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ABSTRACT

The Moduli Space of Special Lagrangian Submanifolds

By

Sema Salur

In this thesis we study the deformation theory of special Lagrangian subman—

ifolds and the singularities of the local moduli space. We show that the moduli

space of all infinitesimal special Lagrangian deformations of a smooth, compact,

orientable special Lagrangian L in a symplectic manifold with non-integrable al-

most complex structure is a smooth manifold and its dimension is equal to the

dimension of 711(L), the space of harmonic 1-forms on L.
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CHAPTER 1

Introduction

The purpose of this chapter is to develop some motivation for the study of special

Lagrangian submanifolds and to give some insight into the geometry involved. We

will first give the basic definitions in calibrated geometries and study the complex

submanifolds of Kahler manifolds as an example. We will then discuss the general

concept of special Lagrangian geometries with possible applications.

1.1 Calibrated Geometries

Given a real valued function f (:13) : R —> R we can describe the local minimum

points of f by finding the critical points (a:| f’ (at) = 0) and applying some derivative

tests. By comparing the local minimum points we can then describe the global

minimum points.

Let Xn be a Riemannian manifold. We can also study a similar problem in the

space of immersions of M into X where f is now defined as a volume functional.



Given a E Hk(X,Z) define the set

71 = {M: compact, oriented submanifolds of X | [M] = a} and the volume

functional

V : H —> R such that V(M) 2/ dvolM.

Our goal in this chapter is to study”the global minimum points of this functional.

The motivation behind this is that a calibrated submanifold is volume minimizing

in its homology class. Therefore in order to understand the geometry of this

special class of submanifolds we should first understand the geometry of V(M)

and in particular the global minimum points of V.

1.1.1 Complex Submanifolds of Kéihler Manifolds

In this section we study the global minimum points of the volume functional of

a Kahler manifold and show that a complex submanifold has least volume in its

homology class by proving the Wirtinger’s Inequality and the Federer’s Argument.

First we will give some definitions.

DEFINITION 1.1 : A symplectic structure on a manifold X2" is a nondegenerate

closed 2-form w E 92(X). A smooth manifold X2" with a symplectic structure is

called a symplectic manifold. (e. 9 R2", 32)

Nondegeneracy means that each tangent space (TqX, wq) at any point q E X is

a symplectic vector space.



REMARK 1.1 : The symplectic manifold X is necessarily of even dimension be-

cause the n-fold wedge product w A w /\ /\ w never vanishes. This also implies

that X is orientable.

DEFINITION 1.2 : An almost complex structure on a 2n dimensional real manifold

is a complex structure J on the tangent bundle TX.

DEFINITION 1.3 : An almost complex structure J on a symplectic manifold is

called integrable if and only if it is covariant constant with respect to the Levi-

Civita connection of the associated metric gJ.

DEFINITION 1.4 : A Kc'ihler manifold is a symplectic manifold (X,w) with an

integrable almost complex structure J. (e.g R2", CP")

Recall that our goal is to study the volume minimizing submanifolds of a Kahler

manifold. For this we need two important tools, namely the Wirtinger’s Inequality

and the Federer’s Argument.

Theorem 1.1 : (Wirtinger’s Inequality)

Let X2" be a Kiihler manifold and M2’" be a real, oriented submanifold of X.

Then for all p E M,

-“’,;,'3.IT,.M S dellrpM

with equality if and only if TpM is a complex subspace of TpX .



Proof: For any two unit vectors Y, W E TPX, we can show that

w(Y, W)2 = < Y, JW >2 (compatibility of w and the metric)

g |Y|2|JW|2 (by Cauchy-Schwartz inequality)

= |Y|2|W|2 = 1 (J preserves the length of the vectors)

and the inequality above will be an equality iff Y = :l:.IW, in other words iff Y

and W span a complex space.

By linear algebra we can show that there exists an oriented, orthonormal basis

e1, ...82m of Tp(M) such that oz can be written as follows:

m

w = 2.54 )‘iw2i—l /\ w2i

where A,- = w(e2,-_1,e2,-) for i = 1, ..,m and w1,...,w2m are the dual one forms to

61, ...€2m.

With a simple calculation one can show that

w'" = (m!))\1...)\mw1/\ /\ (412m.

lwml = (m!)w1 A szm iff |/\1.../\m| = 1.

Since we showed earlier that w(Y, W)2 S 1 and this implies that |A,| S 1 for

each i. Therefore, |/\1...Am| = 1 iff A? = w(e2,-_1,e2,-)2 = 1 for all i = 1, ..,m. This

is equivalent to saying that e2,_1 = iJeg, for all i = 1, .., m in other words TpM is

a complex space. For more details see [8].



Theorem 1.2 : (Federer’s Argument)

Let X2" be a thler manifold. Let <I> : M2"“ —> X be a compact complex sub-

manifold. Then uol(<I>) g vol($) where 5 : Mm —> X is any real 2m-dimensional

submanifold homologous to M rel boundary. (with equality if and only if Mm is

also complex.)

Proof: Let (I) : M —> X be a compact complex submanifold and 71>- : M —> X

is any real 2m-dimensional submanifold homologous to M rel boundary.

Take fl : W2”+1 —> X as the collection of simplices mapping to X such that

M—M2BW.

We will first show that / mm = f 52/".

M if

Since w is closed dw'" = 0. Also the pullback and exterior derivative commutes

with each other. So we get

Oszfi‘dwmszdfi‘wm

= from (by Stoke’s theorem).

ow

:/ —IB¢wm:/Btwm_/‘_fitwm

M—M M M

Since the restrictions of B" to M and M are <I>‘ and 75‘, respectively, we get

=/ <1>*wm—/$‘wm=0

M H

Now, we can get the Federer’s Argument as follows:



1 —¢

vol(M) = dvolM = — <I>‘wm = —1 (I) w'"
l l —_

M m. M m. M

S / d'UOl'M (by Wirtinger’s Inequality)

M

= vol(M)

(with equality iff M is also complex).

1.1.2 Calibrations

In 1982, Harvey and Lawson extended the fact that complex submanifolds of a

Kahler manifold are volume minimizing in their homology classes to the more gen-

eral context of calibrated submanifolds. In their paper they introduced four new

examples of calibrated geometries. The first is the special Lagrangian calibra-

tion which is a real n form defined on a 2n dimensional manifold with holonomy

contained in SU(n). The other three are associative, coassociative and Cayley

calibrations which occur in specific dimensions. Most of the definitions used here

can be found in [7].

Let X be a Riemannian manifold and (f) be a p-form on X. At each point

x E X, the comass of 45,, is defined as follows:

”‘15”: = Sup{< quéz >: g is a unit simple p—vector at x}



DEFINITION 1.5 : A smooth p-form (b on a Riemannian manifold X is called a

calibration if

i) (15 is comass 1.

inwza

(X, gb) is called a calibrated manifold.

Let (t be a smooth p—form of comass 1 on X. We will denote the collection of

oriented p-planes at x E X by G(p, TzX) We can identify this set with the vector

space of p—vectors at x. Then we can define Q(d)) as follows:

g(¢) = { £2 EG(piTxX)| < ¢i€3 >2 1}'

DEFINITION 1.6 : A p-dimensional submanifold S C X is called a Q(¢) subman-

ifold if TqS E 9((15) for all q E 3.

One can also define the calibration as follows: Note that these two definitions

are equivalent.

DEFINITION 1.7 : A calibration is a closed p-form (b on a Riemannian manifold

Xn such that it restricts to each tangent p-plane of Xn to be less than or equal to

the volume form of that p-plane.

DEFINITION 1.8 : The submanifolds of Xn for which the p-form (b restricts to be

equal to the Riemmanian volume form are said to be calibrated by the form (15.



We will use the term calibrated geometry for the ambient manifold X, the

calibration <15, and the collection of submanifolds calibrated by (1'). Recall that in

the previous section we showed that complex submanifolds of a Kahler manifold

are volume minimizing in their homology classes, so if no denotes the Kahler form

and if d)? = 91,—: then q)? is the calibration and the collection of complex submanifolds

are the submanifolds calibrated by ¢p~

Next we will give an example:

EXAMPLE 1.1 : Take w = dx in R”. We will find the calibrated geometries

associated to w = dx.

The comass of w 2 Sup {w(e) : |e| = l,e is a vector in R2}

We can write 6 in terms of the basis: e 2 age; + b-giy such that |e| =W= 1.

Then we get w(e) = a => Comass(w) 2 Sup {a1 |a| S 1}.

Piomm= 1 we see that if comass: 1 then e = 8%.

Therefore the associated 1-dimensional calibrated submanifolds of R2 will be

straight lines parallel to the x-axis.

In section 1.1.1 we showed that the complex submanifolds are volume mini-

mizing in Kahler manifolds by proving Wirtinger’s Inequality and the Federer’s

Argument. One can easily obtain similar properties for calibrated submanifolds:

Let (X, gt) be a calibrated manifold.



)If SIS a compact oriented p—dimensional submanifold of X,

1/S()’)<Vol(S)

with equality if and only if S is a Q(¢) submanifold.

2) Let S be a 9(45) submanifold. Let S be any submanifold homologous to S

then

v0l(S) g vol(S)

with equality if and only if S is also a 9(45) submanifold.

These properties imply that the calibrated submanifolds are volume minimizing

in their homology classes.

1.1.3 Special Lagrangian Geometries

In this section we will introduce the Special Lagrangian Geometries for C". In

section 1.2 we will extend these to Calabi-Yau manifolds. Recall that to construct

a calibrated geometry we first need a calibration. In our case it is the special

Lagrangian calibration which is a real n form defined on a 2n dimensional manifold

with holonomy contained in SU(n)

We will take the standard coordinates 21 = x1 + ixn+1,...,z,, = x7, + ixgn

on C“. We will also assume that C" is equipped with a complex volume form

dz = dzl /\ /\ dz". Here we will examine the real n-form
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p = Re(dz) 2 (dz + d2).1

2

REMARK 1.2 : With a simple calculation one can show that this form is closed i.e

d(u) = 0. Note that n has constant coefficients on C" E“ R2“. Also we can show

that Re(dz) has comass 1. For more details see [7].

DEFINITION 1.9 : The real n-form ,u = Re(dz) = Re(dz1 /\ Adz"), is the special

Lagrangian calibration on C".

DEFINITION 1.10 .' A real n-plane in C" is called special Lagrangian if the form

Re(dz) restricts to be the volume form.

This is equivalent to saying that the restriction of Im(dz), the imaginary part

of (dz) and the symplectic form a) is zero on a special Lagrangian plane. (See [7])

DEFINITION 1.11 : An oriented n dimensional submanifold S of C" is called a

special Lagrangian submanifold if TqS is a special Lagrangian n plane for all q E S.

In addition to introducing the special Lagrangian calibration, Harvey-Lawson

also discussed several examples in their paper [7]. We will conclude this section

with one of these examples.

EXAMPLE 1.2 : Let MC denote the locus of the equations:

|zj|2 — |z1|2 = c,-, j = 2, ...,n and

Rezl...z,, 2 c1 if n is even, or Imzl...z,, = c1 if n is odd.

Then MC is a special Lagrangian submanifold of C".
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1.2 Calabi-Yau Manifolds and Strominger—Yau—

Zaslow Conjecture

In this section we will define the special Lagrangian calibration for Calabi-Yau

manifolds.

We will first explain why we study the special Lagrangian submanifolds of a

Calabi-Yau manifold. In section 1.1.2 we mentioned that the notion of special

Lagrangian submanifold was first introduced by Harvey and Lawson [7] as an ex-

ample of calibrated geometries. In their paper, special Lagrangian submanifolds

were studied as volume minimizing submanifolds in a homology class. In the

last few years, developments in mirror symmetry and especially the Strominger-

Yau-Zaslow conjecture have focused attention on special Lagrangian submanifolds

again. Strominger, Yau and Zaslow [13] proposed a geometric construction of mir-

ror manifolds via special Lagrangian tori fibrations. According to their proposal,

there should be a close connection between the deformation theory of special La-

grangian submanifolds and the mirror symmetry. Recently, special Lagrangian

submanifolds have been studied by several other authors [1], [3], [4], [6], [9], [11].

DEFINITION 1.12 : A Calabi- You manifold X is a Kc'ihler manifold of complex

dimension n with a covariant constant holomorphic n-form. (equivalently it is a

Riemannian manifold with holonomy contained in SU(n))

One other equivalent definition for Calabi-Yau manifolds is that they are Kahler

manifolds with first Chern class c1 = 0
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Calabi-Yau manifolds are equipped with a Kahler 2-form w, an almost complex

structure J which is tamed by w, the compatible Riemannian metric g and a

nowhere vanishing holomorphic (n,0)-form £=u + ifi, where u and ,6 are real

valued n-forms.

DEFINITION 1.13 : An n-dimensional submanifold L _C_ X is special Lagrangian

if L is Lagrangian (i.e. w|L E 0) and Im(£) restricts to zero on L. Equivalently,

Re(§) restricts to be the volume form on L with respect to the induced metric.

We can ask the following question: Do special Lagrangian submanifolds play

any role in the construction of the mirror pair ? The answer is not known yet

but Strominger, Yau and Zaslow [13] proposed a geometric construction of mirror

manifolds via special Lagrangian tori fibrations. Roughly, they argued that any

3-dimensional Calabi-Yau manifold X with a mirror pair X should contain a SL

3-torus.

One can state the conjecture in the simplest way as follows:

Strominger-Yau-Zaslow Conjecture: If X and X are mirror pairs of

Calabi- Yau 3—folds, then there should exist a special Lagrangian 3-torus fibration

f : X —> B (with some singular fibres), such that X is obtained by finding some

suitable compactification of the dual of this fibration.
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1.3 Organization

The thesis is organized as follows. In chapter 2 we review the deformation the-

ory of special Lagrangian submanifolds in a Calabi-Yau manifold and explain

R.C.McLean’s result. We will also extend this result to symplectic manifolds with

non-integrable almost complex structure.



CHAPTER 2

Deformations of Special

Lagrangian Submanifolds

In this chapter we will prove that the moduli space of all infinitesimal deformations

of a smooth compact special Lagrangian submanifold L in a symplectic manifold

X within the class of special Lagrangian submanifolds is a smooth manifold of

dimension b1(L), the first Betti number of L.

2.1 Deformations in a Calabi-Yau Manifold

In [10], McLean proved the following theorem which says that the moduli space

of nearby submanifolds of a smooth compact special Lagrangian submanifold L

in a Calabi-Yau manifold X is a smooth manifold and its dimension is equal to

the dimension of ’Hl(L), the space of harmonic 1-forms on L. In what follows,

X will denote a 2n-dimensional Calabi-Yau manifold with a Kahler 2-form w and

14
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a nowhere vanishing holomorphic (n, 0)-form {zu + ifi, where u and O are real

valued n—forms.

Theorem 2.1 : The moduli space of all infinitesimal deformations of a smooth,

compact, orientable special Lagrangian submanifold L in a Calabi-Yau manifold

X within the class of special Lagrangian submanifolds is a smooth manifold of

dimension equal to dim(7-ll(L)).

REMARK 2.1 : R.C.McLean’s theorem is a tool to show the existence of non-

explicit examples. It says that given one compact special Lagrangian submanifold

L, there is a local finite dimensional moduli space of deformations whose dimension

is equal to the first Betti number b1(L). Hence starting with a set of real points

(special Lagrangian submanifold) in a suitable Calabi-Yau and deforming one can

assert the existence of compact special Lagrangian submanifolds.

Proof of Theorem: For a small normal vector field V we define the deforma-

tion map as follows,

F: P(N(L)) —> 92(L) ®Q"(L)

1’00 = ((expv)'(—w)i (expv)‘(1m(€))

The deformation map F is the restriction of —w and Im(£) to Ly and then

pulled back to L via (expv)“. Here N(L) denotes the normal bundle of L, I‘(N(L))

the space of sections of the normal bundle, and {22(L), Q"(L) denote the differential

2-forms and n-forms, respectively. Also, expV represents the exponential map

which gives a diffeomorphism of L onto its image LV in a neighborhood of 0.



16

Recall that the normal bundle N(L) of a special Lagrangian submanifold is

isomorphic to the cotangent bundle T‘(L). Thus, we have a natural identification

of normal vector fields to L with differential 1-forms on L.

Furthermore, since L is compact we can identify these normal vector fields with

nearby submanifolds. Under these identifications, it is then easy to see that the

kernel of F will correspond to the special Lagrangian deformations.

We compute the linearization of F at 0,

dF(O) : P(N(L)) ——> 92(L) ®Q"(L)

where

dF(0)(V) = 52m»... = 5%[exp:v(—w),exp{v(fi)lli:o

=[—(£vw)|L, (£vfi)|L] where .CV denotes the Lie derivative.

Using the Cartan Formula, we get:

= (-(ivdw + d(ivw))li. (ivdfi + d(ivfi))lL)

= (—d<ivw)li. (d(ivfi))li) (w and a closed forms)

= (dv, d a: v)

where iv represents the interior derivative and v is the dual 1-form to the vector

field JV with respect to the induced metric. For the details of local calculations

of d(ivw) and d(ivfi) see [10].

Hence dF(0)(V) = (dv,d a: v) = (dv, *d‘v).

Next, we need to show that dF(0)(V) = (dv, d*v) = (dv, *d‘v) is onto. McLean
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showed this by proving that F is a map from I‘(N(L)) to exact 2-forms and exact

n-forms. The proof goes as follows:

The image of F lies in the closed 2-f0rms and closed n-forms, since F is the

pullback of the closed forms to and fl. By replacing V with tV we can see that

exp : L —-+ X is homotopic to the inclusioni : L ——> X and since we work with closed

forms exp}; and i“ give the same map in cohomology. Then [exp‘v(,6)] = [i*(fi)] =

[fllL] = 0 and [exp{,(w)] = [i‘(w)] = [wIL] = 0 since L is special Lagrangian. So

the forms in the image of F are cohomologous to zero and they are exact forms.

Now, one can easily show that for any given exact 2—form a and exact n-form b

we can solve for v that satisfies the equation dv = a and d * v = b. Hence dF(0)(V)

is surjective and after completing the space of differential forms with appropriate

norms and using the Banach space implicit function theorem and elliptic regularity

we can conclude that F‘1(0, 0) is a smooth manifold with tangent space at 0 equal

to 741(1), [10].

2.2 A New Interpretation of Special Lagrangian

Submanifolds

In this section our aim is to improve R.C.McLean’s result which is explained in

section 2.1 to symplectic manifolds. Precisely, we want to show that the moduli

space of all infinitesimal special Lagrangian deformations of L in a symplectic

manifold with non-integrable almost complex structure is also a smooth manifold
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of dimension b1 (L). We will prove this by extending the parameter space of special

Lagrangian deformations, in other words by using a modified definition of special

Lagrangian submanifolds.

First, we will explain why we need to change the classical definition of special

Lagrangian submanifolds in terms of the calibrated form. Recall that McLean

showed the surjectivity of the linearized operator in the Calabi-Yau case by a

cohomology argument. This is possible because in the Calabi-Yau case the complex

(n, O)-form 5 is closed but when we try to extend this result to symplectic manifolds

with non-integrable almost complex structure (i.e 5 is no longer closed) we cannot

use the same cohomology argument. So we have to seek some other ways to prove

the surjectivity. One way is to change the deformation map slightly and that’s the

main reason for us to use a modified definition of special Lagrangian submanifolds.

Recall that a Lagrangian submanifold L of a Calabi-Yau manifold is special

Lagrangian if Im(€)| L E 0, where 5 is a nowhere vanishing, closed, complex (n, 0)-

form. In our case, we will drop the assumption that 6 is closed (i.e d6 75 0) and

introduce a new parameter 6 for the deformations. Then the condition Im(§) | L :— 0

will be replaced by Im(e‘0{)| L E 0 in the definition of special Lagrangian subman-

ifolds.

In what follows, X will denote a 2n-dimensional symplectic manifold with sym-

plectic 2-form w, an almost complex structure J which is tamed by w, the com-

patible Riemannian metric g and a nowhere vanishing complex valued (n, 0)-form

{=11 + ifl, where u and H are real valued n-forms. We say f is normalized if the

following condition holds:
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<—1)"<"-1>/2<z'/2)"£ A? = can/n!

So far, all the studies have focused on Calabi—Yau manifolds where this complex

form is closed, but for our purposes we need a globally defined (n, 0)-form which

is not closed on X. There are many non-closed forms on a manifold, and one

can easily construct them; for example by multiplying a given closed form with a

non-constant function. The fact that g is not closed implies that the associated

almost complex structure J on the tangent bundle TX is non-integrable. In fact,

the integrability of the almost complex structure determined by 6 can be replaced

by a weaker condition than d6 = O ([4]).

In special Lagrangian calibrations, there is an additional term e”, where for

each fixed angle 6 we have a corresponding form e‘oé and its associated geometry.

6 is called the phase factor of the calibration and this in fact will be our new

parameter in the deformation of special Lagrangian submanifolds. In order to

enlarge our parameter space we will allow 6 to vary along the deformations. We

will also assume that the initial value of 6 is 0 to avoid the appearance of additional

constants.

Taking the new parameter 6 into consideration, one can slightly modify the

definition of a special Lagrangian submanifold in a symplectic manifold.

DEFINITION 2.1 : An n-dimensional submanifold L Q X is special Lagrangian

if L is Lagrangian (i.e. wlL E 0) and Im(e‘9§) restricts to zero on L, for some

6 E R. Equivalently, Re(e‘9§) restricts to be the volume form on L with respect to

the induced metric.
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2.3 Deformation Theory in a Symplectic Mani-

fold

Under the given assumptions, we are ready to state our theorem:

Theorem 2.2 : The moduli space of all infinitesimal deformations of a smooth,

compact, orientable special Lagrangian submanifold L in a symplectic manifold

X within the class of special Lagrangian submanifolds is a smooth manifold of

dimension b1(L), the first Betti number of L.

REMARK 2.2 : In [10], McLean proved the same theorem for Calabi—Yau man-

ifolds, i.e, for d5 = O. This is the case where the almost complex structure is

integrable.

Proof of Theorem. For a small vector field V and a scalar 6 E R, we define

the deformation map as follows,

F: I‘(N(L))><R—> 92(L) $Q"(L)

F(V,0) = ((expv)’(-w)i (expv)‘(Im(e“’€))

The deformation map F is the restriction of —w and Im(ef9£) to LV and then

pulled back to L via (expv)‘ as in [13]. Here N(L) denotes the normal bundle

of L, I‘(N(L)) the space of sections of the normal bundle, and 92(L), (N(L)

denote the differential 2-forms and n-forms, respectively. Also, expV represents

the exponential map which gives a diffeomorphism of L onto its image LV in a

neighbourhood of O.
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Recall that the normal bundle N(L) of a special Lagrangian submanifold is

isomorphic to the cotangent bundle T‘(L). Thus, we have a natural identification

of normal vector fields to L with differential 1-forms on L.

Furthermore, since L is compact we can identify these normal vector fields with

nearby submanifolds. Under these identifications, it is then easy to see that the

kernel of F will correspond to the special Lagrangian deformations.

We compute the linearization of F at (0,0),

dF(0,0) : I‘(N(L))><R—> 522(L) a; Q"(L)

where

dF(O, O)(V, 0) = gt-Fav, 30)|.:o,.=o + 333mm Santana

Therefore,

%F(tV, 30)|.:o,.=o + 333F(tV, 59)|t=0.s=0

= %[exp;V(—w), exp;,,(1m((ees(sa) + isin(s6))(u + mm |t=0,s=o

+§§iexp:v(—w>,expi<1m<<cos<s6> + isin(89))(u + ifi))llt=0.s=o

=[—(va)|L, (CvullL ' Sin(39)|s=o +(5vfillL ° 008(39)|e=o

+ ((expiv It) ° C08(39) ' 9 - (expiv fl) 'Sin(89) ' 9)lt=o..=ol

= [“(vallL, LVflIL ' COS(36)|320 + ((exp,’v M) ‘C05(59) ° 0)lt=0,r=o]

Here CV represents the Lie derivative and one should notice that expz’v ultzo is

just the restriction of u to L which is equal to 1 by our assumption that the initial
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value of 6 is 0.

Also, on a compact manifold L, top dimensional constant valued forms cor-

respond to ’H"(L), the space of harmonic n-forms on L and there is a natural

identification between the reals and harmonic n-forms. Therefore, 6 = 6de1 will

play the role of a harmonic n-form in our calculations.

Using the Cartan Formula, we get:

= (—(ivdw + d(ivw))lLi (ivdfi + d(iv5))IL + 9)

= (—d(ivw)|L, (ivdfi + defiUlL + 9)

= (dv,C + d * v + 6), where C = iv(dfi)|L

Here iv represents the interior derivative and v is the dual 1-form to the vector

field V with respect to the induced metric. For the details of local calculations of

d(ivw) and d(ivfi) see [10].

Hence dF(O, 0)(V, 6) = (dv,C + d * v + 6).

Let x1, x2, ..., xn and x1, x2, ..., x2" be the local coordinates on L and X, respec-

 tively. Then for any given normal vector field V = (V1623+1 , ..., Vnfi) to L we

can show that

C = iv(d3)|L = —n(Vi '91 + + V" - gn)dvol where g,- (0 < i S n) are

combinations of coefficient functions in the connection-one forms.

One can also decompose the n-form C 2 da + d‘b + h2 by using Hodge Theory

and because C is a top dimensional form on L, C will be closed and the equation

becomes dF(0,0)(V,6) = (dv,da + d * v + h2 + 6) for some (n — 1)-form a and
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harmonic n-form I12.

The harmonic projection for C = —n(V1.g1 + + Vn.g,,)dvol

is (/ —n(V1.g1 + + Vn.g,,)dvol)dvol and therefore one can Show that

L

do = —n(V1.g1 + + Vn.gn)dvol+(n/(Vl.g1 + + Vn.gn)dvol)dvol and

L

h; = (—n/(Ifi.gl + + Vn.gn)dvol)dvol.

L

REMARK 2.3 : One should note that the differential forms a and hg both de-

pend on V and therefore should be explored carefully in order to understand the

deformations of special Lagrangian submanifolds.

After completing the space of differential forms with appropriate norms, we can

consider F as a smooth map from Cl’°‘(fll(L)) xR to Co’“(fl2(L)) and Co'“(Q"(L)),

where

CW9) = {f 6 0km [Dinah < oo. lvlsk} and

[flan = Sup dist§f§12.f(y)) in Q.

d' t '1
:L',y€fl, x¢y ( 1‘ (21y))

The Implicit Function Theorem says that F_1(0, 0) is a manifold and its tangent

space at (0,0) can be identified with the kernel of dF.

(dv) $(C + d * v + 6) = (0,0) implies

dv=0andC+d*v+6=da+d*v+h2+6=0.

The space of harmonic n-forms ’H"(L), and the space of exact n—forms

dfl"'1(L), on L are orthogonal vector spaces by Hodge Theory. Therefore, dv = 0

and da+d*v+h2+6 = 0 is equivalent to dv = 0 and d*v+da = 0 and h2+6 = 0.
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One can see that the special Lagrangian deformations (the kernel of dF) can

be identified with the 1-forms on L which satisfy the following equations:

(i) do = 0

(ii) d * (’U + KM) = 0

(iii) h2 + 6 = 0.

Here, 5(2)) is a linear functional that depends on v and h; is the harmonic part

of C which also depends on v. These equations can be formulated in a slightly

different way in terms of decompositions of v and *a.

If v z: dp -l- d‘q + h] and *a = dm + d‘n + h3 then we have

(i) dd*q = 0

(ii) A(p :l: m) = 0

(iii) h2 + 6 = o.

This formulation of the solutions will help us to prove the surjectivity of the

linearized operator without using n(v).

REMARK 2.4 : When 6 = C, the infinitesimal deformations of 6 give no additional

special Lagrangian deformations simply because there cannot be two different har-

monic representatives in the same cohomology class. Therefore, one can obtain

McLean’s result by fixing 6 = 0' along the deformations for some constant C and

since dfi|L = 0 in the integrable case, do = 0 and h; = 0. Hence the deformations

correspond to 1-forms which satisfy the equations dv = 0 and d * v + 6 = 0.

Next, we need to show that the deformation theory of special Lagrangian sub-
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manifolds is unobstructed. In order to use the implicit function theorem, we need

to show that the linearized operator is surjective at (0, 0).

Recall that the deformation map,

F: I‘(N(L))><R—-> 92(L) @Q”(L)

is defined as follows:

F(V, 6) = ((expv)‘(-w)i (expv)‘(Im(€‘9€))-

Even though Im(ewC) is not closed on the ambient manifold X, the restriction

of this differential form is a top dimensional form on L, and therefore it will be

closed on L. On the other hand, no is the symplectic form which is by definition

closed on X. Therefore, the image of the deformation map F lies in the closed

2-forms and closed n-forms.

At this point we will investigate the surjectivity for w and Im(ewC) separately.

We have the following diagrams for dF = dF1 $dF2 with natural projection

maps projl and projg :

dFl :I‘(N(L)) —“'—> 02(L)p1ji dim)

and,

ng : I‘(N(L)) x R “(its)” (2"(L) ”1’? don-la.) gaunm

We will show that the maps dFl and ng are onto dQl(L) and

dfl"’1 (L) Q ’H“(L), respectively.

Therefore, for any given exact 2-form x and closed n-form y = u + z in the
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image of the deformation map (here u is the exact part and z is the harmonic part

of y), we need to show that there exists a 1-form v and a constant 6 that satisfy

the equations,

(i) dv = x

(ii) d * (v + K(v)) = u

(iii)h2 + 6 = z.

alternatively, we can solve the following equations for p, q and 6.

(i) dd‘q = x

(ii) A(p :l: m) = *u (Here, the star operator it is defined on L)

(111) I12 + 9 = 2.

For (i), since x is an exact 2-form we can write x = d(dr + d's+harmonic form)

by Hodge Theory. Then one can solve (i) for q by setting q = s.

For (ii), since Am 2 d‘dm = d‘ * a = *d at: *a = j: :1: da,

A(p i m) = Ap :t Am 2 Ap :1: *da (here a depends on p)

= Ap :t (—n(V1.g1 + + Vn.g,,) + (n/(Vlgl + + Vn.g,,)dvol )) = *u

L

Since V :— (V1, ..., V") is the dual vector field of the one form v :2 dp + d‘q + hl

we can write the equation above as

Ap :l: (—n(v - g) + (n/L(v - g)dvol )) = *u

= Ap :t (—n(dp + d‘q + h1)-g + (n/(dp + d’q + h1)-gdvol )) = *u

L

where v - 9 represents the action of the one form v on the vector field 9 = (91, .., g")
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and n/ (dp + d‘q + hl -g)dvol is the harmonic projection of —n(dp + d‘q + hl) ~g.

L

Then we get

Ap :t n(—(dp - g) + fdp - gdvol )2 *u q: n[—(d"q + h1)-g + [(d‘q + h1)-gdvol].

L L

For simplicity we put *u IF n[—(d"q + h) -g + [(d‘q + h) ~gdvol] = h. Since

L

/ =1: u = 0 and /(d‘q + hl) - gdvol is the harmonic projection of (d‘q + h) -g, we

L L

get/h20.

L

Since L is a compact manifold without boundary, by Leibniz Rule,

/dp - g dvol: —fp - divg dvol and the equation becomes

L L

Api n(—(dp - g) — [p - divg dvol) = h.

L

Then by adding and subtracting p from the equation I

(A — Id)p = [in(-—(dp - g) — [p - divg dvol) — p + h] and

L

p = (A — Id)‘1[.....]p + E = [C(p) + E, where h = (A — Id)“1h.

and since ”(A — Id)‘1/p-divg||L§ _<_ CI/p-divgl S C||p||L2, [C(p) is a compact

L L

operator which takes bounded sets in L2 to bounded sets in L]. Also note that we

assumed here 1 ¢ specA, and if this is not the case then we can modify the above

argument by adding and subtracting Ap, A sf specA from the equation.

Next we will show that the set of solutions of the equation Ap :l: n(—(dp - g) —

fp - divg dvol) = 0 is constant functions and therefore of dimension 1. Note that

L

this set of solutions also satisfy the equation (Id — IC)(p) = 0
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Note that /p - divg dvol is a constant which depends on p. We denote this as

C(p) At maximum values of p, Ap will be negative which implies that C(p) S 0

and at minimum values of p, Ap will be positive which implies that C(p) 2 0

so C(p) should be zero. Then the maximum principle holds for the equation

Ap i n(—(dp - g)) = 0 and since L is a compact manifold without boundary the

solutions of this equation are constant functions. Hence the dimension of the kernel

of (Id — IC) is one.

Next we find the kernel of (Id — IC").

/L(Ap i n(-(dp - 9) - pr - divg))q(y)dy

= [1913401) i n/ - (div - g)q(y)dy - 71/ (pr ' divgmyldy
L L L

= [LPG/Ma i n/L + (pdiv(g ~ q)(y)dy - n/LM(x)'xdivfiMfr.yldydx

= /p(y)Aq :t n/ + (pdiv(g - q)(y)dy - n/pw) - divg(y) fr q(x)dxdy
L L L

= [LPG/)(Aq i n(+di'v(g - q) - divg fr. q(x)dmldy

Since we assumed that 1 ¢ specA, dim ker(Id—IC*)(A—Id) = dim ker (Id—1C")

and the kernel of (Id — IC“) is equivalent to the solution space of the equation

Aq :t n(+div(g - q) — divg fL q(x)dx) = 0

By Fredholm Alternative, l2] the dimension of this kernel is 1 and one can Check

that a constant function q = 1 satisfies this equation, therefore the kernel consists

of constant functions. Moreover these functions satisfy the compatibility condition

fh.q = 0.
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Then by Fredholm Alternative we can conclude the existence of solutions of

the equation

Ap i (—n(V1.g1 + + Vn.g,,) + (n/(V1.g1 + + Vn.g,,)dvol )) : *u

L

(iii) is straightforward.

The only thing remaining is to show that the image of the deformation map F1

lies in dfll(L) and the image of F2 lies in dfln’l(L) ®’H"(L).

For w, we can follow the same argument as in [13]. Since expV : L—>X is

homotopic to the inclusion i : L—>X, exp;, and i“ induce the same map in coho-

mology. Thus, [exp§, (w)] = [i‘(w)] = [wlL] = 0 . So the forms in the image of F is

cohomologous to zero. This is equivalent to saying that they are exact forms.

For Im(ei9C ), we cannot follow the same process, because it is not a closed form

on the ambient manifold X and therefore does not represent a cohomology class.

But by our construction of our deformation map, it is obvious that the image lies

in d0"‘1(L) Gianna).

One can find the dimension of this manifold by comparing the operators d +

*d*(v) and d + *d*(v + n(v)). Since C = iv(dfi)|L = —n(V1.g1 + + Vn.g,,)dvol it

is easy to see that the extra term *d"(n(v)) contains no derivatives of v and this

implies that the linearized operators d + *d"(v) and d + *d‘(v + n(v)) have the

same leading term. Also it is known that the index of an elliptic operator is stable

under lower order perturbations. Since the dimension of the kernel of d + *d‘ is

b1(L_) + 1 and the dimension of its cokernel is 1 as a map from I‘(N(L))xR—>



30

dQI(L) $dfln’1(L)®’H"(L), we can conclude that both the index of d + *d“(v)

and d + *d‘ (v + n(v)) are equal to b1(L). Hence the dimension of tangent space

of special Lagrangian deformations in a symplectic manifold is also b1(L), the first

Betti number of L.

Therefore, dF is surjective at (0,0) and by infinite dimensional version of the

implicit function theorem and elliptic regularity, the moduli space of all infinites-

imal deformations of L within the class of special Lagrangian submanifolds is a

smooth manifold and has dimension b1(L).
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