By | B,) : € € E;} are independent.
Here E| is the empty set and P(B | B,), € € E; stands for P(By).

Proof of Lemma. Since {P(B,) : € € E;} determines {P(B,) : € € E;} for any j < 1,
quantities like P(By | B,) for € € E;, j < i are functions of {P(B,) : € € E;}. Hence

(b) is an immediate consequence of (a).

10



To prove (a) first note that (2) gives the conditional independence of

{P(B,) : € € E;} and (X\,...,X,) given N, which we write as
{P(B,) : e € E;} l.an (X1, ,Xn)
from where it follows that
{P(B): ¢ € E;} RS
and hence that
L({P(B):¢€ E}|ny) = L({P(By) : e € Ei} | Minp, ). (1.2)

To establish (a) it is enough to show that for any collection {n, : € € E;} of

nonnegative integers

EH(H[P(BgO | Bg)]nS | {P(B,) : e € E,~})= constant ae. L

€€E;

Fix a set {n, : € € E;} and let n = 3 . n,. Consider the posterior density of
{P(B) : € € E;} given N|' = n, and its posterior density given N}}, o = n,,

NPiiq =0, as in (1.1).

11
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Since by (1.2) the corresponding distributions are equal, we have

Ne

ngEi[P(Bs)] [P(Bgﬂ | Bs)]n£

ey ek, [P(BO)] ™ [P(Beo | Bo))™dIl(

En P) | {P(B) : € € E;}

g [P(B)]™
 Ju [ees,[P(B)] ™ dII(P)

which yields

n Sy ek, [P(Beo) ™ dII(P)
Eﬂ(l—!‘[P(Bgo | B)™ | {P(B) : ¢ € E})= o T P

a

Returning to the proof of the Theorem 1.1, (2) = (1) now follows by applying

the lemma successively fori =1, 2,....

a

Towards the next characterization we recall DeFinetti’s Theorem for an exchange-

able sequence of random variables.

Definition 1.3. Let X, X, ..., X, be a sequence of real valued random variables de-
fined on 2 = R*® and let p be a probability measure on 2. The sequence X, Xs, ...
1s said to be exchangeable with respect to p if for any n and any permutation g of

(1,2,..n), (X1, ..., X5) and (X1, ..., Xg(n)) have the same joint distribution under p.

Theorem 1.2. (DeFinetti’s Representation Theorem) A sequence of random vari-

ables X, Xa,... is exchangeable if and only if there is a random probability measure P

12






defined on (R, B(R)) with values in (M(R), Bys) so that given any P = P(w), w € R,
X1, X,, ..., are independent with distribution P. Furthermore, the distribution of P

1S unique.

The distribution of P is a probability measure on (M(R), Bys) and we denote it

by I1. For any n and any Borel sets By, ..., B,, the following relation holds:

p{X,€B,,...,X, € B,} = / [ x(xi € B.| P)dn(P) =
M

(R) i=1
/ [[ P(B)ani(P).

M(R) i=1

The question we address here is under what conditions the resulting prior in
DeFinetti’s theorem is tailfree. The last theorem can be used to provide an answer
to this.

For each 1, let T;(X) be the vector (Ip,(X) : € € E;). Let ux, . x, be the predictive

distribution of X, X, 42,... given X,,..., X,.

Theorem 1.3. Let X;, X,,... be an exchangeable sequence under pu, and let I1 be the
corresponding prior obtained from DeFinetti’s Theorem. If, for every B, € € UE;,

(1) im0 u{X, € B,...,Xs € Bf} = 0, then the following are equivalent
1. 11 is tailfree;

2. Foralln and all 1 > 1,

L(Ti(Xns1) | x,..x0) = L(Ti(Xni1) | B1(x0). T (X))

13



Proof. Observe first that condition (i) of the theorem ensures that [1{0 < P(B,) <
1} =1for all e € E,,i > 1, and therefore, Theorem 1.1 can be applied.
Indeed, using DeFinetti’s theorem, condition (¢) is equivalent to

lim, [ P(B{)"dlI(P) = 0 which implies lim, fp( P(B{)"dII(P) = 0 and thus

BS)=1

I(P(B) = 1) = 0, so TI(P(B,) = 0) = 0. As well, B is a finite union of sets from
Uj>17; and therefore II(P(B;) = 0) = 0, so II(P(B,) = 1) = 0.

(1) = (2) Fix n and ¢ > 1. If IT is tailfree, from Theorem 1.1 we have
L{P(By): €€ E} [ Mx,.x,) = L{P(B) : € € Ei} | Imyxy).mxay). (1.3)
For any B, € 7,

txsxn(Xnst € By) = / P(B)dlljx, .x. (P)
M(R)

= / P(B)dIir,x,)..1.(xa)P) (P)
M(K)

= p1,(x1)..T,(X0) (Xn41 € B)

where the second identity follows from (1.3).

To show (2) = (1), by Theorem 1.1, it is enough to show that

L({P(B,): €€ E;} | x, x,) = L{P(B,) : € € E;} | Omy(xy)..10(x0))s

14
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or equivalently, for any collection {n, : € € E;} of positive integers

]M H[P(Bg)]"!dnlx....,\'n(P)=/M [T(P(BI ™ dlr,(x,). 1) (P).

®) eck ®) ek,

Since for every n, by (2) of the theorem, for fixed 1,

Xi,..., X 1 T.(X ,
1, nT.(Xl) ‘‘‘‘‘ T.(Xn) l( n+l)
it is easy to see that, for every m,
X, ..., X 1 T:(Xns1)s - Ti(Xnsm)- (1.4)

n
T.(X1),....,T,(Xn)

Now let m = }_ . n  and, given T;(X}),...,T;(Xy), consider the conditional
probability pu7,(x,)..1,(x,) that out of the next m observations n, fall in B, for € € E;.

This is given by

/M(R) H[P(Bg)]nsdnn(x,)...T,-(x")(P)

€EE;

and, by equation (1.4) above, is also equal to the conditional probability ux, x, that

out of the next m observations n, fall in B, for € € E; and therefore it further equals

/M H [P(Bs)]n!dnx....x,, (P).

(R) {E E'

15



Chapter 2

Absolute continuity and singularity

of Polya tree prior and Posterior

2.1 Introduction

Polya tree processes are a generalization of the Dirichlet processes and they are in-
cluded in the family of tailfree processes. Unlike the Dirichlet processes, Polya tree
processes are determined by a large collection of parameters and therefore §hey could
incorporate a much wider range of beliefs.

Polya tree priors were explicitly constructed by Ferguson in 1974 as a special case
of tailfree processes. A formal way of constructing Polya tree priors via DeF'inetti’s
theorem can be found in Mauldin, Sudderth and Williams ( [22]). A detailed devel-
opment for these processes, including construction and discussion on the components

needed in construction, is given in Lavine ( [20], [21]).
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Let 7 = (Tk)k>1, 7« = {Be : € € Ex}, k > 1, be a nested sequence of partitions
that generate B(R), as described in Section 1.2, and let @ = {a, : € € E*} be a family

of nonnegative numbers. Let Y = P(By), and Y, = P(B | B,), € € E*.

Definition 2.1. A prior probability measure on M(R) is said to be a Polya tree
process with respect to the sequence of partitions 7 and with parameters a, and we

denote it by PT((Ti)k>1,Q), if:
1. {Y, Y. : e € E*} is a set of mutually independent random variables
2. Y has a Beta(ayg, o) distribution and Y, has a Beta(a,o, 1), distribution for

any e € E*.

Some properties of Polya tree priors

1. (Ghosh, Ramamoorthi, [18]) A Polya tree process with parameters

a = {«a, : € € E*} exists if for any € € E*

Q0 Q00 Q000
. . o e e e =— 0
Qe0 + Qe1 0 + Q01 (000 + Q001
Q10 Q110 Qq110 —0

Qo + a1y Qe+ ayp Qp + Q1

2. Connection with Dirichlet processes (Ferguson [11], Lavine [21])
e A Dirichlet process D, is a Polya tree with respect to any sequence of nested
partitions (7x)x>1, with parameters o, = a(B,), B, € Ux>1 7.

e A Polya tree PT(7,a) process is a Dirichlet process if o, = a9 + a, for all

17
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e € E*. The parameter a of the corresponding Dirichlet process is given by

a(B,) = o.

. If 7 is a Polya tree PT((7c)r>1,a) and given P, Xi,..., X, areiid. P, then
the posterior distribution mx, _ x, is again a Polya tree with respect to the same
sequence of nested partitions, with parameters { o, + >, p,(X;) : €€ E*}

(Lavine, [21]).

. The weak support of a PT((7k)k>1, ) prior (the smallest closed set under
the weak topology of prior probability 1) is M(R) iff o > 0. (Ghosh and

Ramamoorthi, [18]).

. Consider the Polya tree on the set of all dyadic intervals of length 1/2™, m > 0,
ie. T, = {((z -1)/2™, /2™ : i =1,...,2™}. Take a,. ., = m?. Then the
set of absolutely continuous distributions with respect to Lebesgue measure will

have probability one under the resulting Polya tree. (Ferguson, [11])

2.2 Main Theorem

It is known that if a is a continuous measure, then the Dirichlet prior D, and the

posterior Dy, 4, are mutually singular. (Ghosh and Ramamoorthi, [18]). In the next

section we will see that this disturbing phenomena does not always occur when the

prior is a Polya tree process.

By construction a Polya tree prior 7 is an infinite product measure whose compo-

nents have Beta distributions.

18



To formalize, let Qx = [0, 1]2k and @ = J[72,%. A Polya tree prior 7 with
parameters { o : € € E* } is just a product measure [[;2, 7x on Q, where m itself is
again a product measure on §, whose components are Beta(a., o) with € € Ej.

The posterior 7 x, .. x, being a Polya tree it too can be thought of as a product measure

on .

A natural way to establish mutual absolute continuity or singularity is the well

known theorem of Kakutani (1948).

Theorem 2.1. (Kakutani) Let py and vy be two mutually absolutely continuous prob-
ability measures on Qi and let p = [[;, mx and v = [Iio, vk. Let A be a measure

with respect to which both py and v are absolutely continuous. Set

dux  dyg
pr(p, v =/ — - ——dA\. 2.1
k(s ) o Vdx dx (21)

o0
If Hpk(u, v) = 0, then u andv are singular.
k=1

oo
If Hpk(u, v) > 0, then pu and v are mutually absolutely continuous.
k=1

Note that since 0 < pi(p, v) < 1, H:"Il pr(pt, v) converges if and only if
S (1= pils, v)) < oo.

For the next theorem we will assume for the family o of parameters that a, does
not depend on the length of the vector ¢, i.e. o = a, for any € € E, k > 1. Denote
a Polya tree prior with such parameters 7(a), a = (a;, as,...). We do not make any

specific choice for the sequence of partitions (7x)k>1.

19



Theorem 2.2. Suppose m = w(a) is a Polya tree prior on M(R) and given P, let X

have distribution P.

oo
1
If E — < 00, thenm and the posterior m x are mutually absolutely continuous.
Ak

k=1
oo
If z — =00, thenm and the posterior mx are singular.
ak

k=1

The proof of this theorem uses the inequalities on Gamma functions given below.

Sophisticated versions of these inequalities can be found in Laforgia [19], Bustoz and

Ismail [2].

Lemma 2.1. Forxz > 0,

By Sterling’s approximation of Gamma function, lim,_,, fc(z) = 1. We will show

that for ¢ = 1/4, f.(z) > fc(x + 1) for all z > 0. Then since lim,_,, f.(x) = 1 we

will have f.(z) > 1 for any £ > 0 and thus the left hand side of the inequality is

obtained. For the right hand side, take ¢ = (v/3 — 1)/2. In this case it can be shown

that f.(z) < f.(x + 1) and again because lim;_,, fc(z) = 1, we will obtain f.(z) <1

for any z > 0 and the right hand side of the inequality is obtained.
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Now look at the monotonicity of the function

fl@) _Vz¥c+l z+;

gc(x):fc(r+l)_ Vi+c z+1°
Then
o(x) = r(dc—1)+2c¢ +2c -1

Az + D)2z + 02z +c+1)/2

Therefore if ¢ = 1/4, g.(x) < 0 for any = > 0, so g. is decreasing and since
lim; 00 gc(z) = 1, we have g.(z) > 1, or f.(z) > fo(z +1). Alsoif c = (V3 -1)/2,
then g;(:c) < 0 for any = > 0, so g, is increasing and again since lim;_, g.(z) = 1,
we will have g.(x) < 1, or f.(z) < fo(z + 1).

d

Proof of Theorem 2.2. For each k, X belongs to exactly one element of {B, : € €
Ei }. Consequently, under the posterior 7 x, exactly one of P(Bg | B,), € € Ex_; will
have distribution Beta(ax+1, ax) and the remaining P(B | B,) will be Beta(ax, ax).
We recall here that the density function of the Beta(c, 3) distribution is

f(zla, B) = 271 (1 - 2)°~'T(q, B)/(T(e)T(B)), for z € (0, 1).

An easy computation shows that the quantity in (2.1) is

_ I'(2ax) (ax + 1)
pe(m(a), 771,\'((1)) = V2. T(2ax + %) ) F(ak)2 (2.3)

For simplicity denote pi(7(a), mx(a)) = px. The product we will have to consider
when applying Kakutani’s theorem is [[;2, [1.cg, pre = [Tiz, px-

For technical reasons it is useful to first consider the case when a = lim inf;_, o, ax <
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oo. Let a,, be a subsequence converging to a. Then using Lemma 2.1, it follows that

V3-1
2(lnk + 2 ank

2an, V @ne T 4

Pny <\/§'

which converges to

Therefore ]2, px = 0.
Now suppose a; — 00.

Rewriting the inequalities (2.2) of Lemma 2.1 with z — 1/2 in place of z, we obtain

1
forz > 3,

\/x—§<r(;(—;%)< z—2—2\/§ (2.4)

Using expression (2.3) of p, inequality (2.4) can be applied to yield

-1

Therefore if ), (1/ax) < 0o, then Y, (1 — px) < oo and hence [, px > 0.
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On the other hand, by (2.2) and (2.4),

1
1—p>1-V2. R
\/2ak—l \/ak+§
_ 80 — 3
V0a = Ha+ 1\ Jlae = Diox+ 1) + o

Thus if 3, (1/ax) = oo, then ), (1—px) = oo and hence [], px = 0, which completes
the proof of the theorem.

a

Remark 1. Let )\ be a measure on R, equivalent to the Lebesgue measure, such
that A(Be | B)) =1/2 foralle € E*. If 3 ,(1/ax) < oo then the Polya tree process
m(a) gives mass 1 to the set of all probabilities absolutely continuous with respect to
Lebesgue measure (Kraft, 1964). In this case the theorem above shows that m and

the posterior 7 x are mutually absolutely continuous.

Remark 2. Recall that a Polya tree with parameters { o, : ¢ € E* } is a Dirichlet
process (Ferguson, 1974) if and only if a, = o + o, for all e € E*. In the special
case that we have considered this amounts to setting ax = ¢/2*. The above theorem
then gives the mutual singularity of the Dirichlet process (with this parameter) and

the posterior.

Next result states that Theorem 2.2 is valid in a more general set-up, that is, when
the posterior given any number of observations is considered.

The idea for the proof is the same as in the case of Theorem 2.2, but the calcula-
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tions are more elaborate.

Theorem 2.3. Suppose m = w(a) is a Polya tree prior on M(R) and given P, let

X1, Xa,..., X, be independent with distribution P.

o0
1 .
If E — < 00, thenw and the posterior mx, x,,.., x, are mutually absolutely
473
k=1

continuous.

oo
1 ) .
If E — =00, thenw and the posterior mx, x,, .. x, are singular.
ak
k=

Proof. Two cases will be distinguished:

Case L. If X, X5, ..., X, are all distinct, then there will be some m such that
X1, X3, ..., X, will be in distinct elements of the partition 7,, = {B, | € € E,}.
This would enable us to write p; as a product of n factors and the product to be
considered when applying Kakutani’s theorem is ([Jf,' [] ceBy Pre) ([Tksm Px)™ which
has the same nature as the product HkZI px considered before.

Case II. Suppose all the observations are equal. If there is an even number of ob-
servations, say there are 2n equal observations, then the factors involved in Kakutani’s

theorem are of the form

F(2ak + 2n)I‘(2ak) 1/2 l"(ak + n)
[(ax + 2n)(ak) ['(2ax +n)

-
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which further can be written as

_ [ ar(ar +1)...(ar +n—-1) (2ax +n)...(2ax + 2n — 1)] 1/2
Pk = 2ax(2ax + 1)...2ar +n —1) (ax +n)...(ax +2n —1)

Simple but tedious calculations show that 1 — pi is of the form P(ax)/Q(ax), where
P(ax) is a polynomial in ax whose degree is 2n — 1 and Q(ax) is a polynomial in a;
whose degree is 2n. Therefore if ax — oo, then 3, (1/ax) < oo implies } 3, (1 -
pr) = oo and } ;5 (1/ax) < oo implies 37,5 (1 — pr) < oo. Also if ax (or a
subsequence) converges to some a < oo, then limg pr < 1 so szl pr = 0.

For the case of odd number of equal observations, say 2n + 1 observations, com-

puting pr we obtain

['(2ax + 2n + 1)['(2ax)1/2 T(ax + n +1/2)
)

Pk = [ T(ax + 2n + 1)T(ak) [(2ax +n+1/2)

_F@wﬂﬁu+lﬂ)V@m+ﬂ)4mu+2m]wfmk+%+n—1%ﬁu+%)
" T(2ax +1/2)[(a) L (ax + 1)...(ax + 2n) (2ax + % +n—1)...(2a + %)

Using Lemma 2.1, we have

20 + 3@2——1 ag [2(2(11c +1)...(2ax + 2n)] 1/2

pr < '
k 2a; /ak +1 (ax +1)...(ax + 2n)

(ax + 3 +n—1)...(ax + 3)
(2ak + 5 +n—1)...(2ak + 3)

.

The limit of the right hand side for ax — a € [0, 0o0) (eventually using a subsequence)
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is easily seen to be less than 1. For this one can use that

2a+i 2a+i+1 (2a+i/2)2
a+i a+i+1 a+i/2 )’
and thus in this case ], pr = 0.
When lim; ey = oo, using inequalities (2.2) and (2.4) we obtain that 1 — p; is
between P(ax)/Q(ax) and R(ax)/T(ax), where P, R are polynomials in ax of degree
n?+2n+1and @, T are polynomials in ax of degree n?+2n+2. Therefore 3°, ., (1—px)

is of the same nature as »_,, 1/ax.
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Chapter 3

Dykstra - Laud prior for hazard

rates

3.1 Introduction

In survival analysis the variable of interest is the time to the occurrence of an event.
It could be time to death of a biological unit(patient, animal) or time to failure of a
mechanical component, or time to relapse(remission) of some disease under a certain
treatment.

Denote by X the time until some specified event. One basic function that char-
acterizes the distribution of X is the survival function S, whose value at x is the
probability of experiencing the event after time x. Another function to characterize
the distribution of X is the hazard rate whose value at z is the chance that an in-
dividual of age x experiences the event immediately after time z. This function is

also known as the conditional failure rate in reliability, the age-specific failure rate in
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epidemiology, the force of mortality in demography.

In the discrete case, the hazard rate r is defined by

. Pr<X<z+Az|X >1)
r(:z:)zAllmO A
z— T

If X is a continuous random variable with density f then

A related quantity is the cumulative hazard function R(x) defined by

R(z) = /0I r(u)du = — In[S(z)]

Thus, in the continuous case,

S(a) = exol-R(o)] = exp |~ [ r(ua

One may believe that the hazard rate for the occurrence of a specific event has

some particular characteristics, for example it is increasing, or decreasing, or it is

constant. Models with increasing hazard rates may appear when there is a natural

aging or wear. Decreasing hazard rates are characteristic to events that have a very

early possibility for failure, as in transplants. Constant hazard rates correspond to

exponential distributions.

Dykstra and Laud [7] suggest a nonparametric Bayesian approach for problems
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in reliability context. They provide a prior over the nondecreasing hazard rates by
defining a stochastic process whose sample paths are nondecreasing hazard rates. The
posterior distribution of the hazard rate, given right censored observations or given
exact observations, is derived. Bayes estimates are found under the squared error
loss.

In the second section of this chapter the prior probability defined by Dykstra and
Laud is introduced. In the third section the L,-support for a particular case of the
prior is established. In the fourth section, weak consistency is discussed and, in the

last section, strong consistency is obtained.

3.2 The extended Gamma process

Let G(a, () denote the Gamma distribution with density

9(x | @, B) = 2" expl—2/B]I0,00)(z)/(C(a)B%), for @, 8 > 0.

G(0, B) denotes the distribution degenerate at 0.

Let a be a nondecreasing, left continuous function on [0, 00), such that a(0) = 0
and let 3 be a positive right continuous function on [0, 00), bounded away from 0.
Let (Z(t)):>o defined on some probability space (2, F, P), be a Gamma process with
independent increments corresponding to a. That means Z(0) = 0, for every n and
any 0 = tp < t; < --- < ty, the family {Z(t,) — Z(t,-,)}, is independent, and for

any t > s, Z(t) — Z(s) has a G(a(t) — a(s), 1) distribution.
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It is well known that such a process exists (Ferguson, [10]). We can assume
without loss of generality that this process has nondecreasing left continuous sample
paths.

A new stochastic process is defined by integrating 3 with respect to the sample

paths of the (Z(t)).>o process. That is

r(t) = B(s)dZ(s).

(0,1)

This process is called the Fztended Gamma process.
Any nonnegative, nondecreasing function r so that f[o o) T(w)du = oo corresponds

to a cumulative distribution function given by

B =1-ew |- L, ()

It is easy to prove that F; is absolutely continuous on [0, oc). Therefore,

d

) = LF 1) = r(t) exp [— /[ ) r(u)du] (31)

is the corresponding density function.

The distribution of the process (r(t));>o thus corresponds to a prior probability
over the set of nondecreasing hazard rates. This in turn induces a prior over the
absolutely continuous distributions whose hazard rates are nondecreasing.

We confine our studies to a particular case of this prior. We will assume that 3 is

a constant function equal to 1. In other words, r(t) = Z(t).
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In the following sections we will denote by 7, the prior distribution on nonde-
creasing hazard rates induced by the Gamma process with independent increments

corresponding to a.

3.3 L;-support of 7,

Topological support of a prior 7 is the smallest closed set in the chosen topology
for the parameter space of m-probability 1. If P, is not in the support of 7, then
there exists a neighborhood of F; that has probability 0 under 7. Then for almost all
sequences of observations X, X,,... the posterior distribution given X, Xo,..., X,
will assign mass 0 to that neighborhood. Therefore it is not reasonable to expect
consistency outside the support of the prior.

Before developing the L,-support, a few lemmas that will be needed in this chapter
are presented.

Let R denote the set of nondecreasing hazard rates, i.e.
R = {r > 0 : r nondecreasing on [0, V), f[o, 1y T(t)dt = oo, V'€ (0, oo]}.
If r € R, we denote by f, the corresponding density function as described in (3.1).

As the next lemma shows, if the L, distance on a compact interval between two

nondecreasing hazard rates is very small, then so is the L, distance on the same

interval between the corresponding density functions.

Lemma 3.1. Let §o > 0 so that if 0 <z <8y, e€E—1<+/x. Let T >0 and let r,

ro be two nondecreasing hazard rates.
Then f[O.T) [r(t) — ro(t)]|dt < 8o implies f[o,'r) I (t) = fro(t)]dt < 260 + /0.
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Proof. Using elementary inequalities for any ¢ > 0 we have

|f7‘(t) - fro(t)l = [T(t)e_ f(o_,)r(s)ds _ To(t)e_ f[o_‘)?‘o(s)dsl
< |r(t) = ro(t)]e Jo.o ()

+ro(t)e” f“’-‘)ro(s)dsﬂ —e f[o.:)('(s)—fo(S))dsl_

After integration on [0, T'), clearly the first term of the above sum is at most .
Next observe that |1 —e Y| <1 —e W + el —1 < |y|+ /]y| < & + V3 when

ly| < &, and therefore the second term integrated on [0, T') is at most & + v/&. O

Lemma 3.2. Let rq be a nondecreasing hazard rate. For any T finite such that
7o(T) < 00, and for any € > 0, there exists a continuous, nondecreasing hazard rate
To that satisfies:

a) 7o(t) > ro(t) for any t € [0, T

b) f[(m Iro(t) — 7o(t)|dt < e.

Proof. 1t is enough to prove the above lemma for r, nondecreasing, left continuous
hazard rate. Indeed, since it is nondecreasing, r, has at most countably many points
of discontinuity and the left-hand limit exists everywhere. Therefore if we set at any
t, 7o(t) = ro(t—), where ro(t—) denotes the left-hand limit of r¢ at ¢, then 7y will
be left continuous and will differ from 7y for at most countably many points. Then
fro = fi, almost everywhere.

Fix § > 0 such that 6(T + 2r(T)) < e.
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Set to =0
t, =sup{0 <t < T :79(t) — ro(0+) < 6},
in general,
ti =sup{ti) <t <T:ro(t) —ro(tici+) <},
and so forth, where r(t+) denotes the right-hand limit of r at ¢.
Since ry is left continuous, for any 1 < i < n, ro(t;) — ro(ti-1+) < 6.
If t;, < T, then ro(t;+) —ro(0+) > §; if t; < T, then ro(ta+) — ro(t1+) > 6,
and so on. Because ry(T) < oo, after a finite number n of steps, t, = T.
Let dp < 4 so that, assuming t; > 0, dg < min{t; — t;_; : 1 <7 < n}
Let s, =t; —dp,2=1,....,n—1, and s, = t,. Define 7y by 7o(t) = ro(t;) if t;_; <
x < s;, then extend it linearly between s; and ¢;, ¢ = 1,...,n. Take 7y(t) = ro(T) if

t > T. Note that 7(t) > ro(t) for t < T. Also

n-1
A),T)(TO( — ro(t))dt = th, , s) — 1ot ))dt+§/ (To(t) — To(t))dt

[8,“'4’)

n—-1

< Z/, ~ rolti )t + 3 (roltirs) = rolte 1)) (t — s.)d

!13) 1=1

< 62( i —tio1) + 2ro(T)8 = 6(T + 2ro(T)) < ¢

a

Lemma 3.1 and Lemma 3.2 enable us to approximate in L, any density f,,, with

To nondecreasing, by a density f;, with 7y continuous, nondecreasing.

Denote by “ff‘o - fm” = f[(),oo) |ff'o(t) - fro(t)ldt'
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Lemma 3.3. Let ry be a nondecreasing hazard rate. Then for any € > 0, there exists

a continuous, nondecreasing hazard rate 7o, finite on [0, 00), so that || fzy — fr,|l < €.

Proof. Let 6 > 0 and choose T > 0 such that the following relations hold

/ fro)dt < 6 (3.2)
(T00)

TO(T) < 00.

From Lemma 3.2 there exists 7, continuous, nondecreasing on [0, 0co) such that

f[O,T) |7o(t) — ro(t)|dt < 4. Consequently, by Lemma 3.1, for 6 small enough,

[ 1l0) = Sro(0ldt < 25 + V5 (33)
[0,7)

By construction, 7o(t) > ro(t) for t in [0, T}]. Therefore

[ ey = e Tom 0o o gforymrs [ mwd<s @y
[T, 00) [T, 00)

where the last inequality follows from (3.2).

Hence by (3.2), (3.3), and (3.4), [ig. o) [ fro(t) = fro(t)ldt < 26+ VB +6+6 = 46+ V6.

Choosing & such that 46 + V/§ < €, we obtain || fz, — fr,|| < €.

Lemma 3.4. Suppose that a is strictly increasing on [0, T] and a(0+) > 0.
If ro is a continuous, nondecreasing hazard rate, and ro(T) < oo, then for any § > 0,

To{r € R : sup|r(t) —ro(t)] <d} > 0.
(0, 7]
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Proof. Since ry is continuous there exist 0 = t; < ¢t; < --- < t, = T so that
To(t:) —ro(tic1) <6/2,i=1,...,n.
Denote by B((c) the ball of radius € and center c.
Let Ro(ro) = {r € R : 7(0+) € Bs(20)(ro(0)) },

Ri(ro) = {r € R : r(t:1) — 7(04) € Bsyan)(ro(t1) = 70(0)) },

Ri(ro) = {r € R : r(t;) — r(ti-1) € Bsjany(ro(t:) —ro(tic1)) }, i =2,...,n.
The set R(rg) = NG R;(ro) has m, positive measure.
To see this, first note that under m,, 7(0+), r(t,) — r(0+), ..., r(t,) — r(t,_) are
independent, 7(0+) has distribution G(a(0+),1), and r(¢;) — r(¢;—;) has distribution
G(a(ti) — ati-1),1),i = 1,...,n. Since a(0+) > 0 and « is strictly increasing,
each set R,(rg), i = 0,...,n, has m, positive measure. The independence property
mentioned above implies that m,(R(ro)) > 0.

To complete the proof, we will show that if r € R(ry), then (sou%h"(t) —ro(t)] < 6.
Observe that |r(t;) — ro(t:)| < i6/(2n) < §/2,fori =1,...,n. Mo,reover, ifti_, <t<
t;iyt=1,...,n, then
ro(t) — r(t) < 71o(t;) — r(tiz1) = ro(t;) — To(tizy) + 1o(ticy) — 7(tiz1) < 6/2+6/2 < 6.
Similarly r(t) — ro(t) < 0.

O

The L;-support of the prior measure 7, will depend on the function «a used in
defining the Gamma process (Z;);>0. Two cases will be considered:
e « is strictly increasing on [0, co)

e o is strictly increasing up to a point, then it stays constant.
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Denote by F the set of density functions on [0, 00).

Theorem 3.1. Suppose that a is strictly increasing on [0, 00) and a(0+) > 0.

Then the L,-support of 7o is Fr ={fr € F : r € R}.

Proof. The set Fr has m, probability one. The proof of the Theorem 3.1 will be
completed if we also show:

(1) Fg is a closed set in the L; topology.

(2) any L; neighborhood of any density function in Fx has m, positive measure.
For proving (1), take a sequence (r,),>; of nondecreasing hazard rates such that
fra = frin L. Set r*(t) = f*(t)/(1 — F*(t)), which is the corresponding hazard rate
of f*. We will show that r* is nondecreasing. To see this, first note that f,_ — f* in
L, implies that f., — f* in measure, which further implies that there is a subsequence
( fr,.k)k which converges to f* almost everywhere. Consequently, F,, — F* almost
everywhere and thus r,, — r* a.e. Let A= {t: r, (t) = r*(¢)}.
Let T* = inf{t : F*(t) = 1}. Then for any 1, t, € A, t| <ty < T*, r*(t;) < r*(t2).
Set 7*(t) = r*(t),if t € Aand if t ¢ A, set 7*(t) = lim,, r*(t,), where t, > ¢, t, € A
for any n. In this case, 7* is well defined, nondecreasing and f;- = f,. a.e.. If T* < o0,
then lim,_,7. r*(t) = co. Thus r* € R.

By Lemma 3.3 the set of density functions that correspond to continuous, nonde-
creasing hazard rates, that are finite on [0, 00), is dense in the set of density functions
whose hazard rates are nondecreasing. Therefore it is enough to show (2) for f,, with
7o nondecreasing, continuous, and r(t) < oo for any ¢t > 0.

Let ¢ > 0 and let U (f,,) = {f € F:||f — froll < €}
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Let 6 > 0 so that ro(t*) > ¢ for some t* > 0. Choose T > 1 so that

/ ()t < 6, (3.5)
[T, 00)

e~ (ro(t)=0(T=1) < g, (3.6)

Consider the set W = {r € R : sup|r(t) — ro(t)| < 6/T }. We will show that for §
(0, 7]

small enough, for every r € W, ||f, — f,,|| < €. Further, by Lemma 3.4, m,(W) > 0

and hence 7, (Uc(f;,)) > 0.
Let r € W. Then f[O,T) |ro(t) — r(t)|dt < (6/T)T = 4. As a consequence of

Lemma 3.1, for 4 small enough, we have
/ | fro (1) = fr(2)|dt < 26 + V6 (3.7)
(0,T)
Also, using (3.6),

/ fr(t)dt = e_f[O.T)’(s)ds < e TNT=t")  o=(ro(t*)-6/T)T-t")
(T, 00)

< e (PE)=0T=1) 4, (3.8)

Inequalities (3.5), (3.7) and (3.8) imply that f[O,oo) | fro(t) = fr(t)|dt < 20+V3+40+36.

Choosing & so that we also have 46 + V8 < €, we obtain ||f, — f,,|| < €.
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Lemma 3.5. Assume that a(0+) > 0, a is strictly increasing on [0, To| and constant
after Ty. Ifrg is a continuous, nondecreasing hazard rate, constant after Ty, then given

§>0andT >0, mo({r € R : sup|r(t) —ro(t)] <d}) >0.
(0, 7]

Proof. If T < Ty, then « is strictly increasing on [0, 7] and the argument in Lemma
3.4 follows exactly.
If T > Ty, then, with 7, probability 1, sup |r(t)—7(t)| < d if and only if sup |r(t)—
(0,T) (0, To)

ro(t)| < § and again, the result follows from Lemma 3.4.

O

Theorem 3.2. Assume that a(0+) > 0, a is strictly increasing on [0, Tp] and con-
stant after Ty. Then the Ly-support of my 15 the set Fry of density functions for
which the corresponding hazard rate is nondecreasing and either constant after Ty, or

it converges to oo at Ty or at some point before T.

Proof. Denote the set of hazard rates described above by Rr,.

For any t, > t,_, > Tp, under m,, r(t,) — r(t,_1) has distribution G(«(t,) —
a(ta-1), 1) = G(0, 1), and so r is constant after Tp with probability 1. Therefore
Fry, has mq probability 1.

Next we will show that Fr, is a closed set in the L, topology.

Let (r2)n>1 be a sequence of nondecreasing hazard rates in Rr, such that f. — f*
in L,. Following the same lines as in the Theorem 3.1, we have that there exists a
subsequence r,, — r* a.e., where r* is the corresponding hazard rate to f*. Also, as
before, if T* = inf{t : F*(t) = 1}, then r* is nondecreasing on [0, T*]. Furthermore,
T* is either less than T} or is co. In other words, if it is greater than Tp, then it is co.
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But if we have limg_,o 75, () = 7*(¢) < oo for some t > T;, then the functions 7, (t)
are constant after Ty, and so will be 7*(t), which means T* = oc.

Observe that by Lemma 3.3, for ¢ > 0, there exists a finite, continuous, nonde-
creasing hazard rate 79, which can also be chosen to be constant after Tj, so that
Il fro — fill < €. Hence, to complete the proof, it is enough to show that any L,
neighborhood of f,,, with 7y nondecreasing, continuous, constant after T, has m,
positive measure.

Let € > 0 and let U (f,,) = {f € F: ||f — froll < €}.
Let § > 0, t* > 0, T > 1 chosen as in the proof of the Theorem 3.1 so that (3.5) and
(3.6) hold.

Set W={reR : (sou;)]|r(t) —ro(t)] < 6/T}.
By Lemma 3.5, m,(W) > 0.

Again as in the proof of the Theorem 3.1, for a suitable choice of 4, if r € W, then

| fro — f7ll < €. Therefore m,(U(f;,)) > 0.

ad

Remark 3.1. In general, if a is constant on some intervals I, = [a;, b)), I, =
[az, ba], ..., I, = [an, by], then the Li-support of mo will consist of those densities f,,
r € R so that either r is constant on the same intervals as a or limy_,r 7(t) = oo for

some T outside of U™, I; and constant on each I; that is included in [0, T).
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3.4 Weak consistency

Consistency of the posterior distribution roughly means that if X;, X5,... have dis-
tribution Py, then the posterior given X,,..., X, converges, as n gets large, to the
degenerate probability dp, almost surely F.

Let F denote as before, the set of all densities on [0, co) with respect to Lebesgue
measure. There are two natural topologies on F: weak topology and L; topology.
These lead to corresponding notions of consistency.

A weak neighborhood of f; is a set containing a set of the form
Up,={feF: |f[0’°o)((,b,~f—¢,f(,)| < €,1=1,...,k},
where k > 1, ¢! s are bounded and continuous on R.

A L, neighborhood of f; is a set containing a set of the form
Upy = {f € F: [y IF() = folD)dt < ).

Let 7 be a prior on F and given P, let X;,..., X, beiid. P. Let mx, x,(-) be

the posterior distribution of P given X,..., X,.

Definition 3.1. The sequence {mx, x,()}n>1 is said to be weakly consistent at Py,
if with Py probability one, as n — oo, mx,. x,(U) = 1 for any weak neighborhood U

OfP().

When the prior gives mass 1 to the set of densities, a more appropriate form of

consistency is strong consistency, that is, consistency for L; neighborhoods.

Definition 3.2. The sequence {7r|,\—l,,_,\-n(-)}n2| is said to be strongly consistent at
Py, if with Py probability one, as n — oo, 7y, x,(U) = 1 for any L, neighborhood
U of B.
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A sufficient condition for having weak consistency at fy is implied by the fol-
lowing theorem due to Schwartz (1965). For any fo, f € F, denote by K(f, f) =
f(o‘w) fo(t)log(fo(t)/f(t)) dt and by Ks(fo) a Kullback - Leibler neighborhood of fj,
Ks(fo) = {f € F : K(fo, f) < 0}. Say that f; is in the K - L support of = if

m(Ks(fo)) > 0 for any § > 0.

Theorem 3.3. (Schwartz) If fo is in the K - L support of w, then the posterior is

weakly consistent at fy.
The next two theorems will establish weak consistency based on Schwartz theorem.

Theorem 3.4. Suppose that a(0+) > 0, « is bounded and strictly increasing on
[0, 00). If ro(0+) > 0, 7o is bounded, nondecrcasing hazard rate, then f,, is in the

Kullback-Leibler support of mo. Therefore weak consistency holds at f,,.

Proof. Let 6 >0 and let Bs = {f € F : K(fr,, f) < 6}. Let T >0, ¢ >0, and 7
be a continuous, nondecreasing hazard rate as in Lemma 3.2 so that 7y > r on [0, T
and f[”] |ro(t) — To(t)|dt < e.
Define U = {r e R : (sou;)]|r(t) —7o(t)| < €} and
V={reR: r('t) <r(T)+e€foranyt>T}.
We will show that for a suitable choice of T and ¢, r € U NV implies K(f,,, fr) < .
Then the proof will be completed by showing 7,(UNV) > 0.

First note that [  tfr(t)dt < [,  te”™Wdt < fii te 00Nt < oo,

Here Ry(t) = f[0,t) ro(s)ds. For any r, define R similarly.
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Since ry is bounded, a = sup 7y(t) < 0co. Choose T such that
>0

/ tfro(t)dt < €
(T, 00)

To(t) >a—¢€ foranyt >T.

If r e UNV, then for any t > T, a —€ < 1o(T) < r(T) + € < r(t) + € and

r(t) <7r(T)+ e <ro(T) + 2 < a+ 2e.

Thus a — 2¢ < r(t) < a + 2¢ for any t > T, which implies

(a — 2€)e™0*2) < (a — 2)e™ ) < f,(t) < r(t) < a+ 2.

By (3.10) we also have for ¢t > T,
(@ —2€)e™™ < f,,(t) < a.
Combining relations (3.11) and (3.12), we obtain for t > T
a—_2€e—at < Jro(t) a

< .
a+ 2 fr(t)  (a— 2¢)e-ta+2)

It follows that, when ¢t > T,
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which implies along with (3.9)

fro(t) a + 2¢ a
/[Tm) fro(2) ‘log 0 ‘dt < /[T’oo) fro(2) (loga —. + loga — 26) dt

+/ fro()t(2a + 2€)dt < 55-, (3.13)
(T,00) 3

when ¢ is chosen small enough so that log[a(a + 2¢)/(a — 2¢)?] < §/6 and €(2a + 2¢) <
6/6. On the other hand,
(t t
[ gmnog2Ba= [ pmiog@ais [ 0RO - Ry
0.7) f(t) (0,T) r(t)

[0,T)

(3.14)

If r e UNV, since 7(0) > ro(0+) > 0, choosing € < r¢(0+), forany 0 <t < T,

ro(0+) +e () 1< ro(0+) — ¢ (3.15)

Relation (3.15) and 7y > 9 > 0 on [0, T] imply that

01 ro(t) , 1 Fo(t)
.[”)fo(t) %8 t < [o,T)fO(t) %% T

€ )
< fro(t) 1o (1 + ———*—) dt < -, 3.16
(0,7) (t)log ro(0+) — € (3.16)

dt

3

when e is so that log(1 + ¢/(ro(0+) —€)) < 4/3.
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Also

)fro(t)(R(t) - RO(t))dt S 0.7) fro(t) ('/[;),t) IT(S) - 'Fo(S)ldS) dt

o[ gt ( /[ NCE fo(5)lds)

< fro(t)tedt + € < e +e<6/3. (3.17)
[0,7)

[0,T

By (3.13), (3.14), (3.16), (3.17), K(f,,. f) <& whenreUnNYV.

To see that 7,(UNV’) > 0, first observe that U and V' are independent. Note that
V=n,V,, where \;, = {r e R : r(T +n) — r(T) < €}. Since each (T + n) — r(T)
is independent of {r(t) : ¢t < T}, sois V. Further V is independent of U. The set U
has 7, positive probability by Lemma 3.4. The assumption that « is bounded assures

that m, (V) > 0. Indeed, let oy = sup a(t). Then
>0

y . y - € l.(a(T-+—n)—a(T))—l —ag
Ta(V) = lim7a(Va) = in /0 (T +n) -a@)"

Since 0 < a(T +1) — a(T) < a(T + n) — a(T) < ag — a(T), there exists ¢ > 0 such
that for any n, ([(a(T + n) — a(T)))"! > c. Assume that e < 1. If ap — a(T) < 1,
then z(@T+m)-a(T)-1 5 1 for any n and any x € (0, €), so m,(Vy) > ¢(1 —e™¢) > 0.
If ag — a(T) > 1, then gle(T+m)-aT)-1 5 gleo=a(T)-1 for any n and any z € (0, ¢).

Hence, for any n,

€
Ta(Va) > c/ gleo—aM)=le=zgdy > 0.
0
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Therefore m, (V) > 0.

a

Theorem 3.5. Assume that a(0+) > 0, a is strictly increasing on [0, Tp] and con-
stant after Ty. If ry is nondecreasing hazard rate, constant after Ty and ro(0+) > 0,

then f,, is in the Kullback-Leibler support of m,. Therefore weak consistency holds at

Jro-

Proof. Let § >0 and let Bs = {f € F : K(fr,, f) < 6}. Let T > 0, ¢ > 0, and 7
be a continuous, nondecreasing hazard rate as in Lemma 3.2 so that 7y > r on (0, T]
and f[O,T] |ro(t) — 7o(t)|dt < €. Since r¢ is constant after Ty, we can choose 7y to be
constant after Tg, as well.

As in the previous theorem, define U = {r € R : ES()u;)]lr(t) — 7o(t)| < €} and
V={reR : :r(t)<r(T)+eforanyt>T}. |
As shown in the proof of Theorem 3.4, for a suitable choice of T and e, r €e UNV
implies K(f,,, fr) < 6. The only place a plays a role in the proof is on showing
mo(UNV) > 0. Since « is constant after Ty, with 7, probability 1, r is constant
after Ty. Choosing T > Tp, we have m,(V) = 1. Also Lemma 3.5 implies 7,(U) > 0.

Therefore 7,(Bs) > 0.

d

The following result is known from Ghosh and Ramamoorthi [17]. Although some
changes are necessary because of a different presentation of the prior probability, the
core of the proof is the same with the one found in Ghosh and Ramamoorthi’s paper
[17].
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Theorem 3.6. Suppose that a(0+) > 0 and a is strictly increasing on [0, 0o).
If fo is a bounded density with compact support and its corresponding hazard rate
1o 1s nondecreasing with ro(0+) > 0, then fy is in the Kullback-Leibler support of m,.

Therefore weak consistency holds at f,,.

Proof. For § > 0set Bs = {f € F : K(fo, f) < 6}. Let [0, T] be the support of f.

First note that because f; is bounded and lirr(l)ylogy = 0, we have
y—

Jio. ) Fo(t)|og fo(t)ldt < oo.

Let ¢ > 0 and choose T, < T so that

[ n@os i < (3.18)
[T, T)
supfo(t)(T — Tp) < e, (3.19)
t>0
T()(T()) >1+ €, (320)
—(1 = Fo(To)) log(1 — Fo(To)) < e, (3.21)

where the last two relations are possible since sup ry(t) = oc.
t<T

Let 7o be the continuous nondecreasing hazard rate constructed in Lemma 3.2
that corresponds to ry and [0, Ty]. For € > 0, define

U={reR : sup|r(t) — o(t)] < €}.

(O,To]

V={reR:r(T)-r(Tp) <e}.
The sets U and V are independent, m,(U) > 0 from Lemma 3.4 and also 7,(V') > 0.
Hence m,(UNV) > 0.

Moreover, for a suitable choice of ¢, if r € U NV, then K(fo, f,) <.
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We have that K (fo, f) = fig 1) Jo(t) 108(fo(t)/ F())dt+ fiz, 1) folt) log(folt)/f (1))t

Imitating the argument in Theorem 3.4 for the first term above, when r €e U NV,

/[O,To) fo(t) log D) dt < /[:).To) fo(t) log Ty dt < /[;),To) fo(t)log {1+ ro04) —¢ dt
+€ / fo(t)dt < 6/2, (3.22)
(0,To)

if € is chosen small enough.

We also have for € small

[ stegtaorsna = [
(To, T)

[TO’ T)

+ /[TO,T) fo(t) (A’t)r(s)ds) dt < g (3.23)

folt) log fo(t)dt — / folt) log r(t)dt

[TOa T)

The first term above is less than € by (3.18). Because r(T') < 7(Tp) +¢€ < ro(To) +

2¢ < 219(Ty) and r(Ty) > 19(Tp) — € > 1 by the choice in (3.20), we have 0 <

Jio.1 Fol®) log ()t < oo,

The last term equals

/{;ovn fo(t)dt A)’To)r(s)ds + /[To,T) fo(t) (/[TO’T)r(s)ds) dt

= /[To.T) folt)at ‘/[:),To) r(s)ds + r(T)(T — To) / fo(t)dt

[To,T)

The second term above is at most (1 — Fy(70))2r0(To)(T — Tp) which in turn equals

2fo(To)(T — Tp) and this is less than 2¢ by 3.19.
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For the other term we have

/[7‘0,T) fO(t)dt A,Tc) r(s)ds B /[To,T) fO(t)dt /[()'To)(r(s) - fO(S))ds

e f e[ G- [ g [ nge

< Ty / folt)dt + € — (1 = Fo(Tv)) log(1 — Fo(Tv)
[To,T)

<e(T+1)—(1- Fy(Ty)) log(1 — Fo(Tp)) < (T + 2).

where the last inequality is obtained by (3.21).
Therefore (3.23) holds when ¢(T + 5) < §/2. Relations (3.22) and (3.23) conclude

the proof.

O

The following theorem is similar to Theorem 3.6. Even though the proof for the
two theorems is the same, the later one is mentioned as a separate result because it

will be referred to in the next section.

Theorem 3.7. Suppose that o is strictly increasing on [0, T*], constant after T*,
and a(0+) > 0. If fo is bounded, has compact support in [0, T] C [0, T*] and its
corresponding hazard rate ro is nondecreasing with ro(0+) > 0, then fy is in the

Kullback-Leibler support of mo, and therefore weak consistency holds at f,,.

Since the support of f, is included in [0, T*], a is strictly increasing on [0, T and

therefore the same proof as in the preceding theorem works.
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3.5 Strong consistency

Ghosal, Ghosh and Ramamoorthi [16] give the following theorem to establish strong

consistency. This theorem involves the L, metric entropy which we define next.

Definition 3.3. Let G C F and let § > 0. Then the L, metric entropy denoted by
J(8, G) is the logarithm of the minimum n such that there erist fy, fa, ..., fu in F with

the property G C UY {f : ||f — fil| < é}.

Theorem 3.8. (Ghosal, Ghosh, Ramamoorthi) Let © be a prior on F. Suppose fy €
F is in the Kullback-Leibler support of w. If for each € > 0 thereisa d < €, ¢y,cp > 0,

B < €?/2 and F, C F such that, for all n large,

1. 7(FS) < e~ "2,

2. J(6,F,) < nB,

then the posterior is strongly consistent at f,.

The following two lemmas will be used to establish strong consistency for the
Dykstra - Laud prior on the nondecreasing hazard rates.

Assume that the function « is constant after 1. With very little modifications,
the same argument for the two lemmas will hold for a constant after T', where T' > 0.

For 6 > 0, 8* > 0, define R, = {r € R : e ™ < r(1) < né*} and let

Fo={fr e F: 1R}
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Lemma 3.6. There exist c,, c; > 0 so that n,(F£) < ce™™2, for any n large.

Proof. First observe that if 7 € R,,, then

. e 8% a(1)-1 e—na(1)3
71'0({7" ER: T(l) < e""’/’ }) = A Fi(me_zdit S '1:(—0—(—1')—+'ﬁ (324)
If a(1) <1, then
T({r € R: (1) > nd*}) = = ! “Fdr < 1 e "% (3.25)
° ' " ) T®)” ¥ T T)” |

If a(1) > 1, taking k = [(1)], where [a(1)] is the integer part of a(1), we have

* _ ooza(l)—-l R 1 1 ® k -z
wa({re'R:r(l)>n6})—-/n&_me dxgm/né'xe dzx

Denote Iy = [ ¥ *dz. For k =1, I; = né*e™™%" + e, Then for §, < §* there
exists N; > 0 so that for any n > N, I, < e ™1,

It is easily shown that for any positive integer k, I, = (nd*)ke ™" + kI,_;. By
induction, it can be shown that for any k, there exists §; > 0 and N, > 0 such that

It < e ™* for any n > Ni. Hence, for n large,
Ta({r € R: 7(1) > n6*}) < ———e ™% (3.26)

Inequalities (3.24), (3.25), and (3.26) imply the above lemma.
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Lemma 3.7. Let 6 > 0, 3 > 0. Then there ertst 3* > 0, 6* > 0 and N > 0, such

that J(6,F,) < nf@ for anyn > N.

Proof. The idea of this proof is to find for each r € R,, a nondecreasing step function
7 , constant after 1, such that || f, — f7|| < d. The logarithm of the minimum number
of functions 7 needed will be an upper bound for J(é, F,,).
Let r € R,. We begin by defining 7 on [0, 1], then we will extend it on (1, oc).
Let v > 0 so that 2y + /7 < /4. Let to = 0, t; = 7y/n, ta = 2y/n, ..., tx = 1,
where k = [n/v] + 1, [n/7] is the integer part of n/y. Construct r* constant on

(ti, ti41] by setting r*(t) = r(¢,+1). Then when 6* < 1

k k
/ |r(t) — r*(t)|dt = z/ Ir(t) — r*(t)|dt < Z/ |7 (tiy1) — r(t,)|dt
(0, 1] i=0 Y[t tis1] i=1 Yt tiv1]
k
_ Ny — )Y gt
= (r(tiv1) —r(t:) - =r(1) - <ndé*— =6y <.

By Lemma 3.1, f[0,1] |fr(t) = fr-(t)]dt < 2y + /7 < 6/4.

Divide the interval [0, nd*] into intervals of lengths . Denote the division points
by yi;. For t € (t;, tiy1], define 7(t) = yj41 if 7(tiv1) € (yj, yj+1]. Then 0 < 7(t) —
r*(t) < y;41 — y; < v for any t € [0, 1]. Therefore f[O,l] |7(t) — r*(t)|dt < v and again
Lemma 3.1 implies f[o, g 1fi(t) = fr-(t)]dt < 6/4. Hence f[0,1] |fa(t) — f-(t)|dt < §/2.
As constructed, the nondecreasing hazard rate 7 is constant on each (¢;, t;;;] and all
its values are multiples of v, as 7y, 2 v, ..., up to [nd*/v]~y. Denote by R, the set of
all such functions.

Moreover, with 7, probability one, any hazard rate is constant after 1. Thus, on
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the interval (1, o), né* > r(t) = r(1) > e "".

Divide the interval (e™™7", nd*) into intervals of length (§/8)e™"%". Call the divi-
sion points );. We have that )\; > e "% for any i. Take i such that \; > r(1) and
A —7(1)] < (6/8)e~"P". For t > 1, define 7(t) = ;.

Denote by N; the number of functions in R, and denote by N, the number of
division points A;.

If we prove that ||f, — fi]| < &, then an upper bound for J(4,F,) is given by
log(Nz, * Ng) = log N+ log Ny.

By Lemma Al in the Appendix,

1

1 1 1+ 5
log N < 3[6' log(1 + (F) + log(1 +6%)] + 3 log  +1.

n/y

Since limg-_,o[6* log(1 + 3-) + log(1 + 6*)] = 0, there exists §* > 0 such that
%[5‘ log(1 + 5-) + log(1 + 6*)] < B/4. Fix 6*. There is some N > 0 so that log[(1 +
1/6*)/(n/v)]+2<nB/4 forany n > N.

Then log N; < ngB/2 for any n > N.

On the other hand, Ny = e"¥ né*/(6/8) and then log Ny = n3* + log ’g—% <nf3/2
for some 3* < @ and n large.

Therefore there exist §*, 3* and N such that J(é, F,) < nf for any n > N.

Now look at || f, — f:||. We already know that f[o 1 (2) = fr(8)ldt < 6/2.
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On the interval (1, oo) we have

()= Fs (O] = e o T8 eMD) _ (1) oy sttt

< A o O =Nt _ g (1) emr(DE=D) g™ Jiony F(o)ds)
+ Ir(l)e—r(l)(t—l)e—f[O,l)F(s)ds _ T(l)e_fl°~')r(s)dse_'(l)(‘_1)|

< |/\i6—z\.(t*1) _ r(l)e—r(l)(t—l)l + r(l)e—'(l)(t—l)le—f[o,1)f(3)d3 —e” f[o.l)"(s)dsl_

Integrating on (1, oo), then making a change of variable and using that

le™* — e7Y| < |z — y|, we obtain

/ |mn—mmms/ U (0) = Frn (D)t
(1,00)

(0,00)

+([Mmﬂmqu(A;JﬂQ—M@MQ

=Am¢um—ﬁmmw+(ﬁwvw—umw)

By Lemma A2 in the Appendix for the first term above we have:

AN —r(1)] 6
Am] |f2 () = froyldt < min(h, (1) <3

The second term is less than 2+, so for v small enough, it will be less than §/4.
Hence ||f, — f7]| <é.

a

When a(0+) > 0, « strictly increasing on [0, 1), then constant after 1, a direct
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consequence of Theorem 3.8, Lemma 3.6 and Lemma 3.7, is the following

Theorem 3.9. If f, is in the K - L support of m,, then the posterior is strongly

consistent at fo.

In Theorem 3.5 and Theorem 3.7 we have already pointed out some density func-
tions that are in the K - L support of 7,. Hence at these densities strong consistency

also holds.
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Appendix

Lemma Al. a) The number of all nondecreasing functions defined on k disjoint

intervals, which can take one of the N possible distinct values {cy, ca, ..., cn} on

each interval, is (N+:"l).

b) When k = [n/v] and N = [nd* /7],

1

N+k-1 n 1 1 1+ 5
< — * - * it é .
log( & )_7[6 log(1+5*)+log(l+6)}+2log e +1

Proof. a) A similar argument for part a) could be found in Feller [9] (Application to
occupancy problems).

Let Iy, I, ..., Iy be the k intervals. For a step function f denote by c;v its value
on I;.

Choose k items out of the N + k — 1 elements {I,, I, ..., Ix_1,¢1, €2, ..., CN}.
Suppose we chose m intervals and k — m values, ¢y, ..., ck—m. To define a nonde-
creasing step function f, put the values ¢y, ..., ¢k, in increasing order on the k —m
remaining intervals, say Ij,, Ip,, ..., I),_,. Formally, fi, = ¢, fi, = ¢2, fi,_,, = Ck-m
and if i < [, take f; = ¢y, if ) < i < I, take f; = ¢y, and so on.

Conversely, fix a nondecreasing step function f as described in the lemma above.



Let ¢y, ¢, ..., ¢, be the m distinct values of f, m < V.
Let 2y = min{¢ : f; = fin1}
ip =min{i > 1, : f; = fi;1}, and so forth.
Observe that ix_,, < k — 1. Thus {¢,...,%-m, €1,...,cn} are the k items out of
{L, ..., Ix_1,c1, ..., cn} corresponding to f.
Therefore because there are (N +: _1) ways to choose k elements out of
{Li, ..., Ir_\, c1, ..., cn}, the number of nondecreasing step functions as described

N+k—l).

in the lemma is ( i

b) (V*¢7') can be evaluated using Stirling’s formula

x! = 2rpFt/2e-t+0/128) g < 9 < 1

N+k-1\ (N+k! N
k T kK'N!' N+k
V21 (N + k)N k4172 exp{—(N + k) + 158757} N

and therefore

(N+k - 1) (N + k)N+1/2 (N + k)*
log =1 + €

k 08 — i vz T8 g

= (N +1/2) log <1+]£V) + k log (1+ _];c/—) —1/2logk + ¢,

where

e=1{lo 1 + 4 — 4 - 4 <1
T\ NTR) o T12(N+ k) 12N 1%






When k = [n/v] and N = [nd* /7], we obtain

% né* /vy n/y

1 1. 1+ &
- _ * 1 _ * - 5 .
7[6 log( +5‘)+log(l+6)]+210g oy +1

k — 5* .
(N+ I)S(n +1/2)log(1+ nh)+Elog(1+n6/v)—llogz+l
k 07 2 Ty

n

Lemma A2. If \; > a and A3 > a, a > 0, then

AeM% — e *%|dr < 2|A — Ao /a.
(0,00)

Proof. If A\; > Ay, then [Ae™™7 — de 22| < (A — Ap)e™™% 4 Ay(e™ 27 — e~ M17).
Thus
A=A A A /\1—/\2<2|)\1—/\2|.

A1 +/\_2—/\_1=2 A1 a

/ [A1e™M% — Npe 227 |dr <
(0,00)

As well, if Ay > Ay, then

A=A < 2|/\1 —)\zl.
/\2 a

/ I)\lc"’\‘x — /\26"'\”|dx <2
(0,00)
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