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ABSTRACT

SEMIPARAMETRIC ESTIMATION FOR CURRENT STATUS DATA WITH
FLEXIBLE COVARIATE EFFECTS

By

Wenliang Lu

This thesis studies a semiparametric hazard model with parametric baseline hazard
rate and nonparametric covariate dependency based on current status data. Two
estimators are proposed. One is the generalized profile maximum likelihood estima-
tor (GPMLE) and the other is the sieve maximum likelihood estimator (SMLE). The
GPMLE is obtained by maximizing the profile likelihood function where the nonpara-
metric covariate part is estimated using kernel and least square methods. Under some
regular conditions, the thesis establishes the square root consistency and asymptotic
normality of this estimator. The SMLE of the parameter is obtained by maximizing
the log-likelihood function with respect to both the finite dimensional and the infinite
dimensional nuisance parameters while the infinite dimensional nuisance parameter
is constrained to a subset of the parameter space which increases with the increase
in the sample size. This estimator is shown to be consistent and asymptotic normal.

Moreover, its asymptotic variance achieves the semiparametric lower bound.



ACKNOWLEDGMENTS

I would like to thank my advisor Professor Hira L. Koul for his guidance and many
helpful discussions on the subject of this thesis. He was always available when I had
doubts or questions. His general thinking of a statistical problem and ways to solve
the problem will help my future research and working. I would also like to thank
all the other committee members, Professor Joseph Gardiner, James Hannan and
Habib Salehi, for serving my guidance committee, especially Professor James Hannan
who was also my academic advisor. Finally I would like to thank the department
of Statistics and Probability for offering me graduate assistantships so that I could
come to the states and finish my thesis and my graduate study at Michigan State

University.

iii



TABLE OF CONTENTS

LIST OF TABLES ... e vii

Simulation results for the two estimators

IntroducCtion ... e
OV VIOW oo e e
Literature review
Summary description
The model . ...

The cumulative hazard function A(z,8)g(z)

Chapter 1
Generalized Profile Maximum Likelihood Estimation ................... ... .. ..
1.1 Definition of estimatorsof @pand g ........... ... ... .ol
Kernel estimate, F(’TJ, Z;), of F(T}, Z;, 6,)
Least square estimate, go(Z;), of g(Z;) for each fixed 6
The estimator, 8, of 6,
1.2 Asymptotic properties of the estimators .................. .. ... ...,
1.2.1 COnSISENCY .. vttt ettt e et e e
Assumptions for the consistency and asymptotic normality of 8
6 converges to  in probability: Theorem 1
1.2.2 Asymptotic normality ... 10
V(8 — 8,) converges weakly to a normal distribution: Theorem 2
1.3 Simulation . ... e 11
Weibull distribution with c.d.f. 1 — e*™%

Means and standard deviations of 8 for small and moderate samples

v



1.4 Proof of the consistency and asymptotic normality ...................... 12
1.4.1 Lemmas preliminary to the proof ................................. 12
Lemma 1: Uniform consistency of &,(t), the mean of
independent r.v.’s, t € D
Lemma 2 - 5: Uniform consistency of Kernel estimators
1.4.2 Proof of Theorem 1and 2 ........ ... ... . ... 19
Lemma 6 - 9: Uniform consistency of F(Tj, Z;) for F(T}, Z;,6,) and

of §g(Z;) and its derivatives for g¢(Z;) and its derivatives

Proof of Theorem 1 (Consistency) .............c.oooiiiiiiiiiin. ... 28
Proof of Theorem 2 (Asymptotic normality)......................... 30

Chapter 2
Sieve Estimation ............ i 44
2.1 Estimation . ... e 44

Score equation: S,(0,a,) =0
The estimator, 8, of 6,: S,,(é,d,,) =0
2.2 COMSISLOIICY ...ttt ettt ettt et e e 47
Assumptions for the asymptotic properties
Theorem 3: |§ — 8| + ||étn — ao|so converges to 0 in probability
Theorem 4: Convergence rate of the estimators,
16 — 86| = 0,(n" %) and ||&n — aol| = 0,(n"%)
2.3 Asymptotic normality of @ ............oiiii 49
Theorem 5: /n(f — ;) converges weakly to a normal distribution
2.4 Information bound for 0y ......... ... ... ... 49
Efficient score for 6,

2.5 SIMUlation . ..o 51



Weibull distribution with c.d.f. 1 — =%
Means and standard deviations of 8 for small and moderate samples
2.6 Proof of the theorems ......... ... ... . . .

2.6.1 Proof of Theorem 3....... ... i
Lemma 10: Inverse function theorem with sup-norm

2.6.2 Proof of Theorem 4....... ... .. ... i,
Lemma 11: The convergence rates of sieve estimators

2.6.3 Proof of Theorem 5..... ... it

Lemma 12: Stochastic equi-continuity for empirical processes

Bibliography . ...

vi



LIST OF TABLES

Table 1

Simulation results for the GPMLE ... ... .

Table 2

Simulation results for the SMLE

vii



Introduction

0.1 Overview

Current status data arise in some clinical setting when the survival time of interest
can only be determined to lie below or above a random examination time. In the
settings such as destructive testing, animal experiments in which the occurrence of
a survival time is only observable upon sacrifice, and epidemiologic studies in which
obtaining more than one examination is not cost effective, current status data are
commonly encountered.

The nonparametric estimation of the survival time distribution and some smooth
functionals thereof have been discussed for current status data by a number of authors,
including Groeneboom and Wellner (1992, §2.3), Huang and Wellner (1995), Geskus
and Groeneboom (1996) and Geskus and Groeneboom (1997).

Semiparametric models based on current status data have also been studied in the
literature. Klein and Spady (1993), Rabinowitz, Tsiatis and Aragon (1995), Li and
Zhang (1998), and Murphy, Van der Vaart and Wellner (1999) considered the linear
regression model based on current status data. Klein and Spady used the profile
maximum likelihood method to derive the estimator of the regression parameters
which were shown to achieve the semiparametric lower bound. In Rabinowitz, Tsiatis
and Aragon’s paper, a class of score statistics that may be used for estimation and
confidence procedures is proposed. Li and Zhang minimized a class of U-statistics of
order 3 to obtain estimators of the parameters. Murphy, Van der Vaart and Wellner
considered the penalized maximized likelihood estimator of the regression parameter
which was shown to be efficient. Koul and Schick (1999) studied the estimation and

hypothesis testing of the ratio of scale parameters in the two-sample setting, using a



U-statistic of order 2.

Cox’s regression model has been also studied based on the current status data.
Finkelstein (1986), Diamond and McDonald (1991), and Shiboski and Jewell (1992)
developed several methods to fit the model. Huang (1996) showed that, profiled over
the cumulative baseline hazard function, the profile maximum likelihood estimator
for the regression parameter is asymptotically normal with n%-convergence rate.

Among the other semiparametric models for the current status data, additive
hazards regression model was studied by Lin, Oaks and Ying (1998) and the propor-
tional odds regression model was studied by Rossini and Tsiatis (1996). Under certain
conditions on the examination time, Lin, Oaks and Ying found that one can make
inferences about the regression parameters of the additive hazards model by using
the familiar asymptotic theory and software for the proportional hazards model with
right censoring data. Rossini and Tsiatis’s approach in the proportional odds regres-
sion model is based on approximating the infinite-dimensional nuisance parameter,
the baseline log-odds of failure, with a step function, and carrying out a maximum
likelihood procedure. The resulting finite dimensional parameter estimates for the
regression parameters are shown to be asymptotically normal and semiparametrically
efficient.

Although these models, especially the Cox’s regression model, are popular and
widely used in practice, in many applications the shape of the baseline hazard is
thought to be well understood but the covariate effect is rarely specified precisely. For
example, in insurance problems the Gompertz-Makeham hazard has a long tradition
of successful application, [Jordan (1975), page 21]. Meshalkin and Kagan (1972)
claimed that the logarithm of the baseline hazard is approximately linear for a number
of chronic diseases. As an alternative to Cox’s regression model, Nielsen, Linton and

Bickel (1998) studied a model where the baseline hazard rate belongs to a parametric



class of hazard functions but the covariate part is of unknown functional form. They
obtained an estimator of the the underlying parameter by profile maximum likelihood
method when the data is randomly right censored.

This dissertation discusses the estimation of the underlying parameter in this
model (Nielsen, Linton and Bickel, 1998) for current status data. Two estimators
are proposed. The first one is obtained by maximizing a profile likelihood where the
infinite dimensional nuisance parameter is estimated nonparametrically. This is called
the generalized profile mazimum likelihood estimator. A set of sufficient conditions
are provided for consistency and asymptotic normality.

The second estimator, called sieve mazimum likelthood estimator, is obtained by
maximizing the log-likelihood function with respect to both the finite dimensional and
the infinite dimensional nuisance parameters while the infinite dimensional nuisance
parameter is constrained to a subset of the parameter space which increases with the
increase in the sample size. It is shown to be consistent, asymptotically normal, with
its asymptotic variance achieving the semiparametric lower bound.

Simulations are conducted to study the behavior of these estimators for small
and moderate sample sizes. The generalized profile maximum likelihood estimator
seems to have a slightly lower bias and variance than the sieve maximum likelihood
estimator. Since the latter achieves the lower bound, as the sample size increase, it
should behave better than the generalized profile maximum likelihood estimator for

large samples.

0.2 The model

Let X, T, Z be a random vector, where X represents the survival time, T the mon-
itoring variable and Z the covariate which could be a vector. Let (X,,T}, Z;), ---,

(Xn, Ty, Z,) be i.i.d copies of X, T, Z.



Assume that, conditioned on Z, X and T are conditionally independent. The
conditional distribution of X, given Z, is assumed to depend on some parameter and
the covariate. In Cox’s regression model, the cumulative hazard rate function of X
given Z has the form

Ao(x)eﬁlz,

where the first part Ag, with unspecified form, is called the baseline cumulative hazard
function, and 3 is a vector of parameters. Nielsen, Linton, and Bickel (1998) proposed
an alternative model with the first part depending only on some parameter 6, and
the second part with unspecified form. More specifically, the cumulative hazard rate

function is of the form
A(z,60)9(2),

where A(z, ) is a known function with unknown parameter 6y, but g is an unknown
function. Here 6, belongs to ©, a subset of R? for some d > 1. They discussed the
estimation of 6y and g under right censoring.

In this dissertation we discuss the estimation of 6y and g(z) based on current status
data or interval censoring Case I data, where one observes (T;,d;, Z;),i = 1,2,... ,n,
with &; = I x,<r,)- It is assumed in the following sections that 6 is a scalar. For 6,
as a vector, similar results can be obtained. Because of the curse of dimensionality,
Z is assumed to be a scalar also.

Let F(x,Z,0y) be the conditional distribution function of X, given Z. Assume

that the cumulative hazard rate function is continuous. Then
F(z,2,60) = 1 — exp(~A(z, 60)9(2)).

We also assume that the distribution of (7', Z) does not depend on 6§, or g, and
that if A(¢,2,601)9:(2z) = A(t,2,60)g(2) for all (¢,z2) in the support of (T, Z), then

6, = 0y and g,(z) = g(z) for all z. The latter is the identifiability condition.



Chapter 1

Generalized Profile Maximum
Likelihood Estimation

1.1 Definition of estimators of 6, and g

In this dissertation we first use a semiparametric profile likelihood method to define
the estimator of the parameter. Both Klein and Spady (1993) and Nielsen, Linton,
and Bickel (1998) used generalized profile likelihood methods to estimate the finite
dimensional parameter while the infinitely dimensional nuisance parameter was es-
timated by the kernel method. The ensuing discussion in this section will be a bit
informal. The precise conditions under which all definitions are valid are stated in
the next section.

In this chapter, © is assumed to be a compact subset of R!, and is rewritten as
No.

One notes that, given (7}, Z;),i = 1,2,...,n, the (conditional) log-likelihood for

0 and g based on (T;,9;,Z;),i =1,2,... ,nis
Z[éilog(l — exp(=A(T;,0)9(Zy))) — (1 - 8:)A(T;, 0)g(Zy)].
i=1

The idea of generalized profile likelihood methods is as follows:

(1) For a fixed 6, obtain the estimates, g¢(Z;), of g(Z;), i = 1,--- ,n, by using some



method such as the kernel method.

(2) The generalized profile likelihood for @ arising when g¢(Z;) is replaced by §4(Z;) is
> [8ilog(1 — exp(=A(T:.0)36(Z.))) ~ (1 = 6)A(Ti. 6)30(Z))]-
i=1

Maximize it with respect to 8 to obtain the estimate g of .
(3) If we want to estimate g(z), we treat 0 as the real parameter and use some method
as in step (1) or some other method to estimate it.

When 6 = 6y, §s,(Z;) should approach g(Z;) for all fixed Z; as the sample size
n tends to infinite. Moreover, the convergence must be faster than some particular
rate. This is hard to achieve for all Z;, i = 1,--- ,n, because of the edge effects in

the kernel estimation. Hence we use the following modified likelihood for 8 and g¢:

1n(8,9) = D _ wi(T,, b)wa(Z:, b)[8log(1 — exp(~A(T;, 0)g(Z:))) — (1 - 6:)A(T;, 0)9(Z)]

i=1

where wy(Z;,b) = 1 if Z; is at least b far away from the boundary and 0 otherwise,
wy (Tj,b) = 1 if Tj is at least b far away from the boundary and 0 otherwise. More
precisely, for example, if the support of Z is an interval [z}, 23], then wo(Z;,b) =1 if
Z; is in the interval [2] +b, 25 — b] and 0 otherwise, where b depends on n and b — 0 as
n — 0o. Therefore, the modified likelihood is almost the same as the real likelihood
for n large enough.

In this dissertation, the support of a random variable (or possibly a random vector)
with a density with respect to Lebesgue measure means the closure of the set of all
points at which the density is positive.

To estimate g for any fixed 6, our approach uses two dimensional kernel method

to estimate

F(T‘],Zi,og), i,j:l’...’n,

and then combines these estimates for each fixed i to obtain §4(Z;),7 = 1,--- ,n. The

least square method is used in the latter step.
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Let K be a kernel and b the bandwidth. Define

. - 6OKy(T) — T;)Ky(Z, — Z,
F(TJ’ZJ_Z,#,, o(Th — T;)Ko(Z, — Z))

_ e N
S Kol - TRz 29 L SPIET (111)

where

Note that F(-,-) depends on 7,1, but we don't make it explicit until it is necessary.
Under certain conditions on K, F and the density of (T, Z), and if b — 0 and
nb? — oo, then, conditioned on T}, Z;, in probability,

R . E;i[0Ky(T - T,)Ks(Z — Z;)]
F(T;, Z)) - lim =2 2
(T5, 20) = i 5 Ry (T = T)) Ky (Z = Z)
_F(Tp Zi’ 00)h(7}’ Zi)
B h(]:‘]azl)

=F(T;. Z;, 6,),

where h(t, z) is the joint density of (T, Z) and E;; denote conditional expectation,
given Tj, Z;. Therefore F (Tj, Z;) can be used to estimate F'(Tj, Z;, ).
Now if 4 is the real parameter, then —log(1 — F(T}, Z;,0)) = A(Tj,0)9(Z;) and

—log(1 — F(T}, Z;)) should be close to —log(1 — F(T}, Z;,0)) for all j and i when

the sample size is large enough. For fixed Z;, we shall estimate g(Z;) such that

~

A(T;,0)9(Z;) is close to —log(1 — F(T},2;)), j=1,--- ,n.

Let
) > wn (T, b)A(T;, 0)log(1 — F(Ty, Z)))
Go(Zi) = - P T n= (1.1.2)
Zj;éi w: (T, b)A%(T3, 0)
a least square estimator of g(Z;), attaining
min Y " w (T}, b)[log(1 - F(T}, Z:)) + A(T;,0)9(Z))]>.
9(Zi) <
J#i
The counterpart of gg(z) in limit is
E[A(T,0)log(1 — F(T, Z,6,))] E[A(T,0)A(T,6,)]
= — = 1.1.
90(2) EA(T, 6) En (T8 ) (1.1.3)



where E means the expectation w.r.t. the real parameter 6, and g. Note that, by

(1.1.3), g9, = g. Let

F(t.z,0) =1—e M09 F—1_F (1.1.4)
and
F(t, 2,0) =1— e M09 (1.1.5)

The modified profile log-likelihood that arises when g is replaced by gy is

lnl(e)
=Y wi(T;, b)w(Z;, b)[8ilog(1 — exp(—A(T:, 8)§o(Z.))) — (1 — 6:)A(T;, 0)36(Z:)].

i=1

(1.1.6)

The estimator, é, of 8 is the maximizer of the above likelihood over 8 € Nj.

Finally, the estimator of g(z) is defined as

S wi (T, 0)A(T;, O)log(1 — F(T;, 2))
S0 wy (T, b)AX(T;, 0)

§(z) = -

1.2 Asymptotic properties of the estimators

1.2.1 Consistency

In this section, we state the consistency of the generalized profile maximum likelihood
estimator 4. Before doing this, we give various assumptions which will be used to
prove the consistency and asymptotic normality of 6.

We list the following assumptions.

(A1) The respective supports £ and 7 of Z and T are closed intervals of R!.
A(t,0), g(z) and h(t,z) are positive and continuous on their domains of definition

T x Ny, Z and T x Z. Moreover A(t, ) is continuous in # uniformly for ¢. The first



and second derivatives of A(t,8) w.r.t. 8, A(t,8) and A(¢,6), exist, and A(t, 8), A(t,6)
are continuous in 6 uniformly for ¢, and continuous in ¢ for any fixed 6.

(A2) The function g(z) and h(t, z) are four times differentiable on their domains
of definition with continuous 4th (partial) derivatives. Assume A(t, ) is four times
differentiable in ¢ with continuous 4th (partial) derivatives.

(A3) The kernel function K is an r-th order kernel supported on [—1, 1], symmetric
about zero and Lipschitz continuous on its support. (r-th order kernel means K
satisfies: [ K(t)dt =1, [t*K(t)dt =0for s =2,---,r — 1 and [ [t|"|K(t)|dt < o0.)

(A3’) The kernel function K is Lipschitz continuous, supported on [-1,1], and
satisfies: [ K (t)dt = 1.

(A4) b=0(n"") with § <a < }.

(A5) 6, is an interior point of Aj, which is a compact subset of R!.

(A6)

E |(A(T.80)9(Z) + A(T, 90>§00(Z))2%3] >

where gg(z) is the (partial) derivative of go(2z) with respect to 6.

Assumption (A1) or similar assumptions have been seen in the literature, see, for
example, Huang (1996), Klein and Spady (1993), Nielsen, Linton and Bickel (1998).
Assumption (A2) is a smooth condition on the model, which is used mainly for the
asymptotic normality. Assumptions (A3) and (A3’) are made for the kernel. One
notes that (A3) implies (A3’). Assumption (A4) is the bandwidth condition in kernel
estimation, which is crucial to the asymptotic normality. For the consistency of the
estimator, this bandwidth condition can be weakened. Assumptions (Al), (A3') and
(A5) are imposed for consistency of the estimator. To prove the asymptotic normality,

we use assumptions (Al) -(A6).

Next we state the theorem on the consistency of the estimator. The proof will



be given in Section 1.4.2 following the general preliminary Lemmas 1-5 on kernel
estimations in Section 1.4.1. Before the proof of the theorem in Section 1.4.2, we give
first Lemmas 6-9 on the uniform consistency of F(Tj, Z;) for F(T}, Z;) and of §s(Z,)

and its derivatives for g¢(Z;) and its derivatives, 1 < 7,5 < n.

Theorem 1 Suppose that (A1), (A3') and (A5) hold, b = O(n™®) with 0 < a < .
Then the generalized profile likelihood estimator, 6, which is obtained by mazimizing

[,1(0), converges in probability to the real parameter 6.

1.2.2 Asymptotic normality

In this section, we state the theorem on the asymptotic distribution of the estimator

and the proof will be given after the proof of Theorem 1 in Section 1.4.2.

Theorem 2 (Asymptotic distribution of 6) Suppose (A1)-(A6) hold with r = 4 for

(A8). Then
V(8 — 6) = N(0,0?),
where
o2 E{[Di(T, Z,60) — A(T, Z,60)]" R(T, Z, 60)}
- [E (DX(T, Z,60)R(T, Z,6,)))2 ’
_ A(T’ 00)h1(T)
A(T, Z,6,) = AT A /A(t,OO)Dl(t, Z,00)R(t,Z,00)h(t, Z)dt,

Co = E“!\2(T, 00)1 Dl (t’ Z, 00) = A(t7 00)9(2) + ‘I\(tv 00)900(2)7

and
F(t7 2, 00)

h](t) = L h(t,Z)dZ, R(t,z,Oo) = m

10



1.3 Simulation

Before we prove the stated asymptotic properties of the estimator, let’s take a look
at its behavior for small and moderate samples.
Assume that the conditional distribution of X, given Z, is a Weibull distribution

with distribution function

1— e 292,

where g(z) = z. Also assume that T and Z are uniformly distributed on (1, 2] and
[0.2,1.2] respectively.

For each fixed sample size (n=30, 60, 100, 200 respectively) and appropriate b’s,
100 samples are generated with the real parameter 6, = 1.5 and 100 replications
of the estimate of §; based on the generalized profile maximum likelihood estima-
tor (GPMLE) are obtained. The means and standard deviations are shown in the

following table.

Table 1. Simulation results for GPMLE

n b mean s.d.
0.0400 | 1.3847 | 1.3299
30 | 0.0420 | 1.4915 | 1.4075
0.0450 | 1.7596 | 1.3905
0.0308 | 1.4720 | 0.9801
60 | 0.0310 | 1.4824 | 0.9947
0.0312 | 1.4908 | 1.0043
0.0238 | 1.4535 | 0.7720
100 | 0.0240 | 1.4876 | 0.7702
0.0242 | 1.5075 | 0.7943
0.0166 | 1.4560 | 0.4795
200 | 0.0168 | 1.4990 | 0.4902
0.0170 | 1.5421 | 0.5103

The kernel function used in the simulation is K (z) = 9/8 —15/822, -1 <z < 1;0,

otherwise.

11



From the table we can see that the mean is around the true value for all the sample
sizes but the standard deviation decreases with the increase in the sample size. The

choice of b is crucial to the reduction of the bias of the estimator.

1.4 Proof of the consistency and asymptotic nor-

mality
1.4.1 Lemmas preliminary to the proof

To prove the consistency and asymptotic normality of the generalized profile maxi-
mum likelihood estimator, the uniform consistency of F(Tj, Z;) for F (T, Z;) over all
1 <1,j < n, and of §o(Z;) for go(Z;) over all 1 < i < n and § € N} is proved first.
Since §o(Z;) is a function of F(T}, Z;) which, in view of (1.1.1), is a ratio of two sums
(or means) of independent random variables, we first discuss some uniform conver-
gence results of the sums (or means) of independent random variables in a general

setting.

Lemma 1 LetY), - ,Y, beiid. d-dimensional random vectors. Let D be a compact
subset of RY, and for each t € D, let W,(t,-),n > 1, be a sequence of measurable

functions on R%. Let

n

1
a(1) = = W,.(t,Y;), teD. 14.1
(1) = L WY, t€ (141)
Let 0 < h, = O(n™%) with ap > 0 and assume that for some 0 < s,7 < 00, and finite
real number Cy,

d
h::llvn(t’y)l < Co, hfzIL)[fn(tl’ y) - ”"n(t% y)l <Gy Z Itlj - t2j|7 (142)

J=1

uniformly for y € R* and for all t,t,,t, in D. Assume also that

E(W,n(t,Y;)) =0, teD.

12



Then, for all a > 0,

sup |€,(1)] = op(n~ "7 k7). (1.4.3)
teD
Proof. Let
enhy
Bn = 2C,d’

where 0 < £, — 0, to be chosen later. By (1.4.1) and the second part of (1.4.2), for

all tl,tz € D with t,' = (t,‘l,” . ,tid), 1= 1,2,

d

1€n(t1) — &n(t2)] < Coh;"'z |ty — tal-

=1

If |t,; — t2;] < Ap, then this inequality and the definition of A, lead to

Ién(tl) €n(t2)| < Co 3dA

Since D is a compact space, it is contained in a hypercube. Without loss of generality,
let it be contained in a unit cube. Let N, = 1/A, if 1/A,, is an integer, and ([1/A,]+
1)¢ otherwise, where [z] means the integer part of z. Divide the unit cube into small
cubes C;,, i = 1,---, Ny, each with length less than or equal to A,. Cover D with
sets DN Cip, t = 1,---, N,,. Discard empty sets and let D;,,, 1 = 1,---, M,, be the

remaining sets. Then t,t; € D,, implies that |t;; — t;;| < A,, j = 1,---,d. Note

1 d
[ < | — .
Mn_(An+1)

Fori=1,---,M,, let t; be a point in D;,,. Then, by triangle inequality,

also that

€n

“,-fl.lp 1€n(t:)] + + 5

suplen(t)] < _sup. [l&( DI+ sup [6a(t) — a(t,)

teD 1= l te D;n

It follows that
Ma
(sup €a(t)] > sn) <P ( sup et ) ZP(mn >2). (14.4)

13



Notice that, by (1.4.1) and the first part of (1.4.2), nh£,(t) is a sum of indepen-
dent and bounded random variables. Recall Bernstein’s inequality (for example, from
Shorack and Wellner(1986), page 855): for independent random variables &;,--- ,&,

with bounded ranges [— M, M] and zero means,

1 x?
p o4& <2rp|—z—7=]), 1.4.
s+ -+ 6al > 2) < 2eap (-3 2 ) (145)
for v > var(& + -+ + &)-
Apply the above inequality with & = hTW,(t,Y;), = nhl¢e,/2 and v = nC? to

obtain

1 n2hZe2/4 )

En
t) > =) <2 —=
P (61> 5) < 2000 (o' o

Since hle, — 0 as n — oo, the second term in the denominator of the fraction will

be less than the first term for large enough n, and hence the above is less than
2exp(—Cnh? <?),

for some 0 < C < oo, not depending on n, h, and ¢,.
It now readily follows from (1.4.4), the upper bound for M, and the definition of

A, that

d
P (sup |€n(t)] > En) <2 (2COd + 1) exp(—Cnh?e?), (1.4.6)

teD hsen

which is o(1) if e, = sn‘]%ah;’ for all € > 0 and a > 0. The lemma is proved.

Next we are going to use Lemma 1 to show the uniform convergences in probability
of the means of independent random variables which have the same forms as those
in the definition of F' (T, Zi), 1 < ,j < n. Moreover, their mean square convergence
is also established, which is crucial to the proof of the asymptotic normality of the

generalized profile maximum likelihood estimator.
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Let U = (Uy,U,, -+ ,Uy) be a random vector in R? and + be a random variable
taking values 0 or 1, and U, = (Ui U2+ ,Uig), v, 1 =1,--- ,n, be i.i.d. copies of
U, v, respectively.

Let g be a function on R? and K be a function on R!. Let K,(t) = K(t/b)/b,
t € R', b depends on n, b — 0 as n — oo. Also let ¥ = (v, s, ,v4) be a vector in
Re. If 4,0 € R and z,y € R, then x@t + yv = (zu; + yv1,- -+, Tuqg + yvy). Let also
du = du; - - - dug in the integration.

Define
T,(0) = %;g(ﬁ,)Kb(U“ — 1) Kp(Uig — vq).

The following two lemmas establish the convergence of T,,(7). Lemma 2 establishes
the convergence rate of T,,(7) to its mean, in probability and in mean square, uniformly

in . Lemma 3 studies the rate behavior of the asymptotic bias of T, (7).

Lemma 2 Assume U has a bounded (joint) density f(it) with support Dy = [s7,t]] x
oo X sy, ty], where s;,tr € R',i=1,---,d. Also assume that K(-) is a bounded and

Lipschitz continuous function with

/ K?*(t)dt < oo,

and g(u) is bounded. Then,

nb? sup E|T,(t) — ET,(9)|> = 0(1) (1.4.7)
ﬁGDf
and for all a > 0,
vVnl=eb2 sup |T,(0) — ET,(v)] = 0p(1). (1.4.8)
veDy
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Proof. Using the fact that Var(Y) < EY?, for any random variable Y, and the

change of variable formula, we obtain

Var(T,(?)) = %V‘IT(Q(U)Kb(Ul —vy) - Ky (Ug = vq))

1
< ;E{g U)Ky (U, — 1/1) - Ky(Ug — va)}?

= [t K
an/ / (0 + b K2(t1) - - - K*(ta) f (9 + bi)dt.

Therefore, by the boundedness of f and g, and the square integrability of K,

sup nb?Var(T,(9)) = O(1).

ﬁED/
Hence (1.4.7) is proved.
Apply Lemma 1 with ¢t = 9, D = Dy, &,(t) = To(0) — ET, (), h, = b, r = d and

s =d+ 1 to obtain (1.4.8).

Lemma 3 Assume the conditions of Lemma 2 hold.

(1) If f and g are also Lipschitz continuous and K has support [—1, 1] and satisfies

/Kmm:L /mmm<m.

sup |ET,(v) — g(2)f(v)| = O(b),

= DO
vE'DI

Then,

where D§ = [s] 4+ b,t} — b] x - [s3 + b, t5 — b]
(2) Suppose f and g have up to rth bounded and continuous (partial) derivatives, and
K is an rth order kernel supported on [—1,1], and symmetric around zero. Then

sup |ET,(v) — g(0)f(v)] = O(b).

= -0
vE’D/
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Proof. We only prove the second assertion since the first one can be proved in a

similar but simpler way. Change of variables and Taylor expansion yields

E[T.(¢) = E ( () Ko(Uy = vy) - - (Ud—vd))

:/ g(a) K (& )...K(“d;"d)f(a)da
:/ / (0 + (t1) -+ K(tq) f(0 + bt)dt
= / / (0) f(0)dt
d o d
/ / [Z f(@)) b’t;] I &@))at
— iy
= g(0)f(v) + O(b"),
uniformly in v € D?, where v* = (v,*, -+ ,v4") and v;* is between v; —b and v;+b. In

the last two steps, the assumption f_ll t*K(t)dt =0,s=1,--- ,r—1and f_ll K(t)dt =

1 were used.

The following two lemmas discuss the convergences of two other forms of means
of independent random variables based on kernels. They will be used to prove the
theorems in the following section. In Lemma 4, it is already centered; and in Lemma

5 there is some kind of centering.

Lemma 4 Assume that the conditions of Lemma 2 hold. Assume also that g(v) is

the conditional ezpectation of v given U = ©. Let

n d
N 1 ~
= Z[% - g(Uy)] HKb(Uij - vj).
i=1 j=1
Then,
nb? sup E|S,(2)|* = O(1),
€Dy

and for all a > 0,

V=2 sup |S,(5)] = op(1).

ﬁEDI
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Proof. Note that

E[S.(2)|Usi=1,---,n)] = 0.
Hence
Var (Sa(3)) = E [Var (s,,(mU,.,z' =1, n)]

=F

n d
%Zg(&)(l — o0 [[ K2V, - vj)} .

i=1

The rest of the proof is exactly the same as that of Lemma 2.

Lemma 5 Assume the conditions of Lemma 2 hold and that g is Lipschitz continu-

ous. Let
T,(v) = %Z[Q(Ui) — 9(0)]Ky(Unn — 1) - - - Ky (Uia — va).
=1

For the variance part of T, (v), we have

nb? 2 sup E|T. (%) — ET.(9)]* = O(1) (1.4.9)
flGD/
and for all a > 0,
vVnl-eb2d sup |T,(v) — ET,(0)| = 0,(1). (1.4.10)
f/GDf

For the bias part, we have the following.
(1) If f is also Lipschitz continuous and K satisfies: [ K(t)dt =1, [|K(¢)|dt < oo,

and has support [0, 1], then

sup |ET.(v)] = O(b). (1.4.11)
€Dy

(2) If f and g have up to rth bounded and continuous (partial) derivatives, and that

K is a rth order kernel supported on [—1, 1], symmetric around zero, then

sup |ET,(0)] = O(b"). (1.4.12)

- 10
vED/
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Proof. Since we have the difference term g(U;) — g(#) in T,(%), we should expect a
better convergence rate than that of T,,(¢). The proof is similar to that of Lemmas 2
and 3.

For any ¢ € Dy,

n

Var(T,(0)) = lVar [(9((:) - 9(5))HK«1(UJ‘ - l’))}

IN
!
t

IN

for some finite real number C, not depending on . Thus (1.4.9) is proved.
Apply Lemma 1 with t = 9, D = Dy, &(t) = T,,(v) — E(T,(?)), h, = b, r = d and
s = d+ 1 to obtain (1.4.10). Assertion (1.4.11) and (1.4.12) can be proved in the

same way as in the proof of Lemma 3.

1.4.2 Proof of Theorem 1 and 2

Before giving proofs of Theorem 1 and 2, we shall use the general results of the
previous section to obtain some preliminaries for their proofs. To begin with, we shall
first establish the uniform convergence of F (T;3,Z;) to F(T},Z;) over all 1 < ¢,j < m,
30(Z:) to go(Z,), §4(Z:) to §o(Z.) and §,4(Z;) to go(Z;) over all 1 < i < n and 8 € N,.
The expected square differences between F (Tj, Z;) and F(Tj, Z;), between §g4(Z;) and
90(Z;:), and between §,(Z;) and gy(Z;) are established as well.

By assumption (Al), let Z = [2},25] and T = [t],t;], two finite real intervals.
Let 2% = [z} + b,25 — b] and T° = [t} + b,t5 — b]. Then the support of h, D) =
[t1, 3] x [z}, 23]. Also, let DY = T° x 2°.
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Recall the definition of F(T}, Z;) from (1.1.1). Write

VT, Z) + BT, Z)

F(T;,Z) — F(T;,Z:,6,) = = ) 1.4.13
2 = FT 0o BYG(T;, 2,) (41

where
VU, 2) Z[(s, F(Ty, Z1,00)| Ko(Ti — t)Ky(Z) — 2), (1.4.14)

l:;ézJ

iy 1
BYY(t,2) = ~ > (T, Z1,00) — F(t, 2,600)| Ko(T; — 1) K4 (2 — 2) (1.4.15)
l#1,5

and

B3 (¢, 2) 5_: Ky(T, - t)Ki(Z - 2).
l;ﬁt,]

We first show that V,fj‘i)(Tj,Z,-) and BY"? (Tj, Z,) converge to 0 in probability,
uniformly over 1 < ¢,j < n, and the conditional expectation of the squares of them,
given T and Z;, converge to 0 at certain rate, uniformly over 1 < 4,5 < n. The same
convergence results of BG(T, T;, Z:) to h(T};, Z;) are obtained as well. The previous
lemmas are used to obtain these convergence results. More specifically, we have the
following lemma.

In the following, sup;; stands for sup,;;<, and sup(z, z,)ep, stands for
SUP(i,5:1<j,i<n,(T;,2:)€DA)"

Lemma 6 (1) Assume that the conditions (A1) and (A3') hold, and b = O(n™*) with

0<ax< %. Then,

sup |l"',fj‘i)(7}, Z;)| = 0,(1), (1.4.16)
g
sup E;|[VI(T}, Z)* = 0,(n~7), (1.4.17)
i
sup |BYN(T;, Zi)| = 0,(1), (1.4.18)
(T‘jvzl)ech
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sup |BG(T;, Z) — W(T;, Z:)| = o0,(1), (1.4.19)
(T,.,Z,)eDY

where E;; stands for conditional expectation, given T}, Z;.

(2) Assume (A1)-(A3) hold with r = 4, and b = O(n™°) with = < a < ;. Then

sup  E;,|BYN(T;, Z)2 = 0,(n7) (1.4.20)
(TJ»Zi)GD?‘
sup E,;|BSN(T;, Z,) — h(T;, Z,)|? = 0,(n" 7). (1.4.21)
(T,.Z:)eDy

Proof. Define
1 n
Valt,2) = ~ > 16 = F(Ti, 21, 00) Ko(Th — ) Ko (21 — 2).
=1
Apply Lemma 4 with S,(9) = f"n(t, 2),d=2,v =4; and g = F(t, z,0p) to obtain

sup E|Vi(t,2) = O(—3) = o(n”7), (1.4.22)

(t,2)€EDy, 1b?

and

sup |Va(t, 2)| = 0p(1). (1.4.23)
(t,2)EDy

Since K is bounded, by the definition of V",l(j'i)(t, z) and V,,(t, z), we obtain

; - C
sup sup |VUI(t,z) = V(t,2)| < —- =o(n"z), (1.4.24)
1<i,j<n (t,2)€Dy nb

for some constant 0 < C < oo. It follows from (1.4.23), (1.4.24) and the triangle
inequality that

sup sup [VU(t,2)| = o,(1).
1<j,i<n (t,2)€Dy

Hence (1.4.16) is obtained.
Similarly, by (1.4.22) and (1.4.24), apply the inequality (z — y)? < 2(z? + y?),

z,y € R! to obtain

sup sup E|VP(t,2)]P = O(=3) = o(n77).
1<j,i<n (t,2)€Dp nb
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Hence (1.4.17) is obtained.

Define
1 n
Bn(t.2) = ~ > [F(Ti, Z1,60) — F(t,2,60)|Ky(Ti — ) Ky(Z1 — 2)
=1

and
1 n
B (t 2) = ~ > KT - t)Ky(Z) - 2).
=1
Apply (1.4.10) and (1.4.11) of Lemma 5 with T} (¢) = B,(t,z2), 9(0) = F(t,z,60),

U, = (T;,Z;), d = 2 and a = ag to obtain that, for each ag > 0,

sup |By(t, )| = 0p(n”1%b7) + O(b),
(t,z)GDh

which is 0,(1) as ag is chosen to be small enough. This is because of the assumption
on the convergence rate of b to 0. Similar argument as above leads to (1.4.18).

Similarly, apply (1.4.8) of Lemma 2 and part (1) of Lemma 3 with T,(9) =
Bpo(t,2), g(0) =1, d =2 and U, = (T:, Z;) to obtain that

sup |Bno(t,z) — h(t,2)| = 0,(1), (1.4.25)
(t,2)eDY

and (1.4.19) follows from the same discussion as the above.

Use the identity E(Y?2) = var(Y) + (EY)? for any random variable Y, and then
apply (1.4.9) and (1.4.12) of Lemma 5 with T,(9) = By,(t,2), r =4 and d = 2 to
obtain that

sup E|B,(t,z)[* = O(n™") + O("),

(t,z)eDY

which is o(n‘%) since b = O(n™) with a > . Thus (1.4.20) follows from the same
discussion as above.

Similarly, apply (1.4.7) of Lemma 2 and part (2) of Lemma 3 with T,(7) =
Boo(t,2), r =4 and d = 2 to obtain

sup Eano(t, Z) - h(t, Z)|2 = op(n,"%).
(t,2)eDY
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(1.4.21) follows from the same discussion as above. The lemma is proved.

Since, by assumption (Al), h(t, z) is bounded away from 0 and oc, and F(t, z, 6,)
bounded away from 0 and 1, their estimators will also have these properties with
probability approaching 1 as the sample size tends to infinity. We then discuss the
convergence of these estimators to their limits only on the set on which these prop-
erties are satisfies.

There exist real numbers 0 < a; < a; < oo such that a; < inf(.)ep, h(t, z) and
az > SUp( .ep, A(t 2), and 0 < d; < dy < 1 such that d, < inf(,.)ep, F(t,2) and

dy > sup(, ,)ep, F(t, z). Particularly, choose

a, = inf h(t,z) —€, ay= sup h(t z)+e,
(t,2)EDh (t,2)EDs

and

dy = inf F(t,2,00) —€, dy= sup F(t, 260 +e,
(t,2)EDy (t,z)EDy,

for some € > 0.
Write FU9(Ty, Z,) for F(T;, Z;) as the latter depends on (j,7), and let FU9(t, z)

be obtained from (1.1.1) with T}, Z; replaced by t, z respectively. Let

An = {a; € min BY9(t.2) < max BYY t,2) <a,l},
nl { — (t,z)G‘D2 n0 ( ) ) = (t.z)evg n0 ( ) = }
1<i,j<n 1<i,j<n

App = {d; < min F(j'i)(t, z) £ max F(j'i)(t,z) < d.}.
(t,z)eD? (t.2)€DY
1<1,7<n 1<1,5<n
In the definition of §(Z;), see (1.1.2), the summation is taken over these j such that
T; € T° ie wi(T;,b)=1,j=1,---,n. As we discuss the convergence rate of §(Z;)
to g(Z;), we want to exclude the case when all the Tj fall into the edge area, more

specifically, Z;:l w(Tj,b) = 0. Therefore, define

Az = {zn:wl(TJ) > 0}.
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It is easy to see that, the probability of the complement of A,3, P(AS;) = O(b™), by
the assumption (Al).

Let

An = Anl nArﬂ ﬂ An3-

The probability of A, is expected to go to 1 as n tends to co. This is proved later.
Next the main results used to prove the consistency and asymptotic normality of the
generalized profile maximum likelihood estimator are established in the following two

lemmas.

Lemma 7 (1) Assume condition (A1) and (A3') hold, and b= O(n™*) with0 < a <

%. Then

sup |F(T}, Z:) — F(Tj, Z,00)| = 0,(1). (1.4.26)
(Tj,Z:)eDY

(2) Assume condition (A1),(A2) and (A3) hold, and b = O(n™®) with + < a < 1.
Then

sup E,i|F(Tj, Z:) — F(T}, Zi,00) 14, = 0p(n"7). (1.4.27)
(T;,2:)€DY

Proof. Note that h(t,z) is bounded away from 0. Thus (1.4.26) follows from
(1.4.13), (1.4.16), (1.4.18), (1.4.19), and (1.4.27) follows from (1.4.13), (1.4.17),

(1.4.20), (1.4.19). The lemma is proved.

Recall that gy(z) is the first (partial) derivative of g4(z) with respect to 6. Let

go(2) be the second (partial) derivative of go(2) with respect to 6. Similarly define
.élo(z) and éa(z)-

Lemma 8 (1) If (A1)-(A3) hold, and b= O(n™°) with (= < a < }, then

sup Ei|g0(Z:) — 90(Z:)|* 14, = 0p(n"32), (1.4.28)
zez’
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and

sup Ei|§y(Z) — §o(Z:)|* 14, = 0p(n” 7). (1.4.29)
2L
AT

where E; stands for the conditional expectation given Z;.

(2) If condition (A1), (A3') hold, and b= O(n™®) with 0 < a < }, then

sup [ge(Zi) — 9o(Z:)| = 0p(1), (1.4.30)
Z,e2°
IS

sup 195(Z:) — g6(Z:)| = 0,(1),
z,ez°
ISV

and

sup |95(Z:) — §a(Z:)| = 0p(1).
Z,€20
0eN?

Proof. We prove only (1.4.30) and (1.4.28). The proof of the remaining results will
be similar.

In view if (1.1.2) and (1.1.3), g¢(Z;) — ge(Z;) can be decomposed into Ry ¢(Z;) +
Rn20(Z;), where

>z wi (T 0)A(T, 0)[log(1 — F(Tj, Z,)) — log(1 — F(T;, Z;,6,))]

Rﬂ , Zl) = -
1ol > 20 (15, )N (T;, 0)
and
> wi(T5, b)A(T;, 0)A(T;,60)  EA(T,0)A(T, 8
Rn2,0(Zi) — j#i 1 ’J J n 72 Y0 _ ( 2) ( 0) g(Z,-).
Z]’;ﬁi wl(]}sb)A (leae) EA (Ta 0)
It is enough to show that
sup Ei|Ruko(Z:)*Ia, = 0p(n"7), k=12, (1.4.31)
Z,e20
0eNo
under the conditions of part (1), and
sup |Rukg(Z:)| = 0p(1), k=1,2, (1.4.32)
Z,ez2"
9c Ny



under the conditions of part (2). By the mean value theorem,

x —_—
ftog(2) - tog(u)] < 24, (14.33)

for all positive x,y. Apply this with z =1 — F(T,,Z) and y = 1 — F(T}, Z;, 6,) to
obtain

BT 7)) _ T 7. \F(T;, Z;) — F(T;, Z:, 6)|
llog(1 — F(T}, Z,)) — log(1 F(T.,z,,ooms(l_ Y ASE

(1.4.34)

By the definition of R, ¢(Z;), and the boundedness of A(t,#) away from 0 and oo,

we obtain that, on A,3,

~

sup sup |Rn19(Z;)| < C  sup |log(1 — F(T;, Z:)) — log(1 — F(T;, Zi, 60))],
%66/50 (T;,2:)€Dy
()

for some constant 0 < C < oo. This, (1.4.34), (1.4.26), (1.4.27) and the boundedness
of F(t,z,60y) away from 0 and 1 imply (1.4.31) and (1.4.32) with k = 1.

The Lipschitz continuity of A(¢, ) with respect to 8 uniformly in ¢, and the uniform
SLLN imply (1.4.31) and (1.4.32) with £k = 2. (They can also be proved by applying
(1).)

Notice that F (T}, Z;) does not depend on 6 and g¢(Z;) depends on 8 only through
A(T;,0). By the assumption on A(T},8), similarly we can prove the remaining asser-

tions. The lemma is proved.

We shall show that the probability of A, approaches 1 as n — oo.
Lemma 9 Assume that (A1) and (A3') hold. Then

lim P(A,) =1.

n—00

Proof. It suffices to show that

lim P(A.) =1 orequivalently lim P(AS,) =0, k=1,2,3.

n—o0 n—oo
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We have seen that lim,_, P(An3) = 0 by its definition. We first prove the above

assertion with £ = 1. By the definition of A,,, its compliment equal to

sup |BUA(t,2) — h(t,z)| > €
(t,2)€DY
1<i,j<n

One also notes that
Buo(t, z) = BG(t, 2) = [Ko(Ty — t)Ko(Z; - 2) + Ku(T; — ) Ko(Z; — 2)] /m,

the absolute value of which is less than C/(nb?) for all 1 < 1,5 < n, (¢,2) € Dy, and

for some finite constant C, since K is bounded. Hence we have

P| sup |B%)(t,2) = h(t,2)] > €
(t,z)eDY
1<i,j<n

<P ( sup |Bno(t,z) — h(t,z)| > € — C/(nbz))

(t,z)eDY

which is o(1) in view of (1.4.25) and that nb*> — oo as n — oo. We thus obtain

n—o0

Let
Yo GKy(Ty — ) Ko(Z) - 2)

Ft2) = S R~ DK%= 2)

Similarly, one can obtain
P(A,) < P| sup |F(t,z) — F(t,z,60) >e¢— sup |F(t,2) — FUY(t, 2)| ],
(t,2)€DR Jiis(t,2)€DY
which is o(1) if

sup |F(t,z) — FU(t,2)| = 0,(1).
Ji,(t,2)EDY

This is easy to show and omitted here. The lemma is proved.
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Proof of Theorem 1 (Consistency) It is enough to show that [,,;(6)/n con-
verges in probability, uniformly in A, to a nonrandom function that has unique
maximizer at 6.

We are going to prove later that

sup |ln1(8)/n — L1 (0)] = 0,(1), (1.4.35)

€N

= 13w (T3, b)un(Z, )[6ilog (1 — exp(~A(T: 0)g0(Z0) — (1= )A(T, 0)g0(Z0)].

i=1

By a uniform law of large numbers, which holds under our conditions, and the

fact that
P(w,(T,b) =0) = 0O(b) and P(wz(Z,b) =0)=0(b),
we obtain
sup |l_n1(0) - l(e)l = Op(1)7 (1436)
0eNo
where

1(6) = E[dlog(1 — exp(—A(T,0)ge(Z))) — (1 — 6)A(T,0)g6(2)]

= //[(1 — e~ MEO09IEN 15g(1 — e~ AMEO9(2)) _ A(t, 0) gg(2)e~ MBI B(t, 2)dtdz.

This can also be obtained by apply Lemma 1 with t = 6, £(t) = 1.:(8), D = N,
r=s=0.

Next we prove that [(f) has a unique maximizer at ;. One notes that the function

fly) =1 —e")log(l —e™¥) —ye™®

attains its maximum at y = z for any z > 0 and y > 0, because

eV—e*T

f'lly) = ——,

1—ev
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which is positive for y < z, equals 0 for y = z and negative for y > z. Apply this with
= A(t,6p)g(z) and y = A(t,0)ge(2) to obtain that I(8) < I(6p), and I(6;) = I(6,) iff
A(t,01)gs,(2) = A(t,00)g(2), (t,2) € Dy. This and the identifiability condition imply
that 1(0) < I(6y) for any 8 # 6,. Therefore /(6) is uniquely maximized at 6. This,
(1.4.35) and (1.4.36) prove the theorem.
Now we establish (1.4.35). Write w;; for w; (T}, b)wy(Z;,b). It is enough to prove

that

sup |— Z w;,6; log(F (T}, Z;,0)) — %Zwﬁdi log(F(T;, Zi,0))| = 0p(1)  (1.4.37)

9cNo
and
sup I—an - Tna 90 i) — —Zwu - Tng)QO( I)I = Oﬂ(l)'
8cNo n i=1
{(1.4.38)
Apply (1.4.33) with £ = F(T}, Z;,0) and y = F(T;, Z;,6) to obtain
llog(E(T,, Z,,6)) — log(F(T,, Z,,6))| < LT 260 Z F(IL Zu O] ) 4 4,
F(’I;, Z,‘,H) A F(T’h Zi7 0)
By the mean value theorem,
le™ —e7¥ < |z —yl, (1.4.40)

for all positive z,y. Apply this with z = A(T},0)§e(Z;) and y = A(T;, 6)ge(Z;) and
recall the definition of F\(T}, Z;,0) and F(T}, Z;,0) (see (1.1.5) and (1.1.4)) to obtain

that the right hand side of (1.4.39) is no more than

A(T;,0)19(Z:) — 9(Zi)]
F(T‘h Zia 0) A F(’I;) Zia 0) ’

Therefore the left hand side of (1.4.37) is no more than

SUPge N, (T, 2,)e DO A(T;,0)|96(Z;) — 9o(Z:)]
infoeng (1,z0ep F (T3, Zi, 0) A F (T3, Z5,0)

9
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which is 0,(1) because of the boundedness of A, (1.4.26), (1.4.30) and the boundedness
of F(t, z,8y) away from 0. This proves (1.4.37), and (1.4.38) can be proved in a similar
way. Hence (1.4.35) is proved.

Proof of Theorem 2 (Asymptotic normality) We first prove the following.

sup |F(Tj,Zi,0) — F(Tj, Z:,0)| = 0,(1), (1.4.41)
(T;,Z,)€DY
8eNo

where F(t, z,0) is defined in (1.1.5) and F(t, z,6) is defined in (1.1.4). Apply (1.4.40)
with £ = A(t,6)ge(z) and y = A(t,0)gs(z) to obtain

|F(t,2,0) = F(t,z,0)] < A(t,0)90(2) — go(2)].

This, the boundedness of A and (1.4.30) imply (1.4.41).

By the definition of gy(z), see (1.1.3), and the assumption on A and g (see As-
sumption (A1)), go(z), as a function of # and z on My x Z, is bounded away from 0
and oo. It follows from the definition of F(t, z,8) that, as a function of ¢, z and 0, it
is boundedness from 0 and ooc.

Let
D\(T;, Z:,6) = A(T;,0)36(Z.) + A(T;, 0)44(Z:), (1.4.42)

and

D\(T;, Z;,0) = A(T;, 0)96(Z:) + A(T3, 0) 4o (Z:).

It follows from part (2) of Lemma 8 that

sup Ibl(T‘ls Ziao) - Dl(na Zlao)l = Op(l). (1443)
(T:,2.)€D},

Now we begin to prove the theorem. The derivative, with respect to 6, of the
modified profile log-likelihood, I,,;(6), defined in (1.1.6), is given by
0 = d;
gl (0) = ) wii | =———F—
ag™ 2 F(T;, Z,,9)

1=1

-1 bl(TiaZi,o)-
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Let

1 0
Sa(8) = ﬁ%lmw)
Then, by the mean value theorem,
0= Su(8) = Sn(60) + V(6 — 60)Sn(8°), (1.4.44)

where 6* is between 6, and é, and

~

1 — 61— F(T;, Z;,0)] -
Z [ ( )]

Sn(a) = - Wi = Df(Ti, Zi,e)
n i=1 Fz(Ti,Ziae)
+ l - Wi; 61 1
n< """ | F(T, Z,0)

x [A(T3, 0)30(Z:) + 2A(T3, 0)35(Z:) + A(T3, 0)§9(Z))-

We are going to show that S",,(G‘) converges in probability to a positive number.
To do this, let S,‘;(G) is obtained from S',,(()) with F(T,-, Z;,0) replaced by F(T;, Z;,6),
D\(T;, Z;,9) replaced by D(T;, Z,-,0); 9e(Z;) replaced by g¢(Z;), §9(Z,-) replaced by
90(Z;) and §g,4(Z;) replaced by §s(Z;). In view of (1.4.41), (1.4.43), part (2) of Lemma
8, boundedness of F(t,z,0) away from 0, and the boundedness of A, A and A, we

obtain

sup |Sn(8) — S5(6)| = 0,(1). (1.4.45)

6eNo
One also notes that, under assumption (A1), S:(8) is Lipschitz continuous in 8 on

Np. This, (1.4.45) and the triangle inequality imply
15a(8%) = S3(60)| = 0,(1)- (1.4.46)

‘Since SZ(f;) is the mean of bounded random variables, it follows from the SLLN

(Strong Law of Large Numbers) that SZ(6) converges with probability 1 to

F(T1 Z7 00)

“EFT, Z.60)

DX(T, Z,8,)| = —d(6).
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This and (1.4.46) imply that S,(8*) converges to —d(f,) in probability. Hence it

follows from this and (1.4.44) that
Vi(f = 60) = d="(80)Sn(60)[1 + 0,(1)]. (1.4.47)

Next we are going to find the limiting distribution of S,,(6;). Write g(z) for gg,(2).

Write
Sn(0o) = En + Qn, (1.4.48)
where
1 - Dl(’I'thaeo)
= — wi 0 — F(T;, Zi, 6y)]| —— 1.4.49
\/E,z:; [ 0)] F(’I;,Z,‘,OQ) ( )
and
T,,Z,,On)
n Wi T,,Z,,O fTHZHa A oA 1.4.50
\FZ ¥ o) — F(T, Z,00)] 2 Bz (1.4.50)

Both E, and @, has contributions to the limiting distribution of S, (6,).
First we deal with E,,. Write w;, for w,(T},b). By the definition of E,, it can be

rewritten as the following

Dl (7-;) Ziy 90)

1 n
= —= 1 (5,' - 1y L, ’ o
\/ﬁ;w 6, — F(T, Z:,60)] (T, Z..00) + R, (1.4.51)
where
—1; > w6 — (T, Z:,60)|D(T;, Z)
=1
and

Dl(]-;7Z1100) Dl(TiaZi»aO)
F(T,, Z;,0,) F(Ti, Zi,60)

D(T., z) = (1.4.52)

In view of (1.4.41) and (1.4.43), R, is expected to go to 0 in probability. To prove
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this, we show the expectation of R2 converges to 0 as n tends to infinity. Note that

= —an F(T:, Z,,60)*D*(T:, Z,)

Z Z ’lL,“l T Tna ZiuoO)]D(TinZil)

1)1 #£12
X Wiy [6i2 - F(T;w Zizaao)]D(Tiw Ziz)'
That the first term on the right hand side of the above expression is 0,(1) follows

from

sup |D(Ti,Zi)| = 0p(1),
(T;,Z:)eDY

which in turn follows from (1.4.41), (1.4.43) and the fact that F'(, z,6) is bounded
away from 0 and 1.
To prove that the second term of the expression of R? goes to 0 in probability,

define the following

D ktis in; Ok Ko(Tk — Tj)Ko(Zk — Zi,)
Zk;éu.JKb(Tk )Kb(Zk !1) ’

For 1 < 41,4, < n and 4, # iy, let DU)(T,,, Z;,) be obtained from D(T;,, Z;,) with

FU(T;,Z;,) =

1<j,i,02<n, i #i

F(Tj,Zi,), 1 < j < n, replaced by F(iZ)(j-},Zil). For any 1 < ¢; < n, by the

definitions of D(T},, Z;,) (see (1.4.52)) and D,(T},, Z,,,0) (see (1.4.42)), D(T;,, Z:,)
depends on I:"(Tj,Zil), 1 < j < n, through §4,(Z;,). See (1.1.2) for the dependence
of Gg,(Z:,) on F(T;,Z:,), 1< j<n.

One can see that, for 1 < j,4,,7 < n and 7, # s,

i, Ko(Tiy T )Ko(Ziy = Zi,)

F(TJ, Zi,) _ F(:‘z)(Tj’ Zil) — ):,#,” Ko(T—T,)Ko(Zk—2.,) if 12 7é J

(1.4.53)

In order to study this difference, denote W (t,z) = 6K,(T — t)Ky(Z — z)/n. Since
nb?|W (t, z)| < Cy for some finite number Cy, by Bernstein inequality (see (1.4.5)),

P (nb?’|W (¢, 2)| > nb®¢,) < 2exp 1 nitle,
- 2C?E + Conb?c, /3

) < 2exp (—Cnb25n) .
(1.4.54)
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The last inequality holds for some finite and positive number C if b%, = O(n~?) for
some 0 < a < 1. In view of the proof of Lemma 1, instead of using &,(t), e, hp, d, T
and s in the proof of Lemma 1, here using nW (¢, z), ne,, b, 2, 2 and 3, then (1.4.6)

there, with the exponential part replaced by that of (1.4.54), leads to

, 4(]0 2 2
Pl sup |[W(t,z2)|>e] <2 +1) exp(—Cnb’c,),

(t,z)EDy nben
which is o(1) if €, is chosen to be n=(!720)p=2 for all 0 < @y < 1. For these values of
ag, €nb? = O(n~(17%)) 5o that (1.4.54) holds.
It follows that
sup |W(t,z)| = o,(n=17%)p2),
(t,2)EDy
Since b = O(n™?) with § < a < 1, the above rate is 0,(n~(!7%~2%) and is 0p(n~2) if

0 < ap < 5 — 2a. Therefore, we obtain

sup |W(t, 2)| = op(n"?). (1.4.55)
(t,2)€Dy,

By (1.4.19) of Lemma 6, and that inf, ;)cp, h(t,2) > 0, it follows from (1.4.53)

and (1.4.55) that

Sup |F(7}’le) _F(iz)(j}"Zil)l :‘Op(n_%).
ISN;&@S"
11712

By the definition of b("‘l)(T,-l,Z“) and ]:)(T,—,, Zi,), 1 <1i5,1i2 < n,i; # iz, and assump-
tion (Al), we can obtain that, with probability approaching 1,
sup |D(i2)(Ti1’ Zil) - D(T;w Zil)l < C sup |F(Tjazn) - F(iz)(Tj’ Zil)lv
1<i) ,i2<n 1<j,i1,i2<n
11 #£12 1) £i2
for some finite and positive C. It follows from the above two displays that
sup |DU(T,,, Z,,) = D(T;,, Ziy)| = op(n™2). (1.4.56)

lS?] ,igsn
11 #£12



Next we show that, for the second part of R2, D(Til, Z;,) can be replaced with
D(T;,, Z;)) — D%)(T,,, Z;)), 1 < iy,49 < n,4; # iy, without changing the expectation
of it. This is because of the following reason. For any 1 < i; < n, given (T}, Zx),1 <
k < n, and d;,k # i, the conditional expectation of é;, — F(T;,, Z,,,6) is 0. For
1 < iy,iy < n,i; # iz, by their definitions, neither D@)(T},, Z;,) nor DW)(T;,, Z;,)
depends on &;, and é;,, and D(T},, Z;,) does not depend on d;,. Given (Ty, Zi),1 <

k <n, and &, 1 < k < n,k # 1, the conditional expections of
[6:, = F(Tiy, Zi)|[bi, = F(Trp, Z:,)\ DTy, Z2) DTy, Z2,)
and
(6 = F(Tiy, ZN6ir = F(Tip, Zu)IID(Ts,, Zi)) - DTy, Z)ID (T, Z,)

are zero. Thus their expectations are 0 too. Therefore the expectation of the second
part of R? is equal to
1 = (i
E (; Z Z Wiy i, [6i1 - F(Til’ Ziwaﬂ)][D(T;n Zi]) - D( 2)(Til’ Zit)]
11 £i2
X Wiyi, [5i2 - F(Ti'n Zt'n 00)][D(T12a Ziz) - D(il)(Tiw le)])

which is 0,(1) in view of (1.4.56) and the boundedness of §; — F'(T;, Z;). Therefore,
R, = Op(l)a

and hence, by (1.4.51),

Dl (]-‘ta Zn 00)
E, \/—Zwu ﬂ,Zz,eo)]m + 0p(1).

Since P(w;; = 0) = O(b) = o(1), Dy(T;, Zi, 0) is bounded, F(T;, Z;,6,) is bounded
away from 0, and the conditional expectation of §, — F(T;, Z;, 6,) given (T}, Z;) is 0,

it is easy to see that

_ 1 - . . Dl(naztveo)
E, = ﬁg[& F(T, 2000 7 gy T o) (1.4.57)
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Now we deal with @,. Recall @, from (1.4.50). Under the condition of the
boundedness of A(t,6,), A(t,oo) and F(t,z,60) away from 0 and oo, by the uniform
boundedness of §(Z;) and hence F (T;, Z;i, 6y) on A, (defined before), applying (1.4.40)
with z = A(T;,00)9(Z;) and y = A(T;,00)g(Z;), we can see that

1 " - Dl (T,, Ziv 00)
n— = i i»4i,0o) — i Zis )| = 1
1Q \/ﬁ;w [F(T;, Zi,00) — F(T}, Zi, 6,)] AN 14,
C < . . : )
< T > wiilg(Z:) - 9(Z)119(2Z:) — 9(Z:)| + 19(Z0) — §(Z) ),
i=1

< % ; Iiz,e29[19(Z:) = 9(Z) 1 +19(Z:) — 9(Z)19(Z:) — 9(Z:) | -

Here C is a positive and finite number. Taking expectation first conditioned on Z;
for each sub-term, we obtain that, by (1.4.28), the expectation of the first term in the
last display is 0,(1). It follows from Cauchy-Schwartz inequality, (1.4.28) and (1.4.29)

that the expectation of the second term is also o,(1). Hence we obtain that, on A,,

_ 1 = = ] ' Dl(ﬂvzho())
Qn_\/ﬁ;w"[F(I},Z,,HO) E(T;, Z:,60)] P, Z..00) + 0,(1). (1.4.58)

By Taylor expansion of 1 — e™** with respect to  at some point z,, applying this
with z = A(T},60)9(Z;) and zo = A(T;,60)9(Z;), noticing the boundedness of A, we
obtain

[F(T:, Z:,00) — F(T;, Zi, 60)) + A(Ts, 60) F(T:, Zi, 60)[9(Z:) — 9(Z:))]
< Clg(Z) - 9(Z))7,
for some finite and positive number C.

This, the boundedness of £(T;, Z;) (defined below) and (1.4.28) imply that, on A,,

= gwiig(n, 2)(3(2) - 9(2)] + 0,(1) (1459
where
f(t, Z) = A(t,eo)Dl(t, 2,60)%%2—23, (t, Z) € Dh. (1460)
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Let

1 n
Cro = ~ ZwilAz(Tj, 0o).
J#i
By the law of large number and that P(w;; = 0) = 0(1), Cyo converges in probability
to EA%(T, 6,) which is ¢ according to the notation used before.
By Taylor expansion of log(1 —x) with respect to z at some point o, applying this

with ¢ = F(Tj,Z;) and zo = F(Tj, Z;,6), noticing (1.4.27) of Lemma 7, we obtain

that, on A,

. 11 R
9(Z)) —g9(Z:) = C 0;; lUj1A(Tj,90)UOQ(1 - F(T;,Z:)) - log(1 - F(Tj,Zi,eo))]
" g
_ 11 A(T;, 00)[F(T;, Z:) = F(T;, Zi, 60)] -
Cnoné;wj1 F(T;, Z;,6,) T op(n”2).
This and (1.4.13) imply that, on A,,
3(Z:) = 9(Z) = Rui(Z) + Ruz(Z:) + 0,(n7), (1.4.61)
where
i (Jvi) T )
Ru(Z) = Cl 1ZwﬂA(Tj,00) W J(’f)') , (1.4.62)
no Mo F(T}, Zi, 60) By " (T, Z:)
and
Rus(Z) = == 3wy A(T;, 60) (T, Z) (1.4.63)
2\4i) = - 51 i, Vo) = — . 4.
Coon = 77 R(T;, 2,60) BG(T, Z:)
Substitute (1.4.61) into (1.4.59) to obtain that, on A,,
Qn = in + Qn2 + Op(l)a (1464)
where
1 n
nl = ——= #€(Th, Z; Z;
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and

Qn2 = -—Zw,,f (T, Z:) Rua(Z,). (1.4.65)

Let Cnl = incno. Then

1 . 1 A(T’QO)VH(TazI)
Cot = == Sk (1, Z)+ 3wy %)
1 \/-ﬁ; f( )TL; JIF(]}7ZI)BHO(7})Z1)

By Taylor expansion of % with respect to z at some point xy, applying this with

z = BY(T;, Z,) and zo = h(T}, Z,), we obtain

1 < A(T;, 60) Vo)
Cn1=—ﬁ;wu§(7},2 Zwu TJ,Z) "N(T;, Z))

g [h(T:, Z) [h*(TjI, z,-)l'z‘B'(l’d')@’Zf) - T}, Z))|

where h*(T}, Z;) is between h(T}, Z;) and B,(,{)‘i)(:l"j,Zi). By (1.4.17) and (1.4.21) of
Lemma 6, and the boundedness of h, £, A and F', using Cauchy-Schwartz inequality,

we obtain that

(7‘17 00) T )
n - anf T;a Z Z ]l F(T],Z) (TnZl)‘/n(Y}’Zt) + Op(l)‘
Let
. l N 6(7:3 Zz) o
T 2) = 5 0 7 Zgwny 2~ 2
and
_ J7&(s,2)h(s, 2)ds
C(t,z) = Fohtts) (t,2) € Dp. (1.4.66)

where £(t, z) is defined (1.4.60). Then, by the definition of t",fj'i)(T}, Z),1<1i,5<n,

(See (1.4.14)), and change of summations,

1 1
G = 7= b~ F(T, 2)]7 }_“TwﬂAm, 00) Ko(T; = T)Ga(Ty, Z1) + 0,(1)-
=1 i#
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Let wy(2b) = 1if T; € [t} + 2b,t5 — 2b] and Z; € [z} + 2b, z; — 2b], and O otherwise,
1 <! < n. Now we write the main part of C,,; as the sum of two parts according to
whether wy(2b) = 1 or 0. The reason for doing this is because of the edge effect of

the kernel estimation. Write
Cn] = Cnl + Cnl + Op(l), (1467)
where

- 1 &
Cor = —TZwu(%)[& - F(T, 2 ]— D wi ATy, 80) Ko(T; — T)Cn(T;, Z0),
n =1 J#l
and

Coh = == 3 (1 — wu(@)lé ~ F(TL 2] > AT KT, = TG (T 20
=1 J

Since conditioned on (T}, Z;),i = 1,--- ,n, & — F(T1, Zi,00) and 6 — F (T}, Zk, 6) for
! # k are independent with mean zero and variances F (T}, Z,,6,)(1 - F (T, Z;,6y)] and
F(Ty, Zx, 00)(1— F (T}, Zx, 0)] respectively, by taking conditional expectation first, we

can see that

- %ZE[(I ~ wa(26))F (1, Zi,60) (1 ~ F(Ti, Z1,60)

( > wiiA(Tj, 00) Ky (T; — Tz)cn(TJ,Z:))]
J#l

which is 0,(1) because

LS EIAT;, 60 KolT ~ T)Ga(T;, 20)
J#l

E' &T;, Zy)
2 2en 2t i g 2 = 20T, = T = 001

and F(1 — wy(2b)) = o(1). Here we use the boundedness of J—g—%—) and that

SUP(T, 2,)e D E\|Ky(Z; — Z))Ky(T; — Ty)| < oo. Therefore, we obtain
CY, = o0,(1). (1.4.68)
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Write

Cni = Cunt + Chia, (1.4.69)
where
1 ,
nll = ——F Z wll(2b [51 n, Zl, 00)]; ; ’U)jp\(]}, OO)Ab(Tg - T'l)C(I’]’ Zl)
J
and

- 1 &
Cni2 = _ﬁ Z:u'u(zb)[&l - F(Tt, Zi, 90)]

X_ZleA i, 60) Ko(T5 — T1)[Ca(T5, Z1) — (T3, Z0)).
Jj#l

Note that ((¢, z) is four times differentiable under the assumptions. Apply (1.4.7) of

Lemma 2 and part (1) of Lemma 3 to (,(Tj, Z;) with d =1 and r = 4 to obtain

sup  EulGa(Ty, Z0) - C(T5 Z)P = Op(—) + Op(8).  (1.4.70)

1
5)
Z/€[2] +2b,25 —2b),T; €TO n
Because of the conditional independence of §; — F(Ty, Z,,60,) and é; — F (T}, Zk, 6p) for
l # k with mean zero and variance F (T}, Z})[1- F(T1, Z,)| and F (T}, Zx)[1 - F (T, Z4)]
respectively when (T;, Z;),i = 1,--- ,n are given, as before, we have

= 2

E(Cur2) =—Z {wu(20)F(Ti, 21,60)[1 - F(T;, Z,,60)]

[ ijl/\ 90 Kb(T Tl)((ﬂ( ‘) - C"(Tj’Z[))]z}

J#

INA

%ZE[wu(Qb)F(Tt, Z1,60)(1 = F(Ti, Z,,60))

X = S AT 80) K3(T, — T+ (6T, 2) — 6ol Z0)7).

J#l J#l
The last inequality follows from Cauchy-Schwartz inequality. Since K is bounded,

|KZ| < C/b? for some finite number C. This, the boundedness of F(T;, Z;,6,) and
A(Ty,6y), and (1.4.70), imply that

~ 2 1

E( n]Q) =O (nb3)+0 (bs)
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which is 0,(1) as b = O(n™®) with 3 < a < } (See assumption (A4)). Therefore,

Cri2 = 0p(1) and it follows from (1.4.69) that

- 1 &
Cor = == ; w(2b)[6 — F(Ts, Z:)];lz- > wn AT 00)Ko(T; = TS(T;, Z)

2l
+0,(1).
Let
n(Th, Z1) = Zwﬂ ATy, 00)Ko(Ty — TVC(Ty, Z1), 1< 1<,
J#l
and
n(t,z) = A(t,00)C(t, 2)hy(t), (t,2) € Dp. (1.4.71)

where ((t,z) is defined in (1.4.66), and h,(¢) is the marginal distribution of T as

defined before. Similarly, we can obtain

nl = Z‘w” 2b [(S[ 7[, Zl)]n(T;,Z[) + Op(l).

Since P(wy(2b) = 0) = O(b), n(t, z) is bounded, and the conditional expectation of

o, given (Tq, Z)), is 0, it is easy to see that

Coi = Z[& F(Ti, Z)[n(Ti, Z1) + 0,(1). (1.4.72)

Since Q1 = Cn1/Cno and Cpno — co = 0,(1), it follows from (1.4.67), (1.4.68) and

(1.4.72) that

Qui = —l—} lew( _ F(T, Z)n(Th, Z2) + o,(1). (1.4.73)

Now we deal with Q,,. Let C,o = Qn2Cr0. If follows from (1.4.65) and (1.4.63)

that

A(T;, 65) .
n - wnf T;~Z Wy = ! By(gj") T'» Zl)
- Z Z,;e, T 2000 BT 2
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As b = O(n™) with {z < a < } (see assumption (Al)), (1.4.20) and (1.4.21) of

Lemma 6 and the same arguments as we were dealing with C,,; lead to

E Z A(T;, 6o) g
= - 1 71, Z 2 B(]'l) T'a Zi 1).
w; { wﬂ T Z 00)’1(7}, Zr) n ( J ) + OP( )

That is, B,(l{;i)(]"j, Z;) can be replaced by h(T}, Z;) with a small difference 0,(1). B

the definition of B,(,j’i)(Y’j, Z;) (see (1.4.13)),

1 o 1 A(T;, 6,)
w2 = ——= ) wab(T;, Z0)— »
Cro = = 75 2 k(T 205 ;71}J1F(7},Zz,00)h(7},2i)
1
x =Y [F(Ti, Z,60) ~ F(T;, Zi, 00V Ko(Ti ~ T)) Ko( 20 = Z2) + 05(1)

l#1,5
= Cn20 +Op(1)a say

Note that

(’-Tuvzll)/\( Jio )
" = u’lllw
DIEED 3D Db DRI F(Tys Zuy, 001y, Ziy)

11=1j1%4 L#iLg
X [F(T;v levao) - F(le’ Zn’o())]Kb(Th - ]}x)Kb(le - Zil)
(tha Ziz)A(sz’ 00)

DIDDD C e T 7 00 (T, Z:,)

i2=1 ja#is la#i2,j2

X [F(Y"lzv 212590) F( Jj2 Ziz’OO)]Kb(ﬂz - Tjg)Kb(le - Ziz)'

Since

E{[F(T,Z,6) — F(t,2,600)|Ks(T — t)Ky(Z — 2)}
1 gl
= / / [F(t + bu, z + bv,8y) — F(t,2,00)] K (u) K (v)h(t + bu, z + bv)dudv
0o Jo
= 0(b"),
uniformly in (¢, 2) € DY, for the terms with [; # [, conditioned on T;,, Zi\, T}, Zi,,

its expectation is of order O(b®) uniformly in jj, js,7),7 and hence the sum of the

expectations of these terms is of order O(nb®) which is o(1) if nb® — 0. Note also
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that

E [walF(t, z,00) — F(T}, Zi. 60)| Ko(t — T;) Ky(z = Z3)]]
1 gl
< / / |F(t+ bu,z +bv,6) — F(t,2,00)||K(u)K(v)h(t + bu, z + bv|dudv
o Jo

= 0(b).

For those terms with {; = [, and ¢, # 13,j; # Jo2, conditioned on T}, Z),, its ex-
pectation is of order O(b) uniformly in T}, Z;,, hence the order of the sum of the
expectations of these terms is also of order O(b) since there are 5 summations. This
order is also o(1).

Similarly, the sum of the expectations of the other terms is of order o(1). There-

fore,

E(Cn20)2 = 0(1)
and hence Cpy = 0,(1). Therefore, C,2 and hence @, is 0,(1). This, (1.4.64) and
(1.4.73) imply that
Qn = —57 Z[a, F(Ti, Z1,80)10(Ty, Z1) + 0p(1)- (1.4.74)

If follows from (1.4.48), (1.4.57) and (1.4.74) that, on A4,,

D\(Ty, Z1,60) n(Th, Zi)
S, (8) = \/_Z[a, E’Z"0°)][F(:n,z,,0o)_ . ]+o,,(1). (1.4.75)

This and (1.4.47) imply that, on A4,,

- o 1 D\(Ty, Z1,6) (T, Z))
\/5(9 - 0) = d (00)—\/-7_; g[(;[ — F(Y},Z[,OO)] [ F(T,,Z,,GO) - Co :I + Op(l),

where 7)(t, z) is defined in (1.4.71) and

F(T,Z,6,)

d(6o) = E [F(T, Z,6))

DT, 2. oo)] .

Since D, (t, z,0,) and 7(t, z) are bounded and F'(t, z,6,) is bounded away from 0 on

Dy, the theorem follows from the central limit theorem and Lemma 9.
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Chapter 2

Sieve Estimation

2.1 Estimation

The second approach uses the idea of sieve and is analogous to that of Rossini and
Tsiatis (1996).

The goal of this chapter is to estimate 8 efficiently, with a(z) = log(g(z)) as an
infinite dimensional nuisance parameter. The rescaled (conditional) log-likelihood of

6 and a based on (T},6;,Z;),i = 1,2,...,nis

L,(0,a) = %Z [JilogF(T,-, Zi,0,a) + (1 - &)logF(T;, Z;, 0, a)]

i=1
n

= %Z [61109(1 _ e—i\(T:.o)ea(Z,)) . (1 _ 61')/\(]11‘,0)60(21)] (211)

=1

Here
F(t,z,0,0) =1—e MO P(t 2.0 a)=1- F(t,2,0,a). (2.1.2)

To maximize the log-likelihood over all possible  and «, we should set a(Z;) to
be positive infinite if §; = 1, and negative infinite if §; = 0. Hence the maximum
likelihood estimator over all possible functions a does not exist. The log-likelihood
function is maximized as « varies over a small set of functions which depends on the

sample size. More specifically, we approximate a by a step function with known jump
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points and maximize the log-likelihood as a varies over the step functions. As the
number of steps increases along with the sample size, the bias from the approximation
disappears. Assume that the covariate lies in a bounded interval. Without loss of
generality, it will be taken to be an interval [0,1]. To construct the step function,
define a partition 0 = 29 < 2; < --- < 2z = 1, where k depends on n and increases

with the increase of n. The step function is then defined as

k
2) = Zanjlj(z), (2.1.3)

where I;(z) is the indicator function for the jth interval, defined by I;(z) = 1 if
zj-1 < z < z; and zero otherwise. For the fixed partition, the step function is
completely specified by the parameters (a,),- -, anx). Hence, from here on, o, will
denote either the function «,, given by (2.1.3) or, equivalently, the vector «, depending
on the context.

The estimate (6, Gy,) is obtained by maximizing the approximate likelihood formed
by substituting (2.1.3) for ain (2.1.1). Since k is an increasing integer-valued function
of n, written as k(n), a, will tend to a. The next two sections show that when

k(n) = O(n") with 1 < v < 3, (6,ay) is consistent and f is also asymptotically

N |-

normal.

The first and second partial derivatives of the approximate log-likelihood are used
to generate the estimates and their variance. In view of (2.1.1), the first derivative
with respect to 0 is

[6; — F(T;, Z;,6, )]

1 o ,
— ) : On(zl)
Sno(,en) = 2 zﬂ:l F(To Zobay) ofem™ (2.1.4)

and that with respect to a,; is

6 — F(Ti, Zi, 0, 0n o ,
Sn_)(e an) = —Z [ F(T 7.0 an )]A(T,,e)c "(Z')Ij(Zi), j=1,--- ,k,




where A(t,0) denote the derivative with respect to 8.

The score vector is defined as

Sn,O(as an)
Sn,l (9’ an)

Su(0, an) = _ . (2.1.6)
Sn,k(e, an)

The estimates (8, &) are defined to be a solution to the score equation
Sn(8,a,) = 0. (2.1.7)

The derivative of S,, with respect to (6, o) is called the Hessian matrix and related

to the observed information. This is defined as

0

H.(8,0,) = 50,00

Sn(0, ), (2.1.8)

which is the (k + 1) by (k + 1) matrix of partial derivatives with respect to 8 and o,
of the elements of S, (6, a,,). Let 0 denote the first element. Then the elements of H,

are defined by

1 z 61 - ,I'UZHG Qn)| % v a
holt, ) = 130 P p ST, g
1 = 6iD00(’-Tiyzi707an)

" n& F(T,Zi60,a0)

) _ 1 & [61 - F(ﬁvziaev an)] A an(Z:) 1. )
ho; (0, ay) = n; FT 260 A(T;, 0)e 1,(Z)

B l 2": 0; Doy (Tn Z;,0, an)Ij(Zi)
n F(T;,Zi,a,an) ’

jzlv"'7k1

i=1

hjo(6, an) = ho;(6, ), j=1,---,k,

[6 —F(’I;,Zi,e, an)] an(zi) . .
hs(0, an) = Z FlTo Zobray) (0 b

_ 1 Z 5:'D11(Ti, Zi,0, an)Ij(Zi)
n F(ﬂv Ziaev aﬂ) ’

jzla""kv

=1
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and

hij(osan):O, ’i#j:l,...’k,

where

DOO(t? 270’ an) = F(t z 0 a )‘&2(t76)e20n(2)7 (219)
F(t,z,0,an, o (2
Dm(t Z, 0 a,,) Fgm% /\(t,e)A(t, 9)62 "(‘), (2110)
F(t, 20,0, o (2
Dy (t, 2,0, 0,) = m—;mt,e)e? n(2) (2.1.11) i

and A(t,9) is the second derivative with respect to 6.

Expectation is taken with respect to the true parameters (6o, ap).

2.2 Consistency

In order to have the consistency and asymptotic normality of the estimator, we use
some assumptions. We call the following assurfxptions Condition A.

(1) The real parameter 6 is an interior point of ©.

(2) Let 7 and Z be the supports of T and Z respectively, where Z is a closed
interval of R!. A(t, ) is bounded away from 0 and oo over (¢,0) € T x N, where

Ny = {0:16 -6 < A} for some 0 < A < oco. The density of (T, Z), h(t,z2), is

bounded on 7 x Z, Lipschitz continuous in z uniformly for t € T.

(3) The first and second derivatives of A(t, ) with respect to 8, A(t,8) and A(t,8),
exist, are bounded for t € Dr and 6 € NV}, and continuous in 6 for any fixed t;

(4) ap(z) is Lipschitz continuous on Z.

For any function b(z) defined on the support of Z, let ||b||c = sup,¢z |b(z)| and

16l = VE 2 be sup-norm and L,-norm respectively.
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In the following, Theorem 3 states the existence of one consistent (in sup-norm)
estimator, 6, which is a solution to the score equation. Theorem 4 establishes the
convergence rate of the estimator (in L, norm), which will be used to prove the

asymptotic normality of the estimator. The proof of them will be given later.

Theorem 3 Assume that Condition A holds, and the number of intervals is increas-
ing at a rate k(n) = n", with 0 < v < 1. Assume also that for all k and oy, with

llaon — aolloo < Ao for some positive and finite number Ay,
P(I;(Z)=1)=0(1), kP(I(Z)=1)>¢, j=1,2,---k, (2.2.1)

and

( ) 2
k E F TwaGOVQO D (T Z 0 a )I(Z)
F(T,Z,80.a0,) ~ 01\ £, Y0, %0n )15
E[DOO(T')Z700,QOH)] —Z ( o )

=1 E (FF(-(%%DH (T, Z, 6, aOn)Ij(Z))

>c, (222

for some 0 < ¢ < oo, not depending on n. Then there is at least one consistent (in

sup-norm) solution to (2.1.7), i.e. there ezists at least one (0, é,) such that
16— Bol + [|én — olloo = 0p(1)-
The proof is given in Section 2.6.

Theorem 4 Assume that the conditions in Theorem 3 holds. Assume also k(n) = n?,

with 41 <v< %, and

E (Doy(T, Z, 85, ap))?
E (D\(T, Z, 6o, x))

F [D()()(T, Z, 00, ao)] - > 0. (223)

Then the estimator (9, Gy) in Theorem 3 has the following convergence rate

16— 6o) = 0,(n"7), [lGn — @] = 0p(n%).

The proof is given in Section 2.6.
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2.3 Asymptotic normality of 6

In this section, the asymptotic normality of the estimator is stated and the proof will

be given later.

Theorem 5 Assume that the conditions in Theorem 4 hold, and o? defined below is
finite. Assume also that the third derivative of A(t,0) with respect to 6 exists for 6 in

a neighborhood of 6y, and is continuous at 6. Then
\/E(é - 00) - N(Oa U2)a

where the asymptotic variance is given by

(2.3.1)

ol = E(Dy(T, Z,00,a0)) — E ((E(DOI(T, Z, GO,QO)IZ))2)] -1 |

E(Dn(T, Za 00a aO)IZ)

The proof is given in Section 2.6.

2.4 Information bound for 6,

The true model has two parameters: 6 is finite dimensional, and « is an infinite-
dimensional functional parameter. The semiparametric information bound for esti-
mating 6 is based on the maximum of the asymptotic variance bounds of regular
estimators for § obtained using parametric sub-models of . It was shown in Section
2.3 that the estimator 8 is asymptotically normal with a certain asymptotic variance.
It is shown in this section that this asymptotic variance achieves the bound. Projec-
tion methods are used to find the efficient score for the semiparametric model and
hence the variance bound (Bickel et al. 1993).

The log-likelihood of § and a based on (T, 4, Z) is given by

Slog(1 — e~ Ty _ (1 _ §)A(T, 6)e>(®. (2.4.1)
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Consider a general parametric submodel with o = a,, specified by 7 (a real variable),
where %a.,(z)h:o = a(z) for some function a(z) with Ea?(Z) < oo. Take derivatives

of (2.4.1) with respect to 6 and « at (8 = 6y, v = 0) to obtain the scores

o A(T, 8)e?)
SO(Ta Z, 67 007 aO) - [O F(T7 27 005 aO)] F(T, Z, 00, aO) (242)
and
/ ao(Z)
Su(T, Z,6,00,00) = [§ — F(T, Z,8y, a0)] k- Po)™ —al2) (2.4.3)

F(T, Z, 0y, ap)
To find the information bound, project Sy to the linear span formed from all square

integrable S,. This projection is denoted by S,- and is computed by solving for all
Sa,

E(S0S.) = E(Ss-Sa). (2.4.4)

Note that the conditional expectation and variance of é given (T, Z) is F(T, Z, 0y, ao)

and F(T, Z,60y,a0)F(T, Z, 60y, 0p) respectively. Substituting (2.4.2), (2.4.3) for Sy, S,
in the above expression, taking conditional expectation, given (T, Z) first, and then

taking expectation with respect to (T, Z), we obtain
E(D01 (T, Z, 00, ao)a(Z)) = E(D]l(T, Z, 00, ao)a*(Z)a(Z)),

where Dy, and D, were defined in (2.1.10) and (2.1.11) respectively. Take conditional

expectation, given Z first, and then expectation with respect to Z to obtain
E[E(Dy (T, Z, 69, 0)|Z)a(Z)] = E[E(Di(T, Z, 00, 20)| Z)a’(Z)a(Z)].  (2.4.5)
It is easy to see that

(2.4.6)

solve (2.4.5) and hence also solve (2.4.4).
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Therefore, the efficient score is given by

SO(T’ Z? 007 Q‘()) - Sa' (T7 Za 001 OO)
(6 - F(T7 Zv 007 O'0))8‘10(2) A (D01 (Ta Zv 00’ QO)IZ))

E
- A(T, 6,) — A(T, 6
F(T, Z, 00,(!0) ( ( 0) ( 0) E(D]](T, Z, 00,00)'2)

The semiparametric information bound is equal to
E [SO(Ta Za 00» aO) - Sa' (Ta Za 00, 00)12

and the asymptotic variance bound is the inverse of the information bound. Take
the conditional expectation of the square of the efficient score, given (T, Z) first, and
then expectation with respect to (T, Z) to obtain

E [Sy(T, Z, 80, 0) = Sa- (T, Z, 80, o))’

F(T, Z,00,20) 5002 ( & + o\ E(Doi(T, Z,60,20)|2) \*
F(T.Z.0 o)\ 00 = AT ) e e a1 2)) |

=F

Expand the square term and take the conditional expectation given Z first to obtain

that the right hand side of the previous display is equal to

E [DOO(T, Z.60,00) - BT Z, 00,a0)|2))2] |

E(DII(T! Z1 903 aO)IZ)
In view of (2.3.1), it follows that the asymptotic variance of § achieves the asymp-

totic variance bound.

2.5 Simulation

A simulation study is presented before we go to the proof of the stated asymptotic
properties of the estimator.
As in Section 1.3, assume that the conditional distribution of X' given Z is a

Weibull distribution with distribution function

1 I e_l.ooeno(z)
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where ag(z) = log(z). Also assume that T and Z are uniformly distributed on [1, 2]
and [0.2,1.2] respectively.

For each fixed sample size (n=30, 60, 100, 200, 500, 1000 respectively) and ap-
propriate k's, 100 samples are generated with the real parameter §, = 1.5 and 100
replications of the estimate of 6, based on the sieve maximum likelihood estimator
(SMLE) are obtained. The means and standard deviations of these estimates are

shown in the following table.

Table 2. Simulation results for the SMLE

o

mean s.d.
1.6976 | 1.8180
2.1060 | 2.0269
2.4360 | 2.9598
1.7064 | 1.2145
1.8189 | 1.2680
1.9675 | 1.4248
1.5954 | 0.8047
1.6427 | 0.8103
1.6932 | 0.8502
1.5624 | 0.5154
1.5838 | 0.5330
1.6240 | 0.5365
1.5591 | 0.2946
1.5671 | 0.2893
1.6076 | 0.2964
10 | 1.5432 | 0.2136
1000 | 15 | 1.5530 | 0.2125
20 | 1.5651 | 0.2177

The above table shows that when the sample size is not large, the bias and variance

n

30

60

100

o<l e, e - N i =N I =N (e of RN I S I ool I SO0

200

[—
o

(=]

500

oo

—
at

are slightly larger than those of the generalized profile maximum likelihood estimator
(see Table 1). However, they decrease with the increase of the sample size, and the
variance will be eventually less than that of the generalized profile maximum likeli-

hood estimator since it achieves the semiparametric lower bound. Unfortunately, a
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very large sample size is needed for this to happen. This can be seen when we com-
pare the above table with the simulation results for the generalized profile maximum

likelihood estimator in Section 1.3.

2.6 Proof of the theorems
2.6.1 Proof of Theorem 3

The definitions of sup-norms for a vector and a matrix are introduced first. If a is a

vector with elements a;, 1 < j < m, then

lallo = max o,

If A is an m by m matrix whose (7, j) element is denoted by a,;, then

m
14]loe = max (Z; Ia.-jl) :
):

Now define a step function, ag,, of form (2.1.3) as an approximation to «y. Pre-

cisely,

The Lipschitz continuity of o implies that
HO’On - aO”oo = O(k(n)_l) (261)

Let

/Hn = (93 Qnp,y© e 1a7lk)’ ﬂOn = (0070'0(21)7' ot aOO(Zk))a

and

Bo = (90,00)-
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Note that S, (3,) = 0 is equivalent to

Sn.0(8)
Su(B,) = kS"’:(ﬁ 2 I (2.6.2)
kSn k(Bn)
The derivative of S,(3,) with respect to 3, is
hoo(Bn)  ho1(Bn) -+ hok(Bn)
H,(8,) = kh‘“.(’@") kh“o(’g") .(') g , (2.6.3)

khok (8n) 0 0  khi(Bn)

where h;; is defined in Section 2.1. The low-right k¥ by k sub-matrix is a diagonal

matrix.

Let S(3,) = ES,(8,) (expectations for all the elements). Then, by (2.6.2),

(2.1.4), (2.1.5) and the fact that the conditional expectation of §; given (T;, Z;) is

F(T,, Zi, 00, (10), we obtain

where

E(A(T, Z, 80, B)MT,0))

kE(A(Ta Za 50, ﬂn)A(T’ 0)11 (Z))

kE(A(T, Z, Bo, Ba) (T, 6)14(2)) )

F(T7 Z’ 00,00) _ 1-
F(T, Z,0,a,) IR

‘A(Ta Z, ﬁ()a ﬁn) = ean(Z) [

By (2.1.2) and Assumption (2), (3) of Condition A, F(t, z,0, a) is Lipschitz in 6, o,

uniformly for (t,z) € T x Z. It is easy to see that ||S(8a)|lco = 0(1) if |8 — Bonllec =

O(k™') and P(I;(Z)=1)=o(1) for j = 1,--- , k.

Let fl(ﬁn) = Eﬁn(ﬁn). Similarly, by (2.6.3) and the definition of h;;(8,) (see

Section 2.1), 0 < 4,5 < k,

boo(Br)  bor(Bn) -+ box(Bn)
- kbo1(8,) kb L) e 0
- i) w0 0|
kbok (8n) 0 oo kbi(Bn)
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where

boo(3) = E [(R(T, Z, B, 8) = 1) A(T.0)e™?)] = E(R(T, Z, 8o, 5a) Doo(T, Z,6, ),

bos (32) =E [(R(T, Z, 8o, B2) = 1) A(T, 0)e2)1,(2)]

_ E(R(T1 Za /507 ;Bn)Dt)l(T, Z, 0, an)I](Z)), ] = 1,2’ e ’k,

b;;(8a) =E [(R(T, Z, By, Bx) — 1) A(T, 0)e* 2 1;(Z)]
- E(R(Ta Z, By, ﬁn)Dll(T, Z,8, O/n)Ij(Z)), 7=12,---k,
and

F(T7 Z7 00100)
F(T,Z,0,0,)"

R(T1 27 :[307 671) =
Notice that
- 0 -
H(3,) = 8;_3,15([3")'

The inverse of H(3,) is as follows

- k-1
H_l(ﬁn) = (q?o k_lqm) ) (2.6.5)
d01 qn

k b2' -1
Joo = (boo - Z bﬁ) ’
j=1 7

Qo1 is a row vector with its jth element

where

bo; .
_qOOb_]» ]:1327”',1‘7’
i
and ¢y is a k£ x k matrix with its (¢, j)th element

2 bOi bOj
00 ’
bisb;

Li=jbj; +4q =12,k
Since 5([30) =0 by (2.6.4), S’(,Bn) in continuous in 3, by Condition A, by (2.6.1),
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Since H (3,) is continuous in (3, by Condition A, and H ~1(Bon) exists for large n
by (2.2.1) and (2.2.2), by (2.6.6), it follows from the inverse function theorem with
sup-norm (Lemma 1 of Rossini and Tsiatis (1996), which is stated in the following

lemma. For the standard (L) formulation of the inverse function theorem, see Rudin

(1964)) that there exists 8, = (8, ay,), with &, of the form (2.1.3), such that
S(Bn) =0
and
182 = Bonlloo = 0(1). (2.6.7)

If [|Sn(Ba)lloo = 0p(1) and ||H;'(8a)llec < ¢ with probability approaching 1 for
some finite constant c, then by the inverse function theorem again, with probability

tending to 1, there exists solution 3, = (6, d,) to S,(8,) = 0 such that
18n = Balloo = 0,(1).

This, (2.6.7), (2.6.1) and the triangle inequality imply that
”,‘én = Bolloo = 0p(1).

150 (8)|loc = 0p(1) and ||H; (Bn)lc < ¢ with probability approaching 1 can be
established in the same way as the proof of Theorem 1 in Rossini and Tsiatis (1996).

The theorem is proved.

Lemma 10 (Inverse Function Theorem with Sup-norm). Let H(x) be a continuous
differentiable mapping from R™ to R™ in a neighborhood of xo. Define the Jacobian
as the m x m matriz A(z) = 0H(z) (derivatives of the elements of H with respect to

the elements of x). If there ezists constants C' and §* such that

A7 (@0l < C
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and

sup [ A(z) — A(zo)ll < (2C)7,

{z:llx—zolloc <6" }

then for d < 6*/(4C) and all y such that ||y — H(xo)||oc < d, there ezists a unique

inverse value T in the 6* neighborhood of xy such that H(z) = y and ||z — zo|| < 4Cd.

2.6.2 Proof of Theorem 4

We are going to use some general results on the convergence rate of sieve estimators.
The following lemma is a part of Theorem 1 of Shen and Wong (1994). To state the
lemma, we introduce some general notations.

Let Y}, -- -, Y, be a sequence of independent random variables (or possibly vectors)
distributed according to a density po(y) with respect to a o-finite measure x on a
measurable space (Y, B) and let © be a parameter space of the parameter 8. Let
l:© x )Y — R be a suitably chosen function. We are interested in the properties of
an estimate 3, over a subset O, of © by maximizing the empirical criterion Cy,(3) =
L350 1(8,Y5), that is, Cn(B) = mazsco,Cn(B). Here ©, is an approximation to ©
in the sense that for any 3 € ©, there exists 7,3 € ©, such that for an appropriate
pseudo-distance p, p(7,3, 3) = 0 as n — oo. The following assumptions are needed
for the lemma.

CO0. ! is bounded.

C1. For some constants A; > 0 and a > 0, and for all small € > 0,

inf E(l(Bo,Y) = U(3,Y)) > 24,€%.
pm,aoﬁge,ﬁee,, (1(Bo,Y) = U(B,Y)) > 24,¢

C2. For some constants A, > 0 and b > 0, and for all small € > 0,

inf Var(l Y)-1(3,Y)) <24 2
P(ﬁﬁo%rgle,ﬁee,, ar( (/30, ) (ﬂ )) = 2€

C3. Let F, = {U(B,-) — l(mnf30) : B € ©n}. For some constants ry < 3 and Az > 0,

H(e, F,) < Asn*log (1) for all small € > 0,

€
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where H (e, F,) is the Lo-metric entropy of the space F,, that is, exp(H (¢, F,)) is

the smallest number of e-balls in the L,-metric needed to cover the space F,,.
Lemma 11 Suppose Assumptions CO to C3 hold. Then

p(3, 3) = O, (max (n",p(wnﬁo, Bo), Kl/(za)(ﬁnﬁoa ﬂo))) )

where K (7,080, 50) = E(l(530,Y) = U(mn30,Y)) and

1-2rg _ loglogn .
T = 2a 2alogn ’ lf b Z a,

1-2r ;
4a_—§%’ if b<a.

From the proof of Theorem 1 of Shen and Wong (1994), it is noted that the globe
maximizer could be replaced by a local maximizer around the real parameter and the
convergence rate is still true for the local maximizer. In this situation, the sieve O, is
a sequence of shrinking neighborhoods of the real parameter 3;,. To apply the above
Lemma to our case, let Y = (T, Z,9), 8 = (G;a), 0 = (0, a,) where a,, is of form

(2.1.3) with anj = a(z;). Also let
en = {(0, an) : |0 - 00' S Qp, ”an - aO”oo < bn}7

where a,, and b, are chosen such that, with probability approaching 1, (é, Gy,) is the

maximum point in ©,,. Define the metric as follows
p(3,Bo) = 10 — o] + [la — [, (2.6.8)
and also define
1(8,Y) = élog (1 - e-MT"’)e"‘Z’) — (1= 8)A(T, §)e°?.
Under our assumptions, CO is true. Note that

El(3,Y)

=F [(1 — e—i\(T,()o)eoo(Z)) log (1 - e—A(T,O)eo(Z)) _ e—A(T,ao)eoo(Z)A(T’ 9)({0(2)] .
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Taking Taylor expansion of {(3,Y) with respect to # and a, noticing that the expec-
tation of the first derivative vanishes at 3; and the matrix of the second derivatives

is negative definite by (2.2.3), we obtain
E(l(30,Y) = 1(3,Y)) 2 ¢p*(3, %) (2.6.9)

for same finite and positive number c. Hence C1 is satisfied with a = 1. It is easy to

see that, under Condition A,
Var(I(3,Y) = 1(3,Y)) < E(1(3,Y) = 1(3,Y))* < Cp*(8, Fo)

for some 0 < C < oo. Thus C2 holds with b = 1.

Since for all y,
1(3,y) — 1(30, y)| < C(16 — o] + [l — axol|0),
for some 0 < C < oo, not depending on y, it is easy to see that
H(e, Fn) < H(e/C, ©5),

where H(7n,©,) is the metric entropy of the space O, with respect to the norm
|6—8|+||@— |- Since Oy, is a sequence of shrinking neighborhoods of 8y = (s, ),
there exists a positive and finite number Cy such that |8] < Cy and ||a,|le < Co,
(0, ) € ©,, and a, of form (2.1.3). For any n > 0, divide the interval [0, Cy] into

small intervals, with length /2 or less, such that the number of intervals is less than

or equal to %Q + 1. Then, it is easy to see that

' k(n)
H(n,0,) < log ((27?'3 + 1) (2% + 1) ) < Ck(n)log (%) :

for some positive and finite constant C, as 7 is small enough. Hence, for small € > 0,

H(e, F,) < Ck(n)log (}7) = Cn’log (%) ,
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for some positive and finite number C. Therefore C3 is satisfied with ro = 1.

Apply the above lemma, we obtain

p(3.50) = Op (maz (n™", plmaibo, B0), K 4 (abo, ) ) (2:6.10)

where

1 -« loglogn
T = -

2 2logn
Note that, for large n, 41 <7< % as 41 <7< % Since Gy = (6o, ™), B0 = (6o, @0n),

where ay, is of form (2.1.3), we obtain that, by (2.6.8) and (4) of Condition A,
P’ (a0, Bo) = llaon — aol|* < Ck(n)~? = Cn™?,
for some positive and finite number C. Thus
p(mnfo, Bo) < Cn7". (2.6.11)

The same argument as that leading to (2.6.9) gives that, for some finite and positive

number C,
K(m,080,3) = E((80,Y) — Um0 3,Y)) < Cllagn — ] = Cn™ %, (2.6.12)

which is of order between o(n~2) and o(n~!) for 3 <7< 3. It follows from (2.6.10),

(2.6.11) and (2.6.12) that, for 1 <y < 1,
p(8, Bo) = op(n™3).
The theorem is proved.

2.6.3 Proof of Theorem 5

Sno(f,a) was defined in (2.1.4) and further denote, for a function a on Z with
E(a(2))? < o0,

1 <=6 — F(T};,Z;,8,0) .
Sn(H,a)[a]=;l-Z FT, Z 6.0 AT;, 0)e*%a(Z;),
1=1 1 1 b
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where F(t, z,0,a) is defined in (2.1.2).
Denote the expectation of S,y and S,[a] by Sy and S[a] respectively. Since the

conditional expectation of é; given (T, Z;) is F(T;, Z;, 0y, ap), we obtain

L [F(T,Z,85,00) = F(T, Z,8,0) , ()
So(6,0) = E [ F T Z.8.0) A(T, 0)e (2.6.13)

and

F(T, Z,60,00) — F(T, Z,0, &)
F(T, Z,6,a)

S(6,a)[a) = E [ A(T, 0)e°(Z)a(Z)] : (2.6.14)

The method used here is similar to that described in Huang(1996). From Lemma 12

below, we obtain the following stochastic equi-continuity results

sup |(Sn0(0,a) = So(8, @) = (Sn0(fo, ) — So(bo, o))|
16-801<Cn~ 4 Jla—aojl<Cn~ 4
= oj(n"3)
and
sup |(Sn(8, @)[a] — S(8,a)[a]) - (Sn(bo, a0)[a] — S(Bo, ao)[al)l
10-60/<Cn™ 4 la—aol|<Cn™}
= oj(n"%),

for all a with Ea*(Z) < oo, and all positive and finite number C.

This and Theorem 4 results in

-

(Sno(, &n) = So(B, &n)) — (Sno(f0, @) — So(fo, ag)) = 0,(n"%) (2.6.15)
and
(Sn(éa dn)[a‘] - S(é’ dn)[a“]) - (571(007 O’o)[a*] - 5(00= aO)[a‘]) = Op(n_%)v (2616)

where a* is defined in (2.4.6).
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By the definition of 6 and ay, Sn’o(é, Gp,) = 0. Also note that Sy(6p, p) = 0 by

(2.6.13). It follows from (2.6.15) that

1

So(8, 6n)) = —Sn 060, a0) + 0p(n72). (2.6.17)

For the another part, we do not have S, (6, én)[a*] = 0, but we will show that

1

Sn(6, én)[a’] = 0,(n"2). (2.6.18)
Together with S(6y, ag)[a*] = 0 by (2.6.14), we obtain from (2.6.16) that
S, é&n))la’] = —Su (60, ag)[a’] + 0p(n"2). (2.6.19)

By Condition A and that the third derivative of A(t,6) with respect to 8 exists and
is continuous, taking Taylor expansion of So(é, Gy)) to the second order with respect
to @ and «,, we obtain from (2.6.17) and (2.6.13) that

—E[Doo(T, Z, 60, %))(8 — 60) - E [Dos(T, Z, 6, a0) (én(2) — o(2))]

= —Sn0(00, a) + O(|0 = 60| + ||&n — ao]|®) + o(n"2). (2.6.20)
Similarly we can obtain from (2.6.19) and (2.6.14) that
—E[Do\(T, Z, 6o, ao)a‘(Z)](é —6) — E[D\\(T, Z,00, a0)a™(Z)(an(Z) — ao(Z))]
= —S, (6o, a0)[a*] + O(10 — 8] + ||& — ao||?) + o(n"2). (2.6.21)

By Theorem 4,
16 — 6% + ||& — aol|* = 0p(n"2).
Subtracting (2.6.20) from (2.6.21) and noticing the definition of a* (see (2.4.6)), we
obtain
E[Dw(T, Z,80, ) — Do\(T, Z, 85, a0)a*(Z)] (8 — 65)

= Sn.0(60, a0) — Su(6o, ag)[a’] + 0,(n"%).
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The theorem follows from the central limit theorem and the calculation of the variance

is straightforward. Now we prove (2.6.18). Let

k
ay(2) = Y a’(z)(2).
J=1
Condition A implies that
llay, — a*||x = O(1/k(n)). (2.6.22)

By the definition of (é, Gy), that is, it solves (2.1.7), we obtain

We only need to show
w(8.60)[a’] = Su(6, &n)la}] = o(n"%).

Write the left hand side of the above display as

_Z(s - T'w Zz» 003QO)A(E’é)edn(zu)(a‘(Zi) — a;(Z;))
i=1 T Ztaa an)

F(T., Z:,0,4)
.0, 6,)

1 Z F(T;, Z;, 6o, 010)

e (Z2) (g (2 — a*(Z)).
T A(T, )™ #)(a*(2) - a3(2))-

(2.6.23)

That the second term is o(n~z) follows from (2.6.22), Theorem 4 and the Lipschitz
continuity of F' with respect to § and a by Condition A. Similar proof as that of

Lemma 12 below leads to that the first term is also o(n=2).

Lemma 12 For any positive and finite number C, and any function a on Z with

a%(Z) < oo,

sup |\/7_l(5n,0(ea a) — So(f,a)) - \/7_1(5',,'0(00,00) — So(fo, ap))|

19-60/<Cn~ 4 jla—aoli<cn™}
= o3(1) (2.6.24)
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and

sup ) |\/E(Sn(0'0)[a] - S(8,a)a)) - \/5(571(90,00)[0] - 5(90,00)[‘1]”
|0—60|<Cn~
lla-aolj<Cn™ ¥

= 0(1). (2.6.25)
Here o0, (1) means tending to 0 in outer probability.

Proof. We prove the first part and the second one can be proved analogously. Note
that /n(S, (8, a) — So(8, @) — v/1(Sn0(6o, o) — So (o, @p)) is an empirical processes

indexed by the set of functions

_ _(s - F(t, Z, 0, a) M O(Z) 6 - F(t, z, 90, ao) M 00(2) .
C= { £(8.,2,60,0) == g SEA(L 0)e) - Sl A e
16— 6] < Cn™ %, |ja — ]| < Cn™¥ } (2.6.26)

that is, by the functional notations used in the literature for empirical processes,

\/;i(sn,O(ea a)—S5y(0,a)) - \/T—l(Sn,o(ao,ao) — So(6o, o))

= Vn(P, — P)f(4,t,2,0,a), (2.6.27)

where P, is the empirical measure based on (6;,7;,Z;),i = 1,---,n and P is the
probability measure of (4,7, Z) with respect to the real parameters (6, ap). Note

that, under Condition A, functions in C are uniformly bounded for large n, and
If(57 tv 2, 0’ a) - f(67ta Z,aos aO)l S CO(|6 - 00' + “(I - 00”00)7 (2628)

for some finite and positive number Cy. Therefore, C is a set of functions which are

Lipschitz in parameter (6, a) € D, where
D={(0-6p,a—a):a isof form (2.1.3),]0 — 6] < Cns, |l — aol] < Cn'%}

and the norm in Ly (D) is [|(6), 1) — (62, @2)||eo = |61 — 02|+ |1 — @2]|0- By Theorem

2.7.11 of Van der Vaart and Wellner (1996), the metric entropy of C with bracketing

64



with respect to L,(P) norm
H[ ](6367 L?(P)) S H(G/Cv D7 Loo)a
for some finite and positive number c. It is easy to see that

H(e,D, L) < Cik(n)log (—1-> ,

€

for some finite and positive number C,. Hence

Hi \(6,C, Lo(P)) < Cok(n)log (1) ,

€

for some finite and positive number C,. It is obtained that for any ¢ > 0, there exists

0 < C3 < o0, not depending on n, such that

Ji1(e,C, Ly(P)) := / \/1 + Hp|(t,C, Ly(P))dt < C3k(n)%el"", forany n > 0.
0
It follows from this that, as k(n) = n” with 0 <y < 3,
Ji1(Cn~3,C, Ly(P)) = o(1). (2.6.29)

Note that f(d,¢, 2,60y, ) = 0 by (2.6.26). It follows from this and (2.6.28) that, for

any f €C,

=

P(f(8,t,2,0,@))* < Cin" 7, (2.6.30)

for some finite and positive number Cj.

Apply Lemma 3.4.2 (page 324) of Van de vaart and Wellner (1996), which is stated
in the following lemma. Let Y; = (4;,7;,Z;), 1 = 1,2,---,n, F =C and € = Cn~i.
By (2.6.30) and the boundedness of f, f € C, the conditions of the lemma hold. It

follows from the lemma and (2.6.29) that

VRE* (sup |(P. — P)f) = 0}(1).
fec
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In view of (2.6.27), We obtain (2.6.24). The lemma is proved.

Let ¥1,Y5,...,Y, beii.d. random variables (or possibly vectors) with distribution
P and let P, be the empirical measure of these random variables. Denote G, =
Vi (P, — P) and ||G,||r = sup;cz|Gnf| for any measurable class of functions F.

Denote

Ji (6, F, Ly(P)) = / \/1 + Hj|(t, F, Ly(P))dt.
0

Lemma 13 Let F be a uniformly bounded class of measurable functions. Then

Ji (e, F, Ly(P))
1 SRR ),

if every f in F satisfies Pf? < €2 and ||f||lc < M. Here E* means outer ezpectation

E*||Galls £ CJp (e, F, Ly(P)) (

with respect to P.
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