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ABSTRACT

TRANSIENT ANALYSIS OF PLANE WAVE SCATTERING IN A

LAYERED MEDIUM

Bv
V

Jungwook Suk

The transient scattering of plane electromagnetic waves from a dispersive layered

medium has been a difficult problem to solve, even though its frequency domain

behavior is well known. In this study, analytical transient solutions for the electro-

magnetic waves scattered from a multi-layered medium excited at oblique incidence

by a uniform plane wave are derived for both TE and TM polarizations. It is as-

sumed that each layer has infinite width in space but finite thickness, and isotropic,

homogeneous and frequency independent electrical parameters.

First, the time-domain reflection coefficient for a single interface in the medium

is derived using the inverse Fourier transform of the frequency domain formulation.

Then, the overall transient scattered field is found for a layered medium by combining

the individual transient reflection coefficients using a series expansion and convolution

integrals. The derived expressions are verified by comparison with data measured

from laboratory experiments.

The results obtained in this study may be used as a basis for material parameter

estimation by transient probing.
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CHAPTER 1

INTRODUCTION

The topic of this study is to find an analytical solution for the transient scattering of

electromagnetic waves from a multi-layered medium, excited at oblique'incidence by a

uniform plane wave. The geometry for the structure of concern is shown in Figure 1.1.

It is assumed that each layer of the multi-layered medium consists of a homogeneous,

isotropical material, and has frequency independent permeability, permittivity and

conductivity. Also, each layer is assumed to have infinite width, but finite thickness.

The first layer is assumed to be lossless. Transient solutions are obtained for both

polarizations of the incident plane wave, i.e. transverse electic (TE) and transverse

magnetic (TM) polarization.

Although this research is motivated by a desire to estimate the parameters of

each layer in the medium by using its time domain scattered field, the solution to this

problem has a wide area of practical applications, such as industrial non-destructive

inspection, geophysical probing and subsurface communication. Therefore, it is not

surprising that there have been many studies on transient scattering from a lossy

medium, or on related topics in the field of electromagnetics. While the frequency

domain solution to this problem in terms of Fresnel’s reflection coefficient is already

well known, and can be found in many text books and papers, to the best of our

knowledge the exact analytical transient solution for an arbitrary input waveform is

not available. This is partly because of the difficulty in solving the time domain wave

equation directly.

Stratton formulated the inverse Laplace transform pair for propagation of elec-

tromagnetic wave in a dispersive medium [1], and since then many researchers have

tried to solve the scattering problem by formulating the solution in the frequency do-
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main and then finding the exact analytical inverse transform. Many of these studies

use certain types of approximations; e.g., the diffusion approximation obtained by

neglecting the displacement current term in Maxwell’s equations [2], or restrictions

on the incident angle and material parameters [3]. Other researchers have formulated

the problem directly in the time domain, and have employed numerical techniques

to solve it [4], [5]. Various contour integral techniques in the Laplace domain had

been developed and closed form transient solutions for both polarizations had been

obtained for a double exponential and unit step input waveform excitation using in-

complete Lipschitz-Hankel integrals (ILHI’s) in [6], [7]. Though these solutions are

restricted to specific input waveforms and are valid for a single interface, they may

have been the first closed form transient solutions to the problem. Therefore, the

results derived in this study are verified by those previous works.

In this thesis, the problem is formulated in the frequency domain first, in the same

manner as the previous studies. The constant offset value in the derived frequency

domain reflection coefficient is then identified and subtracted from the original ex-

pression and its inverse Fourier transform is determined. Next, the reduced form of

the original reflection coefficient is manipulated so as to use known inverse Fourier

transform pairs. This method was developed for a single interface in [8]. This same

approach is taken, but extended to treat the more general case of a single interface

in a multi-layered medium. Proper branch cuts are derived and applied for this more

rigorous solution. The results for a single interface reflection are used to derive the

overall transient reflection from a multi-layered medium. Finally, the derived solu-

tions are verified by laboratory experiments.

In the following chapter, the frequency domain reflection coefficients for a single

interface in a multi-layered medium are formulated and classified for TB polarization.

The inverse Fourier transform of each classified reflection coefficient is performed to

obtain the transient reflection coefficient. The various aspects of the transient forms,
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including causality problems, are discussed, and approximate forms, which might

be useful in practical applications, are derived. The same procedures are taken to

obtain the transient reflection coefficients for TM polarization in Chapter 3. The

transient reflection coeflicients for multi-layered medium are derived in Chapter 4

using series expansion in the frequency domain and applying the convolution theorem.

The descriptions for procedures and results of experiments performed to verify the

derived formulas are provided in Chapter 5.
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Figure 1.1. The geometry for analysis of transient plane wave scattering from a

multi-layered medium.
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CHAPTER 2

INTERFACIAL REFLECTION COEFFICIENTS FOR

TE-POLARIZATION

2. 1 Introduction

The interfacial reflection coeflicient is defined as the ratio of reflected wave amplitude

to incident wave amplitude at an interface between two layers, each of which has

infinitely extended depth as shown in Figure 2.1. Because, in this study, the overall

transient scattering from a multi-layered medium is derived from a combination of the

individual interfacial coefficients for the layers (as discussed in chapter 4), the closed

forms of transient interfacial reflection coeflicients for TE-polarized plane waves are

found before obtaining the total transient scattered field from the medium. To find the

transient interfacial reflection coefficient, the frequency domain interfacial reflection

coefficient, which is known as Fresnel’s coefficient, is found first. Then the transient

form is obtained using the inverse Fourier transform from a transform table after

some algebraic manipulation. Finally, approximate forms of the transient interfacial

reflection coefficients are derived.

2.2 Frequency Domain Formulation of Interfacial Reflection Coefficient

2.2.1 Derivation

Consider an interface between two homogeneous, isotropic materials as shown in

Figure 2.1, where region 11 has time-independent constutive parameters (,un, (man)

While region (n+1) has (pn+1,en+1,an+1). A plane wave is assumed to be incident

from region 1 onto interface N between the two regions. From Maxwell’s equations,

V xE(:1:,z,w) = —jwunH(LI:,z,w) (2.1)



 

 
Region n

 

Reflected \\

IDCli

Figure 2.1 ]

are.



Region 11 : (p1, , 8n , on) Region n+1 : (um , 8m , on“)

\
\
:

Transmitted Wave\
Reflected Wave

H,

 
 

>x

  
Interface 11

Figure 2.1. The incident, reflected and transmitted TE-polarized plane wave at an

Interface,
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V x H(1:, z,w) = (0,, +jwen)E(;z:, z,w)

and the vetor Helmholtz equation for the electric field of region 11 is

V2E(r, z,w) — 735(513, z.w) = 0

where the propagation constant for the n-th layer is given by

7721 :jw/l'11(0n+jwevz) : *w2/1n6n +jw/1710n-

For TE polarization E 2 9E, and (2.3) can be rewritten as

('32 82 2

(513 + a) Ey(;1:, z,w) — o,‘,,Ey(.r, z,w) = 0.

The solution for the electric field is

E($, Z, w) : gEo(w)e7I
u-$+7n;z

where the components of the Propagation constants are defined by

,2 __ ,2 ,2

7n — 711$ + 7112'

(2.2)

(2.4)

(2.6)

(2.7)

Only if region 11 is the first region of a multi-layered material and this region is lossless

will we speak of an angle of incidence and an angle of reflection. Otherwise, we will

only Use Tin/7'12: "yr” and 72,. For the incident wave,

_ Al — I .

771x — llnz _ flu C0861”

_ ,z‘ _ - .
im—am—vnsmfim,
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and, while for the reflected wave

T

7/111: : 7,711 : —",’n COS 67-" (2.10)

Al — A/r — A« .

[i112 _ In; — In Sln 0171' (2.11)

Here 6,,, is the angle of incidence and 9”, is the angle of reflection, as shown in Figure

2.1. The magnetic field in region n is obtained by

 

 

_ 1 _

H(:z:,z,w) = —: VXE(:r,z,w)

.7an

1 ABE A0E

= — . —:r——y + z——y
yea/1,, (92 8:1:

qun '

: iii—Eo(w)e'7nzx+7nzz _ éJflEo(w)87nr1+7nzz. (212)

qun Jwfln

In summary, the fields in region 11 can be expressed as

 

 

E,(x, z, w) : gE,o(w)e'l'l”I+7E"z

' _ ,A 7:11: 7E I+7‘.z A 7fo 7‘ x+'y‘.z
H,(:1:,z,w) — .1: _ E,0(w)e "I "~ — z_——E,o(w)e "I "~ (2.13)

.7an Jw/‘n

Er($,z,w) = gE.0(w)e7£xI+i£zz

H , _ A Vfiz E Watt-F7522 A 71:1: E , 7:11.1‘+’7;.Z 214

,(r,z,w) — 3:ij ,o(w)e —23;#— ,o(u))e ~ . ( . )

.n .n

In region (n+1), (2.3) is

V2E(:z:, z,w) — 7§+1E(:r, z,w) = 0 (2.15)
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where the propagation constant is

m2 ._ _. 2 .‘
[n+1 — JWlln+1(0n+1+Jw€n+1) — —w /11~n+1€n+1+JW/1'n+10n+1° (2'16)

Then, the vector Helmhotz equation for the electric field in region (n+1) (i.e., the

transmitted electric field) is given by

62 (92 2

(5;); + 5?.) Ey(‘r? va) _ Afn+1Ey($’Z’w)
: 0 (217)

This has the solution

Et(:1:, z, w) : 33Ew(w)e"’"+‘"“7"+l'=z (2.18)

where the components of propagation constants are defined by

2 2 2

7n+1 Z 7n+1,2: + Alln+1,z' (219)

When both regions n and (n+1) are lossless, we may define a transmission angle 9t

such that

711+1,x : 71141-1 COS 0t (220)

Afn+l,z : 7n+13in0b (2.21)

The transmitted magnetic field is given by

 

  

_ 1 _

Ht($,z,w) = —jwu VxEt(a:,z,w)

n+1

1 { ABEy -BEy}

= — , —:c + z—

qun+1 62' 8:2:

E10041)

: —'————— {_i7n+1,267n+1.1'17+7n+1.zz + 27n+1,$671z+1,11‘+7n+1,zz}

leurH-l



‘
.
1
1
”
—

 

  

l . H.

rl?~.Il.Illdl\. nu

   
Tu mint-air; 'l .

\H‘

v , , . ‘1' ~

le hh-ii‘lIii‘At'ir‘ [.1 ‘.

WN‘ ..;. . " ‘
‘-.".U_ii'l' l\ 'l‘ ‘L .

A~AA. [A a“)

I

‘L.

'fu I}

5.44:

)9 , ,- .

‘d 13%; {I



  : '1? “1+” Et0(w)€7n+1.xr+7n+1.zz_2 ”H14“ Et0(w)€7n+l,r$+7n+l.:z.

 

J’W'llnH jut/1,,“

(2.22)

In summary, the fields in region (n+1) can be expressed as

Et(:I:,z,w) = 39E“,(w)e"’"+“’x+7"+1"‘

— c ,7 +1~ ' - A A," +1..r , , 4 J

HA3), 2,01) : lj_T_n_iEt0(u/y)€7n+l.xl'+7n+l,.Z _ Z . n Et0(w)e7n+l.:«r+7n+l,-~.

Jw/Jn-t-l JwiurH-l

(2.23)

To obtain the ratio of the reflected and transmitted electric field amplitudes,

two boundary conditions are applied. The first one is the boundary condition for

continuity of the tangential components of the electric field at the interface. That is,

for all z,

or,

E,o(w)ei¢'~2 + Ero(w)e""5=z = Et0(w)e7"+"‘z. (224)

Then, to satisfy the above boundary condition, the equations

212:7; = "M1,; (2.25)

E100”) + Emu") : Et0(w) (226)

must be satisfied. For lossless materials, (2.25) becomes

7,, sin 6,- : 2,2,, sin 6,. : 7H1 sin 9t (2.27)
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and thus

  

W" sin 6,

‘ = 2.29

712+1 Sin 62'. ( )

which are the well-known Snell’s law of reflection and refraction. From (2.7), (2.25)

and considering the direction of propagation,

71in : —A/I:ix : Var (2.30)

The second boundary condition requires the continuity of tangential magnetic field

on the interface. That is, for all z,

or,

  

 

. - . E.o(w)e*r¥izz : —7”+1’IE.0(w)e%+lvzz. (2.31)
Jwfln Jwfln JW/l'nH

Using (2.30), this equation simplifies to

  
27/111 EiO(UJ) _ 7,711: Er0(w) : MEt0(w)

(2.32)

Hn Mn ”n+1

NOW, multiplying (2.26) by 1&2? and subtracting (2.32) yields

  
(M _ 711,1) E1460) + (M + 711$) Er0(w) ——_— 0 (2.33)

”n+1 ,un ”n+1 #71

Therefore, the frequency domain interfacial reflection coefficient for TE-polarized

11
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plane waves is

RTE(w) : Er0(UJ) : (:73: _ 77z+1.$)/ (E + 7n+1,x)

' #11 ”11+ 1 Mn [171+ 1

lin+17nx(wl— ,Un’Yn+1,a.—(w)_
(234)

#n+IA/'nx(w) + Hn’l’n+1,x (w)

This is a generalized form of the Fresnel’s reflection coefficient for TE-polarized inci-

dent and reflect waves at an interface in a layered structure. Note that the form of

RTE(w) is the same as that given in [1].

2.2.2 Branch-cuts

Because (2.34) includes square root functions of complex argument, proper branch-

cuts (or, square root rules) must be set. To do this properly, it must be assumed that

the interface is the n’th interface in a multi-layered material. Since Snell’s law (2.25)

holds across each interface, we must have

7M1“, = mm = ... = 712. (2.35)

It is assumed that region 1 is lossless and thus

'71; = (4)2/11618111 011 (2.36)

where 0,1 is the incident angle of the plane wave in region 1. The sis—components of

the propagation constants are

7nx(w) : V “/12: — 7312

7n+1,.(w) = Win-2.3+..- (2.37)
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Using (2.35), this becomes

7111(w) : 7121 _ A(12::

 

: \/(_w2#n€n + jwlu'nan) _ (—w2,u1€1 81112 63.1)

 

: \/—w2(#nfn — [1161le2 6“) +jw/1'nan

7n+1,x(w) : 7121+1,z _ ’l'fz

 

Z \/—w2(#n+1€n+1 — [116181112 011)+jw,un+lan+l' (2‘38)

The condition that region 1 must be lossless confines the locations of the resulting

propagation constants on the complex plane, and contributes to the definition of the

branch cuts. The condition for setting branch cuts is the radiation conditon, which

says that, by the energy conservation law [9], an isolated wave cannot increase during

its propagation. To satisfy this condition, the real part of each component of the

prepagation constant must not be positive for both positive and negative frequency.

The z-component always satisfies this condition since Rehm} = Re{*y,,_1,z} = . . . :

Refill} = 0. However, two different branch cuts must be applied to 7m, since the

imaginary part inside of the square root has two different signs according to the sign

of the frequency variable w, as shown in Figure 2.2 (a). The resulting branch cuts to

evaluate a square root of complex value «2(a) = wl) are given by

wl > O : éarg[z(w1)] < 63 < arg[z(w1)]

wl < 0 : arg[z(w1)] < 03 < $arg[z(w1)] + 7r (2.39)

Where 03 and arg[z(w1)] indicate the argument angles of a branch cut line and z(w1)

reSpectively, and O S arg[z(w1)] < 27r. The branch cuts of (2.39) should be applied

Consistently through the entire derivation procedure, and Appendix A shows the

ODerations of square root functions used in this study, which are obtained by applying

13
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zen.) ‘

‘8:

KW Re {2} (2“ Re{z}
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z(w1) z(w >85

(a)

Im{z}1 Im{z}

Eargl: Z(w1)]

‘01 > 0 (01 < 0

Re {z} . Re {2]
 

 

 

  
gargldwal +7!

(1))

Figure 2.2. The brach cut setting. (a) Evaluation of ‘/z(w1) and (b) allowed region

of branch cuts.
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the branch cuts.

2.2.3 Classification of frequency domain coefficients

The Fresnel’s coefficient given by (2.34) can be classified according to the signs of

some constant values included within it. Therefore, layer constants may be defined

as

D" = (unen — ,ulel Sin2 6,1)/p.3, (2.40)

3,, = 0,,/l1“. (2.41)

Note that B" is always positive. In order to compute the square root functions, the

appropriate branch cuts must be applied. This depends on the signs of D", B", Dn+1

and 3"“. All possibilities are considered next.

Denoting 3 = jw the terms in (2.34) become

 

”v ~ ~

’7” = \/3(D,,3 + B")

an

M : 5(Du-l-IS-i'[3714-1)

“n+1

 

and (2.34) may be rewritten as

  

\/s(l~)ns + B") - \/3(Dn+1s + En“)

\/;(D113 + Bu) + \/3(Dn+13 + Bn-H)

 RTE(8) = (2.42)
  

Now, the frequency domain reflection coefficient can be classified to four different

fOltrns according to which branch cut is needed. This depends on the signs of the

layer parameters D" and Du“. The algebraic manipulations with the branch cuts

used in the derivation processes are given by (A.1) and (A.2).
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(1)D,,+1> 0 and D... > 0

-\/Dnfi(/s+-g—:+ Dn+1\/§ s+-—3"“
Dn+l

_V DnfiVS‘I'g: _ Dn+1f "I'gn::

S+%L _\/Dn___+_l\/S Bu+l

RTE(SVD71 + Dn+1

)1);— \/%n_ \/9+§— (2'43)
Dn+1

RTE(S)—
 

Simplifying gives
 

 

 

(2) Du“ < 0 and D” < 0

_ij(/ID.IN3 s—g, =+=j ID...If B
I I _IDn+1I

:hj IDn |\/§‘/s—l—5Lij an+1I\/g :—|Dn+1|.
n+1

 

Simplifying gives

 

 

__\/DnI___+_I_1 \/S _ Bn+1

RTE(8 IDnI IDnI IDn+1I
)_\/__IF . (2.44)

S _ ..Bll. + n 1 Bn+1

IDnI DnI \/8— an+1|

 

(3) Dn+1 > O and D” < 0

RTE(8)= ij ID" lfV:-I0nl+ ID"+1I\/— S+ID::iI
B .

ij IDflII\/- IDI IZDTI+1I\/g 3+ f—D::ll|

 

Simplifying gives

 

 

I8 I_D__In+1 n 1

RTE(8)— —IDnI_:_I:Fj\/—'—lI07: I \/8+IDn:1I r

PiJN/D\/S+ (2'40)

IDnl an | IDn+1I
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(4)11,+1 < 0 and [9,, > 0

RTE(8) _ ID"va 8 + ITS-LI :FJVID11+1I\/—V:_ID:+1I.

—V IDnI\/—V8+—1—-ID:I:I:]. IDn+1I\/— —ID:::11I

 

(2.46)

Simplifying gives

 

TE VS +ID IAiJN/DIEI \/5_ ID::II
R (s) = . (2.47)

B“ n+1 B1i+l

V8 + I011 I ¢j\/DID I \/S— IDn+lI

In each of these expressions the upper Sign corresponds to w > 0 and lower sign does

 

 

to w < 0. Note again that the branch cuts defined in section 2.2.2 have been used

through the whole manipulation steps for the square root functions.

2.2.4 Reduction of the interfacial reflection coefficients

Observing (2.43)-(2.47), it is realized that there is a constant offset value inside of each

frequency domain expression. Since we are supposed to find the transient reflection

coefficient by the inverse Fourier transform, and the frequency domain function must

be integrable (i.e. ff; [RTE(w)I2dw S 00) for the existence of the inverse Frourier

transform, the constant offset value should be extracted first.

To make the (2.43)-(2.47) more readable, let

 

 

 

 

D : IDn+1I : #31 IHn+1€n+1 — M161Sin2 911I

n IDnI l1121+1 Iflnén —‘ #161 sin2 gill

~ n0

_ IHn€n — #161Sin2 911I'2.
5

and take the limit values at infinite frequency. Then,
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(1)Dn+1> O and D" > 0

_ V3+Bn — \/Dn\/S+Bn+1

 

 

 

 

RTE . _ , 2.49

(5) m+mm I I

, 1— ,/D

1' RTE . = —————'1. 2.50{fig (5) 1+ \m—n ( )

(2) [2,,+1 < 0 and [2,, < o

RTE(9)=V5— "—VD"V8_B"“ (2.51)

I V‘s—Bn'l'VDnVS—Bn-H’

1— ,/D

1' R” = ——-————’1. 2.52

(3) DH, > 0 and [2,, < 0

RTE(S) : VS-BanjVDnVS‘I'Bn—H (253)

\/s — Bn :l: j,/D,,,f__s+ Bn+1’

. 1$j¢Dn
1 R” = ————————. 2.54

(4) [2,,+1 < o and [2,, > 0

I V3+Bn:F.7-VDnVS_Bn+l,

lijI/Dn

lim R” s = ———,———-——. (2.56)
4.1—+00 ( ) 1;]N/Dn

In these expressions the upper sign corresponds to w > O and lower sign does to

w < 0. Next, the obtained constant values have to be subtracted from the original

RTE(3). Let’s define RTE(S) = RTE(S) - RTEIS = ijoo), then
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(1)D,,+1> 0 and D" > 0

V8+Bn‘\/l—)—7;V3+Bn+l 1_\/D—n

\/s+Bn+\/le/s+Bn+1_1+\/D_n

: 2m VS+Bn— V8+Bn+1 (2 57)

1+\/—57_1V8+Bn+\/ET:VS+BTI+1 I

 RTE“)

 

Eliminating the square roots in the denominator of (2.57), gives

 

RTE(8)

_ 2\/D—,, {ME—mHI/s—IB—n-flm}

— ”JD: (3+Bn) —Dn(s+B,,+1)

2m x

(1" 1911M1 + JZD—n)

(1+ EMS + 811) _ (1+ \/D—n)\/S + Bn\/3 + Bu+1_ \/D—n(Bn - 8114-1)

Bn“Dan 1

3+( 1—D,, )

 

 

 

 

(2.58)

The .s + 3,, term can be factored out of the first and second term in the numerator

of (2.58), giving

Vs+Bn ‘ /s+Bn+1}

)

(s + Bn){1— s

RTE(8) : 2m ( +8" 

l—Dn 3+(%B_L)

2Dn(Bn — Bn+1) 1

(1— Dn)(1+ V Dn) 3 + (Ln-1?" n+1)

 

D

_ 2Bn,/_D,, 1 1 /3 + Bn+1

— 1— D71 8 + (Bn-DriBn+l) S + Bn

l—Dn

+ 2\/ D11 8 1 3 "I" Bn+1

1— 0,, 3 + (Bu—Dump) V s + B,,

l—Dn

 

 

n Bn '— Bn

(1— Dn)(1+ (DZ) 3 + (___B,.-u,.3...)
1~Dn
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where (A3) is used. Known inverse Fourier transform pairs are available for all terms

of (2.59). For the other cases, the quite similar steps are taken, except that the

procedure must be done separately for w > 0 and w < O in the cases of Dn+1 >

O and Dn < 0, and Dn+1 < 0 and En > 0. These are

(2) Du“ < 0 and 13,. < 0

RTELS‘) _—_ VS-B’1— VDnVS—BHH _1_ VD"

\/S_Bn+\/Dn\/3—
Bn+1

1+\/Dn

_QBn\/D—n 1 {1_ S‘Bn+1}

1_ D-n Bil—[)1L811+1
S — Bn

8 + ——_l—D

n

+

2\/—D_n S {1_ S—Bn-H}

)
— Bn—Dan _

1 Dn 3 + (_T—TrT+—l s 13,,

n

2Dfl(Bn-+-1 —
Bn)

1

_
- 2.60

(1-— Dn)(1+ «5)... (Wm)
( >

1—n,

(3) Dn+1> 0 and D” < 0

RTE(S) : V‘s—EnqzjVDnV-S'l'B1H—1
-Iq—‘jVDn

”fix/Em lijx/DT

¥2jB.\/D—n 1 {1_ HEW}

1+Dn 3— (En—Dan+l S—Bn

1+Dn

 

QJx/D: 3 {1_ 3+Bn+1}

 

¥1+Dns_ (153,.—.I),,19,,+1 S—Bn

1+Dn

_ 2Dn(Bn+1+ Bn) 1 (2 61)

"/ Bn-Dan 1 ' '

(1+ Du)“ 4:] D") 3 — (—__1+Du+ )

(4) [Du—H < 0 and Dn > O

RTE“) = V3+Bnij\/Dm/s— B,1+1__1ij\/Dn

m7$jmm MIA/1‘);

2'Bm/Dn 1 -3"

¥ J ) {1+ ————-——S+1}
1+ D" 8 + (Bn‘ISIIzJBrH-l S -+- Bn
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2V0” “—311

3F J 8 ){1+ 3——+—1}

 

1+ 0,, S + (En—Dwail s + 8,,

1+0"

+ ( +1 +_ ) , (262)
(1+ D..)(1:F ND.) .9 + (Ln—11:58....)

and (A.4),(A.5), and (A6) are used respectively. In these expressions the upper sign

corresponds to w > O and lower sign does to w < 0.

RTE(3 = ijoo) is the reflection coefficient obtained at infinitely high frequency,

and is equivalent to the coefficient when the medium has no conductivity. Therefore, it

depends on the diplacement current term only in the Maxwell’s equation of (2.2), and

may be called an aymptotic reflection coefficient, since the value of RTE (s) approaches

this (or these) value(s). In contrast, fir-”3(5) exists only when at least one of the two

media has some conductivity. Let’s call it a reduced interfacial reflection coefficient.

The physical meaning of the two reflection coefficients in transient analysis will be

discussed later.

2.3 Derivation of Transient Interfacial Reflection Coefficients

2.3.1 The transient forms

The transient forms of the frequency domain interfacial reflection coefficients are

given by the inverse Fourier transform. Because the asymptotic reflection coefficients

RTE(3 = :tjoo) are constants in the frequency domain, their transforms are simply

given as delta-functions multiplied by the constants. Let’s denote it by RLE (t). Then,

(1)Dn+1> 0 and D" > 0

R330) 2 F-1{1im RTE(3)}

1 — \fDT.
mam (2.63)
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(2) [7,,“ < 0 and [2,, < 0

RTE(t) = F-1{lim RTE(3)}
w—mo

= 1 ‘ mm) (2.64)
1+ \/D,,

where F"1 denotes the inverse Fourier transform.

(3) D...H > 0 and [3,, < 0

As shown by (2.54), there are two different asymptotic values in this case according

to the sign of 6.). Therefore, letting G =M then (2.54) can be rewritten as

1+j\/Dn

lim RTE(w) = GU(w) + G*U(—w) (2.65)
w—mo

where 0" denotes complex conjugate value of G, and U(w) is a frequency domain

unit step function defined by U(w) = 1 for w > 0 and U(a2) = 0 for w < 0. From the

transform table given in (B2),

ROTOEU) = F‘1{GU(w)+G*U(—w)}

= $(G + G*)6(t) + 11* (G — GU50)
27rt

_ 1—0, 2m 1
_ m6(t)+M{t*6(t)} (2.66)

where a(t) * b(t) is the convolution of a(t) and b(t). The convolution of a function

with a delta function gives the function itself. Thus,

 

1 — D 2\/D
TE _ " ______”

R°° (t) — 1+ an) + 7r(1+ Dn)t' (2'67)

Notice that the transient reflection coefficient is a real valued function as it should

be in the physical world.
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(4) [9,...1 < 0 and [9,, > 0

The transient form for this case is easily obtained by applying the same procedure

with case (3). Thus,

 

, 1+D - 2\/D
TE _ n _ 11

R00 (t) _ l—Dn (t) ——7r(1+D,.)t' (2.68)

The inverse Fourier transforms of the reduced interfacial reflection coefficient can

be found directly from the transform table given in Appendix B. Let’s define the

following constants

P1 = (Bn+1 + Bn)/2 (2-69)

P2 = (Bn — Dan+1)/(1_ Dn) (2'70)

5 = (BM — Bn)/2. (2.71)

Then for

(1) Dn+1 > O and [3,, > O

(2.59) is rewritten as

1 — Dn S + P2 V S + B"

+2VDn 3 1_ (8+Bn+1

1 ‘— D11 3 + P2 8 + Bn

n Bn - n_ 2D ( B +1) 1 (2.72)

(1 —Dn)(1+\/lTn)s+P2'

 

 

 

This form has two different inverse Fourier transforms according to the sign of P2,

and the inverse Fourier transform for each term can be found in (B.3)-(B.4). Thus,
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when P2 > 0,

2\/—- e—Pgt {6m

P2tu(t) +——1 —P2U(t)} *

2Dn(Bn _ Bn-H)

~ 28,,__\/_:€

e—Pi’tu(t) 
-’ 8—10” 1 ,‘i 0 . u , —[ a {I (36+! (31)} (1)] (1-0.)(1+fi):)

————2\/'D: e“P2'6t1_ D” (,) * (ewe-Pl: {11(13t) + 10(131)}u(t)

+ {2B.¢E.‘_ N727},

1—Dn l—Dn

2D,.(Bn — Bun)

’(1 — D.)<1+ fir.)

 p} ell-“11(1) ... (—13)e_P“ {1,(131) + Io(,8t)} W)

 e‘PztuU) (2.73)

where In(t) is the first kind modified Bessel function of order n. Using the convolution

property of the delta function, (2.73) becomes

(Bn —' Bn+1)V Dn
 

 

fame) = 1_ D e‘Plt {11(61) + 10(61)}u(1)

21)n\/T)—(Bn+1‘_Bn) (Bn _ Bn+1) —P2t.

+ (1 _ 071),, 2 e u(t) *

6")” {11(61) + 10(13t)} 6(1) — 2MB" ‘ B71“)
(1" Dn)(1+ V1711)

(Bn — Bn+1)\/lTn

1_De“””{11(13t)+10(3tt)}U()

_ (Bn _(1Bn+11;21))2n\/—l)_ne_P2tu(t)/ e—(Pi-ler {110313) + 10(18$)}dl'

_ n 0

2‘1)11(13r1-+-1 _ B") —P2tu

I

+(1— Dn)(1+ x/lTnle (t). (2.74)

e‘P2‘u(t) 

 

 

 

It is necessary to check whether the integral term from time domain convolution

e‘Pztu(t)fOe‘(‘P1P2)1x{l(131:()+10(13r)}d2: exists ast—>oo. Let

I(t) 2 [0t e‘P'Zte—(Pl’P2)I {11(13x) + IO(,B:1:)}d:1:.

When t is large, the integrand varies as e‘<P1-P2+3ll‘e-P2‘ = e-P2(t-r)e—(.B+P1)r f0r

$§t,sincer(x)% 2 >0, sincet—$>Oand ,8+P1>0,                
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when P2 > 0,

12%) z [315ng(t)+12__‘/_e-P2‘{6<>— aum} =1

_/’ 8—1311 , u _ 2071(811 _ Bn+1)

[ ,5 MW) + 10(36} (1)] (1__ 0.1(1 + m)

12%—8"P2‘5(t(0* (—‘flle—Plt {11037) + 10(13t)} u(t)

+ {Li-3):? ,25} e-P2‘u(1) * (—,6)e-P1t {11(13t) + 10(8t)} 11(1)

2D,.(Bn — 3.1,) 4,2,

_(1— Dn)(1+ \/D—n)e W)
(273)

 e—P'Z’UU)

 

 

where 1,,(t) is the first kind modified Bessel function of order 11. Using the convolution

pr0perty of the delta function, (2.73) becomes

(Bn "' Bn+1)\/-1)—n

 

 

RTEU) = 1_ D e‘Plt{Il(flt) +IO(13t)}u(t)

+112Dn\/(Ii—n—(813+)12_Bn) (Bn ‘2Bn+1)e—P2tu(t) *

 

_P1t .1 u _ 2Dn(Bn _ 3"“)6 MW) + 10(39} (1‘) (1_ Dn)(1+ \/D—n)

(Bn jljngjme-Plt {11(61) + 10(13t)} W)

_ (Bn —(1BT1D)n§)2n¢E-8_P2tu(t)[) 6—(P1_P2)x{11(13111) + [0(31.)} d.L‘

2121(«Bn4-1 — Bu) —P2tu .

+(1— 11,)(1 + mag (3' (2.7.1)

e—P2t'u.(t)

 

 

It is necessary to check whether the integral term from time domain convolution

€“P2tu(t) fot e—(Pl—P‘le {11(52) + 100323)} d1: exists as t —> 00. Let

[(15) 2 /0t e"P"e_(P1_P2)“ {11(flx) + 10(13$)}d:r.

when t is large, the integrand varies as e’llpl‘P‘Z‘Lfilice‘l’i’t = e-P2(¢-I)e—(5+P1)x for

:1: k t, since 1,,(26) z             hen P2>0, sincet—1L‘>0and13+P1 >0,
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the integrand decays exponentially. and thus the integral converges between :1: = 0 ~ t.

When P2 < 0, the inverse Fourier transform of (2.72) is

2———B"\/D—"e
QVD"me—P2t{6(t)

l—Dn

P2tu(—t)+ )+P«2u(f)} *

2D,,(Bn -— Bu“)

(1" Dn)(1+ fl)

 [—3e"’1‘ {11(31) + 10(13t)} 11(1)]+ e"”2‘u(—t)

 

 

= (Bn‘angl‘m—"e-”1‘{[(3t)+10(3t)}u (t)

{_2__B:\/D: ESPZ}(_5)€—P2t,u(_t)*e—Pit{11(,3t)+IO(13t)}U(t)

+ 21),; ("B —Bn+l) e—Pgtu(_t)
 

(l—D)(1+\/—)

= (871 — B:+1)\/EI—e—P1t{11(flt)+ 10(Bt)}U(t)
 

 

1— Dn

+(Bn "an-H)[:71nl)VneOO—Pgt/ —(P1—P2)r {11(1317)+10(81‘)}dl‘

(1- D71) mar((,)t0

+ 20n(Bn _ Bn+1>

(1 - Dn)(1+ x/D_n)

e‘Pztu(—t). (2.75) 

This expression apparently includes non-causal terms in its second and third terms.

However, it is shown that these non-causal terms can be removed by reforming the

expression, and there are only causal terms remaining in the result. That is, when

 

 

t<0,

.. __ 2 / oo

RTE(1) = (3" f“;1)); D"e-P2‘ e'(P1_P2)x{Il(1317)+Io(/3;1;)}d;z:

-' 0

21),, B, — ... _ ,

+(1 _Bl())(1+\/+ieeP2‘u(—1) (2.76)

(1+ Dn)(§n+1— Bu)

2(1— D.)

lR€{B}| > 0 to use 6611.4 of [10] given by

Let Q = (P1 _ P2) = and check the requirements that Re{a} — 

 °° ..., 3 .1 _ WWW—”l” 277f0 6 v(, :13) ,1: —— W . (. )
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For Bn+1> Bn,

- D11 Bn+1 — Bn Bn+1 _ Bn Dn Bn+l _ B71 .-

Re{a}—|Re{,3}| 2 (1+ 2&1 D) )—( 2 )2 (1—D ). (2.18)  

For Bn+1 < B111

1+ Dn)(Bn+1- Bn) + (Bn+1_ Bn) : (Bn+1_ Bn)

2(1—D") 2 1—D.. '

   Re{a}-|Re{13}l= ( (2.79)

Bn+1>Bn 4: O<Dn<1

Therefore, to use 6611.4 of [10] must be satisfied.

Bn+1<Bn e Dn>1

Now, consider the case P2 = B" IPBBHI < 0. Then 1—Dn > 0 <=> B, < Dan+1 <
 

Bn+1 and thus 0 < Dn < 1 ¢# Bn+1 > 8". Also, l—Dn < 0 4:) B,, > Dan+1 > Bn+1

and thus D" > 1 4:) 13,, > Bu“. Using,

0° 1 1'3) 1

f0 (armada: = 3 (—“—, — 1} = fl— — 3, (2.80)
' a2 — 132

  
{(1+ Dn)2(Bn+1— Bn)2 (Bn+1— Bn)2}%

 

2 _ , 2 _

a ‘3 4(1- 0,,)2 4

(Bn+1— Bu) V D11

1— Dn

and

foo e—MI (Br)dr — 1 (2 81)
0 0 ‘ i ‘ a2 _ [32 '

gives

 

RTE“) : (Bn — Bn+1)2Dn\/D;€—P2t (Cl/13) _ 1 + 1

(1 — D")? I 5 0.2 __ [320,2 __ [32
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+ 2Dn(Bn -Bn+1) e

(1— Dn)(1+ JD?)

2 e—Pgt H 1‘ Dn ((1 + Dn)(Bn+1- B") 2 +1)

‘ (3,.+1 — Bub/TD; 2(1- Dn) (Bn+1—’ Bn)

2 (811 - Bn+1)2Dn\/D—1: 2Dn(Bn - Bn-H)

— (BM—1 - 3.1)} x (1 - Du)2 + (1 - Dn)(1+ x/D—n)l

= 6 p.1[ 2Dn(Bn+l — Bn)(1- m) + 2Dn(Bn — Bn-H) ] = 0

(I'Dn)(1_\/lTn)(1+\/Eil (l—Dnlu’l‘m) .

(2.82)

”flu—t) 

 

   

  

Therefore, 2.75 consists of ure causal terms, and can be rewritten as when t > 0
7

(Bn _ Bn+1)\/Fn-
 

 

 

 

 

 

#56) = ,_ D. {11030 + 10(3)} no

(3" _(113:+11)):1):"\/—D—ne—P2tu(t) ft... e-U’I-Pfir {1. (6.1:) + 111327)} dz:

z (3" 163N314... {11(31) + 10631)} 11(1)

+(Bn —(i3:+g:l))2nme“P2t'u(t) [00° €_(Pl—P2)x{11(1313)+ 10631)} also

_ (Bn -(i3:+g:l):”\/D—"6"P2tu(t) fot e—(P1_P2)x {11(,817) + IO(,13;1:)} dz:

: (Bn EBnBBJDZG—Plt {11((3t) + 10(13tll U(t)

B" — B” 21)?! V Dn ._ . t __ __ . ,
_( (1 +11)? )2 e Pztu(t)/ 6 (P1 P2)x {11(131‘) + 10(BI)}(11L‘

_ n
0

+ 2D,,(Bn+1 — Bn)

(1— D.)(1+ «ID—")6

 

 -P2‘u(t) (2.83)

2(1 - Dn)

(Bn+1 — Bn)\/b—n

was used. Notice
 Where / e‘lpl‘P2)“: {11(1323) + 10(617)} drr =

0

that (2.83) is exactly same with (2.74).

(2) 15"“ < 0 and 13,, < 0

- ZBM—D 1 s—B "
TE _ _ n n _ _£t_1

R (3) " 1—D.. s—P2{1 V s-Bn }
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and when P

R1751?!



  

+2\/D s 1_ s — Bn+1

+1— I): 8 — P2 3 "’ Bn

2D.(B. — B.+1) 1

+(1 —D..)(1 + \/D—n) s (2'84)

 

V‘Vhen P; > 0, (2.84) has the inverse Fourier transform (see B.7 as

~ 2Bn\/Dn 2\/ n

1666 = [TIE—epzta—wli—D”“{6<6 —P-2u<—6} *

2Dn(Bn - Bn+l)

(1 — Dn)(1 + {ID—n)

 [36”1t {11(31) — 10(13t)}u(—t)] — 61264-1)

 

 

 

 

= 21B_‘/1;_/36P”{1 (66 —Io(,3t)} u(—6

+13{?IB—_%—P12:/;} ePZ’u(—t )* 6P” {11(13t) — IO(,’3t)} u(—t)

_ 2Dn(Bn-Bn+1) Pzt, (-t)

(1 —D.)(1+f13_)e u '

= (B"+1,_%)‘/P"e”{I ()6 —Io(66}u(—6

_ 0

+(Bn+1(1 —1))Bnl))2:nn\/—D_n eguPt (—t)[ 8(P1—P2)1: {I1(,B.’L') _ 10(18$)}d$

+ 20. (B.+1— B.)

(1 - Dn)(1+ fl)

 eP'Ztu(—t) (2.85)

and, when P2 < 0,

~ ZBM/Dn 2VD11

RTE“) = [——1-:—D—6P2tu(t) +——-—-1 _ 6132‘ {5((1)3” P211(t)} *

,, Plt _ 'U _ _ 2l)11(Bn+1'-Bn)

[6e {11(31) 1666} -< 6] (1—D.)(1+./D—,.)

(Bn+1_ Bn)\/D—n

: 1_ Dn 8P1t{11(1’3t)—10(13t)}u(—t)

{jig + £132} 66666 * 6”“ {11(31) - 10(1’3t)}u(—t)

_ 21)n(Bn-+-1 — B11)

(1 — D.)(1 + WT)

= (Bn+11:B1)n)\/E;
8P1t{11(3t)_

[0(fit)}u(—t)

 eP2tu(t)

 

 

ePztu(t) 
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Bn _ 2D" n min (t0) _

_( +1(1 _1;n2) VD 8192‘] 6“)1 P2): {11(517) — [0((B$)}d33

2Dn(Bn+1 — B")

_(1—Dn)(1+ VD?)

 

 emuu). (2.86)

In contrast to the Dn+1 > 0, and D. > 0 case, (2.86) has apparent causal terms,

and these terms can be converted to pure non-causal terms. When t > 0, (2.86)

 

 

becomes

" Bn _ nVDn _. .RTE“) ___ _( +1(1—B712)111711): ePgt/O €(P1 P2): {11(51.) _ 10(BI)}dI

2Dn(Bn- Bfl+1) €_Pt

+ ° , . t . 2.87( —D.)(0+ «if u<) ( )

Letting a: = —-z, the integral term is rewritten as

0 0

/ em—lex {11(x336)~10(517)}dz = [8(1) ”I({I ——8z) —-IO( —-,Bz)}dz

0

z _/e-<Pl-Pz>Z{—11(6z)—10(6z)}d-

= _/ e”’1P°61({1(6(6z)+r02.)}dZ

0

(2.88)

Then, since t > O

 

RTE“) : ePgt [(Bn+1(;i3n)n))2Dn2n\/—n/OO€_(Pth2)${1103117)+10(513)}d513

+ 21971(l3n—Bn+1)) ]

(1 — l)71)(1 + E)

z 0 (2.89)

 

Consequently, when t < 0, (2.86) becomes

 
RTE“) : (Bu—H " Bn)\/m

l—D. eP“{I((6t)— Io(,3t)}u(—t)
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Bn+ "‘ Bn 20” D" t

( ,1 ) v eP-gtu(_t)/ 8(P1—P2)1: {1‘5” — IO(,8:L')} dx

 

 

 

 

 

(1 — D.)2 o.

: (B'IEIfgnwzeW {11(32‘) — 1666)} u-(—t)

_(Bn+1(;f3rg:l):n\/E6P2tu(_t)[:06(P1—P2)${11(31') _ 1666)} (1.6

(Bn-T—1("1’ _Byg:1)92n\/Eepgtu(_t) [0 6(P1-P2)r {11mm _ 10(31)} (113

: (B”+11:l:5‘3me1)1‘{11(3t)— Io(,3t)} u.(—t)

+ (B.+1(; €7g:l))2n\/D—rfeP-Ztu(_t) /to 6031—ch {11(513) _ [0(5I)} da:

2Dn(Bn-+-1 - Bn)

(1 — Dn)(1+ «TD—")6

 P2tu(—t) (2-90)

which includes non-causal terms only.

(3) Dn+1 > 0 and D. < 0

Using the frequency domain unit step function 0(9) 2 U(jw), (2.61) can be expressed

as

6”“(3) = G(s)U(s) + 0*(—s)U(—s) (2.91)

where

 

0(8) : _2]BnVDn 1 {1_ 3+Bn+1}

 

1+Dn S—Pg s—Bn

+2j\/Dn S 1_ S+Bn+1

1+DnS-P2 s-Bn

2Dn(Bn +Bn+1) 1
 

”(1 + Dn)(1+j\/‘D:)s — P2' (2'92)

If we let g(t) = F"1{G(s)}, then, from (B2),

RTEU) = %{g(t) + 9*(t)} + 2%,, * {9(6) — 9*(t)}

= 1249(1)} — Wit. * Im{g(t)}. (2.93)
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When P2 > 0,

 

 

Bn n ta .1

9m 2_—_j1+\I/)n_eP2 4*) f3(t+) fijflféfft“) P2U(“t)}€P2 *f3(t)

_ an(Bn+Bn+l) Pgtu __

(1+Dn)(1—j\/’DZ)6 ‘( t) (2‘94)

where

_ 3+Bn+1

f3“) — F1{1 m}

B
71

= 8‘2— t{11(%‘t)+10(Bz—nt)}U(—t)

Bn n 1 Bn B11

———2+1e-—2*—t{11(2“)+Io< 2+1t)}u(t)

Bn B77. _11 00 _(Bn 1 8n) B" Bn

+—‘“—eBz‘/ e —+2+—I 11 —(t—:1:) +10 —(t—x)

4 ma2:(t,0) 2 2

X {11(83111.) + 10(B;+1$)} d2: (2.95)

~l
=°
°

 

  

from (B.10). Now,

2D.(B. + B.+1)€P2,
 

   

 

Re{g()}= (1 +13”). u(—6 (2.96)

and,

Im{g<6} i—fige u(—3+) f3()+ ff; (t)-qu(-t)}ep""*f3(t)

2DqiDEBmkWH)
(297)

Finally, for P2 > 0, the transient interfacial reflection coefficient is

6TE<6 = Re{g(6}—;,1-,+Im{g<6}

  

2D.(B.+B.+1) P, 2(/D. 1

= 2' -—t — - t —(MW e u< ) 1+an3() 7.,

31



_2D../D.(B.+ B.+1)
 6P2tu(——t) * f3(t) +17%;

 

 

 

 

 

 

(1(+ D.)2

2D". \/D 71+ Bn+1) Pzt 1

(171+Dn)2 e u( t) >1: 7rt' (2.98)

Alternatively,

” 21911 Dn(Bn +Bn 1) 1TE V + P2 P2
R (t) (1+ D11)2 me tu(—1‘) + {1 — f3(t)} * — * e t ( t)

2\/Dn 1

-1+D. 716M) (299)

Similarly, for P2 < 0.,

2Dn(Bn + Bn+1) Pt

, t = —- 2 2.Re1g< )1 (1+ D"). e u(t) ( 100)

and,

’28"—\—_/Dn 2V Dn

Im{g(t)} 1+Dnem”(0 f*3(t) + + anm + P2U(t)} * f3“)

2Dan,,B(n+2Bn+1) Pt
2 .t . 2.1 1

Therefore,the resulting transient interfacial reflection coefficient. for P2 < 0 is given

RTEU) = Re{g(t)} — wit * Im{g(t)}

 

 

 

_ 2Dn(Bn+Bn-H) P2! 2VD1

— ‘ (1+D.)2 6 33(3) 1+D'.3‘f()*3—3

V811)". ut+<)f*3(t*)+——,—

2D(/(B.+B.+1) 2. 1

(1+ 071)., GP u(t) * 67—2. (2.102)
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Alternatively,

_.2D 3/D. B.+B.+1) 1
 

 

RTE“) : (1430332) B.P2W)+{1-f3H)}*313*8P2£“(t)

D33
-129 3 % 3 f3(t). (2-103)

(4) 13.3.1 < 0 and D. > 0

Using frequency domain unit. step function U (an), (2.62) can be expressed as

BTE(3) _—. 0(3)U(3) + 0*(—3)U(—3) (2.104)

Where

 

0(3) : _2JB.(/D.' 1 {1+ s—B.+1}

 

1+Dn 3+P2 S+Bn

2jVDn 3 1+ S—Bn+1

1+DnS+P2 3+Bn

2D.(B. + 8.3.1) 1
 

 

 

+(1+ 03m 4317;) 3 + P3' (2105)

If we let g(t) = F‘1{G(s)}, then, from (B.2),

BT33) = -;-{g(t)+g(6} +—- +{3<t>— 3*t<)}

= Re{g(t)} —- wit * Im{g(t)}. (2.106)

When P2 > 0,

3(6 = 93—18%} 333()+ 33(3) — ijflwm — mane-W + f3(t)

2D“ (B. + 3.3.1) e‘P2tu(t) (2.107)

+(1+Dn)(1 43/13:)
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where

_ S—Bl
t. = F1 1 ____"_i_.

f4” {+V S+Bn}

B33
= 521+W{h( +13)_DH%“3)}DD6  

  

  

 

 

2 2 2

B” e_£2ut B711 B” , (Bn—HBn) glgilt

/ e_(371+12+311)r {11 [B7f+1(t — 1.)] _ IO [B7+1(t — 1‘)]}

mar(t.0) 2 2

B33 Bn
X {11(71') — 10(71)} dl‘ (2.108)

from (B.11). Now,

:122D (811 + Bn+1) —P t

2 t 2.1

and,

__,,2B__\__/D”e_ 2\/D

Im{9(tl} 1+Dn PztLit—()*f4(t) —_—7L6({1+Dnt_) P2W)}ePzt *f4(t)

2D,l \/D_n(Bn+Bn+1) —P-t
2 , l‘, . 2.110+ (1+ Dn)2 e 11( ) ( )

Thus, for P2 > 0, the transient interfacial reflection coefficient is

BT33) = Re{g(t)}—%*1m{g(t)}

  

 

 

2D.(B.+B.+1) _ 2, 2f“ 1

(1+D.)2 Pum++n1+1l),.f‘lt’"‘)333

+2Dn\/—_(Bn+Bn+1) — 2t 1

(1+Dn2) e Pu(t)*f4(t)*fi

_2Dn\/D—n(Bn+Bn+1) — 2t, i

(1 +0112) 6 P 33(3) + 333' (2.111)
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Alternatively,

 

 

“ 21971 V Dn(Bn + B11 ) 1 _ 2 1 _

RTEU) : (1+D)'2 +1 \/D_e Ptu W+{f1)—1}*E*€P2t (t)

2\/Dn 1

1+Dn*7rt*f4() (2112)

Similarly, for P2 < 0,

21311(871 + Bn+l)e—P2t
 

 

 

Re{g(t)} = — (1+ Dn)2 u(—t) (2.113)

and,

Im{g(t>} = L—ngfe u—()*f4(t)-12g{6(t)+qu(—t)}*f4(t)

_n2D \/—(Bn+Bn—H) — 2t, _ /

(1 +0102 6 P u( t). (2.114)

Therefore, the resulting transient interfacial reflection coefficient for P2 < 0 is given

  

 

 

 

 

by

Wot) ——— R6{g(t)}-7Tit*1m{9(t)}

_ 2Dn(Bn+Bn—+-1) _ 2t 2m 1- 1

“ ‘ (1+Dn2) e P “(_t)+1+Dnt”(2* m

_712D \/—(Bn+2Bn+1) -— 2tu1

2Dn \/D_n(Bnn+Bn+l) _. 21; 1 ..

(1+Dn)2 e P u(—t) =1: E? (2.110)

Alternatively,

~T_21)n\/D—n(Bn+25)n+1)l___1___ — gut

sarong,” u(—t)D::2+]“_131—affirm). (2.116)
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2.3.2 Causality

In the transient forms for the cases of (2), (3) and (4), there are non-causal terms

involving u(-t) or %. These are unexpected results, because the convolution of any

causal (thus, physically realizable) input waveform with these terms will produce non-

causal transient reflected waveform components that appears to disobey Einstein’s

causality, which says that nothing can travel faster than the speed of light. Also,

it should be noted that this is ‘pure’ non-causality which is different from the non-

causality caused by the diffusion approximation referred in [11]. The existence of the

non-causal terms depends on the sign of Dn+1 and [3". That is, the non-causality

happens when the sign of either one of the two parameters is negative. When the

sign is negative, the real part of 73 is always negative by the branch cut; therefore the

wave propagates in an evanescent mode, regardless of the existence of conductivity.

A good example of this case is total internal reflection at the interface of lossless

dielectric material layers.

The conventional geometrical ray optics approach can not explain this non-

causality. Consider the geometry shown in Figure 2.3, where total internal reflection

of an impulse incident plane wave is assumed to occur at the interface between two

lossless dielectric layers. The reflected wave packet from the point Q1 arrives at the

observation plane at t = 0, at the same moment as the reflection of the incident wave

from Q2, because their propagation velocities are the same in this same region, and

the lengths of travel along paths P1 and P2 are identical. Consider a surface wave

in region 2, which starts at Q1 and propagates along the z-axis with propagation

 

velocity equal to or less then 212,, = fi = —w—' = 9" . Then, the travel time of
’72z ”Viz ’71 sm 9,1

the surface wave is t > i = d 1 8m 6“ = P2 = ——7P2 - Therefore, the

d — U22 w SlIl Bil—w (LU/’71

71 SlIl 6n

Surface wave arrives at Q2 at the same or later moment at which the ineldent wave

impinges on this point.
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Region 1 Region 2

; Observation plane I = 0

 
 

   

 

Wavefront 5 (t)

Reflected wave Surface wave

Q l

Incident wave

Wavefront 5 (t - rd)

 

Figure 2.3. The time relationship of wavefronts.
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Next, consider the possible existence of a precursor effect. Any wave front of

the spherical wave excited at Q1 that arrives at a point on the observation plane

faster than the wave reflected from Q2 might be a precursor and thus a source

of the non-causality. From Figure 2.4, consider path 1 with 11 = \/h.2+l§ =

2

\/(d+17)2 + (W) and path 2 with 12 +13 : dsin 6,1 + 371%? To be a pre-

2

 

cursor, path 1 must be less than path 2. However

2
2

2 _ 2 — 2 :1: " . ' 11711 (l2 "l" [3) — {(d + x) + (tartan) } (dsm 611 + tangil)

1 1

> — (12 sin2 0,1

tan.20,-1 sin2 (9,1

  

  : (12+1r2+.r2(

= c12cos2 02-1 > 0 (2.117)

and thus, there is no precursor.

In this study, a reasonable explanation of the non-causality has not been found.

The non-causality might originate from the impractical assumption of infinite layer

width because the incident plane wave interacts with the interface an infinite amount

time ago, i.e. as far back as t 2 —oo, although the relationship between this as-

sumption and non-causality could not be found using ordinary ray optics approach

as explained above.

There are several interesting ongoing research activities that might help explain

this phenonmenon. In physics, there have been some trials to measure or compute

the exact tunneling time of a particle through a potential barrier, which is important

in modern microelectronic tunneling devices [12], [13]. It turns out that the tunneling

of a particle (or a wavepacket) is quite similar to the transmission of an evanescent

electromagnetic wave, e.g. the propagation of a wave having a frequency less than

the cut-off frequency in a waveguide [14]. Therefore, there were many experiments

performed by using Optical pulses (e.g. [15] and [16]), or microwave propagation in a
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Region 1 Region 2

O

O

O

O

VWavefront 5(1) ; Observation plane t=t0

 

Wavefront 5 (t — td)

  

h=d+x

 
 Incident wave

 

Figure 2.4. The consideration of the existence of a precursor.
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waveguide (e.g. [17]).

In these experiments, it has been commonly observed that the pulse peak prop-

agation velocities seem to be independent of the thickness of a potential barrier (or

an evanescent region, equivalently), which consequently implies so—called “super lu-

minal” propagation velocity of the wave modes. For example, if the width of region

were to become infinite, then the speed of wave propagation would increase infinitely,

therefore faster than the speed of light, which leads to apparent contradiction of the

Einstein causality. Although this phenomenon had been theoretically predicted in

the past [18], the exact theoretical explanation has yet been given. Many have at-

tempted to explain this phenomenon as a reshaping of the pulse [15], [16]. That is,

attenuation of the pulse in the barrier shifts the peak of the pulse forward. But little

is known about why the barriers attenuate pulses unevenly [19]. Also, there is a

question about the validity of ‘peak’ measurement methodology in dispersive media,

since it is sometimes hard to define the pulse peak in that case.

It should be noted that there is some possiblity that the “super luminal phe-

nomenon” of those experiments might be different from the non-causal tail in the

impulse response waveform described in this study. In this study the pulse peak

point is causal (located at the time origin of t = 0), while the “super luminal” veloci-

ties were measured only using the location of the pulse peak, and did not consider the

shape of the waveform since very short optical pulse waveforms were used in the past

experiments. Neverthless, there might be a relationship between the oberved results

and the non-causality in the transient interfacial reflection coefficients, considering

the fact that both happen in the same situation, i.e. only in evanescent propagation

mode.

As a result, only the causal case will be considered in the remainder of this dis-

sertation, simply because there is no reliable explanation for the non-causality. The

non-causal case can be studied in separate research. Note that the non-causal case is

40



 

unlikely to on

 parameter Du -

lle first layer -

beam it hi» i.

 
sideiing Ilia! >iu‘

coalition of 2 . l

2.4 Numeric:

2.4.1 l’erifice

The preriuusly

command to iii:

The most rim-.1

last Fourier Ir;

Itemir‘ined earl:

Since the a:

in the time dui

interfacial
reflv

comparison
of 1.

forms obtained

repent-9],: p

 



unlikely to occur in a practical situation. That is, to be a non-causal case, the layer

parameter D" : (,unen — #161 sin2 6,1)//1.,2, must be negative, and thus

#11 61 .

—— < —sm26,-1. (2.118)

#1 6n

The first layer can be any lossless dielectric, but is typically free space in practice

because it has to have infinite depth and width. Then, 61 = 60 and #1 = #0- Con-

sidering that sin2 6,1 < l and 60 < 6,, always, it can be recognized that satisfying the

condition of (2.118) is improbable.

2.4 Numerical Examples

2.4.1 Verification of theoretical expressions

The previously derived transient forms for interfacial reflection coefficients may be

compared to direct numerical computation to ensure that the transform are correct.

The most common method to do this is simply to compute the numerical inverse

Fast Fourier transforms (IFFT) from the frequency domain forms. For the reasons

mentioned earlier, only the causal case (Dn+1 > 0 and D” > 0) will be discussed.

Since the asymptotic interfacial reflection coeflicients appear as delta functions

in the time domain, and are thus difficult to express numerically, only the reduced

interfacial reflection coefficients are compared. Figure 2.5 (a) and (b) shows the

comparison of the derived transient interfacial reflection coefficients with the transient

forms obtained by using a 3072 point IFFT, for the P2 > 0 and P2 < 0 cases,

respectively. The material parameters for Figure 2.5 (a) are those for an interface of

free-space and typical sea water at low frequency as described in [20], while those for

Figure 2.5 (b) are for an interface of plexiglass and ethyl alcohol 10GHz, as described

in [21]. Note that for the non-magnetic materials, P2 < 0 case happens when 6,, > 6,,“

and (on+1/o,,) > (om/[9,) > 1, or 6,, < 6,,... and (aw/0,,) < (n+1/[3,.) < 1.
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The transient reflection coefficient curves from the two different methods are nearly

identical, and thus correctness of the derived transient interfacial reflection coefficients

for TE polarization have been verified.

To verify the combination of the asymptotic and the reduced transient reflection

coefficient, the time domain convolution of the interfacial reflection coefficient with

an input waveform is needed, i.e.

S(t) = X(t)*RTE(t)

= X(t) at {R;E5(t) + RTE(1)}

RQEXU) + Emu) * X(t) (2.119)

where X(t) denotes the input waveform and S(t) is the resulting reflected waveform.

One of the most commonly used input waveforms for this purpose is a double expo-

nential pulse waveform, given as

X(t) = K (e—at — e-b‘) (2.120)

where K, a and b are arbitrary positive constants. Figure 2.6 shows an example of

the input waveform where K = 30.71, a = 2 x 109 and b = 4 x 109. Figure 2.7 (a) and

Figure 2.7 (b) shows the comparison of the time domain reflected waveforms with the

input waveform shown in Figure 2.6 for the two different layer parameter sets (P2 > 0

and P2 < 0). Again, in both cases, the derived expressions and the IFFT results are

well matched.

As mentioned in chapter 1, exact theoretical expressions are available from the

previous research [11] for transient interfactial reflection due to a unit step input

waveform. A comparison with those results also helps to verify the work in this

study. Figure 2.8 (a) and Figure 2.8 (b) shows that the re—produced results of the
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Figure 2.5. (a) Numerical comparison of the derived transient reduced interfacial

reflection coefficient with that from the IFFT (TE polarization) : ,un : no, 6,, = 60,

0n = ORB/771], [[41+] 2 H016n+1 =3 7260,0n+1= 4[U/m], 011 = 30°, P2 = 0.64 X 1010.
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Figure 2.5. (b) Numerical comparison of the derived transient reduced interfacial re-

flection coefficient with that from the IFFT (TE polarization) : an = #0, 6,, = 2.5960,

0'" = 9.73X 10"3[U/m], ”n+1 1‘— flo, €n+l 21.7060, on+1 Z 5.60x10"2[U/m], 611 = 30°,

P2 :2 —O.59 x 1010.
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Figure 2.6. An example of double exponential input waveform.
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electric fields to a unit step input waveform excitation obtained by using the transient

interfacial reflection coefficient and transmission coefficient of this study, are exactly

same as those found in Figure 4.5 and Figure 4.4 in [11]. Note that these plots are

drawn with the nomalized time axis given by

0n+lt

e sinfii2 '
25H+1 (1- ELLA)

#n+1€n+1

 
at:

It can be easily realized that the early time portion of the scattered electrical field

waveform is dominated by the high frequency component of the interfacial reflection

coefficient, i.e. the asymptotic interfacial reflection coefficient. The late time portion

is due to the lower frequency components of the interfacial reflection coeflicient.

2.4.2 The transient responses for various parameter sets

It is interesting to study the dependence of the transient reflection ceofficient on the

various parameter values, i.e. permittivity, permeability, conductivity and aspect

angle. Comparisons of the reduced reflection coefficients are shown in Figure 2.9 -

Figure 2.12 which are plotted using semilog scales for easier identification. Note that

the first two curves in each plot, except Figure 2.12, are for P2 < 0 cases, so that the

effects of parameter change can be observed for both cases of P2 > 0 and P2 < O.

(1) Permittivity

The curves in Figure 2.9 are plotted for em“ = 1.7, 2.5, 10 and 72. The corre-

sponding values of RQE are 0.12, 0.0098, -0.34 and -0.69, respectively. Note that the

phase reversal of the asymptotic reflection coefficient happens when en+1 becomes

greater than 6,,. It can be seen that the slopes of different RTE (t) curves are inversely

proportional to the increasing permittivity values, while the asymptotic reflections

are proportional to the increasing permittivity values except the case em“ = 2.5,

where the material constants of the two layers approach each other, and therefore
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Figure 2.8. (a) The transient reflected electrical field waveform for a unit step

excitation: 11,, = 110, 6,, = 60, on = 0,11,,“ = 110,13,“ 2 960, on+1 : 1.00X10'3[U/m],

5:00.
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the overall reflection itself is weak. This means that the overall transient reflection

increases when the permittivity contrast of both layers is sharper.

(2) Permeability

The curves in Figure 2.10 are plotted for 11”,“ = 1, 5, 10 and 75. The correspond-

ing values of RICE are 0.027, 0.38, 0.51 and 0.79 respectively. The slopes of RTE (t)

are seen to be inversely proportional to the increasing permeability values, while the

asymptotic reflections are proportional to the increasing permeability values. There-

fore, the amount of overall reflection increases with the increasing permeability.

(3) Conductivity

Because an increase in conductivity causes attenuation in wave propagation, the tran-

sient response RTE“) suffers a more rapid decrease with time, while the asymptotic

component is independent of the change. This can be seen explicitly in Figure 2.11

where on = 0.01, 0.03, 4 and 10, respectively.

(4) Aspect angle

The curves shown in Figure 2.12 are plotted for 6,1 2 0°, 30°, 45° and 75°, while the

corresponding values of R3,? are 0.11, 0.12, 0.14 and 0.19 respectively. Therefore, the

SIOpe of the reduced reflection coeflicient as well as the amplitude of the asymptotic

component increases with increasing aspect angle, and the reflection becomes more

dependent on its early time portion comming from the aymptotic reflection term.

2.5 Approximation of Interfacial Reflection Coefficients

It may be useful to obtain approximate forms of the previously derived transient re-

flection coefficients, as long as accuracy is maintained. Because the numerical compu-

tation of repeated time domain convolution integrals (needed for obtaining multi-layer

scattering as discussed in chapter 4) requires a significant amount of time, the total

computation time could be burdensome in real time applications. Also, the process of

finding the approximate forms gives some insight into the roles of previously defined
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Figure 2.9. Time domain reduced interfacial reflection coefficients for various values

of permittivity (TE polarization) : 11,, 2 an“ 2 #0: 6,, = 2.5960, on = 9.73 x 10‘“,

on“ = 5.60 x 10‘2[U/m], 6,1 = 30°.
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6n+1 = 1.7060, 0n+1 = 5.60 X 10_2[U/m], 0,1 = 30°.

53



 

  

  
  
 

A
m
p
l
i
t
u
d
e
o
f
R
e
d
u
c
e
d

I
n
t
e
r
f
a
c
i
a
l
R
e
f
l
e
c
t
i
o
n
C
o
e
f
f
i
c
i
e
n
t

  
 

a.10 _ — Cnd.=0.01[mho/m]
""115. - - end,=o.03[mholm]

"a.

1 -- ~ Cnd.=4[mholm] MW»._ Cnd.=10 mholm

1010, l l "“1. ‘
fan

“’45.;

10-15
1 l l l 1 l l l 1

Time [nsec]

Figure 2.11. Time domain reduced interfacial reflection coefficients for various

values of conductivity (TE polarization) : 11,, = ,u.,,+1 : #0, 6n = 2.5960, en+1 = 1.7050,

Un+1= 5.60 X 10_2[U/m], 6n = 30°.
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values of incident angle (TE polarization) : an = 1.5110, 6,, = 2.5960, 0,, = 9.73 x 10‘3,
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constants in the transient interfacial reflection coefficient expressions. In this section,

therefore, the approximate forms for the transient interfacial reflection coefficients

(Dn+1 > 0 and Dn > 0 case) are derived, and the accuracy of the approximation

method is discussed.

There are two different approximate forms since the Dn+1 > 0 and [9,, > 0 case

has two different transient reflection coeflicients according to the sign of the constant

P2. For each transient reflection coefficient, The approximations for large values of

the time variable t and small values of the time variable t are derived. Then they

are combined by using a pair of weighting functions to produce a smooth curve. For

convenience, the simpler reflection coefficient (for P2 < 0) will be discussed first.

2.5.1 Case I : P2 < 0

(1) Large t approximation

For simpler notation, let’s define the constants

C _ (Bn _' Bra-+1) V Dn

1 _ 

 

 

(1_ Dn)

(Bn _ Bn+l)2Dn V D11

02 2

(1" Dn)

2D,,(Bn+1 — B”)

C : 2.121

3 (l—Dn)(1+ VDn) ( )

and a function

Q(t) 2 cf” {11031) + 10031)}, (2122)

then (2.83) is rewritten as

RTEU) : C1Q(t)u(t) + C2u(t) /00 e"P2(t—I)Q(.r)d;r. (2.123)

1
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Using the change of variables 11 = P2(t — :r), then :1: = —]15‘; + t, and dz = —C}l§i.

2

Therefore :1: = 00 leads to u 2 oo, 2 = t leads to u = 0 and (2.123) becomes

RTE(t) = C1Q(t)u(t)—C2—I%u(t)/O e_”Q(—%+t)du

= C1Q(t)'u(t)- gum / 6‘"{Q(t- %)-Q(t)]du

02 0° _, .
+EQ(t)u(t)/O e (111 (2.124)

 

2
2

—%2Q'(t) [000 ue—“du. (2.125)

This approximation is possible since for large P2, most of the contribution to the

integration occurs when u is small due to 6‘“ term. Also, fooo ire—“din = 1. Finally,

for large t,

(Bu _ Bn+1)2DnV Dn

(Bn '— IDan-H)2

  
~TE ~ (B71 _ Bn+l)Bn\/1D_n

R (t) ~ (Bn _ Dan+1) Q(t) +

Bn—Bn+ B71 D71 —t ‘

( (B —D1)B +\./)_° P1 {11(flt)+10(13t)}u(tl ‘

(B. — Bn+1)°an/IT. _p.. { 1 }u(t).

Q'(t)

 

 (Bn _ Dan+1l2 8 (BR + #110315) + Bnlomt)

(2.126)

(2) Small t approximation

Recall that (2.83) originates from (2.75), then

RTE(t) = Clo—P“ {11(13t) + 100610} u(t) — C3e_P2tu(—t)

—Cge"P2tu(—t) * 67PM {11(fit) + IO(,Bt)} u(t) (2.127)
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For [P2] >> |P1|, the e‘P'Z‘u(—t) term behaves like a 6—function by its peaking prop-

erty. Therefore,

RTEU) z Clea—P” {1.031) + 10(80} u(t) — Cge—P” {11(1‘325) + 10031)} u(t) + 0

a: (C1 — C2)e‘P1‘{0 -+- 1} u(t) = Ae_P“u.(t) (2.128)

for small t, where A is a constant which will be determined later.

FOFIP2]%]P1],—P2Q$P1 and

fame) _—. Cle_P1t{Il(/3t)+Io(r’3t)}u(t)

—C26+Pltu(—t) * e-Plt {1.031) + 10030} 11(1) + CgeP‘tu(—t)

2
2

Cle_P1t{0 + l} u(t) — C26P1‘u(—t)* e713” {0 + 1} ’u.(t) + CgeP‘tu(—t)

C2
C167P“u(t) — 2P

1

6P” 'l" C3€P1tu(—t)2
2

for small t. However, it has already been shown that the exact form does not have

any non-causal term. Therefore,

RTE“) % Cle_Pltu(t) — g—epltufi) z fie—Pita“) (2.129)

1

For [P2] << [P1], the e‘Pltu(t) term has the role of the 6—function, and

fame) z Ole-131%“)+C26_P2tu(—t) +o3e-P2‘u(—1)

z AC3e'P‘tu(t) (2.130)

where the second and third terms must be discarded to maintain causality. In a

conclusion, the small t approximation for the P2 < 0 case is given by

RTEU) z Ae‘P‘tu(t). (2.131)
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(3) Combined approximation

From the large and small t approximations derived above, a direct combination is

(Bn _ Bn+1)BnV Dn
 

 

123.51....1) = (B__Ban+1l e—Pltiliwtl'l'lowtllult)—

(B(B’_"B‘)Bf:1‘(,Ee—Pl {(8 + %)11(1’3tl"'B 10161)]1111)

+Ae-P1‘u(t). (2.132)

The most intuitive way to determine the constant A is using the function value of

the reduced reflection coefficient at t—— 0, i. e. by letting Rappmgt)

i=0 i V i=0

and

 

~ B, — )B, ./D—,,RTE t ___ ( Bn+l 1 _

(BB:B”;..)B1:..)/D_ {(0 + 2) + 3"} + A

(811 — Bn+lan V Dn

 

 

 

  

 

 

= A+

(Bn-.1)an+1)

_(B — B...)D«19—. (B + 3B) (2 133)

(Bu—_Dan+1)2 4 .

RTE (t) _ (BR _ Bn+1) V Dn _ (B71 _ Bn+l)2DnV Dn X 0

exact '—

t:0 (1 — Dn) (1 — Dn)2

+ 2Dn(13n+l — Bn)

(1'— 1311“1 + V Bu)

(3" _ 8"“) V D". (2134)

(1+ {197)2

To evaluate A, equate (2.133) and (2.134) to give

(811 -' Bn+1)\/—1)—n _ (Bn - Bn+1)Bn\/—l)—n

(1+ my _ (Bu - Dan+1)
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_(Bn — Bn+1l)21‘1D VDn (Bn+1+38n) +A

(B —DNB...) 4 ‘

 

So,

 ‘4 _ (B11 _ Bn+1) V Dn (Bn —- B71+1)Bn‘ /Dn

 

(1 'l' VD )2 ((Bn - Dan+l)

(Bn — Bn+1))2nD VD Bn+l + 3Bn) (2135)

(En _ Dan+1)24 .

Therefore, for P2 < 0, an approximate form is given by

(BE);— 33055.?‘P*‘111<Bt>+lo<fit>}“(>—

(B. — B..1)2D,,,/E; _B, 1 , ,

(Ba " Dan+1)2 e {(871 + Z>Il (3t) + B"IO(’3t)} “'(t)

{(Bn — Bn+l)\/1)_n _ (Bn — Bn+1)Bn\/D—r:

 BTEB) z

 

  

 

(1+ J17")? (Bn — Dan+1)

(BB—Bn+1)2Dn\/2D_(Bn+1+3Bn) —P1t

Let’s consider the accuracy of the approximate form (2.136). Actually the large t

approximation is exact except for the term in (2.125), which is valid when t > u/ |P2|

(or |P2|t >> a) is satisfied. Note that the constant power P1 is not involved with

the large t approximation. For the small approximation, of course, the 6—function

approximation of exponential term contributes to the error, especially when the ratio

|P1|/|P2| is not sufficiently big or small. However, the selection of the constant A

= BE a)small t approx(t) t—O exact
using RTE (t) ———RTE 0 is

t:

approx t=0
+RTE

 
large t approx“) t:0

the main source, because the function values from the large t approximation, which

should be excluded in the small t interval (including t = 0), is imposed on the

early time period. Therefore, the constant A should be given by R73 (1%)] =
exact

i=0

R75 (t) ("B 3"“) 5’2 ”o.nly However this choice of 4 has trouble
small t a roxPP t:0— (1+ /D1))n
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as well, since it will introduce a discontinuity at the junction of the small t and large t

approximations. Therefore, in this study, a pair of weighting functions are introduced

to avoid the discontinuity. From observing the derivation process the approximate

transient reflection coefficient, it can be realized that the constant P2 behaves like

a ‘switch’ which turns ‘on’ and ‘off’ the validity of the large t approximation, as a

power factor of an exponential function. Also, note that P2 does not appear in the

small t approximaion. In addition to these, the product Pzt provides a normalized

time axis. As a result of these observations, a pair of weighting funcions is selected

to combine the large and small t approximation functions as

In“) 2 (l—e'a'IP'ZIt)

W5(t) = ("41’2" (2.137)

In this definition, l/VL(t) is a weighting function for the large t approximation, while

WS(t) is for the small t approximation. The constant transition factor a determines

the transition time from small t approximation to large t approximation. That is,

the bigger value of a means an earlier transition from the small t to the large t

approximation. Although the choice of a has some flexibility, in this study, the

selection method is as follows. First, set the value of reflection coeflicient at the

‘transition’ time as the exact transition reflection coefficient which is given by, for

example, 0.5 Egan) t_0. Next find the time corresponding to the function value,

say, 25mm. Then a is obtained by letting 6‘0'P2lttm’” = 0.5.

In summary, the complete approximation for P2 < 0 is given by

Bn _ Bn+1)BnV Dn

(Bn _ Dan+l)

(Bu _ Bn+1)2DnV Due—Flt

(871 _ anBn-H)2

6’” {11(515) + 10(fit)} W) -
 

RTE“) z WL(t) [(

 {(3. + bum) + 3.10m} um]
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(Bn - Bn+1)V Due-Pit

(1+\/T)_)2

2five—”1311(3)
(1D+\/:2) '

flsz Bn _ lg

”L()P2<1—D>l’3_e P

4D _pt
—— 1 B
+an —D) {( +

+I’VS (t)
 u.(t)

= W's (t) 

{11030 + 10030}

1>11(3t>+3,.10(3t)}]m<>. (2.138)

A example of the transient reduced interfacial reflection coefficient for this case is

plotted along the normalized time axis of a|P2|t in Figure 2.13. It can be observed that

the largest error occurs in the transition region as expected. Small t approximation

shows relatively poorer performance than large t approximation, since it relies on one

exponential term only. Also, it is observed that the large t approximation is well

matched with the exact reflection coefficient curve in large t interval.

2.5.2 Case II : P2 > 0

(1) Large t approximation

Using previous definitions for the constants and the function Q(t), (2.74) is rewritten

as

RTEU) _—_ C1Q(t)u(t)—C2u(t)/te—P2(t_$)Q(x)dx+C36_P2tu(t). (2.139)

Letu=P2(x—t),thenx=Piz+tandd$=%‘:. Also,x=tforu=0andx=0for

u = —P2t. Thus (2.139) becomes

RTE(t) = C1Q(t)u(t)—C2u(t)/ e"Q(:1:)da:+C3eP“u(t)

= ClQ(t)u(t) — 913—:u(t)/_Pte"Q(t + P—2)du+CgeP2‘u(t)

— 0162(333— $333) [Pen {623 + g) — 3(3)} 33
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'-~ Largetapprox.

''''' Small t approx.   
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Normalized Time a|P2|t

Figure 2.13. Transient interfacial reflection coeflicient for P2 < 0 (TE polariza-

tion) : an 2 #0, 6,, = 2.5960, 0,, = 9.73 x 10‘3[U/m], an“ 2 p0, en+1 :2 1.760,

0n+1 =2 5.60 X 10‘2[U/m], 92-1 2 30°, P2 = —0.59 X 1010, and a = 0.37.
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0

——C—2-u(t)/ e"Q(t)du + C36_P2'-u(t), (2.140)

0

~—§3u(t)/ e"Q'(t)du + C3e_P2‘u(t) (2.141)

for large t. This can be rewritten as

35.5.0.0 = (Cl—@3333)+%:e-P3‘Q<t>u(t>

C2 I 0 u —Pt
—— (t)u(t) e du + C38 2 'u(t)

2

P2 —P2t

C2 C2 _ 2t — 2t,= (C1 — F)Q(t)-u(t)+—P:e P Q(t)u(t)+C3e P u.(t)
2

+— m) {1 — (1023+ new}

11

1775

= —e—P33{(B,.+1-;)11<3t)+3,.,10<3t)) (2.142)

Q'(t) = —Ple—P“ {110325) + Io(,z’3t)} + 138—Flt {1(3t)— 11;('3t) + IO(/3t)}

Therefore, the large t approximation of transient interfacial reflection coefficient for

P2>Ois

 

RTE“) z {(811 - Bn+1)Bn\/D: (Bn —28n+1)Dn \/—n 6_P2t} X

(Bn — Dan+1) (1— D1171)(B_Dan+1)

e—Pit {11((Bn-H — Bn)t) + [0((Bn+1_ Bn)t)}xLt“)
  

 

2 2

_(Bn—’ Bn+1)2Dn VD Pt.

1— (Pt 1)(? ° P1

(3 -D3m) { 2 + }e
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{(Bn + %)Il((Bn+12_ Bn)t) + BnIO((Bn+1— Bn)t)} u“)

+ 21371(Bn+l — Bn)

(1— Dn)(1+ fl)

 e"P2tu(t). (2.143)

(2) Small t approximation

It has been shown that (2.74) can be weritten in exacltly the same form as (2.83),

and therefore also as (2.75), as long as 6.6114 in [10] is applicable. Let’s consider the

required condition for this conversion. As mentioned earlier, to use 6611.4 in [10],

Bn+1 > B,, and 0 < D” < 1, or Bn+1 < B" and Du > 1 must be satisfied. But, the

given assumption for this case P2 = (B,, —— Dan+1)(1 — D") > 0 does not produce

any relation for B,, and Bn+1 that makes 6611.4 applicable, since it is equivalent to

either one ofl > D, and B" > Dan+1, or 1 < Dn and B, < Dan+1. On the other

hand, considering

  

 

_ (Bn+1 + Bn) Bn — Dan+l

P1 P2 — 2 1 — Dn

(1+ Dn)(Bn+l " Bn)

2 . 442(1 _ Du) , (2 1 )

if P1 > P2 then 66114 is applicable. Then,

RTEU) = Cle—P‘t {11()3t) + 10030} u(t)

+Cge—P21u(—t) * e’P“ {Il(,3t) + 10(13t)}u(t)

—C3e—P3‘u(—t). (2.145)

If the ratio P1/P2 is sufficiently large, then the 6’101‘ term, by its peaking property,

provides a good approximation of a 6—function. Thus

333(1) 3:: Cle‘P“{Il([)’t)+IO(,Bt)}u(t)



+C26’P2'u(t) * 6(t) — C36_P2tu(—t)

a: Cle—P‘tufi) + C26_P2tu(—t) — C3e—Pzt'u(—t) (2.146)

Previously, it has been proved that RTE“) is purely causal for Dn+1 > 0 and En > 0,

and thus the non-causal components may be neglected. Consequently RTE (t) z

.46“)1“11(1) for small t, where .4 is a constant which will be determined later.

When P1 < P2, 6611.4 is not applicable. Since P2 > P1, e’PQ‘ 3:: (S(t) and (2.74)

is approximated as

RTEU) = Cle—P”{Il(,8t)+Io()3t)}u(t)

—02€_P2‘U(t) * 6”)“ {11(f3t) + 10(30} ”(I(t)

+C3e’P2‘u(—t)

C167P11{0 +1}u(t) — 026(1‘) * 6’10” {0 +1}u(t) + C3 - 02
2

2
2

Ae'Pltu(t) (2.147)

where A is a constant. Consequently, the small t approximation for P2 > 0 includes

the Ae’P“u(t) term only, and the constant A is obtained by letting R3541) =
t:0

Rfrrlfall t approx“) t:0, and

( +1 ) (2.148) 

(1- Dn)(1 '1' V Dn)

As a result, in a way similar to the P2 < 0 case, the approximation of a transient

interfacial reflection coefficient for P2 > 0 may be constructed from the combination

of the large and small t approximations using the same pair of weighting functions

RTE“) z WL(t)X

{(Bn —' Bn+1)BnV Dn + (811 _ Bn+1)2DnV Dn 6-132t} X

(Bn "' Dan-H) (1_ Dn)(Bn —' Dan-l-l)

e—P1t{11((Bn-l-l _ Bn)t) + [0((Bn+1— Bn)t)} 11(1)

 
 

  

2 2
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Bn—Bn1 QDm/Dn

—(18 19119 )2 {1—(P2t+1)ep'zt}e“Pltx
n— n n+1

1 (Bn+1- Bn)

{(Bn '1’ ;)11( 2

+ 21)n(I3n—l-1 — Bn)

<1—D.)<1+ «me

 

  
t) + Bn10((Bn+12— B")t)u(t)}

21)n(Bn+1 _ Bn)

(1 — D.)(1+ «me
”‘30) + Ws(t)

  

Btu“)

(2.149)

where WL(t) and 1175(t) are given in (2.137). An example of the approximation for

P2 > 0 is shown in Figure 2.14. In comparison with that shown in Figure 2.13,

the combined approximation shows relatively better result in this example. The

individual errors from each approximation are cancelled out each other in transition

region, and thus the combined approximate function provides a good match with the

exact reflection coefficient curve.
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Figure 2.14. Transient interfacial reflection coefficient for P2 > 0 (TE polarization)

1 #n = #0. 6n = 60, 0n = 015/7711, Hn+1 = #0, €n+1 = 7260, 0n+1 = 4115/7711, 911 = 30°,

P2 = 0.64 X 1010 and a = 0.65.
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CHAPTER 3

INTERFACIAL REFLECTION COEFFICIENTS FOR

TM-POLARIZATION

3.1 Introduction

In this chapter, the transient interfacial reflection coefficient for a transverse magnetic

(TM) polarized incident plane wave is derived. For a TM polarized uniform plane

wave, the direction of the magnetic field, rather than that of electric field as for

TB polarization, is parallel to the interface. By a similar approach to that for TB

polarization, the frequency domain formula is derived first, and its inverse Fourier

transform is obtained after reducing and classifying the frequency domain reflection

coefficients using algebraic manipulation with the previously defined branch cuts.

The resulting reflection coefficients for the ratio of incident and reflected electric

field are similar to those for TE polarization but more complicated as expected.

The theoretically derived transient forms are verified by numreical comparisons with

the IFFT of the frequency domain expressions. Finally, the dependence on various

parameter sets is discussed.

3.2 Frequency Domain Formulation of Interfacial Reflection Coefficient

3.2.1 Derivation

The geometry for the frequency domain formulation is shown in Figure 3.1. From

Maxwell’s equations,

V xE(:r,z,w) = —jwunH(x,z,w) (3.1)

V x H(:1:, 2,33) = (on +jw€n)E‘(;r, z,w) (3.2)
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Region 11 : (um , 8n , on) A Z Region n+1 : (”n+1 , an“ , 0M1)

£
1
1

Transmitted Wave

 

Reflected Wave _.

 
 

 
Interface 11

Figure 3.1. The incident, reflected and transmitted TlV’I-polarized plane wave at an

interface.
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and the vetor Helmholtz equation for the magnetic field of region n is

V2H($, z,w) — 7311(33, 2,30) = 0

where the propagation constant for the n-th layer is given by

A(n Z jw#n(0n+jWEn)

= —w2unén +jwun0n.

For TM polarization H = 9H3, and (3.3) can be rewritten as

82 82

( + —) Hy(:z:, z,w) — 73Hy(:1:,z,w) = 0.

51—33 82:2

The solution for the magnetic field is

H(:1:, 2,1,5) : gHo(w)eV"‘r+7"‘z

where the components of the propagation constants are defined by

2 ,2 2

7n : ”inns + 7712'

(3.5)

(3.6)

(3.7)

Only if region n is the first region of a multi-layered material and this region is lossless

will we speak of an angle of incidence and an angle of reflection. Otherwise, we will

use 71,1, 71,2, 7,2,, and 7'1”. For the incident wave,

_ i _

7nd: — 771:1: — 7n COS 9m

_,.i _ -

7112 — (nz — 771 8111 6m,
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while for the reflected wave

7m = 7.2. = —7.. cos 0m (3.10)

’71” : 71'” : 7” sin 6m, (3.11)

Here 6,," is the angle of incidence and 0,1,, is the angle of reflection, as shown in Figure

3.1. The electric field in region n is obtained by

   

  

_ 1 -

E(I,z,w) = ——,——VxH(:r.,z,w)

0n + leun

'w 8H (9H

2 J 1‘"{—e y+2 1’}
7,, Oz 82:

'w H w
= J [J’fl 20( ){_i.nl,nze'7nxz+7nzz +£7nxe7n13+7nzz}

7n

'1.) 'w

= -43—“Z”"zH.(w)eW+3mz + 23—“?"inmewvmz. (3.12)
7n 7n

In summary, the fields in region It can be expressed as

Ian-(aw) = gH.0(w)e3ia-x+3ézz

— 'w i i i

Ei(1',z,w) = —:i:J—u—';%EH,O(w)eV"rx+7mz

7n

A .0.) 1’71 lil 1 .7: 1 z

+zJ—17215H,0(w)e“’"3 +7": (3.13)

Hr(x,z,w) = —3)H,0(w)e7331+1533

_ _ A Vfiz '7' 1+7'.z A 71111:

Er(a:,z,w) — 2:, H,0(w)e "1 "~ —2. H,0(w) (3.14)

qun qun

Notice that, unlike with TB polarization, the direction of the reflected magnetic field

is reversed from that of the incident field while the electric field maintains the same

direction at the interface.

72



In region (n+1), (3.3) is

V2H(;r, 2,13) — 711+1H11': 2,12) = 0 (3.15)

where the propagation constant is

7121+1 : jwfln+1(0n+1+jWCn+1)

: —w2/1'n+1€n+1 +jwltn+1011+1- (316)

Then, the vector Helmhotz equation for the magentic field in region n+1 (i.e., the

transmitted magnetic field) is given by

('92 62 2

(5.13—2 + 523—2) I‘ll/($3 Z3”) _ 7n+1Hy1$3 2,00) = 0' (3'17)

This has the solution

HALE, 2,23) = 33H",(w)e*‘+13"""“'+”"‘+1'iz (3.18)

Where the components of the propagation constants are defined by

2 2 2

771+1 : 7n+1,:r: + 7n+1,z' (319)

When both regions n and n+1 are lossless, we may define a transmission angle 91 such

that

Afn-l—l,:r Z ’7’n+1C0863 (3.20)

7n+1,z = "/n+1 sin 61- (3.21)
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The transmitted magnetic field is given by

   

 

ijn+1 ‘

E,(;r, 2,13) = ———T—V x Ht(:z:, 2,13)

2n+1

jw/Ln-l-l {—118H}; MBHy}

'n-+-1 82 81

jw/1W11+1Hto( 2
: 2 ){_—j:7n+lz 67:14.1xx+7n+l.' + 2,.1n“167n+1.,zx1:+’7n+lzz}

(n+1

: _1 jW——:———ln+l’)n+l MH‘0()67n+1111‘+’7n+11;z

An-H

JW/ln-l—l , .

+~"—2—[n+1 IHto(Wv)€7n+1.z:€+7n+1..Z_
(3.22)

ASH-l

In summary, the fields in region (n+1) can be expressed as

Ht($, Z,CU) :: gHt0(w)e7n+
l,z$+’7n+1,

zz

—
UJ

Et($) 2,01) : _i, j_7n+1/1n
+ltho(w )6711+1,,;x$+

’7n+1 z

7n+1

UJ

+Zj#n+17n+1,er
to( )8’7n+1,z1‘+7n+1,;2 (3.23)

N7121+1

To obtain the ratio of the reflected and transmitted electric field amplitudes,

two boundary conditions are applied. The first one is the boundary condition for

continuity of the tangential components of the magnetic field at the interface. That

is, for all z,

or,

t r

Hi0(w)67"=z—Hro(w)67'n=z = H,0(w)e7"+1'iz. (3.24)
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Then, to satisfy the above boundary condition, the equations

772227;.” : A(”+1.3 (325)

Hio(w)_Hro(w) : Hto(w) (326)

must be satisfied. For lossless materials, (3.25) becomes

  

7,, sin 0,- = 7,, sin (9, = "fn+1 sin at (3-27)

and thus

"/71 Sin 6t

: 3.29

7,,“ sin 0, ( )

which are Snell’s law of reflection and refraction, consistent with the result derived

in Chapter 2. From (3.7), (3.25) and considering the direction of propagation,

71112: = —771ia: : 7711” (3'30)

The second boundary condition requires the continuity of tangential electric field on

the interface. That is, for all z,

or,

- up. .- jwu .r jw/L +1 ,
1'1 J n / \ ’7 :2 /r n ’7 :2 —- A‘ 11' ’7 ,:z

1.1-,1: A 2 H10(W)€ n — 7111' A2 Hr0((.bl)€ n - I’l1l+1,1' A2 _Ht0((J/‘)e n+1 o

n In (n+1

  

(3.31)
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Using (3.30), this equation simplifies to

 

it, #7- ,u'n 1
.

7217’an,0(5.0)+ jfynrHro(w) 2’ %7"in+l,rHto(w)- (332)

7n 7n fin-H

Alternatively,

. 2

l1 +17 +1, ”1'

H..(w>+H..<w) = 2.7.:12:."H‘0(“)' (3.33)
n

 

,,, W2

Now, multiplying (3.26) by #"H ”:31 ’" and subtracting (3.33) yields

[111“!nt "n+1

  
Ian +1 7n +1.17% H11 +17”1z+1,rnl'3 _

— 1 H,0(w) — .2 +1 Hm(w) — 0 (3.34)
I A 2 A’ A/

#117111: 7114—1 #11 Ina: ln—H

Therefore, the frequency domain interfacial reflection coefficient for TM-polarized

plane waves is

 

  

RTM(LU) : Hro(w)

Hi (W)

2 A, ...?

: (”n+17n+12,x7n _ 1) / (fin-H [n+12,1' In +1)

Hn7n27n+1 #nanhI/n+1

H'n+1AI/n+1,x(w)712z(w) — anyn,zr(w)fiffi+1
 = 2 (3.35)

#12 +1f‘l/11+1,I(w)fllfn (LU) + #71771,$(w)7721+1

This is a generalized form of Fresnel’s reflection coefficient for TM-polarized incident

and reflected waves at an interface in a layered structure. Note that the form of

RTM(w) is the same as that given in [1].

3.2.2 Classification of frequency domain coefficients

The Fresnel’s coefficient given by (3.35) can be classified according to the signs of

some constant values included within it. Therefore, layer constants may be defined

as

An = 011/61; (3.36)
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Dn :— (,unen — H1618i112 6i1)/€721 (3.37)

13,, : anon/6,2,. (3.38)

Note that A" and B” are always positive, and the definitions of layer parameters

are slightly different from those for TE polarization. To compute the square root

functions, the same branch cuts described in the TB case are applied. This depends

on the signs of An, D", En, An“, [3,,“ and 13"“.

Denoting S = jw and using the defined layer constants, (3.35) may be rewritten

  

(s + A.>\/s(D.s + B.) — (3+ Anna/swam B...)
RTM(S) ____ ~ ~ ~ ~

(3 + An)\/S(Dn3 + Bn) + (3 + An+1)\fl(Dn+ls + Bn+l)

(3.39)   

Now, the frequency domain reflection coefficient can be classified to four different

forms according to which branch cut is needed. This depends on the signs of the

layer parameters D" and Du“. The algebraic manipulations with the branch cuts

used in the derivation processes are given by (A.1) and (A2).

(1)11,“ > 0 and D” > 0

—(s + An) EMU/3 s + g— + (s + .4n+1)\/D,,,/§(/s + 3a

—(S+An) Dn+1\/o§ S+'g:—::—(S+44n+1)v Dnfi‘/3+'gl:

ETA/1(8) :
 

Simplifying gives

 

(5 + An) +g:::— (8 + 4,,+1)\/-b%1:—\/SD+11.3!

(3+An)(/8+g"+1 (8+An+1) \/-.—11—\/3+Tn.

 

 

RTM(8) =
(3.40)
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(2) [3,,“ < 0 and Du < 0

ij(5+An) an+1|\/§ S-Igflf‘]
RTM (S) :

ij(3+‘4n) an+1l\/§ 3“ an:i| j5J(3 +An+1>

Simplifying gives

Bu l '01:] B

3+A s——.—+——s+A F s——.+
( n) an+1i ( n+1) an-Hl lD'Il

+j(3+An+1) Vanll\/§1/:—I-gD‘I

|D|lx/g -I7;-:I

 

 

RTM(S) ____

(3) Du“ > 0, and. [9,, < 0

—()8+A

Bn+l ibni _ é .

(S + A") V8 —an+1l + (8 + 14111.1) an+1l S l—Dzri—l

~ 811 '

an+1l\/_ +l—Dn—++i_l + J( 3 + An+1)

(3.41) 

 

 - B,

anlIf 3‘35:
 

RTAICS)2

(S "i‘ 471)lDfl+1l\/— S + ID::1I Itj(S + An+1)

Simplifying gives

(3 + An) 3 +_'_871“ i j(3 + Art-+1)

anlx/E I—g‘D‘I

 

ID..I \/8_ Ba

IDn+1! anI
 

 

 

RTM(s) = 'D' _ . (3.42)
n l B

(8+.4n)1/3+ID—T—:II $j(8+x4n+1) TDg-al—IJS— l—Dlri—l

(4) [9,,“ < 0, and D” > 0

RT“(3)= 8,,)+A IDn+1IIf —I—-—,,"II+ 3+ 41.+1)ID..I\/E +IgI

(3 + An) iDn+1i \/_ —|D::—'_i_|— 3+ 411+1) iDn l\/— +|fiDJL|

Simplifying gives

 

 

’8 Bn+1|

(3+A")V 8 ID::iii

D_L_,L_| +1331;

(S)+A"+1:\/:Dn:il\/:—JLS+|D+.I

In each of these expressions the upper sign corresponds to w > 0 and the lower sign
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to w < 0. Note again that the branch cuts defined in section 2.2.2 have been used

throughout for the square root functions.

3.2.3 Reduction of the interfacial reflection coefficients

Observing (3.40)-(3.43), it is realized that there is a constant offset value inside of

each frequency domain expression, as there was with the TE polarization. Therefore,

the constant offset value, the asymptotic reflection coefficient, should be extracted

first.

To make the (3.40)-(3.43) more readable, let

 

 

 

Dn = Ell—l— : \/€31+1 lf‘nén '- [1:161 Sin? 6,I|

an+1l
6% lfln+1€n+1 _ #15151n2 gill

B, z _EL : unan . .

anl lflnf-n - #161 sm2 6,I|

and take the limiting values at infinite frequency. Then,

(1)Dn+1> 0 and [3,, > O

(8 + Auk/s + Rm — \/Dn(3 + An.+1)\/s + BnRT!” ,, z a

(D) (s + A,)I/—‘s+ 13,,+1 + \/—Dn(s + An+1)\/S_-+ —B,,

 

(2) Dn+1 < O and [3,, < 0

(s + Auk/3 - En“ — \/Dn(8 + An“) s — Bu

ETA/Rs) = ,
(s + An)I/s — Bn+1+ \/Dn(3 + An“) 3 — Bn

 

1 — VD"

lim RTM(s) = —.
w—«mo 1+ W/Dn
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(3.44)

(3.45)

(3.46)

(3.47)

(3.48)



(3) 13n+1 > O and 13,, < 0

RTM(3) : (8 + An)\/8 + Bn+1ij\/Dn(8 “i" £411.11) 8 — Bn, (3.49)

(8 + 44n)\/8 + Bn+1$jVDn<8 + An+1) .S‘ — B"

 

1d: \/

lim RTM(8) - J D"_ ____ . 3.50
w—mc IZFJE ( )

(4) 13n+1 < 0 and 13,, > O

RTM(s) __ (s + An)I/s — Pn+1¥jI/D,,(s + An+1)\/s + B,, (3.51)

_ (8 + An)\/8 — Bn+12i2j\/Dn(3 "l” An+1)\/S 'l' Bn3

 

1 \/l3,,

lim RTWS) = L.
w—mo 1 :1: ]‘/Dn

In these expressions the upper sign corresponds to w > O and lower sign to w < 0.

(3.52)

Next, the obtained asymptotic reflection coefficient have to be subtracted from the

original RTM (3). Let’s denote the asymptotic reflection coefficient as R22,“ and define

RTM(5) = RTM(3) — R30“, then

(1)13n+1> O and 13,, > O

(s + AafiTBn—H— (8 + Awk/D—nm _1— x/D;

(8 + Anh/H—BEH (s + An+1)\/D;\/s+_Bn 1+ fD—n

2x/D—n (8+An)\/s—+m— (s+An+1)\/’s‘7rfi

1+flZ<s+An)\/S_+_BZE+ (s+An+1)\/ITm/s—+—B—n

RT1W(S) :
 

 (3.53)

Eliminating the square roots in the denominator of (3.53), gives

2VDn (3+‘4n)\/3+Fn+l—(3+An+l)\/3+Bn

1+ \/Dn (s + An)2(s + Bn+1)— Dn(s + An+1)2(s + B,,)

X{(3+An)\/5+Bn+1_ x/D;(s+An+1)I/s+Bn}. (3.54)

 

RT!“ (8) :

8O



In the above equation, the numerator is given as

(3+.4,,)(s+Bn+1))D+,/H433(3+B,,)

—(1+,/D,,)(s +A,,)(3+An+1)\/s+ B,,\/s+B,,+1 (3.

 

o
r

0
1

\
—
/

while the denominator can be arranged as

(1 — 0,)53 + {2(.4,, — 2D,,An+1)+(B,,+1— B,,)}s2

+{An(An + Bn+1) — DnAn+l(An+1 + 871)}3 + (AiBn+1 "’ DnA121+1Bn)(356)

Zeroes of the denominator exist, therefore (3.54) can be expanded using partial frac-

tions and a standard inverse Fourier transform is available for each of those fraction

terms. However, that would be quite complex. So, the special but simpler cases of

(3.54), i.e. when either one of the both layers has no conductivity, and D,,+1 > 0 and

Dn > 0 will be discussed in this study.

Assume that 0,, = 0, then An = B,, = O and (3.45) becomes

RTMIS) = \/3_V3 'l' Bn+1— \/D—n(3 ‘l' 4n+1l (3 57)

fiW'l” J7<s+An+1l '

 

Now, the asymptotic value still remains the same and is subtracted from the reflection

coefficient (3.57) to obtain the reduced form as

m-m(3+An+ll I‘m

W+¢Dl(s+An+1)_l+x/’DZ

NE fim— (s + An“) (3 58)

1+f19—nfix/sTBn—H+ \fD—n(s+An+1)' '

RTM (S) :
 

 

Eliminating the square root terms in the denominator of (3.58), gives more convenient
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form to use partial fraction expansion as

 

 

 

 

 

ETA-{(8)

: 2V Dn {fivs + Bn+1_(s + An+l)}{\/EV3 + Bn-H _ V Dn(3 + An+1)}

1+m 5(s+B,,+1) — Dn(s+An+1)2

_ 2V Dn (Bu-H — An+l + An+l V Dn)3 + A121+1 V Dn

_ - 2071-471 1_Bn 1 0,1,4: 1(1+ ,/—D,)(1 0,,) 32 _ 1an + S _ if

2\/D,, An 3,,

+ 3(3 + +1) , 1— I/———8++1 . (3.59)
1 — D11 82 __ 2DrlAn+l_Bn+18 __ DnAYHH S

l—Dn l-Dn

Known inverse Fourier transform pairs are available for all terms of (3.59). To make

it more readable, denote the constants in the numerator as

E : Bn-H _ An+1+ Ari-H V Dn

F = Ag+1 I/B, (3.60)

and the costants in the denominator

2anAn-H - Bn+1

1— Dn

19,143,“

D,, —- 1 '

 

(3.61)

Also, the common denominator of (3.59) can be expressed as (s — P1)(s — P2) using

the two roots of the equation 32 — be + c = 0. It is necessary to check the signs of

the constants before finding P1 and P2, because if they have certain restriction on

the signs, then that will confine the location of the roots in the complex plane. Let’s

examine

Un+1{€n(2#n€n+l _ (in-Hen) _ 26n+1/“151Sin2 Bil}

r 2 u 2

(n+1€n(#n+l€n _ #11€n+1) _ (€121 — 6n+1)#‘1€131n 011

 

82



' 2 2 ‘2

Dn/‘n—HQH—l _ [1.1E1SIII 62'1 6nan+1

C : (3.62)
2 ‘2 ' 2 _ 2

6n-+-1€n(/1n-+~1€n "" #n€n+1) — (6n — €n+1)#1€1Sln 621 En+1

 

Thus I) and C do not have any restriction on their signs even for the special case of

11,, = 11,,“ = 11.1, and P1 and P2 can be any type of number. Using the partial fraction

expansion, the frequency domain reflection coefficient (3.59) is rewritten as

2\/l_3; E3+F + QJD—n s(3+A,,+1)

(1+\/l3—,:)(1—D,,)(s—P1)(s—P2) -—D,,(s—P1)(s—P2)

= QVD: { K1 + K2 }

(1+\/D—,,)(1—D,,) S—P1 3—P2

2V1)" 8K3 3K4 3 “i" Bn+1

+1—Dn{s—P1+s—P2}{1 s } (363)

RT!” (8)
  

  

  

and the constant coefficients are defined by

 

 

 

K _ E8+F _EP1+F

1‘ s-P282P1_P1—P2

K _ E8+F _EP2+F

2‘ ydfiflfi_E—H

8+An+1 P1+An+1
K3 : —— :—

S—Pg s=P1 P1—P2

S + An+1 P2 ‘l' An+1K 2 ._ :—_, 3.64

4 8—P1 3:132 PQ—P1 ( ) 

Notice that K2 2 Kf and K4 2 K; where K* indicates a complex conjugate of K.

The roots P1 and P2 are obtained as

P1 = (b+ «62 — 4c)

P2 = (b — V b2 —' 4C). (3.65)

It should be noticed that the roots are in the relation of a complex conjugate pair, i.e.

P2 2 PI“. It has been already shown that b has no restriction on its sign. Consider
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the sign of

(2Dn‘4n+l _ BIN-l)2 __ 4‘4izi.+l
 

 

b2 — 4 =

C (1 — D,,)2 D, — 1

__ 4(1)?) - D11 +1)Afi+1 + Bn+1(Bn+1 _ 41911/4n+1) 3 66

— (1 —D,,)2 ( ' )

where 4(D3, — Dn + 1).51,21+1 > 0 always, and

 
, Hn-HO'rH-l

Bn+1(Bn+1 _ 4DnAn+1) : . 2

l/l'n-HEn-H — #1618111 951'

2 ° 2

_4071.+1 (n+1 “n61! _ #161 SlIl 6“

2 ' 2
€n+1 6,; fln+1€n+1 - #161$111 921

2 ' 2
Un+1 {MnHEn — 4€n+1lHn€n _ #1613111 gill}

- 2

€nlfln+1€n+1 — #161Sln gill

 

 

(3.67)

The definition (3.67) can have any value, even for 13,,“ = 11,, = #1. As a result, b2 —4c

can have any sign, and therefore P1 and P2 can be any type of number.

Assume that a,,+1 = 0, then An“ = Bu“ 2 O and (3.45) is simplified to

(3 + An) —afim

(3 + A.) + VITA/EMS + B,

 RTM(3) = (3.68)

Observing this expression carefully, it can be recognized that by replacing An, 13,,

and D" with An“, B,,+1 and 1/D,, respectively, RTM(3) for CHI 2 O is equivalent to

—RTM (s) for 0,, = 0. That is, the reflection coefficients for both cases are in ‘dual’

relationship. Therefore, it is expected that the transient reflection coefficients for

both cases have the same relationship.

3.3 Derivation of Transient Interfacial Reflection Coefficients

The transient forms of the frequency domain interfacial reflection coefficients are given

by the inverse Fourier transform. Because the asymptotic reflection coefficients R2”
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are constants in the frequency domain, their transforms are simply given as delta-

functions multiplied by the constants. Let’s denote them by R22” (t). For [3,1,1 > 0

and [9,, > 0,

RT“(t) = F-1{1im RTM(3)}
(,0—>00

1-\/Dn-

WOW (3.69)

and the resulting transient interfacial reflection coefficient is given by

RTMU) = F-1{Iim RTM(3)} + F-1{RTM(S)}
w—mo

= 1 _ mm) + RTMU). (3.70)

1+\/Dn

By the ‘dual’ relationship of an : O and on“ = 0 mentioned earlier, only the transient

interfacial reflection coefficients for on = 0 will be derived. Then, what is needed to

obtain the transient form for the dual an+1 = 0 case is just taking negative sign of

the obtained transient reflection coefficient for on =2 0. The transform pair for each

term in (3.63) can be found in Appendix B.

Since P1 and P2 can be any number, real or complex, the transient reflection

coefficient has five different forms depending on the roots of the frequency domain

denominator. Let’s denote

P, = 1241932124132}

R = Im{P1} = -Im{P2}. (3.71)

From (3.64), the constants K1, K2, K3 and K4 are generally complex numbers as
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well, and using their complex conjugate relationship, let

A'lr

K1.-

K3r

K3.-

and denote 3—— —’12+—1.

Re{K1} = Re{K2}

Im{K1} : —Im{K2}

Re{K3} 2' Re{K4}

Im{K3} = —Im{K4} (3.72)

(1) When P1 and P2 are complex numbers, and P, < 0,

the transform of (3.63) is given by

2m
 

RTMU) =

2\/~_

1—

 

(1 — Dn)(1+\/IT,,)

n3€iKP1t{6(t))+ 131140)} + K461)” {5(t) + P2u(t)}] *

{K1 eplt+K2ep2t}u(

(—3 e‘5‘{11((3t)+ 10(3t>}ut() (3.73)

Here In(t) is the first kind modified Bessel function of order 11. Each term in this

expression can be simplified using (3.71) and (3.72) as

Kleplt-l—ngp‘?‘ : Re{K1}eP’+jP't+jIm-{K1}ep’+jp‘t+

Re{K1}eP’+JP“ — jInL{K1}eP'+jP‘t

= KlrePrt(ejP,t + e—jPit) +jKliePrt(ejP,-t _ e—jPit.)

= ZeP"(K1r cos P,t — K1, sin Pit), (3.74)

K3€Plt6(t) + K4epzt6(t) = 1X36“) + K460i) = 2K3r6(t), (3.75)
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and

K3P13P1t+ K4P2€Pzt 2 (K3,. +jK3z.)(p +336)P.+th +

(Ksr '— jK3i)(Pr — jP,)eP'_jP*‘

: CW1-Pr(ejplt+ejp,’3t)
_1\MP<jPHt

+e—jpt)

11"3rPi(€jP't " e—jp'i) +jK31Pr(ejP't — e"jP*‘)}

= 26’)” {(K3rP, — KER) cos Rt — (K3TP2' + K313) Sin Pit}°

  

(3.76)

Finally, the transient interfacial reflection coefficient is

RTAI(t)

4\/Dn . 4\/Dn

= eP"(K1,. cos P,t — K1,- sm P,t)u(t)+ [K3,.6(t )

(1 -—D,,)(1+\/D,,) 1—Dn

+ ePrt {(K3TP, _ K3,P,-) cos P,t — (KarP. + KSiPr) sin Pit} ”(t )l *

(we—‘3‘ {11(3) + 10(3)} u<t>

 

 

 

 

: (1 _ IDS/EDx/D—n) eP"(K1r cos Pit — K1,- sin P,t)u(t)

_4’:_3__D_r_51\)/78-3‘ {1((3t))+ 10(3t)}u (t)

—ifi_‘/;(K3.P— K3.P.~e”)W) x

jot cos P (t — :r)e—(P'+’9)x{11(1317)+ 10%)} d3:

+‘iflfl(K3,.P +K3,P,-)e”u(t) x

jot sin 12.3 — 1:)e'(P’+B)I{11(/3$) + 10033} dz

: (1_ D:fl \/D_n) eP"(K1r cos Pit — K1,- sin Pit)u(t)

_Wflt {11(/3t) + 10(31) } 'u(t) -— gfewn x
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t

/ {(K3rPr — K313) COS Pi“ - :17) - (K3,.Pr + ngPz) sin P,(t — 33)} x

0

84’7”” {11(33) + 1333)} 3.1:. (3.77)

(2) When P1 and P2 are complex numbers, and P, > 0,

the transform of (3.63) is given by

RTM (t)

— 2 {K1 ePIt+Ku(eP2‘} )+

(l—Dn)(1+\/D—)

2%? [K38Pit {6(1‘) —P1u(—t)} + K4€P2t {5W — P2u("t)}l *
1

(‘73)eB‘UlUit) +Io(5t)}u (t)

_ 4m ,t . (Ix/IX
_ —(1 _ Dn)(1+ my? (K1, cosPit + K1,81nP,-t)u(—t)+ 1_ Dn x

i [345“) + 810.: {(K3rpr ’ KSiPi) COS Rt — (K3,.Pi + K3,-P,.) sin Ht} x

u<—t)] * (wee-5‘ {11(3) + Iowa} um

 

 

  

 

: (1— D4)(f: D )ePrt(K12' sin Pit — Klr COS Pit)u(_t)

_4K3rIBV D71
 , _ D. e-B‘ {11(3) + 1332:3173)

_L'azep't/ {(K3rPr —K32'Pi) COSPi(t—'CC)

1- Dn maa:(t 0)

—(K3,.P. + K333.) sin P,(t — 13)} 5W?” {11(33) + 1333)} das. (3.78)

(3) When P1 and P2 are real numbers, and P1 > P2 > 0,

the transform of (3.63) is given by

 

 

RTMU)

2J—
Plt P?‘

—(1—DDn)(1+\/—_) {K8 +K€ }U( H

121/; [K36P1t{6(t—) P1U(—t)}+K4€P2t{5(t) — P2“(_t)}]
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*(—B)e—Bt {11(31) + 10(30} 'u(t)

_ 2717. _

(1-3(1+,/5;){K18 ”(2 } '( t)

1851085 +K4)8_‘3i {11(Bt) + 10031)} u(t)

2K P n °° ‘3 1/3\/D ePlt/x e-(P1+3)x {11(51) + 10(3x)} (1:1:
1 — Dn mar(t,0)

2K P n 0° _ .-
+ :2”;le eet/ e”35311333+Io(.8z>}dx. (3.19)

"" n max(t0)

 

(4) When P1 and P2 are real numbers, and P1 > 0 > P2,

the transform of (3.63) is given by

RT1U(t)

2 0,, Pt P2t

= (1-D1%)(ILVD—n){*K1€‘u(—tl+K2€
“(t)”

12:5"[KMm, p1u,(—t)}+K4eP2t {63) +P2u<t>}l

*(-13(3)6‘5‘ {11(6t) + 10(3)} 3(1)

= (1 - 03% J17) {-KleP‘tu(—t) + K26P2‘u(t)}

_213\/_(K3+K)e-Bt{1,(3t)+10(8t)}ut()

 

 

 

 

1 — Dn

+2K3P15VD71
eooPlt/ e—(Pi‘f-le {11(51') + 10(fi$)} (1.73

1— Dn max(t0)

r t

_2A1PgflDxlen “1321 (15)] e—(P2+_8)I {1103513) +10(5I)}dg:. (3.80)

— 0

(5) When P1 and P2 are real numbers, and O > P1 > P2,

the transform of (3.63) is given by

ETA/I(t)

2\/D—n P11 P21
(1*Dn)(1+r) {K18 +ng}u(
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2\/D,,

1— Dn

*(—.3)e-3t {11(,3t) + 10(13’» ’U-(t)

2x/D;
: {KleP‘t + ngp'zt} 11(1‘.)

(1 — Dn)(1+ \/Dn)

2 \/D,, _,

_1‘3_ D (K3 + K4)e 3‘ {11(Bt) + 10(5t)}'u(t)

_2K3PIBV Dnepltu

1— Dn

2K4P25an P21

_ 1— D e u

[K3eP1‘{3(1)+ 131-3(1)} + K4ep'2t {6(t) + 132-WM]

 

 

 

t

(t) f 61’1”” {1331) + 1363} dx
0

 (t) /0t e‘mfimf {11(1316) + 10(Bx)} dz. (3.81)

Notice that, for TM polarization, there are non-causal terms even for the Dn+1 > 0

and Dn > 0 case.

3.4 Numerical Examples

3.4.1 Verification of theoretical expressions

The previously derived transient forms of the interfacial reflection coefficients may be

compared to direct numerical computation to ensure that the transforms are correct.

Again, the numerical IFFT, is used for this purpose. For the reasons explained in the

previous chapter, only the causal case will be discussed.

Since the asymptotic interfacial reflection coefficients appear as delta functions

in the time domain, and are thus difficult to express numerically, only the reduced

interfacial reflection coefficients are compared. Figure 3.2 shows the comparison of the

derived transient interfacial reflection coefficient with the transient forms obtained by

using a 3072 point IFFT for 0,, = 0. The material parameters for Figure 3.2 are those

for free-space and typical sea water at low frequency as described in [20]. The transient

reflection coefficient curves from the two different methods are nearly identical, and

thus the derived transient interfacial reflection coefficient for TM polarization has

been verified.
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Figure 3.2. Numerical comparison of the derived transient reduced interfacial re-

flection coefficient with that from the IFFT (TM polarization) : 11,, = M0, 6,, = 50,

0n = O[U/m], Hn+1 = #0, €n+1 = 7260.071“ = 4[U/m], 611 = 30°-
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To verify the combination of the asymptotic and the reduced transient reflection

coefficient, the time domain convolution of the interfacial reflection coefficient with

an input waveform is needed. i.e.

S(t) _—. X(t)*RTM(t)

= X(t) * {333(1) + {amps}

= RZOMXU) + BTMU) * X(t). (3.32)

Here X(t) denotes the input waveform and S(t) is the resulting reflected waveform.

The same input waveform given in Figure 2.6 is used for TM polarization. Figure

3.3 shows the comparison of the time domain reflected waveforms with the input

waveform shown in Figure 2.6 for on = 0. Again, the derived expression and the

IFFT results are well matched.

Exact theoretical expressions are available from the previous research [11] for

TM polarized transient interfactial reflection due to a unit step input waveform. A

comparison with those results also helps to verify the work in this study. Figure

3.4 (a) and (b) show that the re-produced results of the electric fields to a double

exponential input waveform excitation as shown in Figure 4.1 in [11], obtained by

using the transient interfacial reflection coefficient and transmission coefficient of this

study, are exactly same as those found in Figure 5.3 and Figure 5.2 in [11].

3.4.2 The transient responses for various parameter sets

It is interesting to study the dependence of the transient reflection ceofficient on

various parameter values, i.e. permittivity, permeability, conductivity and aspect

angle. Comparisons of the reduced reflection coefficients are shown in Figure 3.5 -

Figure 3.8, which are plotted using semilog scales for easier identification. Note that

the curves in each plot are for the on = 0 case.
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Figure 3.3. Numerical comparison of the derived transient reflected electric field

waveform for the input waveform shown in Figure 2.6 with the IFFT (TM polariza-
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Figure 3.4. (a) The transient reflected magnetic field waveform for a double expo-

nential excitation : 6 = 1060, ,u = no, a = 2 X 10’2[U/m], t9, = 45°.
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Figure 3.4. (b) The transient transmitted magnetic field waveform for a double

exponential excitation : e = 1060, u = no, a = 2 x 10‘2[U/m], 6,- : 45°.
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(1) Permittivity

The curves in Figure 3.5 are plotted for em,“ = 1.7, 2.5, 10 and 72. The correspond-

ing values of R732” are -0.10, -0.18, -O.47 and -O.76, respectively. It can be seen that

the slopes of different R'I‘MU) curves are preportional to the increasing permittivity

values as well as increasing asymptotic reflection coefficient R2". This means that.

the transient reflection becomes more dependent on its early time portion coming

from the asymptotic reflection term when the permittivity contrast of both layers is

sharper.

(2) Permeability

The curves in Figure 3.6 are plotted for pm“ 2 1, 5, 10 and 50. The corresponding

values of REC“ are -0.76, -0.53, -0.40 and -0.019 respectively. The slopes of RTMU)

are seen to be inversely proportional to increasing permeability values, and to

increasing amplitude of the asymptotic reflection coefficient. This indicates that the

transient reflection becomes more ‘relaxed’ with increasing values of permeability.

(3) Conductivity

Because an increase in conductivity causes attenuation in wave prepagation, the

transient response RT“ (t) suffers a more rapid decrease with time as conductivity is

increased, while the asymptotic component is independent of the change. This can

be seen explicitly in Figure 3.7 where 0,, = 0.10, 1, 4 and 10, respectively.

(4) Aspect angle

The curves shown in Figure 3.8 are plotted for 6,1 2 0°, 30°, 45° and 75°, while

the corresponding values of ROTC?" are -0.79, -0.76, -0.72 and -0.38 respectively.

Therefore, the slope of the reduced reflection coefficient as well as the amplitude of

the asymptotic component decreases with increasing aspect angle, and the transient

reflection is less dependent on its early time portion.
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CHAPTER 4

SCATTERING FROM A MULTI—LAYERED MEDIUM

4.1 Introduction

The overall reflection coefficient is defined as the ratio of the reflected wave amplitude

to the incident wave amplitude at the first interface of a muti-layered medium, for

which the effect of scattering from the other layers must be considered. In this study,

the overall transient scattering from a multi—layered medium is derived from a com-

bination of propagation terms for the layers and the individual interfacial coefficients

for which closed forms have been derived in the chapters 2 and 3 for each polarization.

To obtain the transient formulation for the overall reflection coefficient, its frequency

domain formula is derived first using the wave matrix method, and then time domain

expressions are found using a series expansion and the convolution theorem. For this

derivation, the analytical form of the transient propagation term is found. Finally,

the obtained transient expression is verified by numerical computation examples, and

various aspects of the formula are discussed.

4.2 Formulation of ’IYansient Overall Reflection Coefficient

The overall reflection coefficient for a multi-layered medium (assumed to have N

layers) can be computed in the frequency domain using wave matrices [22]. Several

other techniques can also be used, but this is the most common technique. Figure

4.1 shows the geometry of the nth layer of a multi-layered configuration. The incident

and reflected waves immediately to the left of the (n-l | n) interface are cn and bn

respectively. Similarly, the waves immediately to the left and right of the (n | n+1)

interface are cu“, bn+1 and cn+2. The overall reflection coefficients immediately to

the left of the (n-l | n) and (n | n+1) interfaces are Fn : bn/cn and PHI 2 bn+1/cn+1,
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Figure 4.1. The nth layer of a multi-layered environment.
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respectively. The interfacial reflection and transmission coefficients are R", Tn and

R1,“, Tn“. Wave matrices are used here to relate F" to Fn+1- By doing so, we can

develop a recursive relation that will ultimately relate the reflection coefficient at the

front of the interface (i.e. the first layer) to the reflection coefficients of the underlying

layers.

Using Collin’s wave matrix result [22], cn and b" are related to an and b... by

the following relation

On I Pnnl(w) RnPn(w) Cn-H

: — (4.1)

bn T" RnPn_1(w) Pn(w) bn+1

where Pn(w) = 87”!" is the frequency domain propagation term, and [n is the length

of layer 11. Then, the recursive formula for Fn in terms of Fn+1 can be computed using

Collin’s wave matrix result as follows

1 —1

bn Tn {RnPn (W)Cn+1+ Pn(w)bn+l}

Fn(w) = ”C“ : 1

(4.2)
n F{17’1—'1((,¢1)Cn+1‘l' RnPn(w)bn+1}

 

Factoring out Pn'1(w)cn+1 from the numerator and denominator and using PHI 2

bn+1/cn+1 produces the desired frequency domain result

: 12.0») +P3Iw)rn+1<w)
1+ Rn(w)P3(w)Pn+1(¢‘/’).

 
Fn(w) (4.3)

To obtain the transient form of overall reflection coeflicient, (4.3) is expanded as a

series summation, because it is difficult to find directly the inverse Fourier transform

of the formula. For example, assume the three layer case. Then F2 2 R2 and

3100) + P12(W)R2(w)

1+ R1(w)Pl2(w)R2(w)

 

RM
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= {R1(’w')12'-+P(‘uJ)R2()}[1-Pf(W)R1(w)R2(w)+

{P12(w)R1w()R2(w)2-}-{P12(w)RM)R2(w)}3+' ' 'l

= R1(L~’)+P12(é~')R2(w){1-Rf(w)}- Pi’(w)R1(<~)‘R§(w){1-Rf(w)}

+P16(w)thw') Rita){1-R2(w)l- P1801)R3(wlR2(w){1-W)}+

(4.4)

This series expansion is possible because of radiation condition referred in section

2.2.2. To be able to expand by a series summation, the amplitude of Rn(w) and

P,,(w) must be equal to or less than unity. This is satisfied due to radiation condition

(leading to the branch out definition), which requires a non-positive real part of the

propagation constant. That is,

We)! = le”"”"l = 6124...“. s 1 (4.5)

and

«Ea-mm

W+¢E¢FBT+T

{--wa()ijb(w)}- {-Cc‘2()ijd(w)}

{-a(w)ijb(w)}+{-W()ijd(w)}

-{a(w)- cub)}ij{b(w)-d(w)} (46)

-{a(w)+6(wllij{b(w)+d(w)} '

 

 

 

where a(w), b(w), cw( ) and d(u,) are arbitrary positive functions of frequency. Thus,

 

 

 

mus“) |___ \/{a(:)— c()w)}2: {bIf”) " (Wall? E 1. (4.7)

The overall reflection coefficient for a medium having more layers can be found re-

placing R2(w) with I‘2(w) in (4.4) and using recursive relation given by (4.3). To

obtain the transient overall reflection coefficient, the convolution theorem is used,
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which says that the multiplication in frequency domain is equivalent to convolution

in time domain. Therefore, the transient form of (4.4) is given by

F1“) 2 R1“) + P1“) * P1“) * R2(t) * {6(t) — R1“) * R1(t)} —

P1(t) * P1(t) * P1(t) * P1(t) * Rl(t) * R2(t) * R2(t) * {6(t) — R1(t) * R1(t)}

... . ., (4.8)

And finally, the reflection S(t) from the first interface of a multi-layered medium due

to an input waveform X(t) can be obtained as

S(t) = X(t) * F1(t). (4.9)

4.3 Transient Propagation

To compute the transient overall reflection given by (4.9), the transient propagation

terms must be found. By letting

- 2

dn = Turin—#161 Sln 9:1

bn : #110117 (410)

the definition of the propagation constant in (2.38) is rewritten as

/— In

7nd: : V (11182 + bnS : — dn 32 + 61—8 (411)

/—— /—— / In
7111 : dns2 + bns : ij ldnl 52 — Id '3 (4.12)

for (1,, < 0, and where the upper sign is used for w > 0 and the lower sign for w < 0.

for dn > 0, and

 

Only the dn > 0 case will be considered due to the causality difficulties mentioned in
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Chapter 2.

Now the frequency domain propagation term is written as

Pn(w) : 671171

fits: e—lrn/E 32+dn . (413)

To obtain the inverse Fourier transform of (4.13), the transform pair in [23],

6'5 (“pp—"2 4:) 6’856 (t — E) +

v

. ..(a .2_(;)2).(._;) ......

where Re{p, a} 2 0, is used. When (4.13) and (4.14) are compared, it can be realized

that —bfl— > 0 corresponds to p, and 0 = > 0. Then,

2d,. "

 

.—e.(._e) _. e-an—znfln)
U

01.. fitlm/CTI;
_)

’U 152—011)?" y/t'z-lgdn

2.

e—ptll 0\/t2 - (l—n) )u (t — If) —> 63‘2—(:1nr3"t11(2l:;I (#2 — lid”) u(t — lny/dn).

(4.15)

 

 

 

As a result, the transient propagation term is given by

pug) = e-fi‘mu—Im/d.)

bnln 2 (1,, bn .

+(\/22L_l\i_;_)11 (2d Viz — 13d") u(t — l,,\/d,,). (4.16)  
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Also, it can be easily shown that

{13,(3)}" <:> e‘z—«H—i‘imm—II \/d,,)

+(klnbn /2\/_n)111“

+12./ —I,2,d

The transient form (4.17) should be verified by numerical inverse Fourier trans-

 

  \/t2— I...)2d,,u) (t—kln\/ci_,,). (4.)17
2d,,

form, but it is difficult to compute directly the transient form because it includes the

6-function. Therefore, a modified form obtained by removing the 6-function term is

compared with its corresponding frequency domain form. That is, by being modified

as

em = am — {Rem — 1.1/21:), (418)

the corresponding frequency domain transform becomes

13,,(3) = Pn(s) —F{e_fb/”T:’"6(t—ln\/dn)}

_ e_ an Sufi-gain —e‘Kb/%i'fl"e’(‘nm)3

:_ (fflvsugfish‘ — e_(§£\/%Z‘+ dnsfl", (4.19)

and the transform pair of (4.18) and (4.19) may be compared using numerical inverse

Fourier transform. The plot in Figure 4.2 shows an example of such a comparison

obtained using a 2048 point IFFT with a 20 nano second interval. The transient form

and the IFFT result are well matched, and therefore the correctness of the transient

propagation term has been verified.

4.4 Numerical Examples of Overall Reflection

The previously derived transient overall reflection form may be verified using nu-

merical computation to ensure its correctness. Considering there are 6—function

terms included in both the transient propagation and interfacial reflection terms,
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direct numerical computation of (4.8) may not produce an accetable result. There-

fore, the following numerical implementation is used in this study. When assuming

P(t) = A6(t — td) + P(t — td) and R(t) = R006(t) + RUE) for example, the convolution

becomes

Pit) * R(t) = {-460 — ta) + 150—164)} * {120060) + R(t)}

= .4R006(t) * 6(t — td) + A6(t — td) * 11(1)

+£20.60) * 13(1— 1.)) + Pu — t4) 1. 11(4)

= .4R006(t — td) + AR(t — td) + 1200150: — td) + 15(1 — td) 1: R(t).

(4.20)

The amplitude and position of the 6—function in (4.20) are stored separately for

use in subsequent computations. To compute P(t — td) =1: Fl(t), several different nu-

merical algorithms are available [24], but the simple discrete convolution algorithm

is used in this study, and it turns out that the method provides sufficient accuracy

when compared with IFFT results. Detailed programming source codes for numerical

implementation can be found in Appendix C.

Numerical examples of scattering excited by the input waveform shown in Figure

4.3 from the simplest 3 lossless layer (free space, 10cm thick-plexiglass and free space)

cases for both polarizations are shown in Figure 4.4 and Figure 4.5. The double

exponential input waveform shown in Figure 4.3 is produced as

X(t) = 10.24 x (e"8><1°9‘ — e"16x1°"‘) . (4.21)

The permitivity value at 10GHz for the plexiglass layer, 2.5960, is found in [21]. The

1‘GSults from the transient formulas are compared with those obtained from a 2048

point IFFT with a 20 nano second range, although only the first 10 nano seconds
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are shown. The comparison shows good agreement in both polarizations. The phase

reversed reflected waveforms at each edge are seen in the both plots.

To see explicitly mutiple reflections due to time—delaying propagation terms, the

scattering from a 5-layered lossless medium (free space, 10cm plexiglass, 10cm free

space, 10cm plexiglass and free space) is computed, and shown in Figure 4.6. Be-

cause this medium consists of lossless layers, the reflected waveforms are controlled

only by the asymptotic reflection coefficients, and there is no attenuation suffered by

the reflected waves. Instead, the amplitudes of reflected waves decrease after each

reflection because the amplitude of each asymptotic reflection coefficient must be less

than unity.

The overall reflections from a lossy layered medium are plotted Figure 4.7 and

Figure 4.8 for both polarizations respectively. The 5 layered medium is identical to

the previous case except that the third layer is distilled water with parameter values

taken at 10 GHz, and the equivalent conductivity used to represent the dielectric

loss of water at that frequency. As expected, the mutiple reflections suffer severe

attenuation, and the reflections after a short period peter out.

It may be interesting and practical to identify each reflected waveform in the

mutiple reflections shown in Figure 4.6 - Figure 4.8, by associating them with each

term in (4.8). The time domain waveform identification makes it possible to remove

unwanted signals, for an example, multi-path echos. Figure 4.9 shows the individual

reflections in Figure 4.7 due to the first through the fourth term in (4.8). The first peak

Obviously is the reflection from the first interface of air to plaxiglass, and depends on

the asymptotic reflection coefficient only. Also, notice that the sign of the amplitude

iS inverted since the wave is reflected from a electrically denser layer. The second

peak comes from the reflection at the plexiglass-water interface. Similary, the sign of

amplitude is reversed, but the large reflection occurs because the permitivity profile

difference between the two layers is larger than for the previous interface. Now the
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reflected waveform is contributed by the reduced reflection coefficient as well as the

asymptotic component. The polarity of the third peak is the same as that of the

input waveform. Therefore, there is a possibility that it comes from the reflection at

the water—plexiglass interface. However, considering the relatively high permitivity

profile of water which makes the waveform propagation much slower than in plexiglass,

as well as the heavy attenuation that the wave suffers due to the dielectric loss of

water, this possibility must be discarded. Therefore, the third peak originates from

three reflections at the interfaces of plexiglass-water, air-plexiglass, plexiglass-water

and transmission through the air plexiglass interface. The fourth peak comes from

an additional two reflections at the air-plexiglass and plexiglass-water interfaces. Of

course, this rigorous geometical ray Optics approach is possible because of the exact

timing analysis.

The incident angle dependence of the overall reflection is shown in Figure 4.10 for

the same 5 layered lossy medium used in Figure 4.9. In the first reflected waveform

set, the largest angle produces the largest peak waveform because the asymptotic re-

flection coefficient is proportional to angle as described in section 2.4.2. In the second

reflected waveform set, the smallest angle produces the largest peak, due to its large

reduced reflection coefficient components (see Figure 2.12). The same explanation can

be applied to the other reflected waveform sets. Note that the multiple reflections

with the largest inciedence angle occur earliest. Although this phenomenon may be

intuitively confusing since a longer travel path for a ray inside of a layer is expected

for a larger incidence angle, it can be justified by considering the time delay in (4.16),

or by the rigorous geometrical ray optics research found in [25].
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CHAPTER 5

EXPERIMENTS

5. 1 Introduction

The derived formulas in the previous chapters have so far been verified only by numer-

ical computation. However, verification by actual experiments may provide additional

valuable knowledge such as practical limits in real world applications. In this chap-

ter, the description and results of the measurement processes which have been used

to verify previously derived expressions are provided. Also, various aspects of the

information obtained from the experiments are discussed. The descriptions of the

experimental set up and the equipment are given first, and the calibration procedure

which is needed to obtain ‘refined’ results from the raw measurement data in order

to compare with theory are described. Finally, the experiment results from acutal

measurements are provided and discussed.

5.2 Experimental Set Up

For experiments, the set up depicted in Figure 5.1 is used. The arch range at Michigan

State University consists of two 90° steel rail arcs on to which are attached movable

transmitting and receiving antenna mounts. The radius of the rail is 120” (3.05m),

and the height of the rail is 47” (1.19m), while the center axes of the antennas are

placed at 59” (1.50m) height. Note that although several EM wave absorbers are

used to reduce reflection from surrounding environments (e.g. wall, door, or metal

rails), this arch range is fundamentally NOT an ‘anechoic’ chamber like those used

in frequency domain radiation measurements. A target object (material plates fixed

on a metal mounter in this study) is placed at the center of the range. More detailed

descriptions on the arch range facility in Michigan State University can be found in
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[26].

For time domain measurements, Hewelett Packard’s digital sampling oscilloscope

HP54750A and its HP54753A time domain transmission/reflectometery (TDT/TDR)

plug-in module, providing 20GHz and 18GHz channels, are used. The TDR unit has

a built-in step waveform generator that creats pulse trains with 5msec pulse width,

20msec period, and 190mV amplitude. The rising edge of each pulse is used to trigger

a Picosecond Pulse Labs (PSPL) 4015B pulse generator. This instrument creates

another step using a remote pulse head, which is connected to the input of PSPL

5208 Impulse Forming Network (IFN). The secondary step waveform has a leading

edge fall time less than about 15psec, and an amplitude of -9V. An impulse forming

network generates the impulse shaped waveform shown in Figure 5.2, using the step

as an input. The impulse waveform is fed through connecting cables to a transmitting

horn antenna mounted on the arch rail through connecting cables. The plots for the

intermidiate waveforms can be found in [27]. The equipment is prone to time-axis

drifting, which causes degrading of the measurements. Therefore, pre—measurement

warm-up of equipment is required several hours prior to the meaurements.

Both the transmitting and receiving horn antennas used for these experiments have

a 2 - 18GHz bandwidth, and the polarization of transmitted wave may be changed

by rotating the antennas. Dielectric lenses are used to collimate the transmitted

spherical wavefront to create an incident plane wave, and also to ensure that a major

amount of the transmitted energy is projected on the target. There is a considerable

amount of coupling between the two antennas observed in the measured waveform,

but most of the coupling can be removed by the calibration process which will be

explained later.

Several different target objects have been used for the experiments. Polystyrene

(u = pg, 6, = 2.55, and a = 0 at 10GHz) and plexiglass (p = no, 6,. =2 2.59, and

0 2 0 at 10GHz) are used for 3 lossless layer (free space, the material and free space)
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Figure 5.1. Experimental set up.
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measurements, while a water container made of plexiglass plates is used for 5 lossless

or lossy (by filling it with distilled water) measurements. All the plates are 2 feet by

2 feet square in size, and have an approximate thickness of 4.7mm for polystyrene

and 5.3mm for plexiglass. Also, an aluminum plate is used as a perfect conductor

(PEC) for calibration measurements.

5.3 Calibration

Each intermediate component (e.g. cables, antennas) of the experimental set up

shown in Figure 5.1 has its own system function due to dispersion, propagation time

delay, amplitude attenuation, etc., and each of these changes the original shape of

transmitted waveform. Therefore, a calibration procedure is required to isolate and

eliminate the effects of the intermediate system functions from the measured wave-

form.

Let’s denote the original transmitted input waveform by r(t), the impulse response

of target object by r(t), the intermediate system impulse response including compo-

nent effects and time delays in both transmitting and receiving paths by hsys(t), and

the received waveform at the sc0pe by S(t), and denote their Fourier transforms as

X (en), R(w), Hsys(w), S(w) respectively. Then, in a measurement, it is expected that

and equivalently in the time domain

.(t) = 4(4) ... h,,,(t) ... r(t). (5.2)

To isolate the unwanted system response H8y3(w), a measurement is performed using

an object with a known response. One of the appropriate choices for the object would

be a PEC plate, for which the theoretical frequency domain reflection coefficient is
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-1. Let’s denote the scattering measurement from a PEC plate as C(an) Then

C(w) = —X(w)Hsys(w). (5.3)

Therefore the intermediate system function is simply given by Hsys(w) =

—C(w)/X(w) and the calibrated scattering from a target object is

Sea-1(9)) : S(w)/Hsy8(w)

= X(w)R(w) (5.4)

and scal(t) :2 F“1{Sm,(w)}.

There is another factor to be considered in actual calibration procedure. Because

of the bandwidth limit of the transmitting and receiving antennas, the measurement

data outside of the bandwidth range are unreliable and should be discarded by trun-

cating the frequency domain data in outside of the 2-18GHz band and restoring the

reduced data size by interpolation. All the data manipulation for the calibration

process is executed by using the software WAVECACULATOR, written by Dr. J. E.

Ross.

5.4 Measurements

5.4.1 Three lossless layer measurements

Using the previously described experimental set up and calibration procedure, actual

measurements for several different object layers are performed. For each measure-

ment, scattering from an object is measured first, and then the noise signal from the

background environment is measured and subtracted from the target signal. A test

measurement of the background noise is plotted in Figure 5.3. Due to absorbers used

at several critical spots in these experiments, there are no large undesired reflections
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and the remaining background noise level is usually much smaller than that of the

target signal. Also, appropriate time windowing helps remove unwanted strong re-

flections from in background objects or mutipath signals. Next, the reflection from

PEC plate is measured for calibration purposes and the background noise signal is

measured and subtracted again. Ideally, once the system reSponse has been obtained,

the calibration measurement does not have to be repeated. But, in practice, it is

necessary to repeat it for each measurement, so as to minimize the noise effect from

time drifting of the equipment. For the same reason, the time consumed by each

measurement must be minimized. Therefore, as a trade off between these considera-

tions, 1024 points of data are taken within 10 nano second time range with 256 time

averages for each data point.

A square polystyrene plate is selected as the first object layer to be measured,

because its permittivity (e = 2.5560) has been already verified by a frequency domain

measurement at Michigan State University. Figure 5.4 (a) and Figure 5.4 (b) show

the time domain object measurement data and its frequency spectrum obtained using

a 1024 point fast Fourier transform (FFT), while Figure 5.5 (a) and Figure 5.5 (b)

show those of PEC plate measurement data for calibration. These measurements

were performed at a 6° aspect angle, which is the closest to normal that is allowed

by the experiment system. Note that the amplitude of the reflected wave from the

object is quite a bit smaller than that of the transmitted impulse shown in Figure 5.2,

so it is plotted on a different scale. Also, it can be recognized that the reflection from

the conductor plate is changed significantly from its original transmitted impulse

waveform due to the effect of intermediate system function. The system function

H3y3(w) is obtained by the method described in previous section 5.2, and shown in

Figure 5.6 (a) and (b). The big peaks in the high frequency region ( > 20GHz) come

from division errors due to lack of signal content in this band. This fact shows the

necessity of truncation of the data spectrum. Finally, the calibrated target responses
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Figure 5.3. Test measurement of background noise level for the arch range.
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using the system fucntion are shown in Figure 5.7 (a) and (b) for the results without

and with the spectrum truncation, respectively. It is obvious that the out—band noise

enlarged by division errors produces significant ringing in the calibrated waveform.

The calibrated waveform after truncation processing matches well with that from

theoretical computation. The slight mismatchs occuring at the third and fourth peaks

are mainly due to tilt angle error of the mounted target. The electromagnetic wave

propagation velocity inside of polystyrene isW= 1.88 x 108 m/s. Thus, the

distance between the third peaks of the measured and theoretical results of about 10

pico seconds corresponds to a two way propagation distance of 1.88mm. Therefore, a

slight tilt error or warping of the surface of less than 1mm can make that difference.

Similar measurements are performed using a plexiglass (thickness=5.3mm, e =

2.5960) layer for both polarizations and three different incidence angles of 6°, 15° and

30°. The reults are compared with the corresponding theoretical computations and

shown in Figure 5.8, Figure 5.9, and Figure 5.10, respectively. Again, all the results

show good agreement with the theoretical curves.

5.4.2 Five lossless layer measurements

An empty plexiglass container was built to be used as a three lossless layered medium,

consisting of three even thickness (5.3mm) layers (plexiglass, free space and plex-

iglass). Then, scattering from the five layered object (free space, plexiglass, free

space, plexiglass and free space) can be measured. The calibrated results for both

polarizations and three different incidence angles are shown in Figure 5.11, Figure

5.12 and Figure 5.13 respectively. All the measurements are well matched with the

theoretical results, although they are slightly worse than those from the three layer

measurements. This is probably because of the crude construction of the container,

With layer thichknesses different from the designed values. But, still mutiple reflec-

tions at the layer interfaces can be clearly identified.
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Figure 5.4. (a) Time domain raw measurement data of a polystyrene plate with
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15° (TE polarization).
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Figure 5.9. (b) Transient scattered field from a plexiglass layer with incidence angle

15° (TM polarization).
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Figure 5.10. (a) Transient scattered field from a plexiglass layer with incidence

angle 30° (TE polarization).
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Figure 5.10. (b) Transient scattered field from a plexiglass layer with incidence

angle 30° (TM polarization).
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angle 6° (TE polarization).
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angle 15° (TE polarization).
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angle 15° (TM polarization).
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Another measurement that may have practical interest is performed. Two plates

of plexiglass are ‘mechanically’ adhered with some pressure, and the total thickness is

9.8mm. Then, the scattering from the object is measured and plotted in Figure 5.14

(a). What is expected is a reflection from a ‘single’ plate of thickness 9.8mm, and is

a waveform consisting of two isolated peaks. But the actual measurement is shows

quite a different waveform. Therefore, the theoretical reflection from a three layered

object (the five layered medium case) is computed under the assumption that there is

a small ‘invisible’ air gap of 0.05mm thickness between the two plexiglass plates, and

compared with the measured data. As shown in Figure 5.14, the modified model gives

a good match with the measuree data. This is a good example of ‘non destructive’

TDR inspection which is being widely used in industry, and suggests the possibility

that more accurate information (size and kind) of mechanical defects smaller than

the transmitted pulse width can be obtained, since the exact theoretical response can

be found for even lossy materials from the theory derived in this study.

5.4.3 Lossy layered medium measurements

The plexiglass container used in the previous measurement is filled with distilled

water for the measurement of scattering from a lossy five layered object. Note that

water is a strong polar material, and therefore has significant dielectric loss at high

frequency. The theoretical response is computed by converting this dielectric loss

to an equivalent conductivity aeq. Unfortunately, the dielectric loss is a function

of frequency, while frequency independent parameters are assumed in this study.

The frequency dependence of permittivity which is usually denoted using complex

permittivity c = 6’ — jc" where e" = 931, can be modelled by various functions,

including Debye equation [28] as shown in Figure 5.15 for distilled water at 20°C.

Considering the available distilled water parameters at several frequency points found

in [21], the bandwidth range of 2-18GHz, and the maximum dielectric loss frequency

in the Debye model, the equivalent constant conductivity is chosen to be 16.70/m, the
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Figure 5.13. (a) Transient scattered field from a plexiglass container with incidence

angle 30° (TE polarization).
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angle 30° (TM polarization).
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plexiglass plates with that for a single material (9,-1 2 6°, TE polarization).
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Figure 5.14. (b) Comparison of trasient reflection from a mechanically adhered

plexiglass plates with that for an air gap inserted model (61-1 : 6°, TE polarization).

152



M
a
g
n
i
t
u
d
e
o
f
R
e
l
a
t
l
v
e
P
e
r
m
i
t
t
i
v
i
t
y

 

80 I I I I I I

 

     

   

70 r

60” "' Real

- - Imaginary

50 '

40 r

30 *

l

20 I,

/

/

//

10 _ ’l

’/

I’’

0 __.=—-"T“ I 1 41 I

7.5 8 8.5 9 9.5 10 10.5

logiO( freq. )

Figure 5.15. —e” /60 curve for water at 20°C given by the Debye model.

153



value at 10GHz. Therefore the resulting material parameters for the layers are given

by [1.2 = no, (.2 = 2.5960, 02 = OU/m, [2 = 5.3mm, p3 = #0, 63 = 5560, 03 = 16.7U/m,

13 = 5.3mm, p4 = #10, 64 = 2.5960, 04 = OU/m, 14 = 5.3mm.

A measurement result for 6,1 2 6° incidence angle is shown in Figure 5.16. As seen

in the figure, there is considerable mismatch in the theoretical and measured data.

However, by careful observation, it can be realized that there is a constant scaling

relationship between the two curves. It turns out that the cause of this mismatch is

‘mechanical’ rather than ‘electrical’. That is, the shape of the water filled container

has been changed by water pressure and gravity, and it causes a tilt angle which result

in a reduction of the received wave amplitude. This explanation can be justified from

the observation that the first reflection peak from air and plexiglass interface, which

can not be eflected by the third layer material, has been reduced. By considering

this phenomenon, all the measurements for the distilled water container are scaled by

the ratio of the first peak amplitudes of the measured data to that of the theoretical

result. The scaled measurements are shown in Figure 5.17-Figure 5.19, and all of

them show a good match between measurements and theoretical expectations.
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Figure 5.17. (a) Transient scattered field from a 5 lossy layered medium with

incidence angle 6° (TE polarization).
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Figure 5.17. (b) Transient scattered field from a 5 lossy layered medium with

incidence angle 6° (TM polarization).
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Figure 5.18. (a) Transient scattered field from a 5 lossy layered medium with

incidence angle 15° (TE polarization).
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Figure 5.18. (b) Transient scattered field from a 5 lossy layered medium

incidence angle 15° (TM polarization).
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Figure 5.19. (a) Transient scattered field from a 5 lossy layered medium with

incidence angle 30° (TE polarization).
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Figure 5.19. (b) Transient scattered field from a 5 lossy layered medium with

incidence angle 30° (TM polarization).
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CHAPTER 6

CONCLUSIONS

Transient scattering from a Inulti-layered medium by an oblique uniform plane wave

has been studied in this thesis. The frequency domain reflection coefficients were

classified according to their different corresponding inverse Fourier transform pairs

through careful algebraic manipulation and by using appropriate branch cuts. The

exact analytical transient reflection coefficients of a single interface for TB and TM

polarizations have been developed from inverse Fourier transforms of the frequency

domain reflection coefficients. Also, approximate forms of the reflection coeflicients

were suggested for the TB polarization case as an example. It was found that all coef-

ficients are causal for certain case. A reasonable explanation for the non causality of

other cases could not be found. However, several reports about the occurrence of non

causality in theoretical or experimental developments observed by other researchers

were introduced. The expressions for the overall transient reflection coefficients were

derived using a series expansion and the convolution theorem. The derived interfacial

and overall reflection coefficients were verified by numerical computation using the

IFFT. Also, actual time domain reflection measurements were performed to compare

with the theoretically derived results, using lossless and lossy layers as the objects. All

the measured and calibrated results have matched well with computed results based

on the derived theory, and therefore verified the correctness of the derived transient

expressions.

As discussed in Chapter 1, the purpose of this study is to provide fundamental

background for parameter estimation of a multi-layered object using the transient

scattered field. Except for the unexplained non causal cases, which should be studied

separately in the future, the exact theoretical solutions for the transient scattered
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field have been made available by the results of this study. Because each reflection

from each layer has the information about the constitutive parameters, and because

their functional relationship with the input waveform has been determined by this

study, the next step is to find reliable methods to extract the information from the

measured transient waveform.
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APPENDIX A

OPERATIONS OF COMPLEX VALUED SQUARE ROOT

FUNCTIONS USING THE BRANCH CUTS

The derivation processes of frequency domain expressions explained in Chapter 2

and Chapter 3 require algebraic manipulations of square roots of which arguments

are complex numbers. Sometimes, the results of algebraic manipulations using con-

ventional negative real axis branch cut are different from those using the branch cuts

derived section 2.2.2 from radiation condition. Because the branch cuts from radiation

condition are consistantly used in this thesis, it is helpful to introduce selected alge-

braic manipulations for derivation of frequency domain expressions using the branch

cuts.

VVhenD>0andB>0

B

VD32+Bs=—\/D\/Ds+B=—\/D\/§1/s+5 (A.1)

while for D < 0 and B > 0

+j\/l—D_l\/§1/3 - 1%. : (w > 0)
VD32+Bs=\/§\/Ds+ = .

—j\/W\/E,/s—,—,%.— : (w<0)

(A2)

By denoting a square root from the conventional negative real axis branch cut as

\/'()a

\/3"l'Bn~l~1::t S+Bn+1: .8+Bn+1 (A3)

1/s+B,, 3+Bn s-l—Bn '

where the upper sign corresponds to Bn+1 > 8,, and lower sign does to Bn+1 < B".

The relationship between the two different branch cut square roots is needed because

its inverse Fourier transform pair in reference material is given by using the negative
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real axis branch cut. Similarly,

3_Bn+1_i 3_Bn+1_ . S—Bn+1
_ _ A.

s—Bn s-Bn S—Bn ( 4)

where the upper sign corresponds to Bn+1 < B” and lower sign does to Bn+1 > B".

On the other hand, to find its inverse Fourier transform more easily, each of the other

fraction of square root terms can be rewritten as

VS+Bn+l _ 3+—Bn+1

s—Bn V3

I3+Bn:l Is

5+Bn+1

= “/ A.5

s s—SBn ( )

 

 

and

3 "' Bn+1 3 — Bn+1

1/s+B,, S+Bn

__ _ 3_Bn+l 5

_— l’ 3 3+8”

./s—Bn+1 / s

= — —' . A6

5 8+8” ( )
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APPENDIX B

INVERSE FOURIER TRANSFORM PAIRS

In this appendix, the inverse Fourier transform pairs which are used to derive transient

expressions, are provided. Some of these can be directly found from [23], while the

others are derived from the given pairs.

Assume R(w) = G(w)U*(w) + G(—w)U(—w) where G*(w) is a complex conjugate

of C(12), and U(w) is a frequency domain unit step function. By letting g(t) =

F‘1{G(w)}, 9*(t) : F‘1{G*(w)} and using the duality theorem for Fourier transform

that says, F(t) : F‘1{27rf(—w)} when f(t) = F‘1{F(w)},

7r6(t) -I- j—t = 27rF—1{U(—w)}

5U) 1 _ _1
T — 55E — 27rF {U(w)} (13-1)

and

RU) = g(t) * {521) - —.1-}+g*(t)*{-6(2—t) + 5%}

 

Zyrrt J7T

= {g(t) + g*(t)} * ég—t) + {g(t) - 9’10} * 531?

= gem + gm} + 23,; * {g(t) — rm}. (B2)

From the inverse transform pair of

1 4:) e‘Ptu(t) (B 3)
3 + P

for P > 0, and —e‘P‘u(—t) for P < 0, its time derivative form is given by
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 ‘ <=> d_t {e’Ptu(t)}

 

s + P

: —-Pe_Ptu(l‘) + 8_Pt6(t)

: e—Pt {6(t) _ Pu(t)}
(BA)

for P > 0, and

d

s :13 ‘i’ a PERM—0}

: Pe-P‘u(—t) + e‘P‘rW)

= e-Pt {5(1) + Pu(t)}
(13-5)

for P < O.

From 561.0 of [23],

3 + Bn+1

1— {/—
s + B" Q

B". — Bn Bn — Bn

Lt) + 10 (——+1——-t) } U(t),
_Bn+1 — Bne___i-__(Bn12+Bn)t I

2 1 2 2

(B6)

and it can be derived that

1 __ . 3 _’ Bn+1

s — Bn

3,, — Bn (8.. 1+Bn> Bn —- 8,, BT, — Bn

-—+12—'—6 +2 t{11(—t—1-2——t) — IO (——+1—2———t) } U(—t).

(B7)
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Also, from (A5),

,_ .' B" B" _ n 1 B11 B111/E?iic>6(t)+—2+—le +{1( 2.1,)+,0( 2+1t)}u<t) (BS)

3 B B B B

' 6t——n_—2n‘1 —" I —3 .—t B.S_Bn¢><I 2e {1(2t)+0(2t)}u( I. <9)

. . S+Bn+1 . .

the 1nverse Fourier transform of 1 — l/—s——_B__ lS glven by

- '- Bn 71 B71
0(1) — 0(t)+ +1e B—‘zfl‘ll{ (32+1t) +Io( 2+1t)}u(t)]

: Bn But Bn Bn

* W76 { (2) 10(2)} HI
I(

+

13.. _n n B_nt- _ezqm- .1141}.

  

and

 

   

 

   

  

2 + 2

En
n B"_ 2+1e_i'~fflt {11(3 +lt)+10( +lt)}u(t)

871 Bit __IL 00 _ " 1 " n 811
+_+_1_682 t/ e Wit {[1 [B—(t—$)] +10 [—(t_$):|}

4 max(t,0) 2 2

8,, En
x {m 2+1x+x)+10( 2+1xx)} dz. (3.10)

By similar approach, the inverse Fourier transform of 1 + §3_—+§Bfl can be found

71

as

  
Bn+1 ”—73:11 Bn+l

Te ’ 11‘
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APPENDIX C

PROGRAM SOURCE CODES IN FORTRAN 77

A computer program to compute theoretical TE polarization overall reflection from

a multi-layered medium is provided. This program is written in standard Fortran

77 programming language, except a subroutine called Q2AGI from MICROSOFT

IMSL package, which is used to compute infinite integral term in interfacial reflection

coefficient when P2 < 0 (see 2.83).

This program reads an input waveform data from a text file ‘inwave.dat’, the

material parameters of each layer (thickness, permeability, permittivity, conductiv-

ity) and initial incident angle from a text file ‘layers.dat’, and computes the layer

parameter sets defined in this thesis, and writes them in a text file ‘param.buf’ for

verification purpose. Also, the information about time range, number of data points

and number of convolution terms are read from command line inputs. After the

input stage, program computes the interfacial reflection coefficients for each interface,

overall reflection and finally writes the outputs in a text output file ‘gammaxout’.

The structure of the programe to compute TM polarization is basically same. The

differences are subroutines to compute interfactial reflection coefficients, and layer

parameter definitions.

(1) An example of input data file ‘layers.dat’

The value of incident angle is computed using the value in the data file as a

denominator of a fraction, of which numerator is fixed by 7r radian. That is, for

an example, when given “thetai 30.0” in the data file, the incident angle will be

310radian 2 6°. Metric unit is used for thickness input. The first and the last layer

have infinite thichnesses, therefore their values are meaningless.
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thetai 30.0

murl 1.0

erl 1.0

sigmal 0.0

thickl 0.0

mur2 1.0

er2 2.59

sigma2 0.0

thick2 0.0053

mur3 1.0

er3 55.0

sigma3 16.7

thick3 0.0053

mur4 1.0

er4 2.59

sigma4 0.0

thick4 0.0053

mur5 1.0

er5 1.0

sigma5 0.0

thick5 0.0

(2) Main program

Because the products of a exponential function and a modified Bessel function appear

frequently, the product is computed altogether using a subroutine. The expressions

for numerical computation of the modified Bessel functions can be found in [29].
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PROGRAM GAMXTE

USE MSIMSL

****************‘k'k******~k************************************

This program computes transient overall reflection

using iterative convolutions, about the case for

DN1>O .AND. DN >0.

An input waveform is obtained from a text data file which

contains actual measurement data of transmitting impulse,

called "inwave.dat"

Text data file "1ayers.dat" is required as an input

parameter description for each layer.

Text data file "gammax.out" will be output.

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

**************************‘k**********************************

CHARACTER*8 TMPS

INTEGER ITCONV

INTEGER NT,SMAX,LMAX,I,K,NL

PARAMETER (SMAx=10250)

PARAMETER (LMAleO)

REAL MU(LMAX),EN(LMAX),SIG(LMAX),THCK(LMAX),B(LMAX),DN(LMAX)

REAL C1(LMAX-l),C2(LMAX-l),C3(LMAX-l),Pl(LMAX-l),P2(LMAX—1)

REAL BTA(LMAX-1),D(LMAX—l),CD(LMAX-l)

REAL TISMAX),X(SMAX)

REAL R(LMAX—l,SMAX),P(LMAX-l,SMAX),GAM(LMAX-l,SMAX)

REAL THETAI,G,H,TMAX,DT

REAL TMP,PSZERO

REAL PI,E0,MUO

COMMON /PWRS/C1,C2,C3,P1,P2,BTA,CD

COMMON /ARRS/R,P,GAM

COMMON /TARRS/T

COMMON /INDX/I

COMMON /TINDX/K,NT

COMMON /LINDX/ITCONV,NL

PI=4.*ATAN(1.)

E0=l.0E-9/(36.0*PI)

MUO=4.0*PI*1.0E-7

PSZERO=1.0E-25

OPEN(5,FILE='layers.dat',STATUS='unknown')

OPEN(6,FILE='gammax.0ut',STATUSz'unknown')

OPEN(7,FILE='param.buf',STATUSz'unknown')

OPEN(8,FILE='inwave.dat',STATUS='unknown')

172



C ****************************************

C READ AND COMPUTE CONSTANTS OF EACH LAYER

C ****************************************

WRITE(*,*) 'Enter the number of layers in <<layers.dat>> :'

READ(*,*) NL

C *******************

C READ INCIDNET ANGLE

C *******************

ll FORMAT(A8,F12.4)

12 FORMAT(3X, F12.4,2X, A8,'= ',E12.4)

20 FORMATI/l

READ(5,ll) TMPS,TMP

THETAI = PI/TMP

WRITE(*,12) TMP,TMPS,THETAI

WRITE(7,12) TMP,TMPS,THETAI

C ************************

C READ MATERIAL PARAMETERS

C ************************

DO 21 I=1,NL

READ(5,11) TMPS,TMP

MU(I)=TMP*MUO

WRITE(*,12)TMP,TMPS,MU(I)

WRITE(7,12)TMP,TMPS,MU(I)

READ(5,11) TMPS,TMP

EN(I)=TMP*E0

WRITE(*,12)TMP,TMPS,EN(I)

WRITE(7,12)TMP,TMPS,EN(I)

READ(5,ll) TMPS,SIG(I)

WRITE(*,12)SIG(I),TMPS,SIG(I)

WRITE(7,12)SIG(I),TMPS,SIG(I)

READ(5,ll) TMPS,THCK(I)

WRITE(*,12) THCK(I),TMPS,THCK(I)

WRITE(7,12) THCK(I),TMPS,THCK(I)

TMP=MU(1)*EN(1)*((SIN(THETAI))**2)

DN(I)=MU(I)*EN(I)-TMP

BII)=MU(I)*SIG(I)/ABS(DN(I))

WRITE(*,13) DN(I),B(I)

WRITE(7,13) DN(I),B(I)

l3 FORMAT(5X,'Dnz',ElO.3,2X,'an',E10.3,/)

21 CONTINUE
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C at******************************************

C COMPUTE LAYER PARAMETERS FOR EACH INTERFACE

C *‘k‘k‘k‘k'k'k‘k'k'k'k'k‘k'k'k****************************

DO 22 I=l,NL-1

WRITE(*,l4) I

WRITE(7,14) I

14 FORMAT(/,3X,'Interface Index =',I3)

DII)=((MU(I)**2)*DN<I+1))/((MU(I+l)**2)*DN(I))

CDII)=(1.0-SQRT(D(I))I/(1.0+SQRT(D(I)))

WRITE(*,15) D(I),CD(I)

WRITE(7,15) D(I),CD(I)

15 FORMAT(3X,'D=',E10.3,3X, 'CDz',ElO.3)

BTA(I)=(B(I+l)-B(I))/2.0

Pl(I)=(B(I+l)+B(I))/2.0

P2(I)=(B(I)—D(I)*B(I+l))/(l.0—D(I))

WRITE(*,16) Pl(I),P2(I),BTA(I)

WRITE(7,16) P1(I),P2(I),BTA(I)

l6 FORMAT(3X,'Pl=',ElO.3,2X,'P2=',E10.3,2X,'BETA=',E10.3)

Cl(I)=(B(I)-B(I+1))*SQRT(D(I))/(1.0-D(I))

C2(I)=((B(I)-B(I+l))**2)*D(I)*SQRT(D(I))/( (1.0—DII))**2 )

C3(I)=2.0*D(I)*(B(I+1)-B(I))/( (1.0-D(I))*(l.O+SQRT(D(I))) )

WRITE(*,17) Cl(I),C2(I),C3(I)

WRITE(7,17) Cl(I),C2(I),C3(I)

17 FORMAT(3X,'Cl=',ElO.3,2X,'C2=',ElO.3,2X,'C3=',ElO.3)

22 CONTINUE

C ******************************************************

C READ TIME RANGE, NUMBER OF PARAMETERS AND CONVOLUTIONS

C ******************************************************

WRITE(*,*) 'Enter the Time range in seconds :'

READ(*,*) TMAX

WRITE(*,*) 'Enter the Number of Points ( SMAX<=10250)'

WRITE(*,*) 'EVEN number recommended to avoid zero freq. :'

READ(*,*) NT

WRITE(*,*) 'Enter the Number of Convolution Sum : '

READ(*,*) ITCONV

C **********************************

C DEFINE TIME INTERVAL OF EVALUATION

C **********************************

NT=NT-1

DT=TMAX/REAL(NT)

DO 31 K=1,NT+1

TlK)=DT*(K—l)

31 CONTINUE
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DO 32 I=l,NL—l

DO 33 K=l,NT+3

R(I,K)=0.0

P(I,K)=0.0

GAM(I,K)=0.0

X(K)=0.0

33 CONTINUE

32 CONTINUE

WRITE(7,18) TMAX,(NT+1),DT,(1.0/DT)

l8 FORMAT(/,3X,'TMAX=',E10.3,' [sec]',2X, I7,‘ Pts.',2X,/,

+ 3X 'DT=',E10.3,' [sec]',2x, 'l/DT=',E10.3)

C **********************************

C READ INPUT WAVEFORM FROM DATA FILE

C **********************************

DO 61 K=l,NT+l

READ(8,*) X(K)

61 CONTINUE

C ********************************************************

C COMPUTE INTERFACIAL REEL. COEFF.'S AND PROPAGATION TERMS

C ********************************************************

DO 89 I=l,NL-l

CALL REFLCOEFFIRII,:),DT)

G=DN(I)

H=MU(I)*SIG(I)

CALL PROPA(P(I,:),THCK(I),G,H,2,DT)

89 CONTINUE

C *****************‘k**************************

C COMPUTE THE FINAL IMPULSE RESPONSE OF LAYERS

C ********************************************

DO 87 K=l,NT+3

GAM(NL-l,K)=R(NL—1,K)

87 CONTINUE

CALL GAMXI1,X,DT)

C ******************************************

C WRITE TIME, INPUT AND OUTPUT WAVEFORM DATA

C ******************************************

DO 50 K=l,NT+3

IF (ABS(GAM(1,K)l.LT.PSZERO) GAM(1,K)=0.0

WRITE(6,99) T(K),X(K),GAM(1,K)

99 FORMAT(1X, ElO.3,lX, El3.5,lX, El3.5)

50 CONTINUE

ENDFILE 5

ENDFILE 6

ENDFILE 7

ENDFILE 8
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END

C ******************************************************

C SUBROUTINE TO COMPUTE OVERALL REFLECTION OF EACH LAYER

C *‘k****************************************************

41

42

61

44

43

19

RECURSIVE SUBROUTINE GAMX(I,XIN,DT)

INTEGER NT,I,SMAX,LMAX,NL,ITCONV,K,N

REAL DT

PARAMETER (SMAX=10250)

PARAMETER (LMAX=10)

REAL XIN(SMAX),BUF(LMAX-2,SMAX),GBUF(SMAX)

REAL R(LMAX-l,SMAX),P(LMAX-l,SMAX),GAM(LMAX—l,SMAX)

COMMON /ARRS/R,P,GAM

COMMON /TINDX/K,NT

COMMON /LINDX/ITCONV,NL

IF (I.EQ.(NL-2)) THEN

CALL CONVOL(R(I,:),XIN,GAM(I,:),DT)

CALL CONVOLIRII,:),R(I,:);GBUF,DT)

GBUF(NT+2)=1.0/DT-GBUF(NT+2)

DO 41 K=l,NT+1

GBUFlKl=-GBUF(KI

CONTINUE

CALL CONVOL(GBUF,P(I+1,:),GBUF,DT)

CALL CONVOLlGBUF,GAM(I+1,:),GBUF,DT)

CALL CONVOL(GBUF,XIN,GBUF,DT)

DO 42 K=l,NT+l

GAM(I,K)=GAM(I,K)+GBUF(K)

CONTINUE

DO 43 N=1,ITCONV

CALL CONVOL(GBUF,R(I,:),GBUF,DT)

CALL CONVOL(GBUF,GAM(I+1,z),GBUF,DT)

CALL CONVOLIGBUF,P(I+1,:),GBUF,DT)

DO 61 K=l,NT+2

GBUF(K)=—GBUF(K)

CONTINUE

DO 44 K=l,NT+l

GAM(I,K)=GAM(I,K)+GBUF(K)

CONTINUE

CONTINUE

WRITE(*,19) I

FORMAT(3X,'IN=',I3)

ELSE

CALL CONVOL(R(I,:),XIN,GAM(I,:),DT)

CALL GAMXII+1,XIN,DT)

CALL CONVOL(R(I,:),R(I,:),BUF(I,:),DT)

BUF(I,NT+2)=1.0/DT—BUF(I,NT+2)

DO 55 K=l,NT+l

BUFII,K)=-BUF(I,K)
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55

65

56

62

58

63

57

59

CONTINUE

DO 65 K=l,NT+3

GBUF(K)=BUF(I,K)

CONTINUE

CALL CONVOL(GBUF,GAM(I+1,:),GBUF,DT)

CALL CONVOL(GBUF,P(I+1,:),GBUF,DT)

DO 56 K=l,NT+l

GAM(I,K)=GAM(I,K)+GBUF(K)

CONTINUE

DO 57 N=1,ITCONV

CALL CONVOLIGBUF,R(I,:).GBUF,DT)

CALL CONVOL(GBUF,P(I+1,:),GBUF,DT)

DO 62 K=l,NT+2

BUFII,K)=—GBUF(K)

CONTINUE

BUF(I,NT+3)=-GBUF(NT+3)

CALL GAMX(I+1,BUF(I,:),DT)

DO 58 K=l,NT+1

GAM(I,K)=GAM(I,K)+GAM(I+1,K)

CONTINUE

DO 63 K=l,NT+3

GBUF(K)=GAM(I+1,K)

CONTINUE

CONTINUE

WRITE(*,59) I

FORMAT(3X,'IN=',I3)

ENDIF

RETURN

END

C *******************************************************

C SUBROUTINE TO COMPUTE INDIVIDUAL TIME DOMAIN REFLECTION

C ************************************‘k******************

SUBROUTINE REFLCOEFF(R,DT)

EXTERNAL FUNCP,FUNCN

REAL SIO,SI1

INTEGER K,NT,I,L,SMAX,LMAX

PARAMETER (SMAX=10250)

PARAMETER (LMAX=10)

REAL C1(LMAX-l),C2(LMAX—1),C3(LMAX-l),Pl(LMAX-1),P2(LMAX-l)

REAL BTA(LMAX-l),CD(LMAX—l)

REAL TMP,S,Q1,Q2,Q3,DT

REAL T(SMAX),R(SMAXl

COMMON /PWRS/C1,C2,C3,Pl,P2,BTA,CD

COMMON /TARRS/T

COMMON /INDX/I

COMMON /TINDX/K,NT
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32

34

31

S4

51

REAL ERRREL,RESULT,ERREST

INTEGER MAXSUB,NEVAL,NSUBIN

PARAMETER (MAXSUB=2000)

REAL ALIST(MAXSUB),BLIST(MAXSUB),RLIST(MAXSUB),ELIST(MAXSUB)

INTEGER IORD(MAXSUB)

ERRREL=1.0E-O3

IF (P2(I).GE.O.) THEN

DO 31 K=l,NT+l

TMP=-P1(I)*T(K)

Ql=C1(I)*(SIl(BTA(I)*T(K),TMP)+SIO(BTA(I)*T(K),TMP))

3:0.0

IF (K.GT.1) THEN

Q2=0.0

DO 32 L=2,K

CALL QTRAP<FUNCP,T(L-1).T(L),S)

Q2=QZ+S

CONTINUE

QZ=C2(I)*Q2

ELSE

Q2=0.0

ENDIF

Q3=C3(I)*EXP(-P2(I)*T(K))

R(K)=Ql-QZ+Q3

WRITE(*,34) I,K

FORMAT(3X,'I=',I3,2X,'K=',IS)

CONTINUE

ELSE

DO 51 K=l,NT+l

TMP=-P1(I)*T(K)

Ql=SIO(BTA(I)*T(K),TMP)

Q1=Ql+SIl(BTA(I)*T(K),TMP)

Q1=C1(I)*Ql

CALL QZAGI(FUNCN,O.,l,O.,ERRREL,RESULT,ERREST,MAXSUB,

NEVAL,NSUBIN,ALIST,BLIST,RLIST,ELIST,IORD )

Q2=C2(I)*RESULT/P2(I)

R(K)=Q1-QZ

WRITE(*,54) I,K

FORMAT(3X,'I=',I3,2X,'K=',IS)

CONTINUE

ENDIF

*********************‘k‘k‘k‘k‘k‘k'k'k‘k**************

ADD AMPLITUDE AND POSITION OF DELTA FUNCTION

********************************************

R(NT+2)=CD(I)/DT

R(NT+3)=1.0

RETURN

END
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C ****‘k‘k********************************************

C SUBROUTINE TO COMPUTE TIME DOMAIN PROPAGATION TERM

C **************‘k***********************************

0
0
0
\
]

72

73

SUBROUTINE PROPA(P,THCK,G,H,N,DT)

REAL SIl

INTEGER K,NT,SMAX,N,M

PARAMETER (SMAX=10250)

REAL Z,W1,W2,TRIG,THCK,G,H,DT

REAL T(SMAX),P(SMAX)

COMMON /TARRS/T

COMMON /TINDX/K,NT

THCK=N*THCK

TRIG=THCK*SQRT(G)

Wl=0.5*H/SQRT(G)

W2=O.5*H/G

DO 71 M=1,NT+1

IF (T(M).GT.TRIG) THEN

Z=SQRT(T(M)**2-G*(THCK**2))

P(M)=Wl*THCK*SIl(W2*Z,-W2*T(M))/Z

ENDIF

CONTINUE

********************************************

ADD AMPLITUDE AND POSITION OF DELTA FUNCTION

********************************************

DO 72 M=1,NT+1

IF (T(M).GT.TRIG) THEN

P(NT+2)=EXP(—Wl*THCK)/DT

P(NT+3)=REAL(M)

GO TO 73

ENDIF

CONTINUE

RETURN

END

C at********************************************

C SUBROUTINE TO COMPUTE TIME DOMAIN CONVOLUTION

C *********************************************

SUBROUTINE CONVOL(IN1,IN2,0UT,DT)

REAL DT,S,A,B,PSZERO

INTEGER K,NT,SMAX,N,M,L

PARAMETER (SMAX=10250)

REAL IN1(SMAX),IN2(SMAX),OUT(SMAX),LOBUF(SMAX)

COMMON /TINDX/K,NT

PSZERO=1.0E—25

DO 80 M=1,NT+3

LOBUF(M)=0.0
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80 CONTINUE

LOBUF(NT+2)=IN1(NT+2)*IN2(NT+2)*DT

LOBUF(NT+3)=(IN1(NT+3)—l.0)+(IN2(NT+3)-l.0)+l.0

L=INT(IN1(NT+3))

IF (L.LE.(NT+1)) THEN

DO 81 M=l,(NT+2-L)

LOBUF(M+L-l)=LOBUF(M+L-l)+INl(NT+2)*IN2(M)*DT

81 CONTINUE

ENDIF

L=INT(IN2(NT+3))

IF (L.LE.(NT+1)) THEN

DO 82 M=1,(NT+2-L)

LOBUF(M+L—1)=LOBUF(M+L-l)+IN2(NT+2)*INl(M)*DT

82 CONTINUE

ENDIF

DO 83 M=2,NT+1

S=0.0

DO 84 N=2,M

A=INl(M-N+l)*IN2(N)

B=IN1(M-N+2)*IN2(N-l)

IF (ABS(A*B).GT.PSZERO) S=S+O.5*DT*(A+B)

84 CONTINUE

LOBUF(M)=LOBUF(M)+S

83 CONTINUE

DO 85 M=1,NT+3

OUT(M)=LOBUF(M)

85 CONTINUE

RETURN

END

C ***********************************~k**********

C INNER INTEGRATION ROUTINE USING SIMPSON'S RULE

C *****************************************at****

SUBROUTINE qtrap(FUNC,a,b,s)

EXTERNAL FUNC

INTEGER JMAX

REAL a,b,EPS

REAL olds,s,FUNC

PARAMETER (EPS=l.e-3, JMAX=20)

C USES trapzd

INTEGER j

olds=0.0

do 41 j=1,JMAX

call trapzd(FUNC,a,b,s,j)

if (abs(s-olds).lt.EPS*abs(olds)) return

if (s.eq.0..and.olds.eq.0..and.j.gt.6) return

oldszs

41 continue

WRITE(*,43)
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43 FORMAT('Too many steps in qtrap. Press any number to

continue...')

READ(*,*) TI

END

C ************************************************

C TRAPEZOIDAL RULE AS A SUBROUTINE FOR INTEGRATION

C ************************************************

SUBROUTINE trapzd(FUNC,a,b,s,n)

EXTERNAL FUNC

INTEGER n

REAL a,b,x

REAL del,sum,tnm,s

REAL FUNC

INTEGER it,j

if (n.eq.l) then

s=0.5*(b-a)*(FUNC(a)+FUNC(b))

else

it=2**(n-2)

tnm=it

del=(b-a)/tnm

x=a+0.5*del

sum=0.

do 41 j=1,it

sum=sum+FUNC(x)

x=x+del

41 continue

s=0.5*(s+(b-a)*sum/tnm)

endif

return

END

C *****************************************

C INTEGRAND FUNCTION DEFINITION FOR P2 >= 0

C *****************************************

REAL FUNCTION FUNCP(U)

INTEGER NT,I,K,SMAX,LMAX

PARAMETER (SMAX=10250)

PARAMETER (LMAX=10)

REAL U,DTMP

REAL SIO,SI1

REAL T(SMAX)

REAL Cl(LMAX-l),C2(LMAX-l),C3(LMAX-I),Pl(LMAX-I),P2(LMAX-l)

REAL BTA(LMAX-l),CD(LMAX-l)

COMMON /PWRS/C1,C2,C3,PI,P2,BTA,CD

COMMON /TARRS/T

COMMON /INDX/I

COMMON /TINDX/K,NT

DTMP=—(P2(I)*T(K)+(P1(I)—P2(I))*U)
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C

C

C

0
0
0
0

FUNCP=SI1(BTA(I)*U,DTMP)+SIO(BTA(I)*U,DTMP)

RETURN

END

‘k***************************************

INTEGRAND FUNCTION DEFINITION FOR P2 < O

*9:**************************************

REAL FUNCTION FUNCN(U)

INTEGER NT,I,K,SMAX,LMAX

PARAMETER (SMAX210250)

PARAMETER (LMAX=10)

REAL U,DTMP

REAL SIO,SIl

REAL T(SMAX)

REAL Cl(LMAX-l),C2(LMAX-l),C3(LMAX—l),Pl(LMAX—l),P2(LMAX—l)

REAL BTA(LMAX-l),CD(LMAX-l)

COMMON /PWRS/C1,C2,C3,Pl,P2,BTA,CD

COMMON /TARRS/T

COMMON /INDX/I

COMMON /TINDX/K,NT

DTMP=-PI(I)*T(K)+(P1(I)/P2(I)-l.0)*U

FUNCN=SIO(BTA(I)*(T(K)-U/P2(I)),DTMP)+

+ SII(BTA(I)*(T(K)-U/P2(I)),DTMP)

RETURN

END

****************************************

PRODUCT OF EXPONENTIAL AND MODIFIED BESSEL

FUNCTION OF ZEROTH ORDER

****************************************

REAL FUNCTION SIO(X,OFST)

REAL X,T,Y,OFST

T=ABS(X)/3.75

IF (ABS(X).LT.3.75) THEN

Y=EXP(OFST)

SIO=1.0*Y

Y=Y*(T**2)

SIO=SIO+3.5156229*Y

Y=Y*(T**2)

SIO=SIO+3.0899424*Y

Y=Y*(T**2)

SIO=SIO+1.2067492*Y

Y=Y*(T**2)

SIO=SIO+O.2659732*Y

Y=Y*(T**2)

SIO=SIO+0.0360768*Y

Y=Y*(T**2)
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0
0
0
0

SIO=SIO+0.0045813*Y

ELSE

Y=EXP(ABS(X)+OFST)/SQRT(ABS(X))

SIO=0.39894228*Y

Y=Y/T

SIO=SIO+0.0I328592*Y

Y=Y/T

SIO=SIO+0.002253I9*Y

Y=Y/T

SIO=SIO-0.00I57565*Y

Y=Y/T

SIO=SIO+0.00916281*Y

Y=Y/T

SIO=SIO-0.02057706*Y

Y=Y/T

SIO=SIO+0.02635537*Y

Y=Y/T

SIO=SIO-0.01647633*Y

Y=Y/T

SIO=SIO+0.00392377*Y

ENDIF

RETURN

END

****************************************

PRODUCT OF EXPONENTIAL AND MODIFIED BESSEL

FUNCTION OF FIRST ORDER

****************************************

REAL FUNCTION SII(X,OFST)

REAL X,T,Y,OFST

T=ABS(X)/3.75

IF (ABS(X).LT.3.75) THEN

Y=X*EXP(OFST)

SIl=O.5*Y

Y=Y*(T**2)

SIl=SIl+O.87890594*Y

Y=Y*(T**2)

SI1=SI1+O.51498869*Y

Y=Y*(T**2)

SIl=SI1+O.15084934*Y

Y=Y*(T**2)

SIl=SIl+0.02658733*Y

Y=Y*(T**2)

SIl=SI1+0.0030lS32*Y

Y=Y*(T**2)

SI1=SIl+0.000324ll*Y

ELSE
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Y=EXP(ABS(X)+OFST)/SQRT(ABS(X))

SIl=0.39894228*Y

Y=Y/T

SIl=SIl-0.03988024*Y

Y=Y/T

SIl=SIl—0.00362018*Y

Y=Y/T

SIl=SIl+0.00l63801*Y

Y=Y/T

SIl=SIl-0.0lO31555*Y

Y=Y/T

SIl=SI1+0.02282967*Y

Y=Y/T

SIl=SIl-0.02895312*Y

Y=Y/T

SIl=SIl+0.0l787654*Y

Y=Y/T

SIl=SIl-0.00420059*Y

IF (X.LT.0.0) SI1=-SIl

ENDIF

RETURN

END
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