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ABSTRACT

SEN’IIPARAMETRIC ESTIMATION FOR CURRENT STATUS DATA WITH

FLEXIBLE COVARIATE EFFECTS

By

Wenliang Lu

This thesis studies a semiparametric hazard model with parametric baseline hazard

rate and nonparametric covariate dependency based on current status data. Two

estimators are proposed. One is the generalized profile maximum likelihood estima-

tor (GPMLE) and the other is the sieve maximum likelihood estimator (SMLE). The

GPMLE is obtained by maximizing the profile likelihood function where the nonpara-

metric covariate part is estimated using kernel and least square methods. Under some

regular conditions, the thesis establishes the square root consistency and asymptotic

normality of this estimator. The SMLE of the parameter is obtained by maximizing

the log-likelihood function with respect to both the finite dimensional and the infinite

dimensional nuisance parameters while the infinite dimensional nuisance parameter

is constrained to a subset of the parameter space which increases with the increase

in the sample size. This estimator is shown to be consistent and asymptotic normal.

Moreover, its asymptotic variance achieves the semiparametric lower bound.
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Introduction

0.1 Overview

Current status data arise in some clinical setting when the survival time of interest

can only be determined to lie below or above a random examination time. In the

settings such as destructive testing, animal experiments in which the occurrence of

a survival time is only observable upon sacrifice, and epidemiologic studies in which

obtaining more than one examination is not cost effective, current status data are

commonly encountered.

The nonparametric estimation of the survival time distribution and some smooth

functionals thereof have been discussed for current status data by a number of authors,

including Groeneboom and Wellner (1992, §2.3), Huang and Wellner (1995), Geskus

and Groeneboom (1996) and Geskus and Groeneboom (1997).

Semiparametric models based on current status data have also been studied in the

literature. Klein and Spady (1993), Rabinowitz, Tsiatis and Aragon (1995), Li and

Zhang (1998), and Murphy, Van der Vaart and Wellner (1999) considered the linear

regression model based on current status data. Klein and Spady used the profile

maximum likelihood method to derive the estimator of the regression parameters

which were shown to achieve the semiparametric lower bound. In Rabinowitz, Tsiatis

and Aragon’s paper, a class of score statistics that may be used for estimation and

confidence procedures is proposed. Li and Zhang minimized a class of U-statistics of

order 3 to obtain estimators of the parameters. Murphy, Van der Vaart and Wellner

considered the penalized maximized likelihood estimator of the regression parameter

which was shown to be efficient. Koul and Schick (1999) studied the estimation and

hypothesis testing of the ratio of scale parameters in the two-sample setting, using a



U-statistic of order 2.

Cox’s regression model has been also studied based on the current status data.

Finkelstein (1986), Diamond and McDonald (1991), and Shiboski and Jewell (1992)

developed several methods to fit the model. Huang (1996) showed that, profiled over

the cumulative baseline hazard function, the profile maximum likelihood estimator

for the regression parameter is asymptotically normal with iii-convergence rate.

Among the other semiparametric models for the current status data, additive

hazards regression model was studied by Lin, Oaks and Ying (1998) and the propor-

tional odds regression model was studied by Rossini and Tsiatis (1996). Under certain

conditions on the examination time, Lin, Oaks and Ying found that one can make

inferences about the regression parameters of the additive hazards model by using

the familiar asymptotic theory and software for the proportional hazards model with

right censoring data. Rossini and Tsiatis’s approach in the proportional odds regres-

sion model is based on approximating the infinite-dimensional nuisance parameter,

the baseline log-odds of failure, with a step function, and carrying out a maximum

likelihood procedure. The resulting finite dimensional parameter estimates for the

regression parameters are shown to be asymptotically normal and semiparametrically

efficient.

Although these models, especially the Cox’s regression model, are popular and

widely used in practice, in many applications the shape of the baseline hazard is

thought to be well understood but the covariate effect is rarely specified precisely. For

example, in insurance problems the Gompertz-Makeham hazard has a long tradition

of successful application, [Jordan (1975), page 21]. Meshalkin and Kagan (1972)

claimed that the logarithm of the baseline hazard is approximately linear for a number

of chronic diseases. As an alternative to Cox’s regression model, Nielsen, Linton and

Bickel (1998) studied a model where the baseline hazard rate belongs to a parametric



class of hazard functions but the covariate part is of unknown functional form. They

obtained an estimator of the the underlying parameter by profile maximum likelihood

method when the data is randomly right censored.

This dissertation discusses the estimation of the underlying parameter in this

model (Nielsen, Linton and Bickel, 1998) for current status data. Two estimators

are proposed. The first one is obtained by maximizing a profile likelihood where the

infinite dimensional nuisance parameter is estimated nonparametrically. This is called

the generalized profile maximum likelihood estimator. A set of sufficient conditions

are provided for consistency and asymptotic normality.

The second estimator, called sieve maximum likelihood estimator, is obtained by

maximizing the log-likelihood function with respect to both the finite dimensional and

the infinite dimensional nuisance parameters while the infinite dimensional nuisance

parameter is constrained to a subset of the parameter space which increases with the

increase in the sample size. It is shown to be consistent, asymptotically normal, with

its asymptotic variance achieving the semiparametric lower bound.

Simulations are conducted to study the behavior of these estimators for small

and moderate sample sizes. The generalized profile maximum likelihood estimator

seems to have a slightly lower bias and variance than the sieve maximum likelihood

estimator. Since the latter achieves the lower bound, as the sample size increase, it

should behave better than the generalized profile maximum likelihood estimator for

large samples.

0.2 The model

Let X, T, Z be a random vector, where X represents the survival time, T the mon-

itoring variable and Z the covariate which could be a vector. Let (X1, T1, 21), ---,

(Xn, Tn, Zn) be i.i.d copies of X, T, Z.



Assume that, conditioned on Z, X and T are conditionally independent. The

conditional distribution of X, given Z, is assumed to depend on some parameter and

the covariate. In Cox’s regression model, the cumulative hazard rate function of X

given Z has the form

A0(a:)efi’z,

where the first part A0, with unspecified form, is called the baseline cumulative hazard

function, and ,3 is a vector of parameters. Nielsen, Linton, and Bickel (1998) proposed

an alternative model with the first part depending only on some parameter 00 and

the second part with unspecified form. More specifically, the cumulative hazard rate

function is of the form

A($i 60)g(Z)i

where A(:r, 60) is a known function with unknown parameter 00, but 9 is an unknown

function. Here 60 belongs to O, a subset of 72" for some (1 Z 1. They discussed the

estimation of 90 and 9 under right censoring.

In this dissertation we discuss the estimation of 60 and g(z) based on current status

data or interval censoring Case I data, where one observes (7145,, Z,),i = 1,2,. . . ,n,

with 6, = [(A'iSTir It is assumed in the following sections that 90 is a scalar. For 00

as a vector, similar results can be obtained. Because of the curse of dimensionality,

Z is assumed to be a scalar also.

Let F(1:, Z, 00) be the conditional distribution function of X, given Z. Assume

that the cumulative hazard rate function is continuous. Then

FCC) Z, 00) :1_ 9Xp(_1\(I,60)g(Z))

We also assume that the distribution of (T, Z) does not depend on 90 or g, and

that if A(t,z,01)gl(z) = A(t,z,00)g(z) for all (t,z) in the support of (T, Z), then

01 = 60 and 91(2) = g(z) for all z. The latter is the identifiability condition.



Chapter 1

Generalized Profile Maximum

Likelihood Estimation

1.1 Definition of estimators of 60 and g

In this dissertation we first use a semiparametric profile likelihood method to define

the estimator of the parameter. Both Klein and Spady (1993) and Nielsen, Linton,

and Bickel (1998) used generalized profile likelihood methods to estimate the finite

dimensional parameter while the infinitely dimensional nuisance parameter was es-

timated by the kernel method. The ensuing discussion in this section will be a bit

informal. The precise conditions under which all definitions are valid are stated in

the next section.

In this chapter, 6 is assumed to be a compact subset of R1, and is rewritten as

No.

One notes that, given (Ti, Z,),i = 1, 2, . .. ,n, the (conditional) log-likelihood for

0 and 9 based on (T,,6,~,Z,~),i = 1,2,... ,n is

Eli-109(1- exp(-A(Tt,0)9(Zi-))) — (1 — 6t)A(T.-,0)Q(Zt)l-

£21

The idea of generalized profile likelihood methods is as follows:

(1) For a fixed 0, obtain the estimates, 99(Z,), of g(Z,-), i = 1, - -- ,n, by using some



method such as the kernel method.

(2) The generalized profile likelihood for 6 arising when g(Z,-) is replaced by §9(Z,-) is

Zl5i109(1— €1‘IJ(—é\(71,9)§9(zt))) — (1— 6i)A(Tii0)90(Zi)l-

i=1

Maximize it with respect to 6’ to obtain the estimate (9 of 6.

(3) If we want to estimate g(z), we treat 0 as the real parameter and use some method

as in step (1) or some other method to estimate it.

When 0 = 60, 690(Z,) should approach g(Z,-) for all fixed Z,- as the sample size

it tends to infinite. Moreover, the convergence must be faster than some particular

rate. This is hard to achieve for all 2,, i = 1, - -- ,n, because of the edge effects in

the kernel estimation. Hence we use the following modified likelihood for 0 and 9:

[11(6) 9) = Z w1(T.-,b)w2(Zi,b)[5i109(1- 633P(-A(1’"t,9)9(Z.-))) — (1 - 5i)/\(71, 9)9(Zi)l

i=1

where w2(Z,-, b) = 1 if Z,- is at least b far away from the boundary and 0 otherwise,

w1(TJ-, b) = 1 if T,- is at least b far away from the boundary and 0 otherwise. More

precisely, for example, if the support of Z is an interval [zf, zg], then w2(Z,-, b) = 1 if

Z, is in the interval [2? +b, .2; — b] and 0 otherwise, where b depends on n and b —> 0 as

n —> 00. Therefore, the modified likelihood is almost the same as the real likelihood

for n large enough.

In this dissertation, the support of a random variable (or possibly a random vector)

with a density with respect to Lebesgue measure means the closure of the set of all

points at which the density is positive.

To estimate 9 for any fixed 0, our approach uses two dimensional kernel method

to estimate

F(T:jiZii00)i iij21a°°'in7

and then combines these estimates for each fixed 2' to obtain §9(Z,-), i = 1, - - - ,n. The

least square method is used in the latter step.

6



Let K be a kernel and b the bandwidth. Define

- ..6K T—T'K Z—Z,F(E,Zi):ZI¢J,z I b(z J) b( I )
 

1< ' '< , 1.1.1

Zt¢j,iKb(:’7 — T,)K,,(Z, - Zr) ’ — 2’] - n ( l

where

Note that 13‘ (~, ) depends on j, i, but we don’t make it explicit until it is necessary.

Under certain conditions on K, F and the density of (T, Z), and if b —+ 0 and

ab2 —> 00, then, conditioned on T], Z,, in probability,

. _ E- ,[6K,(T -— T‘)Kb(Z — 2.)]
FT-,Z, —>lim 1’ J

( 3 ) b—iO Ej,,~[Kb(T — Tj)Kb(Z — Zill

_F(T,-, 2.,00)h(T,-,Zi)

— h(T:]i Zi)

=F(T}‘, Zia 00))

 

 

where h(t, z) is the joint density of (T, Z) and EL,- denote conditional expectation,

given T], 2,. Therefore F(Tj, Z,-) can be used to estimate F(Tj, Z,, 00).

Now if 0 is the real parameter, then —log(1 — F(Tj, Z,,6)) = A(Tj,9)g(Z,-) and

A

—log(1 -— F(T,,Z,~)) should be close to —log(1 -— F(T,»,Zi,6)) for all j and i when

the sample size is large enough. For fixed Z,-, we shall estimate g(Z,-) such that

A

A(TJ-,9)g(Z,~) is close to —log(1 — F(T,-,Z,)), j = 1, - -- ,n.

 

  

Let

. Z .w (T-,b)A(T-,6)zog(1- F(T, 2.))
90(21): — 3% 1 J J 2 J , (1.1.2)

2]“;61‘ w1(Tja b)A (71], 0)

a least square estimator of g(Z,-), attaining

mzi.“ w1(7}ab)l109(1— F(Tji 21)) + M7}, 9)9(Zi)l2-
9( 01%.

The counterpart of 69(2) in limit is

E [A(T, 6)log(1 — F(T, Z, 00))] E[A(T,6)A(T, 60)]
= _ = 1. .



where E means the expectation w.r.t. the real parameter 60 and 9. Note that, by

(1.1.3), 990 = g. Let

F(t, z, 6) = 1 — e—MWM, F 2 1 —— F (1.1.4)

and

F(t, z, 6) = 1 — (““2096“). (1.1.5)

The modified profile log-likelihood that arises when 9 is replaced by 99 is

("1(6)

= 211110}, b)w2(Zi, bll5t109(1 — €$P(—1\(71,9)§o(zi))) - (1 — 5i)A(73a9)§o(Zi)l-

i=1

(1.1.6)

The estimator, 6, of 60 is the maximizer of the above likelihood over 6 E No.

Finally, the estimator of g(z) is defined as

2?...1w1(TJ-,b)A(T.-,é)log(1— Fa:- 2))

23:1w1(73,b)A2(T.-,é) ‘

 6(2) = -

1.2 Asymptotic properties of the estimators

1.2.1 Consistency

In this section, we state the consistency of the generalized profile maximum likelihood

estimator 6. Before doing this, we give various assumptions which will be used to

prove the consistency and asymptotic normality of 6.

We list the following assumptions.

(A1) The respective supports Z and T of Z and T are closed intervals of R1.

A(t,6), 9(2) and h(t, z) are positive and continuous on their domains of definition

T x M, Z and T x Z. Moreover A(t, 6) is continuous in 6 uniformly for t. The first



and second derivatives of A(t, 6) w.r.t. 6, A(t, 6) and A(t, 6), exist, and A(t, 6), A(t, 6)

are continuous in 6 uniformly for t, and continuous in t for any fixed 6.

(A2) The function 9(2) and h(t, z) are four times differentiable on their domains

of definition with continuous 4th (partial) derivatives. Assume A(t, 60) is four times

differentiable in t with continuous 4th (partial) derivatives.

(A3) The kernel function K is an r-th order kernel supported on [—1, 1], symmetric

about zero and Lipschitz continuous on its support. (r-th order kernel means K

satisfies: fK(t)dt = 1, ftsK(t)dt = 0 for s = 2, - u ,r — 1 and f |t|’|K(t)|dt < 00.)

(AB’) The kernel function K is Lipschitz continuous, supported on [—1,1], and

satisfies: fK(t)dt = 1.

(A4) b = O(n‘°) with % < a < %.

(A5) 60 is an interior point of N0, which is a compact subset of R1.

(.46)

' 2F(Ti2700)

E (A(T,60)g(Z) + A(T:90)600(Z))m > 0,

where 99(2) is the (partial) derivative of 99(3) with respect to 6.

Assumption (A1) or similar assumptions have been seen in the literature, see, for

example, Huang (1996), Klein and Spady (1993), Nielsen, Linton and Bickel (1998).

Assumption (A2) is a smooth condition on the model, which is used mainly for the

asymptotic normality. Assumptions (A3) and (A3’) are made for the kernel. One

notes that (A3) implies (A3’). Assumption (A4) is the bandwidth condition in kernel

estimation, which is crucial to the asymptotic normality. For the consistency of the

estimator, this bandwidth condition can be weakened. Assumptions (A1), (A3’) and

(A5) are imposed for consistency of the estimator. To prove the asymptotic normality,

we use assumptions (A1) -(A6).

Next we state the theorem on the consistency of the estimator. The proof will



be given in Section 1.4.2 following the general preliminary Lemmas 1-5 on kernel

estimations in Section 1.4.1. Before the proof of the theorem in Section 1.4.2, we give

first Lemmas 6—9 on the uniform consistency of F(Tj, Z,) for F(Tj, Z.) and of gg(Z,)

and its derivatives for gg(Z,-) and its derivatives, 1 S i, j S n.

Theorem 1 Suppose that (A1), (A3’) and (A5) hold, b = 0(n’a) with 0 < a < %.

Then the generalized profile likelihood estimator, 6, which is obtained by maximizing

ln1(6), converges in probability to the real parameter 60.

1.2.2 Asymptotic normality

In this section, we state the theorem on the asymptotic distribution of the estimator

and the proof will be given after the proof of Theorem 1 in Section 1.4.2.

Theorem 2 (Asymptotic distribution of 6} Suppose (AU-(A6) hold with r = 4 for

(A3). Then

flu) — 00) => MO, 02),

where

2 _ E{[D1(T, z, 00) — A(T.Z,0o)12 R(T, 2. 60)}

[E (Dim 2. 00)R(T, 2. 00))12

 
,

MT, 00)h1(T)

c0h(T, Z)R(T, Z, 90)

C0 : E‘I\2(T7 90)) D1(ti Z) 60) : A(ti 00)g(Z) + A(ti 60)900(Z)7

 
ACT, Z: 60) : /A(t7 90)D1(ti Z7 60)R(t9 Z) 00)h(t3 Z)dti

and

F(ta 23 60)

h1(t):Lh(t,Z)dZ, R(t,2,00) = m.

10



1 .3 Simulation

Before we prove the stated asymptotic properties of the estimator, let’s take a look

at its behavior for small and moderate samples.

Assume that the conditional distribution of X, given Z, is a Weibull distribution

with distribution function

1— 8-1909(Z).

where g(z) : 2. Also assume that T and Z are uniformly distributed on [1,2] and

[0.2, 1.2] respectively.

For each fixed sample size (n=30, 60, 100, 200 respectively) and appropriate b’s,

100 samples are generated with the real parameter 60 z 1.5 and 100 replications

of the estimate of 60 based on the generalized profile maximum likelihood estima-

tor (GPMLE) are obtained. The means and standard deviations are shown in the

following table.

Table 1. Simulation results for GPMLE

 

n b mean s.d.
 

30

0.0400 1.3847 1.3299
 

0.0420 1.4915 1.4075
 

0.0450 1.7596 1.3905
 

60

0.0308 1.4720 0.9801
 

0.0310 1.4824 0.9947
 

0.0312 1.4908 1.0043
 

100

0.0238 1.4535 0.7720
 

0.0240 1.4876 0.7702
 

0.0242 1.5075 0.7943
 

200 
0.0166 1.4560 0.4795
 

0.0168 1.4990 0.4902
  0.0170  1.5421  0.5103 

The kernel function used in the simulation is K(:c) = 9/8 —- 15/812, —1 g :1: S 1; 0,

otherwise.

11

 



From the table we can see that the mean is around the true value for all the sample

sizes but the standard deviation decreases with the increase in the sample size. The

choice of b is crucial to the reduction of the bias of the estimator.

1.4 Proof of the consistency and asymptotic nor-

mality

1.4.1 Lemmas preliminary to the proof

To prove the consistency and asymptotic normality of the generalized profile maxi-

mum likelihood estimator, the uniform consistency of 13'(T,, Z,-) for F(T), Z,) over all

1 S i,j g n, and of gg(Z,-) for gg(Z,-) over all 1 g i g n and 6 E No is proved first.

Since gg(Z,-) is a function of F(Tj, Z.) which, in view of (1.1.1), is a ratio of two sums

(or means) of independent random variables, we first discuss some uniform conver-

gence results of the sums (or means) of independent random variables in a general

setting.

Lemma 1 Let Y1, - - - ,Yn be i.i.d. d-dimensional random vectors. Let D be a compact

subset of Rd, and for each t E D, let Wn(t, -),n 2 1, be a sequence of measurable

functions on 72“. Let

€n(t) = izwnua Y1): t6 13- (1.4.1)

i=1

Let 0 < ha 2 O(n"“°) with an > 0 and assume that for some 0 5 s, r < 00, and finite

real number CO,

d

hZIWnUiyll E Co) hZIWnUny) - WnUM/N S Co: ltlj " t231a (14.2)

i=1

uniformly for y 6 Rd and for all t, t1, t2 in D. Assume also that

E(W,,(t, 14)) = 0, t e D.

12



Then, for all a > 0,

[—0 

 

sup l€n(t)| = 0,,(n- 2 hr). (1.4.3)
rev

Proof. Let

5 hi

An = n n,

2C0d

where 0 < 5,, —> 0, to be chosen later. By (1.4.1) and the second part of (1.4.2), for

all L1,t2 E D With ti = (til, ' ° ' ,tid),’l=1,2,

d

|€n(t1)— €n(t2)l : Ooh:Z In. —— t2.)

1:1

If |t1j — t2j| < A", then this inequality and the definition of An lead to

|€n(t1) - €n(t2)| S C/‘tifz;sdAn =

Since D is a compact space, it is contained in a hypercube. Without loss of generality,

let it be contained in a unit cube. Let N" = 1/An if 1/An is an integer, and ([l/An] +

1)“ otherwise, where [2:] means the integer part of 1:. Divide the unit cube into small

cubes Cm, i = 1, - -- ,Nn, each with length less than or equal to An. Cover D with

sets D (‘1 Cm, i = 1, - -- ,Nn. Discard empty sets and let Din, i = 1, - -- ,.M,,, be the

remaining sets. Then t1,t2 E D,,, implies that [th —— tgjl < An, j = 1, - .. ,d. Note

also that

1 d

M < — +1 .

,, - (A. )
For i = 1, . -- ,Mn, let t, be a point in D,,,. Then, by triangle inequality,

5n

811p |€n(t)| S sup [l€n(tt)l + sup |€n(t) - €n(tt)l sup l€n(ti)| + 7
ED i=1,---,M.. ten... i=1,~-,M,.

 

It follows that

F(fgglt..(t)l>e.)313(3):) |€n(t) >553) 21006..pg). (1.4.4)
l-Mn

13



Notice that, by (1.4.1) and the first part of (1.4.2), nh;€n(t) is a sum of indepen-

dent and bounded random variables. Recall Bernstein’s inequality (for example, from

Shorack and Wellner(1986), page 855): for independent random variables €1,--- ,5"

with bounded ranges [—M, M] and zero means,

2
1 a:

0.. < ‘ ————_—— . .

p(|g1+ +€n| > :17) __ 2e$p( 22) + M17/3), (14 5)

for v 2 var(€1 + - - . + é").

Apply the above inequality with 6,- : h;W,,(t,Y,-), a: :— nhgen/2 and v = n03 to

obtain

 

en 1 n2h2’c2/4

(IE ( )l > 2) _ exp( 2nC§+Conh;5n/6)

Since has" —> 0 as n —> 00, the second term in the denominator of the fraction will

be less than the first term for large enough n, and hence the above is less than

2exp(—Cnh3,'ef,),

for some 0 < C < 00, not depending on n, hn and en.

It now readily follows from (1.4.4), the upper bound for Mn and the definition of

A" that

 

d

P (sup |€n(t)| > an) S 2 (200d +1) exp(—Cnh,2,ref,), (1.4.6)

tED hZEn

which is 0(1) if 5,, = en‘lTahgr for all e > 0 and a > 0. The lemma is proved.

Next we are going to use Lemma 1 to show the uniform convergences in probability

of the means of independent random variables which have the same forms as those

in the definition of F(T), Z,), 1 g i, j S n. Moreover, their mean square convergence

is also established, which is crucial to the proof of the asymptotic normality of the

generalized profile maximum likelihood estimator.

14



Let U 2 (U1, U2, - -- ,Ud) be a random vector in 72" and 7 be a random variable

taking values 0 or 1, and U,- = (LE-1,032, - -- ,Uid),’y,-, i = 1, - -- ,n, be i.i.d. copies of

U, '7, respectively.

Let g be a function on 72“ and K be a function on 72‘. Let Kb(t) : K(t/b)/b,

t E 72‘, b depends on n, b —> 0 as n —> 00. Also let i) 2 (v1, v2, . -- ,vd) be a vector in

72". If 11,23 6 Rd and 51:, y E 721, then xii + 3/5 :— (xu1+ yvl, - -- ,atud + yvd). Let also

d5 = dul - - - dud in the integration.

Define

- 1" ~
Tm) = ; Emit-mum. - v.) - - -K.(U.d — vi).

i=1

The following two lemmas establish the convergence of Tn (5). Lemma 2 establishes

the convergence rate of Tn(5) to its mean, in probability and in mean square, uniformly

in 5. Lemma 3 studies the rate behavior of the asymptotic bias of Tn(i)).

Lemma 2 Assume 0' has a bounded (joint) density f(&) with support D, = [8}, t'[‘] x

X [33,63], where s{,t’; E 72‘, i = 1, . n ,d. Also assume that K() is a bounded and

Lipschitz continuous function with

/_00 K2(t)dt < 00,

and g(&) is bounded. Then,

nbd seug) E|Tn(i:~) — 1~::r,,(r))|2 = 0(1) (1.4.7)

v f

and for all a > 0,

W:11; (mi) — Erna») = 0,,(1). (1.4.8)

v I

15



Proof. Using the fact that Var(Y) S EY'Z, for any random variable Y, and the

change of variable formula, we obtain

Var(T,, (17)) = lIl’ar(g(U)I\’b(U1 — U1)”Rb(Ud — val)
TL

1 -

g ;E{g()(UKb(U1- v1) Kb(Ud - Udllz

_ ~ 2( U1 - v12 Ud— Dd ,~ -

_ if [yaubiwm b )K (—b—)f(U)du

: nb‘1’_/i/‘2(U+ bt) K2(t(t1~) ~~K2(td)f(v + bt)dt.

 

Therefore, by the boundedness of f and g, and the square integrability of K,

sup ndear(Tn(i))) : 0(1).

176D;

Hence (1.4.7) is proved.

Apply Lemma 1 with t = 5, D : Df, 5,,(t) = 7",,(23) — Ean), hn = b, r = d and

s = d +1 to obtain (1.4.8).

Lemma 3 Assume the conditions of Lemma 2 hold.

(1) Iff and g are also Lipschitz continuous and K has support [—1,1] and satisfies

/K(t)dt = 1, /|K(t)|dt < oo.

SUP IETn(?7) - 9(5)f(17)| = 0(5),
" 0
vEDf

Then,

where D? : [s‘i‘+b,t’f —b] x ~-[s;+b,t;—b]

(2) Suppose f and 9 have up to rth bounded and continuous (partial) derivatives, and

K is an rth order kernel supported on [—1,1], and symmetric around zero. Then

SUP IETnti’) - 9(‘5)f(17)| = 0W)-
- 0
06D!

16



Proof. We only prove the second assertion since the first one can be proved in a

similar but simpler way. Change of variables and Taylor expansion yields

E[T((i))]—_:Eg((6)Kb(U1— v). Kb(Ud — m)

”'WQ’(UI—U1)"°I\r(ltd;vd)f(fl)dfi

1

--/ g((v+bt)K(t)---K(td)f('5+bf)dt

0

‘ mat/0‘...

'foli/1[Z:
:arWail)b’

t§]fiK(t,)d
t

= 9('5)f(17') + 0W),

  

y
.
.
.

$
N
\
b

+  

l
l
"

uniformly in a 6 D9, where i)“ :2 (vl‘, - - - ,vd") and vj“ is between vj —b and vJ- +b. In

the last two steps, the assumption f11t3K(t)dt = 0, s = 1, - .. ,r—1 and f31K(t)dt =

1 were used.

The following two lemmas discuss the convergences of two other forms of means

of independent random variables based on kernels. They will be used to prove the

theorems in the following section. In Lemma 4, it is already centered; and in Lemma

5 there is some kind of centering.

Lemma 4 Assume that the conditions of Lemma 2 hold. Assume also that g(v) is

the conditional expectation ofy given U = i}. Let

n d

- 1 ~

Stu) = ; Zl’h — gar-)1 111M021 — v.)-
J:

Then,

nb“ sup EISnbl')!2 = 0(1).
06D}

and for all a > 0,

«nI-aed sup 15421)) = 0,,(1).
06D}

17



Proof. Note that

 

Hence

Var(S (1.)) = E 'Vasr (Sn(v)lU,,i = , ,n)]

' n d
1 - -

:E EZQHJI)“ ”g(Uilll—IKIHUU v1):l

_ i=1 j=1

The rest of the proof is exactly the same as that of Lemma 2.

Lemma 5 Assume the conditions of Lemma 2 hold and that g is Lipschitz continu-

ous. Let

T1107) = '1‘ Zlflflil — g(fi)le(Uz-1 — 711) ° ° ' Kb(Uid — 71d)-
n .

1:1

For the variance part of T7203), we have

nbd"2 sup EIT,'1(v) — ET,'l(i2)|2 = 0(1) (1.4.9)

{JED}

and for all a > 0,

an—“b2d sup |T,'l(17) — ET,'l(v)| 2 010(1). (1.4.10)

569}

For the bias part, we have the following.

(1) Iff is also Lipschitz continuous and K satisfies: fK(t)dt = 1, f |K(t)|dt < 00,

and has support [0, 1], then

sup |ET,'l(ii)| = ()(b). (1.4.11)

{JEDf

(2) If f and 9 have up to rth bounded and continuous (partial) derivatives, and that

K is a rth order kernel supported on [—1.1], symmetric around zero, then

sup |ET,'l(v)| = 0(br). (1.4.12)

~ 0
v61?!

18



Proof. Since we have the difference term g((7,) — g(v) in TM), we should expect a

better convergence rate than that of Tn(i) The proof is similar to that of Lemmas 2

and 3.

For any 27 E Df,

V07‘(Tl.(l7)) = éVGT [Mm - 9(0))HKde — ’31)]

S 31-19 (9(0) — 9(5))2HK3W1 — val]

 

 

1 - ,~, 2i ,2 “1‘1“ 2_——_u"_vd a a=—/“'/l9(u)—9(L)l b241‘( b ) K( b )f( )d

= — f - - - [W + bi) — 9(5)l2K2(t1)---K2(td)f(17 + boon”

|
/
\

for some finite real number C, not depending on 27. Thus (1.4.9) is proved.

Apply Lemma 1 with t = a, D = 1);, {(t) = T,’,(ii) — E(T,’,(v)), hn = b, r = d and

s = d + 1 to obtain (1.4.10). Assertion (1.4.11) and (1.4.12) can be proved in the

same way as in the proof of Lemma 3.

1.4.2 Proof of Theorem 1 and 2

Before giving proofs of Theorem 1 and 2, we shall use the general results of the

previous section to obtain some preliminaries for their proofs. To begin with, we shall

first establish the uniform convergence of 13‘ (T,, Z,) to F(T,, 2,) over all 1 g i, j S n,

942,-) to 942,-), §,(z,) to 9.42,) and §,(z,) to g9(z,-) over all 1 g i g n and 9 e No.

The expected square differences between 13’ (T,, Z,) and F(T), Z,), between §9(Z,-) and

gg(Z,-), and between §9(Z,-) and 90(Z.) are established as well.

By assumption (A1), let Z = [z’f,z.3] and T = [t",t§], two finite real intervals.

Let Z“ = [21‘ + b, 2; — b] and 7'0 = [t’{ + b, t; — b]. Then the support of h, Dh :—..

[t*,t§] x [21325]. Also, let D2 = 7'0 x 2’0.

19



Recall the definition of F(T,, Z,) from (1.1.1). Write

14404212.) + 3.2mm. 2.)
 F(T-,Z,- — F(T-,Z,-,6 ) = .. , 1.4.13

.7 ) J 0 Bfljdl)(73, Zi) ( )

where

W") (t, z) :i—Zm F(:r,,Z,.60)]K,,(T, — t)K,(Z, — 2), (1.4.14)

nl¢i,j

B791.“ t, Z) —-%(Z[F(T1, Z1, 00)--F(t, Z, 90)]Kb(T1 — t)Kb(Z1 — Z) (1415)

nlyéig'

and

.2. 1

87(le )(t,z) : E ,; Kb(T, — t)Kb(Z, — z).

3:]

We first show that Véj’i)(TJ-,Z,-) and ng’i)(TJ-,Z,) converge to 0 in probability,

uniformly over 1 S i, j g n, and the conditional expectation of the squares of them,

given T,- and Z1, converge to 0 at certain rate, uniformly over 1 _<__ i, j g n. The same

convergence results of Bfijgilfl}, Z,) to h(T,-, Z,) are obtained as well. The previous

lemmas are used to obtain these convergence results. More specifically, we have the

following lemma.

In the following, sup“. stands for SUPlgj,ign and supm,21,619,; stands for

“PearlSj.z<5n,(73.zt)evh)-

Lemma 6 (1) Assume that the conditions (A1) and (A3’) hold, and b = O(n““) with

0<a< %. Then,

sup 1mg, 2.)! = 0,.(1), (1.4.16)
j,i

supEm.U"(732% ope-é). (1.4.17)
j,i

sup IB£j*")m.Z,)I = 0pm. (1.4.18)
(7332061)!)
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sup 183513.21) — h(Tj,Z.-)l = 0.41), (1.4.19)
(T,,Z.)ED,2

where E“- stands for conditional empectation, given T], Z,.

(2) Assume (AU-(A3) hold with r = 4, and b = 0(n‘“) with 11—6 < a < %. Then

1

sup E...IB.‘.J*”(73, ZAP = opera) (1.4.20)
(73.2,)6173

sup E,,.|B,‘35"’(13,Z,) — h(T,-, Z,-)|2 _—. 0,,(n—%). (1.4.21)

(TJ,Z,‘)E’D2

Proof. Define

1 n

Vn(t. Z) = E :[51— F(Tz, Zz. 60lle(Tl — t)Kb(Zl — 2)-

(=1

Apply Lemma 4 with Sn(27) = l7;,(t, 2:), d = 2, 7,- = 6,- and g = F(t, z,00) to obtain

sup Ell/"(L z)!2 = O(—2-) : o(n-§), (1.4.22)

(t,z)E’Dh nb

and

sup an(t,z)| = 0,,(1). (1.4.23)

(t,Z)EDh

Since K is bounded, by the definition of 179“)“, z) and Vn(t, z), we obtain

. . - c

sup sup IVU’”(t, z) — V(t, z)| g —2 = o(n"§), (1.4.24)

19',an (men. nb

for some constant 0 < C < 00. It follows from (1.4.23), (1.4.24) and the triangle

inequality that

sup sup |l”;,lj’i)(t,z)|=op(1).

19,191 (1,2)eoh

Hence (1.4.16) is obtained.

Similarly, by (1.4.22) and (1.4.24), apply the inequality (:1: — y)2 3 2(1:2 + yz),

x, y E R1 to obtain

sup sup Ell/33.3%, z) 2 = O(——2) = 0(n’5).

19,151: (t,z)eD,, 71b
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Hence (1.4.17) is obtained.

Define

1 n

Bn(t, z) = ; Z[F(T,, 2,, 00) — F(t, z, 6,,)]K,,(:r, — t)K,(Z, — z)

l=1

and

1 n

Bn0(t, z) = E Z: K,(T, — t)K,(Z, — 2).

(=1

Apply (1.4.10) and (1.4.11) of Lemma 5 with T,’,(i§') = Bn(t,z), 9(6) 2 F(t,z,00),

U, = (T,, Z,), d = 2 and a = no to obtain that, for each (10 > 0,

sup an(t, z)| = op(n‘1+a°b'4) + 0(b),

(t,Z)EDh

which is op( 1) as 0.0 is chosen to be small enough. This is because of the assumption

on the convergence rate of b to 0. Similar argument as above leads to (1.4.18).

Similarly, apply (1.4.8) of Lemma 2 and part (1) of Lemma 3 with Tn(13) :-

Bn0(t, 2), 9(6) = 1, d = 2 and U, = (1“,, 2,) to obtain that

sup IBno<t,z) — h(t,z)l = 0,.(1), (1.4.25)
(t,z)E”Dg

and (1.4.19) follows from the same discussion as the above.

Use the identity E(Y2) = var(Y) + (EY)2 for any random variable Y, and then

apply (1.4.9) and (1.4.12) of Lemma 5 with T,’,('b) = Bn(t,z), r = 4 and d = 2 to

obtain that

sup EIBn(t, z)|2 = 0(n‘1)+ 0(b8),

(t,z)€’D2

which is 0(n’i) since b = 0(n‘“) with a > 11—6. Thus (1.4.20) follows from the same

discussion as above.

Similarly, apply (1.4.7) of Lemma 2 and part (2) of Lemma 3 with Tn(i2) =

Bn0(t, z), r = 4 and d = 2 to obtain

sup EIBn0(t, z) — h(t, z)|2 = op(n—%).

(t,z)E”Dg

22



(1.4.21) follows from the same discussion as above. The lemma is proved.

Since, by assumption (Al), h(t, z) is bounded away from 0 and 00, and F(t, z, 00)

bounded away from O and 1, their estimators will also have these properties with

probability approaching 1 as the sample size tends to infinity. We then discuss the

convergence of these estimators to their limits only on the set on which these prop-

erties are satisfies.

There exist real numbers 0 < a, 3 (12 < 00 such that a, < infumem h(t,z) and

a2 > s11p(,,z)€Dhli(t,z), and 0 < d, 3 d2 < 1 such that d, < inf(1,z)€’ph F(t,.z) and

d2 > supuflmm F(t, z). Particularly, choose

a, = inf h(t,z) — 6, a2 = sup h(t,z) +6,

(t.z)€Dh (i,z)eo,,

and

d1: inf F(t,z,60)—e, d2: sup F(t,z,90)+e,

(t7z)EDh (2,2)6Dh

for some 6 > 0.

Write F(j‘il(Tj, Z,) for F(T,, 2,) as the latter depends on (j, i), and let F(j")(t, 2:)

be obtained from (1.1.1) with T], Z,- replaced by t, 2 respectively. Let

An, = {a1 3 min nggi)(t,z) 3 max B£36i)(t,z) 3 a2},

(mevg (1.2)6172

132'.an 132'.an

Aug 2 {d1 3 min 13(3):)“, 2) s max F(j‘i)(t,z) 3 d2}.

(t,z)E'D2 (t,z)€D?1

19.an 152‘.an

In the definition of g(Z1), see (1.1.2), the summation is taken over these j such that

T,- E To, i.e. w,(TJ-,b) = 1, j = 1, - -- ,n. As we discuss the convergence rate of g(Z1)

to g(Zi), we want to exclude the case when all the T,- fall into the edge area, more

specifically, 231:1 w,(T,-, b) = 0. Therefore, define

...={s;...,,,..}.
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It is easy to see that, the probability of the complement of 14713, P(Af,3) = 0(b"), by

the assumption (A1).

Let

An 2 Anl n A112 fl An3-

The probability of An is expected to go to 1 as n tends to 00. This is proved later.

Next the main results used to prove the consistency and asymptotic normality of the

generalized profile maximum likelihood estimator are established in the following two

lemmas.

Lemma 7 (1) Assume condition (A1) and (A3’) hold, and b = 0(n‘“) with O < a <

%. Then

sup |13‘(T,-,Z,-) — F(T,, 2,, 00)| : o,(1). (1.4.26)

(T,.Z.-)6Dg

(2) Assume condition (A1),(A2) and (A?) hold, and b = 0(n—a) with 3—,, < d< %.

Then

sup E,-..-IF(T,,Z.) — F(T,-2.40%.... : 0,01%). (1.4.27)
(Tj,Zi)E'Dg

Proof. Note that h(t, z) is bounded away from 0. Thus (1.4.26) follows from

(1.4.13), (1.4.16), (1.4.18), (1.4.19), and (1.4.27) follows from (1.4.13), (1.4.17),

(1.4.20), (1.4.19). The lemma is proved.

Recall that 99(2) is the first (partial) derivative of g()(z) with respect to 0. Let

'g'g(z) be the second (partial) derivative of 99(2) with respect to 0. Similarly define

20(2) and 20(3).

Lemma 8 (I) If {AU-{A3} hold, and b = 0(n‘“) with 116 < a < i, then

sup 47.1442.) — 99(2.)I2IA. = 0,44%), (1.4.28)

74:5"
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and

1 . -1

SUP Eilgt)(Zi) ‘ 90(Zill2IAn = 011(71 2)- (1-4-29)

2.630

OEA‘O

where E,- stands for the conditional expectation given 2,.

(2) If condition (A1), (A3’) hold, and b = 0(n’“) with 0 < a < i, then

SUP lflo(Zi) — 90(Zi)l Z 011(1), (1-4-30)

Z, 6 Z")

sup |§o(Zz-) - 99(Zz-ll = 0,,(1),
2.62,“

BEA/o

and

sup (50(2.) — §o(Z.-)I = 0,0).
Z,€Z°

OEAm

Proof. We prove only (1.4.30) and (1.4.28). The proof of the remaining results will

be similar.

In view if (1.1.2) and (1.1.3), g,(Z,-) — gg(Z,-) can be decomposed into Rn1,9(Z,-) +

Rn2,9(Z,~), where

A

2,4. w1(TJ» blAlij 9)l109(1 - F(T,, 21)) - l09(1 - F(T,, 21,90)”
 

  

Rn , Z. = —
”l ) gimme/14:13.0)

and

Z z-wl(T-.b)/\(T'.(”MT-.190) EA 2:9 A T,6
R112.0(Zi) : HE ,J J 2 J — ( 2) ( 0) g(Zi)-

21¢, w,(Tj,b)A (73,6) EA (T, 6)

It is enough to show that

sup E,|R,,,,,,(2,)(21A, = o,,(n-%), k = 1,2, (1.4.31)

Z1620

GENO

under the conditions of part (1), and

sup ank,o(Zi)| = 0.41). k :12, (1.4.32)

3'55:



under the conditions of part (2). By the mean value theorem,

lx-yl
1.4.,Ay, < 33 

”09(1) -109(y)| S

A

for all positive 31:,y. Apply this with a: = 1 — F(T,, Z,-) and y = 1 — F(T,, Z1, 60) to

obtain

Ilog(1— Pow.» — 109(1 — F(T.,Z.-,00))I s '.F(71‘2") ’ F(212,90), .
(1" F(Th Zill A (1 _ F(Th 21300))

(1.4.34)

 

By the definition of Rfl,,g(Z,), and the boundedness of A(t,6) away from 0 and 00,

we obtain that, on Ang,

A

sup sup an1,9(Z1)| g C sup |log(1— F(T,-,Z,)) — log(1 —— F(T},Z,-,60))|,

2611561300 (3.206131.

for some constant 0 < C < 00. This, (1.4.34), (1.4.26), (1.4.27) and the boundedness

of F(t, z, 60) away from 0 and 1 imply (1.4.31) and (1.4.32) with k z 1.

The Lipschitz continuity of A(t, 6) with respect to 6 uniformly in t, and the uniform

SLLN imply (1.4.31) and (1.4.32) with k = 2. (They can also be proved by applying

(1).)

Notice that F(T,, 2,) does not depend on 6 and 99(Z,) depends on 6 only through

MT], 6). By the assumption on A(Tj, 6), similarly we can prove the remaining asser-

tions. The lemma is proved.

We shall show that the probability of An approaches 1 as n -+ 00.

Lemma 9 Assume that (A1) and (A3’) hold. Then

lim P(A,,) = 1.
71—)00

Proof. It suffices to show that

lim P (Auk) = 1 or equivalently lim P (Afm) = 0, k = 1, 2,3.

n—>oo 71-900
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We have seen that limnaoo P(An3) = 0 by its definition. We first prove the above

assertion with k = 1. By the definition of Am, its compliment equal to

sup |B,(,J,,’i)(t, z) — h(t, 2)) > e

(t,z)E’D2

194311

One also notes that

Boa 2) — 353,0“, 2) = [Kim — t)K,(Z. — z) + KblTi — t)Kuz. — 2)] /n.

the absolute value of which is less than C/(nb2) for all 1 g i, j g n, (t, z) 6 D1,, and

for some finite constant C, since K is bounded. Hence we have

P sup 185.].“(44—4441»
(t,z)evg

151,357;

g P ( sup |Bn0(t, 2) — h(t, z)| > e — C/(nb2))

(t,z)evg

which is 0(1) in View of (1.4.25) and that nb2 —> 00 as n —> 00. We thus obtain

lim P(A,,,) = 1.
n—>oo

Let

F(t, z) = 2721 6114(7) _ t)Kblz’ " 2).
21:1 KAT, —— t)Kb(Zl — 2)

 

Similarly, one can obtain

~

P(Af,2) g P ( sup |F(t, z) — F(t, 2,60)| > e — sup |F(t,2) — F(j’i)(t, z)|),

(t,z)evg j,z‘,(t,z)evg

which is 0(1) if

sup |F(t,2) — F(j’i)(t,z)l = 0,,(1).

jai,(t,Z)ED2

This is easy to show and omitted here. The lemma is proved.
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Proof of Theorem 1 (Consistency) It is enough to Show that ln1(6)/n con-

verges in probability, uniformly in NO, to a nonrandom function that has unique

maximizer at 60.

We are going to prove later that

sup |ln1(6)/n —ln1(6)| = 0,,(1), (1.4.35)

6ENO

where

ln1(6)

1 71

By a uniform law of large numbers, which holds under our conditions, and the

fact that

P(w1(T, b) = 0) = 0(b) and P(w2(Z, b) = 0) = 0(b),

we obtain

sup |ln1(6) — l(6)] = 0,,(1), (1.4.36)

OENO

where

1(9) = El5l09(1- CHM-MT, 9)go(Z))) - (1 - 5)A(T, 9)go(Z)l

= f/[U —- e"A(t'9°)9(z))log(1 — e”\("9)99(z)) — A(t, 6)gg(z)e"'\("9°)9(zl]h(t, z)dtdz.

This can also be obtained by apply Lemma 1 with t = 6, {(t) = lm-(6), D = No,

r = s = 0.

Next we prove that l (6) has a unique maximizer at 60. One notes that the function

f(y) = (1 - e’x)log(1 - e7”) - ye“

attains its maximum at y = :1: for any a: > 0 and y > 0, because

e‘y - e"”

f’(y) = —————,
l—e‘y
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which is positive for y < 2:, equals 0 for y = :1: and negative for y > :17. Apply this with

:1: = A(t, 60)g(z) and y = A(t,6)g9(z) to obtain that 1(6) 3 [(60), and [(61) = l(60) ifl'

A(t,61)g,91 (z) = A(t, 60)g(z), (t, z) 6 D1,. This and the identifiability condition imply

that l (6) < l(60) for any 6 51$ 60. Therefore [(6) is uniquely maximized at 60. This,

(1.4.35) and (1.4.36) prove the theorem.

Now we establish (1.4.35). Write 111,-,- for w,(T,-, b)'LU2(Zi, b). It is enough to prove

 

that

su — w,,6,- lo F(T,,Z,,6)) w,,-6,-10(F(T,-,Z,~,6 =0 1 1.4.37063012: g(( —23 g( >11 ,() ( )

and

Slip l_:wii(1_ “1176)96(Z' )_Z::wii(1— — Mm16)96(zi‘—_)l 0P(1)'

6623/0 n i- 1

(1.4.38)

Apply (1.433) with :1: = F(T,, 2,, 0) and y = F(T,, 2,, 19) to obtain

A isZia _ i1 i30

Ilog(F(71.2.4)) — log(F(T.-,Z.,0))I 3 WT 0) ”T Z )' (1.4.39)
F(n2Zi16)/\F(nizfig)

By the mean value theorem,

Ie'r — e.” 3 la: — yI, (1.4.40)

for all positive :3, y. Apply this with :1: = A(T,-,6)§9(Z,-) and y .—: A(T,-,6)g9(Z,) and

recall the definition of F(T,, Z,,6) and F(T,, Z,,6) (see (1.1.5) and (1.1.4)) to obtain

that the right hand side of (1.4.39) is no more than

A(T.,9)|9(Z.) — 912.): 1

F(T'iaZiyg) A F(Tiaziag)

 

Therefore the left hand side of (1.4.37) is no more than

SUPaeNo,(T,,2.)eDg A(Tz‘, 0)l69(Zi) — 90(Zi)l

infOENo.(T,-,Z,)E'D2 F(T,, Z130) A F(Tia Zia 9)

 

3

29



which is 0,,(1) because of the boundedness of A, (1.4.26), (1.4.30) and the boundedness

of F(t, z, 60) away from 0. This proves (1.4.37), and (1.4.38) can be proved in a similar

way. Hence (1.4.35) is proved.

Proof of Theorem 2 (Asymptotic normality) We first prove the following.

sup (F(T,, 2,, 6) — F(T,, 2,, (1)1 = 0,,(1), (1.4.41)

(T120602

BEA/'0

where F(t, z, 6) is defined in (1.1.5) and F(t, z, 6) is defined in (1.1.4). Apply (1.4.40)

with :c = A(t, 6)f]g(z) and y = A(t, 6)gg(z) to obtain

A

lF(t1Z16) — F(t,2,9)l S A(t16)l60(z) _ 99(Z)|.

This, the boundedness of A and (1.4.30) imply (1.4.41).

By the definition of 99(2), see (1.1.3), and the assumption on A and 9 (see As-

sumption (Al)), g()(z), as a function of 6 and 2 on No x Z, is bounded away from 0

and 00. It follows from the definition of F(t, z, 6) that, as a function of t, z and 6, it

is boundedness from 0 and 00.

Let

Dim, 2., 0) = Aw, (9)422.) + Am, (1)4,(23, (1.4.42)

and

D1 (717 Zia 0) : A(7’176)90(Zi) + AA(T;,6)99(Z1-)

It follows from part (2) of Lemma 8 that

sup ID1(T.-.Z.,9) — D1(TiaZia6)l: 0,0). (1.4.43)
(T,,Z,)ED2

Now we begin to prove the theorem. The derivative, with respect to 6, of the

modified profile log-likelihood, ln1(6), defined in (1.1.6), is given by

a n

filnl (0) .2 2 wii

i=1

6" — 1 D,(T,-,Z,~,6).

Fm, 21,9)

  

30



Let

1 6

n 6 2 _—ln 6

Then, by the mean value theorem,

0 = 3,,(19) = 5,,(190) + «no? — 60)S‘,,(O*), (1.4.44)

where 6* is between 60 and 6, and

 

n ill—F 1) 2'70 "=__Zw,, F( (T Z )lDf(T,,2,-,9)
T,,,-Z,0)

+:23” FHLZfl) d

xM<7t0wwv+muflflfid&%wfiflflfidflfl

 

We are going to show that Sn(6*) converges in probability to a positive number.

To do this, let 3;;(6) is obtained from 3,,(9) with F(T,, 2,, 9) replaced by F(T,, 2,, o),

D1(T,-, Z,,6) replaced by D1(T,~,Z,,6), §g(Z,) replaced by 90(Z1), 99(Z,) replaced by

g,(Z,-) and 542,-) replaced by g'9(Z,-.) In view of (1.4.41), (1.4.43), part (2) of Lemma

8, boundedness of F(t, z, 6) away from 0, and the boundedness of A, A and A, we

obtain

sup (3,,(0) — s;(0)| = o,(1). (1.4.45)

GENO

One also notes that, under assumption (A1), 33(6) is Lipschitz continuous in 6 on

No. This, (1.4.45) and the triangle inequality imply

lawn—Suan=401 04%)

Since 3;;(60) is the mean of bounded random variables, it follows from the SLLN

(Strong Law of Large Numbers) that 3,:(60) converges with probability 1 to

F(T, Z) 60)—E __

F(T,Z,90)

D‘f(T, 2, 00) 2: —d(9,,).
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This and (1.4.46) imply that S,,(6*) converges to —d(60) in probability. Hence it

follows from this and (1.4.44) that.

yew—90) = d-1(90)s,,(90)[1+o,(1)]. (1.4.47)

Next we are going to find the limiting distribution of 8,,(60). Write g(z) for 690(2).

 

W'rite

5,,(90) = E, + Q... (1.4.43)

where

1 n [31(7‘2, 2:360)

En = — 1.0,, (S, — F 71', 21,6 .. , 1.4.49

W7- 2; l l 0)] F(T.~.Z.-,6o) ( )

and

min, 2.90)

F(T,,Zeeol "

 

1 " -

Q. = 752321)..- [F(T.~, 2.,90) - F(Tt.Z.~.90)] (1.4.50)
i=1

Both E, and 62,, has contributions to the limiting distribution of 5,,(60).

First we deal with E". Write 111,-, for w1(TJ-, b). By the definition of En, it can be

rewritten as the following

 

1 " Di(T,-. 21.00)
EnZ—‘E 1,61—Ffl,Zi,6 , 1.4.1

\/7—l 1:] w i ( 0)]F(11)Zi360) + R" ( 5 )

where

1 " . ~

Rn = 75 12:1 wiil6z‘ - F(Ti, ZtigollD(Ti, Zi)

and

7' D1(TiiZi100) Dl(naZi700)

D 71,21 = A — . 1.4.52

( ) F(T,, 2,9,) F(T,, 2.90) l )

  

In view of (1.4.41) and (1.4.43), R, is expected to go to 0 in probability. To prove

32



this, we show the expectation of R3, converges to 0 as 71 tends to infinity. Note that

= —:2 wii[5 F(T,, 2., 90)12D2(T 2)

£2E uililldil — F(TiiniligollD(Tiini1 )

i1¢i2

X wig, [(512 — F(Tz'zi Zi2360)lD(:riga 212-)

That the first term on the right hand side of the above expression is 0,,(1) follows

from

SUP lblTi'aZill 2 011(1):

(T,,Z.')E’Dg

which in turn follows from (1.4.41), (1.4.43) and the fact that F(t,z,6) is bounded

away from 0 and 1.

To prove that the second term of the expression of R3 goes to 0 in probability,

define the following

Zane”- 5kal-Tk " T,)K,,(Z,, -' Zn)

Zea“, K1477: — T,)K,,(Z,, — Zn) ’

For 1 g i1,i2 S n and i1 75 i2, let D(‘2)(T,-,,Z,-,) be obtained from D(T,~,,Z,-,) with

F“2’(T,-.Z.-.) = 131321.29 : n, 2‘, aé 2'2.
 

F(T,-,Z,,), 1 < j g n, replaced by F(‘2)(Tj,Z,-,). For any 1 g i, g n, by the

definitions of D(T,-,,Z,-,) (see (1.452)) and D1(T,-,,Z,,,6) (see (1. 4.42)), D(T,-,,Z,-,)

depends on F(T,-,2“), 1 S j g n, through 990(Z,,). See (1.1.2) for the dependence

0f 660(21'1) on 1317113211)? 1 S j S n-

One can see that, for 1 g j,i,,i2 < n and i, ¢ i2,

5:2TKb(iZ’leblzi2-211) if 12 #3-

F<T.-,z.-.)—F“2><T.,z..)= 2,11,49,-)A,(z,2'” ’ (1.4.53)

In order to study this difference, denote W(t, z) : 6Kb(T — t)Kb(Z — z)/n. Since

 

nb2|W(t, z)| < Co for some finite number C0, by Bernstein inequality (see (1.45)),

n2b4ef,
 

P (WIWU, 2)! > 721125..) s 263319 (__ <2 — 1222,.

2cg+conbze,/3) —- ”M C" C)

(1.4.54)
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The last inequality holds for some finite and positive number C if b215,, = 0(n‘“) for

some 0 < a < 1. In view of the proof of Lemma 1, instead of using 5,,(t), en, ha, (1, r

and s in the proof of Lemma 1, here using nW(t, z), nen, b, 2, 2 and 3, then (1.4.6)

there, with the exponential part replaced by that of (1.4.54), leads to

 

4 2

P( sup |W(t, 2)] > 5") g 2 (aneb +1) eatp (—Cnb2€n)a

(t,z)ev,, n

which is 0(1) if 5,, is chosen to be n‘(1”“°)b’2 for all 0 < a0 < 1. For these values of

a0, 5an = O(n‘“‘“0l), so that (1.4.54) holds.

It follows that

sup |W(t, z)| = 0,,(n—(1‘aolb—2).

(1,2)61),

Since b = 0(n‘“) with % < a < i, the above rate is 0,,(n‘l1‘00‘2‘ll) and is 0,,(n‘i) if

0 < on < % — 2a. Therefore, we obtain

sup |W(t, z)| = 0,,(n‘i). (1.4.55)

(t,Z)E'Dh

By (1.4.19) of Lemma 6, and that infumeph h(t,z) > 0, it follows from (1.4.53)

and (1.4.55) that

. - i -1

Sup lF(TjaZi1) _ F(2)(TjaZi1)l: 0,,(71, 2)‘

19,11,229:

i1¢i2

By the definition of Dll2)(T,-,, Z,,) and D(T,-,, ,,), 1 _<_ i1, i2 3 n, i, ¢ i2, and assump-

tion (Al), we can obtain that, with probability approaching 1,

sup lb<i2)(Tl11 Zil) _ D(Ti11Zi1)l—<— C Sllp HEAT]? Zi1)_ 1302“le Zilllv

13113:st! lSj,i1,i2§'n

“#12 i1¢i2

for some finite and positive C. It follows from the above two displays that

sup (DWI/1., 4.) — M... 2.11 = opt-72%). (1.4.56)
1STI 91.2311
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Next we show that, for the second part of R3,, D(T,,, Z,,) can be replaced with

D(T,,,Z,,) — 13“?)(T,UZ,,), 1 3 i1, i2 3 n, i, 31$ 112, without changing the expectation

of it. This is because of the following reason. For any 1 g i, S n, given (T1,,Zk),1 S

k S n, and 6k,k 75 i, the conditional expectation of 6,, — F(T,,,Z,,,60) is 0. For

1 g i1,i2 g n,i1 75 i2, by their definitions, neither D(i2)(T,,,Z,,) nor Dli1)(T,-2,Z,,)

depends on 6,, and 6,2, and D(T,~,, Z,,) does not depend on 6,,. Given (Tk,Z,,),1 g

k g n, and (5),, 1 g k g n, k 72 i1, the conditional expections of

M. — HT... 2..)116... — F(T... 2..)1D‘i2>(T..,2..)1‘9‘1141"...2..)

and

16.. — F(T..,2..)lM.-. — F(T... 2..)llD(T.-. , 2..) — D"‘”(T...2..)1D“”(T..,2..)

are zero. Thus their expectations are 0 too. Therefore the expectation of the second

part of R3, is equal to

.1. ..,_ ~___~(.-,)_.
E (n 2312;; weld. F(T..,2..,0.)HD(T.., 2..) D (T... 2.))

X wi2i2[5i2 — F(Tt'g. 2.2. 901llblTis. i2) _ D“”(71..Z..)l)

which is o,( 1) in view of (1.4.56) and the boundedness of 6, — F(T,, 2,). Therefore,

Rn = 012(1).

and hence, by (1.4.51),

1 Zn D1(TiaZia00)
En:— ii6i_Fn)Zi76 1

fl i=1 w [ ( 0)] F(Y-lza Zi.90) + 0p( )

Since P(w,, = 0) = 0(b) = 0(1), D1(T,,Z,,60) is bounded, F(T,,Z,,60) is bounded

 

away from 0, and the conditional expectation of 6, — F(T,, Z,, 60) given (T,, Z,) is 0,

it is easy to see that

_ 1 n . D1(7-;aZi700)

E. — ,5 ga. F(T..2.,9.)l F(,.” 2,, ,0,
 + 0,,(1). (1.4.57)



Now we deal with Qn. Recall (2,, from (1.4.50). Under the condition of the

boundedness of A(t, 60), A(t, 60) and F(t, z, 60) away from 0 and 00, by the uniform

boundedness of Q(Z,) and hence F(T,, Z,, 60) on An (defined before), applying (1.4.40)

with :1: = A(T,, 60)§(Z,-) and y = A(T,, 60)g(Z,-), we can see that

1 n D T,,Z,-,6

lo..-—23w..-1F(T.2..9.)—F(T..2..9.)1 “ ”)II... 

 

fl i=1 F(Tiazi.90)

< —29.99 2.) ll9(2.~) — 9(2))! + 19(2.) — 9(2.)IlI..

%2:3I(z620,192 2)? +I9(2)—g<2.)119(2.)— 9129111....

Here C is a positive and finite number. Taking expectation first conditioned on Z,

for each sub-term, we obtain that, by (1.4.28), the expectation of the first term in the

last display is 0,,(1). It follows from Cauchy-Schwartz inequality, (1.4.28) and (1.4.29)

that the expectation of the second term is also 0,,(1). Hence we obtain that, on An,

D1(Tia Zia 00)

F(Ti. Zi. 90)

 Qn = :71: Ewii[F(n, Z1, 90) “ F(Tt'. Zia 00)] + 0p(1)' (1°4'58)

By Taylor expansion of 1 — e‘” with respect to a: at some point 2:0, applying this

with :1: : A(T,,60)§(Z,) and :170 = A(T,, 60)g(Z,-), noticing the boundedness of A, we

obtain

“F(T‘za Zi) 60) _ F(Y-ia Zia 60)] + A(Y’t) 60)F(na Zia 60)[Q(Zi) _ g(Zi)“

S Cl6(Zi) — g(Zill2)

for some finite and positive number C.

This, the boundedness of f(T,-, Z,) (defined below) and (1.4.28) imply that, on An,

Q. = 71—7.,- 23w..t(T.-. 2919(2) — 9(2)] + 0.41) (1499)

where

{(t, z) 2: A(t,60)D1(t, 2,60)H, (t, z) 6 D1,. (1.4.60)
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Let

1 n

0.0 = E Zwflfim, 00).

#1

By the law of large number and that P(wj1 2 0) = 0(1), Cno converges in probability

to EA2(T, 00) which is (:0 according to the notation used before.

By Taylor expansion of 109(1-2) with respect to :1: at some point .130, applying this

with :17 : F(Tj,Z,) and :50 = F(T},Z,,00), noticing (1.4.27) of Lemma 7, we obtain

 

  

that, on An,

92) — 9<2 CO —239.1An(T.-,99) 1199(1 — F(Tj, 2.)) — zo9<1 — Fm, 2.. 90»)

1 1 .A(T- (9 F T- Z, —F T-,Z,—,9 _1
: C _ “’31 J) 0)[ 53]]: g 0 ( J 0)] +0p(n 2).

110711261. (3', 1'90)

This and (1.4.13) imply that, on An,

  

  

9(2.) — 92()— 12.1(2)+ 199(2)+op(n 2) (1.4.61)

where

1 1 v.5“) T ,2,
Rn1(Z,) = C _ij,A(T,-,90) _ ( 3’99)) , (1.4.62)

110 n jii F(Tj, Zi, 00)B,(IJ0 (Tja Zi)

and

B‘j"’(T.-, 2)
R.,( —Zw,-,A(3,90) _ < ) . (1.4.63)

0110”] F(T},Zi,60)Bn‘7t (73,21)

Substitute (1.4.61) into (1.4.59) to obtain that, on An,

Q11 : in + Qn2 + 0p(1)a (L464)

where

Q,“ = “3/: 213w..9(711,2.)R.1(2.-)
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and

Q...—— ——-——“15239.9((T..Z) 2.2(2). (1.4.65)

Let Cnl 2: inCno. Then

 

1 ” A(-)T,60),,-V(T 2)

C. =-——— 9.... :62) J J’
‘ «a: 2‘%1§“21m.z>9.<nz>

, ' ‘. i Y. . . . o

By Taylor expans1on of I Wlth respect to :1: at some pomt 170, applymg thls With

a: = Bffai)(Y}-, Z.) and 1‘0 2 h(TJ-, Z,), we obtain

1 n . A(TjagO) (,9)

Cn1=-fi;wn€(7hzi)anwJ-1-(I},Z-—-—)_V..J(Ty-.2.)

  

X [hm-12.) ’ (hfi(1“.12)122(3535”(7322>— h(T.~.2.)) ,

where h*(T,-,2,—) is between h(T,-,2,) and BLQ"(T,,2,). By (1.4.17) and (1.4.21) of

' Lemma 6, and the boundedness of h, f, A and F, using Cauchy-Schwartz inequality,

we obtain that

 

 

 

1 " A(T (90)

11 :——E ii 7’113Zz)—7:15;“ J, /n GZi 1

Let

1 {(T‘HZI')

n , '— i1 K Z,‘ — Z

C (T’ Z') .125“ F(T..2.)h(T..2.) ”( ’)

and

h C, d!‘

((9,.2): (T6022) (9 Z) 5, (9,9) eDh. (1.4.66)

where {(9, z) is defined (1.4.60). Then, by the definition of 12;.‘23"(T), 2.), 1 g 9', j g n,

(See (1.414)), and change of summations,

1

Cm — \7—5:[(51— 1707. 21)]; ZU.’111\(7},60)K[1(13 — T1)Cn(Tj. Z!) + 019(1)-

9'92:
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Let 11.2,,(2b) = 1 if T, E [t‘i‘ + 2b, t; — 2b] and Z1 6 [2f + 2b, 2; — 2b], and 0 otherwise,

1 g l g 71. Now we write the main part of C,” as the sum of two parts according to

whether 111,,(2b) = 1 or O. The reason for doing this is because of the edge effect of

the kernel estimation. Write

C... = Cn1+C21+op(1), (1.4.67)

where

- 1 "

C... = ——2329..(2b)[9. — F(T.,2.))1—anA((T..9.)K.(T. T)<..(T.-,2.)

fl (=1 j¢l

and

031 = —% 2(1— wu(25))l5z — F(T,, 21)]; Z wflA(TJ-, 60)K9(T9' - T0947}, Z1)

- #1

Since conditioned on (T., Z.),23 = 1, - u ,n, 61— F(T,, 21,00) and (5;. — F(Tk, Zk,90) for

1 7f k are independent with mean zero and variances F(T), Z,,00)[1— F(T), Z;, 60)] and

F(Tk, Z,,, 90)[1— F(Tk, Zk, 00)] respectively, by taking conditional expectation first, we

can see that

2(0):)? = £240 — wu(2b))F(TI.Zz.90)(1— F(T, 2., 9.))
(=1

x l wle(TJ-,00)Kb(Tj —T,)C,.(TJ-,Z,) 2

(n 2 ) l
j¢l

which is 0,,(1) because

1
a. Z EIA(T7, 00)Kb(Tj — THC-"(T1, Zl)|

 

#11

1\(-T 90)€)(T. Z)
<— 3’ ’ KZ.-ZKT-—T =01

and E(1 — wll(2b))¢=0(1). Here we use the boundedness ofW and that

supmznengllKfiZ, — Zl)Kb(Tj — T,)| < 00. Therefore, we obtain

03, = 9,,(1). (1.4.68)
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Write

énl = ~nll + 6.212. (1-4-69)

where

1 ,

C... = ——$52136429) 1—9. F(T., 2.90)]; Zw..A(T.-.9.)A.(T. — T.)<(T.-. 2.)

#1

and

Cnl2—_——1—;u’u(21)) [—51 “711.2690”

x n:23 w..A(T., 9.)K.(T. — T.)1<.(T., 2.) — <(T., 2.)]-

.1525!

Note that ((15, z) is four times differentiable under the assumptions. Apply (1.4.7) of

Lemma 2 and part (1) of Lemma 3 to ("(Tj, Z.) with d = 1 and r = 4 to obtain

sup E..1<.(T.,2.)—<(T..2.)1 =0.(— +0p(b8)- (1.4.70)
1

b)
Z.€[zf+2b,z§—2b],TjeT0 11

Because of the conditional independence of 6. — F(T., Z,, 00) and (5). — F(Tk, Zk, 00) for

l aé k with mean zero and variance F(T., Z¢)[1—F(T., Z.)] and F(Tk, Zk)[1—F(Tk, Zk)]

respectively when (T., Z.),z' = 1, - - - ,n are given, as before, we have

C)... =%2:32{w..(2b)FF(:/1,2.,9.)11— F(T.,2.,6.)1

x l; Z,,w..A(T..9.)K.(T. — Town-.21) - CAT.» 2042}

<22[9..(29)F(T.,2. 9.)(1— F(T.,2.,6.))
_ 1 2

x —239..AT..9.)K.(T T.)—n23(<.(T..2.) — <.(T.-,2.))2].

#1 ”#1

The last inequality follows from Cauchy-Schwartz inequality. Since K is bounded,

a
l
t
—
1

lel S C/b2 for some finite number C. This, the boundedness of F(T.,Z.,00) and

A(T.,60), and (1.4.70), imply that

E(*...)2=0(1)+0.(96)
nb3
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which is 0,,(1) as b = 0(n‘“) with ,1; < a < % (See assumption (A4)). Therefore,

an

Cum 2 0,.(1) and it follows from (1.4.69) that

1

Cnl — £2"; UM()2b [—51 F(Tz. 21)]; Z'wle(Tj960)Kb(Tj " T1)C(Tj.Zl)

#1

+ 0,,(1).

Let

n.(-—T.),Z. iZwflA(T.,0..)K.(T.— T.)<(T.,Z.). 131:...

”#1

and

77(t, z) = A(t,00)C(t, z)h.1(t), (t, z) E 'Dh. (1.4.71)

where ((t,z) is defined in (1.4.66), and h1(t) is the marginal distribution of T as

defined before. Similarly, we can obtain

Cnl '2 «22le(>21))—[(51 F(T},Z()]77(CT(,Z() +0p(1).

Since P(wu(2b) = 0) = 0(1)), 7)(t, z) is bounded, and the conditional expectation of

6,, given (T), Z,), is 0, it is easy to see that

C... = —i 23.5. — F(T., 2.)]..(7), Z.) + 0 (1). (1.4.72)
x/fi = p

Since Q... = CHI/C...) and 0110 — co = 0,,(1), it follows from (1.4.67), (1.4.68) and

(1.4.72) that

62.. = ———«52w.— F(T.,Z.)1n(T..Z.) + 0.0) (1.4-73)

Now we deal with Qn‘z. Let CH2 2 QnQCno. If follows from (1.4.65) and (1.4.63)

that

 

an fizwu€(T21‘)”: — (\(7330202) B£j,2)(7:7, 2;)

n19“ flF(73’Zi’90)BnJO,
(7372i)
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As b = ()(n”“) with fi < a < i (see assumption (Al)), (1.4.20) and (1.4.21) of

Lemma 6 and the same arguments as we were dealing with C... lead to

\(T .90) ..

C71 — n (7132') J, B0,!) T'aZi 1 -2— £2“a 712%,.FT‘200),,(TTT) . (. )+o.() 

That is, 353577}, Z.) can be replaced by I1.(TT-,Z.) with a small difference 010(1). By

the definition of 379,2?)(73, Z.) (see (1.415)),

1 n 1 MT 60)
0.. = —— wii TiaZi — 717‘ - J,

2 fl Z; a )n 3; )1F(TjaZi160)h(TjaZi)

 

1

x ; Z1F(T.,Z..6.) — F(T., Z. 6.))K.(T. — T.)K.(Z. — Z.) + 0.0)

l¢i,j

:: 1120 + 017(1)? say

Note that

_E(T;HZI'1)A(TJU00)

01120) _ "512 Z Z wzlilellFF(le,Zil,60)h(Y}1,Zil)

11=1J1J5i1 (H511 J1

X[F(Tl13Z11100) _ F(TJHZIHQO)le(T11 — 731)Kb(er _ Zii)

€(Ti29 Zi2)A(T:7'2160)

X u’igizu))1

2: 3;? 12;” J F(Tji” Z’2’ 60)h(TJ21 Zi2)

X [F(leZl-zvgo) _ F(sz, Zi2160)]Kb(T12 — TJz)Kb(Z12 _ Ziz)‘

 

 

Since

E{[F(T, Z, 60) — F(t, z, 60)]Kb(T — t)K..(Z — 2)}

1 1

2/ / [F(t + bu, z + by, (90) — F(t, z, 00)]K(u)K(v)h(t + bu, z + bv)dudv

0 0

= 0(b4),

uniformly in (t, z) 6 Do, for the terms with l1 # l2, conditioned on TJHZirv 732, Z,,,

its expectation is of order 0(b8) uniformly in j., 332,131, 12 and hence the sum of the

expectations of these terms is of order 0(71b8) which is 0(1) if nb8 —> 0. Note also
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that

E[7.Liz|F((’33160)_ F(T 21‘60)]Rb(t —T')Kb(z —- Zi)”

:/0(b/1 IF(t+bu 2+1”) 90)— F(t,2.90)IIK(U)K(U)h(t+bu,z+bv|dudv

For those terms with l. = 12 and 1'. 91$ 12,]. # jg, conditioned on T.,,Z.,, its ex-

pectation is of order 0(b) uniformly in T.,, Z,,, hence the order of the sum of the

expectations of these terms is also of order 0(b) since there are 5 summations. This

order is also 0(1).

Similarly, the sum of the expectations of the other terms is of order 0(1). There-

fore,

E(Cn‘20)2 = 0(1)

and hence Cngo : 0T,(1). Therefore, an and hence Qng is 0p(1). This, (1.4.64) and

(1.4.73) imply that

Q. = 7391:;[4— F(T., Z.,60)]77(Tz, Z.) + 0,,(1). (1.4.74)

If follows from (1.4.48), (1.4.57) and (1.4.74) that, on An,

0101.21.90) 7)(T.,Z.)
6)0 =\/_12[6[— F(CF],Z(,00)] [F(T},Zl,60) —' CO ] +0p(1). (1.4.75)

This and (1.4.47) imply that, on An,

  

chrlaZlaBO) "(Y-lazl)

Jae—e)=d-‘(6.)“1,/:,Z_;[6’_Fm’z"6°)] [F(J),Z.,00) _

  ] + 0.0),

where 77(t, z) is defined in (1.4.71) and

F(T, 2100)

W") 2 E [F(T, Z, 9..)
DT(T1 2100)] '

Since D1(t,z,00) and 17(t, z) are bounded and F(t, z, 60) is bounded away from 0 on

13)., the theorem follows from the central limit theorem and Lemma 9.
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Chapter 2

Sieve Estimation

2. 1 Estimation

The second approach uses the idea of sieve and is analogous to that of Rossini and

Tsiatis (1996).

The goal of this chapter is to estimate 0 efficiently, with a(z) = log(g(z)) as an

infinite dimensional nuisance parameter. The rescaled (conditional) log-likelihood of

0 and 0 based on (7},6,,Z,),i = 1,2,... ,n. is

Ln(6, a) 2 £2 [9,logF(T.-, Z,, 9, a) + (1 -— 6,)zogF(T,, Z,, 9, a)]

£21

1 n .r, 0(2')

=_ (5.1 1— “(Fume ‘ — 1—6, AT,- 9 0W] 2. .17,;[ome >< >(.)e (1)

Here

F(t, 2:, 6, a) = 1— e“‘<"">€°“), F(t, z, 9, a) = 1 — F(t, z, 9, a). (2.1.2)

To maximize the log-likelihood over all possible 0 and a, we should set a(Z,) to

be positive infinite if 6,- = 1, and negative infinite if 6,- = 0. Hence the maximum

likelihood estimator over all possible functions a does not exist. The log-likelihood

function is maximized as oz varies over a small set of functions which depends on the

sample size. More specifically, we approximate a by a step function with known jump
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points and maximize the log-likelihood as a varies over the step functions. As the

number of steps increases along with the sample size, the bias from the approximation

disappears. Assume that the covariate lies in a bounded interval. Without loss of

generality, it will be taken to be an interval [0,1]. To construct the step function,

define a partition 0 = 20 < 2:. < < z), = 1, where k depends on n and increases

with the increase of n. The step function is then defined as

k

an(z) = 29,-5.9), (21.3)

where 13(2) is the indicator function for the jth interval, defined by 13(2) 2 1 if

zj_1 < 2 3 z, and zero otherwise. For the fixed partition, the step function is

completely specified by the parameters (an1,--- ,ank). Hence, from here on, an will

denote either the function on given by (2.1.3) or, equivalently, the vector oz, depending

on the context.

The estimate (9,61,) is obtained by maximizing the approximate likelihood formed

by substituting (2.1.3) for a in (2.1.1). Since I: is an increasing integer-valued function

of n, written as k(n), an will tend to a. The next two sections show that when

k(n) 2 0(71") with i < 7 < %, (6,611,) is consistent and 9 is also asymptotically

normal.

The first and second partial derivatives of the approximate log-likelihood are used

to generate the estimates and their variance. In view of (2.1.1), the first derivative

with respect to 6 is

5,0(9, 0,) = A(T,, 9)ean<Z">, (2.1.4) 

l i [6i — F(T,“ Ziagi C{71)}

n i=1 F(naZiigaan)

and that with respect to am is

1 " [9, —F(T,- Z,- 9 a,)] .
,9, =— ’ ” . ,9 a"WI-Z,, (=1,-.- k,
S .J( 70 ) n; F(n,Zi,0,an) \(T7 )6 ]( ) J a

 

 

 



where A(t, 0) denote the derivative with respect to 6.

The score vector is defined as

s,(9,a,).—. ’ ,a . (2.1.6)

Sn,k(gaan)

The estimates (0, (in) are defined to be a solution to the score equation

5,,(0, an) 2 0. (2.1.7)

The derivative of S, with respect to (6, an) is called the Hessian matrix and related

to the observed information. This is defined as

6

”(W =W
5,,(0, 0,), (2.1.8)

which is the (k + 1) by (k + 1) matrix of partial derivatives with respect to 0 and an

of the elements of 5,,(6, a,). Let 0 denote the first element. Then the elements of H,

are defined by

 
1 n 61 '— F(T‘hZiag an) " \ a ,

h00(0,a,,) Z 7.:[F(T,Z,,- 9 a ) Mme” "(21)
2:1 7 a n

1 n 6i(D0071:92:30,011)

n,_, F(T.-1.94..) ’
 

 

1 n [5. — F(‘Z,'- Z,- 9 an)]- _
. 0 n : _ 1 , , , j . 071(2') . i

hOJ( ,a ) n 1.2—1 F(E,Z,~,9,an) \(T,,0)e 13(2)

_ l : 5100101. Z1. 0. an)Ij(Zi)

n F(R7Zi307an) ,

 

j:17°"7k1

hj0(97an) : h0j(67an)a 3:1: ' ' ' 7k)

 

[6i—F(7117Zi10 071)] 011(21')

hJ'J((9 an) 1%: (T,Z.,9,an) A(T.‘.9)€ Ij(Zi)

_ _1: 62'D11(7‘ia Zia 63 an)IJ(Zi)

n F(Ti.Zi.9.an) ’

 

j:11"'aka

46

 

 

 



and

hij(gaan):07 z¢j:lamvk7

where

 

 

 

D00(t9 216,071) F(t Z 6 a )‘&2(t36)e2an(2)3 (2H19)

F t,z,6,an - a ,

D01(ta 376,071) 2 FEt Z 0 a ;‘/\(t30)1\(t36)82 "(0)7 (2'1'10)

F t, 2,9,0, 0

D11(t,z,0,an) = F(t z 6 a ;A2 (t, 0)e2 "( (2.1.11)

and A(t, 9) is the second derivative with respect to 0.

Expectation is taken with respect to the true parameters ((90, a0).

2.2 Consistency

In order to have the consistency and asymptotic normality of the estimator, we use

some assumptions. We call the following assumptions Condition A.

(1) The real parameter 6., is an interior point of G.

(2) Let T and Z be the supports of T and Z respectively, where Z is a closed

interval of 72‘. A(t,0) is bounded away from 0 and 00 over (t,6) E T x N1, where

= {0 : |0 — 60| S A} for some 0 < A < 00. The density of (T, Z), h(t, z), is

bounded on T x Z, Lipschitz continuous in z uniformly for t E T.

(3) The first and second derivatives of A(t,0) with respect to (9, A(t, 6) and A(tfl),

exist, are bounded for t 6 PT and 9 6 N1, and continuous in 0 for any fixed t;

(4) (10(2) is Lipschitz continuous on Z.

For any function b(z) defined on the support of Z, let Hblloo : supzez |b(z)| and

||b||= (/E 2be sup-norm and Lg-norm respectively.
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In the following, Theorem 3 states the existence of one consistent (in sup—norm)

estimator, d, which is a solution to the score equation. Theorem 4 establishes the

convergence rate of the estimator (in L2 norm), which will be used to prove the

asymptotic normality of the estimator. The proof of them will be given later.

Theorem 3 Assume that Condition A holds, and the number of intervals is increas-

ing at a rate k(n) : 727, with O < 7 < 1. Assume also that for all k and 010,, with

Hag, — aOHoo < A0 for some positive and finite number A0,

P(Ij(Z) =1) 2 0(1), kP(IJ-(Z) = 1) > c, '=1,2,--- ,k, (2.2.1)

and

F(T12100 10011

(WDIKT. Z. 90. 00n)1j(z))

 

k .

E [000(7‘, Z, 90,90,“ - Z > c, (2.2.2)

1:1

2

9(mfiflwamuzammmo)

E
F(T,Z,9o,o.o,,)

for some 0 < c < 00, not depending on n. Then there is at least one consistent {in

sup-norm) solution to (2.1.7), i.e. there exists at least one (dim) such that

lé - 90|+H51n - aoiloo = 012(1).

The proof is given in Section 2.6.

Theorem 4 Assume that the conditions in Theorem 3 holds. Assume also k(n) = n7,

- 1 1
with Z < ”y < 5, and

E'(1)01(T.Z.90.0lo))2

E (D11(T1 21001 00))

 
E [D00(T, Z, 60, 0(0)] — > 0. (2.2.3)

Then the estimator (0162,.) in Theorem 3 has the following convergence rate

9—v=4m%ilnwwm=4mdi

The proof is given in Section 2.6.
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2.3 Asymptotic normality of 6

In this section, the asymptotic normality of the estimator is stated and the proof will

be given later.

Theorem 5 Assume that the conditions in Theorem 4 hold, and 02 defined below is

finite. Assume also that the third derivative of A(t, 6) with respect to 6 exists for 6 in

a neighborhood of 60, and is continuous at 60. Then

fi(é — 60) _T N(01 02),

where the asymptotic variance is given by

(2.3.1) 
(ElelT’2160

190)|Z))2)]
‘1.

2: ED T29 4' —E
o ( oo( , , 0:00)) ( E(D..(T,Z,00,ao)|Z)

The proof is given in Section 2.6.

2.4 Information bound for 60

The true model has two parameters: 6 is finite dimensional, and oz is an infinite-

dimensional functional parameter. The semiparametric information bound for esti-

mating 6 is based on the maximum of the asymptotic variance bounds of regular

estimators for 6 obtained using parametric sub-models of a. It was shown in Section

2.3 that the estimator 6 is asymptotically normal with a certain asymptotic variance.

It is shown in this section that this asymptotic variance achieves the bound. Projec-

tion methods are used to find the efficient score for the semiparametric model and

hence the variance bound (Bickel et al. 1993).

The log-likelihood of 6 and 0 based on (T, 6, Z) is given by

0(2)

5109(1 — e“"‘<7¥9>e ) — (1 — 6)A(T, 6)e°(Z). (2.4.1)
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Consider a general parametric submodel with a = a,, specified by 7 (a real variable),

where £a,(z)l,:0 : a(z) for some function a(z) with Ea2(Z) < 00. Take derivatives

of (2.4.1) with respect to 6 and 7 at (6 = 60, 7 = 0) to obtain the scores

A(Ta 60)600(Z)
 (2.4.2)

and

A(T, 60)e°‘°(Z)a(Z)

Sa(T,Z.5.90.00) "‘2 l6 — F(T,Z,6o,0‘0)l F(T Z 90 010)

(2.4.3) 

To find the information bound, project SO to the linear span formed from all square

integrable So. This projection is denoted by 50- and is computed by solving for all

5..

E(SOS,) = E(s,.s,). (2.4.4)

Note that the conditional expectation and variance of 6 given (T, Z) is F(T, Z, 60, a0)

and F(T, Z, 60,a0)F(T, Z, 60, (10) respectively. Substituting (2.4.2), (2.4.3) for So, S,

in the above expression, taking conditional expectation, given (T, Z) first, and then

taking expectation with respect to (T, Z), We obtain

E(D01 (T, Z, 00, ao)a(Z)) = E(D]1(T, Z, 00, a0)a*(Z)a(Z)),

where D01 and Du were defined in (2.1.10) and (2.1.11) respectively. Take conditional

expectation, given Z first, and then expectation with respect to Z to obtain

E[E(D01(T, Z, 60, a0)|Z)a(Z)] = E[E(D11(T, Z, 00, ao)|Z)a*(Z)a(Z)]. (2.4.5)

It is easy to see that

(2.4.9) 

solve (2.4.5) and hence also solve (2.4.4).
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Therefore, the efficient score is given by

50(T. Z. 90. 0‘0) - Sa‘(T92260100)

(6 — F(T, Z, 60,00))800(Z) . , E(D01(T, Z, 00,00)|Z)

= AT9—AT9

F(T, Z, 90, 9.)) l ’ 0) l ’ 0)E(D11(T, Z, 60,ao)|Z)

  

The semiparametric information bound is equal to

E [SO(T7 Z: 60-, 0'0) _ Sa'(Ta Z1001QO)]2

and the asymptotic variance bound is the inverse of the information bound. Take

the conditional expectation of the square of the efficient score, given (T, Z) first, and

then expectation with respect to (T, Z) to obtain

E [50(T, Z, 60, (YO) _ 30' (T1 2760100)l2

F(T,Z,00,00)6200(Z) ( E(D01(T12160100)IZ))2
=E A T,6 —AT,6 ,

F(T,Z,60,a0) ( 0) ( °)E(D.,(r,z,9o,ao)|Z)

  

  

Expand the square term and take the conditional expectation given Z first to obtain

that the right hand side of the previous display is equal to

 

E [D00(T, Z, 60,00) - (E(D01(T’Z’00100)IZ)
)2]

E(Dll(T, Z, 90, 00)|Z)

In view of (2.3.1), it follows that the asymptotic variance of 6 achieves the asymp-

totic variance bound.

2.5 Simulation

A simulation study is presented before we go to the proof of the stated asymptotic

properties of the estimator.

As in Section 1.3, assume that the conditional distribution of X given Z is a

Weibull distribution with distribution function

1 -— e_1.60e00(Z)
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where 00(2) 2 log(z). Also assume that T and Z are uniformly distributed on [1,2]

and [02,12] respectively.

For each fixed sample size (11230, 60, 100, 200, 500, 1000 respectively) and ap-

propriate k’s, 100 samples are generated with the real parameter 60 = 1.5 and 100

replications of the estimate of 60 based on the sieve maximum likelihood estimator

(SMLE) are obtained. The means and standard deviations of these estimates are

shown in the following table.

Table 2. Simulation results for the SMLE

 

11 w mean s.d.
 

30

1.6976 1.8180
 

2.1060 2.0269
 

2.4360 2.9598
 

60

1.7064 1.2145
 

1.8189 1.2680
 

1.9675 1.4248
 

100

1.5954 0.8047
 

1.6427 0.8103
 

1.6932 0.8502
 

200

1.5624 0.5154
 

@
0
3
0
0
0
3
r
5
0
0
0
3
1
h
v
‘
k
l
0
t
—
t

1.5838 0.5330
 

p
—
I

O 1.6240 0.5365
 

500

0
3

1.5591 0.2946
 

0
0

1.5671 0.2893
 

b
—
J

0
1

1.6076 0.2964
 

1000 10 1.5432 0.2136
 

15 1.5530 0.2125
  20  1.5651  0.2177 
 

 
The above table shows that when the sample size is not large, the bias and variance

are slightly larger than those of the generalized profile maximum likelihood estimator

(see Table 1). However, they decrease with the increase of the sample size, and the

variance will be eventually less than that of the generalized profile maximum likeli-

hood estimator since it achieves the semiparametric lower bound. Unfortunately, a
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very large sample size is needed for this to happen. This can be seen when we com-

pare the above table with the simulation results for the generalized profile maximum

likelihood estimator in Section 1.3.

2.6 Proof of the theorems

2.6.1 Proof of Theorem 3

The definitions of sup-norms for a vector and a matrix are introduced first. If a is a

vector with elements a], 1 _<_ j g m, then

llalloo = lrsrljgnlajl-

If A is an m. by 771. matrix whose (i, j) element is denoted by a,,-, then

m

”Alloo = 121,2); (2 Iasl)

1:1

Now define a step function, 00,, of form (2.1.3) as an approximation to a... Pre-

cisely,

k(n)

0011(3) : 200(Zj)1j(z)'

j=1

The Lipschitz continuity of 00 implies that

[[0071 — 00““) = O(k(n)_1). (2.6.1)

Let

fin = (970111: ' ° ' yank), BOn : (90) (10(21),' ' ' 900(Zk))1

and

[30 = (90.00)-

53



Note that 3,,(6n) = 0 is equivalent to

Snowy.)

5,9,) := ks,,,(9,) = 0. (2.6.2)

kSn,k(IBn)

The derivative of 5.103..) with respect to 6,, is

h00(,5n) h'01(.6n) h0k(/3n)

H,(,9,) ;-_— khml'g") 991,003,) ,0 g , (2.6.3)

khOkwn) 0 0 khkkwn)

where h,,- is defined in Section 2.1. The low-right k by k sub-matrix is a diagonal

matrix.

Let SW") = ESn()6n) (expectations for all the elements). Then, by (2.6.2),

(2.1.4), (2.1.5) and the fact that the conditional expectation of 6,- given (T,,Z,-) is

F(T,, Z,, 60,00), we obtain

E<A<T,z,9.,9.>A(T,9))

~ kE(A(T, 2150, fin)A(T10)Il(Z))

S(5..) = , (2.6.4)

kE(A(T, Z, 60, ,6,)A(T, 6)Ik(Z))

where

HTZ%%)
.TZ 9,=a.<z> ’ ’ -1-
4( , .60., ) e F(T,Z,6,an)

By (2.1.2) and Assumption (2), (3) of Condition A, F(t, z,6,a) is Lipschitz in 6,0,

 

uniformly for (t, z) E T x Z. It is easy to see that ||S~'(6n)||00 = 0(1) if “6,, — 60,,“00 =

0(k’1) and P(I,~(Z) = 1) = 0(1) forj = 1, - -- ,k.

Let g(fin) = Efilnwn). Similarly, by (2.6.3) and the definition of h,,~(,6,,) (see

Section 2.1), 0 g i,j S k,

boown) (901(571) ' ' ' 50145..)

kb0k(.6n) 0 "' kbkk(fln)
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where

9.99,) = E [(R(T, Z, 90, ,9,) — 1) A(T, 6)e""(Z)] — E(R(T, Z, 90, ,6,)DOO(T, Z, 9, a,)),

b.,(9.) =E [(R(T,Z,9.,9.) — 1)1(T,9).an<2>1,(z)]

_ E(R(T1ZaflOafln)-D01(TaZigaan)1j(Z))i .721127' ' ' 1k,

b,,(,9,) =E [(R(T, Z, 90, 9,) — 1) A(T, 6)e°"(Z)I,-(Z)]

— E(R(T? Za fi07/Bn)D11(T, Z) 0: an)I](Z))a 3:1123'H1k7

 

and

F(T7Z100700)

Z n = .
R(Ta 1/30316 ) F(T, Z, 0,0,1)

Notice that

- a ..

H n = — n .(9 > 93,56 )

The inverse of 1706,) is as follows

~ [53—1

H“(9.) = <qu _1q01) , (2.6.5)
%1 k 611

where

k b2' —1

900 = (boo — 2 b&) .

J=1 3

q.“ is a row vector with its jth element

bO' .
—q00b—]7 J:1121'°'1k1

j.

and q“ is a k x k matrix with its (i, j )th element

2 bOi b0j

00 ’

b,,-b,-,-

 
I(,’;j)bj_jl +q ]=1,2,'°' ,k.

Since 6030) = 0 by (2.6.4), S(,6,,) in continuous in 6,, by Condition A, by (2.6.1),

“Stan“... = 0(1). (2.6.6)
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Since H(,6,,) is continuous in 6,, by Condition A, and Iii-1030,) exists for large n

by (2.2.1) and (2.2.2), by (2.6.6), it follows from the inverse function theorem with

sup-norm (Lemma 1 of Rossini and Tsiatis (1996), which is stated in the following

lemma. For the standard (L2) formulation of the inverse function theorem, see Rudin

(1964)) that there exists 6,, = (6, (in), with o}, of the form (2.1.3), such that

and

”,3. — 90.11.... = 0(1). (2.6.7)

If |]S,(6n)[|oo = 0,,(1) and [[1‘31l;1(/37n)||00 < c with probability approaching 1 for

some finite constant c, then by the inverse function theorem again, with probability

tending to 1, there exists solution 6,, = (6, d") to Sum") = 0 such that

[llén — 611““) = 010(1)-

This, (2.6.7), (2.6.1) and the triangle inequality imply that

”/51. — fiolloo = 0p(1)'

||Sn(6)]]oo = 0,,(1) and ||f~1,j1(6n)||oo < c with probability approaching 1 can be

established in the same way as the proof of Theorem 1 in Rossini and Tsiatis (1996).

The theorem is proved.

Lemma 10 (Inverse Function Theorem with Sup-norm). Let H(x) be a continuous

differentiable mapping from Rm to Rm in a neighborhood of 2:0. Define the Jacobian

as the m x m matrix A(x) =2 6H(x) (derivatives of the elements ofH with respect to

the elements of x). If there exists constants C and (5* such that

“Ari-4170)”... < C
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and

sup HAVE) - A(xo)||.. S (2C)'1.

{IIHI-xolloo<5'}

then for d < 6“/(4C) and all y such that [Iy — H(:r.0)[]Do < d, there exists a unique

inverse value x in the (5* neighborhood of T.) such that H(x) = y and “:1: — 230]] < 4Cd.

2.6.2 Proof of Theorem 4

We are going to use some general results on the convergence rate of sieve estimators.

The following lemma is a part of Theorem 1 of Shen and Wong (1994). To state the

lemma, we introduce some general notations.

Let Y1, » ~ - , Y, be a sequence of independent random variables (or possibly vectors)

distributed according to a density p0(y) with respect to a o-finite measure a on a

measurable space (37,8) and let G be a parameter space of the parameter 6. Let

l : (9 x y —> R be a suitably chosen function. We are interested in the properties of

an estimate 6, over a subset G, of 8 by maximizing the empirical criterion C,([J’) 2

£2,221 1(13, Y2), that is, C,(6) = maxgeen C,(6). Here 9, is an approximation to 9

in the sense that for any 6 E 9, there exists 7r,6 E G, such that for an appropriate

pseudo—distance p, p(7r,6, 6) —> 0 as n —-> 00. The following assumptions are needed

for the lemma.

C0. l is bounded.

C1. For some constants A1 > 0 and a > 0, and for all small 6 > 0,

.f El/3,Y ~lB’Y >2A 2a.

P(5,fio)r>le,fieen
((10 l ( )) __ 16

C2. For some constants A2 > 0 and b > 0, and for all small 6 > 0,

.f V l Yr—l 1Y<2A2b,

PWfiolgcfleen
ar( ([30. l (,3 )l _ 26

C3. Let .77, = {l(6, -) — l(7r,60) : 6 E 9,}. For some constants r0 < % and A3 > 0,

H(€,}',) g A3n2r°log (1) for all small 6 > 0,

C
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where H(e, f,) is the Loo-metric entropy of the space Tm that is, exp(H(e,.7-',)) is

the smallest number of e-balls in the Loo-metric needed to cover the space 17,.

Lemma 11 Suppose Assumptions C6 to C3 hold. Then

.003, 236) = 0. (max (n",p(7r.fio. Bo). Kl/(2“)(71.,Bo.fio))) ,

where K(rr,60, ,60) = E(l(/30, Y) — l(7r,60, Y)) and

1—2rQ _ loglqgn 2f b > O.

T __: 2a Zalogn ’ — ’

1—2r -

ii, 2f (2 < a.

From the proof of Theorem 1 of Shen and Wong (1994), it is noted that the globe

maximizer could be replaced by a local maximizer around the real parameter and the

convergence rate is still true for the local maximizer. In this situation, the sieve G, is

a sequence of shrinking neighborhoods of the real parameter 60. To apply the above

Lemma to our case, let Y = (T, Z, 6), ,6 = (6,a), 7r,6 = (6, (1,) where a, is of form

(2.1.3) with 02,,- = a(z,—). Also let

en : {(01072) 3 l6 "' 00] S an: ”an _' QOIIOO < bn}:

where a, and b, are chosen such that, with probability approaching 1, (6, (1,) is the

maximum point in 9,. Define the metric as follows

903. 60) = l9 - 6ol + Ila - aoll. (246-8)

and also define

1(9, Y) = (Slog (1 — e-MT'OWZ’) — (1 — 6)A(T, 9).“).

Under our assumptions, C0 is true. Note that

El(,6,Y)
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Taking Taylor expansion of l (13, Y) with respect to 6 and a, noticing that the expec-

tation of the first derivative vanishes at [2’0 and the matrix of the second derivatives

is negative definite by (2.2.3), we obtain

15:99.1) — «9.17) 2 cptw. 9.) (2.6.9)

for same finite and positive number c. Hence C1 is satisfied with a = 1. It is easy to

see that, under Condition A,

1"av‘(l(/3o. Y) — [(3. Y» S E(l(.30. Y) — ((5. Y))2 S 092(6./30)

for some 0 < C < 00. Thus C2 holds with b = 1.

Since for all y,

|l(.’3. y) - ((130. y)! S 6‘019 - 90] + Ila - aolloo).

for some 0 < C < 00, not depending on y, it is easy to see that

H(€.}'.) S Elk/0.9.).

where H(7),9,) is the metric entropy of the space 9, with respect to the norm

|6—60|+ [|a—ao||,o. Since 9, is a sequence of shrinking neighborhoods of 60 = (60, do),

there exists a positive and finite number C0 such that [6| S Co and ||a,|]o, S C0,

(6,0,) 6 9,, and a, of form (2.1.3). For any 77 > 0, divide the interval [0,C0] into

small intervals, with length 71/2 or less, such that the number of intervals is less than

or equal to %Q + 1. Then, it is easy to see that

. k(n)

H(-n, 9,) 3 log ((2% +1) (3% +1) ) g Ck(n)log (%),

for some positive and finite constant C, as r} is small enough. Hence, for small 6 > 0,

H(e,}',) g Ck(n)log(-71-7-) = Cnllog (%),
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for some positive and finite number C. Therefore C3 is satisfied with r0 : %.

Apply the above lemma, we obtain

p(1’3, 60) = 0,, (max (n—T,p(7r,,60,x30),K71i(7r,,60,60))) , (2.6.10)

where

1 — 7 loglogn
T:————

2 2logn ‘

 

Note that, for large n, i < r < 3 as i < 7 < %. Since 60 = (60,00). 7rM30 =(90.010n).

where do, is of form (2.1.3), we obtain that, by (2.6.8) and (4) of Condition A,

P2(7Tn50.50) = HO‘On — aoll2 g CHM—2 = 071—27.

for some positive and finite number C. Thus

p(7r,,[30,60) S Cn’”. (2.6.11)

The same argument as that leading to (2.6.9) gives that, for some finite and positive

number C,

K(Tfnfio, (30) = E(l(,60, Y) — l(flnflo,Y)) S Cllao, — (lollz 1' Cn"27, (2.6.12)

which is of order between o(n’i‘) and o(n 1) for] < 7 <2— .It follows from (2.6.10),

(2.6.11) and (2.6.12) that, for i < 7 < %,

1063,60) = OAR—i).

The theorem is proved.

2.6.3 Proof of Theorem 5

S,,0(6,a) was defined in (2.1.4) and further denote, for a function a on Z with

E(a(Z))2 < oo

—F(T,~,Z,,6, a)

S"(6’a)[a]: 6F(T, z 9 a)
A(T., 9)6“(Z')a(Z-.),
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where F(t, 2,6,0) is defined in (2.1.2).

Denote the expectation of 5,0 and S,[a] by So and S[a] respectively. Since the

conditional expectation of 6,- given (T,, Z,) is F(T,, Z,, 60, (10), we obtain

 

 

50(9, (1) = E [F(T’ Z’ 026592—61? 2’ 6’ ”him 9)e°<Z)] (2.6.13)

and

FTZ9 ‘—FTZ9 ,
S(6,a)[a]=E[ ( ’ ’ 109(6); 0 é)’ ’ ’a)A(T,6)e"(‘)a(Z)]. (2.6.14)

The method used here is similar to that described in Huang(1996). From Lemma 12

below, we obtain the following stochastic equi-continuity results

SUP l(Sn,0(9.a) — Solo. 01)) — (Sn,o(90.6¥0) — 50(90. Golll

|6—60]§Cn—4,][a—aoiISCn_%

= o;(n’%)

and

SUP |(5.(9.a)lal - 5(9.a)lal) -- (5.400. aallal - 5(90. Oollalfl

Io—oolsort.IIa—aoHSCn‘i

= ago-h,

for all a with Ea2(Z) < 00, and all positive and finite number C.

This and Theorem 4 results in

A

(S.,o(0.é.) — Solé. (3.1)) — (Sn,0(90.00) — 50(90. 00)) = 0.471%) (26-15)

and

(5.6. C”r..)[a"l - 5(9. C“r..)[a“l) - (S.(06. ao)[a‘l - 5(90. ao)la*l) = 0.2(9‘52). (2-6-16)

where a“ is defined in (2.4.6).
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By the definition of6 and (1,, S,,O(6,d,) = 0. Also note that 50(60,ao) = 0 by

(2.6.13). It follows from (2.6.15) that

A

5.9, d,)) = —s,,0(90, a.) + o,(..-%). (2.6.17)

For the another part, we do not have S,(6, (32,)[a‘] = 0, but we will show that

s,(9, o.)[a‘] -_~ o,(n-%). (2.6.18)

Together with 5(60, a0)[a*] = 0 by (2.6.14), we obtain from (2.6.16) that

5(9, 6,))[.*] .—. —s,,(90, a.)[a*] + o,(..-%). (2.6.19)

By Condition A and that the third derivative of A(t, 6) with respect to 6 exists and

is continuous, taking Taylor expansion of 80(6, d,)) to the second order with respect

to 6 and (1,, we obtain from (2.6.17) and (2.6.13) that

-E[D00(T, Z, 90, 60)](9 —— 90) -- E [001(T, Z, 90, ao)(d,(Z) —- 60(2))1

= —s,,.(90, a.) + 0(|9 — 9.? + H6, — 60”?) + o(n”%). (2.6.20)

. Similarly we can obtain from (2.6.19) and (2.6.14) that

—E[D.,.(T, Z, 90, a.)a*(2)](9 — 9.) — E [D.1(T, z, 90, a0)a*(Z)(ci,(Z) — 60(2))]

1

= 9.90.6919] + 099 — 9.12 +16 — 40H?) + .(.—a). (2.621)

By Theorem 4,

~ - -1

I0 - 90? + H0 - aoll2 = 0p(n '2)-

Subtracting (2.6.20) from (2.6.21) and noticing the definition of a"‘ (see (2.46)), we

obtain

E [000(T, Z, 60, (10) — D01 (T, Z, 60, ao)a‘(Z)] (é — 60)

= n,0(90.00) — 571(90. Gollafi + 012(66)-
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The theorem follows from the central limit theorem and the calculation of the variance

is straightforward. Now we prove (2.6.18). Let

k

a;(z) = Za‘(z,)1,(z)

j=1

Condition A implies that.

Ila; — a“||30 = 0(1/k(n)). (2.6.22)

By the definition of (6, 62,), that is, it solves (2.1.7), we obtain

'We only need to show

Write the left hand side of the above display as

 

_Zd, — TiFl’21‘6“”“0)A(T,,9)ed"(z"(a*(Z.)—a:.(Z.-))

,_ , F(T.-Z..9 61.)

 

+_:(“71.21.00.09— T'Z 9. 0)F(ii I: A ‘ Z

. AT,-,6e“"(')a*Z,-—a,‘,Z,-.F(T,,ngé) ( ) (() ()).

(2.6.23)

That the second term is o(n“%) follows from (2.6.22), Theorem 4 and the Lipschitz

continuity of F with respect to 6 and a by Condition A. Similar proof as that of

Lemma 12 below leads to that the first term is also o(n—i).

Lemma 12 For any positive and finite number C, and any function a on Z with

Ea2(Z) < oo,

SUP ]fi(Sn,0(61 01) — 50(9.O)) — fiwmowo. 00) — 50(90.00))l

w-aolscrn‘i.IIa-aOHSCn‘t

: 0;)(1)
(2.6.24)
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and

sup 1 |\/—n(Sn(6’,a)[a] — S(9,a)[a]) — fi(5n(90,0’0)lal — 5(gotaollalll

l9-90lSC’l—Z

Ila—oonsori

: 0*(1). (2.6.25)

Here 0;,(1) means tending to 0 in outer probability.

Proof. We prove the first part and the second one can be proved analogously. Note

that fi(Sn,0(6, a) — 50(0, 0)) — fl(Sn,0(60, ao) — 50(00, 00)) is an empirical processes

indexed by the set of functions

6—F(t,z,0,a) 6—F(t,z,00,ao)

F(t32190,00)
F(t,z,6,a)

|o — 90| g Cn-i, Ha — 00” g Cn—i}, (2.6.26)

  c = {fut t, z,0,a) = A(t,6)ea(2) — A(t,00)ea°(z) ;

that is, by the functional notations used in the literature for empirical processes,

\fii(Sn,o(9,a)—So(92 01)) ‘ \/fi(5n,o(90,010) — 50(90,00))

2 fine, — P)f(6, t, 2,6,01), (2.6.27)

where Pn is the empirical measure based on (6,-,7},Z,-),i = 1, - -- ,n and P is the

probability measure of (6, T, Z) with respect to the real parameters (60,00). Note

that, under Condition A, functions in C are uniformly bounded for large n, and

”(5,122,110) — f(5, t, 2,90. (roll S 0009 — 90l+ll01 — a’Olloola (2-6-28)

for some finite and positive number C0. Therefore, C is a set of functions which are

Lipschitz in parameter (6, a) E ’D, where

D = {(0 — 60,a — 010) :01 is of form (2.1.3), [0 — Ool _<_ Cn‘i, ||a — 00H s Cn—i}

and the norm in LOO(D) is ”(01,011) — (62, ()z2)||00 = '91—62l+ll01—(12“00. By Theorem

2.7.11 of Van der Vaart and Wellner (1996), the metric entropy of C with bracketing
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with respect to L2(P) norm

H[ ](e,C,L2(P)) g H(€/C,D,Loo),

for some finite and positive number c. It is easy to see that

6

H(€,’D,Loo) _<_ C1k(n)log (l) ,

for some finite and positive number C1. Hence

Hi 16.6.1603» s (analog (1) ,
E

for some finite and positive number C2. It is obtained that for any 6 > 0, there exists

0 < C3 < 00, not depending on n, such that

 

J[ ](€,C, L2(P)) :2/ \/1+ H[ ](t,C, L2(P))dt S C3k(n)%el"", for any n > O.

o

It follows from this that, as k(n) = n7 with 0 < 7 < %,

J[ 1(Cn_i,C, L2(P)) = 0(1). (2.6.29)

Note that f(6, t, 2,90,00) = 0 by (2.6.26). It follows from this and (2.6.28) that, for

any f E C,

N
l
"

P(f(<5,t,z,0,01))2 S C4n’ , (2.6.30)

for some finite and positive number C4.

Apply Lemma 3.4.2 (page 324) of Van de vaart and Wellner (1996), which is stated

in the followinglemma. Let Y,- = (6,,7},Z,~),i=1,2,-~-,n,f = C and e = Cn‘i.

By (2.6.30) and the boundedness of f, f E C, the conditions of the lemma hold. It

follows from the lemma and (2.6.29) that

«Blimp l(Pn — P)f|) = 0;;(1).
fEC
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In View of (2.6.27), We obtain (2.6.24). The lemma is proved.

Let )1, Y2, . . . , Yn be i.i.d. random variables (or possibly vectors) with distribution

P and let Pn be the empirical measure of these random variables. Denote Cu 2

flu?" — P) and ”Gull; = supfef lan| for any measurable class of functions .7.

Denote

 

0

Lemma 13 Let .7: be a uniformly bounded class of measurable functions. Then

J[](€,f,L2(P))

1+ 62% M ,

if every f in F satisfies Pf2 < 62 and ||f||00 S .M. Here E” means outer expectation

 

E*llGnllf s (:1, 1w. L2(P>)(

wzth respect to P.
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