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ABSTRACT

TRANSIENT ANALYSIS OF PLANE WAVE SCATTERING IN A
LAYERED MEDIUM
By

J

Jungwook Suk

The transient scattering of plane electromagnetic waves from a dispersive layered
medium has been a difficult problem to solve, even though its frequency domain
behavior is well known. In this study, analytical transient solutions for the electro-
magnetic waves scattered from a multi-layered medium excited at oblique incidence
by a uniform plane wave are derived for both TE and TM polarizations. It is as-
sumed that each layer has infinite width in space but finite thickness, and isotropic,
homogeneous and frequency independent electrical parameters.

First, the time-domain reflection coefficient for a single interface in the medium
is derived using the inverse Fourier transform of the frequency domain formulation.
Then, the overall transient scattered field is found for a layered medium by combining
the individual transient reflection coefficients using a series expansion and convolution
integrals. The derived expressions are verified by comparison with data measured
from laboratory experiments.

The results obtained in this study may be used as a basis for material parameter

estimation by transient probing.
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CHAPTER 1

INTRODUCTION

The topic of this study is to find an analytical solution for the transient scattering of
electromagnetic waves from a multi-layered medium, excited at oblique incidence by a
uniform plane wave. The geometry for the structure of concern is shown in Figure 1.1.
It is assumed that each layer of the multi-layered medium consists of a homogeneous,
isotropical material, and has frequency independent permeability, permittivity and
conductivity. Also, each layer is assumed to have infinite width, but finite thickness.
The first layer is assumed to be lossless. Transient solutions are obtained for both
polarizations of the incident plane wave, i.e. transverse electic (TE) and transverse
magnetic (TM) polarization.

Although this research is motivated by a desire to estimate the parameters of
each layer in the medium by using its time domain scattered field, the solution to this
problem has a wide area of practical applications, such as industrial non-destructive
inspection, geophysical probing and subsurface communication. Therefore, it is not
surprising that there have been many studies on transient scattering from a lossy
medium, or on related topics in the field of electromagnetics. While the frequency
domain solution to this problem in terms of Fresnel’s reflection coefficient is already
well known, and can be found in many text books and papers, to the best of our
knowledge the exact analytical transient solution for an arbitrary input waveform is
not available. This is partly because of the difficulty in solving the time domain wave
equation directly.

Stratton formulated the inverse Laplace transform pair for propagation of elec-
tromagnetic wave in a dispersive medium [1], and since then many researchers have

tried to solve the scattering problem by formulating the solution in the frequency do-
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main and then finding the exact analytical inverse transform. Many of these studies
use certain types of approximations; e.g., the diffusion approximation obtained by
neglecting the displacement current term in Maxwell’s equations [2], or restrictions
on the incident angle and material parameters [3]. Other researchers have formulated
the problem directly in the time domain, and have employed numerical techniques
to solve it [4], [5]. Various contour integral techniques in the Laplace domain had
been developed and closed form transient solutions for both polarizations had been
obtained for a double exponential and unit step input waveform excitation using in-
complete Lipschitz-Hankel integrals (ILHI’s) in [6], [7]. Though these solutions are
restricted to specific input waveforms and are valid for a single interface, they may
have been the first closed form transient solutions to the problem. Therefore, the
results derived in this study are verified by those previous works.

In this thesis, the problem is formulated in the frequency domain first, in the same
manner as the previous studies. The constant offset value in the derived frequency
domain reflection coefficient is then identified and subtracted from the original ex-
pression and its inverse Fourier transform is determined. Next, the reduced form of
the original reflection coefficient is manipulated so as to use known inverse Fourier
transform pairs. This method was developed for a single interface in [8]. This same
approach is taken, but extended to treat the more general case of a single interface
in a multi-layered medium. Proper branch cuts are derived and applied for this more
rigorous solution. The results for a single interface reflection are used to derive the
overall transient reflection from a multi-layered medium. Finally, the derived solu-
tions are verified by laboratory experiments.

In the following chapter, the frequency domain reflection coefficients for a single
interface in a multi-layered medium are formulated and classified for TE polarization.
The inverse Fourier transform of each classified reflection coefficient is performed to

obtain the transient reflection coefficient. The various aspects of the transient forms,
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including causality problems, are discussed, and approximate forms, which might
be useful in practical applications, are derived. The same procedures are taken to
obtain the transient reflection coefficients for TM polarization in Chapter 3. The
transient reflection coeflicients for multi-layered medium are derived in Chapter 4
using series expansion in the frequency domain and applying the convolution theorem.

The descriptions for procedures and results of experiments performed to verify the

derived formulas are provided in Chapter 5.



IL.E,

Li}fr Indey

Fig

e

e 11



N

- X

!‘1‘] ’ 81 :Ll2 ’ 82 ’ 0-2 .Ltn ’ £n ’ O-n ,’ln+1 ’ 8n+l ’ o-n+l :LLN ’ EN ’ O-N

erl

1 1eoeoe oo 0

6,

Layer index

1 st 2nd nlh n+1 th N[h

Figure 1.1. The geometry for analysis of transient plane wave scattering from a
multi-layered medium.



INTE

11 Introduct:

¢ o
ORI
rlabid gt

o
Lol wa

\
S ey

BEVS AP IR S
1 i}

LV e

% ¢
Bt BN ‘
Shaul anae

1
)




CHAPTER 2

INTERFACIAL REFLECTION COEFFICIENTS FOR
TE-POLARIZATION

2.1 Introduction

The interfacial reflection coefficient is defined as the ratio of reflected wave amplitude
to incident wave amplitude at an interface between two layers, each of which has
infinitely extended depth as shown in Figure 2.1. Because, in this study, the overall
transient scattering from a multi-layered medium is derived from a combination of the
individual interfacial coeflicients for the layers (as discussed in chapter 4), the closed
forms of transient interfacial reflection coefficients for TE-polarized plane waves are
found before obtaining the total transient scattered field from the medium. To find the
transient interfacial reflection coefficient, the frequency domain interfacial reflection
coeflicient, which is known as Fresnel’s coefficient, is found first. Then the transient
form is obtained using the inverse Fourier transform from a transform table after
some algebraic manipulation. Finally, approximate forms of the transient interfacial

reflection coefficients are derived.

2.2 Frequency Domain Formulation of Interfacial Reflection Coefficient
2.2.1 Derivation

Consider an interface between two homogeneous, isotropic materials as shown in
Figure 2.1, where region n has time-independent constutive parameters (Kn, €ny0n)

while region (n+1) has (int1,€n+1,0ns1). A plane wave is assumed to be incident

from region 1 onto interface N between the two regions. From Maxwell’s equations,

Vx E(z,2,w) = —jwu,H(z, 2 w) (2.1)



Region n

Reflected W
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Regionn : (4, , €y, Cy,) A Z Region n+1 : (K41 5 €415 Ons1)

Reflected Wave

Interface n

_Figllre 2.1. The incident, reflected and transmitted TE-polarized plane wave at an
Interface.
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VxHz z,w) = (0,+jwe)E(z,2,w) (2.2)
and the vetor Helmholtz equation for the electric field of region n is
V2E(r,z,w) — 22E(z,z.w)=0 (2.3)
where the propagation constant for the n-th laver is given by
12 = jupa(o, + jwen) = —wnen + jwp,on. (2.4)
For TE polarization E = jE, and (2.3) can be rewritten as

02 02
(5;—2 + W) E,(z,z,w) —v:E,(z,2z,w) = 0. (2.5)
The solution for the electric field is

E(z,2,w) = §E,(w)e=*tm:= (2.6)
where the components of the propagation constants are defined by

T = Tnz + Yoz (2.7)

Only if region n is the first region of a multi-layered material and this region is lossless
will we speak of an angle of incidence and an angle of reflection. Otherwise, we will

only use 4¢_,~i_ 47 and 47,. For the incident wave,

Yoz = Yoz = Yn €08 b;y (2.8)

Ynz = Allrilz = Tn sin ginv (29)
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and, while for the reflected wave

T ~
Ynz = Ynr = —n COS 9,-,1 (2'10)

Ynz = A/;: =" sin grn- (211)

Here 6, ,, is the angle of incidence and 8, ,, is the angle of reflection, as shown in Figure

2.1. The magnetic field in region n is obtained by

_ 1 _
H(r,z,w) = ———V x E(z,2,w)
JWHn
1 _OE, _OE,
= —- Xtz
JWhin 0z oz
E
= —-‘M {_:i:fynze'anI+'Ynzz + 27"167n:1+7n:2}
JWHn
= 3 .’Ynz Eo(w)e’hzr-mmz _ é;)/lf__Eo(w)e')'nzz+‘rn:z_ (212)
Jwhtn Jwpin

In summary, the fields in region n can be expressed as

Ei(.’l‘, Z,(.A./') = QEio(W)eﬁ’l‘ll‘*-’);“Z

; 1 )
Hi(z,z,0) = 322 E(w)ere+mes — 3 0 po)eraatne: (213)

JWitn JWHn

E.(r,2,w) = §E (w)em==tm:?
I—J , _ A 7:12 YL T+, 2 2 ’)/77;1 Y T2
Pz, z,w) = - Eio(w)em=tTMm:? — 5 2L [ (w)eTn=T" T, (2.14)
Jwily JWHn

In region (n+1), (2.3) is

V2E(z,2,w) — 2, E(z,z,w) =0 (2.13)
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where the propagation constant is
2 . o _ 2 .
Tn+1 = ]w‘ln+l(0n+l +JW€n+l) = —W Hnt1€n4+1 T JWHn410n41- (216)

Then, the vector Helmhotz equation for the electric field in region (n+1) (i.e., the

transmitted electric field) is given by

0? 0?
(ﬁ + ;9?) E,(z,2,w) =2 E,(z,2,w) = 0. (2.17)

This has the solution

E(z,z,w) = gE;,(w)en+t =5 m+1.:2 (2.18)
where the components of propagation constants are defined by

2 2 2
T+l = Ynttz T Tnsi,ze (2.19)

When both regions n and (n+1) are lossless, we may define a transmission angle 6,

such that

Yn+lz = Yn+1C0S 0, (2.20)

Tn+l,z = Tn+i sin §;. (221)
The transmitted magnetic field is given by

1 _
Ht(l',z,w) = —- V x Et(.'E,Z,CU)
JWHn+1
1 { _9E, AaEy}
—- —r—— +tz—/——
JWhn+1 0z oz
= _M {_iwyn+1’267n+1.21+7n+1.:z + 27n+1‘xe"n+l'rl+7n+1':z}
JWHn+1
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- Tn+lz ; . . Tn+laz .
= I Eto(w)€7n+l..r-r‘r'7n+l.~z_z : E(O(w)e'7n+l,x1+7n+l..z.

JWhnt1 JWhn+1

(2.22)

In summary, the fields in region (n+1) can be expressed as

Et(l‘, Z,W) — ngo(w)€"n+l'II+‘,n+l'z:

i - Intlz Yn+1.zT+Vn+1,:2 : Tn+lx Tn+lrL+In41,22

H(z,z,w) = T———F,(w)em+" o T B (w)erm =,
JYHn+1 JWHn+1

(2.23)

To obtain the ratio of the reflected and transmitted electric field amplitudes,
two boundary conditions are applied. The first one is the boundary condition for
continuity of the tangential components of the electric field at the interface. That is,

for all z,

or,

Eip(W)e™:® 4+ E,p(w)e™? = Eg(w)e™ =2, (2.24)

Then, to satisfy the above boundary condition, the equations

The =Tnz = Tntls (2.25)

Eip(w) + Ero(w) = Ep(w) (2.26)

must be satisfied. For lossless materials, (2.25) becomes

Y Sin6; = v, sin 6, = 7,4, sin b, (2.27)

10
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and thus

0, = 0. (2.28)
Vn sin 6,
’ = 2.2
Yn+1 sin 01’ ( 9)

which are the well-known Snell’s law of reflection and refraction. From (2.7), (2.25)

and considering the direction of propagation,

’7/:11 = —A/':;z = Ynz- (230)

The second boundary condition requires the continuity of tangential magnetic field

on the interface. That is, for all z,

or,

: ~ Tz g ()eet = — LT B )etmiies(2.31)
Jwiin Jwhin JWhin 1

Using (2.30), this equation simplifies to

g (@) = 2B (W) = R (). (2.32)
Pn un .Un-+-l

Now, multiplying (2.26) by %:—f and subtracting (2.32) yields

('7'n+1‘1 _ '711,1) E,'o(w) + (M + jﬂ) E’ro(w) =0. (233)
Mni1 Un Hn41 Hn

Therefore, the frequency domain interfacial reflection coefficient for TE-polarized

11
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plane waves is

RTE(LJ) _ Ero(w) _ (’7711‘ _ '\/n-+-1,x> / (’7’nr + '7n+1,1)

Hn Hn+1 Un Hn+1
,un+l'7n1(w) - ﬂn7n+l,z(w) . (234)
:u'n+l7nr(w) + ﬂn')’n+1,1(w)

This is a generalized form of the Fresnel's reflection coefficient for TE-polarized inci-
dent and reflect waves at an interface in a layered structure. Note that the form of
RTE(w) is the same as that given in [1].

2.2.2 Branch-cuts

Because (2.34) includes square root functions of complex argument, proper branch-
cuts (or, square root rules) must be set. To do this properly, it must be assumed that
the interface is the n’th interface in a multi-layered material. Since Snell’s law (2.25)

holds across each interface, we must have
Ynt+lz = Ynz = - -« = Yz (2.35)
It is assumed that region 1 is lossless and thus
Y1: = w?pi€, sin Oy (2.36)

where 6;, is the incident angle of the plane wave in region 1. The z-components of

the propagation constants are

Tmz(w) = V2 =172,

Tos12(W) = /72— Vori (2.37)

12
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Using (2.35), this becomes

')'nr(w) = ’7121 -z

\/(_wzﬂnfn + jwﬂnan) - (—’w‘2ﬂ1€1 SiIl2 gil)

= \/—wz(#nfn — H1€) Sin2 01'1) + jw:unan

7n+l,x(w) = 7"121-6-1,2 - ’)’?2

= \/—WQ(Nn+1€n+1 - Hi€ sin? 0i1) + jWpns10041- (2-38)

The condition that region 1 must be lossless confines the locations of the resulting
propagation constants on the complex plane, and contributes to the definition of the
branch cuts. The condition for setting branch cuts is the radiation conditon, which
says that, by the energy conservation law [9], an isolated wave cannot increase during
its propagation. To satisfy this condition, the real part of each component of the
propagation constant must not be positive for both positive and negative frequency.
The z-component always satisfies this condition since Re{v,.} = Re{yn-1.}=...=
Re{v1.} = 0. However, two different branch cuts must be applied to 7, ., since the
imaginary part inside of the square root has two different signs according to the sign
of the frequency variable w, as shown in Figure 2.2 (a). The resulting branch cuts to

evaluate a square root of complex value \/z(w = w;) are given by

w1 >0 : %arg[Z(uh)] < 0p < arg[z(w))

w; <0 : arglz(wy)] <bp < %arg[z(wl)] +7 (2.39)

where 05 and arg[z(w)] indicate the argument angles of a branch cut line and z(w))
respectively, and 0 < arg[z(w;)] < 27. The branch cuts of (2.39) should be applied
Conmsistently through the entire derivation procedure, and Appendix A shows the

Operations of square root functions used in this study, which are obtained by applying

13



Z(wé) w, > 0
V22
®
Z(wl)
(a)
e et e
z(w]) % ) arg| z
&ﬂ/jj w, >0
= Re{z}

(b)

Im{z}
w, <0
Z(w,)
®
an Refe)
®,..~"
Z(wl)
Im{z}
w, <0
: Re {z1
N J
.;<§
@\\
z(w,) N 1
EMQAwM+n

Figure 2.2. The brach cut setting. (a) Evaluation of 1/z(w;) and (b) allowed region

of branch cuts.
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the branch cuts.
2.2.3 Classification of frequency domain coefficients

"The Fresnel’s coefficient given by (2.34) can be classified according to the signs of

some constant values included within it. Therefore, laver constants may be defined

as

Dn = (pnen — persin® ;1) /pil (2.40)

B, = 0,/pn. (2.41)

Note that B, is always positive. In order to compute the square root functions, the
appropriate branch cuts must be applied. This depends on the signs of D,, B, ﬁnﬂ
and B,,.H. All possibilities are considered next.

Denoting s = jw the terms in (2.34) become

N - .
22— y/s(Dys + By)
Hn
Ontlz \/S(Dn+18+Bn+l)
Hn+1

and (2.34) may be rewritten as

\/S(Dns + Bn) - \/S(Dn+ls + Bn+l)

M - — . (2.42)
\/;(Dns + Bn) + \/S(DrH-lS + Bn+1)

RTE(s) =

Now, the frequency domain reflection coefficient can be classified to four different
forms according to which branch cut is needed. This depends on the signs of the
layer parameters D, and D,,,. The algebraic manipulations with the branch cuts

used in the derivation processes are given by (A.1) and (A.2).

15
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(1) Dpyy >0 and D, >0

RTE( )

n+1

—\/~—\/—,/s+—é—’L \/Dnﬂ\/_\/s-i--g——

n+1

—\/_\/—\/SWL—--—1 \/Dn+1\/—\/3+3

Simplifving gives

\/b + —L — \/ n+tl \/ 4 Zotl Bn+1

RTE(S) — Bn+1 )
/Dn+1 n+1

\/s + _Dr?l- + Dn \/S + Dn+l

(2) Dpy1 <0and D, <0

n+1
n+1

TE

Simplifying gives

\/3 Bn Dn+1 \/S _ Bn+l
RTE |Dn[ |Dn| |Dnt1]
B

Bn 1
) +j\/|DnlV/s b—|D|:FJ\/l n+1|\/—\/ ~ Do
S .
/ / . Ba
:t] an \/—3_ s — |D’n| :t] |D71+1 \/E - an:il

Dn_ Dn 1 \/ _ Bn+l ’
\/5 IDa] +\/ Dul V7 Bunil

(3) Dyy1 >0 and D, <0

n+l

RTE( ) +] ID \/—Vs—| Dal V IDn+1 \/3 S+ == Dnsal

£\ /1Dalv5yfs = B = \/1DusalV5 fs +

Simplifying gives

S — —-—'L:F \/Dn+1 \/s+ Bn+l

B
RTE(S) — IDn| | Dn | IDn+1l

|Dnl |Dnl [Dn1]

16
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(4) Dpy1 < 0and D, > 0

RTE(s) = —\/ 1Dl f\/@?]\/ID"H \/—\/——D:lli

(2.46)
Bn 1
’Dn\/_ S+|D |iJ\/|Dn+1|\/—\/ - |D,.:ll|
Simplifying gives
S + _rl_ i] 11+1 n+l
RTE(S) — \/ |Dﬂ \/ | Dnl \/ |Dn+1[ (247)

Dy Dn+1 \/ Bn+l )
\/5+|D|¢]\/101 Bl
In each of these expressions the upper sign corresponds to w > 0 and lower sign does

to w < 0. Note again that the branch cuts defined in section 2.2.2 have been used

through the whole manipulation steps for the square root functions.
2.2.4 Reduction of the interfacial reflection coefficients

Observing (2.43)-(2.47), it is realized that there is a constant offset value inside of each
frequency domain expression. Since we are supposed to find the transient reflection
coefficient by the inverse Fourier transform, and the frequency domain function must
be integrable (i.e. ff; |IRTE(w)|?dw < o0) for the existence of the inverse Frourier
transform, the constant offset value should be extracted first.

To make the (2.43)-(2.47) more readable, let

D, = IDn-H' — #?l |.u'n+1€n+1 — 116 Sin2 gill
" | Dyl faiy  |pnen — piesin® 6;
Bn HnOn /
Bn B |Dnl - I:unfn — H1€1 Sin2 Hill' (248)

and take the limit values at infinite frequency. Then,

17
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(1) Dpy1>0and D, >0

_ V3+Bn_VDnV3+Bn+1

RTE(s) = , 2.49
¥ = ¥ Bat VD5 T Bt (2:49)
1-vD
lim RTE(s) = — =2, 2.50
Jim R75(s) TN (2.50)
(2) Dpyy <0and D, <0
RUE(s) = Y5 =D = VDuvs = Bu (2.51)
Vs—Bn'+' VDnVS_Bn-H’
1-vD
lim RTE(s) = — =2, 2.52
Jim R75(s) T3 VD, (2.52)
(3) Dpyy >0and D, <0
RTE(S): VS—Bﬂ:FjVDnVS+Bn+1 (253)
Vs = B, + jV/Du/s + Bar1
. 1F¥jvD,
lim RTF(s) = —— Y2 2.54
Jim B = 157D, (2.54)
(4) f),,+1 <0and D, >0
R™E(s) = Vo 1 Bn £ 5V Dnvs — Busi (2.55)
VS+Bn:FjVDnVS_Bn+1’
1+ jvD,
lim R7F(s) = L2V Dn (2.56)
w—00 1:\[:]\/Dn

In these expressions the upper sign corresponds to w > 0 and lower sign does to

w < 0. Next, the obtained constant values have to be subtracted from the original

R™E(s). Let’s define RTE(s) = RTE(s) — RTE(s = +jo0), then

18



1 Dv‘_: >

norine )
FOTeTo G oavim a

1
L -
‘



(1) Dn+1 >0and D, >0

Vs+ By —VDu/s+Bay 1-VD,
Vs+ B, +vVDu/s+ Born 1 +VD,

_ 2D, s+ B, —s+ B, (2.57)
1+ VDo Vs + B, + VDu/s + Bni1 '

R™(s)

Eliminating the square roots in the denominator of (2.57), gives

}}TE(S)
B 2/Dn {V's + Bn — s+ Bayn H{V/s + B = VD\/5 + Bayi}
- 1+D, (s + Bn) — Du(s + Buy1)

2V D, y
(1= Dn)(1 + vDy)
(1 + \/D_n)(s + Bn) - (1 + \/ﬁn—)\/s + lgn\[9 + Bn+l - \/l)—n(Bn - Bn+1)

Bn—Dn By 1
s+( 1-D. )

(2.58)
The s + B, term can be factored out of the first and second term in the numerator
of (2.58), giving

m:! s+Bn+1
_ 2D, (S+B"){1’ (++Bn)

RTE(S) —
1 - Dn s + (Bn‘li)annil)
_ 2Du(Ba — Bas1) 1
(1-D,)(1++Dy) s+ (Bn-ll_JBBnﬂ)
_ 2B,vDx 1 L \/m
B 1-D, S+(Bn—l?;)ljn+l) s+ B,
2vD, s { s+ B,,H}
+ QY e~
vy =y S R e
_ 2Du(Ba— Bus1) 1 259
(1 - Dn)(l + \/ Dn) S + (Brx'il—;)BBn+l) ’

19
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where (A.3) is used. Known inverse Fourier transform pairs are available for all terms
of (2.59). For the other cases, the quite similar steps are taken, except that the
procedure must be done separately for w > 0 and w < 0 in the cases of Dny1 >
0 and f),, < 0, and D,,+1 < 0 and Dn > 0. These are

(2) f),,H <0and D, <0

RTE(S) — VS—Bn— VDnvs—Bn.H _ 1'—\/Dn
Vs =Bn+VDunV/s—Bnyn  1+VD,

2BV Dy 1 {1_ S—Bn+1}

1 - Dn S + (Bn"l)an+l S — Bﬂ

1-Dy

2\/—m S {1_ S_Bn+1}
)

+
- B,—-D,B, —
1=Dngy (ﬁ_nj_l s— B,
2Dn Bn - Bn
- 2P ) : : (2.60)
(1-D,)(1+ VD)4 (%)

(3) Dpyy >0and D, <0

szE(S) — VS_Bn:F:jVDn\/S+Bn+1_lq:j,/Dn
Vs = Ba£jVDu/s+ Barn 1£jVD,
2iBvDa 1 {1_ s+Bn+1}

1+ D, s_(B,.—D,.Bn,1 s — B,
1+ D,

2jV/Dn, 8 {1_ S+Bn+l}

¥1+Dn3_ (Bn—DanH s— B,
1+Dp
_ 2Dn(Bn+1 + Bn) 1 (2 61)
i/ B.—D.B, ’ )

(4) Dn+1 < 0 and Dn >0

RTE(S) — V3+Bn:thDnV3_En+1 _ lztj\/l)2
Vs+ Bn FjVDuv/s —Biyn 1FjVD,
2jBnVDn 1 {1 n S—B,H.l}

T+ Dy (Bl s+ B,

1+ Dy

20
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2jvD, s — B,
= ° ) {1+ b—ﬂ}

Bn“Dan
1+Dns+( Da By s+ B,
2Dn(Bn+1 + Bn) 1 (2 62)
A\/ Bn—Dan+l ’ ’

and (A.4),(A.5), and (A.6) are used respectively. In these expressions the upper sign
corresponds to w > 0 and lower sign does to w < 0.

RTE(s = £joc) is the reflection coefficient obtained at infinitely high frequency,
and is equivalent to the coefficient when the medium has no conductivity. Therefore, it
depends on the diplacement current term only in the Maxwell’s equation of (2.2), and
may be called an aymptotic reflection coefficient, since the value of RT#(s) approaches
this (or these) value(s). In contrast, RTZ(s) exists only when at least one of the two
media has some conductivity. Let’s call it a reduced interfacial reflection coefficient.
The physical meaning of the two reflection coefficients in transient analysis will be

discussed later.

2.3 Derivation of Transient Interfacial Reflection Coefficients

2.3.1 The transient forms

The transient forms of the frequency domain interfacial reflection coefficients are
given by the inverse Fourier transform. Because the asymptotic reflection coefficients
RTE(s = +joo) are constants in the frequency domain, their transforms are simply
given as delta-functions multiplied by the constants. Let’s denote it by RTE(t). Then,
(1) Dpyy >0and D, >0

RTE(t) = F“{lim RTE(s)}

w—00

1-+vD,

21
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(2) Dp;y < 0and D, <0

RIE(t) = F‘l{lim RTE(S)}

w—00

1-+vD,

P/l d (2.64)

where F~! denotes the inverse Fourier transform.
(3) Dpyy >0and D, <0
As shown by (2.54), there are two different asymptotic values in this case according

to the sign of w. Therefore, letting G = 1;]@ then (2.54) can be rewritten as

1+j5v/D,

lim RTE(w) = GU(w) + G*U(-w) (2.65)

w—00

where G* denotes complex conjugate value of G, and U(w) is a frequency domain
unit step function defined by U(w) =1 for w > 0 and U(w) = 0 for w < 0. From the

transform table given in (B.2),

RTE(t) = FY{GU(w)+ G'U(-w)}

- %(G +G*)é(t) + i% * (G = G")é(t)

2m
_1-D, 2D, 1

where a(t) * b(t) is the convolution of a(t) and b(t). The convolution of a function

with a delta function gives the function itself. Thus,

TE _ 1 - Dﬂ 2 Dn
RTE(t) = 1+Dn5(t)+———7r(1+V o (2.67)

Notice that the transient reflection coefficient is a real valued function as it should

be in the physical world.
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(4) Dpyy <0 and D, > 0
The transient form for this case is easily obtained by applying the same procedure

with case (3). Thus,

1+ D, . 2v/D
TE _ n _ n
R °(t) = T Dno(t) ——w(l Dt (2.68)

The inverse Fourier transforms of the reduced interfacial reflection coefficient can
be found directly from the transform table given in Appendix B. Let’s define the

following constants

P, = (Bus1+ By)/2 (2.69)
P2 = (Bn - Dan+1)/(l - Dn) (270)
B = (Bn—H - Bn)/2 (271)

Then for
(1) Dn+1 >0and D, >0

(2.59) is rewritten as
- 2B,\/D,, [s+ Bn
RTE(s5) = 1 1-— 5+ Bnt1
1-D, s+ P, s+ B,
+ 2\/ Dn S 1— s+ Bn+1
1-D,s+ P, V s+ B,

 2Dn(Ba— Bayr) 1 2.72)

(1-D,)1++D,)s+ P’

This form has two different inverse Fourier transforms according to the sign of P,

and the inverse Fourier transform for each term can be found in (B.3)-(B.4). Thus,

23



aben Pv >,

R RN

frpeny of

LD,
R 0 =
‘

: Yl ? ‘“f‘
B
Sl t i5 "i‘r



when P, > 0,

2\/_

RTE(t) — 1 ~

e P2t {o(t) = Pou(t)}| *

[23,1\/1716_5,“‘(”

1-D,

2l)n(Bﬂ - Bn-H)

[—B8e P {1 (3t) + Io(3t)} u(t)] - e P2tu(t)

_12 @ e 75(t) * (= B)e™ M {1 (3t) + Io(3t) } u(?)

+{2fi§: 12\_[13— }e-Pz'um*(—.3>e*”*‘{11<.3t)+fo<,3t>}“(f>

_ 2Dn(Bn - Bn+l)
(1 - Dn)(l + \/ﬁr:)

e P2tu(t) (2.73)

where I,,(t) is the first kind modified Bessel function of order n. Using the convolution

property of the delta function, (2.73) becomes

(Bn - Bn+1)\/l)_n

RTE(t) = =D, e P{I(Bt) + Ih(Bt)} u(t)
2D \/_( nt1 — Bn) (Bn — Bn+1)e—P2t,u(t) N
(1 - Dn) 2 |

2Dn(Bn - Bn+1)

-Pit Uu -
e RO + LG ul) - T D
(Bn - Bn+1)\/lTn

1-D e P11 (3t) + Io(Bt) } u(t)
(Bn = Bas1)*DavDy _py,
T a-D.z ¢
+_2Du(Bns1 = Bn)
(1= Da)(1+ v/Dy)

e P2tu(t)

u(t) /t e~ PPz (1 (Bx) + I)(Bz)} dz
0

e P2tu(t). (2.74)

It is necessary to check whether the integral term from time domain convolution

e~ Pty (t) [5 e~ PPz (1, (3z) + Iy(Bx)} dx exists as t — oo. Let

I(t) = /Ot e Prle=(Pi=PIz (I (B1) 4 I)(Bzx)} dz.

When ¢t is large, the integrand varies as e~(Pi=Pr+8ze=Pat — g=Palt=2)g=(3+P1)z for

T X t, since I, (z) = >0,sincet—z>0and 3+ P, >0,
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when P, > 0,

2B.VDy _p, 2\/

—Pzt ) ‘
1— Dn. {(5 qu(t)} *

2D, (Bn — Bnt1)

RTE(t) = [ u(t) +

—Be Pt {1 (3t olt)yult)] —
(=8¢ {1(30) + 1o(30) (”] (1= D)1 +VDy)
2\/—71 —Pzt(;

1-D, (t) * (=B)e P {I(3t) + Io(3t)} u(t)

+{2Bn\/D—n 2vD, |,
1-D, 1- D,

2D, (B, — Bn11)
" (1-D.)(1+ Dy

e~ P2tu(t)

} e Ptu(t) « (= B)e” M {11 (3t) + Io(Bt)} u(t)

e P2u(t) (2.73)

where I,,(t) is the first kind modified Bessel function of order n. Using the convolution

property of the delta function, (2.73) becomes

(Bn — Bn+1)\/D_n

RTE(t) = T—D. e” P {11(Bt) + Io(Bt)} u(t)
2D VD (Bry1 = Bp) (Bn = Bny1) —Pat
1-D,) 5 e”"tu(t) *

e Pt {1 (Bt) + Li(3t)} u(t) — 2D, (B, — Bp41)

(1 -D,)(1+ vD,)
(Bn —1%1;)1)\/5;6_1)” {LL(3t) + ]0(,3t)} u(t)

_ (Bn - Bn+1)2Dn\/ﬁn_e_P2t
(1 - Dn)2
+ 2Dn(Bn+1 - Bn)
(1= Da)(1+ vDn)

e~ P2ty(t)

u(t)/o e"P=P)z {1 (32) + I (Bz)} dx

e P2tu(t). (2.74)

It is necessary to check whether the integral term from time domain convolution

e P2ty (t) [7 e~ (Pi=Pz (], (3z) + Io(Bz)} dz exists as t — oo. Let

I(t) = At C—Plte_(Pl-Pz)I {11 (B$) + 10(61')} dz.

When ¢ is large, the integrand varies as e~ (Pi=Fetf)ze=Fot — =Pa(t-7)e=(3+P)z for

>0,sincet—xz>0and 3+ P, >0,

T X t, since I,(z) = S
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the integrand decays exponentially, and thus the integral converges between r = 0 ~ t.
When P, < 0, the inverse Fourier transform of (2.72) is

RTE(1) + Pou(t)}| *

_a,—Pit u 2Dn(Bn - Bn+l)
[=Be™ " {1 (3t) + Io(31)} (t)]+(1—Dn)(1+\/DZ)
(B Bn+l)\/D—n

= e {1(3t) + Lo(3t)} u(?)
2Bn\/D7 2D,
e

+

2B" Vv Dn — Pyt 2 cvV—n —Pﬁl
[———1 —D. e tu(—t) + l—D {o(1)

e‘P'”u(—t)

~D. Pz} (=B)e™ P u(~t) x ™ {11(8t) + To(B) } u(t)

n(B Bn+l)
(1= Dy)(1+vDy)
(Bn - Bn+1)\/lTn

- b e {1 (3t) + Io(Bt)} u(t)

L (Bn (?n“z))l))? nVDn -pzt/ ~(Pi=P2)x {1 (32) + Iy(Bz)} da
- mazx(t,0)

+ 2Dn(Bn_Bn+l)

(1-D,)(1++vD,)

e Ply(—t)

e~ Prlu(—t). (2.75)

This expression apparently includes non-causal terms in its second and third terms.
However, it is shown that these non-causal terms can be removed by reforming the
expression, and there are only causal terms remaining in the result. That is, when

t<o0,

(Bn - Bn+1)2DnV Drxe..P2¢
(1 = Dy)? 0

2Dn(Bn - Bn+l) =Pt
fiop)a+voy© Y o

RTE(p) = oc>e”(P"P"’)I {1,(Bz) + Io(Bz)} dzx

(1 + Dﬂ)(BfH-l - Bn)
2(1 - Dn)

,RG{BH > 0 to use 6.611.4 of [10] given by

Let o — (P,—PR) = and check the requirements that Re{a} —

® e g fo- Va5
/0 e *I,(Br)dr = N/ . (2.77)
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For B,,, > B,,

_ (1 + Dn)(Bn-H - Bn) (Bn+1 - Bn) _ Dn(Bn+1 - Bn) -
Re{a}—|Re{3}| = 1D, - 5 = - D. . (2.78)

For Bn+1 < an

1+ Dn)(Bn+1 - Bn) + (Bn+l - Bn) _ (Bn+1 - Bn)

2(1- D) >~ 1-p, = "

Re{a} - |Re{3}| = \

B,..>B, & 0<D,<1
Therefore, to use 6.611.4 of [10] must be satisfied.
B,.1.<B, & D,>1

Now, consider the case P, = —Bil——_%% <0. Then1-D, >0 B, < D,B,;; <
Bpiiandthus0< D, <1< B,,; > B,. Also,1-D,, <0< B, > D,B,,, > B,,1

and thus D, > 1 & B, > B,,,. Using,

> 1 a (a/3) 1
011 / d — ER—— e N — -, 280
/o ¢ 1(Fx)dz 3 { a? — 3? } a?-32 3 ( )

2 _ _ 2
a'z _[B‘Z — {(1 + Dn) (Bn+l Bn)2 (Bn+14 Bn)z}

4(1 — D,)?
(Bn+l - Bn) \Y Dn
1-D,
and
/ T et (Br)dr = — (2.81)
0 oL a? — 32 .
glves

R'I‘E(t) _ (Bn—Bn+l)2Dn\/D:e_P2¢{ (a/B) %+__1__}

(1- D, aZ- o = [P
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+ 2Dn(Bn - Bn+l)
(1= Do) (1 +vDn)

— e—Pgt {{ (B 1 —Dn ((1+D11)(Bn+l —Bn) 2 +1>

“lu(-t)

n+l — Bn)v Dn 2(1 - Dn) (Bn-(-l - Bn)
~ 2 . (Bo = Ba:))*’Duv/Dy . _2Du(By — Bas)
(Bn+1 - Bn)

(1-D,)? (1-Dn)(1+ \/D—n)J
e_PZg [ 2Dn(Bn+l - Bn)(l - \/_D:) + 2‘Dn(Bn - Bn+l) ] -0
(1= Dn)(1 = VDy)(1 +vDy) (1= Dy)(1+VDy) '
(2.82)

T herefore, (2.75) consists of pure causal terms, and can be rewritten as, when t > 0

(Bn - Bn+1)\/D_n

RTE(t) = =D, e I (B8t) + Ih(3t)} u(t)
(Bn —(lBrj-ll))il)Zn\/D—ne-Pztu(t) /t°° e~(P=Px (1(37) 4 Iy(3x)) dx
_ (Bn ‘llj"gj‘/me-"ﬂ (L(38) + Io(3)} u(t)
(B, —(frfgil)?;\/l?_ne_mu(t) /Om e~ (P=P)z (1.(87) + Iy(Bz))} dz
_(Bn -(fvfgil)z"\/l)—"e-”ﬂu(t) /Ot e~ (P=Pz ([ (82) 4 Iy(Bz)} dz
(Bo — Bai))VD,

= o ¢ B+ (30} u(t)

t

+ 2Dn(‘Bn-H _Bn) e
(1 - Dn)(l + \/D_n)

—Paty () (2.83)

2(1 — Dn)

(Bn+1 - Bn)\/D_n

was used. Notice

Where / e"P1=P)T {1 (Bx) + I)(B2)}dz =
0

that (2.83) is exactly same with (2.74).

(2) D,,,, <0and D, <0

N 2B,.vD, 1 s— Bo.,
TE —_ n n _ n+1
R™6) = —4—p s-P2{1 V 5—-B, }
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2\/Dn S 1 S—Bn+1
1-Dp,s—- P, s — B,

+ 2Dn(Bn - Bn+1) 1
(1 - Dn)(l + v Dn) S

(2.84)

When P, > 0, (2.84) has the inverse Fourier transform (see B.7 as

2B Dnepzt 2v D P"”{O — Pou(—t)}| *

RTE(t) = [ =D, u(=t) + 5

3, Pit 3t) — Ip(3t)Yu(—1)] — 2Dn(Bn = Bni) ePrtu(—
[3e™ {1,(31) = Io(30)} u( t)] 0-D)a+vD)"

= 2BV gor (14(30) - (30 u(-1)
+ {Qf P 1/;} e"tu(=t) + ™ {11(3t) = To(3t)} u(~1)
_ 2Dn(Bn_Bn+l) Pt (—f)
(1-D)(1+vDy)

_ (1’3n+11 _%)‘/D: PL(BE) — To(80)} u(—t)

n+1 — B 2D n Pty -P2)z /

(B L nVDn py gy / eP=P)7 (1, (8x) - Io(B2)} dz

2D (Bn+1 Bn)

P«ztu _ . 5
- DoasvDy (285)

+
and, when P, < 0,

RTE ()

[_%@epﬁu(tH 2D ot (5(4) + Pyu(t)} ] »

X ‘ _ / wl— _ 2Dn(Bn+1"Bn) e zzu
(37 {11 (31) = To(51)) u( t)] T ARV il

— (Bn+11 —%)\/ﬁn Plt{I df Ig(ﬁt)}u(—t)

{ T i“.f fgp2}5e"ztu(t)*e”l‘{h(ﬁt)—fo(ﬁﬂ}u(—t)

_ 2Dn(Bn+l - Bn)
(1= Da)(1 + vDy)

_ (B"“l _%)‘/F" P LT (3E) — To(38)) u(—t)

ePtu(t)
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Bn _ D . min(t,0) _
( +1(1- o~ vD pztf e =P7 (1 (3x) — Io(Bx)} do
2Dn(BrH-l B")

(1-Dn)(1+vD,)

eP2u(t). (2.86)

In contrast to the Dn-H > 0, and D, > 0 case, (2.86) has apparent causal terms,

and these terms can be converted to pure non-causal terms. When t > 0, (2.86)

becomes
R = -2 "*‘(' Bl LoDt [ ctri=rie {1y (31) ~ Io(32)} o
n(Bn - n.+1) Pg
+ u(t). 2.87
A-D)+vD)" 250
Letting r = —z, the integral term is rewritten as

/ D PP (1, (82) — Lo(3a)} d= = / e (1= 52) — Io(—52)) dz

o0 oo

0
_ _/ e~ (PP (T (82) — I(82)} d2

= —/ e" =PIz {1 (32) + I)(B2)} d=.
0

(2.88)

Then, since t > 0

ATy = en | B DD [ etiorie 1,(52) + I3} d

+ 2Dn(Bn Bn+l) il
(1= Dy)(1 + vDn)
= 0 (2.89)

Consequently, when t < 0, (2.86) becomes

RTE(t) _ ( n+11_D)\/_ Plt{I IO Bt)} ( )
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(Brot = Bu)"Dud/Dn e,y / e (1 (5) - Ly(30)}

1= D.)2 %
_ (B"EI__BZ))\/E‘?P“ {1 (8t) = L(Bt)} u(~t)
(B 2 2 /Dy | ioe("l‘P?)f{]l(ﬁ.L')—IO(BI)}(]I
+(Bn,1(1_ Qﬁ nVDu _put, )ftoem-%)f {I,(3x) — Iy(3x)} dx
_ (Bn+11 _’Z)\/D_" PE{L(3t) = To(3t)} u(-t)
+(BH+I(I?D)D2 nVDn b, )/t eP=P)7 {1, (82) — Iy(Bz)} dz

which includes non-causal terms only.
(3) Dps1 >0and D, <0

Using the frequency domain unit step function U(s) = U(jw), (2.61) can be expressed

as
RTE(s) = G(s)U(s) + G*(—s)U(—s) (2.91)
where
_ 2]Bn\/D_n 1 s+ Bnyy
Gls) = —— 17D, s—Pg{l_ s—B,,}
2jVDn s 1 5+ Bni
1+D,s-P, )| V s-B,
2Dn(Bn + Bn+1) 1
(14 Da)(1+5vVDa)s— P (29
If we let g(t) = F~'{G(s)}, then, from (B.2),
RTE() = Slol) +4°(0) + 52 + {o(0) - 4"()}
= Re{y(t }——*Im{g )} (2.93)
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When P, > 0,

2jB,VD, p, 2 , gt
o) = BBDnoriygyu pe) + ZYDo5() - (-} o 510
_ 2Dy(Bu+ Bav1)  py
T ATV n (294)
where
_ 1 _ S+Bn+1
fist) = F {1 -———S_Bn}
= %e%nt{11(-3;—"t)+10(—1t)}u(—t)
Bn+1 _g"_z'th Bn+1 Bn+1
: {n( ) 4 (2 t)} (v
B,.1B, Ba, © (B, 12+Bn)1 ?E 3 & 3
B [ o o[BS
X {Il(B’;‘x) + IO(B’;“m)} dz (2.95)

from (B.10). Now,

2D, (B + Bu1) p

Re(()} = 222t Buet) (2.99
and,
Infy)) = ZP2VDnou(-0) v f(0) + 2ED(5(0) ~ Pau(-)}e™ » (0
- \/(1_iD;LB"+1)eP2‘u<—t). (2.97)

Finally, for P, > 0, the transient interfacial reflection coefficient is

RUE() = Refg(t)} - — * Im{g(0)

9D, (By + Buit) py 2y/Dx 1
(1 +Dn)2 € u’( ) 1+an3(t) *

7t
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2D vD -+- Bni1) py 1
2D V n +Bn+l Pt 1
+ 1+ D, e u(—t) * — (2.98)
Alternatively,
~ 2D,v/D,(B, + B, 1
R™E(t) = (IJED 2 = \/D—ep"'“(—f) +{1 - fa(t)} x = * e"'u(-1)
2vD, 1
"1+, "m P (299)

Similarly, for P, < 0,

2Dn(Bn + Bn+1)eP2¢

Re{g()} = ~ 2=t =g satlertu) (2.100)
and,
o0} = ~22nDroriy g+ 220 (500 + P} « 50
+2D \/(l_-i < -)l- B"H)epztu(t). (2.101)

Therefore,the resulting transient interfacial reflection coefficient for P, < 0 is given

RE(@) = Relg()} - =+ Im{y(0)}

_ 2Du(Bn + Bny1) py 2v/D, 1
- (1+ D,)? u(t) 1+ D, R0
2D nVDn(Bn + Bry1) p, 1
0+ Do) e 2u(t) x f3(t) * —
2DnV n Bn + Bn+1) Pot 1
- 0+ D7 e *fu(t) * — (2.102)
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Alternatively,

2D \/_ +Bn+1) 1

RTE(t) (14 D,)? D Prtu(t) + {1 = f3(t)} * — * eM'u(t)
_fﬁ * :12 * fa(t). (2.103)

(4) Dpyy <0 and D, >0

Using frequency domain unit step function U(w), (2.62) can be expressed as

RTE(s) = G(s)U(s) + G*(=s)U(—s) (2.104)

where

2]Bn\/D—n 1 S_Bn‘l'l

- _ 1 S Dn+tl
Gs) 1+ D, s+P2{ V578,
_2jVDn S 1+ s — Bnn
1+D,s+ P S+Bn

9Dn(Bp + Bny1) 1

A+ D)1-VDust B (2109
If we let g(t) = F~'{G(s)}, then, from (B.2),
RE() = o)+ g (0} + 52 « {o(t) — 4°(0)}
= Re{g(t)} - wit * Im{g t)}. (2.106)
When P, > 0,
o) = ~HBDnmrity) g0~ 2P0 (50) ~ Pt} o i)
2Dn(Bn + Bui1) e~P2tu(t) (2.107)

T+ D)1= ivD)
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where

- B
— F_1 1 S n+1
fa(t) { + ST B,

— % J‘_t{I!(Bn+1 )_IO(Bn+1 )}U(—t)

2 2 2
Bn _Bn Bn Bn Bn+ Bn By
T € % t{fl(“?t)"fo(—ft)}u(t)—%—————( 41 )e_‘zﬂ‘x
/ e {11 [B’.‘“a - :r)] —Io [Bi‘“(t - m)]}
max(t,0) 2 2
B, B,
X {11(71) — 10(71-)} dx (2.108)

from (B.11). Now,
2D, (B, + Bn+l)e—P2£

Re{9(1)} = =75 u(t) (2.109)
and,
o) = ~2P2VDneriuya fie) - 200 450) - Pl n 10
2D ‘/(1_+( 5 ")L B"H)e_P'”u(t). (2.110)

Thus, for P, > 0, the transient interfacial reflection coefficient is

RT5() = Refg(t)} - — « Im{g(t)}
2Dn(Bn + Bn+1) — Pyt 2\/D_r_1_ 1
(1+ D,)? ’ ) + 5p, O
,.2Dn VD (By + Bri1) _py 1
(1‘+('D )2 )6 P U(t)*f4(t)*ﬁ

2D \/_( +Bn+1) —Pst. i
1+ D, e P2lu(t) » —. (2.111)

it
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Alternatively,

5 2l)n\/l)n Bn Bn-'vl 1 — Pyt — Pyt
RTE(t) (1-+(-D-;‘2 ) \/D_e P u(t) + {fa(t) — 1} * — e Palu(t)
2vD, 1
T+ D, *W—t*f4(t). (2.112)

Similarly, for P, < 0,

2Dn(Bn + Bn+1)e_P,_,z

Re{g(t)} =~ 1 .y u(—t) (2.113)
and,
_ 282Dy p, 2D, | .
Im{g(t)} = T+D. Plu(—t) = fa(t) — 1+Dn{0( ) + Pou(—t)} * fu(t)
—2Dn\/(_1:_*(_B[;n-;;Bn+l)e_PZtu(_t)' (2.114)

Therefore, the resulting transient interfacial reflection coefficient for P, < 0 is given

by
RTE() = Re{g(t)} — =+ Im{g(t)}
9D (By + Bust) _py, o0yD, , .. 1
= e e 0 -
2D Bn+1 —Pst
oV DelBo s Boet) -ty « 10+
2Dn\/D_n(Bn + Bn+l) — Pt 1 -
1+ D¢ e u(—t) * — (2.115)
Alternatively,
STE . 2D V Dy (Bn + Byy1) 1 o Pt
= e [ 0
{1 = fi(t)} = Wit x e P2ty (- ] * % * f4(t). (2.116)
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2.3.2 Causality

In the transient forms for the cases of (2), (3) and (4), there are non-causal terms

1 These are unexpected results, because the convolution of any

involving u(—t) or

causal (thus, physically realizable) input waveform with these terms will produce non-
causal transient reflected waveform components that appears to disobey Einstein’s
causality, which says that nothing can travel faster than the speed of light. Also,
it should be noted that this is ‘pure’ non-causality which is different from the non-
causality caused by the diffusion approximation referred in [11]. The existence of the
non-causal terms depends on the sign of D,;1 and D,. That is, the non-causality
happens when the sign of either one of the two parameters is negative. When the
sign is negative, the real part of 7, is always negative by the branch cut; therefore the
wave propagates in an evanescent mode, regardless of the existence of conductivity.
A good example of this case is total internal reflection at the interface of lossless
dielectric material layers.

The conventional geometrical ray optics approach can not explain this non-
causality. Consider the geometry shown in Figure 2.3, where total internal reflection
of an impulse incident plane wave is assumed to occur at the interface between two
lossless dielectric layers. The reflected wave packet from the point Q1 arrives at the
observation plane at t = 0, at the same moment as the reflection of the incident wave
from Q2, because their propagation velocities are the same in this same region, and
the lengths of travel along paths P1 and P2 are identical. Consider a surface wave

in region 2, which starts at Q1 and propagates along the z-axis with propagation

velocity equal to or less then vy, = % = % = %—Si‘—:m—l Then, the travel time of
1
the surface wave is tq > vi — dn il,n O _ P2 = 172 . Therefore, the
2z sin ;, /M)

Y1 sin 0,’1
surface wave arrives at Q2 at the same or later moment at which the incident wave

impinges on this point.
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Region 1 Region 2

Observation plane t=0

Wavefront 8 (t)

Reflected wave Surface wave
Q,

Incident wave

Wavefront ~ 8(t—1t,)

Figure 2.3. The time relationship of wavefronts.
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Next, consider the possible existence of a precursor effect. Any wave front of
the spherical wave excited at Q1 that arrives at a point on the observation plane
faster than the wave reflected from Q2 might be a precursor and thus a source

of the non-causality. From Figure 2.4, consider path 1 with [, = /h2+1[2 =

2
\/(d+x)2 + (ia_I;BUT) and path 2 with I, + I3 = dsinf;; + ﬁo—l To be a pre-

1

cursor, path 1 must be less than path 2. However

9 2
- . 9 T _ — T
L=+ 13)" = {(d+ T)" + (tan9i1> } (dsm Ou + tanﬁﬂ)

1 1
) — d%sin?6;,

= d*+ 2%+ 2? - —
tan20;;  sin’#6;

= d*cos’6;; >0 (2.117)

and thus, there is no precursor.

In this study, a reasonable explanation of the non-causality has not been found.
The non-causality might originate from the impractical assumption of infinite layer
width because the incident plane wave interacts with the interface an infinite amount
time ago, i.e. as far back as t = —oo, although the relationship between this as-
sumption and non-causality could not be found using ordinary ray optics approach
as explained above.

There are several interesting ongoing research activities that might help explain
this phenonmenon. In physics, there have been some trials to measure or compute
the exact tunneling time of a particle through a potential barrier, which is important
in modern microelectronic tunneling devices [12], [13]. It turns out that the tunneling
of a particle (or a wavepacket) is quite similar to the transmission of an evanescent
electromagnetic wave, e.g. the propagation of a wave having a frequency less than
the cut-off frequency in a waveguide [14]. Therefore, there were many experiments

performed by using optical pulses (e.g. [15] and [16]), or microwave propagation in a
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Figure 2.4. The consideration of the existence of a precursor.
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waveguide (e.g. [17]).

In these experiments, it has been commonly observed that the pulse peak prop-
agation velocities seem to be independent of the thickness of a potential barrier (or
an evanescent region, equivalently), which consequently implies so-called “super lu-
minal” propagation velocity of the wave modes. For example, if the width of region
were to become infinite, then the speed of wave propagation would increase infinitely,
therefore faster than the speed of light, which leads to apparent contradiction of the
Einstein causality. Although this phenomenon had been theoretically predicted in
the past [18], the exact theoretical explanation has yet been given. Many have at-
tempted to explain this phenomenon as a reshaping of the pulse [15], [16]. That is,
attenuation of the pulse in the barrier shifts the peak of the pulse forward. But little
is known about why the barriers attenuate pulses unevenly [19]. Also, there is a
question about the validity of ‘peak’ measurement methodology in dispersive media,
since it is sometimes hard to define the pulse peak in that case.

It should be noted that there is some possiblity that the “super luminal phe-
nomenon” of those experiments might be different from the non-causal tail in the
impulse response waveform described in this study. In this study the pulse peak
point is causal (located at the time origin of ¢ = 0), while the “super luminal” veloci-
ties were measured only using the location of the pulse peak, and did not consider the
shape of the waveform since very short optical pulse waveforms were used in the past
experiments. Neverthless, there might be a relationship between the oberved results
and the non-causality in the transient interfacial reflection coefficients, considering
the fact that both happen in the same situation, i.e. only in evanescent propagation
mode.

As a result, only the causal case will be considered in the remainder of this dis-
sertation, simply because there is no reliable explanation for the non-causality. The

non-causal case can be studied in separate research. Note that the non-causal case is
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unlikely to occur in a practical situation. That is, to be a non-causal case, the layer

parameter D, = (Un€n — f1€; Sin? 6;1) /12 must be negative, and thus

Hn €1 .

— < —Sln2 01'1. (2118)

H1 €n

The first laver can be any lossless dielectric, but is typically free space in practice
because it has to have infinite depth and width. Then, ¢; = ¢y and yu, = pg. Con-
sidering that sin?6;, < 1 and ¢, < €, always, it can be recognized that satisfying the

condition of (2.118) is improbable.

2.4 Numerical Examples

2.4.1 Verification of theoretical expressions

The previously derived transient forms for interfacial reflection coefficients may be
compared to direct numerical computation to ensure that the transform are correct.
The most common method to do this is simply to compute the numerical inverse
Fast Fourier transforms (IFFT) from the frequency domain forms. For the reasons
mentioned earlier, only the causal case (Dn+1 > 0 and bn > 0) will be discussed.
Since the asymptotic interfacial reflection coefficients appear as delta functions
in the time domain, and are thus difficult to express numerically, only the reduced
interfacial reflection coefficients are compared. Figure 2.5 (a) and (b) shows the
comparison of the derived transient interfacial reflection coefficients with the transient
forms obtained by using a 3072 point IFFT, for the P, > 0 and P, < 0 cases,
respectively. The material parameters for Figure 2.5 (a) are those for an interface of
free-space and typical sea water at low frequency as described in [20], while those for
Figure 2.5 (b) are for an interface of plexiglass and ethyl alcohol 10GHz, as described
in [21]. Note that for the non-magnetic materials, P, < 0 case happens when €, > ¢,

and (0n+1/an) > (Dﬂ+1/Dn) > 11 or €, < €n+l and (an+1/0n) < (Dn+l/Dn) < 1
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The transient reflection coefficient curves from the two different methods are nearly
identical, and thus correctness of the derived transient interfacial reflection coefficients
for TE polarization have been verified.

To verify the combination of the asymptotic and the reduced transient reflection
coefficient, the time domain convolution of the interfacial reflection coefficient with

an input waveform is needed, i.e.

S(t) = X(t)*RTE(1)
= X(t) * {Rg'fa(t) + RTE(t)}

= RTEX(t) + RTE(t) » X (t) (2.119)

where X(t) denotes the input waveform and S(t) is the resulting reflected waveform.
One of the most commonly used input waveforms for this purpose is a double expo-

nential pulse waveform, given as
X(t)=K (e —e™™) (2.120)

where K, a and b are arbitrary positive constants. Figure 2.6 shows an example of
the input waveform where K = 30.71, a = 2 x 10° and b = 4 x 10°. Figure 2.7 (a) and
Figure 2.7 (b) shows the comparison of the time domain reflected waveforms with the
input waveform shown in Figure 2.6 for the two different layer parameter sets (P, > 0
and P, < 0). Again, in both cases, the derived expressions and the IFFT results are
well matched.

As mentioned in chapter 1, exact theoretical expressions are available from the
previous research [11] for transient interfactial reflection due to a unit step input
waveform. A comparison with those results also helps to verify the work in this

study. Figure 2.8 (a) and Figure 2.8 (b) shows that the re-produced results of the
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Figure 2.5. (a) Numerical comparison of the derived transient reduced interfacial

reflection coefficient with that from the IFFT (TE polarization) : u, = po, €, = €,
Op = O[U/m], MHn+1 = Ko, €ny1 = 7260, On41 = 4[U/m], 9,‘1 = 300, P2 =0.64 x 1010.
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Figure 2.5. (b) Numerical comparison of the derived transient reduced interfacial re-
flection coefficient with that from the IFFT (TE polarization) : p, = uo, €, = 2.59¢,
On = 9.73x1073[05/m), ptns1 = Ko, €ns1 = 1.70€q, 0ny1 = 5.60 x 1072[U/m], 6;; = 30°,
P, = —0.59 x 10'°,
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Figure 2.6. An example of double exponential input waveform.
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Figure 2.7. (a) Numerical comparison of the transient reflected electric field wave-
form for the input waveform shown in Figure 2.6 with the IFFT (TE polarization) :
Bn = o, €n = €0, On = 0[0/m], pny1 = po, €ns1 = 72€0, 0ny1 = 4{0/m], 6; = 30°,
PQ = 0.64 x 10'°.
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Figure 2.7. (b) Numerical comparison of the transient reflected electric field
waveform for the input waveform shown in Figure 2.6 with the IFFT (TE po-
larization) : u, = o, €n = 2.59, 0, = 9.73 x 1073[U/m], pnt1 = Mo,
€ntl = 1.7060,0’n+1 = 5.60 x 10_2[U/m], 01‘1 = 300, P2 = —0.59 x 1010.
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electric fields to a unit step input waveform excitation obtained by using the transient
interfacial reflection coefficient and transmission coefficient of this study, are exactly
same as those found in Figure 4.5 and Figure 4.4 in [11]. Note that these plots are

drawn with the nomalized time axis given by

Ont1t

2€n41 (1 _ i % Sina?l) |

Hn+1€n41

at =

It can be easily realized that the early time portion of the scattered electrical field
waveform is dominated by the high frequency component of the interfacial reflection
coefficient, i.e. the asymptotic interfacial reflection coefficient. The late time portion

is due to the lower frequency components of the interfacial reflection coefficient.
2.4.2 The transient responses for various parameter sets

It is interesting to study the dependence of the transient reflection ceofficient on the
various parameter values, i.e. permittivity, permeability, conductivity and aspect
angle. Comparisons of the reduced reflection coefficients are shown in Figure 2.9 -
Figure 2.12 which are plotted using semilog scales for easier identification. Note that
the first two curves in each plot, except Figure 2.12, are for P, < 0 cases, so that the
effects of parameter change can be observed for both cases of P, > 0 and P, < 0.

(1) Permittivity

The curves in Figure 2.9 are plotted for €,,+; = 1.7, 2.5, 10 and 72. The corre-
sponding values of RZE are 0.12, 0.0098, -0.34 and -0.69, respectively. Note that the
phase reversal of the asymptotic reflection coefficient happens when ¢,,, becomes
greater than €,. It can be seen that the slopes of different RTZ (t) curves are inversely
proportional to the increasing permittivity values, while the asymptotic reflections
are proportional to the increasing permittivity values except the case ¢,,,; = 2.5,

where the material constants of the two layers approach each other, and therefore
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Figure 2.8. (a) The transient reflected electrical field waveform for a unit step

excitation : yu, = po, €, = €9, 0n = 0, fny1 = Uo, €n+1 = €0, Ony1 = 1.00x10'3[0/m],
6; = 0°.
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Figure 2.8. (b) The transient transmitted electrical field waveform for a unit step
excitation : p, = o, €, = €9, 0n = 0, flnt1 = Hos €ns1 = €0, Ony1 = 1.00x1073[U/m],
6; = 30°.
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the overall reflection itself is weak. This means that the overall transient reflection
increases when the permittivity contrast of both layers is sharper.

(2) Permeability
The curves in Figure 2.10 are plotted for y,n4+1 = 1, 5, 10 and 75. The correspond-
ing values of RZE are 0.027, 0.38, 0.51 and 0.79 respectively. The slopes of RTZ(t)
are seen to be inversely proportional to the increasing permeability values, while the
asymptotic reflections are proportional to the increasing permeability values. There-
fore, the amount of overall reflection increases with the increasing permeability.

(3) Conductivity
Because an increase in conductivity causes attenuation in wave propagation, the tran-
sient response RTE(t) suffers a more rapid decrease with time, while the asymptotic
component is independent of the change. This can be seen explicitly in Figure 2.11
where o, = 0.01, 0.03, 4 and 10, respectively.

(4) Aspect angle
The curves shown in Figure 2.12 are plotted for 6;,; = 0°, 30°, 45° and 75°, while the
corresponding values of RZE are 0.11, 0.12, 0.14 and 0.19 respectively. Therefore, the
slope of the reduced reflection coefficient as well as the amplitude of the asymptotic
component increases with increasing aspect angle, and the reflection becomes more

dependent on its early time portion comming from the aymptotic reflection term.

2.5 Approximation of Interfacial Reflection Coefficients

It may be useful to obtain approximate forms of the previously derived transient re-
flection coefficients, as long as accuracy is maintained. Because the numerical compu-
tation of repeated time domain convolution integrals (needed for obtaining multi-layer
scattering as discussed in chapter 4) requires a significant amount of time, the total
computation time could be burdensome in real time applications. Also, the process of

finding the approximate forms gives some insight into the roles of previously defined

51



e e S S S D N PSP S S \0
-

=

~—

w
o
-—

-
P‘\ :
- 2
e deaaa iz
'Y "=
IUSIDPISOD UCNIDSPGH ISIDSBIISIU] PeoSNP®M 4O ePpn3giduasy




Amplitude of Reduced Interfacial Reflection Coefficient

Time [nsec]
Figure 2.9. Time domain reduced interfacial reflection coefficients for various values

of permittivity (TE polarization) : pn, = fns1 = po, €n = 2.59¢, 0, = 9.73 x 1073,
Ontl1 = 5.60 x 10—2[6/"”], 0i1 = 30°.

92



Qtl
= - -
on aD
=4 =2 =4
IUSIDIIISOD UonNDeREN ISIDEIezU) PeONpPer jo epnajjduuywy



10 T T I 1 1 I I 1
€
9
S
g
o 0% — mur=1 ;
§ _ == mur=5
° = mur=10
2 o mur=75
0
c 10"}
3 [
Q
@
t
3
£
310
4] L
3 [
8
14
0
3 105;
2 :
z i
£
q
104 | | | 1 1 1 1 1 1

Time [nsec]
Figure 2.10. Time domain reduced interfacial reflection coefficients for various

values of permeability (TE polarization) : u, = 1.5u0, €, = 2.59€, 0, = 9.73 x 1073,
€nt+1 = 1.706(), On+1 = 5.60 x 10'2[U/m], 9,‘1 = 30°.

33



15

10 T T T T l ' ! ! N
€
9
2 10 | -
5 100} ]
8 .
c 55 S - |
0 ’ Sss
1 50 Sso
0 5 . RN
9 10 + m” )
- ¢ ==
0 », S
@x 5"-‘ == e IS
E ~'6 T S LS
8 0 'Q"" T
tr 10 r ”"’ ]
g ™
£ ""'5,
3 ",
3 w0} . '
3 | — Cnd.=0.01[mho/m] R
T r = = Cnd.=0.03[mho/m] .
0 | +=+ Cnd.=4[mho/m] "'m,
] .o+ Cnd.=10[mho/m "
3 0" imhef ", )
- "
o M
E ",
< oA
10—15 | | 1 L L 1 1 ] ]

Time [nsec]
Figure 2.11. Time domain reduced interfacial reflection coefficients for various

values of conductivity (TE polarization) : p, = pn41 = o, €n = 2.59€0, €n41 = 1.70¢,
On+l1 = 5.60 x IO'Q[U/m], 9,‘1 = 30°.

o4



10
10 : T T T T T T T T T

10° . |
[ == Angle=0 deg.
= = Angle=30 deg.
. ' +=++ Angle=45 deg.
0 N Angle=75 deg. 1

10

T

10

Amplitude of Reduced Interfacial Reflection Coefficient
—r
=)

Time [nsec]
Figure 2.12. Time domain reduced interfacial reflection coefficients for various

values of incident angle (TE polarization) : p, = 1.5u0, €, = 2.59¢, 0, = 9.73x 1073,
Pn+1 = Mo, €nt1 = 1.70€g, Ony1 = 5.60 x 1072[05/m).

95



constants in the transient interfacial reflection coeflicient expressions. In this section,
therefore, the approximate forms for the transient interfacial reflection coefficients
(Dn+1 > 0and D, > 0 case) are derived, and the accuracy of the approximation
method is discussed.

There are two different approximate forms since the Dn+1 > 0 and D, > 0 case
has two different transient reflection coefficients according to the sign of the constant
P,. For each transient reflection coefficient, The approximations for large values of
the time variable t and small values of the time variable t are derived. Then they
are combined by using a pair of weighting functions to produce a smooth curve. For

convenience, the simpler reflection coefficient (for P, < 0) will be discussed first.
2.5.1 Casel: P <0
(1) Large t approximation

For simpler notation, let’s define the constants

C _ (Bn - Bn+1) V Dn
1 =

(1 - Dn)
o, — (Bu=Buw)’Dnv/Dy
2 (1- D,)?
2Dn(Bn+1 - Bn)
G = 2.121
Y (1-DJ)(1+ VD) (2120
and a function
Q(t) = e P {11 (3t) + I(3t)}, (2.122)
then (2.83) is rewritten as
RTE(t) = C\Q(t)u(t) + Cou(t) /00 e~ P00 (1) dx. (2.123)
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Using the change of variables u = P,(t — z), then z = _Tl’tg +t, and dr = —%%".

Therefore x = oc leads to u = oo, x = t leads to u = 0 and (2.123) becomes

RTE(t) = CIQ(t)u(t)—Cg%zu(t)/oooe_“Q(—i+t)du

P,
= QW) - Sutt) / T e {Q(t - - Q(t)} du
C, 0 g
+F2Q(t)u.(t)/o e “du (2.124)

Q

—P%Q'(t) /000 ue “du. (2.125)

This approximation is possible since for large P,, most of the contribution to the
integration occurs when u is small due to e™™ term. Also, f0°° ue *du = 1. Finally,

for large t,

(Bn - Bn+1)2DnV Dn
(Bn - ljan+1)2

(Bn - Bn+1)Bn\/Dn
(Bn - Dan+1)
B, — Bnt1)BaV/D, _ |
( (B — 1+)1)B ) PH{N(B) + (8 }u(t) -

(Bn - Bn+l)2DnV D e_Plt
(Bn - [)an+1)2

R™E(t) =~ Q'(t)

Qt) +

{8+ D150 + B9 uto

(2.126)
(2) Small t approximation
Recall that (2.83) originates from (2.75), then
RTE(t) = Cie P {5(Bt) + I)(Bt)} u(t) — Cse™Petu(~t)
—Coe  P2tu(—t) x e P {1, (Bt) + Io(Bt)} u(t) (2.127)
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For |P,| > |P\|, the e~f*'u(—t) term behaves like a —function by its peaking prop-

erty. Therefore,

RTE(t) =~ Cie P{I,(Bt) + Io(Bt)} u(t) — Coe P {1, (Bt) + Io(Bt)} u(t) + 0

~ (C1—Cpe Pt {0+ 1} u(t) = Ae~Plu(t) (2.128)

for small t, where A is a constant which will be determined later.

For |P2|%IP1I, —PQQ‘JPI and

RTE(t) = Cie™P'{1,(8t) + Io(Bt)} u(t)

—ChetPritu(—t) x e P {1 (Bt) + Io(Bt)} u(t) + CszeMtu(—t)

Q

Cie P {0+ 1} u(t) — CoeP'u(—t) x e {0+ 1} u(t) + Cre™tu(~t)

%

Cie~ Pitu(t) — ==ePt + CseP'u(—t)

for small t. However, it has already been shown that the exact form does not have

any non-causal term. Therefore,

RTE(t) ~ CiePu(t) — %—ep”u(t) ~ Ae” Prtu(t) (2.129)
1

For |P,| < |P,|, the e~P1tu(t) term has the role of the §—function, and

RTE(t) =~ Cie Ptu(t) + Coe Ptu(—t) + Cie P2 'u(~t)

~ ACs;e Ptu(t) (2.130)

where the second and third terms must be discarded to maintain causality. In a

conclusion, the small t approximation for the P, < 0 case is given by

RTE(t) ~ Ae~Ptu(t). (2.131)
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(3) Combined approximation

From the large and small t approximations derived above, a direct combination is

(Bn - Bn+1)Bn V Dn

Ropror(t) = 5= ppy B0+ h(@0}ult) -
(B~ Boet) Do/ -1 (B, + D130 Buo(0) ()
+Ae Prly(t). (2.132)

The most intuitive way to determine the constant A is using the function value of

the reduced reflection coefficient at t = 0, i.e. by letting Rapp,w(f)‘ = RTE (1)
t=0 t=0

and

_ (B - n+1)B\/_
RZPIf)ro;r( ) £=0 - (B - D Bn+1) {0+ 1}_

_(Bn - B"“zD‘/—{(o 2)+B} + A

(B D Bn+1)
(Bn - Bn+1)BnV Dn
(Ba — DuBs1)

" (Ba = But1)*DuV/Dr (Bas1 +3By)
(Bp — DuBn11)? 4

(2.133)

RTE t(t) — (Bn - Bn+1)\/D_n _ (Bn - Bn+l)2Dn\/§; % 0
ezact ], (1- D,) (1- D,)?
+ 2Dn(Bn+l — Bn)
(1= Dn)(1 + vDy)
(Bn — Bn-H)\/D—n

(1+vDn)?

(2.134)

To evaluate A, equate (2.133) and (2.134) to give

(Bu = Bus1)V/Dn _ (Ba = Bn11)Bav/Dn
(1+ v/Dy)’* (Bn = DnBu)

59



(B Bn+l D V n+1+3B +A
( -D Bn+l) 4 .

So,

4 = (B” - BrH—l) V Dn (Bn - Bn+1)Bn V Dn

]. + D 2 (B -D Bn+l)
(B - Bn+1 D V n n+1 + 3Bn (2135)
(B -D Bn+1) 4

Therefore, for P, < 0, an approximate form is given by

(Bn - Bn+l)Bn \% Dn

RO~ B DBy ¢ B0+ h(5n)}u(t) -
(B( B" B";;)Bif it {(Bn + %)Il(ﬁt) + Bnlo(ﬂt)} u(t)
{(Bn - Bn+1)\/lTn _ (Bn - Bn-H)Bn\/lTn
(1 + \/_ (B -D Bn+1)
+ (BEIB,, BHZ);B?H\)/_ ntl : 38,) } e Prtu(t) (2.136)

Let’s consider the accuracy of the approximate form (2.136). Actually the large t
approximation is exact except for the term in (2.125), which is valid when ¢t > u/|P,|
(or |Py|t > u) is satisfied. Note that the constant power P, is not involved with
the large t approximation. For the small approximation, of course, the §—function
approximation of exponential term contributes to the error, especially when the ratio
|P1|/|P2| is not sufficiently big or small. However, the selection of the constant A

is

Rlarge t approz(t) + Rsmall t appro:r(t) = RZxE(‘zct (t) t=0

using R
t=0 t=0

approz( )

t=0
the main source, because the function values from the large t approximation, which

should be excluded in the small t interval (including ¢ = 0), is imposed on the

t=0

early time period. Therefore, the constant A should be given by RZE_(t)

exact

RTE . approz(t) _ (Ba=Bni)yD ™ only. However, this choice of A has trouble
t=0 (1+vDy)*
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as well, since it will introduce a discontinuity at the junction of the small t and large t
approximations. Therefore, in this study, a pair of weighting functions are introduced
to avoid the discontinuity. From observing the derivation process the approximate
transient reflection coefficient, it can be realized that the constant P, behaves like
a ‘switch’ which turns ‘on’ and ‘off’ the validity of the large t approximation, as a
power factor of an exponential function. Also, note that P, does not appear in the
small t approximaion. In addition to these, the product P,t provides a normalized
time axis. As a result of these observations, a pair of weighting funcions is selected

to combine the large and small t approximation functions as

Wp(t) = (1-e Pl

Ws(t) = e colfalt (2.137)

In this definition, W (¢) is a weighting function for the large t approximation, while
Ws(t) is for the small t approximation. The constant transition factor a determines
the transition time from small t approximation to large t approximation. That is,
the bigger value of a means an earlier transition from the small t to the large t
approximation. Although the choice of a has some flexibility, in this study, the
selection method is as follows. First, set the value of reflection coefficient at the
‘transition’ time as the exact transition reflection coefficient which is given by, for
example, 0.5 RTE (1) —y Next find the time corresponding to the function value,

say, tirans- Then a is obtained by letting e~¢lF2ltrans — (.5,

In summary, the complete approximation for P, < 0 is given by

R50) = it |G B 1)+ b0t -

(Bn - Bn+l)2Dn Vv Dn e_Plt
(Bn - Dan-H)2

{(Ba+ 160 + Batoon puto]
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(Bn - Bn+l)V D”e—Plt '

W=7 NiNE u(t)
— Ws(t)————(125‘/\/13_:)25”1‘11(0
—I’I*’L(z‘)%\/—__% [%f”ﬂ {I,(3t) + Iy(31t)}
+}@2(f—ljp—)e-”“ {(Bn + -1-)11(,%) + B,Jo(ﬁt)H u(t). (2.138)

A example of the transient reduced interfacial reflection coefficient for this case is
plotted along the normalized time axis of a| P,|t in Figure 2.13. It can be observed that
the largest error occurs in the transition region as expected. Small t approximation
shows relatively poorer performance than large t approximation, since it relies on one
exponential term only. Also, it is observed that the large t approximation is well

matched with the exact reflection coefficient curve in large t interval.
252 Casell: >0

(1) Large t approximation
Using previous definitions for the constants and the function Q(t), (2.74) is rewritten

as
RTE(t) = C1Q(t)u(t) — Cou(t) /te_Pz('_I)Q(z)dz + CseP2tu(t). (2.139)

Let u=Py(z —t), then z = % + t and dz = %&. Also, z =t for u = 0 and z = 0 for
2 2

u = —Pyt. Thus (2.139) becomes

0

RTE(t) = CiQ(t)u(t) — Cgu(t)/ e"Q(x)dz + Cse~P'u(t)

—Pyt
= C1Q(t)u(t) — %u(t) /_P te”Q(t + P%)du + Cze P2u(t)
0
= Q) - Zult) [ {Q(t ) - Q(t)} du
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- Exact
= = Approximate .
+=++ Large t approx.
----- Small t approx.

Amplitude

1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20

3
o

Normalized Time a|P2]t
Figure 2.13. Transient interfacial reflection coefficient for P, < 0 (TE polariza-

tion) : p, = o, €n = 2.59, on = 9.73 X 1073[U/m], pns1 = Ho, €as1 = 1.7¢,
Ont1 = 5.60 x 1072[0/m)], 6;; = 30°, P, = —0.59 x 10'°, and a = 0.37.
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0
—?—211(1‘) / e"Q(t)du + Cze~P'u(t), (2.140)
and the approximate form is

RTE(t) =~ CiQ(D)u(t) — 5 (1— e »)Q(t)u(t)
——u(t) /0 e“ Q' (t)du + Cse™Ptu(t) (2.141)

for large t. This can be rewritten as

RTE (1) = (C— Q) + LePQt)u(t)

approz P2 ]32

—%Q'(t)u(t) /0 e*du + Cse™P2u(t)

—Pst

C C2 — Pt —Pat,
= (01 - E)Q(t)'lt(t)erze PQ(u(t) + Cse™ ™ u(t)

Q (t) {1 — (Pot + 1)e™}

Q(t) = —Pe Pt{I(Bt) + Ih(3t)} + Be~ P! {Il(_ﬁt) - %11 (3t) + 10(,3t)}

= ’Plt{(B + )[1(3t)+B Io(3t)} (2.142)

Therefore, the large t approximation of transient interfacial reflection coefficient for

P, >0is

> ~ (Bn —Bn+1)Bn\/D: (B Bn+1) D, \/_n — Pyt
)~ { e iy pey ™ |

e~ bt {Il(Mt) + Io(Mt)} u(t)

2 2
(B(B an-)l BD V) {1_ P2t+1 Pot}e Pit o
- n+1
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{(Ba+ B 2By 4 (Bt =Bl b

2Dn(Bn+1 - Bn)

- Pyt
+(1 "D+ \/D_n)e u(t). (2.143)

(2) Small t approximation

It has been shown that (2.74) can be weritten in exacltly the same form as (2.83),
and therefore also as (2.75), as long as 6.611.4 in [10] is applicable. Let’s consider the
required condition for this conversion. As mentioned earlier, to use 6.611.4 in [10],
B,i1 > B,and 0< D, <1, or B,;; < B, and D, > 1 must be satisfied. But, the
given assumption for this case Py = (B, — D, Bn41)(1 — D,) > 0 does not produce
any relation for B,, and B, ,; that makes 6.611.4 applicable, since it is equivalent to
either one of 1 > D,, and B,, > D,B,,,,or 1 < D,, and B,, < D,B,,;1. On the other

hand, considering

_ (Bn+l + Bn) Bn - Dan+l
Pi=Ph = 2 1- D,
_ (1 + Dn)(Bn+l - Bn)
- =P} , (2.144)
if P, > P, then 6.611.4 is applicable. Then,
RTE(t) = Cie™ P {Ii(Bt) + Lo(Bt)} u(t)
+Che Ptu(—t) x e P {1 (8t) + Io(3t)} u(t)
—Cye Pty(—t). (2.145)

If the ratio P,/P, is sufficiently large, then the e=F'! term, by its peaking property,

provides a good approximation of a §—function. Thus

RTE(t) =~ Cie Pt {I,(8t) + Ip(5t)} u(t)



+Che~P2tu(t) % 6(t) — Cse™ P2tu(—t)

~ Cie Ptu(t) + Coe P2tu(—~t) — Cse P2tu(—t) (2.146)

Previously, it has been proved that RTE(t) is purely causal for D,i1 > 0and D, >0,
and thus the non-causal components may be neglected. Consequently RTE (1) =~
Ae~Pity(t) for small t, where A is a constant which will be determined later.

When P, < P, 6.611.4 is not applicable. Since P, > P, e "' =~ §(t) and (2.74)

is approximated as

RTE(t) = Cie P {I,(8t) + Io(Bt)} u(t)
—Che~Petu(t) x e P {1 (Bt) + Io(Bt)} u(?)

+Cse” Ptu(—t)

Q

Cie Pt {0+ 1} u(t) — Cyé(t) xe Pt {0+ 1} u(t) + C3-0

Ae Prtu(t) (2.147)

Q

where A is a constant. Consequently, the small t approximation for P, > 0 includes

the Ae~Pitu(t) term only, and the constant A is obtained by letting RTE_(t)| =
t=0

PTE
Rsmall t approz(t) = ’ and

0

_ 2Dﬂ(3n+1 - Bn)
T (1-Du)(1+VDn)

As a result, in a way similar to the P, < 0 case, the approximation of a transient

(2.148)

interfacial reflection coefficient for P, > 0 may be constructed from the combination

of the large and small t approximations using the same pair of weighting functions

RTE(t) ~ Wi (t) x
{ (Bn - Bn+l)BnV Dn + (Bn - Bn+l)2DnV Dn e..pzt} x
(Bn - Dan+l) (1 - Dn)(Bn - Dan+l)

e—P,t {I]((Bn+l - Bn)t) + IO((Bn+l - Bn)t)} U(t)

2 2
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Bn_ n+ 2l)nvl)n
! B BDI)B E {1- (Pt+1)e™}e ™ x
n =~ nbn+l

1 (Bn-H - Bn)
{8+ =)
2Dn(Bn+l - Bn)
+ e
(1 - Dn)(l + \/ﬁn)

t) + ano((B"“Q—"B")t)u(t)}

2Dn(Bn+1 - Bn)

—P; 7 e
B RITERY, 2%

Pltu(t)

(2.149)

where Wy (t) and Ws(t) are given in (2.137). An example of the approximation for
P, > 0 is shown in Figure 2.14. In comparison with that shown in Figure 2.13,
the combined approximation shows relatively better result in this example. The
individual errors from each approximation are cancelled out each other in transition
region, and thus the combined approximate function provides a good match with the

exact reflection coefficient curve.
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— Exact
= = Approximate T
+=+ Large t approx.

----- Small t approx. | _
(]
T
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<

-6+ |

-7t _

-8t -

-9t -

-10 ! A I ! . l l l |

0 2 4 6 8 10 12 14 16 18 20
Normalized Time a|P2]t
Figure 2.14. Transient interfacial reflection coefficient for P, > 0 (TE polarization)

D fin = Mo, €n = €0, O = 0[U/m], piny1 = po, €ny1 = T2¢0, Ony1 = 4[0/m], 6,y = 30°,
P> = 0.64 x 10'° and a = 0.65.
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CHAPTER 3

INTERFACIAL REFLECTION COEFFICIENTS FOR
TM-POLARIZATION

3.1 Introduction

In this chapter, the transient interfacial reflection coefficient for a transverse magnetic
(TM) polarized incident plane wave is derived. For a TM polarized uniform plane
wave, the direction of the magnetic field, rather than that of electric field as for
TE polarization, is parallel to the interface. By a similar approach to that for TE
polarization, the frequency domain formula is derived first, and its inverse Fourier
transform is obtained after reducing and classifying the frequency domain reflection
coeflicients using algebraic manipulation with the previously defined branch cuts.
The resulting reflection coefficients for the ratio of incident and reflected electric
field are similar to those for TE polarization but more complicated as expected.
The theoretically derived transient forms are verified by numreical comparisons with
the IFFT of the frequency domain expressions. Finally, the dependence on various

parameter sets is discussed.

3.2 Frequency Domain Formulation of Interfacial Reflection Coefficient

3.2.1 Derivation

The geometry for the frequency domain formulation is shown in Figure 3.1. From

Maxwell’s equations,

VxE(z,2,w) = —jwpH(z,2,w) (3.1)

Vx H(z, z,w) = (0, + jwey)E(z, 2,w) (3.2)
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Regionn : (U, , €,, Oy) VY / Region n+1 : (U415 Ensr s Onel)

Transmitted Wave

Reflected Wave -

Interface n

Figure 3.1. The incident, reflected and transmitted TM-polarized plane wave at an
interface.
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and the vetor Helmholtz equation for the magnetic field of region n is
V2H(z,z,w) — ~2H(z,2,w) =0 (3.3)
where the propagation constant for the n-th layer is given by

'7121 = jw.un(an +jLUEn)

= —wllnen + jWinOn. (3.4)

For TM polarization H = §H, and (3.3) can be rewritten as

( o* 0

a2 " 5‘) Hy(z,2,w) = y2Hy(z, 2,w) = 0. (3.5)

The solution for the magnetic field is
H(z,z,w) = §H,(w)em=*+m:= (3.6)
where the components of the propagation constants are defined by
Yo = Vnz + Yoz (3.7)

Only if region n is the first region of a multi-layered material and this region is lossless
will we speak of an angle of incidence and an angle of reflection. Otherwise, we will

use v:.,v:,,7., and 77,. For the incident wave,

Tnz = 7311 = Yn cos iy (38)

Ynz = A/riu = Tn sin eim (39)
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while for the reflected wave

Ynzr = Ynz = —¥n €OS by (3.10)

Ynz = '7:12 = Tn sin grn- (311)

Here 6, ,, is the angle of incidence and 6, , is the angle of reflection, as shown in Figure

3.1. The electric field in region n is obtained by

_ 1 )
E(r,z,w) = ——V x H(z,z,w)
On + Jwhin
_ jwézn {_iaHy N éaHy}
V2 0z oz
jwiin Ho(w . .
— ‘w {_I»\,/nze7ﬂxr+7nzz + z,),nze'7n11+’7nzz}
Tn
= —j]—wug%z Hy(w)ermsxtm:z 4 éj—wl;';%z Hy(w)er==t1m=2_(3.12)
Tn n

In summary, the fields in region n can be expressed as

Hi(r,z,w) = gHio(w)e":"”":"’

1 : . .
Ei(l‘, z,w) — _j]wﬂ7;7112Hw(w)e’ﬁ.zf#’ﬂ.zl
Tn
» 1
+2]u)/;r;'7nx Hl_o(w)e“y”.r-kyn:z (313)
n
H.(z,2,w) = —§Ho(w)emm=tm:*
- ,YT r r ,},T
E.(z,z,w) = ijw"; H;o(w)em=*+n:? —é],w"; H;o(w) (3.14)
n n

Notice that, unlike with TE polarization, the direction of the reflected magnetic field
is reversed from that of the incident field while the electric field maintains the same

direction at the interface.
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In region (n+1), (3.3) is
V2H(z,z,w) — v2, H(z,2,w) =0 (3.15)
where the propagation constant is

'7'721+1 = jw#n+l(0n+l+jwen+l)

= _w2/1n+16n+1 + jwun+lart+l~ (316)

Then, the vector Helmhotz equation for the magentic field in region n+1 (i.e., the

transmitted magnetic field) is given by

0? 02
<a5 + ﬁ) Hy(z,z,w) —¥2, Hy(z,z,w) = 0. (3.17)
This has the solution
Hy(z,2,w) = §H(w)erm+t=Etme1: (3.18)
where the components of the propagation constants are defined by

2
Tny1 = '7721+1,x + 7’2+1.z- (3.19)

When both regions n and n+1 are lossless, we may define a transmission angle 8, such

that

Tn+l,z = Tn+l cos 6, (320)

Tn+l,z = A/n-HSinet' (321)
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The transmitted magnetic field is given by

]W.un+1

Efz,z,w) = V x H(z,2z,w)
4n+l
]u'ﬂn+1 { aHy 8H }
= —— +:=Y
n+1 0z Or
.jw/'l'n-HHto(w) ~ .z . .
= ") {—I7n+l,ze‘yn+l':1+7n+l'" +z,.,,n_{’l’re’Yn-H.x-‘C+7n+1,-z}
'n+1
JWhn+1 .
= —I—L’)II+12HCO( ) TntlzTHIns1.:2
n+1
L J@Hn1 . .
+2 2 - Tn+1 IHlo( ')€7n+1'11+7n+1‘.2- (322)

n+1

In summary, the fields in region (n+1) can be expressed as

FI[(:L‘, 2z, (,U) = gHto(w)e'7n+l.zI+’7n+l,zZ
- w
Et(I,Z,CJJ) = _"] Nn+1’y"+1 tho( )e7n+1.zl‘+‘7n+1';z
7n+1
W
+z ;7 //ln+1'7n+leto( )e”ﬂ+1,:x+7n+l':z (323)

7n+1

To obtain the ratio of the reflected and transmitted electric field amplitudes,
two boundary conditions are applied. The first one is the boundary condition for
continuity of the tangential components of the magnetic field at the interface. That

is, for all z,

or,

Hy(w)e™? — Hyo(w)e™? = Hp(w)er s, (3.24)
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Then, to satisfy the above boundary condition, the equations

AT - A
’Ynz_nlnz - In+1,z

H,’o(u))—Hro(w) = Hto(w)

must be satisfied. For lossless materials, (3.25) becomes

YnSin6; = y,sinf, = Yn+1Si0 0,

and thus

01' = 9,.
Tn sin 03
Tn+1 sin 6;

(3.27)

(3.28)

(3.29)

which are Snell’s law of reflection and refraction, consistent with the result derived

in Chapter 2. From (3.7), (3.25) and considering the direction of propagation,

T roo__
Ynz = ~Ynz = Tnz-

(3.30)

The second boundary condition requires the continuity of tangential electric field on

the interface. That is, for all z,

Ei .(t=0")+E(2=0") = E.(x=0%)
or,
 JwiL )WL . Jw L
:;x%zHl’O(w)eﬂuz - ';I],‘,‘lanro(w)e%:z = "."71+1,1“¥27H1Ht0(w)67n“':z'
n In 'n+1
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Using (3.30), this equation simplifies to

Hn Hn n p
B e Hiow) + S yus Hyolw) = 228 Hig(w). (3.32)
T Tn Tn+1
Alternatively,
Holw) + Hoolw) = P20 g () (3.33)
Nn7rlx'7n+l

Now, multiplying (3.26) by % and subtracting (3.33) yields
HnUnz n+1

lln+1'\,fn+l.r’\!;21 Hn+1Tn+1,z /n . )
neVinetadn ) gy o (Bnetdneiadn ) gy 2 g (3.34)

, 2 2
/1n'7n1711+1 HnYnz) In+1

Therefore, the frequency domain interfacial reflection coefficient for TM-polarized

plane waves is

H,o(w)
Hio(w)

B Ynr1275 fn+1Ynt1,272
ﬂn7n17n+1 /—Ln')'nx”/nq-l

,Un+1'7'n+1,z(w)72z(w) Y,z (W )'121+1
ﬂ71+17/71+1,1(w) 121( )+ﬂn’)111( )/n+1

R™ () =

(3.35)

This is a generalized form of Fresnel’s reflection coefficient for TM-polarized incident
and reflected waves at an interface in a layered structure. Note that the form of

RTM () is the same as that given in [1].
3.2.2 Classification of frequency domain coefficients

The Fresnel’s coefficient given by (3.35) can be classified according to the signs of
some constant values included within it. Therefore, layer constants may be defined

as

A, = o,/ (3.36)
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Dn = (ﬂ,,fn—u1€18i!129i1)/f721 (3.37)

B, = pno,/é. (3.38)

Note that 4, and B, are always positive, and the definitions of layer parameters
are slightly different from those for TE polarization. To compute the square root
functions, the same branch cuts described in the TE case are applied. This depends
on the signs of A,, l-),,, B, Ansts Dn+l and Bn+1.

Denoting s = jw and using the defined layer constants, (3.35) may be rewritten

(s + An)\/5(Das + Ba) = (s + Ans)\/5(Das15 + Bar1)
(s+ A,) S(Dns + B,,) + (s + An+1)\ﬁ(bn+ls + Bn+1)

R™(s) = (3.39)
Now, the frequency domain reflection coefficient can be classified to four different
forms according to which branch cut is needed. This depends on the signs of the
layer parameters D, and f)n+1. The algebraic manipulations with the branch cuts

used in the derivation processes are given by (A.1) and (A.2).

(1) Dpi1>0 and D, >0

—(s + Ap)\/ Dpi1 /5 s+§ﬂf—l+(s+‘4n+1)\/l~)n\/§,/s+gf
~(s+ Au)\/ Das1 /5y 5 + B2 L— (s + A1) VD5 [5 + B

RTM(S) —

Simplifying gives

] (s+ An)y/s+ 2 (s + Ant1) g“
RTM(s) = Dn1 \/ \/ (3.40)

_(s+An),/s+ "*1 .s+An+1\/ \/ 4.
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(2) Dpyy <0 and D, <0

l+1
RTA"(S) (5+ Aﬂ lDﬂ+1 \/— ID 41l :F] s+ An+l ID f |D |
+5(s + An)\/ | Dns1] V54 /s — w"i\ £ j(s + A1)/ 1Dalvs /5 = 3
Simplifving gives
(3+An) S—h—(S*'An-H)\/M S_él‘_
RT)\[(S) — [Dny] |Dn 1] [Dn| (341)

Bn+l Dn \/ _ 5 '
(s + An) V 5= [Das1l + (s + Ans) \/il) +1l 5 ﬁx-l

(3) Dn+1 >0, and D,, <0

—(5+An) |Dn+1|\/§ 3+|_gﬁ$j(3+‘4n+l) |[)n|\/g

RTM D\
(s) = = B . = By
(s + Ay 1Dart V5[5 + Buth (s + Ann)y/IDalv/5yf5 — Bn

Simplifying gives

n+1 : / {D" B
(S+An)\/3+|Dn |ij(s+An+1 5. +l|\/s e .42
(s+4),/s+ o 2F](s+4 —-—]—\/s Ba .

“in n+1) |Dnt1] | Dn|

(4) Dn+1 <0, and D, >0

j(s + A/ | Dns1]Vs4 /s — |g"jl+ s+ Ans1)\/ |DalV/5 ‘Dl

:tj(S + A ]Dn+1 \/— !D":l[ (3 + .4"+1) |Dn \/g s+ “l; |

RTM(S) —

R™™(s) =

Simplifying gives

_ Basr Dn| By

(s +An)y/s — pi FIlbs + A"“)\/lum[ $ ¥ Tbu]
Bn+l

(s + An) V3™ Bunl £ (s + Ansi) \/an+1| S+ Tbﬁ

In each of these expressions the upper sign corresponds to w > 0 and the lower sign

R™(s) = (3.43)
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to w < 0. Note again that the branch cuts defined in section 2.2.2 have been used

throughout for the square root functions.
3.2.3 Reduction of the interfacial reflection coefficients

Observing (3.40)-(3.43), it is realized that there is a constant offset value inside of
each frequency domain expression, as there was with the TE polarization. Therefore,
the constant offset value, the asymptotic reflection coeflicient, should be extracted
first.

To make the (3.40)-(3.43) more readable, let

D — |Dnl — 6‘;;!H-l |.u'116n - i€ SiIl2 0i1l
l | Dn 1] €2 |Bn+1€nt1 — H1€1 sin? 61
B HnOn
" | Dy | |in€n — p1€; sin? 6;4 |

and take the limiting values at infinite frequency. Then,

(1) Dypi1>0and D, >0

(s+ A)Vs+ By — VDa(s+ Ani1)Vs + By
(s 4+ Ap)V/s + Bpy1 + VDn(s + Api1)Vs + By

R™ (s) = (3.45)

lim RTM(s) = - VD (3.46)

w—00 _1+‘/Dn.

(2) Dpy1 < 0and D, <0

RTM () = (s 4+ An)V/S = Bny1 — VDn(s + Ans1)V's — By (3.47)

(s 4+ Ap)VS — Bny1 + VDn(s+ Api1)Vs — By’

lim RTM (s) = L=V Dn (3.48)

w20 1+vD,
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(3) Dpy1 > 0 and D, < 0

(s + A)vVs+ Bus1 £ jVDn(s + Ans1)Vs — By

RTM (5) = , 3.49
( ) (5+An)VS+Bn+1¥jVDn(3+An+1) S_Bn ( )

. 1+35vD
lim RTM(s) = — Y1, 3.50
lim RT(s) = 21 (3.50)

(4) Dus1 < 0 and D, > 0
RTM (s) = (s + An)V/s = Buy1 F jVDn(s + Ans1)Vs + By (3.51)
' (s + Apn)V5 = Bu1 £ ivVDu(s + Ans1)Vs + By, '

/Do
lim RTM(s) = LIV (3.52)

w00 1+3vD,

In these expressions the upper sign corresponds to w > 0 and lower sign to w < 0.
Next, the obtained asymptotic reflection coefficient have to be subtracted from the
original RT™ (). Let’s denote the asymptotic reflection coefficient as RTM and define
RTM(5) = RTM(s) — RTM  then

(1) Dpyy >0 and D, >0

(s + An)VS + By — (s + Ans1)VDaV/s+ B, 1-+D,
(5 + An)V/5 + Bag1 + (5 + Ans1)VDav/s + B, 1+ VD,
2D,  (s+Au)Vs+ Buii — (s + Ans1)Vs+ Bn
1+ VD, (s+ An)Vs + Boyi + (s + Ans1)VDrV/s + B,

RTM (S) —

(3.53)

Eliminating the square roots in the denominator of (3.53), gives

2Vl)n (S+An)VS+Bn+1—(3+An+l)V3+Bn
1+ D, (s+ An)%(s + Bns1) — Dp(s + Ans1)%(s + By)

x{(s + An)V/s + Bny1 — \/ID—n(3+An+1)V3+Bn}~ (3.54)

RT™(s) =
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In the above equation, the numerator is given as

(s + 4,)%(s + Bay) + VD 4n+1 (s + B,)

—(14 V/Dp)(s+ An) (s + Ans1) Vs + Boy/5 + Bniy

—_
93
[S)]
(@]

~

while the denominator can be arranged as

(1= D,)s* + {2(A, — 2D, Any1) + (Bnyy — By)}s?

+{An(An + Bn+1) - DnAn+l(An+l + Bn)}s + (Alen+l D Ar21+lB )(356)

Zeroes of the denominator exist, therefore (3.54) can be expanded using partial frac-
tions and a standard inverse Fourier transform is available for each of those fraction
terms. However, that would be quite complex. So, the special but simpler cases of
(3.54), i.e. when either one of the both layers has no conductivity, and D,;; > 0 and
D, > 0 will be discussed in this study.

Assume that 0, = 0, then A4, = B, = 0 and (3.45) becomes

RTM(5) = V$vV/s+ Bui1 — VDo(s + Anyi) (3.57)
\/5\/s+Bn+1+\/_s+An+1 '

Now, the asymptotic value still remains the same and is subtracted from the reflection

coefficient (3.57) to obtain the reduced form as

RTM(S) _ VS + Bnti — VDu(s + Ant) B 1-+vD,
VS+Buji + VDu(s+ An1)  14+VD,
2VD,  /5V5+ Bas1 — (s + Ant) (3.58)
14+ v/Da \/5y/5+ Brs1 + VDu(s + Ans1)’ '

Eliminating the square root terms in the denominator of (3.58), gives more convenient
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form to use partial fraction expansion as

RTA[(S)
_ 2y D, {\/g\/ s+ Bn+l - (5 + An-H)}{\/EVS + Bn—H -V Dn(s + An+1)}

1+\/Dn S(3+Bn+1) _l)n(s"'An-H)2
_ 2/ D, (Bnt1 — Ans1 + AnivDy)s + A121+1 v Dr

(1+vDo)(1 - D,) 52 = WadoeiBany g Dodosy

2V D, A, B,
+ st ) )y fs¥ Ban | (3.59)
1-D, §2 — 2Dn‘4n+l’"Bn+ls _ DnAtyy S
1-D, 1-Dy

Known inverse Fourier transform pairs are available for all terms of (3.59). To make

it more readable, denote the constants in the numerator as

E = Bn+l _An-H +An+1VDn

F = A2,,\/D, (3.60)

and the costants in the denominator

2l)nAn+l - Bn+1
1-D,
DA%,

Also, the common denominator of (3.59) can be expressed as (s — P,)(s — P,) using
the two roots of the equation s? — bs + ¢ = 0. It is necessary to check the signs of
the constants before finding P, and P,, because if they have certain restriction on
the signs, then that will confine the location of the roots in the complex plane. Let’s

examine

£ 02
b Un+1{€n(2unfn+1 - lln+1€n) — 265414161 SID 91‘1}
2 i 02
611-§-l€n(ﬂn+1€n - ;unfn+1) - (521 - 6n+l):ulel sin 01‘1
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) 2 2
Dy jins1€n41 — pr€8in” 0 €0n+1

c = , (3.62)
fn+lfn(,un+lfn - .U'nfn-H) (62 - 6rzH-l),ulel 5”12 gil 5721+1

Thus b and ¢ do not have any restriction on their signs even for the special case of
Hn = Mns+1 = M1, and P, and P, can be any type of number. Using the partial fraction

expansion, the frequency domain reflection coefficient (3.59) is rewritten as

5(3 + An+1)
Dy (s — P)(s — P,)

2V D, Es+F +2\/_
(1+ vDy)(1 - P)(s - P)

2\/_n
(1+vDn)(1 - n){S—P1 S—Pz}
12\—/; {s—Pl sS_K;az}{l- HTB"“} (3.63)

and the constant coefficients are defined by

RTM (S)

K, = Es+ F :EP1+F

s— P |,_p P - P
K, = Es+ F =EP2+F

s—h |_p P-hH
K, s+ Anp _ P+ Anq

s— P =P P -PF

s+ Ania P+ A,y
K, S_P . = ——P2 —p (3.64)

Notice that K; = K} and K4 = K; where K* indicates a complex conjugate of K.

The roots P, and P, are obtained as

P] = (b+ Vb2 —40)
P, = (b- Vb2 —4o). (3.65)

It should be noticed that the roots are in the relation of a complex conjugate pair, i.e.

P, = P. Tt has been already shown that b has no restriction on its sign. Consider
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the sign of

(2D71An+1 - Bn+l)2 4‘4?1+1
(1- Do) D, -1
4(D;21 - Dn + 1).’42 1 + Bn+1(Bn+1 - 4DnAn+1)

= 771 Dy (3.66)

¥ —4c =

where 4(D2 — D, + 1)A2_| > 0 always, and

Hn+10n+1
Bns1(Bny1 —4DnAny) = —
|ttn+1€ns1 — pi€ sin® 6y |

2 .2
_4an+1 €1 Un€n — [L1€1 SIN° 0;;
2 )
€n+tl  €n | Hns1€ns1 — M1€18ID° 05
2 .2
On+1 {,Un+1€n — 4€np1|pin€n — 161 SiD 91‘1|}

)
€nllnt1€nt1 — H1€1 SID 9;‘1]

(3.67)

The definition (3.67) can have any value, even for p,;; = ., = 1. As aresult, b2 —4c
can have any sign, and therefore P, and P, can be any type of number.

Assume that 0,4, =0, then A, ;) = B,4) = 0 and (3.45) is simplified to

(s+4n) = VDuv/sVs + B,
(s + An) + VDn/sV/s + Ba

R™(s) = (3.68)

Observing this expression carefully, it can be recognized that by replacing A,, B,
and D, with A, 1, B, and 1/D,, respectively, RT*(s) for 0,,, = 0 is equivalent to
—RT™(s) for 6, = 0. That is, the reflection coefficients for both cases are in ‘dual’
relationship. Therefore, it is expected that the transient reflection coefficients for

both cases have the same relationship.

3.3 Derivation of Transient Interfacial Reflection Coefficients

The transient forms of the frequency domain interfacial reflection coefficients are given

by the inverse Fourier transform. Because the asymptotic reflection coefficients RTM
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are constants in the frequency domain, their transforms are simply given as delta-
functions multiplied by the constants. Let’s denote them by RZM(t). For D,y > 0

and f),, > 0,

RTM(t) = F-‘{nm R”’(s)}

wW—00

1-+vD,.

and the resulting transient interfacial reflection coeflicient is given by

R™(t) = F'{lim R™(s)} + F~' {R™(s)}

w—00

_ 1= \/IT"(S(t) + RTM(1). (3.70)

1++vD,

By the ‘dual’ relationship of 0,, = 0 and ¢,,,; = 0 mentioned earlier, only the transient
interfacial reflection coefficients for o, = 0 will be derived. Then, what is needed to
obtain the transient form for the dual 0,4, = 0 case is just taking negative sign of
the obtained transient reflection coefficient for o, = 0. The transform pair for each
term in (3.63) can be found in Appendix B.

Since P, and P, can be any number, real or complex, the transient reflection
coefficient has five different forms depending on the roots of the frequency domain

denominator. Let’s denote

P, = Re{P,} = Re{P,}

P, = Im{P}=—-Im{P}. (3.71)

From (3.64), the constants K, K, K3 and K, are generally complex numbers as
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well, and using their complex conjugate relationship, let

K, = Re{K,} = Re{K,}

Ky = Im{K\}=—Im{K»}

Ks = Re{K;} = Re{Ky}

Ky = Im{K3} = —Im{K,} (3.72)

and denote 3 = "T“

(1) When P, and P, are complex numbers, and P, < 0,

the transform of (3.63) is given by

2v/ D,
(1-D,)(1+vD,)

ff— (K3 (5(0) + Pau(t)) + Kuc™ (8(t) + Pau(t)}]

(=B3)e P {1, (3t) + Io(Bt)} u(t). (3.73)

RTM (1) {K ePt + K, epzt}

Here I,(t) is the first kind modified Bessel function of order n. Each term in this

expression can be simplified using (3.71) and (3.72) as

KieP' + Kpe? = Re{K}e ™18 4 jIm{K, }e T8¢ 4
Re{K,}ePr T8t — jIm{K, }ePr+iBt
— KlrePrt(ejP,t + e—jP,t) +jKliePrt(ejP,'t _ e—jP,l)

= 2¢PY(K\, cos Pit — Ky;sin Pit), (3.74)

K3eM'o(t) + Kqe™'5(t) = K3d(t) + Kad(t) = 2K3:6(t), (3.75)
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and

K3PieP' + K P = (K + jK3) (P, + jP)ePr it 4
(K3 — jK3) (P, — jB,)e™ 7P
= "' {K5 P (2P + e77PY) — Ky P(e7P + 771
JK3 PPt — e7P) + jK3 P (17 — €771}

= 2(.’Prt {(A’grpr - I(gl‘})i) COos Rt - (I{g,-Pi + A’gipr) sin P,t} .

(3.76)
Finally, the transient interfacial reflection coefficient is
RTA[(t)
= 4Dy eF' (K, cos Pit — Ky, sin Pit)u(t) + 4V Dn [K5,0(t)
(1-D,)(1+ VD) 1-D,

+ et {(K3rPr - K3iPi) cos Pit — (K3,Pi + K3iP,-) sin Rt} u( ] *

(=B)e P {1,(8t) + Io(3t)} u(t)

_ (I_D‘:ﬂ 757" (K cos Pit = Kgsin POu(t)
- Koo 1,50 + 130} u()
‘iﬁ_‘/D_(Kg,P KuuP)ePrtu(t) x
/t cos Py(t — x)e” B+ ([ (Bx) + Io(Bz)} dx
‘iﬂ:/; Ks Py + K3, P)ePtu(t)
/Ot sin Pi(t — x)e” P97 [, (3x) + I1(Bz)} dx
- i 4;{2 75 eP (K, cos Pit — Ky sin Pit)u(t)
~ el Dn ot 1, 31) 4 1o wtt) — 3PPt
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t
/ {(K3:P, = KyP,) cos P(t — ) — (Ks, P, + Ky, Py)sin Py(t — 7)} x
0

e BT L] (3r) 4 Iy(8x)} dx.

(2) When P, and P, are complex numbers, and P, > 0,

the transform of (3.63) is given by

2V D, Pit Pat
T D)1+ VDo) {Kie"" + Kye™'} u(—t) +

1
(—-B)e 5‘{11(,% ) + Ip(Bt)} u(t)
4v/D,

= - eFr' (K, cos Pit + K, sin Pit)u(—t

(1= Dn)(1+ vDy)

[K PELs(t) — Piu(—t)} + Kqe™' {6(t) — Pyu(—t

(3.77)

4/ D, N

[ (3:6(t) + et { (K3, P, — K3, P,) cos Pit — (K3, P, + K3;P;) sin P;t} x

u(=t)] * (=B)e” {1(8t) + Io(Bt)} u(t)

= i 4\(?:1; \/lTn)ePrt(Ku sin Pit — K, cos P;it)u(—t)
4I§3r_ﬂ\/—" “P{L(Bt) + Lo(Bt) } u(t)
4/8\/_11 Prt

——¢€ / {(K;;,-Pr —KgiP,;)COSP,‘(t—.’L')
1- Dn maz(t,0)

— (K3 P, + K3;P,)sin P(t — z)} e PP {],(Bz) + Iy(Bz)} dz.

(3) When P, and P, are real numbers, and P, > P, > 0,

the transform of (3.63) is given by

RTM(t)
- Q)Jf_l Iy (e + KaeFu(=) +
12\/_ [K ePt{5(t) — Pyu(—t)} + K4ef?' {(t) — Pyu(—t
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+(=B)e ™ {1,(3t) + Io(Bt)} u(t)

2\/
_(1 1+\/__ {KieP" + Kye"'} u(—

3\/ N .
“1-D, (K3 + Kq)e P {11(8t) + Io(3t)} u(t)
+2K;P]i}\/ DnePlt/ e—(P1+3)r {11(31,) +Io(3r)}dx
- n maxr(t,0)
4 2R B0V D [ et 1y(30) + Do3a) dr. - (370)
- Ln mar(t,0)

(4) When P, and P, are real numbers, and P, > 0 > P,

the transform of (3.63) is given by

R’I’M (t)

= (1 - 2\(1D_-7:- \/’D—) {—Klepntu(_t) + ngpztu(t)} n

2‘/_ ~ [Kae™ {8() — Pru(=0)} + Kse™ {8(t) + Pou(t)}]

1-
+(=0) e‘ﬁ‘ {1,(8t) + Io(Bt)} u(t)
B 2v/D, {—KePtu(—t) + KePtu(t)}

(1= Dy)(1+ VD)

21»3:/_(}(3*_]\’ "‘3‘{11 Bt) + Ip(3t)} u(t)

2K3P13v n P;t/ e (P21 (Bx) + Ih(Bx)} dx
maxz(t,0)

1—D

_2KiP8VDy py . /‘e_(Pzw)z {I,(8z) + Ip(Bx)} dz.  (3.80)
1-D, 0

(5) When P, and P, are real numbers, and 0 > P, > P,

the transform of (3.63) is given by

RTM(t)

2
i-D )\{1_4_\/_ {KeP"-}-K(’P"}
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2D,

1-D,

x(=3)e 2 {I,(3t) + Iy (3t)} u(t)
2D,

= - Pt - Pat
= 1D+ VD {Ke™t + Kye™ }u(t)

21'3—\/;?: (K3 + Kq)e ™ {1 (3t) + Io(8t)} u(t)

t
-ESAGPe ) [ e (1 (3) + Lo} o
— n 0

t
‘wﬁe%m / e P {1 (82) + Io(Bz)} dr. (3.81)
- n 0

[ngP“ {d(t) + P] ll(t)} + K46P'2’ {5(t) + qu(f)}]

Notice that, for TM polarization, there are non-causal terms even for the D, > 0

and D,, > 0 case.

3.4 Numerical Examples

3.4.1 Verification of theoretical expressions

The previously derived transient forms of the interfacial reflection coeflicients may be
compared to direct numerical computation to ensure that the transforms are correct.
Again, the numerical IFFT, is used for this purpose. For the reasons explained in the
previous chapter, only the causal case will be discussed.

Since the asymptotic interfacial reflection coefficients appear as delta functions
in the time domain, and are thus difficult to express numerically, only the reduced
interfacial reflection coefficients are compared. Figure 3.2 shows the comparison of the
derived transient interfacial reflection coefficient with the transient forms obtained by
using a 3072 point IFFT for o, = 0. The material parameters for Figure 3.2 are those
for free-space and typical sea water at low frequency as described in [20]. The transient
reflection coefficient curves from the two different methods are nearly identical, and
thus the derived transient interfacial reflection coefficient for TM polarization has

been verified.
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Figure 3.2. Numerical comparison of the derived transient reduced interfacial re-

flection coefficient with that from the IFFT (TM polarization) : u, = po, €, = €,
On = O[U/m]’ Hn+1 = Mo, €ny1 = T2€0, Opy1 = 4[U/m]7 ;1 = 30°.
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To verify the combination of the asymptotic and the reduced transient reflection
coefficient, the time domain convolution of the interfacial reflection coefficient with

an input waveform is needed. i.e.

S(t) = X(t) R™(t)
= X(t) * {Rg;“é(t) + R“"(t)}

= RTMX(t) + RTM(t) » X(t). (3.82)

Here X(t) denotes the input waveform and S(t) is the resulting reflected waveform.
The same input waveform given in Figure 2.6 is used for TM polarization. Figure
3.3 shows the comparison of the time domain reflected waveforms with the input
waveform shown in Figure 2.6 for 0, = 0. Again, the derived expression and the
IFFT results are well matched.

Exact theoretical expressions are available from the previous research [11] for
TM polarized transient interfactial reflection due to a unit step input waveform. A
comparison with those results also helps to verify the work in this study. Figure
3.4 (a) and (b) show that the re-produced results of the electric fields to a double
exponential input waveform excitation as shown in Figure 4.1 in [11], obtained by
using the transient interfacial reflection coefficient and transmission coefficient of this
study, are exactly same as those found in Figure 5.3 and Figure 5.2 in [11].

3.4.2 The transient responses for various parameter sets

It is interesting to study the dependence of the transient reflection ceofficient on
various parameter values, i.e. permittivity, permeability, conductivity and aspect
angle. Comparisons of the reduced reflection coefficients are shown in Figure 3.5 -
Figure 3.8, which are plotted using semilog scales for easier identification. Note that

the curves in each plot are for the g, = 0 case.
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Figure 3.3. Numerical comparison of the derived transient reflected electric field
waveform for the input waveform shown in Figure 2.6 with the IFFT (TM polariza-
tion) ¢ Hn = Ho, €n = €9, Op = O[U/m], Hnil = Mo, €ny1 = 1260, Ony1 = 4[U/m]a
0;; = 30°.
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Figure 3.4. (a) The transient reflected magnetic field waveform for a double expo-
nential excitation : € = 10€g, u = o, 0 = 2 x 1072[U/m], 6; = 45°.

94



Amplitude of Magnetic Field [A/m]

Time [nsec]

Figure 3.4. (b) The transient transmitted magnetic field waveform for a double
exponential excitation : € = 10¢g, u = o, 0 = 2 x 1072[/m)], 6; = 45°.
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(1) Permittivity
The curves in Figure 3.5 are plotted for ¢,,,; = 1.7, 2.5, 10 and 72. The correspond-
ing values of RT*M are -0.10, -0.18, -0.47 and -0.76, respectively. It can be seen that
the slopes of different R7* (t) curves are proportional to the increasing permittivity
values as well as increasing asymptotic reflection coefficient RZ*. This means that
the transient reflection becomes more dependent on its early time portion coming
from the asymptotic reflection term when the permittivity contrast of both layers is
sharper.

(2) Permeability
The curves in Figure 3.6 are plotted for y,,+1 = 1, 5, 10 and 50. The corresponding
values of RTM are -0.76, -0.53, -0.40 and -0.019 respectively. The slopes of RT™(t)
are seen to be inversely proportional to increasing permeability values, and to
increasing amplitude of the asymptotic reflection coefficient. This indicates that the
transient reflection becomes more ‘relaxed’ with increasing values of permeability.

(3) Conductivity
Because an increase in conductivity causes attenuation in wave propagation, the
transient response R7* (t) suffers a more rapid decrease with time as conductivity is
increased, while the asymptotic component is independent of the change. This can
be seen explicitly in Figure 3.7 where 0, = 0.10, 1, 4 and 10, respectively.

(4) Aspect angle
The curves shown in Figure 3.8 are plotted for 8;, = 0°, 30°, 45° and 75°, while
the corresponding values of RIM are -0.79, -0.76, -0.72 and -0.38 respectively.
Therefore, the slope of the reduced reflection coefficient as well as the amplitude of
the asymptotic component decreases with increasing aspect angle, and the transient

reflection is less dependent on its early time portion.
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Figure 3.5. Time domain reduced interfacial reflection coefficients for various values

of permittivity (TM polarization) : €, = €g, ftn = fns1 = Mo, On = 0, Ony1 = 4[0/m],
0,‘1 = 300.
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Figure 3.6. Time domain reduced interfacial reflection coefficients for various val-

ues of permeability (TM polarization) : €, = €y, €ny1 = 72€0, n = Mo, On = 0,
Ony1 = 4[U/m], 0,’1 = 30°.
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Figure 3.7. Time domain reduced interfacial reflection coefficients for various val-

ues of conductivity (TM polarization) :
on = 0[0/m], 6;; = 30°.

€n = €0, €ny1 = T2€0, Un = [ny1 = Mo,
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Figure 3.8. Time domain reduced interfacial reflection coefficients for various values

of incident angle (TM polarization) :
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CHAPTER 4

SCATTERING FROM A MULTI-LAYERED MEDIUM

4.1 Introduction

The overall reflection coefficient is defined as the ratio of the reflected wave amplitude
to the incident wave amplitude at the first interface of a muti-layered medium, for
which the effect of scattering from the other layers must be considered. In this study,
the overall transient scattering from a multi-layered medium is derived from a com-
bination of propagation terms for the layers and the individual interfacial coefficients
for which closed forms have been derived in the chapters 2 and 3 for each polarization.
To obtain the transient formulation for the overall reflection coefficient, its frequency
domain formula is derived first using the wave matrix method, and then time domain
expressions are found using a series expansion and the convolution theorem. For this
derivation, the analytical form of the transient propagation term is found. Finally,
the obtained transient expression is verified by numerical computation examples, and

various aspects of the formula are discussed.

4.2 Formulation of Transient Overall Reflection Coefficient

The overall reflection coefficient for a multi-layered medium (assumed to have N
layers) can be computed in the frequency domain using wave matrices [22]. Several
other techniques can also be used, but this is the most common technique. Figure
4.1 shows the geometry of the n'* layer of a multi-layered configuration. The incident
and reflected waves immediately to the left of the (n-1 | n) interface are ¢, and b,
respectively. Similarly, the waves immediately to the left and right of the (n | n+1)
interface are c,,1, b,4+1 and c,,o. The overall reflection coefficients immediately to

the left of the (n-1 | n) and (n | n+1) interfaces are I';, = b,,/c, and Ty 41 = bny1 /gt
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respectively. The interfacial reflection and transmission coeflicients are R,, T, and
R..1, T,+1. Wave matrices are used here to relate I';, to I',,,;. By doing so, we can
develop a recursive relation that will ultimately relate the reflection coefficient at the
front of the interface (i.e. the first layer) to the reflection coefficients of the underlying
layers.

Using Collin’s wave matrix result [22], ¢, and b, are related to ¢,4; and b,y by
the following relation

Cn . 1 Pn_l(w) RnPn(w) Cn+1 (41)

be | T | RPN Palw) || B
where P,(w) = €=/ is the frequency domain propagation term, and [, is the length
of layer n. Then, the recursive formula for I';, in terms of I';,;; can be computed using
Collin’s wave matrix result as follows
1 -1
b, T_n {RﬂPn (W)ens1 + Pn(w)bn-H}

=t T (4.2)
Cn ? {P;l(w)C,H_[ + Rnpn(w)b"‘*‘l}

Factoring out P, '(w)cpy) from the numerator and denominator and using [y, =

bny1/cns1 produces the desired frequency domain result

Ra(w) + Pr(@)Tni1 (w)

Fn(w) = 1+ Ry (w)P}(w)Thy1(w)’

(4.3)

To obtain the transient form of overall reflection coefficient, (4.3) is expanded as a
series summation, because it is difficult to find directly the inverse Fourier transform
of the formula. For example, assume the three layer case. Then I'y = R, and

R (w) + P}(w)Ra(w)
1 + Ry (w)P?(w)Ry(w)

I (w)
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= {Ri(w) + P} (w)Ry(w )}[1—Pf(w)Rl(w)Rz(w)+
{P{(w)Ri(w)Ra(w)}? = {P{ (W) Ri(w) Ra(w) }* + - - - ]

= Ri(w) + Pl(w)R(w){1 - Ri(w)} = P (w)Ri(w) Ry (w){1 - R}(w)}
+P! (W) Ri(@) Ry (w){1 — Ri(w)} = P{ (w)R{(w) R3(w){1 — Rj(w)} + -

(4.4)

This series expansion is possible because of radiation condition referred in section
2.2.2. To be able to expand by a series summation, the amplitude of R, (w) and
P, (w) must be equal to or less than unity. This is satisfied due to radiation condition
(leading to the branch cut definition), which requires a non-positive real part of the

propagation constant. That is,
Pw)] = [emetn] = efetmalin < 1 (45)

and

RTE(s) = Vs + B, — /Dp\/s+ Bni1

Vs + Bn + /Dny/s + Boy1

{—a(w) £ jb(w)} — {—c(w) £ jd(w)}

{- a(w)iyb )} + {—c(w) £ jd(w)}

—{a(w) - )}ia{b(w) d(w)} (4.6)
—{a(w)+ (W)} £ j{b(w) + d(w)} '

where a(w), b(w), c(w) and d(w) are arbitrary positive functions of frequency. Thus,

- < 1. (4.7)

‘RTE(S)‘ — \/ a(w) B c(w)}?. + {b(w) — d(w)}z

The overall reflection coeflicient for a medium having more layers can be found re-
placing Rj(w) with I';(w) in (4.4) and using recursive relation given by (4.3). To

obtain the transient overall reflection coefficient, the convolution theorem is used,
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which says that the multiplication in frequency domain is equivalent to convolution

in time domain. Therefore, the transient form of (4.4) is given by

[i(t) = Ri(t) + Pi(t) « Pi(t) * Ra(t) x {0(2) t)* Ri(t)} —
Pyi(t) x Pi(t) * Pi(t) * Pi(t) * Ri(t) * Ry(t) * Ry(t) * {(t) — Ry(t) * Ry(2)}
o (4.8)

And finally, the reflection S(t) from the first interface of a multi-layered medium due

to an input waveform X (¢) can be obtained as
S(t) = X(t) (). (4.9)

4.3 Transient Propagation

To compute the transient overall reflection given by (4.9), the transient propagation

terms must be found. By letting

2
dn = [n€n — p1€;8in” 0y

b, = n0On, (4.10)
the definition of the propagation constant in (2.38) is rewritten as
ln
Ynz = Vdns? + bps = —\/dny[s? + 25 (4.11)
n

for d, > 0, and

Ynz = V dns2 + bns = i] V ldn|

(4.12)

for d, < 0, and where the upper sign is used for w > 0 and the lower sign for w < 0.

Only the d,, > 0 case will be considered due to the causality difficulties mentioned in
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Chapter 2.

Now the frequency domain propagation term is written as

Pn(UJ) . 67:111

eIVt (4.13)

To obtain the inverse Fourier transform of (4.13), the transform pair in [23],

e TVt o e‘?d(t—£)+

#ﬁ(z)ze—ptll (U 42 _ (%)2> u (t - %) (4.14)

v

where Re{p,0} > 0, is used. When (4.13) and (4.14) are compared, it can be realized

that 2—%‘— > 0 corresponds to p, and ¢ = p > 0. Then,

6'8%5 (t—— l—n) — 6_%1"E5(t_lnvdn)
v

Uln %;ln\/d_n

—_—— .
o /12 — (Ln)? V2 = 12d,
2
e I | oy/t2 - <li) u (t - %) — e‘ﬁ_lzinr?tll (213 Vit — l?ldn) u(t — l,+/d,).

(4.15)

As a result, the transient propagation term is given by

Pu(t) = e ™E"§(t — 1/

bl J2VE) . [ b
+(\/t2/_21/2_‘f:_)11 (zbd NG -zgdn) ult = L/dy).  (4.16)
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Also, it can be easily shown that

{(P.(s)}* & e‘ﬁu—n)(;t_kl V)

(%—) <2d — (kl,)%d ) (t — kl,\/d,). (4.17)

The transient form (4.17) should be verified by numerical inverse Fourier trans-

form, but it is difficult to compute directly the transient form because it includes the
d-function. Therefore, a modified form obtained by removing the é-function term is
compared with its corresponding frequency domain form. That is, by being modified

as

Bo(t) = Pa(t) — ¢ "8t — 1u/dy), (4.18)

the corresponding frequency domain transform becomes

Pu(s) = Pn(s)—F{e-ﬁt—‘na(t—zn\/dn)}
_ e—\/cﬁ,/sz+§%sln _ 8—%1"6_(1"\/&:)3

— e dn sz+§ﬁsln _e—(%:‘*ms)["’ (419)

and the transform pair of (4.18) and (4.19) may be compared using numerical inverse
Fourier transform. The plot in Figure 4.2 shows an example of such a comparison
obtained using a 2048 point IFFT with a 20 nano second interval. The transient form
and the IFFT result are well matched, and therefore the correctness of the transient

propagation term has been verified.

4.4 Numerical Examples of Overall Reflection

The previously derived transient overall reflection form may be verified using nu-
merical computation to ensure its correctness. Considering there are §—function

terms included in both the transient propagation and interfacial reflection terms,
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Figure 4.2. Numerical comparison of the derived transient propagation term with
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direct numerical computation of (4.8) may not produce an accetable result. There-
fore, the following numerical implementation is used in this study. When assuming
P(t) = Ad(t — tg) + P(t — t) and R(t) = Red(t) + R(t) for example, the convolution

becomes

P(t)« R(t) = {A8(t —tq) + P(t —tg)} » {Ro0(t) + R(t)}
= AR.O(t) % 8(t — tg) + AS(t — t4) * R(t)
+R.6(t) x P(t — tg) + P(t — tg) * R(t)
= ARs(t — tq) + AR(t — tg) + ReoP(t — tg) + P(t — tg) * R(t).

(4.20)

The amplitude and position of the §—function in (4.20) are stored separately for
use in subsequent computations. To compute P(t — t4) * R(t), several different nu-
merical algorithms are available [24], but the simple discrete convolution algorithm
is used in this study, and it turns out that the method provides sufficient accuracy
when compared with IFFT results. Detailed programming source codes for numerical
implementation can be found in Appendix C.

Numerical examples of scattering excited by the input waveform shown in Figure
4.3 from the simplest 3 lossless layer (free space, 10cm thick-plexiglass and free space)
cases for both polarizations are shown in Figure 4.4 and Figure 4.5. The double

exponential input waveform shown in Figure 4.3 is produced as
X(t) = 10.24 x (e-S“OQ‘ - e“lﬁxm”) . (4.21)

"The permitivity value at 10GHz for the plexiglass layer, 2.59¢, is found in [21]. The
results from the transient formulas are compared with those obtained from a 2048

Point IFFT with a 20 nano second range, although only the first 10 nano seconds
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are shown. The comparison shows good agreement in both polarizations. The phase
reversed reflected waveforms at each edge are seen in the both plots.

To see explicitly mutiple reflections due to time-delaying propagation terms, the
scattering from a 5-layered lossless medium (free space, 10cm plexiglass, 10cm free
space, 10cm plexiglass and free space) is computed, and shown in Figure 4.6. Be-
cause this medium consists of lossless layers, the reflected waveforms are controlled
only by the asymptotic reflection coefficients, and there is no attenuation suffered by
the reflected waves. Instead, the amplitudes of reflected waves decrease after each
reflection because the amplitude of each asymptotic reflection coefficient must be less
than unity.

The overall reflections from a lossy layered medium are plotted Figure 4.7 and
Figure 4.8 for both polarizations respectively. The 5 layered medium is identical to
the previous case except that the third layer is distilled water with parameter values
taken at 10 GHz, and the equivalent conductivity used to represent the dielectric
loss of water at that frequency. As expected, the mutiple reflections suffer severe
attenuation, and the reflections after a short period peter out.

It may be interesting and practical to identify each reflected waveform in the
mutiple reflections shown in Figure 4.6 - Figure 4.8, by associating them with each
term in (4.8). The time domain waveform identification makes it possible to remove
unwanted signals, for an example, multi-path echos. Figure 4.9 shows the individual
reflections in Figure 4.7 due to the first through the fourth term in (4.8). The first peak
Obviously is the reflection from the first interface of air to plaxiglass, and depends on
the asymptotic reflection coefficient only. Also, notice that the sign of the amplitude

is inverted since the wave is reflected from a electrically denser layer. The second
Peak comes from the reflection at the plexiglass-water interface. Similary, the sign of
amplitude is reversed, but the large reflection occurs because the permitivity profile

difference between the two layers is larger than for the previous interface. Now the
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reflected waveform is contributed by the reduced reflection coefficient as well as the
asymptotic component. The polarity of the third peak is the same as that of the
input waveform. Therefore, there is a possibility that it comes from the reflection at
the water-plexiglass interface. However, considering the relatively high permitivity
profile of water which makes the waveform propagation much slower than in plexiglass,
as well as the heavy attenuation that the wave suffers due to the dielectric loss of
water, this possibility must be discarded. Therefore, the third peak originates from
three reflections at the interfaces of plexiglass-water, air-plexiglass, plexiglass-water
and transmission through the air plexiglass interface. The fourth peak comes from
an additional two reflections at the air-plexiglass and plexiglass-water interfaces. Of
course, this rigorous geometical ray optics approach is possible because of the exact
timing analysis.

The incident angle dependence of the overall reflection is shown in Figure 4.10 for
the same 5 layered lossy medium used in Figure 4.9. In the first reflected waveform
set, the largest angle produces the largest peak waveform because the asymptotic re-
flection coefficient is proportional to angle as described in section 2.4.2. In the second
reflected waveform set, the smallest angle produces the largest peak, due to its large
reduced reflection coefficient components (see Figure 2.12). The same explanation can
be applied to the other reflected waveform sets. Note that the multiple reflections
with the largest inciedence angle occur earliest. Although this phenomenon may be
intuitively confusing since a longer travel path for a ray inside of a layer is expected
for a larger incidence angle, it can be justified by considering the time delay in (4.16),

or by the rigorous geometrical ray optics research found in [25].
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CHAPTER 5

EXPERIMENTS

5.1 Introduction

The derived formulas in the previous chapters have so far been verified only by numer-
ical computation. However, verification by actual experiments may provide additional
valuable knowledge such as practical limits in real world applications. In this chap-
ter, the description and results of the measurement processes which have been used
to verify previously derived expressions are provided. Also, various aspects of the
information obtained from the experiments are discussed. The descriptions of the
experimental set up and the equipment are given first, and the calibration procedure
which is needed to obtain ‘refined’ results from the raw measurement data in order
to compare with theory are described. Finally, the experiment results from acutal

measurements are provided and discussed.

5.2 Experimental Set Up

For experiments, the set up depicted in Figure 5.1 is used. The arch range at Michigan
State University consists of two 90° steel rail arcs on to which are attached movable
transmitting and receiving antenna mounts. The radius of the rail is 120” (3.05m),
and the height of the rail is 47” (1.19m), while the center axes of the antennas are
placed at 59” (1.50m) height. Note that although several EM wave absorbers are
used to reduce reflection from surrounding environments (e.g. wall, door, or metal
rails), this arch range is fundamentally NOT an ‘anechoic’ chamber like those used
in frequency domain radiation measurements. A target object (material plates fixed
on a metal mounter in this study) is placed at the center of the range. More detailed

descriptions on the arch range facility in Michigan State University can be found in
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[26).

For time domain measurements, Hewelett Packard’s digital sampling oscilloscope
HP54750A and its HP54753A time domain transmission/reflectometery (TDT/TDR)
plug-in module, providing 20GHz and 18GHz channels, are used. The TDR unit has
a built-in step waveform generator that creats pulse trains with Smsec pulse width,
20msec period, and 190mV amplitude. The rising edge of each pulse is used to trigger
a Picosecond Pulse Labs (PSPL) 4015B pulse generator. This instrument creates
another step using a remote pulse head, which is connected to the input of PSPL
5208 Impulse Forming Network (IFN). The secondary step waveform has a leading
edge fall time less than about 15psec, and an amplitude of -9V. An impulse forming
network generates the impulse shaped waveform shown in Figure 5.2, using the step
as an input. The impulse waveform is fed through connecting cables to a transmitting
horn antenna mounted on the arch rail through connecting cables. The plots for the
intermidiate waveforms can be found in [27]. The equipment is prone to time-axis
drifting, which causes degrading of the measurements. Therefore, pre-measurement
warm-up of equipment is required several hours prior to the meaurements.

Both the transmitting and receiving horn antennas used for these experiments have
a 2 - 18GHz bandwidth, and the polarization of transmitted wave may be changed
by rotating the antennas. Dielectric lenses are used to collimate the transmitted
spherical wavefront to create an incident plane wave, and also to ensure that a major
amount of the transmitted energy is projected on the target. There is a considerable
amount of coupling between the two antennas observed in the measured waveform,
but most of the coupling can be removed by the calibration process which will be
explained later.

Several different target objects have been used for the experiments. Polystyrene
(e = po, € = 2.55, and 0 = 0 at 10GHz) and plexiglass (u = g, ¢, = 2.59, and

= 0 at 10GHz) are used for 3 lossless layer (free space, the material and free space)
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measurements, while a water container made of plexiglass plates is used for 5 lossless
or lossy (by filling it with distilled water) measurements. All the plates are 2 feet by
2 feet square in size, and have an approximate thickness of 4.7mm for polystyrene
and 5.3mm for plexiglass. Also, an aluminum plate is used as a perfect conductor

(PEC) for calibration measurements.

5.3 Calibration

Each intermediate component (e.g. cables, antennas) of the experimental set up
shown in Figure 5.1 has its own system function due to dispersion, propagation time
delay, amplitude attenuation, etc., and each of these changes the original shape of
transmitted waveform. Therefore, a calibration procedure is required to isolate and
eliminate the effects of the intermediate system functions from the measured wave-
form.

Let’s denote the original transmitted input waveform by z(t¢), the impulse response
of target object by r(t), the intermediate system impulse response including compo-
nent effects and time delays in both transmitting and receiving paths by h,ys(t), and
the received waveform at the scope by s(t), and denote their Fourier transforms as

X(w), R(w), Hgys(w), S(w) respectively. Then, in a measurement, it is expected that

S(w) = X(w)Hsys(w)R(w), (5.1)

and equivalently in the time domain

$(t) = z(t) * hgys(t) * r(2). (5.2)

To isolate the unwanted system response H,y,(w), a measurement is performed using
an object with a known response. One of the appropriate choices for the object would

be a PEC plate, for which the theoretical frequency domain reflection coefficient is
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-1. Let’s denote the scattering measurement from a PEC plate as C(w). Then

C(w) = =X (w)Hgys(w). (5.3)

Therefore the intermediate system function is simply given by H,,(w) =

—C(w)/X(w) and the calibrated scattering from a target object is

Scal(w) = S(w)/Hsys(w)

= X(w)R(w) (5.4)

and s¢q(t) = F~1{Sca(w)}.

There is another factor to be considered in actual calibration procedure. Because
of the bandwidth limit of the transmitting and receiving antennas, the measurement
data outside of the bandwidth range are unreliable and should be discarded by trun-
cating the frequency domain data in outside of the 2-18GHz band and restoring the
reduced data size by interpolation. All the data manipulation for the calibration

process is executed by using the software WAVECACULATOR, written by Dr. J. E.

Ross.

5.4 Measurements

5.4.1 Three lossless layer measurements

Using the previously described experimental set up and calibration procedure, actual
measurements for several different object layers are performed. For each measure-
ment, scattering from an object is measured first, and then the noise signal from the
background environment is measured and subtracted from the target signal. A test
measurement of the background noise is plotted in Figure 5.3. Due to absorbers used

at several critical spots in these experiments, there are no large undesired reflections
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and the remaining background noise level is usually much smaller than that of the
target signal. Also, appropriate time windowing helps remove unwanted strong re-
flections from in background objects or mutipath signals. Next, the reflection from
PEC plate is measured for calibration purposes and the background noise signal is
measured and subtracted again. Ideally, once the system response has been obtained,
the calibration measurement does not have to be repeated. But, in practice, it is
necessary to repeat it for each measurement, so as to minimize the noise effect from
time drifting of the equipment. For the same reason, the time consumed by each
measurement must be minimized. Therefore, as a trade off between these considera-
tions, 1024 points of data are taken within 10 nano second time range with 256 time
averages for each data point.

A square polystyrene plate is selected as the first object layer to be measured,
because its permittivity (¢ = 2.55¢p) has been already verified by a frequency domain
measurement at Michigan State University. Figure 5.4 (a) and Figure 5.4 (b) show
the time domain object measurement data and its frequency spectrum obtained using
a 1024 point fast Fourier transform (FFT), while Figure 5.5 (a) and Figure 5.5 (b)
show those of PEC plate measurement data for calibration. These measurements
were performed at a 6° aspect angle, which is the closest to normal that is allowed
by the experiment system. Note that the amplitude of the reflected wave from the
object is quite a bit smaller than that of the transmitted impulse shown in Figure 5.2,
so it is plotted on a different scale. Also, it can be recognized that the reflection from
the conductor plate is changed significantly from its original transmitted impulse
waveform due to the effect of intermediate system function. The system function
H,,s(w) is obtained by the method described in previous section 5.2, and shown in
Figure 5.6 (a) and (b). The big peaks in the high frequency region ( > 20GHz) come
from division errors due to lack of signal content in this band. This fact shows the

necessity of truncation of the data spectrum. Finally, the calibrated target responses

127



Amplitude [mV]

0.8F

0.4r

1
o
>

T

Time [nsec]

Figure 5.3. Test measurement of background noise level for the arch range.
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using the system fucntion are shown in Figure 5.7 (a) and (b) for the results without
and with the spectrum truncation, respectively. It is obvious that the out-band noise
enlarged by division errors produces significant ringing in the calibrated waveform.
The calibrated waveform after truncation processing matches well with that from
theoretical computation. The slight mismatchs occuring at the third and fourth peaks
are mainly due to tilt angle error of the mounted target. The electromagnetic wave
propagation velocity inside of polystyrene is \/ﬁ = 1.88 x 108 m/s. Thus, the
distance between the third peaks of the measured and theoretical results of about 10
pico seconds corresponds to a two way propagation distance of 1.88mm. Therefore, a
slight tilt error or warping of the surface of less than 1mm can make that difference.

Similar measurements are performed using a plexiglass (thickness=5.3mm, ¢ =
2.59¢() layer for both polarizations and three different incidence angles of 6°, 15° and
30°. The reults are compared with the corresponding theoretical computations and
shown in Figure 5.8, Figure 5.9, and Figure 5.10, respectively. Again, all the results

show good agreement with the theoretical curves.
5.4.2 Five lossless layer measurements

An empty plexiglass container was built to be used as a three lossless layered medium,
consisting of three even thickness (5.3mm) layers (plexiglass, free space and plex-
iglass). Then, scattering from the five layered object (free space, plexiglass, free
space, plexiglass and free space) can be measured. The calibrated results for both
polarizations and three different incidence angles are shown in Figure 5.11, Figure
5.12 and Figure 5.13 respectively. All the measurements are well matched with the
theoretical results, although they are slightly worse than those from the three layer
measurements. This is probably because of the crude construction of the container,
with layer thichknesses different from the designed values. But, still mutiple reflec-

tions at the layer interfaces can be clearly identified.
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Figure 5.4. (a) Time domain raw measurement data of a polystyrene plate with
#;, = 6° (TE polarization).
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Figure 5.8. (b) Transient scattered field from a plexiglass layer with incidence angle
6° (TM polarization).
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Figure 5.9. (a) Transient scattered field from a plexiglass layer with incidence angle
15° (TE polarization).
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Figure 5.9. (b) Transient scattered field from a plexiglass layer with incidence angle
15° (TM polarization).
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Figure 5.10. (a) Transient scattered field from a plexiglass layer with incidence
angle 30° (TE polarization).
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Figure 5.10. (b) Transient scattered field from a plexiglass layer with incidence
angle 30° (TM polarization).
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Figure 5.11. (a) Transient scattered field from a plexiglass container with incidence
angle 6° (TE polarization).
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Figure 5.11. (b) Transient scattered field from a plexiglass container with incidence
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Figure 5.12. (a) Transient scattered field from a plexiglass container with incidence
angle 15° (TE polarization).
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Another measurement that may have practical interest is performed. Two plates
of plexiglass are ‘mechanically’ adhered with some pressure, and the total thickness is
9.8mm. Then, the scattering from the object is measured and plotted in Figure 5.14
(a). What is expected is a reflection from a ‘single’ plate of thickness 9.8mm, and is
a waveform consisting of two isolated peaks. But the actual measurement is shows
quite a different waveform. Therefore, the theoretical reflection from a three layered
object (the five lavered medium case) is computed under the assumption that there is
a small ‘invisible’ air gap of 0.05mm thickness between the two plexiglass plates, and
compared with the measured data. As shown in Figure 5.14, the modified model gives
a good match with the measuree data. This is a good example of ‘non destructive’
TDR inspection which is being widely used in industry, and suggests the possibility
that more accurate information (size and kind) of mechanical defects smaller than
the transmitted pulse width can be obtained, since the exact theoretical response can

be found for even lossy materials from the theory derived in this study.
5.4.3 Lossy layered medium measurements

The plexiglass container used in the previous measurement is filled with distilled
water for the measurement of scattering from a lossy five layered object. Note that
water is a strong polar material, and therefore has significant dielectric loss at high
frequency. The theoretical response is computed by converting this dielectric loss
to an equivalent conductivity o.,. Unfortunately, the dielectric loss is a function
of frequency, while frequency independent parameters are assumed in this study.
The frequency dependence of permittivity which is usually denoted using complex
permittivity € = € — je where € = %‘1, can be modelled by various functions,
including Debye equation [28] as shown in Figure 5.15 for distilled water at 20°C.
Considering the available distilled water parameters at several frequency points found
in [21], the bandwidth range of 2-18GHz, and the maximum dielectric loss frequency

in the Debye model, the equivalent constant conductivity is chosen to be 16.70/m, the
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Figure 5.13. (a) Transient scattered field from a plexiglass container with incidence
angle 30° (TE polarization).
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Figure 5.13. (b) Transient scattered field from a plexiglass container with incidence
angle 30° (TM polarization).
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Figure 5.14. (a) Comparison of trasient reflection from a mechanically adhered
plexiglass plates with that for a single material (6;, = 6°, TE polarization).
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Figure 5.14. (b) Comparison of trasient reflection from a mechanically adhered
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value at 10GHz. Therefore the resulting material parameters for the layers are given
by 2 = po, €2 = 2.59€¢, 02 = 00/m, l; = 5.3mm, p3 = o, €3 = 55¢€y, 03 = 16.70/m,
l3 = 5.3mm, py = po, €4 = 2.59€, 04 = 00/m, Iy = 5.3mm.

A measurement result for 6;; = 6° incidence angle is shown in Figure 5.16. As seen
in the figure, there is considerable mismatch in the theoretical and measured data.
However, by careful observation, it can be realized that there is a constant scaling
relationship between the two curves. It turns out that the cause of this mismatch is
‘mechanical’ rather than ‘electrical’. That is, the shape of the water filled container
has been changed by water pressure and gravity, and it causes a tilt angle which result
in a reduction of the received wave amplitude. This explanation can be justified from
the observation that the first reflection peak from air and plexiglass interface, which
can not be effected by the third layer material, has been reduced. By considering
this phenomenon, all the measurements for the distilled water container are scaled by
the ratio of the first peak amplitudes of the méasured data to that of the theoretical
result. The scaled measurements are shown in Figure 5.17-Figure 5.19, and all of

them show a good match between measurements and theoretical expectations.
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Figure 5.16. Trial measurements for trasient scattered field from a 5 lossy layered
medium with incidence angle 6° (TE polarization).
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Figure 5.17. (a) Transient scattered field from a 5 lossy layered medium with
incidence angle 6° (TE polarization).
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Figure 5.17. (b) Transient scattered field from a 5 lossy layered medium with
incidence angle 6° (TM polarization).
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Figure 5.18. (a) Transient scattered field from a 5 lossy layered medium with
incidence angle 15° (TE polarization).
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Figure 5.18. (b) Transient scattered field from a 5 lossy layered medium with
incidence angle 15° (TM polarization).
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Figure 5.19. (a) Transient scattered field from a 5 lossy layered medium with
incidence angle 30° (TE polarization).
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Figure 5.19. (b) Transient scattered field from a 5 lossy layered medium with
incidence angle 30° (TM polarization).
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CHAPTER 6

CONCLUSIONS

Transient scattering from a multi-layered medium by an oblique uniform plane wave
has been studied in this thesis. The frequency domain reflection coefficients were
classified according to their different corresponding inverse Fourier transform pairs
through careful algebraic manipulation and by using appropriate branch cuts. The
exact analytical transient reflection coefficients of a single interface for TE and TM
polarizations have been developed from inverse Fourier transforms of the frequency
domain reflection coefficients. Also, approximate forms of the reflection coefficients
were suggested for the TE polarization case as an example. It was found that all coef-
ficients are causal for certain case. A reasonable explanation for the non causality of
other cases could not be found. However, several reports about the occurrence of non
causality in theoretical or experimental developments observed by other researchers
were introduced. The expressions for the overall transient reflection coefficients were
derived using a series expansion and the convolution theorem. The derived interfacial
and overall reflection coefficients were verified by numerical computation using the
IFFT. Also, actual time domain reflection measurements were performed to compare
with the theoretically derived results, using lossless and lossy layers as the objects. All
the measured and calibrated results have matched well with computed results based
on the derived theory, and therefore verified the correctness of the derived transient
expressions.

As discussed in Chapter 1, the purpose of this study is to provide fundamental
background for parameter estimation of a multi-layered object using the transient
scattered field. Except for the unexplained non causal cases, which should be studied

separately in the future, the exact theoretical solutions for the transient scattered
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field have been made available by the results of this study. Because each reflection
from each layer has the information about the constitutive parameters, and because
their functional relationship with the input waveform has been determined by this
study, the next step is to find reliable methods to extract the information from the

measured transient waveform.
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APPENDIX A

OPERATIONS OF COMPLEX VALUED SQUARE ROOT
FUNCTIONS USING THE BRANCH CUTS

The derivation processes of frequency domain expressions explained in Chapter 2
and Chapter 3 require algebraic manipulations of square roots of which arguments
are complex numbers. Sometimes, the results of algebraic manipulations using con-
ventional negative real axis branch cut are different from those using the branch cuts
derived section 2.2.2 from radiation condition. Because the branch cuts from radiation
condition are consistantly used in this thesis, it is helpful to introduce selected alge-
braic manipulations for derivation of frequency domain expressions using the branch
cuts.

When D > 0and B >0
B
\/D32+Bs=—\/D\/Ds+B:—\/D\/§\/s+B (A.1)

while for D < 0 and B > 0

VDs?+ Bs = \/svV/Ds+ B = (A.2)

By denoting a square root from the conventional negative real axis branch cut as

VO,

Vs+Bun s+ Bpi1 _\,/s+B,1+l (A3)

3+B S+Bn 3+Bn

where the upper sign corresponds to B,,.; > B, and lower sign does to B,,; < B,.
The relationship between the two different branch cut square roots is needed because

its inverse Fourier transform pair in reference material is given by using the negative
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real axis branch cut. Similarly,

VS"'Bn+1=:t S_Bnﬁ-l:&/S—Bn-H

s — B, s— B, s— B, (A4)

where the upper sign corresponds to B, 4, < B, and lower sign does to B,;; > B,.
On the other hand, to find its inverse Fourier transform more easily, each of the other

fraction of square root terms can be rewritten as

v3+Bn+l _ s+ Bni
s — B, V s- B,
S+Bn+1 S
s s — B,
s+ Bpy [ s
= N A.5
s s — B, (A-5)

and

s — Bny s — Bny

Vs + B, s+ By,

_ . [5= Bnu s
- s s+ B,
./$— Bpiq s
= - ¥ . A.
S V3+B,, (A.6)
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APPENDIX B

INVERSE FOURIER TRANSFORM PAIRS

In this appendix, the inverse Fourier transform pairs which are used to derive transient
expressions, are provided. Some of these can be directly found from [23], while the
others are derived from the given pairs.

Assume R(w) = G(w)U*(w) + G(—w)U(—w) where G*(w) is a complex conjugate
of G(w), and U(w) is a frequency domain unit step function. By letting g(t) =
FYG(w)}, g (t) = F~'{G*(w)} and using the duality theorem for Fourier transform
that says, F(t) = F~'{2rnf(—w)} when f(t) = F"Y{F(w)},

() + = = 2nF HU(-w)}

o) 1 _ -1

and

mo = o0+ {80 LY o {10 1)

8(t) 1

= {9(®) + ")} » ==+ {9(t) - g"(t)} + it

= Slo0) + 5O} + 55+ {900 - ()} (8.2)

From the inverse transform pair of

for P > 0, and —e~Ptu(—t) for P < 0, its time derivative form is given by
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s + P dt
= —Pe Plu(t) + e F'6(t)
=e P {6(t) — Pu(t)} (B.4)
for P > 0, and
s d _pt
s+ P < E{ ¢ Pu(—t)}
= Pe Ptu(—t) + e P15(t)
=e P {6(t) + Pu(t)} (B.5)
for P < 0.

From 561.0 of [23],

s+ Bn—H
-y —— &
V s+ B,
Bll - Bn Bn - Bn
BusB) g (Ban= )L

BTl+1 - B.'1 _(B"il+8n)t
—-——Fe 2 I

2 2
(B.6)
and it can be derived that

.S Bn+1

1 - of2——ntt
s — B, <

Bn+1 — Bne_—_‘9’—(8" 12+B")t Il Bn+1 - Bnt _ IO Bn+1 - Bnt U(—t).

2 2 2

(B.7)
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Also, from (A.5),

(o m et n (B e (%) o oo

S ~ Bn —_2n Bn Bn
- B n (%) en (B huco. mo
the inverse Fourier transform of 1 — \/SSLBBE"“—I is given by

5(t) - [o { (B';lt)-}-lg(B';lt)}u(t)}
S )
5 wo b utco

= e%n‘ {Il('—nt +
_Bn-{*le——it—t {Il(Bn+1 ) IO(Bn+1 )}u(t)

and

¥*

2
2 2 2
L BaniBa s, / R {11 [B—(t - .r)] + I [&(t - x)] }
4 maxz(t,0) 2 2

x {Il(B';lx) +10(B"2+1:£)}dx. (B.10)

By similar approach, the inverse Fourier transform of 1 + ‘/-SS—TBE'—I can be found
n

as

B"é‘}’l Bn+lt {II(B1l+1t) _ IO(BTI+1 t)} 'U,(—t)

2 2
B, _s. B, B,
- e 5 t{11(7t) - 10(70} u(t)
+ (Bn-HBn)eB—"z‘fit/oo e——L;" 12+Bn)l {Il [B"+l (t — IE)} — I [Bn+1 (t — I)J }
4 maz(t,0) 2 2
< AnEra) - oo fa (311
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APPENDIX C

PROGRAM SOURCE CODES IN FORTRAN 77

A computer program to compute theoretical TE polarization overall reflection from
a multi-layered medium is provided. This program is written in standard Fortran
77 programming language, except a subroutine called Q2AGI from MICROSOFT
IMSL package, which is used to compute infinite integral term in interfacial reflection
coefficient when P, < 0 (see 2.83).

This program reads an input waveform data from a text file ‘inwave.dat’, the
material parameters of each layer (thickness, permeability, permittivity, conductiv-
ity) and initial incident angle from a text file ‘layers.dat’, and computes the layer
parameter sets defined in this thesis, and writes them in a text file ‘param.buf’ for
verification purpose. Also, the information about time range, number of data points
and number of convolution terms are read from command line inputs. After the
input stage, program computes the interfacial reflection coefficients for each interface,
overall reflection and finally writes the outputs in a text output file ‘gammax.out’.
The structure of the programe to compute TM polarization is basically same. The
differences are subroutines to compute interfactial reflection coefficients, and layer

parameter definitions.

(1) An example of input data file ‘layers.dat’

The value of incident angle is computed using the value in the data file as a
denominator of a fraction, of which numerator is fixed by 7 radian. That is, for
an example, when given “thetai 30.0” in the data file, the incident angle will be
soradian = 6°. Metric unit is used for thickness input. The first and the last layer

have infinite thichnesses, therefore their values are meaningless.
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thetai 30.0

murl 1.0

erl 1.0

sigmal 0.0

thickl 0.0

mur?2 1.0

er2 2.59

sigma2 0.0

thick2 0.0053
mur3 1.0

erd 55.0

sigmad 16.7
thick3 0.0053
mur4 1.0

erd 2.59

sigma4 0.0

thick4 0.0053
murd 1.0

erd 1.0

sigmad 0.0

thick5 0.0

(2) Main program
Because the products of a exponential function and a modified Bessel function appear
frequently, the product is computed altogether using a subroutine. The expressions

for numerical computation of the modified Bessel functions can be found in [29)].
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PROGRAM GAMXTE
USE MSIMSL

called

NN NN NI NI NI NI NP NI NO NSO NP NS!

F d ke dodk ek ko ki ok dk ok ok ok Kk sk d sk ke kg ok e sk ok ke ok ks ok ek sk %k %k ko ke sk ke ok ke k k ok ok ko ke ok

This program computes transient overall reflection
using iterative convolutions, about the case for
DN1>0 .AND. DN >0.

An input waveform is obtained from a text data file which
contains actual measurement data of transmitting impulse,

"inwave.dat"

Text data file "layers.dat" is required as an input
parameter description for each layer.

Text data file "gammax.out" will be output.

LRSS REARRRERRRERRRR R RS RRRRR SRRl RRRRRRSRRRRRRSRRRRRERERRES RS

CHARACTER*8 TMPS

INTEGER ITCONV

INTEGER NT, SMAX,LMAX, I,K,NL

PARAMETER (SMAX=10250)

PARAMETER (LMAX=10)

REAL MU(LMAX) ,EN(LMAX),b SIG(LMAX), THCK (LMAX) ,bB(LMAX) ,h DN (LMAX)
REAL C1(LMAX-1),C2(LMAX-1),C3(LMAX-1),P1(LMAX-1),P2(LMAX-1)
REAL BTA(LMAX-1),D(LMAX-1),CD(LMAX-1)

REAL T (SMAX) , X(SMAX)

REAL R(LMAX-1,SMAX),P(LMAX-1, SMAX),6 GAM(LMAX-1, SMAX)

REAL THETAI,G,H, TMAX, DT

REAL TMP, PSZERO

REAL PI,EQ,MUO

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/PWRS/C1,C2,C3,P1,P2,BTA,CD
/ARRS/R, P, GAM

/TARRS/T

/INDX/I

/TINDX/K,NT
/LINDX/ITCONV, NL

PI=4.*ATAN(1.)
E0=1.0E-9/(36.0*PI)
MUO=4.0*PI*1.0E-7

PSZERO=

1.0E-25

OPEN(5,FILE="'layers.dat"', STATUS="'unknown')
OPEN(6,FILE="'gammax.out', STATUS="'unknown')
OPEN(7,FILE='param.buf', STATUS="'unknown')
OPEN(8,FILE='inwave.dat',6 STATUS="'unknown')
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C khkkkhkhkhkhkkkkkhkhkhkrkhkhkhkhkrhkhkhkkrhhbhhkkrhkdhkdkdtdhdhkkd

C READ AND COMPUTE CONSTANTS OF EACH LAYER

C khkhkkhkkhkhkhkhkhkhkhkkhkrhkhkhkhkkhkhkhkhhhkhkhkkdhkhkhkhkhkdhkhd

WRITE(*,*) 'Enter the number of layers in <<layers.dat>> :'
READ(*,*) NL

c Ak kkkkkk kR AR KAk Kk kK
C READ INCIDNET ANGLE

C 222222222 222222222

11 FORMAT (A8,F12.4)

12 FORMAT (3X, F12.4,2X, A8,'= ',E12.4)

20 FORMAT (/)
READ(5,11) TMPS,TMP
THETAI = PI/TMP
WRITE(*,12) TMP,TMPS, THETAI
WRITE(7,12) TMP,TMPS, THETAI

o) Ak kkkkkkkk R X KKKk KKK KKK kK
C READ MATERIAL PARAMETERS
C 22222223 3222232222222%;

DO 21 I=1,NL
READ(5,11) TMPS, TMP
MU (I)=TMP*MUO
WRITE(*,12)TMP, TMPS,MU(I)
WRITE(7,12)TMP, TMPS,MU(I)

READ(5,11) TMPS, TMP
EN(I)=TMP*EOQ
WRITE(*,12)TMP, TMPS,EN(I)
WRITE(7,12)TMP, TMPS,EN(I)

READ(5,11) TMPS,SIG(I)
WRITE(*,12)SIG(I),TMPS,SIG(I)
WRITE(7,12)SIG(I),TMPS,SIG(I)

READ(5,11) TMPS, THCK(I)
WRITE(*,12) THCK(I),TMPS, THCK(I)
WRITE(7,12) THCK(I),TMPS, THCK(I)

TMP=MU (1) *EN(1) * ( (SIN(THETAI)) **2)
DN(I)=MU(I)*EN(I)-TMP
B(I)=MU(I)*SIG(I)/ABS(DN(I))
WRITE(*,13) DN(I),B(I)
WRITE(7,13) DN(I),B(I)
13 FORMAT (5X, 'Dn=',E10.3,2X, 'Bn="',E10.3,/)
21 CONTINUE

173



C % Kk %k J ok k Kk dk Kk Kk kK dk gk ok dk k ok Kk dk ok ok ko gk ok ko k ko k% ok ko ko k%

C COMPUTE LAYER PARAMETERS FOR EACH INTERFACE
C %k % %k %k k% d ok ok e gk ok ke %k sk kb bk %k %k ok sk sk ok ok b %k %k ok ke ko
DO 22 I=1,NL-1
WRITE(*,14) I
WRITE(7,14) I
14 FORMAT(/,3X, 'Interface Index =',1I3)

D(I)=((MU(I)**2)*DN(I+1l))/((MU(I+1)**2)*DN(I))
CD(I)=(1.0-SQRT(D(I)))/(1.0+SQRT(D(I)))
WRITE(*,15) D(I),CD(I)
WRITE(7,15) D(I),CD(I)

15 FORMAT (3X, 'D=',E10.3,3X, 'CD=',E10.3)

BTA(I)=(B(I+1)-B(I))/2.0
P1(I)=(B(I+1)+B(I))/2.0
P2(I)=(B(I)-D(I)*B(I+1))/(1.0-D(I))
WRITE(*,16) P1(I),P2(I),BTA(I)
WRITE(7,16) P1(I),P2(I),BTA(I)
16 FORMAT (3X, 'P1=',E10.3,2X, 'P2="',E10.3,2X, 'BETA="',E10.3)

Cl(I)=(B(I)-B(I+1))*SQRT(D(I))/(1.0-D(I))
C2(I)=((B(I)-B(I+1))**2)*D(I)*SQRT(D(I))/( (1.0-D(I))**2 )
C3(I)=2.0*D(I)*(B(I+1)-B(I))/( (1.0-D(I))*(1.0+SQRT(D(I))) )
WRITE(*,17) C1(I),C2(I),C3(I)
WRITE(7,17) C1(I),C2(I),C3(I)

17 FORMAT (3X, 'C1=',E10.3,2X, 'C2="',E10.3,2X, 'C3=",E10.3)

22 CONTINUE

C (R R R RS RS RS R R RERRRRRRERRSRRRRERRRRRRRRRRRRRRRRRREREREEES,]

C READ TIME RANGE, NUMBER OF PARAMETERS AND CONVOLUTIONS

C I E S R R R EE R R R EE R A SR EEE R R R SRR EEE RS R R R R R R R R RER R R R R R R R RERES
WRITE(*,*) 'Enter the Time range in seconds :'
READ(*,*) TMAX
WRITE(*,*) 'Enter the Number of Points ( SMAX<=10250)'
WRITE(*,*) 'EVEN number recommended to avoid zero freq. :'
READ(*,*) NT
WRITE(*,*) 'Enter the Number of Convolution Sum : '
READ(*,*) ITCONV

C khkkhkkhkhkkkhkhkhkhkhkdkkhhkhkkhkkkhkkhkkkkkkkkk

C DEFINE TIME INTERVAL OF EVALUATION
C *hkkkkdkkkkk ke hkkdkdodk ko kkdkddkkok k% kK ok
NT=NT-1
DT=TMAX/REAL (NT)
DO 31 K=1,NT+1
T (K)=DT*(K-1)
31 CONTINUE
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DO 32 I=1,NL-1
DO 33 K=1,NT+3
R(I,K)=0.0
P(I,K)=0.0
GAM(I,K)=0.0
X(K)=0.0
33 CONTINUE
32 CONTINUE
WRITE(7,18) TMAX, (NT+1),DT, (1.0/DT)
18 FORMAT(/,3X, 'TMAX=',E10.3,"' [sec]',2X, I7,' Pts.',2X,/,
+ 3X 'DT=',E10.3,' [sec]',2X, '1/DT=',E10.3)

C kkdkkkhkkhkkhkrhkkhkhkkhkrhkhkkhkkkhkhkhkhkkkkkid

C READ INPUT WAVEFORM FROM DATA FILE
C **kkkkkkkkkhk kR kXX R KKK KKK KA KA A X *
DO 61 K=1,NT+1
READ(8,*) X(K)
61 CONTINUE

C kkkhkhkhkdkkkkkhkkkkkkhkkhkhkhkkkhkkkhkkhkhkhkrrkkkkhkhkhkhkkkkkkhkhkkkdhkkhkkxd

C COMPUTE INTERFACIAL REFL. COEFF.'S AND PROPAGATION TERMS
C khkkhkhkhkhkkkkhkrkhkkkkhkkhkkrkhkhkhkdkhkkkhkhkhkrhkrrhkhkkhkhkrrkhkkkkhrkrkhkkhkhkhx
DO 89 I=1,NL-1

CALL REFLCOEFF (R(I,:),DT)

G=DN(I)

H=MU(I)*SIG(I)

CALL PROPA(P(I,:),THCK(I),G,H,2,DT)
89  CONTINUE

C sk Kk d g sk ok ok gk de gk e ok ok ko ke kb sk gk sk ok b sk ok ke ko ke ke ok k ko ko k ok ok k

C COMPUTE THE FINAL IMPULSE RESPONSE OF LAYERS
IR R e T S
DO 87 K=1,NT+3
GAM(NL-1,K)=R(NL-1,K)
87 CONTINUE

CALL GAMX(1,X,DT)

C 2222222222222 2222212222
C WRITE TIME, INPUT AND OUTPUT WAVEFORM DATA
C Ak kk ke dhkkkkk ke kkkkkkkk ok ko dkok ok & % % %

DO 50 K=1,NT+3
IF (ABS(GAM(1,K)).LT.PSZERO) GAM(1l,K)=0.0
WRITE(6,99) T(K),X(K),GAM(1, K)
99 FORMAT(1X, E10.3,1X, E13.5,1X, E13.5)
50 CONTINUE

ENDFILE 5
ENDFILE 6
ENDFILE 7
ENDFILE 8
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END

C (SRS SRR R RS RS RS ERRERRERRRERRERRRSRRRRERSRRRRERRRREERSEERES

C SUBROUTINE TO COMPUTE OVERALL REFLECTION OF EACH LAYER

C IR SRR S SRR RS R R R RRRERRRRREERRRRRRRSS RS RRRRERRRREESRE]

41

42

61

44
43

19

RECURSIVE SUBROUTINE GAMX(I,XIN,DT)

INTEGER NT, I, SMAX,LMAX,NL, ITCONV,K,N

REAL DT

PARAMETER (SMAX=10250)

PARAMETER (LMAX=10)

REAL XIN(SMAX), BUF (LMAX-2, SMAX) , GBUF (SMAX)

REAL R(LMAX-1,SMAX),P(LMAX-1, SMAX), GAM(LMAX-1, SMAX)
COMMON /ARRS/R,P,GAM

COMMON /TINDX/K,NT

COMMON /LINDX/ITCONV,NL

IF (I.EQ.(NL-2)) THEN
CALL CONVOL(R(I,:),XIN,GAM(I,:),DT)
CALL CONVOL(R(I,:),R(I,:),GBUF,DT)
GBUF (NT+2)=1.0/DT-GBUF (NT+2)
DO 41 K=1,NT+1
GBUF (K) =-GBUF (K)
CONTINUE
CALL CONVOL (GBUF,P(I+1,:),GBUF,DT)
CALL CONVOL (GBUF,GAM(I+1, :),GBUF,DT)
CALL CONVOL (GBUF, XIN, GBUF,DT)
DO 42 K=1,NT+1
GAM(I,K)=GAM(I,K)+GBUF (K)
CONTINUE
DO 43 N=1, ITCONV
CALL CONVOL (GBUF,R(I,:),GBUF,DT)
CALL CONVOL (GBUF,GAM(I+1, :),GBUF,DT)
CALL CONVOL (GBUF,P(I+1,:),GBUF,DT)
DO 61 K=1,NT+2
GBUF (K) =-GBUF (K)
CONTINUE
DO 44 K=1,NT+1
GAM(I,K)=GAM(I,K)+GBUF (K)
CONTINUE
CONTINUE
WRITE(*,19) I
FORMAT (3X, 'IN="',13)
ELSE
CALL CONVOL(R(I,:),XIN,GAM(I,:),DT)
CALL GAMX(I+1,XIN,DT)
CALL CONVOL(R(I,:),R(I,:),BUF(I,:),DT)
BUF(I,NT+2)=1.0/DT-BUF (I,NT+2)
DO 55 K=1,NT+1
BUF(I,K)=-BUF(I,K)
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55 CONTINUE
DO 65 K=1,NT+3
GBUF (K) =BUF (I,K)
65 CONTINUE
CALL CONVOL (GBUF,GAM(I+1, :),GBUF,DT)
CALL CONVOL (GBUF,P(I+1,:),GBUF,DT)
DO 56 K=1,NT+1
GAM(I,K)=GAM(I,K)+GBUF (K)
56 CONTINUE
DO 57 N=1, ITCONV
CALL CONVOL (GBUF,R(I, :),GBUF,DT)
CALL CONVOL (GBUF,P(I+1, :),GBUF,DT)
DO 62 K=1,NT+2
BUF (I,K)=-GBUF (K)
62 CONTINUE
BUF (I,NT+3)=-GBUF (NT+3)
CALL GAMX(I+1,BUF(I,:),DT)
DO 58 K=1,NT+1
GAM(I,K)=GAM(I,K)+GAM(I+1,K)
58 CONTINUE
DO 63 K=1,NT+3
GBUF (K) =GAM(I+1,K)

63 CONTINUE
57 CONTINUE
WRITE(*,59) I
59 FORMAT (3X, 'IN=",1I3)
ENDIF
RETURN
END

C (SRR SRR SRR RRERRRRRRRRRRERRRRRRRRRRRRRRRRERRRRERERE]

C SUBROUTINE TO COMPUTE INDIVIDUAL TIME DOMAIN REFLECTION
C (A SRS RS R ERARRRRRRRRRRRRRRSRRRRRRRRRSRRRRRRRRRRRR SRR RS

SUBROUTINE REFLCOEFF (R,DT)

EXTERNAL FUNCP, FUNCN

REAL SIO0,SI1l

INTEGER K,NT, I,L,SMAX, LMAX

PARAMETER (SMAX=10250)

PARAMETER (LMAX=10)

REAL C1(LMAX-1),C2(LMAX-1),C3(LMAX-1),P1(LMAX-1),P2(LMAX-1)

REAL BTA(LMAX-1),CD(LMAX-1)

REAL TMP, S,Q1,02,Q3,DT

REAL T (SMAX),R(SMAX)

COMMON /PWRS/C1,C2,C3,P1,P2,BTA,CD

COMMON /TARRS/T

COMMON /INDX/I

COMMON /TINDX/K,NT
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REAL ERRREL, RESULT, ERREST

INTEGER MAXSUB, NEVAL, NSUBIN

PARAMETER (MAXSUB=2000)

REAL ALIST(MAXSUB),BLIST(MAXSUB),RLIST(MAXSUB),ELIST(MAXSUB)
INTEGER IORD (MAXSUB)

ERRREL=1.0E-03

IF (P2(I).GE.O0.) THEN
DO 31 K=1,NT+1
TMP=-P1(I)*T(K)
Q1=C1(I)*(SI1(BTA(I)*T(K),TMP)+SIO(BTA(I)*T(K),TMP))
$=0.0
IF (K.GT.1l) THEN
02=0.0
DO 32 L=2,K
CALL QTRAP(FUNCP,T(L-1),T(L),S)
Q2=Q2+S
32 CONTINUE
Q2=C2(I)*Q2
ELSE
02=0.0
ENDIF
Q3=C3(I)*EXP(-P2(I)*T(K))
R(K)=0Q1-02+Q3
WRITE(*,34) I,K
34 FORMAT (3X, 'I=',I3,2X, " 'K="',1I5)
31 CONTINUE
ELSE
DO 51 K=1,NT+1
TMP=-P1(I) *T(K)
Q1=SIO0(BTA(I)*T(K),6 TMP)
Q1=Q1+SI1(BTA(I)*T(K),6 TMP)
Q1=C1(I)*Q1
CALL Q2AGI(FUNCN,O0.,1,0.,ERRREL,RESULT, ERREST, MAXSUB,
+ NEVAL,NSUBIN,ALIST,BLIST,RLIST,ELIST, IORD )
Q2=C2(I)*RESULT/P2 (1)
R(K)=Q1-Q2
WRITE(*,54) I,K
54 FORMAT(3X, 'I=',I3,2X, 'K=",15)
51 CONTINUE
ENDIF

C J dk Je g dkod gk oddk ko odk ok k gk ok g gk ko ok sk ok ko k k% ok ok ko ko ko ok ok ok ok ok

C ADD AMPLITUDE AND POSITION OF DELTA FUNCTION
C IR E R R R RS R R RS2 R R RR R AR RS R RERREERR R R R XK R R
R(NT+2)=CD(I) /DT
R(NT+3)=1.0
RETURN
END

178



C % d %k ok dk Kk ok %k k k ok ok ok ok Kk gk vk ok ok ki dk ok ko ks gk d ok ko ok ko ko ok ok ko ko

C SUBROUTINE TO COMPUTE TIME DOMAIN PROPAGATION TERM
C % % %k %k d % d kv ok dk d ok kK sk % sk d ok b sk ko ke ok ok kb ok ko ok Kk ke ko ko k ok ok ok ok

SUBROUTINE PROPA (P, THCK,G,H,N,DT)

REAL SI1

INTEGER K,NT, SMAX,N,M

PARAMETER (SMAX=10250)

REAL Z,W1,W2,TRIG, THCK,G,H, DT

REAL T (SMAX),P(SMAX)

COMMON /TARRS/T

COMMON /TINDX/K,NT

THCK=N*THCK
TRIG=THCK*SQRT (G)
W1=0.5*H/SQRT(G)
Ww2=0.5*H/G

DO 71 M=1,NT+1
IF (T(M).GT.TRIG) THEN
Z=SQRT (T (M) **2-G* (THCK**2) )
P (M) =W1*THCK*SI1(W2*Z,-W2*T(M))/Z
ENDIF
1 CONTINUE

Ak kA kA kA rhkhkAxhkh Ak kdrhkhkhkhkhkhkhkhkhkkhkhkhxdhkkkkx

ADD AMPLITUDE AND POSITION OF DELTA FUNCTION
Kk kkkkk kA kR XK Kk kxR R Kk kk ok dkk Ak k ok kK k ok kk ok kK ok
DO 72 M=1,NT+1
IF (T(M).GT.TRIG) THEN
P(NT+2)=EXP (-W1*THCK) /DT
P(NT+3)=REAL (M)
GO TO 73
ENDIF
72 CONTINUE
73 RETURN
END

C khkhkhkhkdkhkhkhkhkhkhkhhrhkhkhkhkhkhkdhhkhkhkhkhkhhkhhdkkhkhkkhkkhkdkhhkkhkkkxk

C SUBROUTINE TO COMPUTE TIME DOMAIN CONVOLUTION
R R T 2"
SUBROUTINE CONVOL (IN1, IN2,OUT,DT)
REAL DT, S,A,B,PSZERO
INTEGER K,NT,SMAX,N,M,L
PARAMETER (SMAX=10250)
REAL IN1 (SMAX), IN2(SMAX),bOUT (SMAX) , LOBUF (SMAX)
COMMON /TINDX/K,NT
PSZERO=1.0E-25

NN

DO 80 M=1,NT+3
LOBUF (M)=0.0
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80 CONTINUE
LOBUF (NT+2) =IN1 (NT+2) *IN2 (NT+2) *DT
LOBUF (NT+3) = (IN1(NT+3)-1.0)+(IN2(NT+3)-1.0)+1.0
L=INT (IN1(NT+3))
IF (L.LE.(NT+1l)) THEN
DO 81 M=1, (NT+2-L)
LOBUF (M+L-1) =LOBUF (M+L-1)+IN1 (NT+2) *IN2 (M) *DT
81 CONTINUE
ENDIF
L=INT(IN2(NT+3))
IF (L.LE.(NT+1)) THEN
DO 82 M=1, (NT+2-L)
LOBUF (M+L-1) =LOBUF (M+L~-1) +IN2 (NT+2) *IN1 (M) *DT
82 CONTINUE
ENDIF
DO 83 M=2,NT+1
S=0.0
DO 84 N=2,M
A=IN1 (M-N+1) *IN2 (N)
B=IN1 (M-N+2) *IN2 (N-1)
IF (ABS(A*B).GT.PSZERO) S=S+0.5*DT* (A+B)
84 CONTINUE
LOBUF (M) =LOBUF (M) +S
83 CONTINUE
DO 85 M=1,NT+3
OUT (M) =LOBUF (M)
85 CONTINUE
RETURN
END

C IE RSS2 222 R SRR RRRRRRRRRRRR R R RRRE ARt R RRER SR RE]

C INNER INTEGRATION ROUTINE USING SIMPSON'S RULE
C Ahkkhkkhkhkhkrrrhkhkhkrhkhkhkrhhkhkkhkhkkkhkhkhdkdkhkkhhkkrkhkhkkkkxkk
SUBROUTINE qgtrap(FUNC,a,b,s)
EXTERNAL FUNC
INTEGER JMAX
REAL a,b,EPS
REAL olds,s,FUNC
PARAMETER (EPS=1.e-3, JMAX=20)
C USES trapzd
INTEGER j
0lds=0.0
do 41 j=1,JMAX
call trapzd(FUNC,a,b,s,j)
if (abs(s-olds).lt.EPS*abs(olds)) return
if (s.eq.0..and.olds.eq.0..and.j.gt.6) return
olds=s
41 continue
WRITE(*,43)

180



43 FORMAT ( 'Too many steps in gtrap. Press any number to
continue..."')

READ(*,*) TI

END

C AKX KA AR A A A A Ak hkhkhhkkdhkhkkhkhkdkddhhkkhkhkkhkdkkkkkkkk

C TRAPEZOIDAL RULE AS A SUBROUTINE FOR INTEGRATION
C ISR E R R R R R R R R R R R R R R R R RRRRR RS R R R R R R R R R ERREE R REES

SUBROUTINE trapzd(FUNC,a,b,s,n)

EXTERNAL FUNC

INTEGER n

REAL a,b,x

REAL del,sum, tnm,s

REAL FUNC

INTEGER it,j

if (n.eq.l) then

s=0.5*(b-a) * (FUNC (a) +FUNC (b))

else
it=2**(n-2)
tnm=it
del=(b-a)/tnm
x=a+0.5*del
sum=0.
do 41 j=1,it
sum=sum+FUNC (x)
x=x+del
41 continue
s=0.5*(s+(b-a) *sum/tnm)
endif
return
END

C khkkkhkhkhkkdkhkhkkhkhkhkkhkhkdhhkkhkhkdkhkdkhkdkkhkhkkhkhkkikhkkkihik

C INTEGRAND FUNCTION DEFINITION FOR P2 >= 0
IR R e
REAL FUNCTION FUNCP(U)
INTEGER NT, I,K, SMAX, LMAX
PARAMETER (SMAX=10250)
PARAMETER (LMAX=10)
REAL U,DTMP
REAL SI0,SI1
REAL T (SMAX)
REAL C1(LMAX-1),C2(LMAX-1),C3(LMAX-1),P1(LMAX-1),P2(LMAX-1)
REAL BTA(LMAX-1),CD(LMAX-1)
COMMON /PWRS/C1,C2,C3,P1,P2,BTA,CD
COMMON /TARRS/T
COMMON /INDX/I
COMMON /TINDX/K,NT

DTMP=- (P2 (I)*T(K)+(P1(I)-P2(I))*U)
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FUNCP=SI1(BTA(I)*U,DTMP)+SI0(BTA(I)*U,DTMP)
RETURN
END

C LSS A SRR SRR ERRSRRERERERRERERRER SR EEESEES,]

C INTEGRAND FUNCTION DEFINITION FOR P2 < 0
C % % J % %k Kk sk dk sk ok ok sk ko ok ok ok ko ko sk ko ok ok ok ok ki ok k ko ok ok ok k
REAL FUNCTION FUNCN(U)
INTEGER NT, I,K,SMAX,LMAX
PARAMETER (SMAX=10250)
PARAMETER (LMAX=10)
REAL U,DTMP
REAL SIO,SI1
REAL T (SMAX)
REAL C1(LMAX-1),C2(LMAX-1),C3(LMAX-1),P1(LMAX-1),P2(LMAX-1)
REAL BTA(LMAX-1),CD(LMAX-1)
COMMON /PWRS/C1,C2,C3,P1,P2,BTA,CD
COMMON /TARRS/T
COMMON /INDX/I
COMMON /TINDX/K,NT

DTMP=-P1 (I)*T(K)+(P1(I)/P2(I)-1.0)*U
FUNCN=SIO(BTA(I)*(T(K)-U/P2(I)),DTMP)+
+ SI1(BTA(I)*(T(K)-U/P2(I)),DTMP)
RETURN
END
Kk kkk ko k kR Rk Ik kR ok ok ok ok ok kk ko k ok k& Kk ok ok ok ok
PRODUCT OF EXPONENTIAL AND MODIFIED BESSEL
FUNCTION OF ZEROTH ORDER
KKK AT KA I kKRNI AR KK KKK KK KKK KKKk Kk
REAL FUNCTION SIO(X,OFST)
REAL X,T,Y,OFST

NN

T=ABS(X)/3.75

IF (ABS(X).LT.3.75) THEN
Y=EXP (OFST)
SI0=1.0*Y
Y=Y* (T**2)
SI0=SI0+3.5156229*Y
Y=Y* (T**2)
SI0=SI0+3.0899424*Y
Y=Y* (T**2)
SI0=SI0+1.2067492*Y
Y=Y* (T**2)
SI0=SI0+0.2659732*Y
Y=Y* (T**2)
SI0=SI0+0.0360768*Y
Y=Y* (T**2)
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oNoNeNe!

SI0=S10+0.0045813*Y
ELSE
Y=EXP (ABS (X) +OFST) /SQRT (ABS (X) )
SI0=0.39894228*Y
Y=Y/T
SI10=S10+0.01328592*Y
Y=Y/T
S10=S10+0.00225319*Y
Y=Y/T
SI0=SI0-0.00157565*Y
Y=Y/T
SI0=S10+0.00916281*Y
Y=Y/T
SI0=SI10-0.02057706*Y
Y=Y/T
SI0=S10+0.02635537*Y
Y=Y/T
SI0=SI0-0.01647633*Y
Y=Y/T
SI0=S10+0.00392377*Y
ENDIF
RETURN
END
d Kk ok ok ok ok ko ok ok ok ok k ok ko k k k ko ok ok ko k k ok ok ok ko ke k ok ok ok ok
PRODUCT OF EXPONENTIAL AND MODIFIED BESSEL
FUNCTION OF FIRST ORDER
Ahkkhkkhkhkhkhkhkhkhkkkhkhkrkhkkrhkkkhkrkhkhkhhkhkkhhkdhkhhkhki
REAL FUNCTION SI1(X,OFST)
REAL X,T,Y,OFST

T=ABS(X)/3.75

IF (ABS(X).LT.3.75) THEN
Y=X*EXP (OFST)
SI1=0.5*Y
Y=Y* (T**2)
SI1=SI1+0.87890594*Y
Y=Y* (T**2)
SI1=ST1+0.51498869*Y
Y=Y* (T**2)
SI1=SI1+0.15084934*Y
Y=Y* (T**2)
SI1=SI1+0.02658733*Y
Y=Y* (T**2)
SI1=SI1+0.00301532*Y
Y=Y* (T**2)
SI1=SI11+0.00032411*Y

ELSE
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Y=EXP (ABS (X) +OFST) /SQRT (ABS (X) )
SI1=0.39894228*Y
Y=Y/T
SI1=SI1-0.03988024*Y
Y=Y/T
SI1=S11-0.00362018*Y
Y=Y/T
SI1=SI11+0.00163801*Y
Y=Y/T
SI1=S811-0.01031555*Y
Y=Y/T
SI1=SI11+0.02282967*Y
Y=Y/T
SI1=SI11-0.02895312*Y
Y=Y/T
SI1=SI1+0.01787654*Y
Y=Y/T
SI1=SI1-0.00420059*Y
IF (X.LT.0.0) SI1l=-SIl

ENDIF

RETURN

END
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