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ABSTRACT

AUTOMATED SELECTION OF METAL-POOR STARS IN THE GALAXY

A By

Jaehyon Rhee

In this thesis I have developed algorithms for the efficient reduction and analysis of a

large set of objective-prism data, and for the reliable selection of extremely metal-

poor candidate stars in the Galaxy.

Automated computer scans of the 324 photographic plates in the HK objective-

prism / interference-filter survey of Beers and colleagues have been carried out with

the Automatic Plate Measuring (APM) machine in Cambridge, England. Highly

automated software tools have been developed in order to identify useful spectra

and remove unusable spectra, to locate the positions of the Ca II H (3969 A) and K

(3933 A) absorption lines, and to construct approximate continua. Equivalent widths

of the Ca ll H and K lines were then measured directly from these reduced spectra.

A subset of 294,039 spectra from 87 of the HK survey plates (located within

approximately 30 degrees of the South Galactic Pole) were extracted. Of these,

221,670 (75.4%) proved to be useful for subsequent analysis.

I have explored new methodology, making use of an Artificial Neural Network

(ANN) analysis approach, in order to select extremely metal-poor star candidates

with high efficiency. The ANNs were trained to predict metallicity, [Fe/H], and to

classify stars into 6 groups separated by temperature and metal abundance, based

on two accurately measured parameters - the de-reddened broadband (B-V)o color

for known HK survey stars with available photometric information, and the equivalent

width of the Ca ll K line in an 18 A band, the K18 index, as measured from follow-up



medium-resolution spectroscopy taken during the course of the HK survey. When

provided with accurate input data, the trained networks were able to estimate [Fe/H]

and to determine the class with high accuracy (with a robust estimated one-sigma

scatter of $3. = 0.13 dex, and an overall correction rate of 91%).

The ANN approach was then used in order to recover information on the K18

index and (B-V)o color directly from the APM-extracted spectra. Trained networks fed

with known colors, measured peak fluxes, and the raw fluxes of the low-resolution

digital spectra were able to predict the K18 index with a one-sigma scatter in the

range 1.2 < 83. < 1.4 A, depending on the color and strength of the line. By feeding

on calibrated, multiple-band, photographic measurements of apparent magnitudes,

peak fluxes, and the fluxes of estimated continua of the extracted APM spectra, the

trained networks were able to estimate (B-V)o colors with a scatter in the range 0.13

< 83. < 0.16 magnitudes.

From an application of the ANN approach, using the less accurate information

obtained from the calibrated estimates of K18 and (B-V)o colors, it still proved

possible to obtain metal abundance estimates with a scatter of SB. = 0.78 dex, and

to carry out classifications with an overall correction rate of 40%. By comparison with

a large sample of known metal-poor stars, on the order of 60% of the candidates

predicted to have a metallicity [Fe/H] < -2.0 indeed fell in this region of abundance

(representing a three-fold improvement over the visual selection criteria previously

employed in the HK survey). The recovery rate indicated that at least 30% of all such

stars in our sample would be identified in a blind sampling, limited, for the most part,

by the lack of accurate color information. Finally we report 481 extremely metal-poor

star candidates in 10 plates of the HK survey, selected by our newly developed

methodology.
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Chapter 1

INTRODUCTION

1.1 From the Universe, to the Galaxy, to Stars

1.1.1 Universe

The Big Bang theory is the most generally accepted concept to explain the origin

and evolution of the Universe. According to the theory, developed by Gamow, Alpher

and Herman in the late 19403 and early 19503 (see Pagel 1997 for more details), the

Universe originated from a singularity where everything - matter and radiation - was

confined in an infinitesimally small volume, so the temperature and density were

infinite. With a violent explosion about 15 billion years ago, the Universe began to

expand, eventually cooling to the point where fundamental particles such as protons

and neutrons could form. In the first few minutes following the Big Bang, light nuclei

of H, D, 3He, 4He and 7Li were created by primordial nucleosynthesis at a

temperature on the order of 109 K, resulting in primordial mass fractions of 0.76 for

hydrogen, 0.24 for helium, and 0.00 for metals (all elements heavier than helium).

The current helium abundance in the Universe is much greater than that predicted

by hydrogen burning in stars — only some form of early nucleosynthesis can explain

this surplus.

During the first few 105 years, the Universe consisted of ionized baryonic gas

that was opaque to radiation, and consequently was in thermal equilibrium. Cooling

continued as the expansion continued. When the Universe was about 300,000 years

old, at a temperature of about 3000K, the plasma became neutral by recombination

(the capture of electrons by protons) and, for the first time, the Universe became



transparent to radiation. Since that time, the cosmic background radiation has been

red-shifted due to the expansion of the Universe. In 1965, Penzias and Wilson were

able to observe this source of blackbody radiation with a temperature of about 3 K,

whose intensity was nearly equal in all directions in space. Observations by the

Cosmic Background Explorer (COBE), a NASA satellite launched in 1989, confirmed

that the cosmic background radiation has a blackbody spectrum with a temperature

of 2.73 K. The Hot Big Bang theory is strongly supported by these three

observations: (1) the primordial abundances of light nuclei, (2) the existence of the

cosmic background radiation, and (3) the expansion of the Universe.

In 1992, COBE also detected random irregularities of the microwave background

in temperature on the order of 1 part in 105. This anisotropy is attributed to

fluctuations of density (or expansion rate) when the Universe was about 10% of its

current age. The expansion rate of gas in slightly denser regions became smaller

than the average value and, eventually, it could decouple from the Hubble flow.

Such gas clouds began to collapse to form galaxies, the fundamental “large scale”

building blocks of our Universe. Several efforts to make three-dimensional maps of

the Universe such as CfA Redshift Survey (Geller 1990; Da Costa et al. 1994) and

others — the 2dF Galaxy Redshift Survey (Colless 1998, 2000) and the Las

Campanas Redshift Survey (Bharadwaj 2000), reveal that the Universe is composed

mostly of empty space surrounded with “walls” of galaxies. The distribution of

galaxies is neither uniform nor random, but rather, has the appearance of soap

bubbles.



1.1.2 The Galaxy

0 Thin Disk

Our Sun resides in the Milky Way Galaxy, a prominent (though not the most

luminous) member of the Local Group - a collection of N ~ 35 galaxies within a

sphere of radius ~ 2 Mpc. Our Galaxy is a large spiral, whose main components are

its disk and spheroid structures. The so-called thin disk consists of gas, dust, open

clusters, and both old and young stars, collectively referred to as Population I. These

move along roughly circular orbits around the center of the Galaxy, with rotational

speed (at the Sun’s location) of roughly 220 km/s, with no large component of

velocity perpendicular to the disk. Population I stars have heavy elements

abundances similar to those of the Sun and are believed to have been created from

chemically enriched interstellar medium (ISM) by the ejecta of Type I and Type II

supernovae, over the lifetime of the disk. The rotating disk has a mass of about

6x101o solar masses, and a vertical scale height of 0.325 kpc. The diameter of the

luminous portion of the disk is approximately 50 kpc. The Sun lies roughly 8 kpc

away from the center, and is located perhaps 30 pc above the mid-plane.

. Thick Disk

It is generally accepted that thick disk is a constituent of the Milky Way Galaxy. The

thick disk contains stellar components whose chemical and kinematical properties

are intermediate between those of the thin disk and the halo, thus they are often

referred to as Intermediate Population II (IPll). Although the metal abundance,

[Fe/H], of IPII stars falls in the range —1.6 < [Fe/H] < 0.0, with a mean and a peak of

metallicity distribution near [Fe/H] = —0.6, several recent investigations have

proposed the existence of a metal-poor tail in the thick disk abundance distribution

reaching to as low as [Fe/H] = -2.0 (the so-called metal-weak thick disk — see, 9.9.,



Chiba & Beers 2000). The age of the thick disk is thought to be nearly the same as

that of the halo, but it exhibits dynamical properties that are more similar to the thin

disk. Relative to the stellar component of the thin disk, IPII stars rotate about the

Galactic center with slower speeds and have a larger vertical velocity dispersion

(roughly 60 km/s). The vertical scale height of the thick disk is roughly 1-1.4 kpc.

. Bulge

The central region of the Galaxy has a flattened and elongated bulge. The bulge,

with a mass of 2-4x1010 solar masses, is confined within a diameter of 2 kpc, and

has a vertical scale height of roughly 0.4 kpc. As a whole, it has little gas and dust,

and is thought to consist mainly of old stars. However, some young stars are found,

along with signs with ongoing star formation, in the inner regions. According to

studies of the abundance of the bulge populations (McWilliam & Rich 1994),

metallicities for a sample of K giants cover a wide range, —1.25 < [Fe/H] < +0.5, with

a mean value of [Fe/H] = —0.25, surprisingly somewhat lower than the mean

abundance of stars in the solar neighborhood. In addition, the bulge does not

appear to suffer from the so—called “G dwarf problem” - the lack of metal-poor stars

compared to predictions of the Simple model - unlike the disk. From COBE surface

photometry (Binney et al. 1997), the optical depth to microlensing (Alcock et al.

1995), and photometry of the millions of stars through Baade’s Window (Stanek et

al. 1994), there is convincing evidence for the existence of a bar attached to the

Galactic bulge.

0 Halo

The final luminous component of the Galaxy is the halo. The faint stellar halo has a

roughly spherical distribution of stars that extend more than 100 kpc from the

Galactic center. It is thought that there is little present-day star formation taking place



in the halo, owing to the paucity of gas. The halo, which contains only about 1% of

the stellar population of the Milky Way, is made up of individual field stars and

globular clusters (themselves roughly 1% of the visible halo). The halo stars are

believed to be older than most disk stars, and their ages of 14 to 17 billion years are

comparable with the time which is thought to have elapsed since the epoch of

Galaxy formation. They clearly posses lower abundances of heavy elements than

stars in the disk. Their metallicity ranges from [Fe/H] = 0.0 down to [Fe/H] = —4.0,

with a peak near [Fe/H] = —1.6. The G-dwarf problem does not appear to occur in the

halo. These old, metal-poor stars and globular clusters, in the spheroidal

components of the Galaxy (the bulge and the halo) are collectively referred to as

Population II. Unlike the Population I stars in the disk, halo stars have “hot’”

kinematical characteristics. They move with high velocities on highly elongated orbits

around the Galactic center and show random orbits in 3 dimensional space (that is,

not confined on the disk), hence their vertical velocity dispersions are quite large

(typically in excess of 100 km/s).

- Models of Galaxy Formation

There are two extreme models for the formation of the early Galaxy: (1) a rapid and

monolithic dissipative collapse, and (2) a gradual, fragmentary, chaotic collapse.

Perhaps the first milestone associated with the former picture is the paper by Eggen,

Lynden-Bell, and Sandage (1962, hereafter ELS). From 221 well-observed dwarf

stars in their sample, ELS found correlations between ultraviolet excess (a property

which correlates with metal deficiency) and (a) the orbital eccentricities, (b) vertical

velocities with respect to disk, and (c) orbital angular momenta. They observed that

a greater number of stars with high ultraviolet excesses (lower metal abundance)

had a tendency to reside farther above the Galactic plane, with higher eccentricities



and larger vertical velocities, than the stars with lower ultraviolet excess (higher

metal abundance). These results led to a picture of a relatively rapid collapse

scenario. According to the ELS model, about 10 billion years ago, the Milky Way

formed from a single rotating and roughly spherical protogalactic cloud (with a radius

of roughly 100 kpc) comprised of extremely metal-deficient gas. As the cloud cooled

down, it collapsed rapidly in near free-fall over a timescale of a few times 0.1 billion

years. This contraction resulted in condensations of gas, and then the formation of

the first generation of globular clusters and metal-poor stars in the Galactic halo. In

addition, the rate of rotation increased due to the conservation of angular

momentum, and the gas became more flattened, eventually forming the Galactic

disk. During this collapse, massive star formation and supernova explosions took

place continuously, enriching chemical elements inside the Galaxy. This model

predicted the existence of a metallicity gradient of the stellar population over the

Galactic radius (larger radius —) less metal abundance). Although the ELS model is

consistent with their original observations, there have been numerous authors who

have called into suspicion the effects of bias in the ELS sample selection (e.g.,

Sarajedini 1997).

The second picture for the formation of the Galaxy was derived from the

landmark work of Searle and Zinn (1978, hereafter 82). From their abundance

studies for 19 globular clusters, 82 found that no radial abundance gradient exists

for the clusters in the outer halo (beyond a Galactocentric distance of 8 kpc). This

was contrary to the predictions of the ELS rapid-collapse model. 82 also found that

the outer halo clusters exhibited no correlation between their metallicities, with a

wide range of color distributions for stars on the horizontal branch (HB) (the 2'“1|

parameter problem), while the inner halo clusters showed little color dispersion in



their horizontal branches of similar metallicities. Later, Zinn (1985) found that the

older metal-poor globular clusters, with [Fe/H] < —0.8, are nearly spherically

distributed around the Galactic center, while the younger, more metal-rich globular

clusters with [Fe/H] > —0.8 primarily are found near the Galactic plane. These

findings led to a gradual collapse scenario, which held that the Galactic halo was

created from a large number of independent gas fragments, each of which evolved

independently over a few billion years. Each fragment is predicted to possess its

own chemical and dynamical history, hence a metallicity gradient with Galactocentric

distance or height above the disk are not expected.

0 Halo Substructure

Many kinematical and chemical studies for the stellar component in the Milky Way

halo have suggested the possible existence of halo substructure. The halo field stars

near the Galactic plane (less than about 3 kpc) appear to have metallicity gradient

(Sandage and Fouts 1987), but no metallicity gradient seems to be present beyond

about 5.5 kpc (Majewski 1992). The halo stars may exhibit two different rotational

directions, although their speeds are relatively mild (a few times 10 km/s). Several

studies reveal both pro-grade rotation (e.g., Norris 1986) and retrograde rotation

(e.g., Majewski 1992) in the halo field stars. These discrepancies can be reconciled

by suggesting the idea of dual halo populations: (1) high halo stars characterized by

low metal abundance without metallicity gradient and a retrograde motion, and (2)

low halo (“flattened potential”) stars described by low metal abundance and mild pro-

grade motion (Majewski 1993; Carney 1996). Recently, however, dynamical

analysis for metal-poor stars selected without kinematic bias has recently revealed

that the outer part of the halo presents no systematic rotation, whereas the inner part

of the halo shows a pro-grade rotation and a highly flattened density distribution
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(Beers & Sommer-Larsen 1995; Chiba & Beers 2000). In addition, these stars exhibit

no apparent correlation between [Fe/H] and orbital eccentricity, contrary to previous

results based on kinematically biased samples.

Arrnandroff (1989, 1993) found that the inner halo clusters (inside 8 kpc) exhibit

a weak metal abundance gradient over Galactocentric distance and height above the

disk, while 82 found no metallicity gradient for the outer halo clusters (outside 8

kpc), as seen above. Regarding to their geometrical arrangement, the inner globular

clusters are distributed in a flattened manner, but the outer globular clusters are

distributed in spherical way (Hartwick 1978). Like the field stars, there have been

claims for the existence of a group of globular clusters in highly retrograde orbits

(Rodgers & Paltoglou 1984), but recent measurements reveal that some globular

clusters have a radially anisotropic velocity distribution and highly eccentric orbits

(Dinescu et al. 1999). To harmonize these distinctive differences, Zinn (1993)

proposed two populations by age for the Galactic halo: (1) the “Old Halo” in which

globular clusters were formed during the collapse and so have little age variations

and (2) the “Younger Halo” comprised of globular clusters that were accreted from

satellite systems, are found at greater Galactocentric distances, and show a

significant age spread.

Taking these results in together, the present consensus for the Galaxy formation

scenario would be a mixture of ELS and 82 models. That is, the inner halo rapidly

collapsed in a monotonic fashion during a few times 0.1 billion years, whereas the

outer halo was created from a number of gas fragments that were accreted from

satellite systems over much longer time scales.



1.1.3 Nucleosynthesis

The metal-poor stars of the halo and thick disk provide vital clues for unraveling the

dynamical and chemical history of the Milky Way, and large spiral galaxies in

general. Here, it is worth understanding the general process of chemical enrichment

of the Universe after primordial nucleosynthesis. It is presently understood that the

chemical elements (beyond H and He) which are found in the Universe today were

produced by nuclear reactions that took place inside of stars. As explained already,

hydrogen and helium were built up by cosmological nucleosynthesis in the few

minutes following the Big Bang. Heavier elements (up to iron) can be synthesized by

successive nucleosynthesis processes which occur during the main-sequence

lifetimes of stars, though not exclusively. Stars with initial masses greater than about

8 solar masses become Type II supernovae at the end of their lifetimes, and produce

the majority of the elements beyond the iron peak from explosive nucleosynthesis

processes (by adding neutrons into elements through the r- and s-processes). These

stars, as well as lower mass stars which end their lives more “peacefully,” but suffer

mass loss over their extended lifetimes, eject heavy nuclei into interstellar space, so

that subsequent generations of stars are produced from the more chemically

enriched ISM. Stars with initial masses less than 0.8 solar mass have main

sequence lifetimes that exceed the current age of the Universe, and hence, if formed

at the early stages of our Galaxy’s life, should remain observable today. These low-

mass metal-poor stars have “locked up” a record of the chemical composition of the

ISM at the time of their formation, hence provide a tool for exploration of evolution of

nucleosynthesis over the entire history of the Galaxy. The search for these very

metal-deficient stars is the primary goal of this project.



1.2 Automation Techniques

Astronomy differs from many other sciences in several respects. The extremely long

lifetimes of the objects of study, the difficulty in collecting data, and the impossibility

of conducting controlled experiments with astronomical samples, to name just a few.

These properties of data demand somewhat different approaches to astronomical

research. Astronomers do observations (rather than experiments) on astronomical

objects such as stars and galaxies, which are presently existing in the Universe. In

order to understand the important physical properties and processes, a large number

of spectra and images need to be collected over a wide range of physical

parameters (e.g., temperature, abundances, and age). Such statistical approaches

have led astronomers to develop many fruitful and powerful theories — such as

stellar evolution and the formation and evolution of the Milky Way.

As an example it is beneficial to review a historical development of the Henry

Draper Catalog — a cornerstone work closely related to stellar classification

(Heamshaw 1986, 1987). Annie Cannon (1863-1941) made 225,300 spectral

classifications from the collection of Harvard objective-prism plates from October

1911 to September 1915, and they were published as the Henry Draper Catalog in

nine volumes of the Harvard Annals (Cannon and Pickering 1918-1924). She

continued her research to publish 47,000 spectral classifications as the Henry

Draper Extension (Cannon 1925-1936) and additional 87,000 spectral classifications

as Henry Draper Extension Chart (Cannon 1949). Obviously, this was a monumental

effort, but some questions arise as to the suitability of the methodology employed.

Classifications were performed by a well-trained classifier by comparing the overall

appearance of new spectra to that of standard spectra. This method takes a great

deal of time. For example, Cannon was able to classify about 400,000 stellar spectra
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in about 30 years, which corresponds to an average of only 37 spectra per day,

although she was an excellent classifier. In addition, such a qualitative analysis may

suffer from lack of objectivity. Even the same classifier could easily classify the same

stellar spectrum into two different classes, depending on a wide variety of variables.

Finally, each new classifier needs to spend a great deal of time in learning detailed

criteria to distinguish spectra which have small differences. With the improvement of

astronomical instrumentation, large numbers of spectra and images can now be

obtained very rapidly, for example, the Sloan Digital Sky Survey (SDSS 2000), the

Global Astrometric Interferometer for Astrophysics (GAIA) (Lindegren et al. 1996;

Perryman et al. 1997), the APM Survey (Maddox et al. 1990), and the 2dF Galaxy

Redshift Survey (Colless 1998, 2000). Efficient processing of such large databases,

which offer the advantages of speed, objectivity, and comparability between different

researchers, has been an interesting challenge for the astronomical community.

Zekl (1982) developed a FORTRAN program to classify 117 digitized stellar

spectra based on various properties (e.g., equivalent widths and half-widths) of

spectral lines for 58 standard stellar spectra. This effort produced a mean error of

0.7 subclasses in spectral classification, and favorable results for the early type stars

of classes V-lll in luminosity classification. In his Ph.D. thesis, Kurtz (1982) made

use of cross correlation and the techniques of multivariate analysis and pattern

recognition to classify low-resolution (14 A) stellar spectra. The cross-correlation

method obtained a poor luminosity classification and a mean error of 2.2 subtypes

for non-supergiants in the spectral range BO to M2. Kurtz also demonstrated that 0-

type stars and supergiants earlier than A5 can be selected by principal component

analysis. LaSala (1994) has applied metric-distance techniques for the classification

of some 250 low-resolution stellar spectra.
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New methodology is now revolutionizing the analysis of large astronomical

databases. One exampel of this, the Artificial Neural Network (ANN) technique, is a

computational tool that began to be applied actively in various fields of astronomy in

the early 1990’s, and varied uses of ANNs have been expanding with time. Wider

applications of ANNs in astronomy can be found in Miller’s paper (1993) and the 38th

volume of Vistas in Astronomy (Storrie-Lombardi et al. 1994). In general, the

applications of ANNs can be divided into stellar classification, estimation of physical

parameters, star/galaxy separation, and galaxy classification, as follow.

von Hippel et al. (1994) used ANNs for stellar classification of 575 stars, and

reported temperature classification better than 1.7 spectral subtypes, from B3 to M4.

Gulati et al. (1994) applied ANNs to classify a set of 158 test spectra into 55 spectral

types. The training set was able to classify the test set with a one-sigma error of 2

spectral subclasses. ANNs were used with equivalent widths in spectral

classification of the near-infrared spectra of A-type stars to produce an accuracy of

0.4 subclasses in temperature and 0.15 classes in luminosity (Weaver & Torres-

Dodgen 1995). These authors further showed that ANNs could classify O to M-type

spectra, with 512 stellar flux values, to an accuracy of about 0.5 subclasses in

temperature and about 0.25 classes in luminosity (Weaver & Torres-Dodgen 1997).

Vieira & Ponz (1995) made use of both metric-distance techniques and ANNs for the

classification of low-dispersion spectra of stars in the spectral type range 03 to GS

taken with the lntemational Ultraviolet Explorer. It turned out that ANNs were able to

classify with an accuracy of 1.1 spectral subclasses, which was a substantially better

results than obtained with the metric-distance approach. ANNs have been employed

in two-dimensional MK classifications with a set of over 5000 optical spectra to

report on an accuracy of 0.82 subtypes in the range of spectral types 82 to M7, and
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correction rate for luminosity classes over 95 percent of both dwarfs and giants

(Bailer-Jones et al. 1998a). Singh et al. (1998) trained multilayer back-propagation

networks with a set of 55 spectra compressed by principal component analysis in the

range of O to M and obtained as good as 2.24 subtypes of 1 sigma error for unseen

158 spectra.

Bailer-Jones et al. (1997) trained ANNs with a set of 155 synthetic spectra to

yield effective temperatures for 5000 observed stellar spectra (B-K type), and their

temperature calibration agreed well with those in the literature. In order to determine

physical parameters for a large number of stars on GAIA mission, ANNs have been

trained to map from a large grid of synthetic spectra to physical parameters, as a

function of spectral resolution and signal-to-noise ratio (SNR) (Bailer-Jones 2000).

The trained network had the ability to predict effective temperate and metal

abundance with accuracy of 1% and 0.2 dex respectively, and surface gravities, log

9, with an accuracy of 0.2 dex, for stars earlier than G type. Prieto et al. (2000) used

ANNs to obtain estimates of [Fe/H] and (B-V)o colors for 731 stars from several

spectral indices, and found 12 new stars with [Fe/H] < —3.0. ANNs were employed to

estimate the same parameters from moderate-resolution stellar spectra (Snider

1999). The trained network produced effective temperature, log 9, and [Fe/H] with

internal one-sigma errors of 121 K, 0.17 dex, and 0.11 dex, respectively.

Odewahn et al. (1992) used ANNs to separate images into either star or galaxy

classification based on a set of 14 image parameters. The trained discriminators

were able to separate images with success rates of 99% for objects of B <= 18.5 and

over 95% with 18.5 <= B <= 19.5. Odewahn et al. (1993) trained ANNs that could

discriminate between stars and galaxies with a success rate of 90% in the range

19.5 < B < 20.0. Bazell (1998) showed the networks trained with somewhat high-
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resolution (17 x 17 pixel) images could separate objects with over a 93% success

rate.

An ANN was used to perform morphological classification of galaxies from 13

galaxy parameters and generated a success rate of 64 % only for exact matching

and 90 % including class of 2nd highest probability (Storrie-Lombardi et al. 1992).

Naim et al. (1995) made use of ANNs to morphologically classify galaxies and

achieved an rrns error of 1.8 Revised Hubble types.

1.3 Goals of the Thesis

Metal-poor stars identified in the HK objective-prism/interference-filter survey of

Beers and colleagues so far have successfully answered many aspects of early

nucleosynthesis and chemodynamical history in the Milky Way (see Chapter 2).

However, one must keep in mind that a large fraction of the cooler metal-poor stars

on the HK survey have likely been missed by the visual selection procedure that was

previously employed. Therefore, we still need to collect additional metal-deficient

stars at a wider range of temperatures, in order to assemble a more representative

data set.

We are in the process of selecting new candidate metal-poor stars based on

automated digital scans of the HK survey plates with APM (Automatic Plate

Measuring) facility at the Institute of Astronomy in Cambridge, England. These new

identifications are of particular value because they will not suffer from the biases and

confounding of the sample, especially among the cooler stars, as did the visual

selection. As of July 2000, all 324 usable plates from the HK survey have been

scanned and over 1.5 million stellar spectra have been extracted from these plates.

14



The goals of the thesis are: (1) to develop and refine an algorithm for the

optimal identification and analysis of “interesting“ stars from the digitally scanned HK

survey plates, (2) to investigate the application of artificial neural networks with the

equivalent width of Ca ll K line and broadband (B-V)o color in the identification of

metal-poor stars, and (3) to construct a new set of candidate metal-poor stars in the

direction toward the South Galactic Pole. This new data set will be used to direct

subsequent photometric and spectroscopic follow-up efforts that will provide us with

a deeper understanding of the kinematic history and chemical evolution of the

Galaxy.

1.4 Chapter Overview

In Chapter 2, the history of the HK survey is briefly reviewed and its results are

discussed. The APM (Automatic Plate Measuring) system for digital scans of the HK

plates is introduced. Algorithms developed for efficient data reduction are explained

and the results are summarized.

Chapter 3 presents the application of an Artificial Neural Network (ANN) to

known metal-poor stars. ANNs of various architectures are trained from known color

(B-V)o color and K18 index to predict metallicity, [Fe/H], and classify stars into 6

groups divided by temperature and metal abundance.

K18 index calibration derived directly from scanned spectra is demonstrated in

Chapter 4. Metallicity and classifications of stars are determined by the trained

network feeding on known colors and estimated K18 index derived from the

calibration process.

In Chapter 5, (B-V)o color calibration is performed by making use of various

kinds of magnitudes and fluxes of the digitized continua from the prism spectra. The
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trained networks predict [Fe/H] and the classes of stars from the estimated colors

and K18 indices. The efficiency and recovery of the results are discussed. Re-

calibration methods are suggested to improve results.

In Chapter 6, new extremely metal-poor candidate stars, which will form targets

for new spectroscopic follow-up in the near future, are selected by employing the

methodology developed previously.

Chapter 7 presents the conclusions of this thesis and suggestions for future

work. A general introduction to ANNs is provided in the Appendix.
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Chapter 2

DATA REDUCTION

2.1 The HK Survey

The HK prism survey of Beers and collaborators has been extremely successful in

the identification of large numbers of metal-deficient stars in the thick disk and halo

of the Galaxy. Since we are making use of the same objective-prism plates as

originally employed in the HK survey, it is valuable to review the particulars of this

approach. Much more detailed information can be obtained from inspection of Beers

et al. (1985), Beers et al. (1992), Beers (1999a), and Christlieb (1999).

In 1978, George Preston and Stephen Shectman of the Carnegie Observatories

of Washington initiated the HK interference-filter/ objective-prism survey, in order to

identify large numbers of metal-poor and field horizontal-branch (FHB) stars in the

Milky Way. There were on the order of 70 usable prism plates in this original effort.

Beers joined the program in 1983, and by 1992, had expanded the survey by

obtaining additional 240 plates in the southern and northern hemispheres. In total,

367 wide-field (5° x 5°) plates were obtained — 211 plates in the southern

hemisphere using the 61-cm Curtis-Schmidt telescope at the Cerro Tololo

lnterAmerican Observatoiry (CTIO; 103aO emulsion, 90 minutes exposure) and 156

plates in the northern hemisphere using the 61-cm Burrell-Schmidt at Kitt Peak

National Observatory (KPNO; lIaO emulsion, 90 minutes exposure). Not all of the

plates were useful for survey work - some suffered from poor focus, others from too

much plate fog from moonlight, and others were repeats obtained for the purpose of
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providing cross-checks. After elimination of these, roughly 7,000 square degrees

(1/6th of the entire sky) are covered by the remaining 275 unique plates.

In the HK survey approach, an interference filter near the focal plane restricts

the bandpass to 150 A centered near the Ca ll H and K lines at 3950 A. The

interference filter enables long exposures without undue sky fog or confusion of the

spectra. The faintest stars in the HK survey have apparent magnitudes B ~ 15.5 —

16.0, several magnitudes fainter than that obtained by previous surveys using the

objective-prism technique. The effective spectral resolution is seeing dependent, but

is typically 5 A. Visual scans of the HK plates were performed (originally by Preston,

later by Beers) using a 10X binocular microscope. From the visual inspection a

variety of interesting objects were identified. These include metal-poor F- and G-type

stars (identified from their weak or absent lines of Ca ll K), FHB- and other A-type

stars (identified from the strength of the H-2 line, which dominates the Ca H H line for

hotter stars), as well as subdwarf O- and B-type stars, white dwarfs, and emission-

line objects.

However, as a result of the visual search for candidate metal-poor stars, a

severe selection bias was introduced into the sample. Since for cooler stars (with

broadband colors (B-V)o > 0.6) the resonance line of Ca ll K line remains quite

strong even at relatively low metallicities ([Fe/H] < -2.0), visual inspection without the

benefit of color information could easily overlook these stars, as they appear quite

similar to the more metal-rich, but slightly hotter stars, that dominate the population

of bright stars in the solar neighborhood. The recovery of those cooler metal-

deficient stars is one of the goals of this thesis.

To date, broadband UBV photometry and medium-resolution (1-2 A)

spectroscopy have been obtained for roughly half of the low metallicity candidates in
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the HK survey. Thus far, broadband photometric observations have taken place for

roughly 5,000 candidate stars, and is being used in estimation of metallicities and

distances to the stars (Preston et al. 1991; Doinidis et al. 1990, 1991; Norris et al.

1999). In addition, intermediate-band Stromgren photometry for some 750 survey

stars was obtained by Anthony-Twarog et al. (2000). Spectroscopic observations of

1,044 metal-poor HK survey stars was reported by Beers et al. (1992). A large set of

new spectroscopic results for some 5,000 metal-deficient stars, observed in

collaborative works using telescopes at the European Southern Observatory, the

Isaac Newton Telescope on La Palma (Canary Islands), Siding Spring Observatory

in Australia, as well as at KPNO, will be submitted for publication soon (Cayrel et al.

2000, Rebolo et al. 2000, Norris et al. 2000, Beers et al. 2000).

Estimation of stellar metal abundance, based on the medium-resolution

spectroscopy and broadband photometry (where available), is made with two

complimentary methods (Beers et al. 1999). The first technique uses empirically

derived relations between the equivalent width of the Ca ll K line (3933 A), metallicity

[Fe/H], and de-reddened (B-V)o color. The second method is based on a Fourier

Auto-Correlation Function (ACF), as originally described by Ratnatunga & Freeman

(1989). The former approach is useful for metal-poor stars with [Fe/H] < —1.5, while

the latter is particularly efficient for stars with [Fe/H] > -1.5, where the strength of

Ca II K line begins to saturate as metallicity increases. The combination of these

methods yields an acceptably small error (on the order of 0.15 — 0.20 dex) in the

determination of stellar metal abundance over the entire range of abundance

exhibited by stars in the Milky Way, -4.0 < [Fe/H] < 0.3. Figure 2.1 shows a

distribution of the equivalent width of the Ca ll K line (as measured of a band of 18 A

width — designated as K18), and de-reddened color, (B-V)o, for stars of various
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Figure 2.1 Distribution of K18 index and de-reddened color (B—V)o color for

stars of various metallicities. lso-metallicity contours are drawn with

increments of 0.50 dex.
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metallicities. A few curves are drawn by passing lines through data points whose

metal abundances are the same. It is clear that lower metallicity stars exhibit smaller

K18 at a given (B-V)o. At a given metalicity, the cooler stars have relatively larger

K18 than the hotter stars. In Chapter 3, we train Artificial Neural Networks (ANNs) to

assign [Fe/H] as a function of K18 and (B-V)o.

Observational follow-up of the HK survey has produced a list of some 4,700

metal-poor stars in the halo and thick disk of the Galaxy — including about 1,000

stars with [Fe/H] < -2.0 and roughly 100 stars with [Fe/H] < —3.0. As defined by

Beers (1999b), the effective yield (EY) enables us to quantify the efficiency for the

detection of stars of interestingly low abundance among the metal-poor candidates

 

EY, 5 NW, with [Fe/H] < x

' Nsrars,observed

where x represents the target metallicity. For the HK survey the EV of stars whose

metallicity is less than [Fe/H] = —2.0 is 32% (11%) with (without) previous B-V color

information. The EY decreases to 11% (4%) for stars with [Fe/H] < —2.5. We expect

to increase the EY by at least a factor of two using the candidate metal-poor stars

derived from this thesis work.

Figure 2.2 is a histogram of the metallicity distribution for some 4,700 metal-poor

HK survey stars. The dip in the distribution near [Fe/H] ~ —1.5 is attributed to the bias

in the visual selection for cooler stars, mentioned above. However, it should be

noted that extremely metal-poor stars (with [Fe/H] < —2.5) do not suffer from this

selection bias, since the strength of Ca ll K line is reasonably weak even for cooler

stars. Another particularly important result from this figure deserves emphasis — the

apparent ABSENCE of metal-poor stars with metallicity less than [Fe/H] = — 4.0. IF

this limit proves consistent with the actual termination of the low end of the
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Figure 2.2 Histogram of the metallicity distribution for 4688 metal-poor stars

selected in the “visual” HK Survey (HK1). Bins are 0.10 dex in width.
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metallicity distribution function, this discovery is not consistent with the predictions of

the so-called Simple Model (or closed-box model) of Galactic chemical evolution,

which assumes that initial material in the Galaxy was absolutely free from heavy

elements (Talbot et al. 1971; Hartwick 1976). This means that the extant oldest stars

were created from an interstellar medium which was chemically polluted by the very

FIRST generation of (presumably, quite massive) stars. A number of interesting

projects which are suitable for exploration of these ideas, based on high-resolution

spectroscopic information for the most metal-poor HK survey stars, are already

underway at a number of 8-10m class telescopes (the Very Large Telescope in

Chile; SUBARU and KECK in Hawaii).

2.2 The Automatic Plate Measuring System

As part of this thesis effort, a total of 324 HK survey plates have been digitally

scanned in collaboration with Robert Argyle and Mike Irwin of the Institute for

Astronomy, located in Cambridge, England, using the Automatic Plate Measuring

machine (APM — Il’WlI’l et al. 1984; Kibblewhite et al. 1984; Cawson et al. 1987; Irwin

2000)

The APM was specifically designed to efficiently scan large data sets (images

or spectra) from large-scale (e.g., 6° x 6°) photographic plates. It is composed of a

speedy and precise laser scanning micro-densitometer and a series of on-line

computers to process the data. The APM has the ability to process over 10 Gbytes

of information per day, extracting the physical parameters for about 1 million images.

Over 1,000 plates can be digitally scanned per year.

Typically, a two-pass procedure is required for obtaining measurements with the

APM. The first pass is the estimation of sky background at all positions, derived from
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an array of 64 x 64 intensities in each partitioned pixel. On the second pass, an

image scan is performed to extract useful stars or galaxies by filtering all images with

intensities larger than a specified isophote. In its objective-prism mode, the APM

generates a data set of intensity verses approximate wavelength directly from the

spectra identified on the plates.

Once fully processed, the extracted spectra of the digitally scanned HK survey

plates are free from sky background, and provide the basis for a quantitative

analysis which should enable us to avoid the selection bias incurred in the original

visual inspection approach.

2.3 Semi-Automated Data Reduction

As of June 2000, 293 plates in the HK survey were digitally scanned with the APM

facility. The processing of the remaining of 31 plates was done by July 2000,

completing the digital scans of a total of 324 (available) plates in the HK survey. The

first set of 293 scanned plates form the basis for this thesis work; the other plates will

be included in our final set of analysis. Hereafter, the data set of known metal-poor

stars identified during the observational follow-up of the visually selected stars will be

referred to as “HKI.” Those stars selected from the digitally scanned plates will be

referred to as “HK2.”

The number of useful HK2 spectra differs from plate to plate (from roughly 2,000

to 15,000), depending on the direction in which the plate was taken, and on the sky

fog of that particular exposure. A total of 1,447,395 stellar spectra were found in the

293 plates — each plate contains 4,939 stellar spectra on average. If all 324 plates

are considered, the total number of stellar spectra is expected to be well over 1.5
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million. In this context I was motivated by an obvious task - “How can I process such

a huge data set in efficient way?”

As mentioned in Section 2.1, the stellar spectra in the HK survey were obtained

over a relative short wavelength range of 150 A, including Ca ll K (3933 A) and H

(3969 A) lines. Depending on the accuracy of the wavelength calibration of the

online APM processing, each plate can have different pixel numbers assigned for the

positions of H and K lines in the digital spectra, even though the differences in pixel

number between two lines are same. Therefore, the general procedure for data

reduction will be: (1) obtain positions of Ca H H and K lines, (2) construct an

appropriate stellar continuum, and (3) to calculate equivalent widths of those lines.

However, one should keep in mind that this method is applicable to useful stellar

spectra only. Thus, classifying unusable spectra needs to be a part of the data

reduction procedure, and a procedure for filtering out these spectra, with little

manual intervention, had to be designed.

2.3.1 Positioning the Ca ll H and K lines

Figure 2.3 (a) is a representative stellar spectrum from the digitally scanned plates

(HK2). From a match of its positional coordinates with known metal-deficient stars in

HK1, it turns out to be a cooler metal-poor star (the HK1 Star: CS 22948-091) with

[Fe/H] of —2.01 and (B-V)o of 0.61. In the title of the spectrum, the first 5 digits

(22948) stand for ID number of plate, and the second 4 digits (3812) refers to HK2

ID number of star. Right Ascension (RA) and Declination (DEC) are shown in the

upper left-hand corner, and the spectrum is classified as normal (i.e., useful) by the

algorithms described below. The absorption lines near pixel numbers 130 and 155

are the Ca ll K line and H lines, respectively. The positional difference between the

25



No. ct22948— 3812 No. ct22948- 3812

 
 

  

   

   

     

  

   

     

 

 

 

    
    

p v v 1 v I t I I v T 1 fl ,4 r- . I ‘ ‘ ‘ v I fi fi

: <0) i ; (b) 3

“’0 RA 21 47 59.12 i no * RA 21 47 59.12 ‘

.— f DEC -41 52 1.1 , .— 7 DEC -41 52 1.1 1

F CLASS normal . E CLASS normal .

V F
4 '

II

o F
‘ o P

<

x ' T x f .

‘n d m D cl

. I I .

o I- — o l— 2

d )- d

-( b 4

P A A A A 1 A L A A l A A 4 #1 A A A l A A l A 1 l A d

0 100 200 0 100 200

No. ct22948— 3812 No. ct22948- 3812

l V Y Y T I 1 I .
V V V V I Y I

i (c) ~ r (a) ,
)- 4 P

I“ ‘ RA 21 47 59.12 ‘ no L RA 21 47 59.12 _:

$3 ' DEC 4152 1.1 1 ._ _' Dec «152 1.1 ,

: CLASS normal . .. CLASS normal ,

i’ l-
-i Q r-

.

0 r ‘ S L :

'— ' 1 x . .

Iii C . In . .

2 I .

1

. A A A I l A A A A l A d
p A l A A I A A A A l A

0 100 200 0 100 200

Figure 2.3 Positioning of the Ca II H and K lines in a representative stellar

spectrum from HK2. (a) the raw spectrum, (b) very low frequency

information, (0) intermediate frequency information, and (d) the difference

between (b) and 1.5 x (c). From this curve, the positions of the Ca ll H and

K lines are readily identified.
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absorption lines is about 25.3 pixels (= 34.81 A) on average, derived by considering

3269 HK2 spectra for known metal-poor stars (in Chapter 4).

A Fast Fourier Transformation (FFT) approach was employed to find the

positions of the Ca ll H and K lines in an automated fashion. Figure 2.3 shows the

raw extracted stellar spectrum (hereafter, referred to as “flux”) spanning 256 pixels.

Before the flux is passed into into the FFT program, it is extended to cover 512

pixels by adding (1) the half of an average of last 10 fluxes over 5 pixels and (2)

appending zeros over 123 pixels on both the right-hand side and left-hand side (i.e.

512 = 123 + 5 + 256 + 5 + 123). This is useful because improved Fourier

components can be obtained, and the rapid decline of low-pass filtered fluxes can be

avoided when the spectrum is shifted to the right side or left side. Figure 2.3 (b)

presents very low frequency information, which is obtained by Fourier transforming

the extended raw spectrum into frequency domain, passing only first 4 lowest

Fourier components (low-pass filter), and then reverse Fourier transforming back

into the real domain. Intermediate frequency information in Figure 2.3 (c) can be

obtained by passing the 4th to 43'° lowest Fourier components. The difference

between the very low frequency information (overall shape) and three halves of the

intermediate frequency information (absorption line information without overall shape

and noise) is shown in Figure 2.3 (d). The Ca ll H or K lines occur at the pixel

locations of the highest values on this curve. By scanning its neighbor pixels, the

pixel of the second highest value is found (and is either the Ca ll H or K line,

depending on the temperature and metallicity of the star). In this example, the left

one of them is the Ca ll K line.

As possible approaches to accomplish this job automatically, the techniques of

cross-correlation and local minimization have been employed. By cross-correlating a
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spectrum with a “standard spectrum” that contains distinctive absorption lines with a

good continuum, the positions of the absorption lines can be identified from the

maximum of the cross-correlation function. However, this method does not always

work well for these spectra, since the presence of the absorption lines themselves

sometimes broadens the correlation function to the point that its peak is difficult to

determine with accuracy. In order to use the local minimization approach, the

spectra need to be smoothed to the point that they exhibit absorption lines only, and

a minimum of noise. However, it is impossible to get rid of all the valleys in the

spectra due to noise without distortion of true absorption lines. The algorithm with

FFT ensures very stable results in the determination of positions of Ca ll H and K

lines, thus only this method was used in the end.

2.3.2 Construction of Continuum

Once the positions of Ca ll K and H lines are determined, the construction of spectral

continuum follows. Figure 2.4 (b) shows low frequency information derived by

passing the first 40 lowest Fourier components. This curve contains Ca II H and K

line information above the continuum. By scanning neighboring pixels of both lines,

three points are determined - the position where the K-line absorption begins,

where the K-line ends (set to the position where the H-Iine begins), and the positions

where the H-line ends. As can be seen in Figure 2.4 (c), the absorption line

information is then removed and a linear interpolation is performed over the three

points. Finally, the Savitzky-Golay smoothing filter (Press et al. 1992) is passed

across the entire flux distribution to produce the continuum shown in Figure 2.4 (d).

The Savitzky—Golay smoother works by replacing the flux at a given pixel with the

summation of differently weighted fluxes surrounding the pixel. The central pixel at a
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Figure 2.4 Construction of the stellar continuum. (a) raw spectrum (solid)

with its continuum (dashed), (b) low frequency information, (0) linear

interpolation over the ends of absorption lines, and (d) the continuum

obtained by smoothing
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box has the highest weight. A box with 33 pixels was used in the smoothing process.

The raw stellar spectrum (solid line) with its continuum (dashed line) is shown in

Figure 2.4 (a).

Lasala et al. (1985) have developed a method of spectral rectification by division

of the raw spectrum by a very low-pass filtered spectrum. This fast and reliable

technique is argued to obtain better results than the method that just removes low-

frequency information from the raw spectrum. However, this method is not applicable

to our case, because our spectrum spans a relatively short pixel range (256 pixels),

so that the very low-passed frequencies do not allow the construction of appropriate

continuum (especially when the spectrum is shifted too much). As one possible

alternative, the combinational use of median and boxcar filtering might prove useful

(e.g., Bailer-Jones et al. 1998b).

2.3.3 Equivalent Widths

With the raw spectrum (flux) and its continuum in hand, the estimation of equivalent

width is straightfonivard. The equivalent width indicates the strength of an absorption

line relative to its continuum. The division of flux by continuum is called a profile. The

equivalent width is estimated by integration of the depth (= 1- profile) over a given

bandpass. In our case, the integration was performed over 13 pixels (= 18 A) around

the Ca ll H and K lines — the results are referred to as H18_2 and K18_2,

respectively.

2.3.4 Classification of Useful / Unusable Spectra

Although the objective-prism technique produced large numbers of useful stellar

spectra, it also produces a variety of unusable stellar spectra, which occur for

reasons such as:
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(1)

(2)

(3)

(4)

Saturated spectra: The brightest stars in the HK survey have apparent

magnitudes B ~ 11.0. Most of the fluxes in spectra of these stars (or brighter)

are greater than the maximum value to which the photographic emulsion could

respond, so the Ca ll H and K lines look very weak or disappear completely.

Noise (and null) spectra: The faintest stars in the HK survey have apparent

magnitudes B ~ 15.5 - 16.0. In this case, the fluxes are comparable to plate

noise, thus the Ca ll H and K lines cannot be identified appropriately.

Multiple spectra: Two (or more) spectra can be presented in a spectrum. This

can happen when a star’s light dispersed by the objective prism overlaps with

the spectrum of a neighboring star.

Odd spectra: Some spectra show a tendency of flux that linearly increases or

decreases. Some others present unexpected features. The cause of these odd

spectra is not known in all cases, but it is often associated with spectra from the

edges of the plates, which become distorted by the imperfect field flattening of

the Schmidt corrector used in combination with the objective prism.

The unusable spectra were identified and ruled according as follows. If the ratio of

the low-pass filtered flux (Figure 2.4 (b)) at the Ca ll H line, as compared to the

filtered flux at the point where Ca ll H line ends, is greater than 0.80, the spectrum

was classified as saturated (the flat portion of the generally rising spectrum

indicating that the star is saturated). Noisy spectra were filtered out if the maximum

of the raw spectrum is less than 30,000 counts. In case of multiple spectra, the

brighter stars are picked up as useful spectra, but human inspection was required to

make sure whether they were contaminated by their neighbors or not. If the

correlation coefficient between an arbitrary linear line and 120 raw fluxes (Figure 2.3
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(a)) around the maximum of very low-passed spectrum (Figure 2.3 (b)) is greater

than 0.87 (or less than -0.87), the spectrum is classified as linearly increasing (or

decreasing). If there are any absorption lines, experimentation revealed that the

correlation coefficient can not attain values as high as 0.87. Also, if the two highest

points are not identified (unlike Figure 2.3(d)) in process of locating the Ca ll H and K

lines, the spectrum is classified as “odd.” Nonetheless, there do exist some (rare)

unusable spectra which cannot be detected by previous methods. These unusable

spectra need to be identified by human inspection.

2.3.5 The Complete Data Reduction Procedure

For each plate, three steps were involved for reducing spectra. In the first step, a

program was designed which classifies spectra into useful and unusable (i.e.

saturated, noisy, and odd), and displays for consideration only the useful spectra,

with the position of Ca ll H and K lines marked. If some spectra need to be

considered again (due to wrong positions of absorption lines or wrong classification),

they are marked to be treated in the second step by human intervention. A second

program displays the saturated, odd, and marked spectra that were derived from the

first process. Some of these spectra can be “salvaged” with human intervention.

Those that appear possible are identified, and the positions of the Ca ll H and K

lines are determined interactively. With the positions of lines for the useful spectra

(the vast majority having been selected by the first program, and the remainder from

the second program), a third program is then run to construct continuum and

estimate equivalent widths of Ca H H and K lines as described above. It turns out

that the complete processing time required for one plate is about 45 minutes,

including resting of the of human classifier. It is interesting to note that this time is
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roughly equivalent to that required for a single pass at visual inspection of an entire

plate, though of course the return of information is orders of magnitudes greater.

Table 2.1 shows data reduction statistics for the 87 plates used in the remainder

of this thesis work, selected to the plates covering the South Galactic Cap,

corresponding to plates with Galactic latitudes in the region of b < -55. The column

translations are as follows:

Column (1): Plate ID in the HK survey

Column (2): The number of digitally scanned stellar spectra on the plate

Column (3) & (4): The number of stellar spectra identified as useful and

its percentage as compared to the total number of extracted

spectra on the plate (= Col(3) / Col(2) * 100)

Column (5) & (6): The number of spectra identified as useful in the first step and

its percentage as compared to the total number of useful spectra

on the plate (= Col(5)/Col(3) * 100)

Column (7) & (8): The number of spectra identified as useful in the second step and

its percentage as compared to the total number of useful spectra

on the plate (= Col(7)/Co|(3) * 100)

Column (9) & (10): The number of stellar spectra identified as unusable and

its percentage as compared to the total number of extracted

spectra on the plate (= Col(9)/Col(2) * 100)

Column (11), (12),: Classifications of unusable spectra — saturated, odd, and noise,

& (13) respectively

As can be seen in the last row of Column (2), a total of 294,039 stellar spectra

were extracted from the 87 HK survey plates. Among those, three-quarters turned

out to be useful (columns (4) and (10) on the last line). Most of the useful spectra

(96%) were determined automatically in the first step; the remaining useful spectra

(4%) were identified by human intervention (columns (6) and (8) at the bottom). This

means that most of the useful spectra can be obtained effectively and rapidly without

the second step, which demands careful attention and required a great deal of time.
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Table 2.1 Data Reduction Statistics for 87 HK Plates

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

BS 17579 3911 1138 29.1% 1017 89.4% 121 10.6% 2774 70.9% 10 194 2570

CS 22881 4881 371 7 76.2% 3506 94.3% 21 1 5.7% 1164 23.8% 250 208 706

CS 22882 2828 2085 73.7% 2024 97.1% 61 2.9% 743 26.3% 169 95 479

CS 22886 4342 3392 78.1% 3252 95.9% 140 4.1% 950 21 .9% 229 165 556

CS 22887 4012 3126 77.9% 2970 95.0% 156 5.0% 886 22.1% 233 130 523

CS 22888 3481 2597 74.6% 2452 94.4% 145 5.6% 884 25.4% 210 138 536

CS 22892 4621 3483 75.4% 3346 96.1 % 1 37 3.9% 11 38 24.6% 220 358 560

CS 22893 3564 2556 71 .7% 2451 95.9% 105 4.1% 1008 28.3% 260 140 608

CS 22894 3651 2689 73.7% 2551 94.9% 138 5.1% 962 26.3% 1 98 187 577

CS 22960 4137 3009 72.7% 2868 95.3% 141 4.7% 1 1 28 27.3% 31 1 172 645

CS 22961 3357 2325 69.3% 21 99 94.6% 1 26 5.4% 1 032 30.7% 296 1 78 558

CS 22962 3071 2330 75.9% 2226 95.5% 104 4.5% 741 24.1% 159 188 394

CS 22966 3223 2280 70.7% 2204 96.7% 76 3.3% 943 29.3% 268 233 442

CS 22967 3189 2333 73.2% 2235 95.8% 98 4.2% 856 26.8% 170 194 492

CS 22968 4391 3054 69.6% 2974 97.4% 80 2.6% 1 337 30.4% 296 336 705

CS 29526 3383 2530 74.8% 2463 97.4% 67 2.6% 853 25.2% 260 88 505

CS 29527 2735 2076 75.9% 201 9 97.3% 57 2.7% 659 24.1% 142 1 24 393

CS 29528 3022 2206 73.0% 21 24 96.3% 82 3.7% 816 27.0% 1 80 135 501

CS 30304 3275 2342 71 .5% 2283 97.5% 59 2.5% 933 28.5% 21 2 1 26 595

CS 30310 3025 21 60 71 .4% 21 13 97.8% 47 2.2% 865 28.6% 223 108 534

CS 30315 3375 2522 74.7% 2472 98.0% 50 2.0% 853 25.3% 21 2 148 493

CS 30316 3079 2255 73.2% 2191 97.2% 64 2.8% 824 26.8% 196 136 492

CS 30323 3583 2677 74.7% 2624 98.0% 53 2.0% 906 25.3% 223 153 530

CS 30324 3054 21 62 70.8% 2083 96.3% 79 3.7% 892 29.2% 1 12 78 702

CS 30327 4472 3288 73.5% 31 19 94.9% 169 5.1% 1184 26.5% 142 136 906

CS 30337 4270 31 08 72.8% 3037 97.7% 71 2.3% 1 1 62 27.2% 247 247 668

CS 30339 2984 21 39 71 .7% 2082 97.3% 57 2.7% 845 28.3% 168 144 533

CS 30344 3728 2660 71 .4% 2593 97.5% 67 2.5% 1 068 28.6% 252 223 593

CS 30493 3461 2715 78.4% 2631 96.9% 84 3.1% 746 21.6% 155 134 457

CS 31060 3057 2073 67.8% 1 949 94.0% 1 24 6.0% 984 32.2% 85 82 817

CS 31062 2943 2297 78.0% 2140 93.2% 1 57 6.8% 646 22.0% 45 1 50 451

CS 31065 3061 2354 76.9% 2209 93.8% 1 45 6.2% 707 23.1% 40 127 540

CS 31066 2766 21 38 77.3% 2004 93.7% 134 6.3% 628 22.7% 56 90 482

CS 31069 5351 3658 68.4% 3207 87.7% 451 1 2.3% 1693 31.6% 55 694 944

CS 31070 5354 3650 68.3% 3141 86.1% 509 13.9% 1695 31.7% 51 668 976

CS 31077 3025 2242 74.1% 2129 95.0% 1 1 3 5.0% 783 25.9% 64 1 15 604

CS 31082 2801 21 50 76.8% 2059 95.8% 91 4.2% 651 23.2% 57 123 471

CS 31086 2750 21 38 77.7% 2002 93.6% 136 6.4% 61 2 22.3% 99 85 428

CS 31088 5050 3384 67.0% 3077 90.9% 307 9. 1 % 1 666 33.0% 71 925 670

CS 31089 2845 21 64 76.1% 2059 95.1% 105 4.9% 681 23.9% 68 150 463

CS 31090 2850 2108 74.0% 1 975 93.7% 133 6.3% 742 26.0% 51 148 543

CS 22166 2859 2299 80.4% 2225 96.8% 74 3.2% 560 1 9.6% 152 183 225

CS 22170 2923 2365 80.9% 2269 95.9% 96 4. 1 % 558 1 9.1% 162 1 98 1 98

CS 22171 261 1 2242 85.9% 21 17 94.4% 125 5.6% 369 1 4.1% 180 128 61

CS 22172 3416 2901 84.9% 2803 96.6% 98 3.4% 515 1 5.1% 193 238 84             
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Table 2.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1 1) (12) (13)

CS 221 74 2653 2286 86.2% 2216 96.9% 70 3.1 % 367 13.8% 1 50 129 88

CS 22175 2889 2459 85.1% 2400 97.6% 59 2.4% 430 1 4.9% 152 180 98

CS 221 79 2925 2483 84.9% 2385 96.1% 98 3.9% 442 15.1% 1 56 158 128

CS 221 80 2680 2338 87.2% 2225 95.2% 1 13 4.8% 342 1 2.8% 143 109 90

CS 22181 3015 2567 85.1% 2471 96.3% 96 3.7% 448 14.9% 131 189 128

CS 22183 2758 2354 85.4% 2226 94.6% 128 5.4% 404 1 4.6% 100 169 135

CS 22184 2978 2562 86.0% 2466 96.3% 96 3.7% 41 6 1 4.0% 160 172 84

CS 221 85 2963 2527 85.3% 2455 97.2% 72 2.8% 436 1 4.7% 185 172 79

CS 221 88 2815 2120 75.3% 1865 88.0% 255 12.0% 695 24.7% 62 232 401

CS 22189 2951 2537 86.0% 2421 95.4% 116 4.6% 414 14.0% 156 154 104

CS 22875 3703 2950 79.7% 2872 97.4% 78 2.6% 753 20.3% 281 294 1 78

CS 22941 3147 2558 81.3% 2500 97.7% 58 2.3% 589 18.7% 216 254 1 19

08 22942 2484 2081 83.8% 1995 95.9% 86 4.1% 403 16.2% 194 1 10 99

CS 22945 4727 3871 81.9% 3786 97.8% 85 2.2% 856 18.1% 368 372 116

CS 22946 2502 2101 84.0% 2033 96.8% 68 3.2% 401 16.0% 1 95 120 86

CS 22949 3238 2760 85.2% 2700 97.8% 60 2.2% 478 14.8% 201 200 77

CS 22951 4989 3985 79.9% 3873 97.2% 1 12 2.8% 1004 20.1% 484 383 1 37

CS 22952 2959 2480 83.8% 2384 96.1 % 96 3.9% 479 1 6.2% 264 159 56

CS 22953 3878 3054 78.8% 2955 96.8% 99 3.2% 824 21 .2% 410 333 81

CS 22954 2985 2425 81.2% 2330 96.1% 95 3.9% 560 18.8% 316 166 78

CS 22957 2901 2468 85.1% 2384 96.6% 84 3.4% 433 1 4.9% 173 175 85

CS 22958 3184 2670 83.9% 2619 98.1% 51 1.9% 514 16.1% 208 207 99

CS 22963 3263 2709 83.0% 2626 96.9% 83 3.1% 554 17.0% 248 200 106

CS 29491 3607 2281 63.2% 2228 97.7% 53 2.3% 1326 36.8% 1 12 152 1062

CS 29493 5036 3982 79.1% 3870 97.2% 1 12 2.8% 1054 20.9% 1 71 21 3 670

CS 29494 3128 2350 75.1% 231 1 98.3% 39 1 .7% 778 24.9% 160 1 19 499

CS 29496 3091 2256 73.0% 2226 98.7% 30 1 .3% 835 27.0% 1 31 98 606

CS 29497 2752 1 979 71.9% 1 940 98.0% 39 2.0% 773 28.1% 161 73 539

CS 29499 3390 2525 74.5% 2486 98.5% 39 1 .5% 865 25.5% 1 51 139 575

CS 29500 2869 2066 72.0% 2030 98.3% 36 1 .7% 803 28.0% 204 102 497

CS 29503 2940 2092 71.2% 2051 98.0% 41 2.0% 848 28.8% 247 146 455

CS 29504 2861 2064 72.1% 2001 96.9% 63 3. 1 % 797 27.9% 216 132 449

CS 29505 4610 3384 73.4% 3276 96.8% 108 3.2% 1 227 26.6% 288 214 725

CS 29509 2676 1 990 74.4% 1931 97.0% 59 3.0% 686 25.6% 173 107 406

CS 29510 3169 2224 70.2% 2183 98.2% 41 1 .8% 945 29.8% 204 217 524

CS 2951 2 4378 3399 77.6% 3287 96.7% 1 1 2 3.3% 979 22.4% 1 79 208 592

CS 29513 3572 2454 68.7% 2410 98.2% 44 1 .8% 1118 31.3% 256 228 634

CS 29514 3025 2276 75.2% 2226 97.8% 50 2.2% 749 24.8% 209 151 389

CS 29515 2991 2075 69.4% 2039 98.3% 36 1.7% 916 30.6% 285 195 436

CS 29517 3037 2274 74.9% 2227 97.9% 47 2. 1% 763 25.1% 153 176 434

CS 29518 2901 2078 71.6% 2025 97.4% 53 2.6% 823 28.4% 21 1 185 427

CS 29519 3661 2459 67.2% 2404 97.8% 55 2.2% 1202 32.8% 303 224 675

Total 294039 221670 75.4% 212812 96.0% 8858 4.0% 72371 24.6% 16199 16716 39456             
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Chapter 3

ANNs FOR KNOWN METAL-POOR STARS

3.1 Overview

We make use of 4688 metal-poor stars with previously obtained estimates of

metallicity and measured (or estimated) broadband color, originally selected from the

visual HK survey (HK1), to train a set of Artificial Neural Networks. The networks are

then used to (1) estimate metallicity, [Fe/H], and to (2) classify stars by their colors

and metal abundance from two input variables - the observed color, (B-V)o, and the

measured K18 index (the equivalent width of Ca II K line over a band of 18 A). The

trained networks for prediction and classification will be referred to as mp-p.net and

mp-c.net respectively, and are used in the process of metallicity estimation and

classification for the digitized HK2 stellar spectra.

3.2 Prediction of [Fe/H]

3.2.1 Data Set

The data set consists of the K18 index, (B-V)o color, and metal abundance, [Fe/H],

for 4688 known metal-poor stars (HK1). The K18 index is measured from the

medium-resolution spectra obtained during the course of the observational follow-up

of the HK survey. The (B-V)o color is obtained either from direct photometric

measurements obtained during the course of the HK survey follow-up, or is an

approximate value estimated from the of the Balmer lines in the follow-up spectra —

in particular H6 (see Beers et al. 1999). The metallicity, [Fe/H], is determined from

the abundance estimation techniques explained in detail in Chapter 2. These three
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parameters are believed to be quite accurate (A K18 ~ 0.2 A, A (B-V)o ~ 0.03 - 0.08

magnitudes, A [Fe/H] ~0.2 dex).

First, the 4688 metal-poor stars are evenly divided into two groups according to

their input parameters of [Fe/H], (B-V)o, and K18. The metallicity distribution

functions of the two groups are nearly identical, as are their distributions in (B-V)o

color and K18 index. Each group contains data across the entire range of those

parameters. A proper separation of these subsets is particularly important because

the networks need to learn a general relation between inputs and outputs —

preparation of a well-distributed training set ensures the success of the training

process. The first set of 2344 metal-poor stars is used in the training process, and

the other set of 2344 metal-deficient stars is used to objectively validate the trained

network. These data sets are referred to as “seen” data and “unseen” data

respectively, since the former participates in the training process while the latter is

never involved in training process, and hence can be used to make an objective

validation of the procedure.

Table 3.1 Data Set for Prediction

 

 

Training Set Validation Set

(Seen Data) (Unseen Data)

2344 2344    

3.2.2 Artificial Neural Network

An Artificial Neural Network (ANN) is a computational tool that can learn and

generate general relations between available input variables and some desired

output variables. ANNs are composed of three main components - an input layer

where input parameters are entered into the network, hidden layers that are made

up of “neurons,” and an output layer where generated output parameters emerge.
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The neurons in the hidden layers are connected to all of the input nodes and output

nodes (or neurons in next layer). Initially, the ANN assigns random connection

weights between the neurons, and hence produces a random set of output values.

Errors between the outputs and the inputs are then propagated backward through

the network, and the ANN is allowed to change the weights assigned to the neurons

in order to produce predictions that are closer to the goal. This training process is

continued until the network obtains optimized connection weights that map the inputs

to the outputs. The trained networks then can be used to produce new outputs for

other input data. A more detailed discussion of the principles of ANNs can be found

in the Appendix.

In this thesis, feed-forward and back-propagation ANNs have been employed. In

the process of training, a supervised learning mode was used — providing the

networks with both correct answers (desired outputs) and their corresponding inputs.

The ANN architectures were constructed with a single hidden layer and a few

neurons within it (from 2 to 50 nodes). Theoretically there is no limitation to the

number of hidden layers, but it is generally accepted that the use of a single hidden

layer is often appropriate (Masters 1993).

One of problems that should needs to be avoided in the application of ANNs is

referred to as over-fitting. This can occur when too many neurons are used, so that

the trained networks only “remember” the outputs with respect to specific inputs,

rather than learn general relations between them. Use of a single hidden layer is

prevents the generation of too many connection weights among neurons. Practically,

it is also known that little significant improvement is obtained with the use of multiple

hidden layers in almost all cases (Masters 1993; Zeanah 2000).
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For the analysis of metal-poor stars with ANNs, I have employed a commercial

neural network software product called “BackPack,” by 2 Solutions, LLC (2000). This

program is particularly useful since one can easily manipulate the network

parameters (e.g., Ieaming rate, momentum, and weights), and the package

automatically determines the point at which training needs to be stopped. BackPack

promptly generates results with graphics and statistical quantities. One can construct

a single hidden layer with up to 50 hidden nodes, and also apply it to problems with

up to 24 classification levels.

3.2.3 Training and Prediction Results

The (B-V)o color and K18 index of the training set are used as input variables in

training a few networks to predict one output variable — the metallicity, [Fe/H].

Because the known [Fe/H] are provided for the networks, training was in supervised

mode. Various numbers of neurons in a single hidden layer were tested to determine

an optimized ANN structure. Then these trained networks were applied to both the

seen data set (itself) and to the unseen data set, and predicted metallicities were

compared with real (known) metallicities.

The results of these approaches are summarized in Table 3.2. The first column

displays the ANN architectures in the form of i:j:k, where i is the number of inputs, j is

the number of neurons in a single hidden layer, and k is the number of outputs. Note

that i and k are always 2 and 1 in this case. The second and third columns show the

linear correlation coefficient (cc) and biweight estimator of scale (SBI) between the

predicted and true metallicities in seen data set. The biweight scale estimator is a

robust and resistant estimator of the rrns residual which remains stable in the

presence of outliers (Beers et al. 1990). If a data set is drawn from a Gaussian
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parent population, the biweight estimator approaches the more conventional

standard deviation. Even when the data set is non-Gaussian, the robustness of the

biweight scale estimator ensures that the scale estimate remains valid. The fourth

and fifth columns are the same quantities for the unseen data set, which enable us

to objectively evaluate the performance of the trained network. All trained networks

were able to predict metallicity [Fe/H] successfully with correlation coefficients

greater than c.c. = 0.94. For the validation set, the correlation coefficient has a

tendency to increase until the case of 2:10:1 and then decrease as the number of

neurons increases. This particular architecture exhibits the lowest value of the

biweight estimator, $3.. Also, the trained networks are properly Ieaming general

relations between the inputs and outputs since no apparent differences between

correlation coefficients for seen and unseen samples are found.

Table 3.2 Prediction Results

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Architecture TrainingSet Validation Set

C. C. SBI C. C. SBI

2 : 2 : 1 0.95 0.23 0.9440 0.2295

2 : 4 : 1 0.98 0.12 0.9734 0.1257

2 : 6 : 1 0.98 0.12 0.9733 0.1252

2 : 8 : 1 0.98 0.13 0.9733 0.1267

2 : 10 : 1 0.98 0.12 0.9735 0.1249

2 : 12 : 1 0.98 0.14 0.9695 0.1413

2 : 14 : 1 0.98 0.13 0.9720 0.1325

2 : 16 : 1 0.98 0.15 0.9688 0.1454

2 : 18 : 1 0.98 0.14 0.9691 0.1421

2 : 20 : 1 0.98 0.14 0.9701 0.1420

2 : 30 : 1 0.95 0.24 0.9404 0.2424

2 : 40 : 1 0.95 0.24 0.9405 0.2418

2 : 50 : 1 0.95 0.25 0.9405 0.2444
  

The trained network 2:10:1, which shows the best results, was picked to be used

in the metal abundance estimation for the stellar spectra in HK2. This network will be
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referred as to “mp-p.net” in this thesis. Figure 3.1 shows a plot of the predicted

[Fe/H] compared to the real [Fe/H], derived by applying mp-p.net to the validation

set. Most of data points are well distributed near the one-to-one line. A few of the

stars appear to deviate from this relation, especially near [Fe/H] = 0. These outliers

should not be a problem since we are interested in the identification of new

extremely low abundance stars with [Fe/H] < -2.0. Not that the predicted [Fe/H] has a

tendency to saturate near [Fe/H] = —3.5. This phenomenon, which is not a surprise,

is a characteristic of the transfer function used in artificial neurons: the non-linear

sigmoid function saturates to a constant when the summation of weighted inputs

attains a certain value. Many papers making use of ANNs have reported a similar

phenomenon.

In order to see how well the mp-p.net predicts metallicity, a grid of artificial

(B-V)o colors and K18 indices were prepared and fed into the trained net. The

contours of [Fe/H] derived from the mp-p.net are drawn over the space of (B-V)o and

K18 in Figure 3.2. It is worthwhile to compare this plot with Figure 2.1, obtained by

application to the inputs obtained from real stars. The results are quite encouraging.

For the metal-poor stars with [Fe/H] > —3.0, mp-p.net is able to estimate metallicity

correctly over the entire range of stellar temperatures. For the extremely metal-

deficient stars with [Fe/H] < —3.0, the network does a good job for hotter stars but

seems to overestimate metallicity for cooler stars. This is an unavoidable

consequence of the lack of cooler metal-poor stars in the training set (see Figure

2.1). Therefore, when we analyze candidate cooler metal-deficient stars derived by

the net, we anticipate the need to reduce the metallicity estimates for those stars.

Now we have a powerful network (mp-p.net) in the prediction of metallicity. If we are

able to estimate (B-V)o and K18 from the low-resolution prism spectra (HK2) with
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Figure 3.2 Isa-metallicity contours of [Fe/H], as derived from the trained

network over the space of (B-V)o and K18.
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accuracy approaching that of the measured values, [Fe/H] can be obtained rapidly

with high accuracy.

3.3 Classification

3.3.1 Data Set

The data sets for the classification process are the same ones used in the prediction

process. Here, the metal-poor stars were divided into 6 groups according to their

colors and metallicities. The groups will be referred to as “MP-class.” A summary of

MP-class with classification category and the number of data is shown in Table 3.3.

The ultimate goal of this project is to identify extremely metal-poor star candidates,

which are expected to be classified in MP-class 1 and 2. Because the metal-poor

stars were evenly divided into training and validation sets according to their input

parameters, they contain a similar number of stars in each MP-class.

Table 3.3 Data Set for Classification

 

 

 

 

 

 

 

  

MP-class (B-V)0 [Fe/H] Total Training Set “'32:”

1 0.30 — 0.50 -4.00 to -2.00 684 340 344

2 0.51 — 1.27 -4.00 to -2.00 370 187 133

3 0.30 — 0.50 -1.99 to -1.00 732 390 392

4 0.51 — 1.50 -1.99 to -1.00 684 343 341

5 0.30 —- 0.50 0.99 to 0.30 1016 509 507

6 0.51 - 1.45 -0.99 to 0.30 1152 575 577

Total 4688 2344 2344      
 

3.3.2 ANN Architecture

Unlike the prediction process, probability mode was employed in the classification

approach. This means that the number of neurons in the output layer is the same as

the number of classification groups. In our case, there are 6 output neurons in the
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output layer. A trained network generates the “probability” for each output node,

instead of estimating a physical parameter. Each object is classified into the group

where the maximum probability occurs.

3.3.3 Training and Classification Results

The (B-V)o color and K18 index in the training set were used as input variables and

the output vector for MP—class was provided as an output variable. For example,

MP-class 1 has a vector of (1 ,0,0,0,0,0). Once again, various numbers of neurons in

a single hidden layer were tested to determine an optimized ANN structure. Then the

trained networks were applied to both seen data set (itself) and unseen data set to

classify stars by their color and metallicity.

The classification results are summarized in Table 3.4. The first column displays

the ANN architectures. Correction rates for all stars in the sample are seen on the

third column. The correction rate is a ratio of the number of correctly assigned (by

networks) stars to the number of all real stars in the group. The rest of the columns

show correction rates for each MP-class. As the number of neurons in hidden layer

increases, the overall correction rate increases gradually and then asymptotically

approaches about 90%. The more metal-rich stars in MP-class 5 and 6 are classified

well, with a correction rate generally over 90%, while the stars in other groups show

some fluctuations. This is because the number of more metal-rich stars are larger

than the other subsamples. The trained networks appear to be learning general

relations between input parameters and output parameters, as there are no

distinctive differences between correction rates for the training and validation sets.

The trained network 2:12:6 was picked to be used in the process of classification

for the stellar spectra in HK2. This network will be referred as to “mp-c.net” in this
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thesis. Although the network with architecture 2:16:6 shows the best overall

correction rate for the unseen set, the network 2:12:6 was selected since it showed

consistent correction rates of over 83% for all MP-classes.

Table 3.4 Classification Result (Correction Rate)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

. MP- MP- MP- MP- MP- MP-

Architecture Set Overall class 1 class 2 class 3 class 4 class 5 class 6

2 : 2 : 6 Training 81.10 % 98.8 % 99.5 % 54.6 % 30.0 % 98.2 % 97.9 %

Validate 80.76 % 98.0 % 98.9 % 55.6 % 27.3 % 98.2 % 98.1 %

2 : 4 : 6 Training 85.88 % 85.3 % 68.4 % 90.8 % 88.9 % 82.9 % 89.4 %

Validate 86.43 % 84.6 % 70.5 % 92.1 % 88.0 % 83.4 % 90.5 %

2 : 6 : 6 Training 88.10 % 77.4 % 78.6 % 89.5 % 72.9 % 97.4 % 97.4 %

Validate 87.12 % 75.9 % 76.5 % 89.5 % 70.4 % 96.6 % 97.1 %

2 : 8 : 6 Training 90.19 % 96.8 % 81.8 % 77.9 % 78.7 % 97.6 % 97.6 %

Validate 89.80 % 95.9 % 84.7 % 77.0 % 78.0 % 96.8 % 97.2 %

2: 10: 6 Training 88.61 % 77.1 % 85.6 % 90.3 % 78.1 % 98.6 % 92.7 %

Validate 88.31 % 75.6 % 86.3 % 89.8 % 78.6 % 98.0 % 92.7 %

2 : 12 = 6 Training 91.81 % 85.3 % 94.7 % 91.5 % 85.7 % 97.2 % 93.7 %

Validate 91.04 % 83.7 % 93.4 % 90.1 % 85.3 % 96.8 % 93.6 %

2 : 14 : 6 Training 89.21 % 90.0 % 82.4 % 75.6 % 83.1 % 97.6 % 96.3 %

Validate 88.23 % 89.5 % 81.4 % 73.7 % 81.8 % 96.6 % 95.8 %

2 : 16 : 6 Training 91.30 % 93.5 % 77.0 % 87.4 % 91.3 % 95.9 % 93.2 %

Validate 91.30 % 92.7 % 79.8 % 87.8 % 90.9 % 95.1 % 93.4 %

2 : 18: 6 Training 90.61 % 80.0 % 84.5 % 92.1 % 85.1 % 95.5 % 96.9 %

Validate 90.15 % 79.4 % 86.9 % 90.6 % 84.5 % 94.9 % 96.5 %

2 : 20 : 6 Training 89.59 % 85.6 % 78.1 % 82.6 % 84.3 % 96.9 % 97.2 %

Validate 89.38 % 84.6 % 81.4 % 83.2 % 81.5 % 96.3 % 97.6 %

2 : 30 : 6 Training 90.53 % 97.1 % 85.0 % 78.7 % 87.5 % 93.1 % 96.0 %

Validate 90.36 % 97.4 % 88.5 % 77.8 % 85.9 % 92.7 % 95.8 %

2 : 40 : 6 Training 91.72 % 86.5 % 90.9 % 91.3 % 81.6 % 97.4 % 96.3 %

Validate 91.13 % 86.0 % 91.8 % 90.1 % 80.1 % 96.4 % 96.5 %

2 : 50 : 6 Training 91.04 % 89.7 % 81.3 % 90.5 % 86.9 % 91.9 % 97.0 %

Validate 90.49 % 89.5 % 83.1 % 90.1 % 85.0 % 90.7 % 96.7 %
 

46

 



Chapter 4

K18 INDEX CALIBRATION

4.1 Overview

With 3269 known metal-poor stars selected from the visual HK survey (HK1), and

their corresponding low-resolution digital spectra (HK2), the Artificial Neural

Networks are trained in order to estimate the K18 index (as originally measured from

medium-resolution follow-up spectra of the visually-selected HK survey stars) directly

from the low-resolution spectra extracted from the APM scans (HK2). The

“predicted” K18 index (hereafter, referred as to K18_p) is used to obtain a new

index, the “fit” K18 index (hereafter, called K18_f) that is the best estimated value

derived directly from the HK2 spectra. The index K18_f and the observed (B-V)o

colors are used as input variables into mp-p.net and mp-c.net (the trained networks

discussed in Chapter 3) to estimate [Fe/H] and determine MP-class for these stars.

The efficiency and recovery of these results are discussed.

4.2 K18 Index Calibration

4.2.1 Data Set

By matching up the positional coordinates between 4688 known metal-poor stars

(HK1) and stellar spectra from 293 digitally scanned plates (HK2), 3787 metal-poor

stars were matched with HK2 spectra (a match requiring an angular separation

between the two positions of less than 20 seconds of arc). Among these matches,

518 spectra turned out to be unusable for the following reasons: saturated (15),

noise (347), odd (65), bad quality of spectra (32), and multiple matches (59). The
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remaining 3269 metal-poor stars with known quantities ([Fe/H], (B-V)o. and K18) and

corresponding low-resolution spectra are the data set discussed in this chapter.

4.2.2 Measured K18 Index (K18_2)

In Section 2.3, the general algorithms for spectral data reduction and equivalent

width measurement were explained fully. Recall that the measured equivalent width

over 13 pixels (= 18 A) around the Ca ll K line in the HK2 spectra is called K18_2 in

this thesis.

Figure 4.1 presents the relationship between the K18 indices (HK1) and K18_2

indices (HK2) for the 3269 metal-poor stars. K18 is believed to be very accurate

since it was measured with the full analysis of medium-resolution stellar spectra.

Overall, the two data sets show a linear relationship, but the distribution of K18 is too

broad at a given K18_2 (especially near K18_2 = 5 A) and the spread of K18_2 (in

the horizontal direction) increases as K18 approaches 10 A, where a saturation of

K18 occurs. These uncertainties could cause the ANNs to suffer somewhat in the

estimation of [Fe/H] and the determination of MP-class. For example, at K18_2 ~ 5

A, K18 ranges between 1 and 10 A. As seen in Figure 3.2, if the mp-p.net feeds on

the incorrect K18_2 for stars of (B-V)o = 0.5 (for example), the trained network would

predict a metallicity [Fe/H] of about —2.5 although its real value could be anywhere

between -3.0 and 0.0 (since the true K18 is between 1 and 10 A). Because the

metallicity is a function of only the two variables of color and K18 index, and they

both affect [Fe/H] significantly, the estimation of [Fe/H] can be sensitively distorted

by even minor incorrect information in these quantities. Thus it is of crucial

importance that K18_2 should be an accurate estimate of K18. Although a number of

efforts for improvement of the continuum estimate and measurement of the K18_2
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Figure 4.1 Relationship between K18 (HK1) and K18_2 (HK2). K18 is

derived from medium-resolution spectra from the HK survey follow-up, while

K18_2 is calculated from low-resolution APM spectra.
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index have been made, the algorithms described earlier do generate the most

reasonable and acceptable equivalent widths, shown in Figure 4.1. Nevertheless,

the measured K18_2 does not satisfy the criteria to be used with the networks

trained with K18 unfortunately - it must be adjusted.

Our task is then clear — can we develop a “new” methodology for estimating the

K18_2 index directly from low-resolution spectra (HK2), ensuring a acceptable

quality as good as the K18 index (HK1) ? In order to accomplish this task, we first

must explore an analysis of the digital spectra themselves. Figure 4.2 shows again

the distributions of K18 and K18_2 of stars for the validation sets only (Table 4.1),

but separated according to the maximum counts in their spectral continua (dashed

line in Figure 2.4 (a); hereafter, referred to as “flux_m”). The data points in Figure

4.2 (a), (b), and (c) belong to flux_m of 126,000 - 925,000 counts, 69,000 — 126,000

counts, and 14,000 — 69,000 counts, respectively. Each group has a similar number

of objects — 614 stars, 559 stars, and 596 stars. This even distribution ensures

enables a useful statistical comparison between the flux groups. Four features

should be noted - as flux_m decreases from panel (a) to (c), (1) the distribution of

data moves from lower K18 to higher K18 (the same applies to K18_2), (2) the

average of the color <(B-V)o> increases (0.44, 0.52, and 0.60 respectively), (3) the

horizontal distribution of K18_2 at a given K18 tends to be broader, and (4) the slope

of the distribution tends to be decreased. The first two characteristics can be easily

explained from an understanding of the stellar spectral types. As the spectral class

changes from F-type to G-type (note that (B-V)o is ~0.35 for F0 type and 0.60 for GO

type), the overall fluxes near Ca ll H and K line become weaker, due to the

increasing strength of the metallic absorption lines relative to the stellar continuum.

Meanwhile, the strength of Ca ll K lines become stronger, since the energy levels in
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Figure 4.2 Distribution of K18 (HK1) and K18_2 (HK2) for three groups of

stars separated by the value of their peak fluxes, flux_m. (a) high flux, (b)

medium flux, and (c) low flux.
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the Ca ll ion effectively match the transitional energy at these temperatures. The last

two properties resulted from the use of an identical exposure time for all stars

regardless of their apparent brightness, which is an unavoidable situation with the

objective prism technique. With regard to the third problem, the stellar spectra of

faint stars without sufficient exposure time appear to be relatively noisy (although

spectra which are too noisy to be useful, those with peak counts < 30,000, were

eliminated in Chapter 2), so their continuum can be constructed inappropriately,

leading to inaccurate equivalent width measurement. The final problem is due to

excessive observing time for brighter stars (and the non-linear response of the

photographic emulsion at high flux levels), which leads to a saturation of the

continuum and underestimation of the measured equivalent widths. If the brighter

stars were exposed for a shorter time, their K18_2 indices would be increased so the

distribution slope in Figure 4.2 (a) would approach 1, like the others. Also, if the

criterion for filtering out saturated spectra is reduced from 0.80 to a lower critical

value (Subsection 2.3.4), spectra with better quality can be selected. However, we

chose not to do this since we do not want to lose those spectra with acceptable

quality.

4.2.3 Predicted and Fit K18 Index (K18_p 8: K18_f)

Improvement in the estimation of K18_2 could be achieved by individual

consideration of the HK2 spectra with information of their temperatures, apparent

brightness, and observing time. But this would require a great deal of time to

accomplish, which breaks the spirit of this project - efficient data reduction in time as

well as in quality (recall that there are 1.5 million stars in HK2 survey!).
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Here, we make use of the ANNs to calculate the equivalent width of the Ca ll K

line with as high an accuracy as is feasible. To accomplish this goal, ANNs of

various architecture were separately trained on each group by feeding on (B-V)o

color, flux_m, and 50 raw fluxes around the Ca ll K absorption line. The networks are

expected to learn information concerning the apparent brightness of the star from the

peak flux, flux_m. The supply of 50 raw fluxes is intended to help the network

recognize a suitable continuum so K18_2 can be determined in an appropriate

manner. In each group, the training set (seen data) consists of 500 metal-poor stars

with their 52 input variables and one known output variable, K18 (Table 4.1). The

validation sets (unseen data) for the trained networks are composed of 614, 559,

and 596 stars, respectively, which have been shown in Figure 4.2 already. To avoid

biasing our results, the seen and unseen data are divided according to K18 and

color in a simliar manner.

Table 4.1 Data Set for K18_2 Calibration

 

 

 

 

  

Flux_m (counts) Training Set Validation Set

Group 1 126,000 - 925,000 500 614

Group 2 69,000 — 126,000 500 559

Group 3 14,000 — 69,000 500 596    

The feed-forward and back-propagation ANNs with a single hidden layer are

employed once again. Masters (1993) has recommended that, as a general rule of

thumb, the number of neurons in the hidden layer should be equal to the square root

of the product of the number of inputs and the number of outputs, unless there are

very few inputs and outputs. This guideline leads us to use about 7 neurons in this

program because there are 52 input variables and 1 output variable. But one should

note that this rule is only a rough approximation and can be applicable to only

“significant" inputs to networks (those inputs which are not supplying redundant
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information), therefore various architectures should be tested to find the optimized

structure.

As before, the trained networks were applied to both the training set (on itself)

and the validation set, then the predicted K18_p were compared with the “true” K18.

The results of this application are summarized by group in Table 4.2. For

comparison, the same statistical parameters between true K18 and the “raw”

(measured) K18_2 (discussed in Figure 4.2) are provided in the last two columns. In

all cases of both seen and unseen data, the correlation coefficients and biweight

estimator of scale, 83., of the residuals between K18_p and K18, are apparently

improved relative to the results between K18_2 and K18 (in particular, for low

fluxes). This means that the trained networks have learned how to produce the

equivalent width from the complex input information, and the use of ANNs is superior

to the direct calculation with an uncertain continuum. However, note that as flux_m

decreases, the differences in the results between seen and unseen data increase.

.For the seen data sets in all groups, the correlation coefficients are larger than 0.82

with the biweight estimators less than 1.20 A in the most of cases. But, for the

validation sets, with the exception of Group 1, the results deviate from those for the

seen data sets. This indicates that, for fainter stars, the trained networks are

exhibiting a tendency to “remember” the relationships between inputs and the output,

rather than learning general patterns. Nonetheless, the networks’ results for unseen

data are always much better than obtained from K18_2 itself, thus this method will

be employed in the remainder of thesis. An interesting point is that the c.c. and SB.

can vary inconsistently. Note the results for the validation sets in Groups 2 and 3 —

fainter stars show a worse c.c., but better 83., as compared to stars in the 2"d group.

This is the reason why one should consider both the correlation coefficient and
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robust estimator of the residual scale simultaneously. The trained networks that

produce the best results in each group are selected to be used in the K18 index

calibration, and will be called “k18-h.net,” “k18-m.net,” and “k18-l.net” respectively,

denoting high, medium, and low flux values.

Table 4.2 K18_2 Calibration Results

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Architecture Training Set Validate Set K18 vs K18_2

c. 0. SB. c. c. SB. c. 0. SB.

52 : 2 : 1 0.82 1.23 0.8032 1.31

52 : 4 : 1 0.83 1.17 0.8151 1.26

Group 1 52 : 6 : 1 0.83 1.20 0.8084 1.31 0.74 1.38

52 : 8 : 1 0.79 1.32 0.8010 1.28

52: 10: 1 0.84 1.16 0.8113 1.28

52 : 2 : 1 0.87 1.19 0.7901 1.38

52 : 4 : 1 0.88 1.16 0.7954 1.36

Group 2 52 : 6 : 1 0.87 1.22 0.7977 1.38 0.67 1.87

52 : 8 : 1 0.87 1.18 0.7978 1.36

52 : 10 : 1 0.87 1.17 0.7901 1.39

52 : 2 : 1 0.84 0.93 0.6821 1.11

52 : 4 : 1 0.83 0.98 0.6872 1.21

Group 3 52 : 6 : 1 0.82 1.01 0.7005 1.19 0.51 1.97

52 : 8 : 1 0.83 0.99 0.6891 1.15

52 : 10 : 1 0.84 0.96 0.6822 1.14
  

The distributions between K18 and K18_p (as predicted by the selected

networks) for the unseen data sets only are shown in Figure 4.3. As can be seen,

K18 and K18_p have a much improved linear relationship, as compared to the

results for K18 and K18_2 shown in Figure 4.2, although the scatter still becomes

larger as the flux decreases. The slope of distribution of for the higher flux

subsample becomes close to 1, and the scatter in lower fluxes are distinctively

reduced. Note that the predicted indices saturate near 2 A, which is a general result

for the application of ANNs, as discussed previously.
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Figure 4.3 Predicted line index K18_p, as compared to K18, for three

groups of stars separated by peak flux, flux_m. (a) high flux, (b) medium

flux, and (c) low flux.
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In order to make K18_p as reliable as possible, piecewise linear fittings were

performed to the distributions between K18 and K18_p - the fit lines are shown

together in Figure 4.3. Each group is divided into two parts at K18_p = 6 A, which is

the middle of the entire range of K18_p, and then fit separately to a linear relation

with K18. The functional forms of the “fit” K18 indices (K18_f) and their robust

estimator of the rms residual are presented in Table 4.3. These fit indices, K18_f,

will be used as one of inputs into mp-p.net and mp-c.net for the process of prediction

and classification.

Table 4.3 Fit Functions of K18_2

 

K18_p<6A K18_p>6A

Fit Function 83. Fit Function SB.

Group 1 K18_f = 0.997 K18_p — 0.086 1.19 K18_f = 0.862 K18_p + 0.751 1.35

Group 2 K18_f = 0.962 K18_p + 0.104 1.67 K18_f = 0.943 K18_p + 0.327 1.14

Group 3 K18_f = 0.866 K18_p + 1.080 1.89 K18_f = 0.893 K18_p + 0.544 1.02

 

 

 

 

       

Figure 4.4 presents the relations of residuals (K18 - K18_f) over K18_f, grouped

by line strength and flux. Generally they are evenly distributed around 0 in the

vertical direction, but some outliers appear in the region of larger line strengths in

groups 2 and 3. Histograms of the residuals for the groups, separated by equivalent

width and flux, are shown in Figure 4.5.

4.3 Prediction and Classification

The 1769 known metal-deficient stars which were members of the three validation

sets in K18 index calibrations were used again in the estimation of [Fe/H] and the

determination of MP-class. Because their (B-V)o colors and metal abundance are in

hand, and they have never been involved in the training process for the K18
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Figure 4.4 The residuals (K18-K18_f) shown as a function of K18_f,
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medium flux / stronger line strength, (e) lower flux / weaker line strength,
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same as in Figure 4.4.
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calibration, their use promises unbiased results, and thus an objective analysis is

possible.

It is worth reviewing the entire procedure for the selection of candidate metal-

poor stars in the case where colors are available. The HK2 spectra need to be

classified into 3 groups by flux_m, and then the trained networks for K18 calibration

(k18_h.net, k18_m.net, and k18_l.net) feed on 50 raw fluxes, known colors and

flux_m to produce K18_p. The 6 fit functions are used to convert K18_p into K18_f.

These procedures were fully demonstrated in the previous section. Finally the known

(B-V)o color and K18_f are fed into mp-p.net and mp-c.net in order to predict their

metallicity and determine MP-class.

Figure 4.6 shows the relationship between true [Fe/H] and predicted [Fe/H],p

estimated by mp-p.net with K18_f and real (B-V)o. The correlation coefficient and

robust estimator SB. between [Fe/H] and [Fe/H]_p are 0.64 and 0.59 dex

respectively. For stars with true [Fe/H] > —1, the trained network tends to

underestimate the metallicity [Fe/H]_p. As seen in Figure 3.2, the vertical spacing

between the contours of [Fe/H] > —1 is about 1 A per 0.5 dex of [Fe/H], and the

metal-deficient stars with [Fe/H] > —1 have K18 greater than 6 A, generally. In all

cases, the robust estimator SB. between K18_f and K18 is greater than 1 A (Table

4.3) and stars with large K18_f indices are underestimates relative to the true K18

(Figure 4.4 (d) and (f)). As a result, the metal abundances are underestimated for

those stars. However, as [Fe/H] decreases, the vertical spacing between iso-

metallicity contours increases gradually, so that metallicity is less affected by the

scatter in K18_f. Thus, one obtains a better relationhip between [Fe/H] and [Fe/H]_p

for the stars of lower metal abundance. Note, however, that [Fe/H]__p has a tendency
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to saturate near [Fe/H] = —3.0. This is due to the saturation of K18_p and K18_f near

2 A (Figure 4.3). As seen in Figure 3.2, mp-p.net does not generate estimates of

[Fe/H] < -3.0 with K18 of 2 A for stars hotter than (B-V)o ~ 0.55. Because stars with

(B-V)o < 0.55 represent more than half in our sample, it is difficult for mp-p.net to

generate metallicity estimates less than [Fe/H]_p = -3.0.

Although the results obtained with the calibrated K18_f index are not as good as

are obtained from those with known K18, our results are still quite useful for pre-

selection of candidate metal-poor stars. Tables 4.4 and 4.5 display statistical

quantities for hotter stars and cooler stars, respectively. The meanings of columns

are as follows:

Column (1): Metallicity cutoff

Column (2): Numbers of stars in the unseen set with known [Fe/H] below the cutoff

Column (3): Numbers of stars in the unseen set with predicted [Fe/H]_p below

the cutoff

Column (4): Numbers of stars that have correctly assigned abundances below

the cutoff

Column (5): Recovery — percentage of stars whose abundances are correctly

assigned below the cutoff, as compared to all stars whose

real abundances are below the cutoff (= col(4)/col(2) x 100)

Column (6): Efficiency — percentage of stars whose abundances are

correctly assigned below the cutoff, as compared to all stars

whose predicted abundances are below the cutoff (= col(4)/col(3) x 100)

For example, of the 148 cooler stars in the unseen set known to have

[Fe/H] < —2.0, 93 stars are correctly predicted by the ANN to have [Fe/H] < —2.0.

Thus 37.2% are missed, and 62.8% are recovered by the prediction procedure.

Among 122 cooler stars in the validation set predicted to have abundance [Fe/H]

< —2.0, 93 of them in fact satisfy this criterion (76.2% efficiency). In other words, if we

were to observe 100 candidate metal-poor stars whose [Fe/H] was predicted to be
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less than —2.0, then we should be able to collect 76 true extremely metal-poor stars

with [Fe/H] < —2.0.

This efficiency should be compared to the effective yield (EY) which was defined

in Chapter 2. For the HK survey with visual inspection, the EY of stars with

[Fe/H] < —2.0 was ~ 32% when B-V color information was available prior to

conducting the spectroscopic follow-up. In our application, the efficiency of both

hotter and cooler stars with [Fe/H] < —2.0 is about 76% with previous color

information, which is a greatly improved result. Extremely metal-deficient cooler

stars have an apparently better recovery than for hotter stars. This is attributed to the

saturation of K18_2 near 2 A again, from which cooler stars do not suffer.

A re-calibration of the K18 index for hotter stars with K18_2 < 2 A is likely to improve

the recovery rate. This effort will be made in the near future.

Next, the mp-c.net was fed on known colors and K18_f to determine the MP-

class of stars in the unseen set. The results are shown in Table 4.6. The second

row gives correction rates; the number of stars in each group is provided in the last

row. For example, of 148 known cooler metal-poor stars (MP-class 2) which are our

ultimate targets, 82 stars are correctly classified into MP-class 2 by mp-c.net

(correction rate: 58.8%). This enables us to make a sample of cooler metal-poor star

candidates in a highly efficient manner. Stars in MP-class 1 have the lowest

correction rate as a result of the saturation of K18_p.
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Table 4.4 Recovery and Efficiency for Hotter Stars ((B-V)o S 0.50)

 

 

 

 

 

 

 

 

 

 

       

Cutoff [Fe/H] [Fe/H]_p Correct R9359” affix”

s -3.5 4 0 0 0.0 N/A

3 -3.0 17 0 0 0.0 N/A

3 -2.5 68 6 2 2.9 33.3

s -2.0 230 129 99 43.0 76.7

s -1.5 385 340 278 72.2 81.8

s -1.0 497 576 426 85.7 74.0

s -0.5 739 793 680 92.0 85.8

s 0.0 885 884 875 98.9 99.0

s +0.5 895 894 894 99.9 100.0

3 +1 0 895 895 895 100.0 100.0
 

Table 4.5 Recovery and Efficiency for Cooler Stars ((B-V)o > 0.50)

 

 

 

 

 

 

 

 

 

 

       
 

 

 

 

 

Cutoff [Fe/H] [Fe/H]_p Correct Baggy” WEI/Sm),

S -3.5 5 0 0 0.0 N/A

S -3.0 21 1 0 0.0 0.0

S -2.5 63 45 24 38.1 53.3

S -2.0 1 48 122 93 62.8 76.2

S -1.5 233 280 172 73.8 61.4

S -1.0 414 571 329 79.5 57.6

S -0.5 686 831 663 96.6 79.8

S 0.0 852 870 851 99.9 97.8

S +0.5 874 874 874 1 00.0 1 00.0

S +1.0 874 874 874 100.0 100.0

Table 4.6 Classification Results

Overall MP- MP- MP- MP- MP- MP-

Class 1 class 2 class 3 class 4 class 5 class 6

Correction 0 o o o O o a

Rate (%) 55.85 /o 39.6 /o 58.8 /o 67.4 /o 67.3 /o 62.3 /o 44.1 A

Number 1769 230 148 267 266 398 460       
 

 

 

 



Chapter 5

COLOR INDEX CALIBRATION

5.1 Overview

With 821 unique stars for which observed (B-V)o colors are available from the HK

survey photometric follow-up (HK1), their corresponding low-resolution digital

spectra (HK2), and estimates of calibrated photographic apparent magnitudes in

several bands (B,R,l) obtained from the SuperCOSMOS Sky Surveys (hereafter,

SSS), the Artificial Neural Networks are trained in order to estimate the (B-V)o color

index for stars without available photometric observations, directly from the low-

resolution spectra extracted from the APM scans (HK2) and the SSS magnitudes.

Piecewise linear fitting is performed between the predicted (B-V)o color (hereafter,

referred as to (B-V)o_p) and the observed (B-V)o color in order to obtain a new color

estimate, the fit color (hereafter, called (B-V)o_f), which is the best estimated value.

The (B-V)o_f colors are then used as one of the input variables into k18-h.net, k18-

m.net, and k18-l.net (the trained networks discussed in Chapter 4) for the K18 index

calibration. Finally, (B-V)o_f and K18_f are used as inputs into mp-p.net and mp-

c.net (the trained networks discussed in Chapter 3) to estimate [Fe/H] and to

determine the MP-class. The efficiency and recovery of these results are discussed.

5.2 Color Index Calibration

5.2.1 Data Set

By matching up the positional coordinates for 5218 stars (including several thousand

bluer FHB/A stars, as well as the metal-poor stars) with observed (B-V)o colors
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(HK1), stellar spectra in the 87 digitally scanned plates (HK2), and stars with

available apparent magnitudes (B, R, l) in the portion of the SSS which has been

calibrated to date (the region b < -55, toward the South Galactic Pole), 899 stars

were matched with a criterion of their angular separation being less than 20 seconds

of arc. Among those, 28 stars were ruled out due to multiple matches (16) or

mismatches (12) determined by comparison of B magnitudes in HK1 and SSS. An

additional 50 stars were dropped, because only one magnitude band for them was

available from the SSS. The remaining 821 unique stars with observed (B-V)o, low-

resolution (HK2) spectra, and multiple-band SSS magnitudes form the data set

discussed in this section.

The SuperCOSMOS Sky Survey is an ongoing effort by the Wide Field

Astronomy Unit (WFAU), Institute for Astronomy, with an advanced machine that

digitizes photographic sky survey plates taken with UK Schmidt Telescope (UKST),

the ESO Schmidt, and the Palomar Schmidt. The SSS presently covers some 5,000

square degrees (200 standard UKST fields with b < —60) around the South Galactic

Cap (SSS 2000).

Figure 5.1 shows the relationship between the (calibrated) photographic B

magnitude obtained from the SSS (hereafter, referred as to Bj) and the photoelectric

B magnitude observed in the HK Survey for the 821 stars. There is a clear linear

relationship between these two measures, but there exists a scatter of roughly 1

magnitude , and B] is somewhat less than B, overall. The B magnitude is believed to

be very accurate (A B ~ 0.01-0.02 mag; Beers et al. 1999). Bj is the roughly

calibrated magnitude in digitized sky survey plates taken with the UK Schmidt

Telescope (UKST) and may contain systematic errors as a function of position on

the plate (SSS 2000). Bj is available for all stars in our data set, but the other three
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and photoelectric B magnitude from the HK Survey (B). A one-to-one line is

shown.
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bands - R1 (ESO Schmidt and Palomar Schmidt), R2 (UKST), and l (UKST) - are

not always available, as shown in Table 5.1. The marks 0 and X mean available and

non-available, respectively.

Table 5.1 Data Set (Unique Stars) Obtained from SSS

 

 

 

 

 

 

 

 

    
  

Availability

Bj R1 R2 I Number

0 O O O 370

O X 0 O 1 85

O O X 0 35

O O O X 84

O X X 0 22

O O X X 22

O X 0 X 1 03

Total 821  
 

5.2.2 Predicted and Fit Color Index ((B-V)o_p 8r (B-V)o_f)

We make use of the ANNs to estimate (B-V)o color with as high an accuracy as

possible at present. To achieve this goal, ANNs of various architecture were

separately trained on each group of matched stars, categorized by the availability of

magnitudes, by feeding on available SSS magnitudes, flux_m, and 200 flux

estimates in the continua as derived in Chapter 2 (Figure 2.4 (a)). The position of the

absorption peak of Ca ll K line corresponds to the 75"1 pixel (of 200 input pixels).

The combined use of the various magnitude bands provides information on the

stellar color which we seek to extract. The stellar continua are the intensities of

blackbody radiation at the surface temperature of the star, modified by the response

of the photographic emulsion of the original HK survey, and the transmission of the

interference filter + telescope optics + the Earth’s atmopshere. Thus, the networks

are expected to learn information regarding the color temperature of the stars from
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the shape of the individual continua. However, as discussed in Subsection 2.2.2, the

continua can be distorted on the spectra of too bright (saturation) or too faint (noisy)

stars. Therefore, flux_m needs to be fed into the network to provide information

about the apparent brightness of the stars.

Table 5.2 Data Set for Color Estimation

 

 

 

 

 

 

 

 

     

Availability Total Training Validation Ratio

Bj R1 R2 I Set Set (V/T)

Group 1 O O O O 370 240 130 0.54

Group 2 O X 0 O 555 240 315 1.31

Group 3 O O X 0 405 240 165 0.69

Group 4 O O O X 454 240 214 0.89

Group 5 O X X 0 612 240 372 1.55

Group 6 O O X X 511 240 271 1.13

Group 7 O X 0 X 742 240 502 2.09      
 

Table 5.2 summarizes the data sample used in our neural networks for color

estimation. The groups are determined by the available magnitude bands, as in

Table 5.1, but the difference is that a single star can be used in several groups

according to its available magnitudes. For example, stars in Group 1 can participate

in the training process in all other groups since they have all magnitude bands

available — Bj, R1, R2 and l. Because members in Group 2 have Bj, R2, and l, they

can join the training process for Group 5, which requires only two kinds of

magnitudes — Bj and l. The sixth column in the table indicates the number of stars in

each group, collected by the above method. In each group, the training set (seen

data) consists of 240 stars with their possible inputs (203 to 205) and one known

output (B-V)o color. To ensure fairness of training for all groups, the same number of

stars (240) was allocated into the training sets. This number, 240, was determined

by considering the ratio of the number of stars in the validation set to the number of
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stars in the training set. The ratio shown in the last column is intended to be between

0.5 and 2.0 to avoid unwanted over-fitting, due to a surplus of information, or

incorrect fitting, due to lack of information. As always, the seen and unseen sets are

evenly divided according to color and peak flux to obtain unbiased results from the

trained networks.

As before, the feed-fonfvard and back-propagation ANNs with a single hidden

layer were tested by increasing the number of hidden neurons from 2 to 10. The

trained networks were applied to both the seen set (on itself) and unseen set, and

then the predicted (B-V)o_p colors were compared to the known (B-V)o colors. The

statistical results of this approach are presented by group in Table 5.3. For

comparison, the last two columns show the same statistical quantities between true

(B-V)o color and (B-V)o_p, as estimated by the networks which were trained without

the continuum information. In all cases, for both seen and unseen data, the results of

the correlation coefficients and robust estimator SB. derived from the networks

trained with continuum information are clearly improved relative to those estimated

from the networks trained without continuum information.

For the training sets, the correlation coefficients are always reasonably high,

and the fluctuation of co and SB. is not severe from group to group. However, the

results from the validation sets are always worse than those with training sets, and

are very different from group to group. For example, the difference of c.c. and SB.

between seen and unseen sets with the best architecture in Group 7 are 0.15 and

0.05 respectively, whereas nearly the same results are obtained in Group 5. As

expected, the results for the validation sets become worse as the number of SSS

magnitudes decreases, in general. There are two possible reasons for this behavior.

As was the case for the K18 calibration, the trained networks may be tending to
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Table 5.3 Color Calibration Results

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

203 :

203 :

0.84 0.13 0.7001 0.16

: 1 0.86 0.12 0.6846 0.17 0.69 0.19

   

Architecture Training Set Validation Set w/o Continuum

C. C. 83) C. C. Sm C. C. SBj

205 : 2 : 1 0.92 0.11 0.8455 0.13

205 : 4 : 1 0.91 0.11 0.8475 0.13

Group 1 205 : 6 : 1 0.91 0.11 0.8622 0.13

205 : 8 : 1 0.90 0.11 0.8387 0.13

205 : 10 : 1 0.90 0.12 0.8485 0.13 0.81 0.16

204 : 2 : 1 0.90 0.12 0.8262 0.14

204 : 4 : 1 0.90 0.11 0.8261 0.14

Group 2 204 : 6 : 1 0.89 0.11 0.8277 0.14

204 : 8 : 1 0.87 0.13 0.8153 0.15

204 : 10 : 1 0.86 0.13 0.8163 0.15 0.76 0.17

204 : 2 : 1 0.92 0.10 0.8378 0.13

204 : 4 : 1 0.90 0.11 0.8326 0.14

Group 3 204 : 6 : 1 0.90 0.11 0.8200 0.14

204 : 8 : 1 0.89 0.12 0.8278 0.13

204 : 10: 1 0.89 0.12 0.8154 0.14 0.83 0.15

204 : 2 : 1 0.88 0.12 0.7836 0.15

204 : 4 : 1 0.90 0.10 0.7945 0.15

Group 4 204 : 6 : 1 0.90 0.10 0.7911 0.15

204 : 8 : 1 0.89 0.11 0.7790 0.14

204 : 10 : 1 0.88 0.12 0.7799 0.15 0.77 0.17

203 : 2 : 1 0.88 0.13 0.8396 0.14

203 : 4 : 1 0.89 0.12 0.8212 0.14

Group 5 203 : 6 : 1 0.88 0.12 0.8353 0.14

203 : 8 : 1 0.88 0.13 0.8473 0.13

203 : 10 : 1 0.88 0.13 0.8325 0.14 0.75 0.18

203 : 2 : 1 0.84 0.14 0.76 0.15

203 : 4 : 1 0.86 0.13 0.78 0.14

Group 6 203 : 6 : 1 0.86 0.13 0.74 0.15

203 : 8 : 1 0.85 0.14 0.75 0.15

203 : 10 : 1 0.88 0.13 0.74 0.15 0.73 0.18

203 : 2 : 1 0.89 0.12 0.7215 0.15

203 : 4 : 1 0.88 0.11 0.7303 0.16

Group 7 203 : 6 : 1 0.86 0.12 0.6969 0.16

8 : 1

10        
remember the maps from inputs to the output, rather than developing general

relationships. Secondly, although the addition of the 200 continua fluxes significantly

contribute to the learning process for ANNs, the input significance of each SSS
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magnitude band cannot be ignored. Focus on the “good” results for unseen data in

Groups 1, 2, 3, & 5, where the l magnitude was used as an input variable. This

means that the l magnitude is providing very important information. In this context,

if we had another kind of magnitude, bluer than the B band (e.g., a U magnitude),

than the ANNs would do a better job in the (B-V)o calibration, since the networks

would be able to feed on both bluer and redder information than supplied by the B

and V magnitudes.

As a simple test of the above suggestion, two networks have been trained to

predict from 4 magnitudes (Bj, R1, R1 and I) the B and V separately. As expected,

the networks were able to predict V magnitude (c.c.: 0.98, Sal: 0.17) better than B

magnitude (c.c.: 0.95, Sat: 0.28), because V is in between Bj and R in wavelength.

The trained networks that show the best results in each group are picked up to be

used in the (B-V)o calibration, and will be called bv-#.net where # is group number.

The distributions between (B-V)o and (B-V)o_p for the validation sets only are

displayed by group in Figure 5.2. Linear relationships with small scatter are seen the

bluer regions, but the linearity is destroyed , with many outliers present, for (B-V)o >

0.6, due to the lack of data to be trained in the region. In order to make (B-V)o_p as

reliable as possible, piecewise linear fittings were applied to to the distributions

between (B-V)o and (B-V)o_p. Each group is divided into two parts at (B-V)o_p = 0.6,

the point where the scatter becomes broader, and then fit separately to linear

relations with (B-V)o. The fit lines are shown together in Figure 5.2. The functional

forms of the fit colors and their biweight estimators are presented in Table 5.4. The

robust estimator SB. is roughly 0.12 for hotter stars, and 0.20 for cooler stars.

However, it should be kept in mind that the resulting errors which are imparted to

stimates of [Fe/H] from mp-p.net will be rather similar for these two color regions.
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Figure 5.2 Predicted (B-V)o , as compared to known (B-V)o , for seven

groups of stars separated by the availability of SSS magnitude bands. (a)

group 1, (b) group 2, (c) group 3, (d) group 4, (e) group 5, (f) group 6, and

(g) group 7. The lines shown are piecewise linear fits to the distributions.
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Refer back to Figure 3.2. The slope of the iso-metallicity contours is steep in the

hotter regions, but becomes more gentle in the cooler regions. Thus the scatter in

[Fe/HLp with (B-V)o_f at a fixed K18 index is expected to be similar for these

regions, on the order of about 0.5 dex. These fit colors, (B-V)o_f, will be used as one

of the inputs into k18-h.net, k18-m.net, and k18-l.net for the K18 index calibration,

and then fed again into mp-p.net and mp-c.net for the process of prediction and

classification.

Table 5.4 Fit Function for Color Calibration

 

(B-V)0_p S 0.60 (B-V)o_p > 0.60

Fit function 85. Fit function Sat

Group 1 (B-V)o_f = 1.003 (B—V)o_p + 0.005 0.11 (B-V)o_f = 0.789 (B-V)o_p + 0.123 0.21

Group 2 (B-V)o_f = 1.095 (B-V)o_p - 0.057 0.13 (B-V)o_f = 0.857 (B-V)o_p + 0.030 0.19

Group 3 (B-V)o_f = 1.062 (B-V)o_p — 0.005 0.12 (B-V)o_f = 0.418 (B-V)o_p + 0.410 0.19

Group 4 (B-V)o_f = 1.026 (B-V)o_p - 0.043 0.13 (B-V)o__f = 0.542 (B-V)o_p + 0.256 0.19

Group 5 (B-V)o_f = 1.089 (B-V)o_p - 0.056 0.12 (B-V)o_ = 0.835 (B-V)o_p + 0.046 0.19

Group 6 (B-V)o_f = 1.107 (B-V)0_p - 0.031 0.12 (B-V)o_f = 0.877 (B-V)o_p + 0.013 0.20

Group 7 (B-V)o_f = 0.976 (B-V)o_p + 0.015 0.14 (B-V)o_f = 0.286 (B-V)o_p + 0.473 0.21

 

 

 

 

 

 

 

       
 

Figure 5.3 shows the relationship of the residuals ((B-V)o - (B-V)o_f) over (B-

V) _f, classified by color class and availability of various SSS magnitude bands.

In the hotter region, they are evenly distributed around 0 in the vertical direction, but

some outliers appear in the cooler region, as expected. Figure 5.4 presents the

histograms of the residuals for the same groups shown in the previous pictures.

5.3 Prediction and Classification

Here, we demonstrate the entire procedure for the selection of metal-poor star

candidates in the case where both known (B-V)o colors and measured K18 indices

are not available. This is of course is the situation that will apply in general for the
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Figure 5.3 The residuals ((B-V)o-(B-V)o_f) shown as a function of (B-V)o_f,

grouped by temperature and availability of the SSS magnitude bands. The

left—hand panels correspond to the hotter stars in each group, while the

right-hand panels are the cooler stars in each group.
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identification of new candidates. First let us review the procedures for color

calibration that were discussed in the previous section. By matching up the positional

coordinates the K2 spectra are selected and then classified into 7 groups according

to availability of various magnitude bands in the SSS. The trained networks for (B-

V)o color calibration (bv-1.net to bv-7.net) feed on 200 continua fluxes, flux_m and

the available SSS magnitudes to estimate (B-V)o_p, and these are converted into (B-

V)o__f by making use of 14 fit functions. The procedures to produce K18_f and then to

determine [Fe/H] and MP-class were already described in Section 4.3.

5.3.1 Seen Data

Matching up of the positional coordinates was performed among the samples in the

known metal-deficient stars (HK1), digitally scanned stellar spectra (HK2), and the

available magnitudes bands (SSS). Among those, 373 stars with observed (B-V)o

colors were selected to be members in the validation set (seen data in this case),

and most of them have been involved in the training process of the K18 calibration or

(B-V)o calibration (or both). Three steps — color calibration, K18 calibration, and

determination of metal abundance and MP-class - were accomplished for the 373

stars.

Figure 5.5 presents the relationships between the known [Fe/H] and predicted

[Fe/H]_p estimated by mp-p.net with (B-V)o_f and K18_f provided as inputs. The

correlation coefficient and biweight estimator SB. between [Fe/H] and [Fe/H]_p are

0.62 and 0.69 dex, respectively. As compared to the results with using known colors

(Chapter 4), SB, is increased by only about 0.1 dex and the c.c. is nearly identical.

Even though only approximate colors and K18 indices are provided into mp-p.net,

the results are still good. This is expected because these same stars have been
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Figure 5.5 Predicted [Fe/H], as compared to known [Fe/H], for metal-poor

stars in the “seen” data set. The metal abundance is estimated from the

predicted colors and the calibrated K18_f index.
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seen in the training process. As compared to Figure 4.6, the distributions in the

region of higher metal abundance are improved (evenly distributed around the line of

slope 1, while similar patterns occur for lower metal-abundance stars). Note that this

can happen if mis-estimation of the colors compensates for the errors in the K18

indices. For example, K18_f can be underestimated in the hotter region, leading to a

decreased [Fe/H] (downward in Figure 3.2), but if the star’s color is underestimated

(leftward = too blue) then the original [Fe/H] can be recovered. Actually, many stars

are predicted to be bluer than 0.3, which is the limit of our target sample. Only one

star is predicted to have metallicity less than [Fe/H] = —3.0, due to the K18 index

saturation for hot stars and metallicity underestimation by mp-p.net for cooler stars.

However, these effects are no so serious for stars in the cooler region. Statistical

results for the seen hotter and cooler stars are displayed in Tables 5.5 and 5.6. In

both cases, recovery and efficiency are still very good. Especially, the efficiency with

cutoff [Fe/H] = —2.0 are good for the cooler stars, due to the same reasons

discussed in Section 4.3.

Next, the mp-c.net fed on (B-V)o_f and K18_f were used to determine the MP-

class of stars in the seen data set. Table 5.7 shows the results of this application.

Hotter metal-poor stars (MP-class 1) severely suffer from the saturation of K18 index

near 2 A. The correction rate (40.4%) for cooler metal-poor stars is definitely

acceptable. The combined use of [Fe/H]_p and MP-class should increase the

efficiency in the identification of the cooler metal-deficient stars.
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Table 5.5 Recovery and Efficiency of Seen Hotter Stars ((B-V)o S 0.50)

 

 

 

 

 

 

 

 

 

 

      

Cutoff [Fe/H] [Fe/H]_p Correct Recggery EffIgI/cercy

S -3.5 2 0 0 0.0 N/A

S -3.0 10 0 0 0.0 N/A

S -2.5 35 16 7 20.0 43.8

S -2.0 105 60 47 44.8 78.3

S -1.5 168 138 119 70.8 86.2

S -1.0 194 193 172 88.7 89.1

S -0.5 221 218 207 93.7 95.0

S 0.0 231 229 226 97.8 98.7

S +0.5 235 235 235 100.0 100.0

S +1.0 235 235 235 100.0 100.0 
 

Table 5.6 Recovery and Efficiency of Seen Cooler Stars ((B-V)o > 0.50)

 

 

 

 

 

 

 

 

 

 

       
 

 

 

 

 

Cutoff [Fe/H] [Fe/H]_p Correct Recgsery Effigffcy

S -3.5 1 0 0 0.0 N/A

S -3.0 8 1 1 12.5 100.0

S -2.5 20 7 7 35.0 100.0

S -2.0 47 30 26 55.3 86.7

S -1.5 58 58 45 77.6 77.6

S -1.0 79 91 66 83.5 72.5

S -0.5 109 118 94 86.2 79.7

S 0.0 131 133 126 96.2 94.7

S +0.5 138 138 138 100.0 100.0

S +1.0 138 138 138 100.0 100.0

Table 5.7 Classification Result of Seen Sets

Overall MP- MP- MP- MP- MP- MP-

class 1 class 2 class 3 class 4 class 5 class 6

Correction

Rate (%) 38.87 26.7 40.4 51.7 43.8 51.2 28.8

Number 373 105 47 89 32 41 59       
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5.3.2 Unseen Data

Among the stars which were collected by matching up the positional coordinates for

the samples in the known metal-deficient stars (HK1), digitally scanned stellar

spectra (HK2) and various magnitude bands (SSS), 199 stars were selected to be

members in the validation set, all of them having never been involved in the training

process of the K18 and (B-V)o calibrations. This data set should provide us with

more objective results than the seen data discussed in the previous subsection.

Three steps — color calibration, K18 calibration, and determination of metal

abundance and MP-class — were performed for the 199 stars in the same way as

described above.

Figure 5.6 shows the relationship between known [Fe/H] and predicted [Fe/H]_p

estimated by mp-p.net with (B-V)o_f and K18_f as inputs. The correlation coefficient

and biweight estimator SB. between [Fe/H] and [Fe/H]_p are 0.38 and 0.78 dex,

respectively. Because of the wider spread in the distribution, the linear correlation

coefficient is fairly low. However, SB. increases about 0.2 dex only, as compared to

the results shown in Chapter 4. Note that for the original HK survey, based on the

visual selection of candidates, the EY of stars with [Fe/H] < —2.0 was just 11%

without previous B-V color information. As shown in Tables 5.8 and 5.9, the

efficiency for both hotter and cooler stars without any prior color and equivalent width

information is about 57% at the cutoff [Fe/H] < —2.0. This is a greatly improved result.

The recovery is not so good in that region, but better results are obtained if we

consider stars with cutoff at [Fe/H] < -1.5. It is possible that the efficiency for cooler

stars might be improved if our sample had more of the most metal-deficient stars

with [Fe/H] < —2.0 (the current sample contains only 17 stars, which does not offer
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Figure 5.6 Predicted [Fe/H], compared to known [Fe/H], for metal-poor

stars in the “unseen” data set. The metal abundance is estimated from

predicted colors and the calibrated K18_f index.
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appropriate statistics). This will be feasible in the near future, when the region of

calibrated photographic magnitudes from the SSS expands-to regions north of

Galactic lattitude b = -60.

Once again, the mp-c.net fed on (B—V)o_f and K18_f was used to determine the

MP-class for stars in the unseen data set. The results of this application are shown

in Table 5.10. For both the hot and cool stars, the correction rates for extremely

metal-poor stars (MP-class 1 & 2) are too low, but one should keep in mind that the

number of stars in each bin is not sufficient to give good statistical results at present.
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Table 5.8 Recovery and Efficiency of Unseen Hotter Stars ((B-V)o S 0.50)

 

 

 

 

 

 

 

 

 

 

       

Cutoff [Fe/H] [Fe/H]_p Correct Recgotgery Effrg/Sncy

S -3.5 0 0 0 N/A N/A

S -3.0 2 0 0 0.0 N/A

S -2.5 11 1 0 0.0 0.0

S -2.0 40 19 11 27.5 57.9

S -1.5 71 46 36 50.7 78.3

S -1.0 93 83 71 76.3 85.5

S -0.5 119 107 104 87.4 97.2

S 0.0 127 123 122 96.1 99.2

S +0.5 128 128 128 100.0 100.0

S +1.0 128 128 128 100.0 100.0
 

Table 5.9 Recovery and Efficiency of Unseen Cooler Stars ((B-V)o > 0.50)

 

 

 

 

 

 

 

 

 

 

       
 

 

 

 

 

Cutoff [Fe/H] [Fe/H]_p Correct Refs/zery Ema?”

S -3.5 0 0 0 N/A N/A

S -3.0 2 0 0 0.0 N/A

S -2.5 4 0 0 0.0 N/A

S -2.0 17 7 4 23.5 57.1

S -1.5 27 26 14 51.9 53.8

S -1.0 40 44 28 70.0 63.6

S -0.5 62 56 50 80.6 89.3

S 0.0 71 67 67 94.4 100.0

S +0.5 71 71 71 100.0 100.0

S +1.0 71 71 71 100.0 100.0

Table 5.10 Classification Result of Unseen Sets

Overall MP- MP- MP- MP- MP- MP-

class 1 class 2 class 3 class 4 class 5 class 6

Correction

Rate (%) 40.20 15 11.8 49.1 52.2 65.7 35.5

Number 199 40 17 53 23 35 31       
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5.3.3 Future Improvements

In order to improve the results for prediction and classification, one more step to re-

calibrate color and equivalent width will be necessary. The measured H18_2 index

from the extracted spectra provides us with temperature information since, at least

for hotter stars, the Balmer line dominates over the Ca ll H line. This information has

not been made use of at present. The reliability of (B-V)o_f can be figured out as a

function of H18_2. For example, if the trained network produces (B-V)o_f of 0.2 (hot)

but the strength of H18_2 is not so large (not so hot), then we should re-determine

color of the stars. In addition, the problem with saturation of K18_f near 2 A should

be resolved. One of the possible solutions is to consider the measured K18_2 with

K18_f simultaneously. For example, if K18_f is saturated at 2 A and K18_2 is

measured to 1 A, then it would be reasonable to take 1 A as the best estimate of

K18. These efforts for improvement with re-calibration of color and equivalent widths

will be carried out in the near future.
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Chapter 6

NEW CANDIDATE METAL-POOR STARS

6.1 Methodology

In this chapter new candidate metal-poor stars are identified from the APM digital

spectra and the multiple-band SSS magnitudes by application of the ANN methods

described previously.

The entire procedures for this selection are summarized with a flowchart in

Figure 6.1. First, the semi-automatic data reduction for the digitally scanned stellar

spectra in the HK survey (HK2) is performed. By this procedure, the spectra are

classified into useful and unusable ones, the positions of Ca ll H and K lines are

detected for useful spectra, their continua are constructed, and measurements of the

equivalent widths (over bands of width ~ 18 A) of the Ca II H and K lines, H18_2 and

K18_2, are obtained.

By matching up the positional coordinates for the useful HK2 spectra and stars

with available apparent magnitudes in the SSS, the sample to be involved in the

selection process is collected. The stars in this sample are distributed into seven

groups according to the available SSS magnitude bands. In each group, the trained

networks bv-1.net to bv-7.net, which produce the best result for unseen data in the

color calibration, feed on 200 flux estimates in the continua, the maximum flux level,

flux_m, and available SSS magnitudes, in order to predict colors, (B-V)o_p. The fit

colors, (B-V)o_f, are obtained by the use of 14 piecewise linear fitting functions.

Once the color calibration is finished, all stars are combined together once

again. By consideration of their flux_m, the stars are then divided into three groups.
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Figure 6.1 Flowchart of the selection procedure for candidate metal-poor stars.
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In each group, the K18 index calibration is performed by providing 50 flux

measurements around the Ca ll K line, flux_m, and (B-V)o_f into the trained networks

k18—h.net, k18-m.net, and k18-l.net, the networks which produce the best results

based on the validation sets. The predicted index, K18_p, is estimated by these

networks. Then, K18_p is converted into K18_f making use of six piecewise linear

fitting functions.

All stars with estimated (B-V)o_f and K18_f are then joined together to

participate in the final process. The quantities (B-V)o_f and K18_f, are used as input

variables into mp-p.net and mp-c.net, the networks which exhibited the best

performance in the prediction and classification, respectively. The networks predict

metallicity, [Fe/H], for all stars in the sample, and determine the MP-class, based on

both the metal abundance and color (temperature).

Finally, a set of extremely metal-deficient star candidates is made according to

[Fe/H]_p and MP-class. Future spectroscopic observations for these candidates

should be obtained in order to assemble a new set of what should be a much more

more objectively chosen and unbiased set of metal-poor stars in the Galaxy than

were possible to assemble from the visually selected HK survey (HK1), in particular,

amongst the cooler metal-poor stars. With these efforts, at least 28% of all extremely

metal-poor stars in the observed region of the Galactic halo (in the magnitude range

(11.5 < B < 15, the rough limits set by saturation and noise considerations) are

expected to be detected with observing efficiency of 58% (Table 5.8). These very old

stars will provide us with a much deeper understanding of the formation and

evolution of the Galaxy.
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6.2 New Candidate Metal-Poor Stars

We report 481 extremely metal-deficient star candidates ([Fe/H] < —2.0) in 10 plates

of the HK survey, selected by employing the previously described methodology.

Figure 6.2 presents the representative spectra of the candidate metal-poor stars with

higher-, medium-, and lower-flux respectively. As explained in Chapter 2, the

spectrum for higher flux is smooth and saturation occurs in right portion of Ca ll H

line, while the spectrum is noisy for lower flux. Among 30 known extremely metal-

poor stars found together in 10 plates, 9 stars were correctly predicted below the

cutoff (—2.0) — similar recovery rate of 30% as in Chapter 5. This result is quite

encouraging. Table 6.1 shows the stars with their coordinates in the Besselian

(equinox 1950.0) equatorial system. The 5th and 6th columns present measured

equivalent widths for the Ca ll H and K lines (H18_2 and K18_2) that will be used in

a re-calibration of the color and equivalent widths to improve the selection results.

The predicted quantities - K18_f, color (B-V)o_f, [Fe/H]_p and MP-class — are listed

in the 7‘" and 8"1 columns, and the last two columns. The 9th column, the flux class,

provides us with rough apparent brightness information.
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Figure 6.2 Representative spectra of metal-poor candidates exhibiting (a)
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Chapter 7

CONCLUSIONS

The objective of this thesis was to develop algorithms to reduce a large set of

objective-prism data in a highly efficient manner, and to use the techniques

developed to select extremely metal-poor star candidate stars in the Galaxy with

great reliability. This first task was successfully accomplished, and we now have a

procedure by which on the order of 1.5 million prism spectra can be rapidly and

accurately reduced and analyzed. New methodology making use of an Artificial

Neural Network approach was developed in order to achieve the second goal. The

results of this effort are quite encouraging. The application of this technique to obtain

estimates of stellar metallicity for a large set of comparison stars, using accurate

input data obtained from medium-resolution spectroscopy and broadband colors,

demonstrated that the trained networks were able to predict the metallicity of a star,

[Fe/H], with high accuracy (with a scatter of only 83. = 0.13 dex). Application of the

ANN approach with the inherently less accurate information obtained from the

digitized scans of the HK objective prism plates, and a rough estimate of colors

provided by a calibration of photographic photometry, yielded a metal abundance

estimate with a scatter of $3. = 0.78 dex. Though this is larger than we would prefer,

it is still quite acceptable for use in the candidate selection process. We expect,

based on our tests with stars of known abundance, that if spectroscopic follow-up of

the candidates predicted to have an abundance [Fe/H] < —2.0 were carried out, on

the order of 60% of them would indeed turn out to be at or below this metallicity, and

that we would have identified at least 30% of all such stars that are present on the
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plates. In order to improve the results for prediction and classification, we suspect

that an additional step will be required, which will recalibrat the equivalent widths and

color estimates for the hotter stars. This is the next task for this program, and should

be carried out in the near future.

The metal-poor stars identified in the HK survey to date have been used to

explore many aspects of the early nucleosynthesis and stellar dynamics in the Milky

Way. However, owing to the visual selection criteria used in the original HK survey, it

should be kept in mind that most of the presently known metal-poor stars are stars

that are hotter than the Sun, and located in the solar neighborhood (within a few

kpcs). In order to assemble a more representative data set, we need to identify

additional metal-poor stars at greater distances, and over a wider range of

temperatures. A large fraction of the cooler metal-deficient stars that were missed in

the visual selection will likely be recovered by the selection procedure employed in

this thesis.

During the past few years, and in the coming decade, new astrometric surveys

(such as the Yale SPM, and the NASA satellite missions FAME and SIM) hold the

possibility of providing proper motions for most of the HK survey stars. With this

information in hand, and with medium-resolution spectroscopic follow-up of the

newly identified candidates from this thesis, it will be feasible to construct a very

large catalog of stars with highly accurate positions, distance estimates, proper

motions, and radial velocities, over the entire range of metallicities known to exist in

the Galaxy (—4.0 < [Fe/H] < +0.3). lmportantly, this catalog will not suffer from any of

the kinematic selection biases which have confounded the analysis of stellar motions

in the past. The full space motions of these stars that will be derived will uncover the

dynamical history of the thick disk and halo populations of the Galaxy, and aid in the
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identification of kinematic substructure in the halo, which in turn will place constraints

on galaxy formation scenarios. High-resolution spectroscopic observations of the

most metal-deficient stars identified by procedures such as ours are already

underway with 8m-10m class telescopes (VLT, KECK, SUBARU), and are beginning

to provide exquisite information on the early chemical evolution of our Galaxy. The

next decade will see a literal explosion of insight into the workings of the early

Universe, as recorded by these special, but extremely rare, stars.
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APPENDIX

ARTIFICIAL NEURAL NETWORKS

This portion of the thesis is intended to provide basic concepts of Artificial Neural

Networks (ANNs) for those unfamiliar with the techniques. More detailed information

can be found in some general references, for example, Hertz, Krogh, & Palmer

(1991) and Bailer—Jones (1996).

A.1 Motivation

An Artificial Neural Network (ANN) is a computational tool which enables us to map

from a few available measured variables (inputs) to some desired physical variables

(outputs). ANNs were originally motivated by the possibility of imitating the networks

of nerve cells in the human brain. The brain consists of roughly 100 billion neurons,

each of which are connected with some 1,000 to 10,000 other neurons, typically.

This large number of multiple connections makes it possible for the brain to learn

from experience, memorize, and solve new problems utilizing the stored information.

Although the technology is termed “neural network,” one should keep in mind that it

only mimics the behavior of real biological neurons.

A.2 Neuron

Figure A.1 shows the basic structure of a single neuron. There are four parts —

dendrites, the soma (cell body), the axon, and synapses. The dendrites receive

inputs from the synapses of other neurons and the soma processes the inputs.

When the processed inputs attain some threshold value, outputs are transmitted

through the axon into synapses where other neurons accept the outputs.
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Figure A.1 Structure of a “biological” neuron (after Hertz et al. 1991 ).
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Figure A.2 Schematic diagram of a single “artificial” neuron (after Bailer-

Jones 1996).
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Figure A.2 is a schematic diagram of an artificial neuron (or node). Each neuron

is connected with various inputs (xn) which are the processed outputs, typically from

the previous layer. Each connection has its own weight (w). The neuron receives

the summation of weighted inputs (y=£w,.xn), and then lets it pass through a transfer

function to generate a result (2) that will be an input for other neurons in the next

layer. In general, a non-linear sigmoid function of the form 2 = 1 / (1+Exp(-y)) is used

as a transfer function. Note that y takes on values between -oo and +oo and is

nonlinearly converted into a z value between 0 and 1.

A.3 Multi-Layer Perceptron (MLP)

A MLP neural network architecture is shown in Figure A.3. Neurons in the input layer

feed on input variables (e.g., the spectrum or equivalent width of a line) without the

summation and pass them into all neurons in next layer. All layers between the input

layer and output layer are referred to as “hidden layers” since they do not have

entrances or exits to outside. Neurons in the hidden layer process their inputs with

the method explained in previous section and transmit the non-linearly generated

results to other neurons in the next layer. The output layer can have a single neuron

or multiple neurons, depending on one’s preference, and the application in hand.

Because the data stream from input layer to output layer via hidden layers (that is,

they make a one way trip), these architectures are often called feed-forward

networks.

The training or Ieaming step means a process to find out the optimized

connection weights that produce final outputs that are closest to the desired results.

There are two training methods: supervised and unsupervised. ln supervised

learning, a trainer provides the network with both inputs and corresponding outputs.
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Figure A.3 Architecture of a multi-Iayer neural network with a single hidden

layer (after Hertz et al. 1991).
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The network then tries to find optimized weights by comparing answers and the

results derived from it. In unsupervised learning, only inputs are provided into a

network so that it should determine for itself some useful predictive features

associated with the input data. Currently only the supervised training is well

understood, and it is the approach used in the vast majority of ANN applications. I

also made use of the supervised Ieaming in this thesis.

If the desired output is a continuous variable, such as temperature or the

metallicity of a star, the number of neurons in output layer is only one, for that

particular variable. On the other hand, if one wishes to classify data into groups by

some physical characteristics (e.g., luminosity class), the number of neurons in

output layer needs to be the same as the number of groups. The former case is

often called prediction or continuous mode, while the latter case is referred as to

classification or probabilistic mode. In classification mode, the outputs are

probabilities for corresponding class (output nodes), whereas the physical parameter

directly comes out as an output in the prediction mode.

The training process starts with randomly chosen (small) weights. Once the

network produces some outputs, a comparison between the outputs and desired

target is done using a cost function defined as,

1
E = 52(0, —T,)2

k

where 0.. is the output of kth output neuron and Tk is the target for it. The goal is to

minimize the cost function in weight space (Note that E is a function of weights). The

error information is propagated backward to a previous layer to update weights (and

is thus often called a back-propagation network). After numerous iterations, the step
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size of weights is determined by using the gradient descent, and adding a

momentum term to the chain rule as follows.

8E
 Awpq(t+l) = —n +aAqu(t)

P4

The Ieaming rate, 11 , controls the rate of updating. The second term, which includes

the momentum parameter, a, increases the possibility of finding the true minimum of

E over the entire weight space, rather than have the procedure become trapped into

local minima. If there is no improvement with the errors, the training process is

baked.

The complexity of networks depends on the number of hidden layers and the

numbers of neurons in them. If there are not sufficient connection weights, the

network will generally produce an “under-fit” solution. On the other hand, if too many

weights are used, the training time increases enormously and an “over-fit” solution is

obtained. In addition, training data set should be composed of representative values

over inputs and outputs to avoid over-fitting or incorrect fitting, with too much

emphasis put on certain regions of the data space. Therefore, the use of appropriate

numbers of neurons and hidden layers is the key to successfully produce a well-

trained network. Masters (1993) provides some general guideline in designing

network architecture. A single hidden layer is recommended to be used in most

cases, except when desired parameter exhibits some discontinuities. Masters

recommends that, at least for a starting point, the number of neurons should be

taken to be the square root of the product of the number of inputs and the number of

outputs.
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