an . £un ,1 h; E . a... .. a». . . .m ..ma,....,. ww. { aw , . ‘. THESIS 9 :50] This is to certify that the dissertation entitled Dynamic Unobserved Effects Model for Continuous and Binary Response presented by Chung-Jung Lee has been accepted towards fulfillment of the requirements for Ph . D . degree in Economic 3 WWW Major professor I 'Date ‘O/Z é/O 0 MS U is an Affirmative Action/Equal Opportunity Institution 0-12771 LIBRARY Mlchlgan State Unlverslty PLACE IN RETURN BOXto remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECAIJJED with earlier due date if requested. DATE DUE DATE DUE DATE DUE mm! 9 A onn') 05'0"9‘d“‘$"’ moo Wm.“ Dynamic Unobserved Effects Model for Continuous and Binary Response By Chung-Jung Lee A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Economics 2000 ABSTRACT Dynamic Unobserved Effects Model for Continuous and Binary Response By Chung-Jung Lee In this thesis I consider estimation of dynamic, unobserved effects panel data models for both continuous and discrete outcomes. In order to handle correlation between the unobserved heterogeneity and the initial condition, I use the method of conditional maximum likelihood estimation (CMLE). This method turns out to be tractable for nonlinear binary response models as well as for dynamic linear models when the unobserved heterogeneity interacts with the lagged dependent variable. The CMLE performs well compared with various competitors that have been proposed in the literature. The thesis is in four chapters. Chapter l surveys the existing literature for es- timating dynamic linear models with unobserved effects, with attention to various assumptions that have been made on the initial conditions. In Chapter 2 I study the CMLE for the linear, dynamic model with an additive unobserved effect. I show how to construct the conditional likelihood function~ which uses an assumption about the distribution of the unobserved effect given exogenous variables and the initial condi- tion. Monte Carlo evidence is provided, with and without the normality assumption in the conditional distribution for heterogeneity, and I include an empirical applica- tion to wage dynamics for employed men. Chapter 3 considers the CMLE for a useful extension of the basic linear model. Namely, I allow the unobserved heterogeneity to interact with the lagged dependent variable. Apparently, this model has not been treated in the literature. Conditional MLE is especially useful for obtaining consistent. estimators. Chapter 4 studies the dynamic logit model with an unobserved effect. Even in this case, where the con- ditional mean function is nonlinear, the CMLE is feasible and produces interesting results in an application to union membership. To my father, Fu-Lz' Lee and my mother, Yue-Xz'a Lee- Wu iv ACKNOWLEDGMENTS It is impossible to express adequately my gratitude for the assistance and encour- agement which many persons have given me in the preparation of this thesis. The first person to whom I must much owe is my thesis advisor, Professor Jeffrey M. Wooldridge. For his timely recommendation and continued instruction about this thesis, it can smoothly come out at. last. Especially for the original idea about the construction of the dynamic panel model he came up with and numerous associated suggestions and valuable advice, I, here, want to acknowledge special debt to my thesis advisor. I also thank the other members of my committee: Professors de Jong and Strauss. I must thank my parents and the rest of my family members, Chung-yi, Chung-chuan, Chung-Liang, Li-juan and Li-mei. Without their continual support and encouragement, I cannot go though with the Ph.D program. I also acknowledge my intimate friends, Chang-shun, Rei-yuan, Feng-yue, Hong-yao and shang-yu for providing the software and timely PC maintenance during the preparation of the the- sis. Last, not the least, there are still a lot of persons who help me behind, but I have not mentioned in the list. l always appreciate all of their help with gratitude. TABLE OF CONTENTS LIST OF TABLES viii 1 Overview Of The Linear AR(1) Model With Unobserved Effects 1 1.1 Introduction .................................. 1 1.2 The Inconsistency of the LSDV Estimator ................. 3 1.3 Estimators of error components model ................... 10 1.4 Properties of the ML estimator ....................... 14 1.5 The efficiency of GMM estimator ...................... 16 1.6 Conclusion ................................... 23 2 Conditional Maximum Likelihood Estimator For The AR(1) Model 26 2.1 Introduction .................................. 26 2.2 General CMLE ................................ 30 2.2.1 Conditional Likelihood Function ..................... 30 2.2.2 Asymptotic Properties of the CMLE ................... 33 2.3 Linear AR(1) Model With Unobserved Effects ............... 35 2.3.1 Linear AR(1) Model ............................ 35 2.3.2 Simulation Evidence ............................ 38 2.4 Linear AR( 1) Model With Unobserved Effects And Exogenous Regressors 41 2.4.1 Linear AR(1) Model With Exogenous Variables ............. 41 2.4.2 Conditional Mean and Variance ...................... 42 2.4.3 Simulation Evidence ............................ 44 2.5 Empirical Example .............................. 46 2.6 Comparison With The Other Estimators .................. 49 2.7 Conclusion ................................... 53 3 Models Where State Dependence Depends On Unobserved Hetero- geneity 97 3.1 Introduction .................................. 97 3.2 AR(1) Models With Unobserved Heterogeneity, State Dependence . . . . 101 3.2.1 AR(1) Model Without Exogenous Variables ............... 101 3.2.2 AR(1) Model With Strictly Exogenous Variable ............. 104 3.3 Simulation Evidence ............................. 107 3.3.1 Model without Exogenous Variable .................... 107 3.3.2 Model With Strictly Exogenous Variable ................. 111 vi 3.4 Empirical example .............................. 113 3.5 Conclusion ................................... 117 4 CMLE For Logit Model With Individual Heterogeneity 134 4.1 Introduction .................................. 134 4.2 The CMLE for Dynamic Logit Model with Unobserved Heterogeneity . . 136 4.2.1 Estimation of Fixed Effects Model .................... 136 4.2.2 Conditional Maximum Likelihood Estimator .............. 140 4.3 Simulation Evidence ............................. 143 4.3.1 The Model Without Exogenous variables ................ 144 4.3.2 The Model With Exogenous Variables .................. 147 4.4 Empirical Example .............................. 148 4.5 Conclusion ................................... 151 A Conditional mean and variance 175 B IV estimator for average autoregressive coefficient across population of unobserved heterogeneity 181 BIBLIOGRAPHY 186 vii 1.1 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 3.1 3.2 3.3 3.4 3.5 3.6 LIST OF TABLES Consistency Properies of the MLEs for Dynamic Unobserved—effect Models 25 y“ = pyi,t_1+a0+al yio+ci+eu under Normality Assumption; H0 : 6 = 60, where p =0 ~ 0.95 ............................ 56 The P-Value of p Under Normality Assumption;H0 : 6 = 60, where p =0 ~ 0.95 ................................. 60 yit = p y,,t_1 + (1’0 + a1 yio + C1: + 8,, under Non-normality Assumption . . 64 The P-Value of p under Non-normality Assumption; H0 : 6 = 60, where p =0 ~ 0.95 ................................. 68 CMLE for the dynamic panel data of log-wage with unobserved hetero- geneity, period21980 ~ 1987 ....................... 72 ya = p yi,t—1 + [3 113a + 010 + at 3.00 + $02 + e + 52': under Normality Assumption; H0 : 6 = 60, where p : 0 ~ 0.95 ............. 73 The P-Value of p under Normality Assumption; H0 : 6 = 60, where p = 0 ~ 0.95 .................................. 77 y“ = p yi,t_1 + ,6 33,, + 00 + a1 3,1,0 + Eng + c, + an under Non—normality Assumption ; H0 : 6 :2 60, where p = 0 ~ 0.95 ............. 81 The P-Value of p under Non-normality Assumption; H0 : 6 = 60, where p = 0 ~ 0.95 ................................ 85 CMLE for the dynamic panel data of log—wage with unobserved hetero- geneity period21980 ~ 1987 ........................ 89 Performance of DIF, GMM, GLS and CMLE (a) .............. 90 Performance of DIF, GMM, GLS and CMLE (b) ............. 93 Performance of DIF, GMM, GLS and CMLE (c) .............. 96 Performance of CMLE (d) .......................... 96 ya = pythl + a, + 7 aiyiysl + 5,1 under Normality Assumption ...... 119 The P-Value of p under Normality Assumption. ya : py,,t_1 + a,- + ’yaiqu + 51‘; ............................... 121 ya = pyi,t_1 + a,- + 7 dig/LA] + 5,", under Non-normality Assumption . . . 123 The P-Value of p under Normality Assumption. y“ = py,,t_1 + a,- + ’Y nigh-J4 + Eu ............................... 125 y“ : py,,t_1 + 52:“ + a, + 7 aiyi,t_1 + 5,, under Normality Assumption . . 127 The P-Value of p under Normality Assumption. ya : pythl + 6:13,, + a,- + ’7 air/“-1 + 5“ ............................... 128 viii 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 ya = pygtq + 7351:“ + a, + 7 aim-J4 + 5,; under Non-normality Assumption 129 The P-Value of p under Non-normality Assumption; y.” = py.,-,t_1 + [3.1“ + a, + ’7 a,y,-y_1 + 51'; ............................ I30 Empirical Evidence: Log Hour Wage, Case a: lnwageit : p l'v'zrwagei‘tq + a,- + 7 a,- -lnwage,,t_1 + 5a ........................ 131 Empirical Evidence: Log Hour Wage, Case bzlnwageu = 6 lnrwagem_1 + a,- + 7 (a, — pa) - ln'wagei,t_1 + en .................... 131 Empirical Evidence: Log Hour Wage, Case czlmuageu = p lnwagemq + (it dt + a,- + 7 a,- - lnwagemq + 5,, .................... 132 Empirical Evidence: Log Hour Wage, Case (1 :lnu'ageu : 19 lnwage,‘,_1 + 6; d; + (11+ '7 (C11 - pa)-lnwage,~y_1 + 51'; ................ 132 Empirical Evidence: Log Hour Wage, Case ezl'nwagm = p lrzxwagemq + 6 union“ + a,- + 7 a,- - lnwagethl + Sit ................. 133 Empirical Evidence: Log Hour Wage, Case f: lnwage“ = 19 ln'wage,y_1 + 6 union“ + a,- + 7(a, —— pa) - l'n.'wage,,t_1 + e“ .............. 133 Model a :(y,~t) = A(p y,‘t_1 + (1,), a,- is Normal; H0 : 6 = 60, where p =0 ~ 0.95 ................................. 167 The P-Value of p for Model a: H0 : p = po, p =0 ~ 0.95 .......... 168 Model b :(yit) = A00 yi,t—1 + (1,), ai is Non-normal; H0 : 6 = 60, where p =0 ~ 0.95 ................................ 169 The P-Value of p for Model b: H0 : p = p0, p =0 ~ 0.95 ......... 170 Model 0 :(y,-t) = A(p y,,t_1 +6131 + ai), a,- is Normal; H0 : 6 = 60, where p =0 ~ 0.9 ................................. 171 The P-Value of p for Model c: Ho : p = p0, p =0~ 0.95 .......... 172 Model d :(y,~t) = AU) yet—1 + 13.1",“ + (1,), a, is Non—normal; H0 : 6 = 60, where p =0 ~ 0.9 ............................. 173 The P-Value of p for Model d: HO : p = p0, p =0~ 0.9 ........... 174 Empirical Evidence for Labor Union Membership, Period:l980 ~ 1987 . 174 ix CHAPTER 1 Overview Of The Linear AR(1) Model With Unobserved Effects 1. 1 Introduction The AR(1) panel data model with an additive, unobserved effect has received much attention in recent years. Nickell (1981) noted that the usual within, or fixed effects, estimator was inconsistent with fixed time series dimension (T) as the cross section dimension (N) gets large. Further, maximum likelihood approaches that either treat the initial condition as nonrandom - in particular, independent of the unobserved heterogeneity ~ are also inconsistent for fixed T. As most panel data sets on individuals, families, and even firms are characterized by small T and large N, the interest in obtaining a consistent estimator of the autoregressive root with fixed T has become an important problem. Anderson and Hsiao (1982) (AH for short) show how a simple instrument variables (IV) estimator, obtained from the first-difference equation, is consistent for fixed T. Subsequently, the AH estimator was shown to have poor properties when the autoregressive root is large ( see Arellano and Bond [1991], Sevestre and Trognon [1990]). More recent work has proposed additional moment conditions, often based on further assumptions, that can be used in generalized method of moments (GMM) estimation to improve upon the basic IV estimator( e.g. Arellano and Bond, [1991], Arellano and Bover [1995], and Ahn and Schmidt, [1995]). Furthermore, Blundell and Bond (1998) and Hahn (1999) recently show that the gain of efficiency of GMM over a certain range of parameter space is significant. The current chapter is to give an overview of the prevailing estimators for a linear dynamic panel data model with an additive, unobserved effect. A commonly used dynamic model for panel data in the AR(1) model: ya = P flu—1 + 3W5: + Um 'i=1,--oaN; t:1,~--,Ta “-1) where u“ = a,- + Ea and a, is unobserved heterogeneity. Here, yit is a scalar and 13,-, is a K—vector random variable. Most available panel data sets contain a large number of observations on individuals (N) over a limited number of periods (T), which means that a sensible asymptotic analysis treats N —+ 00 with fixed T. With T fixed, the stationarity assumption p < 1 is not necessary for usual inference procedures, but p < 1 is relevant for most of empirical applications. Because we just consider the case of N —+ 00 with fixed T, we do not distinguish semi-consistency with consistency and just adopt the consistency term (or inconsistency) standing for semi-consistency (or semi-inconsistency)(Nerlove and Balestra [1966]). We use the setup of (1.1) as a standard model to discuss different approaches to estimate the parameters in the following sections. Sometimes, we use full matrix notation to express equation (1.1) as follows: Y=pY_1+X§+ Da+e, (1.2) with K 3111 \l K 910 \ K 113]] ‘Tfl \ = Z 2 1 J: Y 311T a Y-1 3111—1 ’ X 331T 1171‘ ’ K yNT ) K y;\",'I‘—l ) K frivr ‘var / NTXI NTXI ‘ NTXK { €11 ( a1 ) [7’1 02 E: ELT 7a: aé: I 3D=IN®1T2a BK , K ”N / le le KEMT/ , NTxl where [T is a (T x 1) unit vector. For convenience, we define two matrixes used often in this chapter: W, = 1N <3; (1T — £1), and “B, = IN a is, where [T is T-order identity matrix and JT = (1, . . . , UixT' The plan of this chapter is as follows. Section 2 considers the inconsistency of LSDV estimator when T is finite. Section 3 considers several estimators from the setup of dynamic error component models when the unobserved effects is assumed to be random. Section 4 consider the MLE estimator in consideration of the initial conditions. Section 5 show the gain of efficiency from the CMM estimator by imposing the extra moment conditions and the restrictions on the initial conditions. Section 6 gives some concluding summary. 1.2 The Inconsistency of the LSDV Estimator In the static case in which all the explanatory variables are exogenous and are uncorrelated with the effects, the OLS estimator, although possibly less efficient, is 3 still unbiased and consistent. But in the dynamic case the correlation between the lagged dependent variable and individual—specific effects would seriously contaminate the property of OLS estimator. We will show the bias of the least-squares dummy- variables (LSDV) estimator for a dynamic fixed-effects model and then see how to treat with the problem. We assume that the disturbances satisfy the conditions as follows: E(51t[y:,t—la---anOeXi) : O (1.3) V(e,-t[y,-,t_1, . . . ,y,0, X,) = 03 for all i. and t i.e., the disturbances have a zero conditional mean ( which implies they are serially uncorrelated), and are homoscedastic. In the traditional fixed effects approach, a,- is treated as a scalar parameter to be estimated. l\r’Iultiplying the equation (1.2) by W", WnY : anY_1 + WnXfi + Wne, (1.4) Because Wn is a symmetric idempotent matrix, the LSDV estimators for p, 73 can be expressed as the within estimator are as follows: —1 p Y11WnY_1 Y_’l lit/’nX Y: lWn 1C] (1 5) B X'W, Y_1 X’W,,X X'W, K, The estimator of unobserved effects is as follows: Oizgi—[Algi’_1—Ti3, 2:1,...,N, (1.6) where 92‘ = %Zf=1yit and ii = %Zf=1$n- When N —-+ 00 with fixed T, given the above assumption of (1.3) on the distur- bance, we write the equation of (1.5) in the probability limit as follows: plim fiYfill/VnY4 plim FIT—.yLII/VnX N—ooo IQ >b) plim ( ) = ( f3) ) + N.... plim 7.?7X'Wnic. plim 1:37X ’WnX N—ooc N—ooo ° 1 I ,r eefififle ' 1 I Iii—I‘m W X WnE 00 We prove plim Wiijll/Vne # 0 in the following. The inconsistency of this esti- N—too mator rely on the fact that, given the assumption about the disturbances, one has plim WifX’Wne = 0 under the strict exogeneity assumption, but B132 NITY/l W115 : R132 7v]? 2:12:1(yu—1 — 6i,—1)(€it — 5i) Z — 11313.1: fizz; 3711-153 (1'8) : _0'2(T—-I)—Tp+pT#0 T (1 - p)2 Equation (1.7) can be rewritten as follows: ~ _ plim —,—Y_’ Wne . p p __ NM AT plim ( 3 3 > — A x °° N—voo 0 : l I ,r A“ ‘ plim Vii/4%,“: N-eoo A21 - plim —,}—T-YL,W,,5 N—ooo -—l ’ WnX plim fiylli/VnY-l Plim fiy—l where A = N"°° N"°° plim 7—WX' W Y_1 plim N—le’ W X N —~oo When T is kept fixed, the LSDV estimator of an AR(1) fixed effects model is not consistent. The inconsistency mainly comes from the fact that correlation exists be— tween (yi‘t_1 — 3],) and (5,1 — 5—,). In other words, the individual means, y, and e“ are correlated with each other, although the past of y” and 5a are uncorrelated. As it is clear from equation (1.8), when N and T ——> 00, this estimator is consistent since [plim "NIT L 1Wne‘ = 0. Unfortunately, most panel data sets of interest contain small number of time-periods. Therefore, we should look for estimation methods that are consistent when T is fixed. A traditional way to tackle the problem of within esti- mator is to use an instrumental variables estimation method after a transformation to estimate a,. To be more precise, using an appropriate transformation and then IV can implemented to consistently estimate the parameters. 5 Balestra and Nerlove (1966) have shown that Two-Stage Least Squares which uses current and lagged values of :13“ as instrument variables is available. Based on the model of (1.2), let us define the complete set of instruments as Z” = (D, Z), where D can is the set of dummy variables accounting for the individual effects. An appropriate transformation for (1.2) is as follows: Pz-szpz-Y_1+PZ’Xé+ PztDQ-fpz-E, (1.10) where P2. = Z *(Z “Z *)"‘Z *', which is projector onto the space spanned by Z *. By the Frisch—Waugh theorem, the solution to the problem amounts to applying the OLS to the equation as follows: WnPZJ/ = anPZ—Y_1 + WnPZ.Xé + WnPZ.e, (1.11) where Wn = I — PD = I — D(D’D)“D’ = [N ® (IT - 11.1). The fixed effects a,- can be ”estimated” as ti = PD(Y — Y_1p — X g) If we add the assumption on the error terms as follows: 2 e“ are independently and identically distributed with mean 0 and variance 05, (1.12) the property of x/N-asymptotic normality is valid, i.e., ‘ 2 - 1 “r I _1 I ~ _1 x/N(6 — Q) ~ Normal(0, 0€( pllm EX WnZ(Z wnz) z WnX) ), (1.13) N—-oo i where .9. = (Mg) and X = (Y_1,X). Anderson-Hsiao ( 1982) have proposed to use as instrument variables the lagged first-difference of dependent variable or the level of dependent variable lagged two or more periods after first-difference transformation into equation (1.2) as follows: AY=pAY_1+AXé+Ae, (1.14) It is obvious that the variable y,,t_2 (or lagged more periods) and Ay,,t_2 are valid instruments since they are correlated with Aqu but uncorrelated with the distur- bance A5“. Arellano (1988) considers a specific model allowing for only one exogenous vari— able which follows a stationary AR(1) process plus a lagged endogenous variable and he has shown that the variance of the estimator using Ay,,t_2 as instrument variable can be very high due to near—singular matrices entering its definition. Arellano (1988) proposed yi,t__2 instead of Ay,,t_2 as the instrumental variable. Given the assumptions (1.3) and (1.12), the property of JN-asymptotic normality is valid. We write the asymptotic distribution as follows: x/MQ _ Q) N Normal (0, 03( plim %((ZAX’)“Z\IJZ(AX’Z)‘1))) , (1.15) where z = [21,...,ZN]’ , X =[Y_1,X] and WZIN®ZD=IN® , (1.16) 1 (0 —12) since the disturbance in model (1.14) MA(1). There exists estimators more efficient than that of (1.15) since the disturbance in model (1.14) is MA(1). Transforming the equation (1.14) by multiplying \Il—Tl, we have an equation as follows: t%AY=pt%AKJ+t%AXQ+t%Ae (LN) Sevestre (1992) suggested using as instruments y,t_2 or Agata, plus the current and lagged values of AX or \IlzzlAX, provided that X is strictly exogenous. Such an esti- mator is more efficient than the one using the same instruments on the untransformed equation (1.14) ( see White [1984]). Given assumptions (1.3) and ( 1.12), the property of W-asymptotic normality is as follows: \/N(6 — Q) ~ Normal (0, 03] plim N((A)~(\IJ"1Z)’IZ’\II’]Z(Z'\IJ"1A)~()‘1)]). (1.18) Nevertheless, \Ilzz'lAe means that the disturbances are linear combination of e“ and hence the lagged values of yl't__2 or Agata are no longer valid instruments except for yio, but nothing can be said about the relative performance of this estimator and the ones suggested by Anderson-Hsiao (1982), since the instrument is different. Based on the differenced equation (1.14), Arellano-Bond (1991) proposed another way to find a more efficient estimator, generalized instrumental variables estimator, which contains all the orthogonality conditions that exist between lagged values of the endogenous variables and the disturbances. Assumption (1.3) implies E(yi5AEit):0,f:2,...,T,8:0,...,t—2. (1.19) At period of t, y,0,y,1, . . . ,y,,t_2 are valid instruments for Ay,,t_1, respectively. Because X is assumed to be strictly exogenous variables, A22“ is a valid instrument for itself. Then the complete set of instrument variables can be defined as (yio 0 0... 0 Am 0 0 ) Z = 0 (y,0,y,-1) 0 0 0 A3723 0 I (910, 3111,3112) K 0 (y,0,y,-1,...,y,-,T_2) 0 Amy-T} (1.20) The generalized IV estimator is defined as . ~ ~ —1 - Q = (AX’PZAX) (AX’PZAy_1), (1.21) where N . ~, . ~ 1 PZ=ZFZ wzthP= (quz (N12120: Actually, the estimator is to apply GLS to the model (1.13) multiplied by 2’ as follows: Z’AY .—. Z'AY_1,0 + Z’AXQ + Z’Ae. (1.22) Since the e“ is not autocorrelated in this model, the estimator is the most efficient within the class of instrumental variables estimators using lagged value of ya as instru— ments. Given assumption (1.3) and (1.12), Its property of VN-asymptotic normality is as follows: - 1 2 2 —1 \/N(Q _ Q) ~ Normal (0 , plim N (AX’PZAX) ) . (1.23) N -¢oo We can write GMM estimator by replacing P2- with PZ“, where P2 = ZI‘Z’ with F = (1%,- 211:1 Z,14,-1_/§Z)“1 where 1_/, is the vector of disturbances of the differenced equation (1.14). Nevertheless, to ensure that the instrument of (1.20) is valid, the order of autocorrelation of disturbances is required to be not greater than one. The choice of these various estimators in estimating an AR(1) fixed model depends on two main criteria: the degree of serial correlation of the e“ disturbance terms and the exogeneity of X. We end the section with some conclusion as follows: 1. When the values of e” are correlated and 2“,, is strictly exogenous the Two-Stage Least Squares estimator which use the current and lagged values of the 22,-; as IV (Balestra—Nerlove, 1966) is better one. 2. If the values of en are correlated while :ru is still strictly exogenous then the generalized IV estimator proposed by Arellano-Bond (1991) is better than oth- ers . 3. If the values of e“ are correlated and at“ is not strictly exogenous then using lagged values of the Ar“ as IV for estimating the model (1.14) is preferred. 1.3 Estimators of error components model The section considers estimation of the AR(1) model under the assumption that. the unobserved effects are always random. The model of (1.1) or (1.2) is adopted in this section and we use the following assumptions: E(a,) = E(5,,) = 0, for all '1' and t, E(a,.r,,) = 0, for all i and t, E(a,5,,) = 0, for all 2' and t, (1.24) 03 12]} E(a,aj) = 0 «1% j. E(5, 5;)— — 051T, where 5,: (5 5,1 ..... 5,7~)’, for all i. (1.24) implies that the special second-order structure of disturbances in model (1.2), 11,, = a, + 5,, or u, = a + 5,. as follows: Var(u,) = E('u.,u;) = QT = JEWR +(052 + T02 a)B,,= USU/IQ, +—B n), with 62 = 03/(03 + T03). Under the specific assumption we can obtain the GLS estimator by simply imposing OLS on the equation (1.2) multiplied (W, + 6B,): (W, + 6B,)Y : p012, + (may.1 + (W, + 03,)Xg + (W, + 6B,)U, (1.25) where U = (111, . . . ,uN)’. Nevertheless, the GLS estimator is not the most efficient estimator because it does not impose any restrictions on the relation between 31,0 and a, or 5,,. To shed light on the importance of the initial value, we write substitution recursively in equation from (1.1) to obtain: yit :pty10+:pI—1~Tz,—t j+lf31 +_:ppaq+:p7_l Egg—131.1. (1.26) j: —1 Each observation on the endogenous variable can be expressed as a linear combination of four variables: py,0, 22—11074 .r,,_j+1_'3,, —£’p:a,, and 21.41274 5,, 1+1. The first 10 term p‘yw depends on the initial value. At this stage, it is clear that the initial values do influence the asymptotic behavior of estimator as long as T is finite and p is not zero. Theoretically, the first date of the sample is arbitrarily chosen and we cannot easily justify a different treatment. of the first and the subsequent observations. For example, we assume y,, = f(a,, 5,,, 5,,,_1, . . ..) This means that the outcome on y in time t depends on the individual effects a, and on a serially uncorrelated disturbance 5,,. Therefore, if unobserved effects are non-random, then the initial observations are also non-random; and on the contrary, if the unobserved effects are random, then the initial observations are random. As a practical matter, the assumption that the unobserved effects are non-random means that the initial observations are independent of the exogenous variables and the unobserved effects, usually an untenable assumption. The interpretation of the relation between the initial observation and the unobserved effects characterize the dynamic panel data with random-effect formulation. We assume that 3,1,0 is identically and independently distributed variables characterized by the second order moment E(y,-20) and the correlation with a,, E (y,0a,~). Replacing 6 with \/X, Maddala (1971) proposed A-class estimator and have shown that all usual error—component estimators belong to such an estimator for a AR(1) framework. For example, the within estimator has A = 0; OLS if /\ = 1; GLS estimator if A = 62 ; If p =0, then, obviously, all these estimators are consistent, while almost all A-class estimators are not consistent if p # 0. Under the above assumption on the distribution of y,0 the asymptotic bias of any A-class estimator is dependent on E (11,20) and E (y,0a.,). This shows that assumptions on the initial observations do influence the magnitude of the bias of these estimators. The main result is as follows: whatever E(y,20) and E(y,0a,) are, plim p()\) is an N—¢oo 11 increasing function of /\ and hence the relation is assured as follows: plim pm) < p < plim pm?) < plim ,3(1) < plim p(oo). (1.27) N—voo N—ooc N—.oo Naoo It is obvious that there exists a value X“ E [0, 62] such that plim p().*) = p. Sevestre- N—ooo Trognon (1983) have given the value of X" as follows: 1 " [JT 130/1001) 1— p 03 + 052 x :K(1—6)/( +K(1—6+T6)), (1.28) with K = (T — 1— Tp+ pT)/T(1— p)2, (5 = 03/03 + 062. When E(y,0a,) = 0, /\* is equal to 62, which means that the consistent estimator A-class estimator is the GLS estimator. Usually, A“ 74 62, which confirms GLS is not consistent in such a mode]. It is worth noticing that sometimes the A-class estimator cannot be thought of as an estimator because of unknown parameter A, which leads to two—stage estimation; and hence the property of x/N—asymptotic normality heavily depends on the asymp- totic property of )1. p(/\*) and 3(x\*) with X‘ defined as in (1.28)are derived from the AR(1) model and such an estimator cannot be extended to AR(p) models. GMM procedures are thus possible to impose some restrictions to find more ef- ficient estimators. We assume ,3, = 13 for all 1'. By adding the assumption that 3110 = C + 01101 + 012510 proposed by Anderson-Hsiao (1982) into the system (1.2), the system is a triangular model with T+1 endogenous variables y,0, . . . ,y,7~ and T+1 exogenous variables (C and 513,1, . . .,2:,T). We can express the T+1 equations by compact matrix form as follows: A31- 3;, = 17.1" (1.29) where 912(91039119- ' '1y17‘),a 32,-:(1,$2‘1,. - '1xiT)’9 I 21' : (0101+ (125,0, (1.,- + 5,1], . . . ,a, + 51.731 12 and {C 0 .H 0) 0 f3 0 (0 .H 0 0 1) )0 ”"” fl) where A and B are (T+1) >< (T+1) matrix. The structure of disturbances are defined as E(77,) = 0 and Var(gi) = fl and hence wr’ Q: , VZO'EJT-i-UEIT, 'r V 2 E, r’ = 0102(1,...,l). w = ego: + (130 a In the simplified case, we find that the IV estimator is consistent. If the disturbance have an error component structure, the 3SLS estimator is not as efficient as full in- formation maximum likelihood (FIML) estimator. If the variance-covariance matrix Q is unconstrained, then 3SLS and FIML are fully efficient. Based on the differ- enced model, several IV or GMM suggest consistent and efficient estimator, but their relative efficiencies are hard to determine. For example, the GMM estimator with asymptotic efficiency may not often perform better than the Balestra-Nerlove estima- tor in finite samples ( See Sevestre—Trognon [1990]). We found the interpretation of the initial conditions make it possible to obtain more efficient GMM estimators. The subsequent section we discuss the MLE estimators with the different treatments of 11,0. And then we introduce the initial conditions into GMM to obtain more efficient estimators. 13 1.4 Properties of the ML estimator According to (1.10), the two-stage estimators of Balestra and Nerlove (1966) is OLS applied to equation (1.11). Such an estimator is equal to MLE assuming that y,0 is non—random. Because this assumption implies that the initial observation is discarded from the system, the ML estimator is not the unconditional ML estimator. The asymptotic correlation of 31,0 and a, contaminate the consistency of Balestra-Nerlove estimator when the nonrandom assumption of the initial observation is dropped. A natural solution is to construct the full likelihood function which includes the initial observation to obtain the unconditional ML estimator. Barghava-Sargan (1983) proposed an unconditional estimator by considering the framework (1.1) into which the observed individual variables 2, will be introduced. We write the model as follows: 921 = P 3111—1 + 51311.3 + 217 + U11, U11 = (11 + 511, ' (1.30) The initial values are assumed to follow: y,0 = 2,92 +140. (1.31) Such a formulation has been adopted by Chamberlain (1984) and Blundell and Smith ( 1991) among others. The unobserved effects is assumed to be as follows: a, = 6211,10 + 0,, (1.32) where c, is independent of 14-0. In this model (1/,0,c,, 5,1, . . . ,5,7~) are distributed as Normal(0,diag(030,0§, 031“) and the log—likelihood function is: £(p.I3.7.t/2,0§o,0390§) = —NT10527T — 1% 10s It?! — 42V- 10s 03 _ I N IQ—l , _ 1 N 2 (133) Q 21:171. T2 202 21:1 ”101 y0 14 with Ti, = (9:1 — P’yio — $113 — 2:"? — W140, - . . a y-rr — Pyi/F—l “ $2773 - 2W — W40) V10 = 3120 — 21¢, f2 = aan + (a? + T0395”. The ML estimators solve the normal equations: aL 00 Case (B) is T fixed , N ——> oo 25 CHAPTER 2 Conditional Maximum Likelihood Estimator For The AR(1) Model 2.1 Introduction A panel data model allows us to study the dynamics of economic behavior at an individual level in which the individual heterogeneity is taken into consideration. As discussed in Chapter 1, fixed effects approach does not lead to a consistent estimates for the parameters. The inconsistency mainly comes from the fact that the within transformation induces a correlation of order 7}. between variable and the error. The estimator of the conditional MLE explored by Balestra and Nerlove (1966) is not. consistent as well because they treat the initial observations as nonrandom and such estimators, for a wide of combinations of the parameters, are equal to the within estimator and thus they are not consistent (see 'Iiognon [1978] ). Moreover, it is an untenable assumption to treat the first observation as nonrandom, since that implies it is independent of any other exogenous variables and any unobserved heterogeneity. 26 It is a natural solution to the estimation problem is to use maximum likelihood principle when the disturbances are assumed to be normal. The assumption of fixed initial observations can be relaxed when the likelihood function takes into consid- eration the density function of the initial observations, that is, the likelihood func- tion is ”unconditional” ( Barghava and Sargan [1983] ). In such an approach, we first describe the distribution of the dependent variables (yT, . . . ,yo) conditional on (xT, . . . , 221, a), where as, is strictly exogenous variables and (1 individual heterogene- ity, t=1,...,T. We can specify the distribution of yo given (XT, a) to obtain the distribution,D(yT, . . . ,y0|XT,a) and then integrate out a by specifying D(a|XT) or more typically just assuming that a is independent of XT. This leads to a parametric density function f (w, . . . , yOIXT; 90), which allows us to obtain the conditional max- imum likelihood estimation with conditioning on XT. Traditionally, this is viewed as ”unconditional” MLE because the X 7‘ are treated as nonrandom. Unfortunately, such an approach is made possible only provided that we have a steady state distribution for yu- ‘The inclusion of XT makes matters more complicate. Barghava and Sar- gan (1983) treated the initial observations as random accounted for by time-constant variables and random errors in (1.31) as follows: 910 = 9522: + 14:0, where z, is time-constant variable. The unobserved effects is assumed to be (1.32): a.- = VII/1'0 + Ci, where c, is independent of 1/.,~0. Such a framework has been used, for example by Chamberlain (1984) and Blundell and Smith (1991). This can be solved by two-step way we have discussed in Chapter 1. However, this setup for initial observation do not include the exogenous variables. Sevestre and Trognon (1990) added another term 27 21:,oa into (1.31) meanwhile he need do estimate the autoregressive auxiliary model (1.36) beforehand. This method leads to a two-step estimation. In the non-linear case (e.g. dynamic probit model), Heckman (1981) first make approximation to D(y0[XT, a) and specify a D(a) with assuming that a and XT are independent. This method is flexible but it is more complicated and more restrictive than necessary. The misspecification of the distribution of 31,0 would result in the inconsistency of the resultant estimator. It is obvious that the consistency properties of various error component estimators for the dynamic models with unobserved effects depends on the treatment with the initial value. Different assumption on the initial value induce more moment conditions needed to be exploited to gain more efficiency (e.g. Ahn and Schmidt [1995, 1997], Blundell and Bond [1998]). The important drawbacks of unconditional MLE do not occur when we consider the distribution of (m, . . . ,y1) given (yO,XT,a) and then specify D(a[y0,XT). This leads directly to a density for (yr, . . . ,y1) given (311), XT). Moreover, we do not treat yo as nonrandom variable and it in not necessary to assume the independence between X; and a. Our suggestion is to model D(alyo.XT) and then construct the density of (yT,. ..,y1) given (y0,XT,a). This allows us to avoid the problem of having to find or even approximate, D(y0[XT, a) and specify an auxiliary model for D(c[XT) or assume that a and XT are independent and then model a marginal distribution of a (See Wooldridge [2000b]). In this chapter, I first show how to construct the conditional MLE for yit=nyi,1—1+ai+€m i=1,---,N1 (2.1) where the a, is the individual effect and is assumed that a, = (10 + olym + c,. 5,, and c, are assumed to be normally distributed. Later on I consider the case with 28 exogenous variables in which equation (2.1) will be added by the term 33,,6 and that of a, will be altered by adding one more term, $7,012. The approach of CMLE keeps us away from understanding the exact form of the distribution of the first observation because it is conditioned on the initial observa- tion. To specify an auxiliary conditional distribution for the unobserved heterogeneity has inherent drawback of all parametric methods: misspecification of this distribu- tion generally results in inconsistent parameter estimates. Nevertheless, Wooldridge (2000b) has shown that in some leading cases the method leads to some remark- ably simple conditional maximum likelihood estimators ( especially for the non-linear case: partial effects on the mean response, averaged across the population distribu- tion of the unobserved heterogeneity). For example, it is easy to obtain estimated average probability response across the population distribution of the unobserved heterogeneity discussed in Chapter 4. The plan of this chapter is as follows. Sec— tion 2 considers the general conditional MLE for the dynamic model. In this section I construct the conditional likelihood function to obtain the conditional maximum like- lihood estimators and discuss the consistency of CMLE. Section 3 applies the CMLE to basic AR(1) model with unobserved effects. I examine the asymptotic properties of the CMLE as N ——> 00 with fixed T. Beginning with normality assumption on the unobserved effects and the random noises, I examine the AR(1) regression of dependent variables without exogenous variables and conduct a Monte Carlo stud- ies to investigate the performance of the conditional maximum likelihood estimator. Theoretically, non—normality is known not to cause inconsistent in Gaussian CMLE. I proceed with the same studies with the replacement of normality by non-normality assumption. Section 4 examines the same model except that we include the strictly exogenous variables and employs the same procedure as that of section 3 to build up 29 a simulation for the CMLE with inclusion of exogenous variables. Section 5 studies some empirical example for the previous two case. Section 6 makes the comparison of CMLE with the estimators discussed by Blundell and Bond (1998). Section 7 contains some concluding remarks. 2.2 General CMLE 2.2.1 Conditional Likelihood Function In this section I will construct. a generic likelihood function for the conditional max- imum likelihood estimator in dynamic, unobserved effects models where the lagged value of dependent variable is included in the list of explanatory variables. The AR(1) model is a good choice to describe such a dynamic process. The primary principle on which estimation will be based is maximum likelihood. Let 6 denote the vector of pop- ulation parameters. Suppose we have observed a sample of size T+1, (y0,y1, . . . ,yT). We need find a joint distribution of D(yT, . . .,y1|y0,XT,a) where a is unobserved heterogeneity and its relevant parameterizing joint density function conditional on (y0,XT,a) is f(yT,...,y1[y0,XT,a;6) and thus the MLE estimate of 6 is the value for which this sample is most likely to have been observed. Because a is unobserved, we need try to remove it out of the function. Typically, a distribution D(a[y0, XT) is required and hence we can integrate a out of the joint density function with condi- tioning on XT and yo by the usual product law. We make some assumptions in the following. D(yt[$t1)/t—laa) : D(yt[XTi)/t—19a)9 (22) The assumption of (2.2) can be thought of as a basis for a standard dynamic unob- served effects analysis with strictly exogenous variables that means that, once current 30 :13,, past 31, and a are controlled for,:1:, , s aé t, has no effect on the distribution of Y,. Therefore, we can define a parameterizing density for the conditional distribution of (2.2) as follows: f,(y,[Y,-1,:1:,,a;60), t=1,...,T. (23) According to (2.3). the joint density of first t observations can be described as the prOduct of f(y,|Ys_1, .175, a; (50) over 1 to t. It follows that the parametric density Of (yTi ' - ° 1 yl) given (y09XT1 0) is T ffyrs . - wyllf/Os X'raaé 50) = Hft I 1 2' where A = (oo,ol,og,o§) and h(c,[y,0,T,;)\) : l , exp(——(—C—)2), where c, = 27mg,2 2 0,, ai — 00 — 013/10 — 5202- A different description of the likelihood function for a sample of size T from a Gaussian AR(1) with unobserved effects is sometimes useful. Let (y,|y,0,.r,.a) 2 (31,7, . . . ,y,, |y,0, (13,, a,) could be viewed as a single realization given (y,0, 517,, a,) from a 32 T—dimensional Gaussian distribution. Viewing the observed sample y, as a single draw from a Normal(u(y109$i)a “(910,350) where lift/10,331) :E(yilyi0a$i,ai) and nysz') = Var(y,|y,g, 33,, a,), the sample likelihood function could be written down from the formula for the multivariate Gaussian density: _—.1_ 1 , _ “0(9109372‘” 2 BXPl—§(yi — 111-(91095130) aft/10,5134) 1(yi — #(yioaxilll- —_7.‘ 2 ff‘yz'; 5) = (271) (2.13) By specifying a Gaussian distribution h(a,[y,0, 513,), the individual log likelihood func- tion can be written as follows: log/1R (27f)? (lflf‘yz‘o, Lil—7] CXPl—é'f’yz' - #(yan 331)),Q(y10:$i)_1(yi _. lift/210,331)” h(a|y,0, a3,)d a. (2.14) Expression (2.13) is algebraically equal to (2.7). We can maximize the sum of (2.14) with respective to 6 across 2' from 1 to N to obtain the CMLE estimators. 2.2.2 Asymptotic Properties of the CMLE In the current setting, the conditional maximum likelihood estimator is gener- ally consistent ~ with fixed T and N goes to infinity — if the conditional density of (11,1, . . . ,y,T) given (the, X ,T) is correctly specified. This follows from standard results on maximum likelihood estimation with conditioning variables because we are assum- ing random sampling in the cross section.( See, for example, Manski( 1988, Chapter 5)), Wooldridge (2001, Chapter 13).) In the present application to linear, dynamic unobserved effects models, the log-likelihood function satisfies all smoothness require- ments, and the sufficient moment conditions are likely to be met. Practically, the key issue is parameters are identified under weaker assumptions based only on certain moment conditions, so identification holds when we specify a full conditional distri- 33 bution.) It is useful to sketch the consistency of the CMLE for general dynamic mod- els where the likelihood function is conditional on the initial value. The density in 2.7)is correctly specified if there are values 60 and A0 such that the density of (31,1, . . . ,y,T)given (yiO,X,T) is given by the integral in (2.7). Under this assump— tion, the conditional Kullback-Leibler information inequality holds (see, for example, Manksi (1988, Section 5.1)): EUR/2:; 90) [171-.1910» Z E(l(y,; 0) [Tel/20)), (2-15) for all 6 in the parameter space. By the law of iterated expectations and (refeq2-10) we have E [lit/1,1324%” 2 E “(f/1,5132? all - (2-16) Therefore, 60 is a solution to the population maximization problem: I '. ii 6 . .1 151313 I (yum )l (2 7) This shows that the CMLE is Fisher consistent for 60. Under identification, 60 is the unique solution to (2.15). Then, we can use the usual analogy principle and the uniform weak law of large numbers to conclude that the CMLE is generally consistent for 60 as N —> 00. In rare situations, the log-likelihood function can be shown to be globally concave. Unfortunately, this does not appear to be the case for dynamic panel data models. As a practical matter, this means we may locate local extrema. In practice, several different starting values should be used in estimation to try to uncover a global max- imum. Under sufficient differentiability assumptions - which, as mentioned earlier, are 34 satisfied by the models of this and the remaining chapters - the CMLE is \/N asymp- totically normal. Newey and McFadden(1994) and Wooldridge(2001) show that a consistent root to the maximization problem is also asymptotically normal: \/N(6N — 60) —+ N(0, A(90)-‘B(00)A(00)-1), where 14(60) = EI(321(y2:;0)/0900')aol. and 13(90) = E[(01(yi;0)/80)60 >< (Ultyi:6)/30')aol- Under correct specification of the conditional density, A(60) : —B(60), that is, the information matrix equality holds. This simplifies estimation of the asymptotic vari- ance and computation of test statistics. 2.3 Linear AR(1) Model With Unobserved Effects 2.3.1 Linear AR(1) Model The conditional MLE approach is one method for making the initial condition problem tractable. We begin with the linear case without additional explanatory variables. The model is 911 : P Uta—1 + (12' + 521, (2-18) and we make the following assumptions. [Assumption 2.1]5,,[y,,,_1,...,y,0,a, ~ Normal(0,o€2). [Assumption 2.2] a,|y,0 ~ Normal(oo + alym, 03). According to Assumption 2.1 and Assumption 2.2, the distribution for 35 (3,1,43,11,14, . . . , y,1) conditioning on y,0 is as follows: (yiTayz’T—laH-ayill .610) N N(#()’10),Q(Y10)), i=1,--.,N, where lift/2'0) Z E(y,|g,0), 9(3/10) :- V(y10ly10) = E ((y, — E(y1ly10))(f/i — E(y,|yz-o))’|y.~o) i:1,....N,y,=(mp-Wyn)- Assumption 2.2 implies that a, : 010 + my“, + c.,, where c,[y,0 ~ N(0, 0:) (2.19) (2.20) Equation (2.1) can be rewritten as y,, = pit/1o + 23:, p7‘1(o'0 + (113/,0 + 5,) + 2;:1pj‘15,,,_,+1. The E(y,|y,0) can be obtained by replaceing E(a,[y,0) with 00 + (113/,0 in (2.19). The conditional mean of y, is as follows __ 1 — ‘ — ‘ #(3/2’0) — ( 0‘0 + (01 + 101610, ,T:%0‘0 +(i1—_%01+ Pill/2‘0, , ) (2.21) The conditional variance of y,, can be obtained by calculating the form as E(€(yiol5(yiol’l 3110), where 5(610) 2 y, — E(y1ly10)' In the same manipulation as that of conditional mean, the conditional variance can be written as (.011 W1T\ WT1 WTTJ 1 ‘21 — t _. , wt1=(i[:%)203 + (7521:; t=1,...,r. where 1_81_t —91__28 . wst=(T:‘%jt‘%)03+/J” "(_1f%7)0§§ Sift, s,t=1,...,T. 36 (2.22) The jointly parametric density function of y,[y,0: “MIL/40:9) I (—\/——12:7r)—T/2([Q(yi0)[)_1/2exp(———é—1— (5(yio)'Q(y10)—I€(y,o))) (2-23) where 5(y,0) = y, — E (y,|y,0). We can directly construct the log-likelihood function across 2' from 1 to N as follows: —T N to; 9) = 2 (710g V2? + $10,, meal-1 — é{5(.Uzol,9(yz'0)_15(yio)l) , (2.24) where 6 = (p, 00,01, 02, 03). The CMLE estimators can be obtained by maximizing the likelihood function (2.24). Another approach to calculate the CMLE estimators, according to equation (2.10) and Assumption 2.2, is in the following. We specify the distribution of a, conditioning on y,0 as follows: ‘1 (1'2: — 0'0 — 01910 l I 2' t ,A Z 1' — 2 . 2.25 7“(a [y 0 0) m Ckp< 2 ( 0,0 ) ) ( ) By employing (2.13), the joint density of y, given (y,0, a,) is the product of f(y,T, . . . ,y,1 [11,, gm) and h(a,|y,0), where the f() and h() are the relevant conditional normal density functions. It follows that the density of (3,1,7, . . . ,y,1) given (y,0; 6) is lift/259) = 0° —T/2 —1/2 1 . _ , , ~1.. .. log/_ < ) 0526.0)! cam—go. wetness) (y. wow»)- 1 itifi e2 ”a dc, (/27ro§ at :3 (2.26) where p(y,0) = py,,_, + a,lT. Therefore, the CMLE estimators are to solve out the problem of maximization as follows: N méax£(Y; 6) = max: l,(y,, 6) (2.27) 121 37 where 6 is the vector of parameters. Because we place no restrictions on h(alyio, A0), once we have specified h(a,|y,0; A0), we generally obtain the density of y, given y,0 by integrating out a,. While the log-likelihood function is ”consistent” under the normality for 5,, and a, — and therefore, y, given y,0 is multivariate normal — the conditional MLE is robust to ce’teris pa’ripus from the assumptions. In particular, the normal quasi-MLE is consistently and asymptotically normal provided the first two conditional moments, E (y,[y,0) and Var(y,[y,0) are correctly specified. this follows from the work of Gourier- oux, Monfort and Trognon (1984) and Bollerslev and Wooldridge (1992). Without normality, the information matrix equally does not hold and so the variance matrix needs to be estimated in a robust way. 2.3.2 Simulation Evidence In order to investigate the performance of maximum-likelihood estimators given the initial value, we conducted Monte Carlo studies. We use the MLE software of Gauss to do our simulation for the conditional maximum likelihood function. The notations for the simulation are as follows: 1. 6* means the conditional maximum likelihood estimators in each iteration. A __ 1 1200 :1: 3. 6 means true value of parameter, where 6:(p, do, 011, oa, 0,): (p, 0.2, 0.4, \/1.2, 62.4). 38 Our true models were generated by yit = ,0 yi,t—1 + 01+ Eu 1:1,...,250,t:1,...,5, (228) p 2 0.0.05, . . . ,0.95, where a. = 0.2 + 0.4 gm + c., 2:: 1, . . .,250. (229) We generated the c, and 8,, by two cases, one from in dependently normal distribu— tion, 5,, ~ N(0,2.4) and c,- ~ N(0, 1.2) and the other from a t-distribution with the freedom 6 and 10, in respective. In case where 31,0 are treated with being given, we do not need pay attention to its distribution in our approach. For the simplicity, we generate y” from a N(0, 1) or uniform distribution for convenience. The value of p goes from 0 to 0.95 in an increment of 0.05. We use the individual likelihood function (2.26) and (2.27) and then construct. the framework of maximization to solve out estimators. The specification for the distribution of (a,|y,~0) in the use of the framework (2.25) is flexible. We can see the advantage of framework (2.25) in non-linear model, for example logit with unobserved effects model will be discussed in chapter 4; it, never— theless, is heavy time-consuming in the maximization of the likelihood function (2.26) across 2' to N. We employ the Hermite integral formula as the approximation of the integral ( see Butler and Moffitt [ 1982] ). It is a good idea in the use of framework (2.26) to specify a more flexible distribution of the unobserved heterogeneity given the growing speed of CPU. Table 2.1 reports the simulation result for the power test of the conditional max- imum likelihood estimators, H0 : 6 = (p, 0.2, 0.4, \/2._4, M). The true values of p range from 0 to 0.95 with the increment of 0.05. We repeat the same procedure of the 39 CMLE for 1200 times and calculate the frequence of the p—value greater than a certain level, 0.01, 0.05 or 0.10. Table 2.2 shows the simulation for the test of H0 : p 2 p0. For example, under the p-value is 0.01 and the true value of p is 0, the second row of Table 2.2 shows that the frequence of rejecting H0 : p = p0 in creases with p0, namely, we can reject most of po, away from the true value, p. There are same results for the p—value, 0.05 or 0.10. It is crucial to see that it is more powerful to do the hypothesis H0 : p 2 p0 when the true value of p closer to 0. For example, the true value of p is 0.75 and the power 0.01 in the second row of Table 2.2, the p-value of H0 : p : 0.90 is 0.6183. Comparing with p = 0.75, the p-value of H0 : p = 0.15 is 0.9050 when the true value of p is 0; our approach, obviously, for the hypothesis test of p performs well when the true value of p is getting closer to 0. To examine the simulation for the model under non-normality, we generate the 5,, and c,- from the t-distribution with freedom 6 and 10, i.e. the parameters, 05 = a and 0a 2 g, respectively. We report the simulation results for the conditional maximum likelihood estimators in Tables 2.3 - 2.4. Table 2.4 shows the simulation for the tact of H0 : p : p0, with p0 ranging from 0 to 0.95 for p = 0, 0.1, 0.05, . . . ,0.95. We obtain similar results of the model with normality assumption. The simulation support that the conditional maximum likelihood estimator perform very well. The model of interest is a regression model in which the lagged value of the dependent vari- able appears in the list of explanatory variables, it is crucial for the test of coefficient of the lagged dependent variable, H0 : p = 0. Our approach supports that the CMLE is a good estimator. When the true value is closer to zero, the test is more significant. The sixth column of Table 2.3, the frequence of rejecting the H0 : 0a 2 m is larger, namely it is likely to be rejected in comparison with the 06. By increasing N, the 40 power of testing 0,, will be increase. We have discussed the properties of CMLE for dynamic models with individual-specific effects. In the next section, we study the same linear AR(1) model with unobserved effects and strictly exogenous explanatory variables. 2.4 Linear AR(1) Model With Unobserved Effects And Exogenous Regressors 2.4.1 Linear AR(1) Model With Exogenous Variables In this section, we add exogenous variable, :r,,, to model (2.1). The new model is ya = Pym—1 + 3511/3 + Clzi + 5m ’i = 1, . - - , N, (2.30) t = 1, . . . , T, where so“ is assumed to be strictly exogenous variable. The exogenous variables might be the variables of discrete value, e.g. some policy variables, status variable and the like, or variables of continuous value, e.g. years of education. We make some assumption as follows in this case: lfissumption 2.3J€,tly,:vt_1,. . . ,yl‘o, (BLT: . . . ,fL'z'] , a,- N Normal(0, 0'2). [Assumption 2.4) a,|at,~t, . . . ,r,1,y,0 ~ Normal( 0’0 + my“) + Ti, 02, 0,2,). and thus we have the equation Haiti/10.51:.) = 0'0 + alyzto + 5.- a2, (2.31) where T,- = 7:,- 23:1 17,, and :13,- 2 (23,7, . . . , 33,1). In the empirical study in section 2.5, we let :3“ be a union status variable; then 5,» is the fraction of time in a labor union over the sample period. For example, if a worker had been in labor union for three years, e.g. 1981, 1983 and 1984 from 1981 to 1987, then the ratiofi, is %. We can 41 construct the conditional multivariate normal distribution for the model by adding the exogenous variable into (2.1) and (2.19) as follows: yiTayi,T—la-~ayill yiofli N N(/‘(YiO:Xi)a0(3‘7i0axi», i=1,...,N, (2.32) where Mylo-.5131) : Ef'yz‘lyioflil; 9(61021‘2‘) = nyilyi0~ffi) (2.33) : E (fl/2' — E(yllf/i03 Ii))(yi — E(f/1l.y103$i)),lyi03$i) i: la°°°9N9 312‘ = (”yiTan-al/u), 332' = ($iT,---,113u)- With Assumption 2.4, we rewrite (2.20) as follows a,- = 00 + 01 31,0 + FE,- 0'2 + (7,, (2.34) where c,|y,-0,a:,:T, . . .,:r,-1 ~ N(0,0§). 2.4.2 Conditional Mean and Variance By iteration, equation (2.31) can be expressed as t t t 3121 = #31204"; P7_1(00+a1yio+471G2+¢J+Z 01—1 517i,t—j+1 +2 p]_1€i,t—-j+l- (2-35) j=1 j=1 j=1 The mean E(y,~|y,0, 23,) can be obtained by substituting E(a,|y,0, 2.3) with 00 + alyio + 5,02 . The conditional mean of y,- is as follows K 00 + (011 + Plyz‘o + $21 \ my... a) = . . ‘ (2.36) 1 - _ 1 — _- f(): p (00 + 5’31)+(T—fl_ p 01+ Pill/:0 + 23:1 pt J+1$i,t—j+l K ‘ l The conditional variance of y“ can be obtained by calculating the form as equation (2.33) do. In the same manipulation as that of conditional mean, the conditional 42 variance can be described as follows 9(9109531) 2 um . .. qup Actually, provided that .r,, is strictly exogenous, Q(y,0, 10,) is equal to Q(y,0). Equa- tions (2.23) and (2.24) can be applied here. We parameterize the conditional densities 0f (yilyiOaxi): l—T/2(lfl(yi0)|_l)l/2 exp(——1(€(y,0, $i))Q(yi0)—l(€(yi0y 5136),), “gilt/20,3759) :( 2 1 v27r (2.37) where €(y,0,:r,) = y, — E(y,:ly,o,a:,). We can directly construct the log likelihood function across 2 from 1 to N as follows: N . —T 1 1 , _ £(Y,X;6) = Z (~2— log v27r + i log |Q(y,0)|‘1 — 5 (5(y,0,ac,) Q(y,0) 15(y,0,x,))) , 27:] (2.38) where 6 = (p, 6,00,01, 03, 0,3). The CMLE estimators can be obtained by maximizing the likelihood function (2.38). Another approach to calculating the CMLE estimators, according to equation (2.10) and Assumption 2.4, is in the following. We specify the distribution of a, conditioning on 31,0, :13, as follows: 1 -1 a, - (00 + 01 gm +3, 02) eXp(—( 2W? 2 a. )2). (2.39) h(ailyia 5132'; A0) : The likelihood function of this case is similar to that of the previous model without exogenous regressors except that the conditional mean, p(y,0) = E (y,|y,o,a,), must be replaced with p(y,0,:r,) = E(y,|y,0,a:,,a,), so equations (2.26) and (2.27) can be directly applied here. We write the likelihood function of interest as follows: 43 lie/2333216) Z 108/ ("J/TVT/Qflflfyme HUD—.1” exp[—%(yi — lift/2'0, fl?i))'Q(3/z‘0, $i)—1‘ -_1(_c_ .2 (2.40) . . _ . 1 2 a d ll 2 a 1 a ’ (J nyo 1 ”Image 0 :1 where p(y,0, 23,) = Why—1 + 513,6 + a,lT. Therefore, the CMLE estimators are to solve out the problem of maximization as follows: N rn;1x£(Y,X; 6) : mélng,(y,,17,;0) (2.41) where 6 is a vector of parameters. According to the framework discussed previously, I set up a simulation for it in section (2.4.3). 2.4.3 Simulation Evidence I conducted Monte Carlo experiment to examine the performance of the CMLE model in which exogenous variables are included. I use the MLE software of Gauss to do the simulation for the conditional maximum likelihood estimator. The notations for the simulation are as follows: * 1200 . . . . . 1. 6 = i21—00 21.2, 6; where 6; IS the estimates from the CMLE 1n each Iteration. 2. 6 means true value of parameter, where 6 = (p, ,3, do, 01, 0'2, 00, as) = (p, 0.15, 0.2, 0.4. 0.35, \/1.2, «2.4). . Our true model was generated by yit : P Elm—1 + 015 2321+ Cl,‘ + Eu, i=1, . . . ,250, t—_——1,...,5, (2-42) p = 0,005,. . .,0.95. where, a, = 0.2+0.4 y.~o+0.35 me, z:1,...,250. (2-43) 44 I generated the c, and 5,, by two ways, one from independently normal distribution, 5,, ~ N(0,2.4) and c, N N (0, 1.2) and the other from t-distribution with the freedom 6 and 10, in respective. The value of p ranges from 0 to 0.95 with an increment of 0.05. I use the individual likelihood function (2.26) with replacement of ,u(y,0,:1:,) = pithy—1 + 23,,"3 + 0,17 and then construct. N mgtxizzl l(y,; 6). (2.44) Table 2.6 reports the simulation results for the power of tests of H0 : 6 = (p, 0.15,0.2,0.4,0.35, V2.4, M). The true values of p range from 0 to 0.95 with the increment of 0.05. I repeat the same procedure of the CMLE for 1200 times and calculate the frequence of the p—value greater than a certain level, 0.01, 0.05 or 0.10. Table 2.7 shows the simulation for the test. of H0 : p : p0 . I calculate the frequency of p-value greater than a certain level, 0.01, 0.5 or 0.10. For example, under the p-value is 0.01 and the true value of p is 0, the second row of Table 2.7 shows that the frequence of rejecting H0 : p 2 p0 increases with p0. It means that most of po, away from the true value, p can be rejected in the CMLE. There are same results for the p-value, 0.05 or 0.10. Table 2.8 shows that the result of the simulation by replaceing the normality assumption with t distribution. Table 2.9 shows that the frequence of rejecting H0 : p 2 p0 increases with p0 even without the normality assumption. It pays to notice the test of estimated standard deviation of unobserved effect when we drop the normality assumption. The 8th column of Table 2.8 ~ Table 2.9, the frequence of rejecting the H0 : 0,, = V1725 is larger, namely it is likely to be rejected in comparison with the 05- The reason might be that we generate the unobserved effects from the distribution from the t distribution, the variance will become larger and the number of a, is much smaller than the number of 5,,. By increasing N value , the power of testing 0,, will be increased. 45 It is crucial to see that the true value of p getting closer to 0 or 1, it is more significant to reject H0 : p : p0 than the true value falling within the interval of 0 and 1 in which p0 deviates from the true value. For example,let us set the deviation be three increment, 0.15, meaning the deviation is 0.05 x 3. The true value of p is 0.5 and the power 0.01 in the second row of Table 2.7, the p-ivalue of H0 : p = 0.65 is 0.7558; the p-value of H0 : p z 0.25 is 0.8833 when the true value of p is 0.1 (see Table 2.7); the p—value of H0 : p = 0.8 is 0.9908 when the true value of p is 0.95 (See Table 2.7). The results of this simulation show that most of conditional maximum likelihood estimators deviating away from the true value of the associated parameter will be rejected, especially when the true value of parameter is getting closer to 0 or 1. 2.5 Empirical Example I have discussed the properties of the conditional maximum likelihood estimators for dynamic model with individual heterogeneity in previous sections. In this section, I use the data from Vella and Verbeek (1998) to study the conditional maximum likelihood estimator in estimating dynamic model using observations draw from a time series of cross sections. These data are for young males taken from the National Longitudinal Survey (Youth Sample) for the period 1980 - 1987. The dependent variable is the log of hourly wage and the explanatory variable is labor union status. Each of the 545 men in the sample worked in every year from 1980 through 1987. We begin with the OLS for the empirical data, i.e. we run the OLS regression of 17200095, on 1, lnwage,,,_1. The OLS estimates of autoregressive is 0.627. The OLS estimates cannot be identified with the effects of unobserved effects. It is necessary to incorporate the effect of individual heterogeneity to study both the state dependence 46 in earnings as well as the effects of union status on wage. We assume that omitted ability and other productivity factors can be accounted for by initial wage rate. The model is set up as follows: lr'zxwage,, : p lnwage,,,_1 + a, + 5,,, '1'. = 1,. . .,545, (2.45) t. : 1,. . . ,7, where a, : do + d, Inwagem + c,, i : 1...,545. (246) Table 2.5 shows the conditional maximum likelihood estimates, (,3, do, d1): (0.3405, 0.8784, 0.1839 ) are all significantly different from zero. The estimated average effects of unobserved heterogeneity given initial log wage, d, is measured by (0.8784 + 0.1839 lnwa.ge,o). This verifies that the higher is the initial wage rate, the higher is the individual worker’s ability. Replaceing a, in (2.16) with the above equation and taking the mean of lnrwage,, given the l'n,wag‘e,o, equation (2.25) can be expressed as follows by iteration E(lnwage,,|lnwage,o) : pt l'n.wage,o+(1+p+p2+. . .+pt‘1) (do+d1 ln’wage,o) (2.47) From equation (2.47), the estimated response of the current wage rate change —— t 0 into the initial wage, 8 lmffageu / 8 Ingagem is (0.3405‘ + 0.1839 - 11:%§3%%55) 1n- stead of 0.3405‘. Specifically, when t=1,2,. . .,7, the estimated responses are 0.4884, 0.5444,. . .,0.5688, respectively. Vella and Verbeek (1998) study the effects of union membership on wages in a static model. Here I add union status to the AR(1) model with an unobserved effect. Specifically, the model is ln'wage“ = p lnwage,.,_1 + ,3 u-nxi0n,, + a, + 5,,, i = 1,. . . ,545, (2 48) t=1,...,7, 47 where the unobserved effect is assumed to follow 45. (2.49) O" a, 2 do + d1 lnwage,o + (1’2 union, + 0,, 2' = 1 . . ., Given past wage and controlling for unobserved heterogeneity, the return to union membership is about 4.7 percent and it. is marginally statistically significant. The estimates suggest that, once the initial wage is controlled for, there is no partial correlation between individual heterogeneity and the propensity to belong to a union. The analysis here assumes that union status is strictly exogenous. In the context of model (2.48), this means that innovations in lnwage today, as measured by 5,,, do not affect the decision to join a union in the future. This may not be true, although we are controlling already for the most recent wage and an unobserved effect. One way to test the strict exogeneity assumption is to put a lead of union, that is, run'idn,,,+1, in the equation and test its statistical significance. The W, is the ratio of periods staying in labor union to the periods outside of labor union for a given periods of time. For example, if a worker had been in labor union for three years, e.g. 1981, 1983 and 1984 from 1981 to 1987, then the ratio, m is g. Table 2.10 shows (,3, .3 do, d1, 5,):(03380, 0.0474, 0.8721, 0.1745, 0.0488). 6 is marginally significant and do is not significantly different from zero. A lot of empirical literatures are raised to explore the question of union effect how equivalent workers’ wage differ in union and non-union employment. While the unobserved factor that influence the sorting into union and non-union employment may also affect wage, this makes endogeneity of union variable and thus we can not. just assume that the status of union is strictly exogenous. In chapter 4, I will discuss the logit model with unobserved heterogeneity to explore how the current status of union respond to the union membership in the initial period in terms of the individual workers’ characteristics. 48 2.6 Comparison With The Other Estimators In the section I report the results of Monte Carlo simulations which compares the conditional maximum likelihood estimator in finite sample with the GMM and conditional GLS estimators (see Blundell and Bond [1998]). I follow the notations and definitions of three GMM and CGLS estimators studied by Blundell and Bond as follows : DIF: The standard first-differenced GMM estimator, based on moment conditions, E(y,,,_,A5,-,) = 0 for 1523,. . .,T and s 2 2. SYS: The system GMM estimator, based on linear restriction. ALL: The system GMIV’I estimator which also exploits the complete set of second- order moment restrictions. CGLS: The feasible conditional GLS estimator, which uses residuals from the one- step GMM (SYS) estimator to estimate the required variance components. I follow the data generation processes for y,, used by Blundell and Bond except for the 3120 and 0,. Mt = pyi,t—1+ai+€3t.i:1,--.,N,t=1,...,T. (2.50) I use the same magnitude of N and T as that in Blundell and Bond paper (1998) to make the comparisons. N is chosen as 100, 200 and 500 T = 4 and 11. The true value of p is taken to be 0, 0.3, 0.5, 0.8, 0.9. Table 2.11 reports model (2.50) of N = 100, 200, 500 with T = 4 and Table 2.12 further reports the same model of N = 100, 200, 500 with T = 11. All results of simulation are based on 1000 Monte Carlo replications, with new values for the initial conditions drawn in each repetition. The data generation of the first period in the model of CMLE is different from the other models in this section. The true models of GMMs and CGLS consider the 49 generation of the initial conditions y,o as : yiO = Tiff—p + U30. (2.51) where u,o is an i.i.d N (0, 4/ 3) random variable and independent of both a, and 5,,, The variance of u,o is designed to satisfy stationarity. The a, and 5,, are drawn as mutually independent N(0,1) random variables. In the case of CMLE, the unobserved effects are assumed to be conditionng on the initial observations y,o, so the true linear projection is assumed to be: (1,0 = 0.2 + 0.43/30 + Ci, (2.52) where c, is assumed to be N(0, (il—p)2 +4/3) and y,o is generated from N(0, 1). The magnitude of variance of a, in model (2.52) is designed to be equal to the variance of y,o conditional on a, in model (2.51). The contribution of the individual effects of the error terms becomes less important due to the fact that the variance increases with the p. As for the non-normality assumption of errors, the comparisons among various estimators in this section will be limited on the case of p = 0.5, 02 = 1 and N = 200 with T=4 for the models studied by Blendell and Bond and the CMLE. Accordingly, on the one hand, the true model of GMMs and CGLS turn out to be that M0 = 2 a, + u,o with u,o ~ N(0, 4/3), 0?, = 1 while 5,, = 91—27—1, where 5,, ~ X2(1); on the other hand, the true model of CMLE generates from (2.52) in which 0, ~ i.i.d N(0, 10/3) and 5,, = 91—211, where 5,, ~ X2(1). Table 2.13 presents a stationary design but with non-normal errors for various GMMs, GLSs and that of CMLE with non-normal errors. Table 2.14 presents the performance of the CMLE with different value of N with fixed T = 4 under non-normality on errors. As is well known, when p is close to zero, the influence of the initial conditions 50 becomes less important; therefore, the performance of the estimators is similar. The more interesting case is high values of p, which is where the GMM estimators sug- gested by Blundell and Bond (1998) show a clear advantage over the usual IV es- timator. Table 2.11(a) shows the dramatic improvement resulting from using extra moment conditions based on restrictions of the initial conditions. for true values of p of 0.8 and 0.9, respectively, the lV'Ionte Carlo averages for the estimator of p are: pp [p = 0.4844, 0.2264; p5y5_cMM = 0.8101, 0.9405; pAL,_G,,,M = 0.8169, 0.9422; pCGLS = 0.8365, 0.9572; pm“; 2 0.8004, 0.8988. The conditional MLE has the least amount of bias, whereas the standard first- differencing IV estimator behaves very poorly. The GMM and conditional GLS esti- mators work better, but not as well as the CMLE. The CMLE also has the smallest. standard deviations and root mean squared errors. We can summarize the findings in Table 2.11 for bias, standard deviation, and RMSE as follows: lBiaS(f3CMLEll < lBiasffiSYS—GMMH < lBiaS(laALL—GMAl)l < lBiEIS(/3C:GLS)| < lBiaS(/501F)l- The ranking of corresponding standard deviations and RMSE of these estimators is as follows: SDUJCMLE) < SD(fi,1LL—GMM) < SD(/35YS—GMM) < SD(:5('7(:LS) < SDU’UIF), and RMSEWCMLE) < RMSEffiALL—GMM) < RMSElfiSYs—GMM) < RMSEWCGLS) < RMSEXfiDIF)‘ Table 2.11 shows that the performance of ALL-GMM , SYS-GMM and CMLE esti- mators is getting close to each other with larger N. When T increases to 11, the bias of all estimators decreases and the standard deviations of all estimators significantly decrease. For example, from Table 2.11- (b) and 2.12- (b), at the high value of p = 0.8, the means of pp”: changes from 0.4844 ( 0.5219) to 0.7373 ( 0.0742); the means of p3y3_GMM changes from 0.8050 to 0.8025; the means of pALL_GMM changes from 0.8112 ( 0.1195) to 0.8075 ( 0.0420); the means of pCGLS changes from 0.8259 ( 0.1138) to 0.8039 ( 0.0423); the means of pCMLE changes from 0.8004 ( 0.0684) to 0.8003 ( 0.0127), where the number of bracket is standard deviation. According to the ranking of /\-class estimators of (1.27): [plim p(0) < p < plim M62) < plim {3(1) < plim 6(00). -—-ooo N—voo N—«voo N—ooo The means of estimators in Table 2.13 follow the ranking: p.,..,..-..(= —0.0343) < am: 06659) < pom: 0.8740), and the estimates of the other estimates fall the range {-0.0343, 0.6659]. The com- parison of Table 2.11-(b) and 2.13 suggest that the assumption of non-normality has little impact on the means and standard deviations of these estimators. At the true value of p = 0.5, the means of pmp changes from 0.4828 ( 0.1821) to 0.4867 ( 0.1844); the means of p3y3_GMM changes from 0.5098 ( 0.0936) to 0.4999 ( 0.1082); the means of pALL_GMM changes from 0.5079 ( 0.0922) to 0.5067 ( 0.1109); the means of pCGLS changes from 0.5135 ( 0.1006) to 0.5124 ( 0.1030); the means of pCMLE changes from 0.5068 ( 0.1036) to 0.5179 ( 0.1227), where the number of bracket is standard de- viation. Obviously, the standard deviations of all estimators become larger and the bias of all estimators enlarge a little. In Table 2.13, the standard deviations and the bias of CMLE estimator is slightly greater than GMMs and CGLS in the absence of normality assumption. Table 2.14 shows that at the true value of p = 0.5, the bias of CMLE estimator decrease almost triple and the standard deviation decrease about one and a half times to double when N increase by one time. When N is large enough 52 the estimator of CMLE perform well in the absence of normality assumption. 2.7 Conclusion In this chapter I consider the CMLE for the AR(1) model with unobserved effects which was proposed by Blundell and Smith (1991) in the case of no covariates. I treat the initial value in different way. Balestra and Nerlove (1966) first explored the conditional MLE, but he treat the initial value as nonrandom. It means the initial value is independent of the unobserved effects. Such assumption is usually unten- able assumption. Blundell and Smith (1991) consider a range of CMLE estimators is equivalent to the ML estimator in Bhagarva and Sargan (1983), from the case with- out the full error components restrictions, to the fully stationary error components model. We need to care what about the restrictions on the initial value (, or distri- bution of h(y,0|a,)) and the distribution of a,. The inclusion of :r,, make matters even more complicate. Because we do not need impose restrictions on the 31,0 and specify the distribution of (2,. Under the linear case the conditional ML estimators can be worked out in a simple way. The inclusion of strictly exogenous variables 113,, will not complicates matters. This approach can be easily applied in the more complicate model, such as the state dependence model and the logit model considered in later chapters in this thesis by using the approach proposed by \Nooldridge(2000b). In practice, if we want to include the non-strictly exogenous variables, we need to specify another conditional distribution for explanatory variables X on which we do not impose strict exogeneity, D(:1:,|Y,_1, Z,, a) in constructing the CMLE model, where Z, denotes the other strictly exogenous variables (see, Wooldridge [2000a]). We can let D($tl)/t—13Ztaa) : D(xtl}/t—1)Ztia) (2'53) 53 which means that once current z,, past y, and a are controlled for, 2,, 3 # t, has no effect on the distribution of 33,. Practically, we can parameterize the conditional density: gt($t|Yt—1,Zt,a;‘ro) (2-54) where 70 is finite dimensional parameter. By equations (2.3), (2.56) and the usual product law for conditional densities, the joint density of (y,,:r,) given (2T9 l/t—la Xt—la a) IS pt(wth/t—Ii Zia a; 00) : ft(yil)/t—19‘Tta Cl; 60)gt(xtl)/t—la 217a; A/0) (255) where w, = (y,, 33,), W, = (10,, . . .,wo) and 6 = (6,7). It follows that the density of (wT,...,w1) given (ZT,x0,a) is T PUUT, - - - swllZTaw09 a; 90) = HPtI'lL’tht—l, 2t. a; 90) (256) t=1 Similarly, we set up an log-likelihood function by the use of the joint conditional density function (2.56) and conditional density function for a, similar to function (2.5) to integrate out the unobserved effects. The question can be written as follows: T log/ Hp,(w,,|w,y,_1, z,,, a; 6)h(a|w,0, 2,; A) 'U(d a). R t=1 If we have random sampling in the cross section dimension and standard regularity conditions, with fixed T the CMLE for 290 will be consistent and \/N-asymptotically normally distributed. (See N ewey and McFadden [1994] for sufficient regularity con- ditions.) But it will be computationally difficult, especially in the wage-union appli- cation: union would have to follow a dynamic probit or logit model, as in Chapter 4. In the previous simulation, I employ the Hermite integral formula, 00 2 7 a g a v / f(z)e—Z d a: 2 2:72, f(z,)w,, but this computation IS costly. When we need to ’00 54 include‘the conditional density of non-strictly exogenous variables in the integration, the problem of calculating the integration grow burdensome. In the model, although we do not need full distributional assumption on the non-strictly exogenous variables and the unobserved effects for consistent estimation, we need measure how sensitive are the estimates of important quantities to the specifications of (2.5), e.g. the 00, 0'], OT 02. 55 Table 2.1: H0 : 0 = 60, where p =0 ~ 0.95 6 = (p, 0.2, 0.4, ,/2.4, «1.2) 90 = (p0, 0.2, 0.4, «2.4, «1.2) P\é 5x10-4 0.1990 0.3996 1.5482 1.0841 p0 0.01 0.0108 0.0075 0.0092 0.0150 0.0117 0.05 0.0692 0.0442 0.0458 0.0542 0.0558 0 0.10 0.1142 0.0933 0.0967 0.0958 0.1175 P\é 0.1012 0.2007 0.4012 1.5481 1.0840 p0 0.01 0.0133 0.0083 0.0092 0.0158 0.0108 0.05 0.0692 0.0442 0.0467 0.0533 0.0567 0.1 0.10 0.1008 0.0925 0.0950 0.1000 0.1550 P\é 0.1512 0.2006 0.4012 1.5481 1.0839 p0 0.01 0.0125 0.0083 0.0100 0.0158 0.0100 0.05 0.0683 0.0442 0.0483 0.0500 0.0550 0.15 0.10 0.1125 0.0925 0.1000 0.1025 0.1133 P\é 0.2013 0.2006 0.4011 1.5482 1.0837 p0 0.01 0.0117 0.0083 0.0117 0.0158 0.0092 0.05 0.0650 0.0442 0.0492 0.0500 0.0550 0.2 0.10 0.1108 0.0933 0.1025 0.1008 0.1117 Normality Repetitions=1200, 0 = T2103 3:0," 6;, ,/2.4 2 1.5492, ,/1.2 2 1.0954 Continue (a) 56 0 = (p, 0.2, 0.4, m, \/1—.2) 6’0 2 (P0, 0-2, 0-4, 7571, M) P\é 0.2517 0.2006 0.4011 1.5483 1.0835 p0 0.01 0.0125 0.0075 0.0117 0.0158 0.0083 0.05 0.0625 0.0442 0.0483 0.0508 0.0558 0.25 0.10 0.1125 0.0933 0.1033 0.1025 0.1125 P\é 0.3014 0.2006 0.4010 1.5484 1.0833 p0 0.01 0.0125 0.0075 0.0108 0.0158 0.0083 0.05 0.0625 0.0442 0.0483 0.0517 0.0550 0.3 0.10 0.1108 0.0942 0.1000 0.0992 0.1125 P\é 0.3514 0.2006 0.4009 1.5484 1.0830 p0 0.01 0.0117 0.0075 0.0100 0.0150 0.0083 0.05 0.0583 0.0433 0.0492 0.0508 0.0508 0.35 0.10 0.1092 0.0933 0.1025 0.0975 0.1108 P\é 0.3944 0.2022 0.4035 1.5473 1.0888 p0 0.01 0.0142 0.0067 0.0067 0.0150 0.0100 0.05 0.0508 0.0400 0.0500 0.0508 0.0492 0.4 0.10 0.1117 0.0858 0.1000 0.0992 0.1092 P\é 0.4517 0.2005 0.4006 1.5487 1.0822 p0 0.01 0.0125 0.0075 0.0092 0.0142 0.0092 0.05 0.0525 0.0433 0.0542 0.0550 0.0500 0.45 0.10 0.1083 0.0925 0.1017 0.0925 0.1075 Normality Repetitions=1200, 0 = 72130 21:200 0; v2.4 2 1.5492, v1.2 2 1.0954 J=l Continue (b) 6 =(p,0.2,0.4,,/21,/fi) 6O :(p0,0.2,0.4,\/'2.—4,\/fi) P\6 0.5021 0.2008 0.3998 1.5491 1.0811 p0 0.01 0.0100 0.0075 0.0108 0.0150 0.0100 0.05 0.0500 0.0425 0.0525 0.0525 0.0467 0.5 0.10 0.1050 0.0942 0.1071 0.0867 0.1017 P\6 0.5520 0.2005 0.4001 1.5490 1.0812 p0 0.01 0.0083 0.0092 0.0108 0.0150 0.0058 0.05 0.0467 0.0417 0.0525 0.0525 0.0442 0.55 0.10 0.1058 0.0967 0.0950 0.0842 0.0933 P\6 0.6022 0.2004 0.3998 1.5492 1.0806 p0 0.01 0.0083 0.0092 0.0117 0.0158 0.0050 0.05 0.0458 0.0408 0.0542 0.0533 0.0392 0.6 0.10 0.1017 0.0950 0.0958 0.0850 0.0925 P\6 0.6517 0.2012 0.4008 1.5490 1.0811 p0 0.01 0.0075 0.0092 0.0108 0.0150 0.0050 0.05 0.0475 0.0400 0.0558 0.0508 0.0350 0.65 0.10 0.0958 0.0900 0.1042 0.0825 0.0883 P\6 0.7023 0.2004 0.3996 1.5493 1.0801 p0 0.01 0.0100 0.0092 0.0108 0.0158 0.0042 0.05 0.0500 0.0425 0.0542 0.0517 0.0317 0.7 0.10 0.0933 0.0942 0.0950 0.0858 0.0833 Normality Repetitions=1200, 6 2 121m 21.200 6; ,/2.4 2 1.5492, 4/12 2 1.0954 3:1 Continue (c) 58 6 = (p, 0.2, 0.4, «24, M) 60 :(p0,0.2,0.4.\/2—.4,\/1._2) P\6 0.7525 0.2003 0.3993 1.5495 1.0791 p0 0.01 0.0108 0.0067 0.0108 0.0083 0.0067 0.05 0.0383 0.0350 0.0425 0.0383 0.0267 0.75 0.10 0.0750 0.0714 0.0742 0.0708 0.0633 P\6 0.8019 0.2005 0.3999 1.5491 1.0813 p0 0.01 0.0100 0.0100 0.0083 0.0117 0.0042 0.05 0.0467 0.0433 0.0542 0.0492 0.0383 0.8 0.10 0.0983 0.0983 0.0892 0.0875 0.0808 P\6 0.8521 0.2004 0.3995 1.5493 1.0802 {)0 0.01 0.0108 0.0100 0.0100 0.0108 0.0050 0.05 0.0442 0.0425 0.0508 0.0508 0.0367 0.85 0.10 0.0958 0.0975 0.0917 0.0942 0.0858 P\6 0.9018 0.2005 0.3998 1.5491 1.0809 p0 0.01 0.0100 0.0100 0.0108 0.0108 0.0050 0.05 0.0458 0.0442 0.0475 0.0525 0.0383 0.9 0.10 0.0967 0.0958 0.0933 0.0900 0.0875 P\6 0.9515 0.2005 0.4001 1.5489 1.0816 p0 0.01 0.0108 0.0092 0.0108 0.0108 0.0067 0.05 0.0467 0.0433 0.0483 0.0517 0.0433 0.95 0.10 0.0983 0.0933 0.0967 0.0892 0.0900 Normality Repetitions:1200, 6 : 121% 212‘)" 6;, ,/2.4 2 1.5492, \/1.2 2 1.0954 1:1 (d) 59 Table 2.2: H0 : 0 = 90, where p =0 ~ 0.95 = (p, 0.2, 0.4, v2.4, v1.2) 9 60 = (p0, 0.2, 0.4, ,/2.4, «1.2) P\ ”‘14: [I 0 0.05 0.1 0.15 0.2 0.25 0.3 p 0.01 0.0108 0.1167 0.5400 0.9050 0.9925 1.0000 1.0000 0.05 0.0692 0.2883 0.7525 0.9608 0.9983 1.0000 1.0000 0 0.10 (0.1142 0.3825 0.8367 0.9817 0.9992 1.0000 1.0000 P\ p05 ll 0 0.05 0.1 0.15 0.2 0.25 0.3 p 0.01 0.5100 0.1000 0.0013 0.1108 0.5000 0.8817 0.9892 0.05 0.7450 0.2575 0.0692 0.2667 0.7117 0.9525 0.9975 0.1 0.10 0.8375 0.3767 0.1108 0.3758 0.8083 0.9717 0.9992 P\p94: 0 0.05 0.1 0.15 0.2 0.25 0.3 [lp 0.01 0.9100 0.4950 0.0950 0.0125 0.1100 0.4842 0.8617 0.05 0.9708 0.7250 0.2525 0.0683 0.2542 0.6967 0.9433 0.15 0.10 0.9883 0.8267 0.3633 0.1125 0.3667 0.7975 0.9667 1 P\ p05 0 0.05 0.1 0.15 0.2 0.3 0.35 II,» 0.01 0.9950 0.8967 0.4742 0.0900 0.0117 0.4700 0.8467 0.05 1.0000 0.9692 0.7117 0.2425 0.0650 0.6850 0.9400 0.2 0.10 1.0000 0.9842 0.8133 0.3542 0.1108 0.7825 1.0000; - Normality 7 Repetitions=1200, 6 = 131,70 23:0,” 6;, ,/2.4 2 1.5492, \/1.2 2 1.0954 Continue (a) 60 6 z (p, 0.2, 0.4, ,/2.4, 61.2) 60 2: (p0, 0.2, 0.4, \/2.4, «1.2) P\ ”1» 0.1 0.15 0.2 0.3 0.35 0.4 0.45 p 0.01 0.8833 0.4600 0.0842 0.1033 0.4542 0.8317 0.9708 0.05 0.9675 0.6950 0.2283 0.2542 0.6675 0.9325 0.9942 0.25 0.10 0.9783 0.8000 0.3417 0.3533 0.7650 0.9542 0.9967 P\p°—>= 0.15 0.2 0.25 0.35 0.4 0.45 0.5 p 0.01 0.8725 0.4358 0.0800 0.1042 0.4325 0.8125 0.9650 0.05 0.9625 0.6767 0.2192 0.2475 0.6450 0.9233 0.9933 0.3 0.10 0.9775 0.7817 0.3358 0.3400 0.7542 0.9500 0.9967 P\ ’00—? 0.2 0.25 0.3 0.4 0.45 0.5 0.55 p 0.01 0.8600 0.4117 0.0758 0.1025 0.4133 0.7933 0.9558 0.05 0.9567 0.6633 0.2083 0.2383 0.6358 0.9092 0.9900 0.35 0.10 0.9750 0.7750 0.3208 0.3325 0.7408 0.9442 0.9933 P\p94= 0.25 0.3 0.35 0.45 0.5 0.55 0.6 p 0.01 0.8333 0.3733 0.0625 0.1083 0.4183 0.7808 0.9533 0.05 0.9500 0.6333 0.1933 0.2458 0.6425 0.9050 0.9950 0.4 0.10 0.9742 0.7425 0.2942 0.3417 0.7425 0.9450 0.9967 P\ “L: 0.3 0.35 0.4 0.5 0.55 0.6 0.65 p 0.01 0.8333 0.3742 0.0625 0.0983 0.3858 0.7542 0.9383 0.05 0.9492 0.6450 0.1983 0.2292 0.6175 0.8825 0.9808 0.45 0.10 0.9742 0.7475 0.2983 0.3150 0.7192 0.9292 0.9917 Normality Repetitions=1200, 0 z 1 1200 1.200 :1: Continue (b) 1 61 6; ,/2.4 2 1.5492, ,/1.2 2 1.0954 6 = (p, 0.2, 0.4, «2.4, ,/1.2) 60 = (p0, 0.2, 0.4, ,/2.4, «1.2) P \p‘f 0.35 0.4 0.45 0.55 0.6 0.65 0.7 p 0.01 0.8200 0.3525 0.0575 0.7442 0.9317 0.9883 0.9975 0.05 0.9450 0.6225 0.1842 0.8667 0.9767 0.9950 0.9992 0.5 0.10 0.9733 0.7442 0.2992 0.9242 0.9900 0.9983 1.0000 P \p‘lf‘ 0.4 0.45 0.5 0.6 0.65 0.7 0.75 p 0.01 0.8183 0.3442 0.0517 0.1075 0.3783 0.7317 0.9225 0.05 0.9433 0.6192 0.1800 0.2258 0.6033 0.8625 0.9733 0.55 0.10 0.9742 0.7425 0.2933 0.3158 0.6992 0.9133 0.9867 P \ ”94: 0.45 0.5 0.55 0.65 0.7 0.75 0.8 p 0.01 0.8217 0.3408 0.0392 0.1067 0.3792 0.7208 0.9117 0.05 0.9425 0.6200 0.1758 0.2308 0.6008 0.8600 0.9675 0.6 0.10 0.9742 0.7433 0.2850 0.3125 0.6875 0.9058 0.9850 P W94: 0.5 0.55 0.6 0.7 0.75 0.8 0.85 p 0.01 0.8275 0.3417 0.0308 0.1117 0.3958 0.7283 0.9175 0.05 0.9450 0.6233 0.1758 0.2425 0.5933 0.8583 0.9667 0.65 0.10 0.9775 0.7383 0.2808 0.3300 0.6842 0.9075 0.9842 P \ ’90—? 0.55 0.6 0.65 0.75 0.8 0.85 0.9 p 0.01 0.8558 0.3633 0.0292 0.1 1. 92 0.4108 0.7350 0.9800 0.05 0.9550 0.6442 0.1758 0.2425 0.5983 0.8742 0.9917 0.7 0.10 0.9833 0.7725 0.2958 0.3292 0.6908 0.9150 0.9975 Normality Repetitions=1200, 0 = 1 1200 1200 21:1 Continue (c) 62 0;, V2.4 2 1.5492, v1.2 2 1.0954 6 (,0, 0.2, 0.4, 4/24, ,/1.2) 00 2 (p0, 0.2, 0.4, V 2.4, V 1.2) P \ 5’3 0.6 0.65 0.7 0.8 0.85 0.9 0.95 p 0.01 0.7142 0.3317 0.0283 0.0975 0.3458 0.6183 0.7533 0.05 0.7867 0.5617 0.1567 0.2000 0.5067 0.7183 0.7900 0.75 0.10 0.7967 0.6500 0.2550 0.2750 0.5767 0.7517 0.7967 P \p‘L: 0.65 0.7 0.75 0.85 0.9 0.95 1 p 0.01 0.9300 0.4592 0.0442 0.1292 0.8058 0.9483 0.9908 0.05 0.9842 0.7442 0.2108 0.2767 0.9092 0.9817 0.9967 0.8 0.10 0.9942 0.8358 0.3350 0.3725 0.9392 0.9917 0.9992 P \p‘lf 0.65 0.7 0.75 0.8 0.9 0.95 1 p 0.01 1.0000 0.9617 0.5392 0.0625 0.1458 0.5333 0.8475 0.05 1.0000 0.9925 0.7958 0.2475 0.2942 0.7125 0.9342 0.85 0.10 1.0000 0.9975 0.8792 0.3650 0.3992 0.7958 0.9600 P \ ”of 0.65 0.7 0.75 0.8 0.85 0.95 1 p 0.01 1.0000 1.0000 0.9850 0.6558 0.0908 0.1658 0.5975 0.05 1.0000 1.0000 0.9975 0.8542 0.2858 0.3258 0.7717 0.9 0.10 1.0000 1.0000 1.0000 0.9258 0.4067 0.4392 0.8358 P \pof 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01 1.0000 1.0000 0.9942 0.7583 0.1258 0.0108 0.1933 0.05 1.0000 1.0000 1.0000 0.9208 0.3392 0.0467 0.3725 0.95 0.10 1.0000 1.0000 1.0000 0.9208 0.3392 0.0467 0.3725 Normality Repetitions=1200, 6 = 1.21% 3:0,“ 6;. $271 2 1.5492, «G 2 1.0954 ((1) 63 Table 2.3: HO : 6 = 00, where p =0 ~ 0.95 6 = (p, 0.2,0.4,\/1.5, v1.25) 60 = (p0, 0.2, 0.4, ,/1.5, ,/1.25) P\6 8x10—5 0.2015 0.3982 1.2226 1.1095 [)0 0.01 0.0092 0.0092 0.0133 0.0725 0.0200 0.05 0.0467 0.0575 0.0600 0.1442 0.0783 0 0.10 0.0858 0.0958 0.1108 0.2242 0.1433 P\6 0.0999 0.2044 0.3971 1.2225 1.1090 p0 0.01 0.0108 0.0100 0.0108 0.0700 0.0192 0.05 0.0467 0.0550 0.0600 0.1417 0.0742 0.1 0.10 0.0892 0.0942 0.1125 0.2192 0.1425 P\6 0.1499 0.2044 0.3970 1.2225 1.1090 p0 0.01 0.0108 0.0100 0.0108 0.0683 0.0192 0.05 0.0475 0.0558 0.0592 0.1442 0.0742 0.15 0.10 0.0858 0.0958 0.1092 0.2208 0.1433 P\6 0.2000 0.2044 0.3970 1.2226 1.1090 p0 0.01 0.0100 0.0108 0.0117 0.0667 0.0183 0.05 0.0475 0.0550 0.0608 0.1442 0.0742 0.2 0.10 0.0850 0.0967 0.1092 0.2208 0.1425 Non-normality Repetitions=1200, 6 = ,gfi 21.200 6;, 4/15 2 1.2247,,/1.25 2 1.1180 F1 Continue (a) 64 6 (p, 0.2, 0.4, ,/1.5, 61.25) 60 = (60,0204, ,/1.5, 4/125) P\6 0.2500 0.2044 0.3970 1.2226 1.1090 p0 0.01 0.0117 0.0108 0.0117 0.0642 0.0158 0.05 0.0467 0.0550 0.0600 0.1450 0.0742 0.25 0.10 0.0833 0.0958 0.1050 0.2225 0.1392 P\6 0.3000 0.2044 0.3970 1.2226 1.1090 p0 0.01 0.0108 0.0108 0.0117 0.0625 0.0158 0.05 0.0467 0.0542 0.0600 0.1442 0.0700 0.3 0.10 0.0867 0.0958 0.1075 0.2217 0.1317 P\6 0.3500 0.2044 0.3970 1.2226 1.1090 p0 0.01 0.0125 0.0100 0.0117 0.0558 0.0167 0.05 0.0508 0.0533 0.0600 0.1450 0.0675 0.35 0.10 0.0892 0.0950 0.1050 0.2192 0.1250 P\6 0.4000 0.2044 0.3970 1.2226 1.1091 p0 0.01 0.0125 0.0125 0.0117 0.0558 0.0175 0.05 0.0525 0.0533 0.0575 0.1442 0.0683 0.4 0.10 0.0950 0.0967 0.1033 0.2150 0.1233 P\6 0.4500 0.2044 0.3970 1.2226 1.1091 p0 0.01 0.0117 0.0083 0.0125 0.0525 0.0183 0.05 0.0508 0.0517 0.0592 0.1417 0.0658 0.45 0.10 0.0983 0.0958 0.1067 0.2150 0.1217 Non-normality Repetitions=1200, 6 = 7210—0 21200 6;, ,/1.5 2 1.2247,\/1.25 2 1.1180 1:1 Continue (b) 6 = (p, 0.2, 0.4, ,/1.5, 4/125) 60 = (W02, 04, 4/15, ,/1.25) P\6 0.4999 0.2045 0.3970 1.2226 1.1093 {)0 0.01 0.0100 0.0100 0.0133 0.0550 0.0175 0.05 0.0558 0.0517 0.0608 0.1400 0.0658 0.5 0.10 0.1017 0.0967 0.1033 0.2133 0.1267 P\6 0.5499 0.2045 0.3970 1.2226 1.1094 p0 0.01 0.0125 0.0092 0.0125 0.0550 0.0167 0.05 0.0567 0.0525 0.0575 0.1367 0.0633 0.55 0.10 0.1017 0.0967 0.1075 0.2125 0.1308 P\6 0.5999 0.2045 0.3971 1.2226 1.1095 p0 0.01 0.0125 0.0100 0.0125 0.0533 0.0150 0.05 0.0575 0.0525 0.0575 0.1392 0.0608 0.6 0.10 0.1017 0.0967 0.1092 0.2150 0.1283 P\6 0.6498 0.2046 0.3972 1.2225 1.1097 p0 0.01 0.0142 0.0092 0.0117 0.0542 0.0150 0.05 0.0575 0.0533 0.0558 0.1408 0.0625 0.65 0.10 0.1017 0.0967 0.1100 0.2183 0.1242 P\6 0.6998 0.2046 0.3973 1.2225 1.1099 p0 0.01 0.0150 0.0092 0.0133 0.0533 0.0142 0.05 0.0575 0.0542 0.0550 0.1400 0.0642 0.7 0.10 0.1025 0.0967 0.1100 0.2208 0.1242 Repetitions=1200, 6 = N on-normality 76—662 1200 i=1 Continue (c) 66 6; ,/1.5 21.2247,,/1.25 21.1180 6 = (p, 02,04, ,/1.5, 4/125) 60 = (p0,0.2,0.4, ,/1.5, ,/1.25) P\6 0.7498 0.2047 0.3974 1.2225 1.1101 p0 0.01 0.0142 0.0092 0.0133 0.0517 0.0142 0.05 0.0600 0.0542 0.0542 0.1375 0.0692 0.75 0.10 0.1000 0.0958 0.1083 0.2200 0.1200 P\6 0.7997 0.2047 0.3976 1.2224 1.1103 [)0 0.01 0.0158 0.0100 0.0117 0.0508 0.0117 0.05 0.0617 0.0542 0.0550 0.1433 0.0683 0.8 0.10 0.1033 0.0967 0.1108 0.2258 0.1183 P\6 0.8497 0.2048 0.3977 1.2223 1.1105 p0 0.01 0.0175 0.0092 0.0125 0.0492 0.0133 0.05 0.0617 0.0542 0.0542 0.1408 0.0675 0.85 0.10 0.0975 0.0967 0.1125 0.2258 0.1208 P\6 0.8997 0.2048 0.3979 1.2223 1.1107 p0 0.01 0.0175 0.0108 0.0117 0.0508 0.0142 0.05 0.0617 0.0542 0.0558 0.1142 0.0650 0.9 0.10 0.1025 0.0983 0.1175 0.2225 0.1242 P\6 0.9496 0.2048 0.3980 1.2222 1.1108 p0 0.01 0.0175 0.0100 0.0117 0.0525 0.0167 0.05 0.0583 0.0533 0.0550 0.1475 0.0658 0.95 0.10 0.1058 0.1000 0.1200 0.2242 0.1258 Repetitions=1200, 6 = N on-normality 1 mi: 1200 i=1 ((1) 67 6;. \/1.5 2122476125 21.1180 Table 2.4: H0 : 6 = 60, where p =0 ~ 0.95 6 = (p, 0.2, 0.4, 61.5, «1.25) 60 2 (p0, 0.2, 0.4, ,/1.5, ,/1.25) P\ ”of 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.0092 0.1258 0.5900 0.9433 0.9992 1.0000 1.0000 1.0000 0.05 0.0467 0.3133 0.7808 0.9850 0.9992 1.0000 1.0000 1.0000 0 0.10 0.0858 0.4158 0.8733 0.9958 1.0000 1.0000 1.0000 1.0000 P \ ’00—»: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.5592 0.0933 0.0108 0.1267 0.5583 0.9267 0.9975 1.0000 0.05 0.7833 0.2725 0.0467 0.2967 0.7633 0.9758 0.9992 1.0000 0.1 0.10 0.8800 0.3800 0.0892 0.3992 0.8583 0.9900 0.9992 1.0000 P \ 994: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.9533 0.5442 0.0883 0.0108 0.1283 0.5500 0.9183 0.9967 0.05 0.9875 0.7717 0.2650 0.0475 0.2942 0.7575 0.9742 0.9992 0.15 0.10 0.9917 0.8700 0.3758 0.0858 0.3950 0.8483 0.9875 0.9992 P \pO—i: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.9983 0.9492 0.5333 0.0825 0.0100 0.1250 0.5408 0.9108 0.05 1.0000 0.9867 0.7658 0.2642 0.0475 0.2875 0.7492 0.9683 0.2 0.10 1.0000 0.9908 0.8617 0.3650 0.0850 0.3925 0.8433 0.9833 Non-normality Repetitions=1200, 6 = 516,—, 231.200 6; \/1.5 2 1.2247,\/1.25 2 1.1180 1:1 68 Continue (a) 6 2 (p, 0.2, 0.4, «1.5, ,/1.25’) 60 Z (10010-21 04, V 1-5, V 1.25) P\p‘f 0.1 0.15 0.2 0.25 0.3 0.35 0.45 0.5 p 0.01 0.9408 0.5183 0.0817 0.0117 0.1233 0.5342 0.9058 0.9900 0.05 0.9867 0.7525 0.2517 0.0467 0.2825 0.7450 0.9675 0.9675 0.25 0.10 0.9917 0.8583 0.3658 0.0833 0.3858 0.8392 0.9808 0.9992 P\pO—f 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 p 0.01 0.9375 0.5100 0.0800 0.0108 0.1250 0.5242 0.8992 0.9858 0.05 0.9858 0.7467 0.2425 0.0467 0.2800 0.7375 0.9658 0.9983 0.3 0.10 0.9908 0.8467 0.3600 0.0867 0.3825 0.8367 0.9775 0.9992 P\""’_.= 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 p 0.01 0.9342 0.5083 0.0775 0.0125 0.1208 0.5208 0.8950 0.9850 0.05 0.9867 0.7442 0.2367 0.0508 0.2792 0.7375 0.9650 0.9983 0.35 0.10 0.9917 0.8458 0.3650 0.0892 0.3833 0.8350 0.9775 0.9992 P\‘O‘L= 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 p 0.01 0.9317 0.5025 0.0758 0.0125 0.1167 0.5133 0.8908 0.9825 0.05 0.9850 0.7400 0.2317 0.0525 0.2825 0.7375 0.9617 0.9975 0.4 0.10 0.9925 0.8467 0.3633 0.0950 0.3850 0.8292 0.9758 0.9983 P\p‘lf 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 p 0.01 0.9383 0.5058 0.0767 0.0117 0.1142 0.5167 0.8833 0.9825 0.05 0.9875 0.7442 0.2292 0.0508 0.2858 0.7425 0.9583 0.9967 0.45 0.10 0.9925 0.8517 0.3642 0.0983 0.3908 0.8258 0.9758 0.9975 Repetitions=1200, 6 2 121—00 [go 6;, ,/1.5 2 1.2247,,/1.25 2 1.1180 N on-normality 69 Continue (b) 6 (p, 0.2, 0.4, ,/1.5, «1.25) 60 2 (p0, 0.2, 0.4, 4/15, «1.25) P \p0—42 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 p 0.01 0.9392 0.5125 0.0792 0.0100 0.1183 0.5217 0.8842 0.9842 0.05 0.9875 0.7542 0.2317 0.0558 0.2950 0.7450 0.9575 0.9950 0.5 0.10 0.9950 0.8558 0.3667 0.1017 0.3900 0.8308 0.9767 0.9975 P\p‘l? 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 p 0.01 0.9467 0.5350 0.0825 0.0125 0.1292 0.5408 0.8950 0.9842 0.05 0.9883 0.7700 0.2383 0.0567 0.3083 0.7500 0.9558 0.9950 0.55 0.10 0.9950 0.8675 0.3617 0.1017 0.3933 0.8375 0.9792 0.9975 P\p‘lf‘ 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 p 0.01 0.9550 0.5583 0.0867 0.0125 0.1383 0.5683 0.9042 0.9850 0.05 0.9908 0.7917 0.2475 0.0575 0.3142 0.7592 0.9583 0.9958 0.6 0.10 0.9950 0.8792 0.3700 0.1017 0.4150 0.8425 0.9800 0.9967 P\p‘f 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 p 0.01 0.9642 0.5917 0.1008 0.0142 0.1575 0.6000 0.9117 0.9892 0.05 0.9908 0.8167 0.2617 0.0575 0.3308 0.7892 0.9650 0.9958 0.65 0.10 0.9958 0.8992 0.3482 0.1017 0.4267 0.8517 0.9817 0.9975 P\6-L»: 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 p 0.01 0.9767 0.6425 0.1150 0.0150 0.1700 0.6400 0.9242 0.9917 0.05 0.9933 0.8508 0.2858 0.0575 0.3592 0.8067 0.9758 0.9975 0.7 0.10 0.9967 0.9175 0.4008 0.1025 0.4550 0.8650 0.9867 0.9975 Repetitions=1200, 6 = F100 21.200 6;, ,/1.5 2 1.2247,,/1.25 2 1.1180 Non-normality 1:1 70 Continue (c) 6 = (p. 0.2. 0.4. \/1.5, «1.25) 00 2 (p0, 0.2, 0.4, V1.5,V1.25) P\pof 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 p 0.01 0.9858 0.7042 0.1308 0.0142 0.1850 0.6750 0.9408 0.9975 0.05 0.9950 0.8867 0.3083 0.0600 0.3767 0.8258 0.9833 1.0000 0.75 0.10 0.9975 0.9325 0.4283 0.1000 0.4842 0.8883 0.9892 1.0000 P \ ”94: 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01 0.9900 0.7725 0.1533 0.0158 0.2175 0.7250 0.9608 0.9967 0.05 0.9975 0.9192 0.3425 0.0617 0.4042 0.8642 0.9892 0.9975 0.8 0.10 0.9992 0.9558 0.4708 0.1033 0.5208 0.9108 0.9942 0.9992 P \ ’09»: 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01 1.0000 0.9933 0.8375 0.1792 0.0175 0.2492 0.7750 0.9775 0.05 1.0000 0.9992 0.9417 0.3908 0.0617 0.4608 0.9017 0.9942 0.85 0.10 1.0000 0.9992 0.9642 0.5200 0.0975 0.5625 0.9375 0.9967 P \“f 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01 1.0000 1.0000 0.9992 0.8950 0.2208 0.0175 0.2908 0.8367 0.05 1.0000 1.0000 0.9992 0.9650 0.4442 0.0617 0.4933 0.9333 0.9 0.10 1.0000 1.0000 0.9992 0.9867 0.5833 0.1025 0.6000 0.9625 P V”? 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01 1.0000 1.0000 1.0000 0.9992 0.9367 0.2833 0.0175 0.3425 . 0.05 1.0000 1.0000 1.0000 0.9992 0.9858 0.5200 0.0583 0.5600 0.95 0.10 1.0000 1.0000 1.0000 1.0000 0.9900 0.6533 0.1058 0.6517 Repetitions=1200, 6 = 12—60 2120," 6;, ,/1.5 2 1.2247,,/1.25 2 1.1180 N on-normality J: ((0 71 Table 2.5: CMLE for the dynamic panel data of log-wage with unobserved heterogeneity, period:1980 ~ 1987 coefficient. ,6 do (i, 65 6a CMLE 0.3405 0.8784 0.1839 0.3511 0.2162 t-statistics (18.418) (25.328) (8.704) (77.425) (18.904) 72 Table 2.6: HO : 6 = 60, where p = 0 ~ 0.95 6 : (p, 0.15, 0.2. 0.4. 0.35. 4/24, ,/1.2) 60 2 (/)0, 0.15, 0.2, 0.4, 0.35, 4/24, ,/1.2) { P\6 1.7x10-3 0.1500 0.1988 0.4029 0.3528 1.5478 1.0801 p0 0.01 0.0100 0.0083 0.0100 0.0100 0.0142 0.0108 0.0142 0.05 0.0583 0.0517 0.0625 0.0492 0.0483 0.0533 0.0483 0 0.10 0.1058 0.1033 0.1067 0.1025 0.0917 0.1033 0.1067 P\6 0.1017 0.1500 0.1988 0.4028 0.3527 1.5479 1.0798 p0 0.01 0.0108 0.0083 0.0100 0.0100 0.0133 0.0108 0.0142 0.05 0.0567 0.0517 0.0617 0.0457 0.0508 0.0517 0.0500 0.1 0.10 0.1033 0.1033 0.1058 0.1033 0.0908 0.1058 0.0142 P\6 0.1571 0.1500 0.1988 0.4027 0.3527 1.5479 1.0797 p0 0.01 0.0100 0.0083 0.0108 0.0108 0.0133 0.0108 0.0142 0.05 0.0583 0.0517 0.0617 0.0483 0.0500 0.0508 0.0492 0.15 0.10 0.1025 0.1033 0.1058 0.1017 0.0900 0.1042 0.0142 P\6 0.2017 0.1500 0.1988 0.4027 0.3527 1.5479 1.0795 p0 0.01 0.0117 0.0083 0.0108 0.0108 0.0133 0.0117 0.0142 0.05 0.0567 0.0517 0.0617 0.0508 0.0492 0.0500 0.0492 0.2 0.10 0.1017 0.1025 0.1042 0.1000 0.0917 0.1050 0.1083 Normality Repetitions=1200, 6_ _ 73 17.10299; \/2 .4 2 15942612210954 Continue (a) 6 z (p, 0.15, 0.2, 0.4, 0.35, 62.4, \/1.2) 60 2 (p0, 0.15.0.2, 0.4, 0.35, 62.4, 61.2) P\6 0.2517 0.1500 0.1988 0.4026 0.3526 1.5480 1.0794 p0 0.01 0.0125 0.0083 0.0108 0.0108 0.0133 0.0117 0.0150 0.05 0.0550 0.0517 0.0617 0.0517 0.0500 0.0508 0.0467 0.25 0.10 0.1008 0.1025 0.1050 0.1000 0.0925 0.1050 0.1092 P\6 0.3017 0.1500 0.1988 0.4026 0.3526 1,5481 1.0792 p0 0.01 0.0117 0.0083 0.0108 0.0108 0.0133 0.0125 0.0133 0.05 0.0533 0.0517 0.0633 0.0508 0.0500 0.0500 0.0458 0.3 0.10 0.0992 0.1033 0.1050 0.1017 0.0883 0.1025 0.1075 P\6 0.3517 0.1500 0.1988 0.4025 0.3526 1.5481 1.0791 p0 0.01 0.0117 0.0083 0.0108 0.0100 0.0142 0.0125 0.0125 0.05 0.0517 0.0508 0.0625 0.0500 0.0525 0.0492 0.0458 0.35 0.10 0.0967 0.1033 0.1050 0.1017 0.0900 0.1000 0.1025 P\6 0.4017 0.1051 0.1988 0.4024 0.3526 1.5482 1.0789 p0 0.01 0.0125 0.0083 0.0108 0.0083 0.0142 0.0125 0.0100 0.05 0.0542 0.0508 0.0625 0.0492 0.0517 0.0450 0.0500 0.4 0.10 0.0925 0.1042 0.1050 0.1042 0.0892 0.0950 0.1017 P\6 0.4517 0.1501 0.1988 0.4024 0.3526 1.5482 1.0788 p0 0.01 0.0125 0.0083 0.0100 0.0092 0.0133 0.0117 0.0075 0.05 0.0525 0.0517 0.0633 0.0508 0.0508 0.0467 0.0508 0.45 0.10 0.0958 0.1042 0.1067 0.1025 0.0908 0.0958 0.0942 Normality Repetitions=1200, 6— 1710022106; x/‘z ._4 ~ 1. 5942 ,\/1 .22 1. 0954 Continue (b) 74 6 = (p, 0.15, 0.2, 0.4, 0.35, 62.4, \/1.2) 60 = (p0, 0.15, 0.2, 0.4, 0.35, 62.4, ,/1.2) P\6 0.5017 0.1501 0.1988 0.4023 0.3526 1.5483 1.0786 p0 0.01 0.0117 0.0083 0.0100 0.0083 0.0142 0.0117 0.0033 0.05 0.0500 0.0517 0.0642 0.0492 0.0517 0.0467 0.0492 0.5 0.10 0.0992 0.1042 0.1058 0.1075 0.0908 0.1025 0.0958 P\6 0.5517 0.1501 0.1989 0.4022 0.3527 1.5484 1.0785 p0 0.01 0.0133 0.0083 0.092 0.0083 0.0142 0.0100 0.0058 0.05 0.0483 0.0517 0.0633 0.0500 0.0508 0.0483 0.0492 0.55 0.10 0.0942 0.1042 0.1067 0.1083 0.0908 0.0992 0.0983 P\6 0.6016 0.150] 0.1989 0.4022 0.3527 1.5484 1.0784 p0 0.01 0.0125 0.0083 0.0092 0.0067 0.0150 0.0100 0.0042 0.05 0.0525 0.0517 0.0625 0.0500 0.0508 0.0483 0.0458 0.6 0.10 0.0933 0.1033 0.1067 0.1108 0.0917 0.0950 0.0983 P\6 0.6515 0.1502 0.1989 0.4022 0.3528 1.5484 1.0787 p0 0.01 0.0108 0.0092 0.0100 0.0067 0.0167 0.0100 0.0042 0.05 0.0500 0.0517 0.0625 0.0500 0.0492 0.0475 0.0450 0.65 0.10 0.0958 0.1025 0.1067 0.1117 0.0908 0.0950 0.0950 P\6 0.7016 0.1501 0.1990 0.4021 0.3529 1.5485 1.0779 p0 0.01 0.0133 0.0092 0.0092 0.0042 0.0175 0.0125 0.0050 0.05 0.0508 0.0508 0.0625 0.0533 0.0517 0.0492 0.0458 0.7 0.10 0.0975 0.1025 0.1050 0.1125 0.0900 0.0983 0.0925 Normality Repetitions=1200, 6 : 1.2% 23:0,” 6;, m 2 1.5942,,/fi 2 1.0954 Continue (c) 75 6 = (p, 0.15, 0.2, 0.4, 0.35, 62.4, ,/1.2) 60 = (p0, 0.15, 0.2, 0.4, 0.35, 62.4, ,/1.2) A P\6 0.7515 0.1501 0.1990 0.4022 0.3530 1.5485 1.0782 p0 0.01 0.0142 0.0092 0.0100 0.0042 0.0175 0.0142 0.0058 0.05 0.0558 0.0517 0.0600 0.0525 0.0492 0.0525 0.0417 0.75 0.10 0.0992 0.1025 0.1083 0.1100 0.0908 0.0950 0.0908 P\6 0.8013 0.1501 0.1991 0.4024 0.3533 1.5484 1.0790 p0 0.01 0.0125 0.0092 0.0100 0.0050 0.0617 0.0125 0.0050 0.05 0.0542 0.0517 0.0592 0.0533 0.0483 0.0508 0.0433 0.8 0.10 0.1050 0.1017 0.1083 0.1058 0.0892 0.0967 0.0892 P\6 0.8512 0.1501 0.1992 0.4026 0.3534 1.5483 1.0794 p0 0.01 0.0117 0.0083 0.0100 0.0033 0.0167 0.0133 0.0067 0.05 0.0542 0.0508 0.0592 0.0517 0.0492 0.0525 0.0450 0.85 0.10 0.1067 0.1008 0.1100 0.1075 0.0883 0.0992 0.0900 P\6 0.9011 0.1501 0.1990 0.4022 0.3530 1.5485, 1.0782 p0 0.01 0.0100 0.0083 0.0092 0.0042 0.0167 0.0133 0.0075 0.05 0.0583 0.0508 0.0583 0.0525 0.0492 0.0492 0.0458 0.9 0.10 0.1083 0.0992 0.1083 0.1058 0.0900 0.1033 0.0925 P\6 0.9509 0.1501 0.1993 0.4030 0.3538 1.5480 1.0804 p0 0.01 0.0092 0.0083 0.0108 0.0058 0.0167 0.0133 0.0092 0.05 0.0608 0.0508 0.0592 0.0517 0.0475 0.0475 0.0458 0.95 0.10 . 0.1125 0.0983 0.1075 0.1083 0.0892 0.0892 0.0942 Normality Repetitions=1200, 9 = 171% Z J=1 (d) 76 1200 03., \[2—4 9: 1.5942612 2 1.0954 { Table 2.7: 6 = (p, 0.15, 0.2, 0.4, 0.35, \/2.4, \/1.2) 60 = (p0, 0.15, 0.2, 0.4, 0.35, 62.4, \/1.2) P\ ”94: 0 0.05 0.1 0.15 ' 0.2 0.25 0.3 0.35 p 0.01 0.0100 0.1083 0.5283 0.9000 0.9892 1.0000 1.0000 1.0000 0.05 0.0583 0.2658 0.7617 0.9675 0.9975 1.0000 1.0000 1.0000 0 0.10 0.1058 0.3758 0.8358 0.9792 0.9983 1.0000 1.0000 1.0000 P\ “L: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.5233 0.0983 0.0108 0.0958 0.4775 0.8833 0.9825 1.0000 0.05 0.7483 0.2450 0.0567 0.2525 0.7217 0.9558 0.9958 1.0000 0.1 0.10 0.8392 0.3692 0.1033 0.3617 0.8117 0.9758 0.9975 1.0000 P\ ”L: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.9200 0.5033 0.0917 0.0100 0.0917 0.4675 0.8692 0.9800 0.05 0.9708 0.7317 0.2342 0.0583 0.2508 0.7125 0.9517 0.9942 0.15 0.10 0.9908 0.8267 0.3567 0.1025 0.3525 0.7992 0.9733 0.9975 P\ ’00—»: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.9975 0.9075 0.4817 0.0867 0.0117 0.0892 0.4525 0.8508 0.05 0.9992 0.9675 0.7133 0.2325 0.0567 0.2550 0.6908 0.9450 0.2 0.10 0.9992 0.9883 0.8092 0.3442 0.1017 0.3508 0.7808 0.9708 Normality Repetit.ions:1200, é : 121—00 21200 2:1 77 63‘, v2.4 9: 1.5942,\/1.2 2 1.0954 Continue ( a) 9 = (p, 015,02, 0.4, 0.35, «2.4, \/1.2) 90 2 (pg, 015. 0.2, 0.4. 0.35, 62.4, 61.2) P\ ”of 0.1 0.15 0.2 0.25 0.3 0.35 0.45 0.5 p 0.01 0.8950 0.4633 0.0792 0.0125 0.0867 0.4342 0.8308 0.9750 0.05 0.9642 0.6992 0.2250 0.0550 0.2542 0.6708 0.9367 0.9875 0.25 0.10 0.9833 0.7958 0.3367 0.1008 0.3425 0.7608 0.9650 0.9958 P\ ”L: 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 p 0.01 0.8725 0.4392 0.0767 0.0117 0.0875 0.4233 0.8117 0.9725 0.05 0.9617 0.6825 0.2200 0.0533 0.2492 0.6483 0.9258 0.9858 0.3 0.10 0.9817 0.7925 0.3333 0.0992 0.3350 0.7492 0.9608 0.9942 P\ p94: 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 p 0.01 0.8617 0.4167 0.0725 0.0117 0.0875 0.4175 0.7983 0.9675 0.05 0.9583 0.6683 0.2150 0.0517 0.2417 0.6350 0.9167 0.9842 0.35 0.10 0.9792 0.7800 0.3200 0.0967 0.3308 0.7375 0.9583 0.9892 P\ ”"5 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 p 0.01 0.8450 0.3975 0.0617 0.0125 0.0883 0.4142 0.7775 0.9633 0.05 0.9558 0.6550 0.2017 0.0542 0.2283 0.6267 0.0.9075 0.9825 0.4 0.10 0.9775 0.7700 0.3150 0.0925 0.3317 0.7275 0.9517 0.9867 P\ ”of 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 p 0.01 0.8350 0.3825 0.0525 0.0125 0.0883 0.4050 0.7683 0.9550 0.05 0.9517 0.6533 0.1975 0.0525 0.2292 0.6167 0.8942 0.9817 0.45 0.10 0.9750 0.7633 0.3150 0.0958 0.3333 0.7092 0.9400 0.9850 Normality Repetitions=1200, é : 17155 23:01" 0;. «2.4 2 1.5942,\/1.2 2 1.0954 Continue (b) 78 6 = (p, 0.15, 0.2, 0.4, 0.35, v2.4, v1.2) 60 2 (p0, 0.15, 0.2, 0.4, 0.35, V 2.4,V12) P\ ”1»: 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 p 0.01 0.8333 0.3725 0.0475 0.0117 0.0925 0.4067 0.7558 0.9483 0.05 0.9550 0.6342 0.1867 0.0500 0.2258 0.6117 0.8833 0.9808 0.5 0.10 0.9758 0.7550 0.3067 0.0992 0.3283 0.7042 0.9308 0.9833 P\p‘f 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 p 0.01 0.8308 0.3658 0.0408 0.0133 0.0992 0.4017 0.7475 0.9383 0.05 0.9517 0.6317 0.1833 0.0483 0.2375 0.6092 0.8808 0.9792 0.55 0.10 0.9767 0.7508 0.2925 0.0942 0.3350 0.7058 0.9233 0.9825 P\p‘lf 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 p 0.01 0.8367 0.3658 0.0375 0.0125 0.1067 0.3967 0.7492 0.9300 0.05 0.9525 0.6367 0.1833 0.0525 0.2450 0.6033 0.8800 0.9758 0.6 0.10 0.9783 0.7525 0.2833 0.0933 0.3358 0.7108 0.9267 0.9817 P\p‘l»: 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 p 0.01 0.8533 0.3708 0.0333 0.0108 0.1058 0.4008 0.7525 0.9308 0.05 0.9592 0.6458 0.1817 0.0500 0.2517 0.6133 0.8850 0.9725 0.65 0.10 0.9792 0.7600 0.2900 0.0958 0.3417 0.7133 0.9275 0.9833 P\pof 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 p 0.01 0.8867 0.3867 0.0375 0.0133 0.1150 0.4233 0.7683 0.9325 0.05 0.9675 0.6625 0.1792 0.0508 0.2625 0.6325 0.8892 0.9725 0.7 0.10 0.9817 0.7742 0.2975 0.0975 0.3492 0.7250 0.9292 0.9825 Normality Repetitions=1200, 6 = % 231.2006}, 62.4 2 1.5942,\/1.2 2 1.0954 J=1 79 Continue (0) 6 = (p, 0.15, 0.2, 0.4, 0.35, 62.4, 61.2) 60 2 (p0, 0.15, 0.2, 0.4, 0.35, 62.4, 61.2) Repetitions=1200, 6 = filo—0 21.200 6;, 62.4 2 1.5942612 2 1.0954 3:1 (d) 80 P\ ”of 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 p 0.01 0.9033 0.4208 0.0383 0.0142 0.1258 0.4517 0.9375 0.9808 0.05 0.9725 0.6842 0.1825 0.0558 0.2767 0.6458 0.9767 0.9942 0.75 0.10 0.9875 0.8017 0.3067 0.0992 0.3617 0.7425 1.0000 0.9958 P\pof 0.65 0.7 0.75 0.80 0.85 0.9 0.95 1 p 0.01 0.9333 0.4708 0.0425 0.0125 0.1392 0.4917 0.8267 0.9500 0.05 0.9825 0.7350 0.2008 0.0542 0.2867 0.6875 0.9050 0.9783 0.8 0.10 0.9925 0.8392 0.3233 0.1050 0.3742 0.7733 0.9408 0.9858 P\p‘L 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01. 1.0000 0.9575 0.5367 0.0567 0.0117 0.1458 0.5492 0.8558 0.05 1.0000 0.9917 0.7967 0.2217 0.0542 0.2967 0.7308 0.9250 0.85 0.10 1.0000 0.9967 0.8808 0.3458 0.1067 0.3983 0.7967 0.9550 P\poj 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01 0.9992 0.9992 0.9758 0.6300 0.0742 0.0100 0.1617 0.6117 0.05 1.0000 1.0000 0.9967 0.8575 0.2583 0.0583 0.3258 0.7750 0.9 0.10 1.0000 1.0000 1.0000 0.9142 0.3858 0.1083 0.4400 0.8308 P \p‘L, 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01 1.0000 1.0000 1.0000 0.9908 0.7217 0.1033 0.0092 0.1850 0.05 1.0000 1.0000 1.0000 1.0000 0.9025 0.2942 0.0608 0.3717 0.95 0.10 1.0000 1.0000 1.0000 1.0000 0.9500 0.4333 0.1125 0.4933 Normality Table 2.8: H0 : 6 = 60, where p = 0 ~ 0.95 60 = (p0, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) { 6 = (p, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) P\6 7x111-4 0.1498 0.2017 0.3986 0.3490 1.2220 1.1070 [)0 0.01 0.0108 0.0125 0.0108 0.0125 0.0133 0.0733 0.0200 0.05 0.0433 0.0517 0.0558 0.0633 0.0558 0.1442 0.0850 0 0.10 0.0842 0.1058 0.0992 0.1125 0.0983 0.2283 0.0842 P\6 0.0998 0.1504 0.2045 0.3977 0.3450 1.2219 1.1064 p0 0.01 0.0100 0.0125 0.0100 0.0108 0.0117 0.0725 0.0200 0.05 0.0450 0.0517 0.0525 0.0625 0.0533 0.1467 0.0833 0.1 0.10 0.0842 0.1058 0.1000 0.1100 0.0992 0.2250 0.1425 P\6 0.1498 0.1504 0.2045 0.3977 0.3450 1.2219 1.1064 p0 0.01 0.0083 0.0125 0.0100 0.0108 0.0125 0.0725 0.0192 0.05 0.0483 0.0517 0.0517 0.0600 0.0533 0.1467 0.0808 0.15 0.10 0.0867 0.1058 0.0992 0.1117 0.0983 0.2242 0.1433 P\6 0.1998 0.1504 0.2045 0.3977 0.3450 1.2219 1.1065 p0 0.01 0.0100 0.0125 0.0092 0.0108 0.0125 0.0675 0.0183 0.05 0.0467 0.0517 0.0525 0.0600 0.0558 0.1475 0.0800 0.2 0.10 0.0908 0.1058 0.0992 0.1100 0.0992 0.2242 0.1450 Repetitions=1200, 6_ — Non- normality Continue (2 1) 81 1700 21-309" 61.5 21.2247,61.25 21.11870 6 = (p,0.15.0.2.0.4,0.35, 61.5, 61.25) 60 = (/)0, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) A P\6 0.2499 0.1500 0.2042 0.3983 0.3451 1.2220 1.1074 p0 0.01 0.0100 0.0125 0.0083 0.0108 0.0108 0.0575 0.0183 0.05 0.0417 0.0567 0.0492 0.0658 0.0633 0.1367 0.0792 0.25 0.10 0.0825 0.1083 0.0925 0.1042 0.1058 0.2092 0.1350 P\6 0.2998 0.1504 0.2045 0.3977 0.3451 1.2219 1.1180 p0 0.01 0.0117 0.0125 0.0117 0.0108 0.0117 0.0608 0.0183 0.05 0.0517 0.0517 0.0525 0.0608 0.0558 0.1475 0.0758 0.3 0.10 0.0950 0.1050 0.0983 0.1050 0.0.0975 0.2208 0.1383 P\6 0.3497 0.1504 0.2045 0.3977 0.3451 1.2219 1.1066 p0 0.01 0.0125 0.0125 0.0092 0.0125 0.0108 0.0575 0.0175 0.05 0.0508 0.0517 0.0533 0.0575 0.0608 0.1442 0.0717 0.35 0.10 0.0925 0.1058 0.0975 0.1092 0.0958 0.2208 0.1325 P\6 0.3997 0.1504 0.2046 0.3978 0.3451 1.2219 1.1068 p0 0.01 0.0108 0.0125 0.0100 0.0125 0.0100 0.0575 0.0158 0.05 0.0508 0.0517 0.0525 0.0575 0.0592 0.1433 0.0725 0.4 0.10 0.0983 0.1067 0.0975 0.1083 0.0950 0.2200 0.1325 P\6 0.4497 0.1504 0.2046 0.3978 0.3452 1.2219 1.1069 p0 0.01 0.0100 0.0125 0.0100 0.0133 0.0100 0.0550 0.0158 0.05 0.0508 0.0508 0.0508 0.0550 0.0600 0.1400 0.0692 0.45 0.10 0.1017 0.1058 0.0967 0.1067 0.0958 0.2192 0.1275 Repetitions=1200, 6: N on-normality 12—‘(70 21:00 6; 61 1.5 21.2247,61.25 2 1.11870 Continue (b) 82 6 = (p, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) 60 = (p0, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) P\6 0.4994 0.1507 0.2043 0.3984 0.3456 1.2219 1.1160 p0 0.01 0.0050 0.0133 0.0092 0.0133 0.0108 0.0525 0.0158 0.05 0.0533 0.0550 0.0517 0.0500 0.0533 0.1292 0.0575 0.5 0.10 0.0942 0.1000 0.0950 0.1000 0.0992 0.2092 0.1142 P\6 0.5496 0.1504 0.2047 0.3979 0.3453 1.2218 1.1072 p0 0.01 0.0100 0.0125 0.0117 0.0133 0.0108 0.0558 0.0158 0.05 0.0550 0.0508 0.0508 0.0525 0.0542 0.1375 0.0667 0.55 0.10 0.1058 0.1042 0.1000 0.1100 0.0942 0.2158 0.1283 P\6 0.5995 0.1504 0.2047 0.3980 0.3453 1.2218 1.1074 p0 0.01 0.1050 0.1042 0.1000 0.1100 0.0950 0.2125 0.1242 0.05 0.0550 0.0508 0.0517 0.0517 0.0550 0.1400 0.0633 0.6 0.10 0.1050 0.1042 0.1000 0.1100 0.0950 0.2125 0.1242 P\6 0.6495 0.1504 0.2048 0.3982 0.3454 1.2218 1.1077 p0 0.01 0.0125 0.0125 0.0083 0.0125 0.0108 0.0542 0.0158 0.05 0.0567 0.0500 0.0508 0.0550 0.0525 0.1417 0.0658 0.65 0.10 0.1050 0.1033 0.0992 0.1108 0.0942 0.2125 0.1258 P\6 0.6995 0.1504 0.2048 0.3983 0.3455 1.2217 1.1079 p0 0.01 0.0142 0.0125 0.0083 0.0133 0.0117 0.0542 0.0142 0.05 0.0567 0.0500 0.0508 0.0542 0.0525 0.1458 0.0650 0.7 0.10 0.1033 0.1050 0.0983 0.1092 0.0967 0.2133 0.1242 Repetitions=1200, 6— — N on-normality 7—260 231-1000; 611.5 2 1.2247,61.25 2 1.11870 Continue (0) 83 6 = (p, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) 60 = (p0, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) P\6 0.7494 0.1504 0.2049 0.3984 0.34 55 1.2217 1.1081 p0 0.01 0.0133 0.0125 0.0083 0.0117 0.0117 0.0533 0.0150 0.05 0.0550 0.0500 0.0525 0.0550 0.0525 0.1442 0.0633 0.75 0.10 0.1050 0.1050 0.0975 0.1067 0.0967 0.2167 0.1208 P\6 0.7994 0.1504 0.2049 0.3986 0.3456 1.2216 1.1083 {)0 0.01 0.0142 0.0125 0.0083 0.0125 0.0117 0.0542 0.0117 0.05 0.0575 0.0508 0.0533 0.0558 0.0542 0.1442 0.0658 0.8 0.10 0.1000 0.1042 0.0983 0.1092 0.0983 0.2200 0.1175 P\6 0.8494 0.1504 0.2050 0.3987 0.3456 1.2216 1.1084 p0 0.01 0.0158 0.0125 0.0083 0.0108 0.0117 0.0542 0.0142 0.05 0.0550 0.0508 0.0525 0.0550 0.0517 0.1450 0.0642 0.85 0.10 0.1017 0.1042 0.1000 0.1083 0.0975 0.2200 0.1225 P\6 0.8994 0.1504 0.2050 0.3988 0.3457 1.2215 1.1085 p0 0.01 0.0200 0.0125 0.0083 0.0133 0.1117 0.0550 0.0150 0.05 0.0583 0.0500 0.0517 0.0567 0.0508 0.1442 0.0675 0.9 0.10 0.0992 0.10-:12 0.1008 0.1117 0.0983 0.2217 0.1192 P\6 0.9494 0.1504 0.2050 0.3989 0.3457 1.2215 1.1085 p0 0.01 0.0200 0.0125 0.0083 0.0125 0.0117 0.0542 0.0158 0.05 0.0542 0.0508 0.0525 0.0558 0.0517 0.1508 0.0700 0.95 0.10 0.0958 0.1042 0.1008 0.1133 0.1000 0.2208 0.1175 Repetitions=1200, 6 z N on-normality 1 mi: 1200 i=1 ((1) 84 6;, 61.5 21.2247,61.25 21.1180 Table 2.9: H0 : 0 = 60, where p = 0 ~ 0.95 6 = (p, 0.15, 0.2, 04,035, 61.5, 61.25) 60 2 (p0, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) { P \p9-f 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.0108 0.1433 0.6225 0.9558 0.9992 1.0000 1.0000 1.0000 0.05 0.0433 0.3242 0.8183 0.9900 1.0000 1.0000 1.0000 1.0000 0 0.10 0.0842 0.4342 0.8958 0.9958 1 .0000 1.0000 1.0000 1.0000 P \p9—f 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.5892 0.0992 0.0100 0.1342 0.5900 0.9117 0.9992 1.0000 0.05 0.8075 0.2825 0.0450 0.3058 0.7933 0.9825 0.9992 1.0000 0.1 0.10 0.8958 0.3492 0.0842 0.4167 0.8742 0.9917 1.0000 1.0000 P 6’9: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.9667 0.5800 0.0950 0.0083 0.1300 0.5808 0.9383 0.9983 0.05 0.9883 0.8025 0.2742 0.0483 0.3067 0.7858 0.9808 0.9992 0.15 0.10 0.9950 0.8842 0.3875 0.0867 0.4092 0.8675 0.9900 1.0000 P \pO—T 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 p 0.01 0.9992 0.9592 0.5675 0.0833 0.0100 0.1333 0.5650 0.9292 0.05 1.0000 0.9875 0.7925 0.2667 0.0467 0.3050 0.7783 0.9750 0.2 0.10 1.0000 0.9950 0.8775 0.3842 0.0908 0.4017 0.8617 0.9867 N on -normality Repetitions=1200,6= 171—0021.:006; 615 . 21.2247,61.25 21.11870 Continue (1.) 6 = (p, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) 90 Z (p0,0.15,0.2,0.4,0.35, V1.5, V1.25) % P 6’05 0.1 0.15 0.2 0.25 0.3 0.35 0.45 0.5 p 0.01 0.9617 0.5508 0.0900 0.0100 0.1342 0.5442 0.9175 0.9967 0.05 0.9892 0.7808 0.2533 0.0417 0.2993 0.7742 0.9733 1.0000 0.25 0.10 0.9942 0.8658 0.3958 0.0825 0.3925 0.8542 1.0000 1.0000 P\pO—C; 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 p 0.01 0.9992 0.9500 0.5458 0.0817 0.0117 0.1308 0.5417 0.9167 0.05 1.0000 0.9867 0.7725 0.2450 0.0517 0.2975 0.7642 0.9725 0.3 0.10 1.0000 0.9942 0.8625 0.3842 0.0950 0.3992 0.8508 0.9817 P\ ’00—»: 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 p 0.01 0.9475 0.5442 0.0758 0.0125 0.1300 0.5325 0.9117 0.9875 0.05 0.9883 0.7658 0.2408 0.0508 0.2917 0.7608 0.9717 0.9992 0.35 0.10 0.9942 0.8600 0.3858 0.0925 0.3983 0.8508 0.9783 0.9992 P\ ”94: 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 p 0.01 0.9983 0.9483 0.5358 0.0775 0.0100 0.1292 0.5308 0.9050 0.05 1.0000 0.9875 0.7542 0.2383 0.0508 0.3000 0.7592 0.9683 0.4 0.10 1.0000 0.9967 0.8617 0.3817 0.1017 0.4008 0.8500 0.9792 P\ ”94: 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 p 0.01 0.5375 0.0767 0.0108 0.1283 0.5283 0.9075 0.9883 0.9992 0.05 0.7608 0.2358 0.0508 0.2933 0.7583 0.9692 0.9975 1.0000 0.45 0.10 0.8592 0.3833 0.0983 0.3975 0.8533 0.9783 0.9992 1.0000 Repetitions=1200, 6 = 131—05 221.200 6; 61.5 :4 1.2247,61.25 9: 1.11870 N on-normality 3:1 86 Continue (b) 6 = (p, 0.15, 0.2, 04,035, 61.5, 61.25) 60 2 (p0, 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) P\p9_.= 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 p 0.01 0.9525 0.5425 0.0758 0.0050 0.1342 0.5425 0.9067 0.9875 0.05 0.9908 0.7542 0.2375 0.0533 0.3150 0.7642 0.9683 0.9908 0.5 0.10 0.9983 0.8633 0.3775 0.0942 0.4083 0.8583 0.9783 0.9983 196”? 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 p 0.01 0.9583 0.5642 0.0775 0.0100 0.1425 0.5608 0.9183 0.9892 0.05 0.9892 0.7825 0.2483 0.0550 0.3208 0.7658 0.9675 0.9967 0.55 0.10 0.9958 0.8775 0.3833 0.1058 0.4050 0.8550 0.9817 0.9975 P\p‘l»: 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 p 0.01 0.9683 0.5883 0.0842 0.0125 0.1517 0.5917 0.9250 0.9900 0.05 0.9917 0.8058 0.2583 0.0550 0.3300 0.7833 0.9692 0.9975 0.6 0.10 0.9942 0.8917 0.3842 0.1050 0.4192 0.8600 0.9825 0.9975 P\""’—): 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 p 0.01 0.9758 0.6308 0.1000 0.0125 0.1633 0.6250 0.9292 0.9925 0.05 0.9933 0.8317 0.2800 0.0567 0.3392 0.7950 0.9750 0.9975 0.65 0.10 0.9950 0.9075 0.3900 0.1050 0.4392 0.8742 0.9875 0.9975 P\ 90—1: 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 p 0.01 0.9833 0.6725 0.1183 0.0142 0.1817 0.6658 0.9425 0.9967 0.05 0.9950 0.8667 0.3008 0.0567 0.3525 0.8267 0.9808 0.9975 0.7 0.10 0.9967 0.9250 0.4150 0.1033 0.4692 0.8900 0.9917 0.9975 Repetitions:1200, 6 = 7100’ 21.200 6;, 61.5 c: 1.2247,61.25 '2 1.11870 Non-normality 1:1 87 Continue (0) 6 = (p, 0.15, 0.2. 0.4, 0.35, 61.5, 61.25) 60 = (p0. 0.15, 0.2, 0.4, 0.35, 61.5, 61.25) P\L": 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 p 0.01 0.9900 0.7333 0.1367 0.0133 0.2042 0.7150 0.9975 1.0000 0.05 0.9958 0.9025 0.3325 0.0550 0.3817 0.8550 0.9958 1.0000 0.75 0.10 0.9983 0.9450 0.4483 0.1017 0.4975 0.9025 0.9983 1.0000 P\pof 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01 0.9942 0.8033 0.1617 0.0142 0.2258 0.7567 0.9800 0.9975 0.05 0.9975 0.9300 0.3758 0.0575 0.4292 0.8817 0.9933 0.9983 0.8 0.10 0.9983 0.9633 0.5025 0.1000 0.5350 0.9400 0.9967 0.9992 P \p‘f 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 p 0.01 1.0000 0.9975 0.8700 0.1883 0.0158 0.2725 0.8192 0.9875 0.05 1.0000 0.9983 0.9583 0.4175 0.0550 0.4675 0.9275 0.9967 0.85 0.10 1.0000 1.0000 0.9783 0.5500 0.1017 0.5808 0.9617 0.9983 P\p9—+: 0.65 0.70 0.75 0.80 0.85 0.9 0.95 1 p 0.01 1.0000 1.0000 0.9983 0.9925 0.2483 0.0200 0.3183 0.8725 0.05 1.0000 1.0000 1.0000 0.9792 0.4800 0.0583 0.5242 0.9575 0.9 0.10 1.0000 1.0000 1.0000 0.9900 0.6133 0.0992 0.6458 0.9775 P\pof 0.65 0.70 0.75 0.8 0.85 0.9 0.95 1 p 0.01 1.0000 1.0000 0.9625 0.3125 0.0200 0.3817 0.9342 0.9983 0.05 1.0000 1.0000 0.9925 0.5667 0.0542 0.5942 0.9800 1.0000 0.95 0.10 1.0000 1.0000 0.9958 0.6967 0.0958 0.7033 0.9867 1.0000 Non-normality Repetitions=1200, 6 = 1.3% $200 6]., 6R 2 1.2247,6fi 2 1.1180 i=1 1 (d) 88 Table 2.10: CMLE for the dynamic panel data of log-wage with unobserved heterogeneity period:1980 ~ 1987 A coefficient ,6 13 do 021 612 65 (3a CMLE 0.3380 0.0474 0.8721 0.1745 0.0488 0.3506 0.2148 t-statistics (18.330) (2.174) (25.251) (8.224) (1.253) (77.473) (18.897) 89 Table 2.11: Performance of DIF, GMM, GLS and CMLE (a) (T:4,N:100) GMM2 GMM2 GMM2 (DIF) (SYS) (ALL) 9 Mean RMSE Mean RMSE Mean RMSE SD SD SD 00 —0.0044 0.1227 0.0.100 0.0994 0.0060 0.0970 ' 0.1227 0.0990 0.0969 03 0.2865 0.1853 0.3132 0.1221 0.3100 0.1216 ' 0.1849 0.1215 0.1213 05 0.4641 0.2693 0.5100 0.1333 0.5100 0.1356 ' 0.2674 0.1330 0.1353 08 0.4844 0.8805 0.8101 0.1620 0.8169 0.1541 ' 0.8824 0.1618 0.1533 09 0.2264 1.0659 0.9405 0.1615 0.9422 0.1415 ' 0.8264 0.1564 0.1351 CGLS CMLE D [W can 17111 SE 1616077. Bil/I SE SD SD 0.0157 0.0986 0.0054 0.0916 0.0 0.0974 0.0957 0.3188 0.1228 0.3054 0.1034 0.3 0.1215 0.1067 0.5182 0.1353 0.5068 0.1082 0.5 0.1342 0.1036 0.8365 0.1396 0.8004 0.0696 0.8 0.1349 0.0684 0.9572 0.1121 0.8988 0.0355 0.9 0.0964 0.0351 (a) 90 (1:4, N=200) 0111111712 GM M2 GM M2 (DIF) (SYS) (ALL) p Mean RAISE Alean RAISE Mean RMSE SD SD SD —0.0037 0.0854 0.0051 0.0670 0.0028 0.0651 00 0.0854 0.0669 0.0651 0.2919 0.1272 0.3092 0.0838 0.3061 0.0812 03 0.1270 0.0833 0.0810 0.4828 0.1828 0.5098 0.0941 0.5079 0.0925 05 0.1821 0.0936 0.0922 0.6362 0.5468 0.8050 0.1196 0.8112 0.1143 08 0.5219 0.1195 0.1138 0.3731 1.1000 0.9235 0.1499 0.9308 0.1243 09 0.9661 0.1481 0.1205 CGLS CMLE p .Mean RMSE .Mean RMSE SD SD 0.0083 0.0700 0.0007 0.0638 00 0.0696 0.0654 ‘ 0.3120 0.0895 0.3001 0.0708 03 0.0887 0.0718 0.5135 0.1015 0.5068 0.1083 05 0.1006 0.1036 0.8259 0.1115 0.8004 0.0696 08 0.1085 0.0684 0.9431 0.1022 0.8999 0.0251 09 0.0927 0.0219 (b) 91 (T=4, N=500) GM M2 0.17.172 GM M2 (DI F) (SYS) (ALL) p AIean RAISE AIean RAISE AIean RMSE SD SD SD —0.0033 0.0557 0.0012 0.0434 0.0001 0.0421 0.0 0.0556 0.0434 0.0442 0.2936 0.0827 0.3025 0.0552 0.3008 0.0530 03 0.0824 0.0552 0.0530 0.4887 0.1177 0.5021 0.0632 0.5006 0.0612 05 0.1172 0.0632 0.0612 0.7386 0.3144 0.7939 0.0781 0.7942 0.0770 08 0.3085 0.0779 0.0769 0.5978 0.7081 0.9043 0.1000 0.9038 0.0884 09 0.6401 0.0099 0.0883 CGLS CMLE p Mean RAISE Mean RAISE SD SD 0.0025 0.0462 0.0013 0.0406 00 0.0461 0.0406 0.3030 0.0607 0.3022 0.0592 03 0.0606 0.0588 0.5025 0.0710 0.5008 0.0441 0'5 0.0710 0.0438 0.8007 0.0853 0.7999 0.0303 08 0.0853 0.0309 0.9172 0.0880 0.8997 0.0158 09 0.0863 0.0162 (C) 92 Table 2.12: Performance of DIP, GMM, GLS and CMLE (b) (1:11, N:100) GMM2 GMM2 GM M2 (DIF) (SYS) (ALL) ’0 AIean RMSE AIean RMSE Mean RMSE SD SD SD 0 0 —-0.0138 0.0483 —0.0183 0.0468 —0.0153 0.0467 ' 0.0463 0.0431 0.0441 0 3 0.2762 0.0591 0.2728 0.0558 0.2795 0.0545 ' 0.0541 0.0487 0.0506 0 5 0.4629 0.0725 0.4689 0.0618 0.4794 0.0592 ' 0.0623 0.0535 0.0555 0 8 0.6812 0.1576 0.7925 0.0655 0.8043 0.0624 ' 0.1036 0.0651 0.0623 0 9 0.6455 0.2996 0.9259 0.0522 0.9302 0.0523 ' 0.1581 0.0453 0.0428 CGLS CMLE p AIean RAISE AIea-n RAISE SD SD —0.0071 0.0364 0.0011 0.0350 0.0 0.0358 0.0371 0.2832 0.0424 0.3005 0.0350 0.3 0.0389 0.0365 0.4761 0.0490 0.5001 0.0328 0.5 00428 0.0336 0.8025 0.0595 0.8002 0.0180 0.8 0.0595 0.0179 0.9422 0.0623 0.8999 0.0076 0.9 0.0459 0.0074 (a) 93 ("1:11, N=200) GMM2 GMM2 GMM2 (DIF) (SYS) (ALL) p Mean RMSE AIean RMSE AIean RMSE SD SD SD —0.0070 0.0358 —0.0059 0.0310 —0.0057 0.0313 00 0.0352 0.0304 0.0307 0.2883 0.0427 0.2914 0.0345 0.2925 0.0348 03 0.0411 0.0335 0.0340 0.4815 0.0503 0.4899 0.0373 0.4922 0.0373 0'5 0.0468 0.0359 0.0365 0.7373 0.0971 0.8025 0.0421 0.8075 0.0430 08 0.0742 0.0420 0.0423 0.7256 0.2152 0.9231 0.0435 0.9263 0.0445 09 0.1261 0.0369 0.0359 CGLS CMLE p Mean RAISE Mean RMSE SD SD ~00037 0.0272 0.0006 0.0248 00 0.0270 0.0262 0.2907 0.0318 0.3002 0.0248 03 0.0304 0.0258 0.4858 0.0369 0.5000 0.0232 0'5 0.0340 0.0238 0.8039 0.0449 0.8003 0.0127 08 0.0448 0.0127 0.9345 0.0506 0.8999 0.0053 0'9 0.0370 0.0053 (b) 94 (1‘21 1, N=500) GMM2 GMM2 GMM2 (DIF) (SYS) (ALL) AIean RAISE AIean RAISE AIean RAISE SD SD SD —0.0025 0.0201 —0.0010 0.0172 —0.0012 0.0173 00 0.0200 0.0172 0.0173 0.2959 0.0237 0.2986 0.0182 0.2984 0.0183 03 0.0233 0.0181 0.0182 0.4934 0.0276 0.4984 0.0189 0.4983 0.0190 05 0.0268 0.0189 0.0190 0.7695 0.0536 0.8019 0.0244 0.8027 0.0249 0’8 0.0441 0.0243 0.0248 0.8110 0.1168 0.9120 0.0306 0.9135 0.0312 0'9 0.0757 0.0280 0.0282 CGLS CMLE p AIeaII RAISE AI ean RAISE SD SD —0.0016 0.0169 0.0003 0.0406 00 0.0168 0.0410 . 0.2960 0.0196 0.3003 00442 M 0.0192 0.0442 0.4937 0.0228 0.5000 0.0147 05 0.0220 0.0143 0.8008 0.0316 0.8003 0.0080 08 0.0316 0.0079 0.9206 0.0361 0.9002 0.0034 0'9 0.0296 0.0033 (C) Table 2.13: Performance of DIP, GMM, GLS and CMLE (c) [ Estimator 1] Mean Std. Dev. Mean ASE RMSE] OLS 0.8740 0.0203 0.3746 Within -0.0343 0.0565 0.5373 GLS 0.6659 0.0965 0.1919 GMM(D1F) 0.4867 0.1844 0.1775 0.1848 GMM(SYS) 0.4999 0.1082 0.1068 0.1081 GMM(All) 0.5067 0.1109 0.1078 0.1111 CGLS 0.5124 0.1030 0.1037 CMLE 0.5179 0.1227 0.0769 N=200, T=4 Table 2.14: Performance of CMLE (d) FN,T [1 p ,3 Std. Dev. MAE RMSE ] 100,4 0.0 0.0119 0.1100 0.0837 0.0931 100,4 0.3 0.3217 0.1430 0.1052 0.1102 100,4 0.5 0.5322 0.1700 0.1228 0.1148 100,4 0.8 0.8116 0.1067 0.0821 0.0709 100,4 0.9 0.9027 0.0465 0.0366 0.0354 200,4 0.0 0.0065 0.0711 0.0837 0.0644 200,4 0.3 0.3155 0.0910 0.0697 0.0736 200,4 0.5 0.5179 0.1227 0.0816 0.0769 200,4 0.8 0.8078 0.0741 0.0573 0.0491 200,4 0.9 0.9021 0.0330 0.0259 0.0251 500,4 0.0 0.0027 0.0450 0.0359 0.0403 500,4 0.3 0.3043 0.0558 0.0445 0.0447 500,4 0.5 0.5057 0.0637 0.0501 0.0458 500,4 0.8 0.0823 0.0470 0.0983 0.0305 500,4 0.9 0.9003 0.0215 0.0173 0.0158 96 CHAPTER 3 Models Where State Dependence Depends On Unobserved Heterogeneity 3. 1 Introduction In the previous chapters we have discussed existing methods and the CMLE suggested by Wooldridge (2000b) for the AR(1) model with unobserved heterogeneity. The model is restrictive in that it assumes the amount of state dependence does not depend on unobserved heterogeneity. A more general model is ya = pyi,t—1+ai+7(0191,1—1)+€1t 13:1,...,N,t=1,...,T, (3.1) which means that the amount of state dependence depends on the heterogeneity. The autoregressive coefficient for each 1' is given by p + 7a,, so that it is a function of the individual heterogeneity. In (3.1) we clearly cannot estimate p + 70,: for each 7' with 97 a short time period. But we can hopefully estimate the average effect, 19 E p + 7,140, where 11,, = E(a,-). One interesting question surrounding model (3.1) is: Do standard IV methods applied to the first difference equation consistently estimate interesting parameters? To see that the answer is no, we consider the IV estimator that uses Ay,,t_2 as a IV for Ay,,,_1. Differencing (3.1) gives A3141 2 P Alla—1 + "/ (MAE/1,14) + A521 (3.2) The IV estimator of p applied to the first differenced equation is, with fixed T, asymptotically equivalent to: plim 61v N—coo : plim NIT :1 :1 AyitAyi,t_2 N7” N17 Zr 21 A3/1‘,11—1A3/z',t—2 XII—77’ 22? EXP AMA—1 + ’7 (aiAy.,1_1) 'l' AfitlAyi¢—2 = plim N7°° fi :27 21491344392314 7 1131131 537 Z,Z,a1Ayi,t_1A1/a-2 113,13”: Ni? 22' 2t Ayi,t—1Ayi,t—2 19,132 767 Z,- 21 AgitAyiJ—Z REE} 6+7" 22' :1 491,1—1Ayi,t—2 7 glim F17" Z,Z.hiAy.,1_1A1/.~1_2 = 6+7xta+ ‘77 + 1,2122 NIT :1 2.211331134439814 B11111 fi Z,- 21 AEaAym—z plim 1er 24 Zr 4.714.1-1Ayz'3—2 where h,- E a, — ,ua. To simplify the exposition, we make the following standard assumptions: E(e,-t|y,-,t_1, . . . ,y,0,a,) = 0 for all 7', t=1,. . .,T Var(e,:t|y,-,t_1, . . . ,y.,-0,a,-) = 03 for all 2', t=1,. . .,T 98 Obviously, plim 3‘7 ZiztAe,tAy,,t_2 is zero under the above assumptions, but N-Ooo 7 Rum A—lf 272th1A3/i,1—1A.Uz,t—2 is equal to: ’7 REE} 7717 Z,- :1 hi Ayi,t-—1Ayi,t—2 = 7( 113111;} 71; 2,771+ 113132 % Z,-hz‘C0V'1(A.I/i,t—1,AMI—2)) (35) :- 77 Z, EU'lvz‘Aym—h Aux—2), and this does not equal zero without some unusual assumptions. Therefore, Ay,,t_2 is not a valid IV for Ayah] because Ay,,t_2 and the error, 'yaiAyit_1 + A5“, are correlated and we are doing fixed T asymptotics. we can also ask whether the IV estimator consistently estimates the average autoregressive coefficient, 6 = p + 7110. Unfortunately, the answer is no. . N T 1' 19 1:11:10] 1671‘ 24:1 21:1 Ayi.tAyi,t—2 1m ' z z 1,3122 W 21:1 21:1 Ayn—14491.14 . N T 13112.1 N17 2421 21:10!) + 706491.21 + AEIt)Ayi.t—2 . N T plim [VI—I Z,=1 27:1Ayi,1-1A;Ui,1—2 . N ‘ . Pllm 767 27:1 277211119 + 7’1'2')Ayi,t—1 + AEItlAyi,t—2 N—ooo . 1 N T Rhm W 21:1 thl Ayi,t-1Ayi,t—2 . N T 4 1,3133; 5% >32. z.=.11.Ay.-,._.Ay.,._2 : 6 + N T + 113111: N]? 2,21 21:1 Ayi,t-1Ayi,t-2 . N T 18,1333 fi 2:121 2:121 AsitAyi.t—2 . 1 N T . 131mm 717 2.21 231:1 Alla—1431444 l'fim where h,- = a,- — Ma. The consistency of 6“» depends on the second term of the last expression of (3.6), equal to (3.5), which does not vanish even though we strengthen the assumption (3.4) such that h,- and 6,, are independent for all 7', t = 1,...,T. 99 The denominator of (3.6) is easily proved to be nonzero. The probability limit of the numerator of the third term on the right hand of (3.6) is zero, but the probability limit of the numerator of the second term is not always zero and thus the asymptotic bias of the IV estimator is given by the probability limit of the second term on the right hand of (3.6). Because the presence of the state dependence which depends on the unobserved effects, the unobserved effects are transmitted into the estimate of p. This causes that p can not be identified from p + 7111. In addition, 61V cannot consistently estimate 19 even if we further assume that c,- is independent of yw. Therefore, in the model with an interaction effect, the IV estimator does not consistently estimate p or the average autoregressive coefficient. It does not appear that differencing alone is a reasonable strategy for estimating the model with the interaction term. 'Ifansformations other than differencing may work to estimate the parameters of (3.1), but they do not immediately suggest themselves. Instead, we can apply conditional MLE, as in the simpler model from Chapter 2. As in Chapter 2, we directly model the distribution of a,- given yio and any strictly exogenous variables. The most general model we consider is yi = 10 311,14 + 3311.3 + (12' + ”Y 0191,1—1 + 511 t l l (3.7) 21: 1,...,N,t= 1,...,T. We could consider a model where a,- also interacts with :15“, but the computational requirements would be severe. For many purposes, the most interest is in a model where unobserved heterogeneity interacts with the lagged dependent variable. The plan of this chapter is as follows. Section 2 considers model (3.1) and then considers model (3.7). Section 3 presents the simulation of CMLE for the model (3.1) and (3.7). Section 4 applies the models to log hourly wage for the panel of working man used in Chapter 2 in considering the interaction term, product of log hourly wage and the 100 unobserved heterogeneity. Finally, Section 5 contains some concluding remarks. 3.2 AR(1) Models With Unobserved Heterogene- ity, State Dependence 3.2.1 AR(1) Model Without Exogenous Variables This section clmracterizes the CMLE for model (3.1). When 13 is omitted, we refer to a general cross-sectional observation. Using the general treatment in Chapter 2, the conditional densities corresponding to equation (3.1) is f (ytlyt_1,a; 60). We assume D(€,~t|y,-,t_1,. . . , 31,0, (1,) = D(€,t) and thus the joint density of (yT,. . .,yl) given (go, a) is 'r per, . . . ,y11y0.a; 50) = H form... a; 60). (3.8) t=1 We can not estimate 60 by directly using (3.8) because it. depends on a which is unobserved. According to the discussion of Chapter 2, we can model D(a|y0) and then construct the density (yrr,...,y1) given yo by integrating out a from the joint density function. In practice, we can specify a parametric density : h(alyo; A0), (3-9) where A0 is a vector of nuisance parameters. Wooldridge (2000b) suggested that we assume the a,- are from a conditional normal distribution, where the mean and variance given yo are flexible functions of yo. Let us make assumptions on the 5,7 and a,- as follows: - , , . . 2 Assumptlon 3.1 Salt/7,74, . . . , $110, a, N Normal( 0, 0E ). Assumption 3.2 ailyz’o N Normal(11.a(yi0),a§). With a linear mean in Assumption 3.2 we can work a,- : (10+ (11 yio + Ci, where 101 a,- given ym is Normal(0, 0 3.) To characterize the conditional mean of 3],, given ym, we use equation (3.1) to obtain 1——(p+'ya,~)’) t '—1 1+ + 1'] 82' _' . 3.10 1__ (p+'7' a.) a 2(p 7 a) ,1 9+1 ( ) 1:1 Let us define a polynomial of t-order as 11(2) : ww + wmz + . . . + wuqz‘, where yit 2 (,0+ 7 ailt’yz’o + ( 130(2): _ 100.0, and 13.1 E 0. Then equation (3. 10)( can be rewritten as followzs yit : [dt + Pt_1(C.lj)C-zil ' 3110 + (23:1(dj_1 + Pj_2(Ci)Cz‘)) (#0 + C7) + 23:1(dj_1 + Pj—2(Ci)("i) €i,t—j+la where d = p + 7 pa. and U.,’t’t_] :2 7“]. From equation (3.11), the coefficient wm_1 is (3.11) a function of p, 00, a1, and 31,0 over t from 1 to T: 101,0 = d‘ and wt,t_1 = 7‘. Under Assumption 3.1, Eu is independent. of 31,0 for all t. We obtain p(y,-0) E E(y,-t|y,0) as follows: I‘ll/2'0) = dtyz‘o + (fid‘) [ta + 3110 Z]; 1 E(Pj—1(Ci)cilyi0)+ Ma ZE=1E(Pj-2(Ci)cilyi0) + Zj=1E(Pj—2(Ci)63lyio)- Because we assume that c,|y,~0 is Normal(0,0§), the t-th moment of c,- exists (3.12) and is a function of 00. Therefore, the last three terms of equation (3.12), Zj=1E(Pj—1(Cilcil3/i0)~ Zj_1EU)j—2(Ci)C1lyiol and Z]: 1E(P j_ _2(c,-) cflyw) can be concisely expressed as a function of p, 00, 011, yio, and 0a. Therefore, p(y,-0) = (fig/1.0+ (11— d?) ,ua + A(ao, 0] H10, (TO). The conditional variance matrix (Kym) E V(y,|yi0) can be expressed as follows: V(y.-ly.o) = E [((yi ‘l‘fy10)[1‘)(yi -xt(yz~o)€T)'|3/iol (3.13) = Etyz-yilyz-o) - ”(y10)2€TgI" Under Assumption 3.1 and 3.2, we can solve out the elements of the conditional variance matrix 0(1/10): 3 3 , (3.14) le . . . LOTT 102 where cast is a function of p, 00, (11, 31,0, Ga and 05. In principle, we can solve out the formula for €(y,0) ( E y,- — p(y,0) 6p) and rust in terms of p, 0’0, (11, 31,0, 0,, and 05 based on (3.10) and (3.12). we set up the log-likelihood function away from the constant for cross-section observation 2' is as follows: zl) — % (en-1e') (3.15) Therefore, we can obtain the CMLE estimators by solving out the following maxi- mizing problem: N N 1 1 11,311: la; 6) = rggxz [—§10gl> — ,- (ety.o)0') (3.16) i=1 i=1 In fact, the complexity of the Q(y,:0) will increase with the value of T, so it become intractable for handling for equation (3.16). The general approach is that f (Yleo, a) can be expressed as the product of f (ytlyt_1,a) over t from 1 to T by parameterizing (3.8). And then we specify a conditional distribution of the unobserved effects h(alyo), in particular the normal density function, \/217T—02 exp(—_Ql(a—;c—ly—a)2). We can set up the log density function as 1(YT;9) =log/ f(Y7~|yo,a)h(a|yo)da (3N) = log [:0 [11.11 f(ytlyt—hall h(alyo)da By equation (3.1) and Assumption 3.1, we obtain the following equation: 1 —1 1 - 2's— +ai + 02'. i. — 2 flyitlyz',t-1,a) = eXp — [311 (p y ’t 1 ’7 ( 31,1 0)] (3.18) \/27ror,32 2 Us Putting (3.18) into (3.17) gives the log-likelihood function for each i is as [(31219) = °° 1 T T . —-1 yn—(p 1111—1 +a+7(ayu—1)) 2 .7 («ml 1 <7— 1 .5 ’ 1 )1 - < 1 >exp(:}<—i—la ‘ ’3: “'0 mm. (3.19) [\D :1 Q EN) 103 We can obtain the CMLE estimators by maximizing the sum of function (3.19) across ifrom 1 to N. 3.2.2 AR(1) Model With Strictly Exogenous Variable In this section we consider (3.8). Assuming strict exogeneity of :rt, we have D(yt|Yt_1,XT,a) = D(y¢|yt_1,.rt,a),t = 1, . . . ,T. (3.20) Equation (3.20) means that once current 112,, and yt_1 and a are controlled for, 512,, s 76 t, do not affect the distribution of yt. The conditional distribution can be parameterized as a conditional density, f(ytlyt-ls$taa;60)a (3.21) where the parameter 60 is finite dimensional parameters. In our application we assume that f(ytlYt..1,:1:t,a;60) depends only on one lag of yt and the current cut. By the usual product of law for conditional densities, the joint density of (yrp, . . . ,yo) given (:cT, . . . , 3:1,a) is as follows: f(yTa' ° ° ayllei ' ' wxlvyOa G160) : Hf:1f(ytlyt—ls$taa;60)a t Z 11- - - ,T- (3.22) As discussed in previous chapter, because the density of (HT,...,y1) given (:rT, .., 21:1, yo, a) depends on a, which is unobserved, to consistently estimate 60, we integrate a out of the density. The recommended solution ( Wooldridge [2000b]) is that to model a conditional distribution D(a|XT, yo), and then construct the density of (yT,...,y1) given (.137, . . . ,z1,y0). It is crucial that this allows yo to be random and need not find, or even approximate, D(y0|XT,a). Further, we do not have to specify an additional model for D(a|XT) or, assume that a and XT are independent 104 and then model D(a). In practice, we parameterize the conditional density : let. h(alXT, yo; A0), (3.23) be the density corresponding to D(a|XT, yo) , where /\0 is a vector of parameters. It is convenient to assume normality with conditional mean and variance in terms of (XT, yo). We make the following assumptions: [Assumption 3.3] eith,t_1,X,-y7w,a, ~ Normal(0,a€2). , . _ _ T [ Assumption 3.4] a,|;r,~. ym ~ I\-ormal(pa(y,0. x,),0§), where 2:,- = %thl .73”. According to Assumption 3.4, we can write the equation for a,- as follows a, 200+ olyio+ Eag+ci,i=1,...,N, (3.24) where 0,- given (:r,,y,-0) is Normal(0 , 03). Assumption 3.4 and (3.24) imply that l- _ 2 exp [i (at — (00 + 01 910 + :13, a2)) ] , (325) h(alXT, yo; /\0) = 1 V 271'0'2 2 0a where A0 = ((10, (11.02, 07,). Once we have specified h(alzT, yo, 51:0; A0). we obtain the log-likelihood function for each cross section 17 as follow: [(1%) (File) = 10g] 113;] f(yit|$,t,y,,t_1,a ;60). we — 2 3.26 1 exp [:21 (a _ (0'0 '1' 0'] 3110 'l‘ 5131' 02)) ] da’ ( ) V27r0‘f, I 0“ where 00 is a vector of all parameters of the model. Under Assumption 3.3 and 3.4, we still can apply the procedures of the previous section to solve the CMLE. (3.11) and (3.12) can be re—written respectively as follows: yit = [dt + Pt—1(Cz')C-il ‘3/20 + (ijlldj_l + Pj-2(Ci)ci)) (#a + Ci) + Zj=1ldj—l + P1407001) ,3 fat—3+1 + Zj=1ldj_1+ P1403061) Eat—3+1, (3.27) 105 and _ t E(yithit9 3120) = dtyz‘O + (——11—((1i) pa + yjo 23:1E(Pj-1(Ci)cileitayi0)+ 23:1(dj—1 + E(PJ'—2(Ci)6ilxita 29/20)) 3 mat—341+ Ha 23:1E(Pj—2(Ci)C-ilXitayi0) + 23:1E(Pj_2(Ci)C22|Xit,y-io). (3.28) Because we assume that (c,|.r,~,y,0) is Normal(0,0§), the t-th moment of 0,- exists and is a function of 00, and hence the last three terms of equation (3.28): 23:1E(Pj_1(c,-)c,-IXz~t,y,-0), 23:1E(Pj_2(Ci)Ci|Xit,yiO), and 23:1E(Pj-2(c,-)c,-2|X,-t,y,0) can be compressed as a function of p, (10, a], 33,-”, gig, and Ca. Therefore, the E(;y,,|X,t,y,-0) : dtyiO + (115—(ff) ”a + 23:1(dj—1 + E(Pj_2(c,)c,~|X,-t,y,—0))g3 shay-+1 + A(a0, 01, 113—1’, 31,0, 00). If T is very small, say T g 3, we can use the log-likelihood function (3.15) and replace s(y,0) and 90/20) with €(yz-0,:c,) and 93,10,131. and then to maximize the sum of the log-likelihood function across 2' from 1 to N. If T is not very small, we use the following as log-likelihood function: [(yia 1171'; 6) : log /00( 1 )T [1'1le exp (:21 [Mt _ (,0 yi,t—1 + $210? + a + ’7 (ayi,t—1))]2)] _ ( 1 )exp<:}(“‘“gff{:0’m)2)da, t/2n03 (3.29) Where ”aft/10,31): 00 + 01 MD + 502 By maximizing the sum of l(y,-,:z:,-;6’) over 2' from 1 to N, we can obtain the CMLE estimator. According to the discussion of the consistency in Section 2.2.2, the consistency of CMLE estimators that use (3.28) as the log—likelihood function can be ensured. If we have random sampling in the cross section dimension and standard regularity conditions, with fixed T, the CMLE for 00 will be consistent and 106 [IV-asymptotically normally distributed. ( See Newey and McFadden [ 1994] for sufficient regularity conditions.) 3.3 Simulation Evidence 3.3.1 Model Without Exogenous Variable The true model without exogenous variables of the simulation is as follows: ya 2 p Elm—1 + ai + “r [02' yi,t—1l + 5m i: 1,...,250, t=1,...,5, (3.30) where a, = (10 +01 yio +c,-. The true value of 6 : (p, (1'0, (11, 7, 05, aa)-—-(p, 0.2, 0.4, '7, m, \/l._2), and we set p as different values equal to 0, 0.25, 0.5, 0.75, 0.9, 0.95 and 7 as values equal to 0, 0.1. The values of c,- and En are generated by N(O,1.2) and N(0,2.4), respectively. Because this method allows yio to be random, we generate the yio from the N(0,1). Using the generated data, we maximize the sum of log likelihood function (3.19) over i from 1 to N By the use of the data coming from the above rule, we apply the MLE procedure of Gauss software to obtain the conditional maximum likelihood estimators. it is difficult and time-consuming to directly maximize the objective function , the sum of (3.19) over 2' from 1 to N, so we need find another easier numerical form for the log-likelihood function (3.19). We might calculate the integral of equation (3.19) by applying the formula for the evaluation of the necessary integral which is the 00 2 Hermite integral formula / e_Z g(z)dz = 2:11 1159(2)), Where K is the number of evaluation points, wj is the weight given to the jth evaluation point, and g(zj) is 9(2) evaluated at the jth point of z (See Butler and Moffitt [ 1982]). Equation (3.19) can be re-written as follows: 107 ((31:99) 2 00 T :22: log 27f + log /—00 (VI?) [11:19“) (é—O—lefyn — (P ’3/2‘,t—1 (3.31) +\/§Ua3 + #afilz‘ol + ’7 (flaw? + /-1a(.Uz'0))._l/z,t—1ll)] 9“"P(_32)d 3- We can let 9(2) to be T T 1 —1 ( ) [I I exp (70 (ya - (p yet—ma»? +l1-a(910)+ 7 (£an + #a(yi0))yi.t1)))] 2 0'5 1:21 and then the log—likelihood function away from the constant is 00 __ 2 log/ g(z)e Z dz (3.32) —00 This formula is appropriate to our problem because the integration of equation 2 (3.19) can be transformed as the product of g(z) and e‘z equation. We can approx- 00 . . . . N _Z2 lmate the OijCthC functlon 2,21 log / g(z)e d 2 as follows —00 N K 210g (2: mm») (3.33) i=1 j=1 In the simulations we obtain the conditional maximum likelihood estimators from equation (3.33). The feasible computation of the Hermite integral depends on the number of evaluation points at which the integrand must be evaluated for accurate approximation. Although the value of K determines the accuracy of the calculation of integral, we do not discuss the relation of K and the evaluation of integral as Butter and Moffitt ( 1982) did. Several evaluations of the integral using seven periods of arbitrary values of data and coefficients on two right-hand-side variables shows that the value of K is chosen to be 21 is highly accurate. We repeat the maximization of (3.33) for 300 hundreds. We make the notations in the simulation as follows: 1. 0* means the conditional maximum likelihood estimators. 108 " 300 ... 232%: a 1:1 J' 3. 0 means true value of parameter, where 0 = (p, a0, 01,), aa, 05) = mmamMmMM) In each repetition, we proceed with the hypothesis Ho : p 2 p0, where p0 is 0, 0.25, 0.5, 0.75, 0.9, 0.95 when the true value of p is 0, 0.25, 0.5, 0.75, 0.9 for each value of pa with keeping the true values of the other parameters unchanged, (a0, a1, 7, 0’0, 05) = (0.2, 0.4, 'y, x/T.2, \/2_4) where 7 is 0 or 0.1. For each hypothesis test for estimates, we calculate the numbers of occurrence that greater than 300 x 0.01, 0.05 and 0.1 in respective and the result is divided by 300. In other words, we examine the p-value of each estimates under the hypothesis test. Table 3.1 reports the results for true value of p20, ..., 0.9, and 7': 0 and 0.1. The true value of (do, (11, 00, as) is always set to be (0.2, 0.4, \/1—2, \/2._4). Table 3.2 reports the p-value when testing value p0 is different from the true value of p. To examine the non-normality, Table 3.3 and Table 3.4 report the results of the same test as the previous while the Eu comes from t-distribution with freedom 6 and the c,- frorn t-distribution with freedom 10. In case where 7 is zero, the performance of the model in Chapter 3 is close to the model in the absence of state dependence in Chapter 2. For example, given 00 = (0,0.2,0.4, J24, \/T_2) in Table 2.1-( i )_, the average of ,5 is 5 x 10‘4 and its p-value is 0.0108, 0.0692, 0.1141 respectively at the corresponding sizes, 0.01, 0.05, 0.1. Under the same data set in which the parameters is the same as the model in Chapter 2, the average of ,5 is 2.5 x 10'3 and the p—values are 0.0133, 0.07, 0.1 re— spectively at the corresponding sizes, 0.01, 0.05, 0.1 in Table 3.1-( i ). To check the hypothesis H: p = p0 when the true value of p is zero, Table 3.2—( i ) and Table 2.2-( i ) show that given the power 2 0.01, the two sets of p-value are { 0.0133, 0.1, 0.5200, 109 0.9133, 0.9933, 1.000,...}, { 0.0108, 0.1167, 0.5400, 0.9050, 0.9925,...} in respective when p0 is {0, 0.05, 0.1, . . .} at the step of 0.05. Although the bias of; is adequately larger, the results gives the numerical evidence that both of models have close power of rejecting wrong when p is close to zero. To check the other extreme case where the value of p is getting close to 1, for example p = 0.9, Table 3.1-( ii ) and Table 2.1—( iv ) show that E is 0.9004, 0.9018 in respective and the corresponding p-value 0.01, 0.0433, 0.09 and 0.01, 0.0458, 0.0967 in respective at the power of 0.01, 0.05, 0.1 when p is 0.5. To check the hypothesis H: p 2 p0 when the true value of p is 0.9, Table 3.2-( ii ) and Table 2.1—( iv ) show that given the power 2 0.01, the two sets of p-value are { ..., 1.000, 0.9800, 0.5967, 0.0633, 0.0100, 0.1700, 0.5967 } and { ..., 1.000, 0.9850, 0.6558, 0.0908, 0.0100, 0.1658, 0.5975 } in respective when p0 is {..., 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1 } at the step of 0.05. In case where p is not near either 0 or 1, say p = 0.5, (Table 3.1- ( i ) and Table 2.1- ( iii ) show )6 are 0.5004, 0.5021 and the relevant p-value is 0.0167, 0.0333, 0.09 and 0.0100, 0.0500, 0.1050 at the power of 0.01, 0.05, 0.1. To check the hypothesis H: p 2 p0 when the true value of p is 0.5, Table 3.2-( i ) and Table 2.2-( iii ) show that given the power : 0.01, the set of p-value are { ..., 0.04, 0.0167, 0.1000, 0.3733, 0.7300, 0.9300,... } and { ...,0.0575, 0.7442, 0.9317, 0.9833, 0.9975,... } when p0 is {...,0.45, 0.5, 0.5506, 0.65, 0.7,... } at the step of 0.05. The numerical evidence shows that the model considering the state dependence have good performance even in the true model in the absence of state dependence. Comparing Table 3.3 and Table 3.4 with Table 2.3 and Table 2.4 the non-normality cases corresponding to the previous ones have good performance. For example, when p is 0.5, Table 3.3- ( i ) and Table 2.3-( iii ) show p are 0.4982, 0.4999 in respective and the relevant p-values are 0.0033, 0.0633, 0.1033 and 0.01, 0.0558, 0.1017 in respective 110 at the power of 0.01, 0.05, 0.1. To check the hypothesis H: p =2 p0 when the true value of p is 0.5, Table 3.4-( i ) and Table 2.3—( iii ) show that at the power of 0.01, the two sets of p—values are { 0.07, 0.0033, 0.1433, 0.5233, 0.8933, 0.9833,... } and {..., 0.0792, 0.0100, 0.1183, 0.5217, 0.8842, 0.9842,... } in respective when p0 is {...,0.45, 0.5, 0.55,0.6, 0.65, 0.7,... } at the step of 0.05 . The numerical evidence support that the application of CMLE into model (3.1) have a good performance even when the true model is in the absence of state depen- dence. 3.3.2 Model With Strictly Exogenous Variable In this section, the true model is as follows: ya = P yi,t—l + 0-15 517a + (12‘ + 7 lat yi,t—ll + 521, (3.34) i=1,...,250, t=1,...,5, where a,- = 0.2 + 0.4 3,1,0 + 0.35 T,- + c,. The true value of p = 0, 0.25, 0.5, 0.75, 0.9, 0.95, and the true value of 7 : 0 and 0.1. 31,0 and 23,-, is generated from N(0,1). We generate 5,, by two methods, one is N (0,2.4) and the other is t-distribution with freedom 6. c, is also generated from N(0,1.2) and t-distribution with freedom 10. By subtracting the constant from the (3.29) and rewrite it as follows: l(y.-, 27.; 6) = log / 9(a) exp<—(” " ““(y‘o’ 1,) )2) da. (3.35) —00 flag where 1 T T 1 9(01) = ( 2) [H eXP (QB—(ya — (,0 yi,t—1 + 13 5181+ (12‘. + 7 (Gillan—HO] 05 t=1 E and a,- 2 0'0 + 01 31,0 + 02 T,. Let 2:,- = a,- — :L/‘gyio‘im. Equation (3.35) can be transformed into the form of 0a 111 Hermite integral formula as follows: ((4.416) = log/ gen—Z dz. (3.36) —00 T 9(a) = ( 1 ) [TIL 6X1) (53311.. — (p 14-1—1 + L3 5131': + (720.12.: + #a(yiOa-ji))+ 7 («20.124 + 14a(yz-o.?5i))))]- By maximizing 211:1 log{Z]:1 wJ-g(zj)}, we proceed with the same procedure as that of the previous section. The results are reported from Table 3.5 - 3.8. Similarly, in each repetition, we proceed with the hypothesis H0 : p 2 p0, where p0 is 0, 0.25, 0.5, 0.75, 0.9, 0.95 when the true value of p is 0, 0.25, 0.5, 0.75, 0.9 for each value of po with keeping the true values of the other parameters unchanged, ((10, al, 7, 0a, 05) = (0.2, 0.4, ’7', m, «23) where 7 is 0 or 0.1. For each hypothesis test for estimates, we calculate the numbers of occurrence that greater than 300 x 0.01, 0.05 and 0.1 in respective and the result is divided by 300. We make the comparisons between Table 3.5 - 3.8 and Table 2.6 - 2.10 to Show that including the exogenous variables the performance of CMLE for the model with sate dependence when the true model is in the absence of state dependence. In first case where '7 is zero, theiperformance of the model in Chapter 3 has. the performance similar to the model in the absence of state dependence in Chapter 2. For example, given 90 = (0, 0.15,0.2,0.4, «T4 «13) in Table 2.6-( i ), 73 = 1.7 x 10-3 and its p—value is 0.0100, 0.0583, 0.1058, respectively at the corresponding power, 0.01, 0.05, 0.1. Under the same data set in which the parameters is the same as the model in Chapter 2, p = 2.2 x 10‘3 and the p-value is 0.0067, 0.0400, 0.0867 respectively at the corresponding power, 0.01, 0.05, 0.1 in Table 3.5. To check the hypothesis H: 112 p = p0 when the true value of p is zero, Table 3.6 and Table 2.7-( i ) show that given the power 2 0.01, the two sets of p-value are { 0.0067, 0.0933, 0.5033, 0.8833, 0.9933, 1.000,...}, { 0.0100, 0.1083, 0.5283, 0.9000, 0.9892.1.000,...} in respective when p0 is { 0, 0.05, 0.1, 0.15, 0.20, 0.25,...} at the step of 0.05. We can check the cases where p is 0.9 or 0.5 by the same method used by model (3.30) to compare the current models and the corresponding model in the absence of state dependence in Chapter 2. ( see Table 3.5 and 3.6 , and Table 2.6- ( iii ), ( iv ) and Table 2.7- ( iii ), ( iv ).) In the non—normality cases where 7 is zero, we can see the performance in comparison of Table 3.8 and Table 3.9 with Table 2.8- ( i ), ( iii ), ( iv ) and 2.9- ( i ), ( iii ), ( iv ). With regard to the inclusion of the exogenous variables or not, the performance of the CMLE for models allowing for the interaction between the unobserved effect and the lagged dependence is very well even in the true model which is in the absence of effect of state dependence. 3.4 Empirical example In this section, we use the data from Vella and Verbeek (1998) to study the conditional maximum likelihood estimator in estimating the AR(1) model in which the unobserved effects interact with the past dependent variable. These data are for young males taken from the National Longitudinal Survey (Youth Sample) for the period 1980-87. As in Chapter 2, we estimate a dynamic log wage equation. We consider the data of log hour wage and the status of labor union. Each of the 545 men in the sample worked in every year from 1980 through 1987. We begin with a single dependent variable, lnwage,,, to see what is the response of the current wage rate change into the past one in consideration of individual heterogeneity. It seems reasonable that the amount of state dependence could depend on unob- 113 served heterogeneity. We allow the interaction between the unobserved heterogeneity and the lagged wage rate to account for the heterogenous autoregressive root (p+7a,). An interesting parameter is the average effect, 19 E p + 7,170. We parameterize the model in two ways. We allow for the interaction between the unobserved heterogeneity and the lagged log hour wage as well as the unexplained heterogeneity, a,- is assumed to be E ((1,) lnwagem, 6;,-t) = 070 + allnwagem + c, for all i and t. The first case is set up as follows: ln'wage“ : p lnwagemq + a,- + ’7 at lnwagei,t—l + Em (3.37) i=1,...,545, t=1,...,7, where a,- 2 0'0 + a], lnwagew + c,, i = 1 . . . ,545. In order to obtain a valid standard error for the estimated average effect, rearrange equation (3.37) as follows lnwageu : i9 l7‘i'wage,,t_1 + a,- + 7[a,- — pa] lnwageuq + a“, (3.38) 27:1,...,545, t=1,...,7, where p : 19 — 7 pa. Models (3.37) and (3.38) are the same model, but formulation (3.38) is convenient because 19 is the average autoregressive coefficient across pop- ulation of unobserved heterogeneity. The third case considers adding time dummy variables into equation (3.37) as follows: ("waged I p 17210096714 + 5t dt + a, + ’7 (17171111098134 + 5a, (3.39) i=1,...,545, t=1,...,7, Similar to the manipulation of model (3.37) and (3.38), the amount of state de- pendence through the average effect of unobserved heterogeneity, 7 pa lnwagetpl is introduced into equation (3.39) and expressed as follows. ln’wage“ = 19 lnwagethl + 6, dt + a, + 7[a,~ —- pa] lnwagemn + 8“, (3 40) i=1,...,545, t=1,...,7, In table 3.9 to 3.14, do and al is significantly greater than zero and [1,- has positive value. The estimated amount of unobserved heterogeneity of a worker is do + dlyio and thus the individual estimated amount of autoregressive coefficient is measured by p + 7 61,. That is the response of the current log hourly wage rate into the lagged log hourly wage rate is varied with individual worker, where the estimated size of difference is measured by 7 61,-. We are more concerned with the average effect, p + 7E(a,-), and its corresponding estimated value is f) + fi'fia. In equation (3.37), we calculate the value of p + 7 x p}, 2 0.376. p], is calculated by do + 021 W0, where W0 2 57113 2:51 lnwagem. The estimated amount of average effect can be obtained from estimating the 19 in equation (3.38). Table 3.10 shows 19 is 0.3755 significantly greater than zero. The. same manipulation on equations (3.39) and (3.40) give evidence that the estimated average effect is about 0.215, ( see Table 3.12). Table 3.12 shows 19 is significantly greater than zero. Empirically, we often consider the model with exogenous variables, for example the labor union membership, once we control for state dependence and unobserved heterogeneity, does union membership matter? Under the assumption that the labor union membership is strictly exogenous we add it to the basic equation. Because we assume that labor union membership is strictly exogenous variable, once the past log hour wage rate, the current log hourly wage rate is not affected by past or future labor union membership. The assumption that reasonable because in general employers might just see if the employees have the labor union membership at present in determining the level of hour wage. There could be feedback from wage innovation to future union membership, although this is possibly small. 115 We write the model with strictly exogenous variable as follows: lnwageu : p lnwagemq +13 union.“ + a, + 7 a,- l7zxwage,,t_1 + 5,1, (3.41) 17:1,...,545, t=1,...,7, and we assume a,- : oo + 011 lnwagem + (12 117211071..- + Ci, 2' = 1 . . . ,545, and its corresponding average effect, p + 7/10, expression model is lnwageu = 19171/ui'age,,t_1 + )8 117117012“ + a,- + 7 [(1, — pa] lnwagei,t_1 + 5:1, (3 42) i=1,...,545, t=1,...,7, where a,- = oo+o1 lnwage,o+og m, + c, i=1,. . .,545 and pa = ao+al WO+ (12 m, where W, is the fraction of employment membership. That is the length of keeping the labor union membership more or less reflects the individual preference of a worker. Empirically, the smaller is the ratio, the lower is willingness to keep membership. As often as a worker with higher ability less intend to keep union membership. We report the CMLE estimates of the model (3.41) in Table 3.13. The estimates of 6 is significant and do is not significantly different from zero. Except for the 7, the other estimates is very close to those of model (3.37). The estimated amount of individual autoregressive coefficient is p + 7 (2,, where d,- = ao+aly,~o +ogm,. Table 3.13 shows that. (p, do, 611, do, 7) is (-0.4771, 0.0507, 0.943, 0.082, 0.0244, 0.7757). The same manipulation as the model without exogenous variable the estimated amount of average effect is measured by [3 + 7 x 1,2,, 2 0.3476. [1,, is calculated . . —— ——.— —— 515 by 00 + a] lnwageo + Otg'lt‘n/LOIL, where lnwageo = 575 2.: 1lnwage,o and union — 545— . . . 5+5 Z,_ 1 union,- which means the average length of period for keeping the membership for the workers we observed. Model (3.39) gives 19 = 0.3480, (see Table 3.14). The log 116 hourly wage rate is more or less influenced by the labor union membership. However, the estimates of do is not significantly different from zero in the log hourly wage equation. The linear relationship between labor union membership on the unobserved heterogeneity is small. Similar to equation (3.38), we report model (3.42) in Table 3.14. We report the empirical examples in Table 3.9 - 3.14. At last we report the range of estimate of the response to the future (p+7 pa) by measuring (p+7 ([1,, istd.(a,;))). The results for the range of models (3.37) and (3.38) are 0.376 :1: 0.829(0.090). The range of models (3.39) and (3.40) are 0.215 d: 0.134(0219). 3.5 Conclusion In this chapter we apply the CMLE in estimating a panel data model where un- observed heterogeneity interacts with a lagged dependent variable. The IV estimator for the coefficient of y,,t_1 is inconsistent even for the average effect. In other words, the existing approach can not estimate the amount of average state dependence. Our recommended approach for the model is flexible. Firstly, we just model the distribu- tion of the unobserved heterogeneity, D(a,-|:1:,:, y,o), and then construct the density of (y,1,...,y,-T) given (13,, y,o). To specify a conditional parametric density function of a, in which the conditional mean and variance are flexible function of yo and 1:,. We can easily define a log-likelihood function conditional on (55,, y,o). It is crucial point that the conditional maximum likelihood function is valid no matter what we con- dition on. Furthermore, the conditional maximum likelihood function is consistent, «N-asymptotically normal, under standard regularity conditions. Secondly, we can easily estimate p and 7 as well as (p + 7110). The idea of specifying a distribution for the unobserved effects given the initial 117 condition to construct CMLE means we can easily estimate the average partial effect across a,. If .73,- is not strictly exogenous, we can apply the suggestion of Wooldridge (2000a) as follows. \Ne parameterize 17(11th 1—1, 21, a; /\o), where 2:: is strictly exoge— nous and build up the joint density of (11:, 517:) given (2T, K-1,Xt_1, a) and then apply the same procedure as discussed previously to set up a log—likelihood function. We can use numerical methods to solve out the CMLE. In the empirical example of hourly log wage rate, the interaction of lagged wage and the unobserved heterogeneity is significant. This restricts the case where we add union status to the model. Union status is marginally significant and is estimated to increase wage by about 5 percent. We need to add more explanatory variables and apply the more general method allowing for non-strict exogeneity assumption to decrease the degree of the inter- dependence between the unobserved heterogeneity and the error term. We propose the basic model to illustrate conditional MLE. These models can be easily extended to more complicate case. It is crucial problem that we need to find an appropriate formula to approximate the integral to integrate out the unobserved heterogeneity. The more complicated is the conditional parametric density of the unobserved hetero- geneity, the more difficult it is to find a good formula for approximating the necessary integral. The Gauss quadrature method seems to work well, is time-consuming. Fu- ture research could focus on simulation methods of estimation, as in Keane(1993). 118 6 = (p, 0.2, 0.4, 7, «2.4, «1.2) 60 2 (p0, 0.2, 0.4, ’70, V 2.4,V12) Table 3.1: Ho: 6 = 90, where p =0 ~ 0.9 K P\6 2.5x10-3 0.2022 0.3966 1.1x10-3 1.5502 1.0950 (p,’)') 3 x 10-3 0.2025 0.3964 0.1022 1.5503 1.0804 0.01 0.0133 0.0067 0.0100 0.0067 0.0167 0.0067 (0,0) 0.0167 0.0033 0.0133 0.0067 0.0167 0.0100 (0,0.1) 0.05 0.0700 0.0367 0.0433 0.0367 0.0633 0.0533 (0,0) 0.0600 0.0500 0.0467 0.0400 0.0567 0.0500 (0,0.1) 0.10 0.1000 0.0800 0.0867 0.0933 0.1000 0.0900 (00) 0.1033 0.0867 0.0800 0.1033 0.1100 0.0867 (00.1) P\6 0.2515 0.2017 0.3970 1.3x10-3 1.5502 1.0804 (p,7) 0.2519 0.2022 0.3967 0.1025 1.5502 1.0811 0.01 0.0133 0.0067 0.0100 0.0033 0.0200 0.0033 (025,0) 0.0100 0.0033 0.0067 0.0033 0.0167 0.0000 (025,01) 0.05 0.0600 0.0467 0.0467 0.0433 0.0567 0.0433 (025,0) 0.0433 0.0533 0.0533 0.0433 0.0533 0.0433 (025,0.1) 0.10 0.0933 0.0867 0.0833 0.1033 0.1100 0.0867 (025,0) 0.0967 0.0933 0.1000 0.1000 0.1067 0.0833 (025,01) P\6 0.5004 0.2014 0.3978 1.3x10-3 1.5500 1.0818 (p,7) 0.5004 0.2019 0.3979 0.1028 1.5496 1.0838 0.01 0.0167 0.0033 0.0100 0.0033 0.0167 0.0033 (05,0) 0.0133 0.0067 0.0200 0.0067 0.0133 0.0033 (05,01) 0.05 0.0333 0.0467 0.0500 0.0467 0.0667 0.0300 (0.5,0) 0.0333 0.0567 0.0600 0.0533 0.0533 0.0400 (05,0.1) 0.10 0.0900 0.0833 0.0900 0.1000 0.0967 0.0767 (0.5,0) 0.0833 0.0967 0.0967 0.0933 0.1000 0.0800 (050.1) Normality Rrepetm'ons = 300, 6 2 310—0 231016;, «Z4 2 1.5492, «T2 9: 1.0954 The content of bracket is (po , 7o) ( i l 119 P\6 07504 0.2015 0.3984 6x10'4 1.5500 1.0815 (p, 5,1) 07484 0.2010 0.3998 0.1025 '1 .5482 1.0893 0.01 0.0133 0.0067 0.0167 0.0067 0.0200 0.0067 (075,0) 0.0133 0.0100 0.0267 0.0067 0.0167 0.0067 (075,01) 0.05 0.0500 0.0533 0.0567 0.0333 0.0633 0.0200 (075,0) 0.0467 0.0600 0.0733 0.0533 0.0600 0.0200 (075,01 ) 0.10 0.1000 0.0900 0.0900 0.1100 0.1067 0.0567 (075,0) 0.1000 0.1000 0.0967 0.1033 0.0900 0.0633 (075.01) P\é 0.9004 0.2016 0.3987 2x10“4 1.5498 1.0822 (p, 7) 0.8980 0.2001 0.3993 0.1019 1.5472 1.0917 0.01 0.0100 0.0067 0.0167 0.0067 0.0200 0.0033 (0. 9 ,0) 0.0067 0.0067 0.09300 0.0067 0.0167 0.0033 (0. 9, 0 1) 0.05 0.0433 0.0533 0.0567 0.0367 0.0700 0.0267 (0 9,0) 0.0733 0.0600 0.0800 0.0500 0.0567 0.0200 (0 9 ,0 1) 0.10 0.0900 0.1000 0.1067 0.1033 0.1133 0.0500 (0. 9 0) 01100 0.0967 0.1233 0.1267 0.0967 0.0733 (09,01) Rrepet'zit‘ions = 300, 6 3—0—0 2330, 63, «2 2.4 a: 1.5492, «1.2 2 1.0954 The content of bracket 18 (po , 70) (ii) 120 Table 3.2: Ho : 6 2 60, where p =0 ~ 0.5 6 = (p, 0.2, 0.4, 7, «2.4, «1.2) 00 = (p0, 0.2, 04,70, «2.4, «1.2) P\ ’00—.“ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 (p,7) 0.01 0.0133 0.1000 0.5200 0.9133 0.9933 1.0000 1.0000 1.0000 (0,0) 0.0167 0.0833 0.5067 0.9033 0.9900 1.0000 1.0000 1.0000 (0,01) 0.05 0.0700 0.2567 0.7433 0.9533 0.9967 1.0000 1.0000 1.0000 (0,0) 0.0600 0.2433 0.7600 0.9567 1.0000 1.0000 1.0000 1.0000 (0,01) 0.10 0.1000 0.3633 0.8267 0.9833 1.0000 1.0000 1.0000 1.0000 (0,0) 0.1033 0.3700 0.8400 0.9833 1.0000 1.0000 1.0000 1.0000 (0,0.1) P\ 60—7 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 (p, 7) 0.01 1.0000 0.8900 0.4567 0.0767 0.0133 0.0900 0.4167 0.8333 (025,0) 1.0000 0.9133 0.4500 0.0867 0.0100 0.0767 0.4400 0.8500 (025,01) 0.05 1.0000 0.9967 0.6667 0.2167 0.0600 0.2400 0.6767 0.9267 (025,0) 1.0000 0.9800 0.7033 0.2133 0.0433 0.2300 0.6800 0.9333 (025,01) 0.10 1.0000 0.9800 0.8033 0.3067 0.0933 0.3433 0.7767 0.9533 (025,0) 1.0000 0.9867 0.8100 0.3233 0.0967 0.3367 0.7733 0.9600 (025,01) P\ ”—1" 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 (p, 7) 0.01 0.3267 0.0400 0.0167 0.1000 0.3733 0.7300 0.9300 0.9967 (0.5,0) 0.3900 0.0500 0.0133 0.1167 0.4300 0.8100 0.9767 0.9967 (05,01) 0.05 0.6300 0.1533 0.0333 0.2233 0.5967 0.8833 0.9867 0.9967 (0.5,0) 0.6867 0.2033 0.0333 0.2233 0.6567 0.9167 0.9967 0.9967 (05,0.1) 0.10 0.7233 0.2800 0.0900 0.3233 0.7067 0.9267 0.9967 0.9967 (0.5,0) 0.7867 0.3200 0.0833 0.3267 0.7267 0.9600 0.9967 1.0000 (05,0.1) Normality Rrepetitions : 300,6 2 The content of bracket is (po , 70) 333,—, 23:", 6;, «2.4 2 1.5492, «1.2 2 1.0954 (1) 121 P\ ’00—? 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 (p, 7) 0.01 0.8500 0.3533 0.0267 0.0133 0.1300 0.4500 0.7700 0.9433 (075,0) 0.9233 0.4767 0.0633 0.0133 0.1400 0.5433 0.8733 0.9833 (075,01) 0.05 0.9567 0.6667 0.1633 0.0500 0.2667 0.6233 0.8933 0.9767 (075,0) 0.9833 0.7567 0.2300 0.0467 0.3233 0.7433 0.9533 1.0000 (075,0.1) 0.10 0.9867 0.7733 0.2867 0.1000 0.3767 0.7233 0.9433 0.9900 (075,0) 0.9900 0.8467 0.3500 0.1000 0.4267 0.8267 0.9700 1.0000 (075,01) P\ ’00—»: 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 (p,7) 0.01 1.0000 1.0000 0.9800 0.5967 0.0633 0.0100 0.1700 0.5967 (09,0) 1.0000 1.0000 1.0000 0.7467 0.1367 0.0067 0.2200 0.7500 (09,025) 0.05 1.0000 1.0000 0.9967 0.8200 0.2600 0.0433 0.3500 0.7667 (0.9,0) 1.0000 1.0000 1.0000 0.9033 0.3400 0.0733 0.4433 0.8900 (09,025) 0.10 1.0000 1.0000 1.0000 0.8900 0.3800 0.0900 0.4700 0.8367 (0.9,0) 1.0000 1.0000 1.0000 0.9367 0.4400 0.1100 0.5267 0.9200 (0.0025) R'repetz'tz'ons = 300,6 = 3376 23:0 6;, «2‘4 2 1.5492,«1§ 1*: 1.0954 The content of bracket is (po , 70) (ii) 122 Table 3.3: Ho :6 = 60, where p =0 ~ 0.9 = (p, 0.2,0.4,7, «1.5, «1.25) 60 2 (p0, 0.2, 0.4, ’70, V 1.5, V 1.25) P\6 8x10"4 0.2015 0.3984 5x10” 1.2230 1.0985 (0,0) -1.35x10‘2 0.1884 0.3870 0.0947 1.2245 1.0992 (0,0.1) 0.01 0.0067 0.0133 0.0167 0.0333 0.0700 0.0133 (0,0) 0.0233 0.0133 0.0100 0.0433 0.0667 0.0133 (00.1) 0.05 0.0533 0.0533 0.0467 0.0933 0.1200 0.0800 (0,0) 0.0700 0.0600 0.0500 0.1100 0.1133 0.0767 (00.1) 0.10 01067 0.0967 0.1100 0.1567 0.2000 0.1500 (0,0) 0.1167 0.0967 0.1067 0.1567 0.2000 0.1467 (0,01) P\6 0.2498 0.2020 0.3988 2 x 1071 1.2228 1.0996 (025,0) 02364 01841 0.3863 0.0950 1.2244 1.0991 (025,01) 0.01 0.0067 0.0167 0.0133 0.0333 0.0567 0.0167 (025,0) 0.0200 0.0133 0.0133 0.0400 0.0533 0.0167 (025,01) 0.05 0.0467 0.0567 0.0433 0.0900 0.1167 0.0667 (025,0) 0.0567 0.0533 0.0567 0.1167 0.1200 0.0700 (025,01) 0.10 0.1000 0.0967 0.0900 0.1567 0.1933 0.1300 (025,0) 0.1067 0.0933 0.1067 0.1800 0.2067 0.1133 (025,01) P\é 0.4982 0.2027 04033 -00000 1.2222 1.1030 (0.5,0) 0.4846 0.1794 0.3870 0.0944 1.2236 1.1036 (05,0.1) 0.01 0.0033 0.0100 0.0100 0.0433 0.0467 0.0233 (0.5,0) 0.0233 0.0100 0.0167 0.0367 0.0500 0.0200 (05,01) 0.05 0.0633 0.0500 0.0400 0.0967 0.1333 0.0667 (0.5,0) 0.0733 0.0533 0.0500 0.1233 0.1267 0.0667 (0.5,01) 0.10 0.1033 0.0933 0.0900 0.1733 0.2033 0.1000 (05,0) 0.1367 0.0867 0.1000 0.2033 0.2067 0.1233 (05,01) Rrepctitions = 300.6 = The content of bracket is (po , 70) 235—623 Non-normality 6]", «1.5 21.2247,\/1.2 131.1180 300 1:1 (1) 123 P\é 0.7469 0.2032 0.4028 —2x10-4 1.2213 1.1077 (075,0) 0.7338 0.1720 0.3855 0.0925 1.2217 1.1126 (0.7501) 0.01 0.0100 0.0100 0.0100 0.0333 0.0500 0.0200 (075,0) 0.0333 0.0267 0.0167 0.08670 0.0600 0.0267 (0.75.0.1) 0.05 0.0567 0.0533 0.0433 0.1133 0.1433 0.0567 (075,0) 0.1000 0.0467 0.0600 0.1800 0.1467 0.0567 (0.750 1) 0.10 0.1233 0.0833 0.0900 0.1600 0.2033 0.1100 (075,0) 0.1600 0.1133 0.1133 0.2567 0.2100 0.1267 (0.7501) P\é 0.8971 0.2034 0.4039 .2x10-4 1.2210 1.1090 (0.90) 0.8852 0.1707 0.3833 0.0915 1.2224 1.1161 (0.901) 0.01 0.0133 0.0067 0.0100 0.0433 0.0467 0.0133 (0.90) 0.0420 0.0180 0.0260 0.1340 0.0600 0.0200 (0,9,0 1) 0.05 0.0567 0.0567 0.0533 0.1233 0.1500 0.0700 (09.0) 0.1140 0.0440 0.0860 0.2380 0.1400 0.0700 (0.90.1) 0.10 0.1133 0.0833 0.0967 0.1533 0.2167 0.1167 (0.90) 0.2000 0.1180 0.1320 0.3240 0.2180 0.1220 (0.9.0.1) Rrepetttions = 3009— 3—00 233016;, \/._5 2 1.2247, m 2 1.1180 The content of bracket is (p0 , ’70) (ii) 124 Table 3.4: H0 : 0 = 60, where p =0 ~ 0.9 6 = (p, 020.4,), «1.5, «1.25) 00 = (p0,0.2, 0.4.70, 4/15, «1.25) P\ ’00—? 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 (p, 7) 0.01 0.0067 0.1267 0.5767 0.9200 1.0000 1.0000 1.0000 1.0000 (0,0) 0.0233 0.2400 0.7067 0.9667 1.0000 1.0000 1.0000 1.0000 (0,0.1) 0.05 0.0533 0.2900 0.7733 0.9733 1.0000 1.0000 1.0000 1.0000 (0,0) 0.0700 0.4433 0.8800 0.9967 1.0000 1.0000 1.0000 1.0000 (0,0.1) 0.10 0.1067 0.4000 0.8533 0.9867 1.0000 1.0000 1.0000 1.0000 (0,0) 0.1167 0.5600 0.9300 1.0000 1.0000 1.0000 1.0000 1.0000 (00.1) P\ p9: 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 (p, 7) 0.01 1.0000 0.9133 0.5133 0.0800 0.0067 0.1267 0.5200 0.8867 (025,0) 1.0000 0.8700 0.3800 0.0367 0.0200 0.2133 0.6467 0.9500 (025,0 1) 0.05 1.0000 0.9833 0.7433 0.2300 0.0467 0.2867 0.7233 0.9567 (025,0) 1.0000 0.9633 0.6167 0.1533 0.0567 0.4133 0.8333 0.9867 (0.2501) 0.10 1.0000 0.9933 0.8267 0.3800 0.1000 0.3800 0.8300 0.9700 (025,0) 1.0000 0.9800 0.7333 0.2433 0.1067 0.5200 0.9167 0.9933 (0.2501) P\ ’00—.— 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 (p, 7) 0.01 0.4833 0.0700 0.0033 0.1433 0.5233 0.8933 0.9833 0.9967 (0,5,0) 0.01 0.3700 0.0300 0.0233 0.2367 0.6767 0.9533 0.9933 1.0000 (05,01) 0.05 0.7133 0.2067 0.0633 0.3100 0.7200 0.9533 0.9933 1.0000 (0.50) 0.05 0.6033 0.1300 0.0733 0.4500 0.8400 0.9833 1.0000 1.0000 (0.5,0. 1) 0.10 0.8267 0.3533 0.1033 0.4100 0.8267 0.9733 0.9967 1.0000 (0.5,0) 0.10 0.7333 0.2233 0.1367 0.5500 0.9033 0.9900 ‘ 1.0000 1.0000 (05,01) Rrepettttm‘zs = 300,é = 3Tl)5 Z Non-normality 6;, \/1.5 21.2247,\/1.2 21.1180 300 i=1 The content of bracket. is (p0 , 70) (ii) 125 The content of bracket is (p0 , 70) (ii) 126 P\ ’00—»: 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 (p, 7) 0.01 0.9733 0.6467 0.0933 0.0100 0.1900 0.6733 0.9533 0.9900 (0.750) 0.9567 0.5100 0.0433 0.0333 0.3133 0.8000 0.9867 0.9967 (075,01) 0.05 0.9967 0.8333 0.2767 0.0567 0.3733 0.8400 0.9833 0.9967 (075,0) 0.9933 0.7167 0.1800 0.1000 0.5467 0.9233 0.9933 0.9967 (0.7501) 0.10 1.0000 0.8933 0.3900 0.1233 0.5000 0.8867 0.9900 0.9967 (075,0) 1.0000 0.8100 0.2800 0.1600 0.6300 0.9633 0.9933 1.0000 (075,01) P\ ’00—? 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 (p,’7) 0.01 1.0000 1.000 1.0000 0.8233 0.1567 0.0133 0.2733 0.8367 (0.9,0) 1.0000 1.000 0.9900 0.7120 0.0840 0.0420 0.4620 0.9300 (0.90.1) 0.05 1.0000 1.0000 1.0000 0.9500 0.3800 0.0567 0.5233 0.9433 (090) 1.0000 1.0000 1.0000 0.8820 0.2740 0.1140 0.6520 0.9760 (0.901) 0.10 1.0000 1.0000 1.0000 0.9800 0.5200 0.1133 0.6067 0.9767 (0.9,0) 1.0000 1.0000 1.0000 0.9280 0.3920 0.2000 0.7560 0.9840 (09,01) Rrepetitions = 300,6 = 533 23316;, £3 2 1.2247, m 2 1.1180 Table 3.5: H0 : 6 = 60, where p :0 ~ 0.9 0 : (p, 0.15, 0.2, 0.4, 0.35, 7, «2.4, 4/12)’ 60 2 (p0, 0.15, 0.2, 0.4, 0.35, ’70, V 2.4, V 1.2) P\6 0.0022 0.1530 0.2018 0.3956 0.3355 -0.0002 1.5471 1.0828 (pry) 0.0019 0.1529 0.2027 0.3962 0.3362 0.1001 1.5470 1.0841 0.01 0.0067 0.0100 0.0067 0.0167 0.0100 0.0033 0.0067 0.0067 (0,0) 0.0133 0.0100 0.0067 0.0100 0.0100 0.0067 0.0067 0.0067 (0,0.1) 0.05 0.0400 0.0367 0.0633 0.0567 0.0400 0.0500 0.0567 0.0433 (0,0) 0.0567 0.0333 0.0667 0.0567 0.0400 0.0467 0.0533 0.0467 (0,01) 0.10 0.0867 0.0867 0.0967 0.1167 0.0933 0.0800 0.1100 0.1133 (0,0) 0.0933 0.0900 0.0967 0.1233 0.1033 0.0967 0.1100 0.1033 (0,0.1) P\6 0.5010 0.1530 0.2024 0.3960 0.3365 0.0003 1.5473 1.0838 (72,7) 0.5010 0.1529 0.2028 0.3958 0.3368 0.1009 1.5472 1.0841 0.01 0.0067 0.0100 0.0100 0.0133 0.0133 0.0033 0.0067 0.0033 (0.5,0) 0.0167 0.0100 0.0067 0.0100 0.0133 0.0100 0.0067 0.0067 (0.5,0.1) 0.05 0.0533 0.0367 0.0633 0.0533 0.0433 0.0433 0.0400 0.0433 (0.5,0) 0.0533 0.0267 0.0667 0.0567 0.0533 0.0433 0.0500 0.0467 (0.5,0.1) 0.10 0.1067 0.0867 0.1033 0.1100 0.0900 0.0733 0.0967 0.0867 (0.5,0) 0.1000 0.0967 0.0967 0.0967 0.0800 0.0867 0.1100 0.1133 (0.5,0.1) P\O 0.9009 0.1533 0.2020 0.3966 0.3384 -0.0002 1.5472 1.0846 (pgy) 0.8997 0.1531 0.2015 0.3997 0.3365 0.1016 1.5463 1.0879 0.01 0.0133 0.0100 0.0133 0.0067 0.0167 0.0033 0.0100 0.0167 (0.9,0) 0.0167 0.0067 0.0100 0.0167 0.0200 0.0167 0.0133 0.0133 (0.9,0.1) 0.05 0.0533 0.0400 0.0600 0.0533 0.0467 0.0433 0.0433 0.0500 (0.9,0) 0.0833 0.0367 0.0600 0.0667 0.0500 0.0667 0.0533 0.0833 (0.9,0.1) 0.10 0.1167 0.0900 0.1033 0.1200 0.0833 0.0867 0.0933 0.1067 (0.9,0) 0.1400 0.1033 0.1067 0.1233 0.1000 0.1267 0.1133 0.1433 (0.9,0.1) Normality Rrepetttions : 300.6 : The content of bracket 28 (p0 , 2,40) 300 1 56—022 127 10;, 4/15 21.5492,\/1.2 21.0954 Table 3.6: H0 : 6 = 60, p =0 ~ 0.5 6 = (p, 0.2, 0.4, 7, v2.4, v1.2) 90 : (p0, (12,114.70, V 2.4, V 1.2) P\ ’00 “ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 (p, 7) 0.01 0.0067 0.0933 0.5033 0.8833 0.9933 1.0000 1.0000 1.0000 (0,0) 0.0133 0.1133 0.5067 0.9000 1.0000 1.0000 1.0000 1.0000 (0,0.1) 0.05 0.0400 0.2700 0.7167 0.9800 0.9967 1.0000 1.0000 1.0000 (0,0) 0.0567 0.2667 0.7333 0.9733 1.0000 1.0000 1.0000 1.0000 (0,0.1) 0.10 0.0867 0.3767 0.8000 0.9833 1.0000 1.0000 1.0000 1.0000 (0,0) 0.0933 0.3567 0.8100 0.9867 1.0000 1.0000 1.0000 1.0000 (00.1) P\po—f 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 (p,‘7) 0.01 0.8133 0.4000 0.0400 0.0067 0.1100 0.4000 0.7400 0.9367 (0.5,0) 0.8467 0.4567 0.0667 0.0167 0.1133 0.4033 0.8033 0.9733 (05,01) 0.05 0.9367 0.6367 0.2000 0.0533 0.2367 0.5733 0.8767 0.9900 (0.5,0) 0.9600 0.6667 0.2133 0.0533 0.2333 0.6067 0.9267 0.9933 (05,01) 0.10 0.9700 0.7333 0.3000 0.1067 0.3167 0.6900 0.9300 0.9933 (0.50) 0.9733 0.7767 0.3367 0.1000 0.3567 0.7567 0.9533 0.9967 (05,01) P\ ’00—.— 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 (12,7) 0.01 1.0000 1.0000 1.0000 0.9733 0.5967 0.0767 0.0133 0.1733 (0.90) 1.0000 1.0000 0.9800 0.7333 0.1367 0.0167 0.2033 0.7167 (09,01) 0.05 1.0000 1.0000 1.0000 0.8200 0.2500 0.0533 0.3300 0.7533 (0.9,0) 1.0000 1.0000 1.0000 0.8900 0.3367 0.0833 0.3800 0.8467 (0.90.1) 0.10 1.0000 1.0000 1.0000 0.8200 0.2500 0.0533 0.3300 0.7533 (0.9,0) 1.0000 1.0000 1.0000 0.9233 0.4467 0.1400 0.4967 0.9033 (0.90.1) Rrepetitions 2 300,6_ — 3—00 233016;, «2.4 2 1.5492, (/1.2 2 1.0954 The content of bracket is (p0 , '70) Normality 128 Table 3.7: H0 : 6 = 00, where p =0 ~ 0.9 6 = (p, 0.15, 0.2, 0.4, 0.35,»), 4/15, «1.25) 60 = (p0.0.15, 0.2, 0.4, 0.35, )0, \/1.5, «1.25) P\6 0.0004 0.1521 0.2017 0.3986 0.3451 0.0005 1.2223 1.0964 (p,’)’) -00032 0.1521 0.2424 0.4141 0.3429 0.0170 1.2228 1.0996 0.01 0.0100 0.0133 0.0133 0.0167 0.0067 0.0367 0.0700 0.0133 (0,0) 0.0133 0.0133 0.0200 0.0133 0.0067 0.9533 0.0700 0.0133 (0,0.1) 0.05 0.0600 0.0600 0.0467 0.0433 0.0400 0.0933 0.1200 0.0867 (0.0) 0.0633 0.0600 0.0733 0.0533 0.0400 0.9767 0.1167 0.0800 (0,0.1) 0.10 0.1067 0.0933 0.1067 0.1100 0.0900 0.1467 0.1900 0.1400 (0,0) 0.1167 0.0933 0.1500 0.1233 0.0967 0.9900 0.1933 0.1500 (0.0.1) P\6 0.4975 0.1519 0.2028 0.4009 0.3472 0.0001 1.2214 1.1015 (p,')') 0.4973 0.1518 0.1988 0.3997 0.3441 0.1021 1.2210 1.1006 0.01 0.0133 0.0133 0.0133 0.0133 0.0067 0.0333 0.0550 0.0167 (0.5,0) 0.0167 0.0133 0.0100 0.0133 0.0100 0.0567 0.0567 0.0167 (050.1) 0.05 0.0600 0.0633 0.0500 0.0333 0.0400 0.0933 0.1300 0.0533 (0.5,0) 0.0433 0.0667 0.0433 0.0533 0.0400 0.1033 0.1400 0.0700 (05,01) 0.10 0.0933 0.0867 0.1000 0.0867 0.0900 0.1533 0.2133 0.1100 (0.5,0) 0.0700 0.0833 0.0833 0.1000 0.1000 0.1700 0.2133 0.1133 (05,01) P\6 0.8967 0.1500 2036 0.4045 0.3487 -0000] 1.2203 1.1073 (p,'7)) 0.8954 0.1517 0.1962 0.4024 0.3468 1009 1.2178 1.1063 0.01 0.0167 0.0133 0.0067 0.0100 0.0067 0.033 0.0467 0.0100 (0.9,0) 0.0100 0.0067 0.0133 0.0267 0.0100 0.0400 0.0773 0.0167 (090.1) 0.05 0.0600 0.0633 0.0600 0.0567 0.0367 0.1033 0.1567 0.0600 (0,9,0) 0.0400 0.0700 0.0400 0.0933 0.0733 0.0900 0.1533 0.0633 (0.9,0.1) 0.10 0.1067 0.0867 0.0900 0.0833 0.0933 0.1533 0.2000 0.1067 (0.9,0) 0.1067 0.0900 0.0700 0.1633 0.1300 0.1333 0.2233 0.1133 (0.9.0.1) . Non-normality Rrepetittons = 300. 6 = 31% 230016;,M15 2 1.2247, 4/125 2 1.1180 J: The content of bracket 178 (p0 , 70) 129 Table 3.8: H0 : 6 = 60, where p =0 ~ 0.9 6 = (p, 02,04, 7. «1.5. 71.25) 00 2 (p0, 0.2, 0.4, ’70, V 1.5, V 1.25) P\ p9? 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 (p. 4,) 0.01 0.0100 0.1433 0.6067 0.9333 1.0000 1.0000 1.0000 1.0000 (0,0) 0.0133 0.1767 0.6467 0.9467 1.0000 1.0000 1.0000 1.0000 (001) 0.05 0.0600 0.2967 0.7833 0.9767 1.0000 1.0000 1.0000 1.0000 (0,0) 0.0633 0.3400 0.8367 0.9867 1.0000 1.0000 1.0000 1.0000 (0,0.1) 0.10 0.1067 0.4733 0.8933 1.0000 1.0000 1.0000 1.0000 1.0000 (0,0) 0.1167 0.3700 0.8400 0.9833 1.0000 1.0000 1.0000 1.0000 (0,0.1) P\ ”0 ‘ 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 (p,'7) 0.01 0.9300 0.5200 0.0700 0.0133 0.1600 0.5400 0.9000 0.9833 (0.5,0) 0.9900 0.7633 0.2567 0.0433 0.3633 0.8000 0.9867 0.9967 (05,01) 0.05 0.9867 0.7167 0.2200 0.0600 0.3100 0.7667 0.9667 0.9967 (0.5,0) 0.9900 0.7633 0.2567 0.0433 0.3633 0.8000 0.9867 0.9967 (0.501) 0.10 0.9933 0.8133 0.3633 0.0933 0.4233 0.8400 0.9733 0.9967 (0.5,0) 0.9967 0.8733 0.3800 0.0700 0.4500 0.8567 0.9900 1.0000 (05,01) P\ ”—7 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 (p, 7) 0.01 1.0000 1.0000 1.0000 0.8800 0.1967 0.0167 0.3000 0.8933 (09.0) 1.0000 1.0000 1.0000 0.9233 0.2567 0.0100 0.3867 0.9533 (09,01) 0.05 1.0000 1.0000 1.0000 0.9733 0.4167 0.0600 0.5367 0.9600 (0.9,0) 1.0000 1.0000 1.0000 0.9900 0.4800 0.4400 0.6267 0.9967 (09,01) 0.10 1.0000 1.0000 1.0000 0.9900 0.5367 0.1067 0.6567 0.9867 (0.9,0) 1.0000 1.0000 1.0000 0.9933 0.6067 0.1067 0.7033 0.9967 (09,01) Rrepet'it’ions = 300,6 = The content of bracket is (p0 , Non-normality 1 300 300 2:321 "10 l 130 6;, ./1.5 21.2247,./1.2 21.1180 Table 3.9: Case a: lnwageu = p lnxwage,‘t_1 + a,- + 7 a,- - lnwagei‘tq + e“ ln'wagea = p lnwagem—l + a. + 7 a. - 172-14109651-] + 5,,, a,- = (10 + 071 lnwageio + c,- Coeffi cient p do d1 7“ 6. 6,, CMLE -0.4951 0.9448 0.0758 0.8289 0.3493 0.0898 t-statistics (-1744) (35.986) (3.893) (2.754) (75.516) (4.148) log—likelihood value 302.614 N=545, periods is 1980 ~ 1987 Table 3.10: Case bzlnwageit = 19 lnwagethl + a, + 7 (a,- — pa) - lnwagethl + an 17111109611 = 19 lnwageLt-l + 04' + ’7’ 102' — #al ' lnwageikl + 5“, a, = 00 + 041 lnwageio + c,- Coeflicient 6 do (i) '3' [75 {70 CMLE 0.3755 0.911418 0.0759 0.8285 0.3493 0.0898 t-statistics (17.046) (35.995) (3.843) (2.759) (75.531) (4.156) log—likelihood value 302.614 N=545. periods is 1980 ~ 1987 131 Table 3.11: Case czlnwageit = p lnuiagemq + (51 dt + a, + 'y a,- - lnwageikl + 51-) lnwageu = p l'nu1a.ge,-,t_1 + (5, d) + a, + 7 a, - lnwagethl + 5,), a,- = 00 + (.11 lnwagem + c,- pr Ir Coefficient ,6 do d1 4,. 61 62 63 CMLE 0.0083 0.6565 0.1652 0.2567 0.2842 0.3093 0.3424 t-statistics (0.0067) (1.31) (7.389) (3.605) (0.563) (0.613) (0.678) Coefficient 64 65 66 67 {75 60 CMLE 0.4023 0.4328 0.4815 0.5356 0.3309 0.1841 t-statistics (0.797) (0.858) (0.954) (1.061) (78.1) (10.089) N=545, periods is 1980 ~ 1987 Table 3.12: Case dzlnwagefl = 6 lnwagemq +6) d) + a, +7 (a,- —pa) ~lnwage,-,t_1 +8“ lnwageit = 6 lnungethl + 6) d) + a, + '7' (a,- — pa] - lnwageikl + 5,), a,- = (:10 + 01 lnwageio + c,- F Coefficient 6 do d1 '3' 61 62 63 CMLE 0.21545 0.50248 0.223801 0.134065 0.599911 0.6541561 0.397765 t-statistics (11.86) (0.2724) (8.9881) (2.5400) (0.3253) (0.3547) (0.2157) v COOl’fiClellt 6.; 65 65 67 (5'5 (2'0 CMLE 0.422917 0.457085 0.517636 0.549881 0.330714 0.21901 t-statistics (0.2293) (0.2487) (0.2807) (0.2982) (73.9500) (12.0017) N=545, periods is 1980 ~ 1987 132 Table 3.13: Case e: lnwage“ = p l‘n»U,’(Lg€i’t_1 +6 union.) + a, + '7 a,- - lnwagetbl +5.) lnwageu = p l'nrwa,ge,-,t_1 + 6 union“ + a,- + 7 a,- - ln,wage,-,t_1 + 51-), a,- = (10 + 071 lnwageio + a2 union, + c, Coefficient r3 6 do d1 67;. a 6. 6., CMLE -0.4771 0.0507 0.9430 0.0820 0.0244 0.7757 0.3518 0.0987 t-statistics (-1.861) (2.049) (33.093) (3.923) (1.248) (2.819) (67.366) (4.279) log-likelihood value 85.6199 N=545, periods is 1980 ~ 1987 Table 3.14: Case 1: lnwageit = 6t'n‘wage,,t-1+6'avnton,t+a,-+7[a,-—pa]-lnwage,-,t_1+e,-t [7111109811 2 19 ("100984.14 + ('3 unimfli + ’7 [at “ #al ' ln'wageikl + 541, a, = 00 + 01 lnwageio + 02 union, + c, Coefficient 6 8 do 6:, 52 ‘7 6, 6., CMLE 0.3480 0.0511 0.9425 0.0820 0.0240 0.7773 0.3518 0.0985 t—statistics (13.726) (2.065) (33.091) (3.909) (1.235) (2.814) (67.343) (4.265) log-likelihood value 85.6199 N=545, periods is 1980 ~ 1987 133 CHAPTER 4 CMLE For Logit Model With Individual Heterogeneity 4. 1 Introduction In the previous chapters, we considered estimation of the AR(1) panel data model with unobserved heterogeneity. In the standard model with additive heterogeneity, transformations exist that can be combined with instrumental variables estimation to produce consistent estimators. (As we discussed in Chapter 1, the usual within estimator is not consistent with fixed T.) Even in this simple model , however, the conditional maximum likelihood estimator has some advantages. For one, it is gener- ally more efficient than method of moments estimators that do not make assumptions on the distribution of the initial condition. In Chapter 3 we considered estimation of the AR(1) model when the unobserved heterogeneity and the lagged dependent variable possibly interact. As shown there, the usual IV estimators that are consistent in the model with only additive hetero— 134 geneity are no longer consistent when the autoregressive coefficient depends on the un- observed heterogeneity. Nevertheless, the conditional maximum likelihood approach does produce consistent estimators ( under a normality assumption and, perhaps, more generally). In the empirical application to a dynamic wage equation, the inter- action between lagged log wage and the unobserved heterogeneity was statistically and practically important. In this chapter we turn to a model where conditional maximum likelihood meth- ods are indispensable: the dynamic logit model with unobserved heterogeneity. The fact that the logit model is nonlinear makes dealing with a lagged dependent variable even much more difficult. than in Chapter 2 and 3. First, with small T, we cannot simply treat the unobserved effects as parameters to estimate. Even without a lagged dependent variable, the incidental parameter problem (Neyman and Scott [ 1948]) caused inconsistent estimation of the parameters. Secondly, as with the linear AR(1) model, the inclusion of lagged dependent variable is very difficult to characterize the- oretically, but the intuition is the same as for the linear model. Plus, for large N, treating the unobserved heterogeneity as parameters to estimate is computationally burdensome. In this chapter I show how to implement conditional maximum likelihood esti- mation, following the general treatment of Wooldridge (2000). As in the previous chapters, this entails modeling the distribution of the unobserved heterogeneity con- ditional on the initial condition and any strictly exogenous variables. Nevertheless, we need not find a steady state distribution for initial condition, and we need not approximate this distribution. An added benefit is that we can consistently estimate the average partial effects - that is, the partial effect averaged across the distribution of the heterogeneity - rather than just the parameter. Thus, while this approach is 135 almost fully parametric, it delivers estimates of interesting quantities that semipara— metric approaches cannot. The plan of this chapter is as follows. Section 2 applies the CMLE to a basic dynamic logit model with unobserved effects. In this section we construct the condi- tional likelihood function to obtain the conditional maximum likelihood estimators. Section 3 we set up Monte Carlo studies to examine the performance of conditional maximum likelihood estimator as N —> 00 with small T. Section 4 investigates em- pirical example of union membership and calculate the average partial effects. Finally, we make some concluding remarks. 4.2 The CMLE for Dynamic Logit Model with Un- observed Heterogeneity 4.2.1 Estimation of Fixed Effects Model I consider the dynamic logit model with unobserved heterogeneity as follows: POM = 113/20: - - - Jim—1,5137, at) E F(yit) E Mpg/4,21 + fit/3 + at) eXP(Pyi,t—1 + 51711.5 + Oi) E 1+€Xp(pyi,t_1+$ut3+atl t=1,...,T;T>2,z=1,...,N, where a,- is an individual-specific effect that may depend on the exogenous explanatory (4.1) variables :17,- E (1,1,...,.T,'t) in an arbitrary way and where yio is the initial value of the response variable. If we assumed F (ya) is a linear function we would have a dynamic linear probability model and we would apply IV methods discussed in Chapter 1 to estimate the parameters. The LPM, however, has inherent defects because the response probability might not be constrained between 0 and 1, and 136 the true response effect is probably not constant. Theoretically, the inability to obtain the consistent estimator of a,- will not rule out the possibility of obtaining a consistent estimator of 6 if equation (4.1) is in the form of static linear-regression model, ya = 56,,6 + a, + 5,,, because the estimation of 6 and a,- are asymptotically independent ( Hsiao [ 1986]). Even more, we can obtain an appropriate transformation to remove the effect of a,- in regressive model provided that we properly interpret the initial conditions. Unfortunately, the same things can not be said for the non—linear case because of the estimation of 6 or p and a,- are not independent of each other. The inconsistency of a,- is transmitted into the estimator 6 or p. For example, as discussed in Chapter 3, when the lagged dependent variable interacts with the unobserved heterogeneity, no transformations immediately suggest themselves to eliminate the effect of unobserved heterogeneity. Just as in the dynamic linear-regression model, the problem of initial conditions for the dynamic logit model with unobserved heterogeneity must be resolved before we can consistently estimate the parameters generating the stochastic process. The effect is very difficult to characterize theoretically, but the intuition is the same as for the linear model. Even for a static logit model, ( p = 0 in (4.1), P(yit = 1]:I:,-,a,-) = A(:1:,t6 + a,), the assumption of non-random unobserved effect, a,, means we need to estimate both 6 and a,- which are unknown parameters. When T tends to infinity, the MLE is consistent. However, as we know, T is usually small for panel data, in which case we have an incidental parameters. Let us illustrate the inconsistency of the MLE for 6 in the static logit model in the following (Hsiao ] 1992]). The log-likelihood function for the static model (4.1) 137 given p = O is log L = — 2 2109.11 + exp(r..6 + 431+ 2 Z 941(176134—04). (4.2) i t i t For simplicity, we assume T = 2, one explanatory variable, with 56,1 =0 and 37,2 = 1. Then the first—derivative equations are 810 L_ exp(6+a,) _ 735’ ‘ 2"] (1+ exp(fi +fl + 6,2] 7 0’ (4'3) BlogL _ 2 __ exp(62‘,” + a.,-) 0 _ ”i _ 221 l 1+ exp(flmu + a.) + 91!] — 01 (4-4) Solving (4.4), we have 04:00 ifyil+y12221 a,- = —oo if yil + M? = 0, (4-5) ‘6 ifyil+y72:1- Inserting (4.5) into (4.3) and letting 71.1 denote the number of individuals with ya + 3142 = 1 and 71.2 denote the number of individuals with ya + 31,2 = 2, we have N exp(6 + 0,) , . _ exp(6/2) 2 (1+ exp(6 + a,-) + 11,2 72 1+ exp (6/2)+ 2:: 31.2 (4.6) Therefore, 6 = 2008(2612 - 62) -108(n4 + 62-)}- By a law of large number A plim 6 = 26, N—ooo which is not consistent because . _1_ N . _ _ L N exp(6 + a,) BEE: 5421:1922 "2) _ N 21:1 (1+ exp(a.))(1+ exp(6 + at», 1 _ N ,f _ 1 N exp(fi + 0.) plim,V (m + 112 2,21%» “ N 22:1 (1+ exp(a,))(1+ exp(t3 + ail), Thus we have incidental-parameter problem in that there is only a limited number of observations to estimate a, ( Neyman and Scott [ 1948]). It is meaningless that any 138 estimation of a,- if we intend to judge the estimators by the large-sample properties (N —> 00). The nonlinear panel data model with individual heterogeneity may be estimated by the semiparametric approach which allows us to make use of the linear structure of the latent variable equations such that the individual-specific unobserved effect can be eliminated by the differencing transformation and the like and hence the lack of knowledge of a,- no longer affects the estimation of parameters of interest ( Manski [ 1987]). Recently, Honoré and Kyriazidou (2000) derive effective moment conditions for the unobserved effects logit model with one-period lagged dependent variable from an objective function that identify the parameters. The interesting advantages of semiparametric approaches is to allow estimation of parameters without specifying distributions for the unobserved effects, although the estimators may not possibly converge at the rate \/N (Hahn [ 1997]). The nature of semiparametric approaches, nevertheless, can not suggest the estimators of partial effects on mean responses. The nonlinear model with unobserved effects might be estimated by a random effect approach. Such an approach requires the specification of the statistical rela- tionship between the observed cmtariates and unobserved permanent individual het- erogeneity. Furthermore, it entail specify the distribution of initial condition if the list of explanatory variables include the lagged dependent variables. The inherent defect is the misspecification of these distributions. We are to use the parametric to solve the dynamic logit model with unobserved effects by specifying the conditional distribution for the unobserved heterogeneity and hence we also incur the question, which misspecification of this distribution generally leads to inconsistent parameter estimates. We, nevertheless, have set. up a simple conditional maximum likelihood estimators and moreover, the quantities of interest in nonlinear case can be obtained 139 based on the assumptions employed, in particular, the partial effects on the mean re- sponse, averaged across the population distribution of the unobserved heterogeneity. 4.2.2 Conditional Maximum Likelihood Estimator First, we construct the conditional likelihood function for the conditional maximum likelihood estimator in dynamic logit model with unobserved effects (4.1), given 6 = 0. Generally, we assume that 5,, is symmetrically distributed about zero, which means that 1- C(—z) = C(z) for all real numbers 2. We make the assumptions as follows: Assumption 4.1 5,, is independent of 5,,,-“ . . . , 5,1, ym, and a,. Assumption 4.2 a,|y,~0 ~ Normal(a0 + 01 y'io,o§). According to Assumption 4.1, the conditional density function is as follows: “yell/6,14, - - - 43110.04) :- Afl) 3113—1 + atly” (1* (\(6 913—1 + Gina—y“), (4-7) where . . _ exp(P yi,t—1 + ail M10 62.14 + a.) _ 1+ exp(P 1113—1 + a1) and hence the density function of T-period observations of cross-section i: T f(yiTa - - -1yi1ly101ai) = HAW yi,t-—l + 0,1)“ (1 — A(p y,,t_1+ a,))“‘y") (4,8) 1:1 To obtain a conditional log-likelihood function for the T-period observations of cross- section i, we specify a distribution for the unobserved effects h.(a,-0]y,-o;o') and then we obtain the likelihood function of T-periods of cross-section i conditioning on yio by equation (4.8) and h(a,0]y,0; a) as follows: 5 (yiTa' ' 'eyiOiO) : 108 f [”1121 A(p yi,t—1 + a)!“ (1 — A(p 1123—1 + 0))(1—y")] h.(a,-]y,-O;a) da, -00 (4.9) 140 where 6 = (p , a). We can solve the conditional maximum likelihood estimator by maximizing the sum of equation (4.9) across i=l,. . ., N with respective to 6. We write the maximizing problem as follows: N mgrx 22:; 6 (MT, . . . ,y,0; 6) (4.10) In the chapter 2, we have discussed the consistency of conditional maximum like- lihood function. Equation (4.9) satisfies the generic form (2.9) and thus satisfies the inequality equation (2.15), Kullback-Leibler information inequality and equation (2.16), this ensures that the true parameters 60 solve the relevant population maxi- mization problem, but they still might not be the unique solutions. For identification, we must assume that the inequality is strict. According to Assumption 4.1 and 4.2, equation (4.10) can be rewritten as follows: 108 f” [1.132. Mp 61.1-1 + aly“ (1 - Mp 9.3—1 + 0))(1— ml ° -.,, (4.11) ( 1 leXP(:Ql(sz;)2)dQ ‘ 2 2600 7 where a,- = 00 + 011/20 + c.- and c, ~ Normal(0, 03,) from Assumption 4.2. It is impossible to reach a formula of closed form for the estimator by directly solving out the first conditions of sum of equation (4.10) across 2' from 1 to N. We need to employ numerical methods. Under Assumption 4.1 and 4.2, the formula for the evaluation of the necessary integral of (4.11) is the Hermite integral formula 2 foo e—Z g(z) d z = 2;, wjg(zj), Where K is the number of evaluation points, 10,- is ‘W the weight given to the jth evaluation point, and g(zj) is g(z) evaluated at the jth point of 7: (Butler and Moffitt [ 1982]). This formula is appropriate to our problem because the normal density h in equation (4.11) contains a term can be expressed ~2 0 n o o o as a form of e-" and the function of 9(2) IS, in our case, the densrty function of T—period observations of cross-section 2'. Without finding a specific distribution for 141 h(ailyio), an integration by Gaussian method might be needed. For simplification of numerical calculation, we always specify a distribution for h(ailyio) to fit for the Hermite integral formula in the simulation. The previous analysis is limited on the time—series observation of cross section, {git}: if”, without the exogenous variables. In most of application, we add other exogenous variables to study the response of the (explanatory variables to the future and further the feedback from the unexpected movements in the outcome variable to future values of the explanatory variables). Some experimental case where the variable will be in the control of a researcher. Honoré and Kyriazidou ( 2000) give a restriction on Ira to identify the parameters. For example, if :1?“ represents some program participation, :13“ = Stat—1 means that the status of participation will not change for successive periods. We consider the model for union membership with unobserved heterogeneity. The key explanatory variables, such as the school year or education diploma, grad- uate or non-graduate, is more or less related to the union membership. A vari- able such as a person’s age can be thought of as strictly exogenous variable if we just study the male youth. Using the general framework of CMLE in Chap- ter 2 under the strict exogeneity, we specify distributions for (yT,...,y1) given (xT, . . .,131, y0)and a,- given ((177,...,:1:], yo) as D(yT,. .. ,ylle,...,:1:1,y0) and H(a|:I:T, . . . ,$1,y0) in respective. The parameterized density function for the distri- butions are f(yT,...,y1|:z:T,...,;1:1,y0,(5) and h.(a,~|a:7~,...,2:1,y0,6) in respective. In practice, E(a,-|;r,~T, . . . $11,350) is assumed to be in a function of (51:17“, . . . , 313,1, 311-0). We assume that E(a,~|:1:.-T, . . . ,:1:,;1,y,:0) = ao+alyio+agfifh where .713,- is a linear combination of (11:11,. .. ,13“),.T 22,471.15“. We assume that 7'; is equal to 1 for t— —— 1,. .,T to decrease the number of identification for parameters. We make assumptions about 142 a“ and a,- as follows: 2 Assumption 4.3] Eitlyi,t_1, . . . ,yio, (13,37, . . . ,$,1,a,- ~ Log'zlt(0, 1%). Assumption 4.4] a,|:ciT,...,:c,-1,y,0 ~ Normal ((10 + 011 yio + x, 02, 03). According to Assumption 4.3 and 4.4, f(yT,...,y1|:z:T,...,:cl,y0,6) is equal to “3:1 A00 yi,t-—1 + flirt/3 + aily“ (1 " A00 Elm—1 + 33115 + (1,)“ — y“). Equation (49) can be rewritten as follows: e(yiTa'Hay‘iOaxiTa'"9$21;6) I 108 / [nirzi MP yut—l + 113:3 + aly“ (1 " MP yi,t-1 + 33116 + a)“ — yidl h(alarn, . . - , Im, yiO; 0) da (4.12) Replacing the above equation into the equation (4.12) and then solve out the maxi— mization of the objection function (4.12). If X,- is not strictly exogenous, we can apply the suggestion of Wooldridge (2000a) as follows. To parameterize g(:ct|Xt_1,zt,a; A0), where 2t is strictly exogenous and build up the joint density of (Yt,Xt) given (ZT,Yt_1,Xt_1,a) and then apply the same procedure as discussed previously to set up a log-likelihood function. We can use the numerical method to solve out the CMLE. 4.3 Simulation Evidence In order to investigate the performance of maximum-likelihood estimators given the initial value, we conducted Monte Carlo studies. We divide this section by two subsection: one is for the model without exogenous variable; the other is for the model with strictly exogenous variable. We use the MLE software of Gauss to do our simulation for the conditional maximum likelihood estimator. As the discussion 143 in previous chapter, the feasible computation of the Hermite integral depends on the number of evaluation points at which the integrand must be evaluated for accurate approximation. Several evaluations of the integral using seven periods of arbitrary values of data and coefficients on two right-hand-side variables shows that the value of K is chosen to be 21 is highly accurate. Although the value of K determines the accuracy of the calculation of integral, we don’t discuss the relation of K and the evaluation of integral as Butter and Moffitt ( 1982) did. K221 is highly accurate for the evaluation of integral (4.12). We repeat the maximization of the model of interest in the following for 500 hundreds. The notations for the simulation are as follows: 1. 6* means the conditional maximum likelihood estimators in each iteration. 2.9:1 5009+ 500 i=1 1' 3. 6 means true value of parameter, where 6:(p, (10, 011,00): (p, 0.2, 0.4, v1.2) in the model Without exogenous variables or 6:(p, ,6, cm, 01, a2, 0a): (p, 0.15, 0.2, 0.4, 0.35, v1.2) in the model with strictly exogenous variables. 4.3.1 The Model. Without Exogenous variables Let the true value of p be 0, 0.25, 0.5, 0.75, 0.9, and 0.95. We calculate the frequency of rejecting the hypothesis of H0 : 6 = 60 to examine the performance of the conditional maximum likelihood estimator. With the same procedure, we focus on the estimator,p by calculating the frequency of rejecting the hypothesis of H0 : p 2 p0 under different true value of p, where p0 is 0, 0.25, 0.5, 0.75, 0.9, and 0.95. The results 144 are reported in Table 4.1 - 4.4. We begin with the true model as follows: 31:} 2 P0 "(Jim—1 + 01+ 5:1. ya = llyf, > 0], (4.13) where a, : 0.2 + 0.4 yio + C). The c,- comes from Normal(0,1.2). According to e5 u Assumption 4.1, the Inverse function of the logistic function, u— — m is Imm). Therefore, we generate the 5a = haul—ft), where 11“ comes from the uniform 1 distribution of [0,1]. The conditional likelihood function (4.11) can be rearranged as follows: T _ 00 , 1 2' _ 1 —l a 1'a 2 10g / H exp(y 1,0) .l/ ,t 1 + all . )e—g—(‘mL‘l da, (414) -00 t=l 1 + exp(p Elm—1 + a.) \/27m?, Let z, to be fifi9 and replace a, with 00 + 01 yio + floaz, into the function (4.14). 00 Therefore the conditional likelihood function of cross section i can be re—written as follows: 00 _ 2 log / [ft TI:I explyit( pyi,—t 1+00+011 y70+\/—2_0az ZN] e—Z dz. (4.15) ‘001(1+epryi,—t1+00+alyi0+fi0az) The integral of function (4.15) can be approximated by the Hermite integral formula: f_oog(2)€ Z d 2 2' Syd-1159(2)). The likelihood functlon of (4.15) can be expressed in the form of Hermite integral formula as follows: 00 2 K log / g(z)e_z dz 2 longjg(zJ-), (4.16) where T exp [MAP Pyi t—l + 0'0 + 011 yiO + fiaazill =f II We maximize the sum of the likelihood function (4.16) away from the constant term 1+eXP(Pyi,—t1+Olo+011yi0+\/§Uazz‘) across 2' from 1 to N to obtain the estimators as follows: T exp [Ll/MP yi,t—1 + 010 + 01 MD + fiaazijll N K max 2 log 2 wj H i=1 j=1 t=1 l-l- exp(p yi,t—1 ‘l‘ 0'0 + 0'1 yio + fiUaZij) (4.17) 145 In the simulation, we set the number of evaluation point, K to be 21. We examine the assumption about the conditional a): normality and non-normality. The result of Table 4.1 and 4.5 is under the normality assumption of a,, while Table 4.3 and 4.7 is under the non—normality. We assume the t-distribution with freedom 10 to explain the non-normality assumption on a... Table 4.1 reports the CMLE estimates for the data generated from the true model. We repeat 500 times for the same procedure of maximizing the objective function (4.17) to obtain the CMLE estimates. To examine the power test for the CMLE estimators, with 500 repetitions, we calculate how many times the hypothesis of H0 : 6 : 60 will be rejected under a certain power value, 0.1, 0.05, 0.10 respectively. For example, in the second column of Table 4.1, the number of bracket is the average value of 500 estimates, p“; the valuas of the second to fourth row represent the p-value 0.004, 0.046, and 0.09 under the power 0.01, 0.05, 0.1 in respective when true value of p is zero. According to the result of the simulation, the CMLE estimators perform well. Similar to the linear case in Chapter 2, the value of p is likely to be rejected when the true value of p is getting further away from zero. The response probability of interest is mainly related to the p, so we construct another Table 4.2— ( i ) - ( vi ) to examine the hypothesis H0 : p : p0, where p0 is 0, 0.25, 0.5, 0.75, 0.9, and 0.95 under the different true value of p, 0, 0.25, 0.5, 0.75, 0.9, 0.95. For example, when the true value of p = 0.25 and p020.6, the p-value is 0.2620 in Table 4.2— (iii) under the level of p-value, 0.01. Table 4.2- ( vi ), the true value of p = 0.9 and the p = 0.55, the p-value is 0.24 under the same level of p-value. This numerical evidence shows that the estimates away from the true value is more likely to be rejected when the true value of p is getting closer to zero. When we decrease the tolerance of confidence to 0.05 or 0.1, there is no crucial difference of p-value 146 whatever the true value of p is. 4.3.2 The Model With Exogenous Variables We put an end to the simulation with including an exogenous variable 131-t. We still hold the strict exogeneity assumption. From the likelihood function (4.12), we construct the log liklihood function as follows: oo _ 2 log/ [f TEGXPlyit( Pit/zy—t 1+ xit3+fla+fi0az le]e—z dz. (4.18) ‘00 1(1—exppyi,t—l+zit/3+Ha'l'f0'a where pa = a0 + a1 yio + 5,02. We maximize the sum of the objective function (4.18) away from the constant term across i=1.. . ., N as follows: T exp [yit(p yi,—t l + mitt/5 + l-La + $0.021)” maleog ij H1 i=1 —exp(p yl,t—1 + $268 + “a + faazij) (4.19) According to Assumption 4.3 and 4.4, we generate the 5,1 and c, as the former model do. We report the results in Table 4.5 - 4.8. Because we assume that 51:“ is strictly exogenous, it doesn’t matter form which logic distribution :rz-t generates. We assume the :13“ is continuous variable coming from the standard normal distribution. Table 4.6 shows that except the 6 the other estimates have the similar property of the former model. In Table 4.6, 6 is not significantly different from zero. Under the power 001,005 and 0.10, the hypothesis of H0 : 6 = 0 can not be significantly rejected when the true value of 6 is 0.15. We calculated its relevant p-values of the test are 0.006, 0.036 and 0.09 under the power 0.01, 0.05, and 0.1 in respective. It might be the fact that we assume the conditional mean of unobserved effects a,- = 00 + al yio + (12 25,-, where the Ti: 71-. Zia-117%- The 02 dominates the effect of :13“ and accounts for most of its effect. This can be explained by the fact that the hatag is 0.523 while the true 147 value of (12 is 0.35. We calculate the p-values of H0 : 0’2 2 0 are 0.3640, 0.6180 and 0.7640 under the power 0.01, 0.05, 0.1, in respective. That is we must pay much attention on the specification of h(a.,-|a:,:T, . . . ,x,1,y,~0). 4.4 Empirical Example Statistical models developed for analyzing cross-sectional data essentially ignore individual differences and treat the aggregate of the individual effect and the omitted- variable effect as an incidental event. In this section we use the data from Vella and Verbeek (1998) to study the status of labor union membership. Such a Panel data make it possible, through the knowledge of the intertemporal dynamics of a worker who joins the labor union, to separate a model of individual behavior from a model of average behavior of a group of individuals. In particular, we might assume that the heterogeneity across cross-sectional units is time-invariant, and these individual- specific effects are captured by decomposing the error as a,- + 5,1. We always treat a,- as random to prevent the problem of incidental parameters. And the application of conditional maximum likelihood estimation into the model make it possible to do without restrictions on unximzio. The existence of such unobserved time-invariant components allows individuals who are homogenous in terms of their observed characteristics to be heterogenous in response probabilities, F (3m)- For example, heterogeneity implies that the sequential- participation behavior of a worker, F(union¢1), Within a group of observationally homogenous worker differs systematically from the average behavior of the group, f F (union.,~t)d H (alunionio), H(a|1mion,~0) gives the population probability for a con- ditional the initial status of labor-union membership. We use the data from Vella and Verbeek (1998) to study the conditional maximum 148 likelihood estimator in estimating dynamic logit model using observations draw from a time series of cross sections. These data are for young males taken from the National Longitudinal Survey (Youth Sample) for the period 1980-87. We estimate a dynamic model for labor union status. Each of the 545 men in the sample worked in every year from 1980 through 1987. When a worker is a member of a labor union we set the status variable is one; when a worker is not a member of a labor union the status variable is zero. We examine the response probability of dependent variable, union membership over time series of cross section. For example, how do union membership of the past affect the probability of keeping the labor union membership at present, the amount of state dependence. We express the corresponding latent variable model as that union}, 2 p unionmq + a,- +c,- and we set up a logit model under Assumption 4.1 and 4.2 as follows: P(un'ion,-t : llun'ioni,t_1, . . . ,unionio, ai) = P(€,-t > —(p unionigpl + a,)|union,-,t_1, . . .,um'on,—o,a,-) (4.20) = 1 - A(-—(p unionthl + a,)) : A(p unionmq + a,), 1 , union; > 0 where union“ : 0 , otherwise. From equation (4.20), the partial effect of unionthl on the response probability is (A(p + a2) — A(a,)). Therefore, the conditional partial effect of union,,t_1_ on the response probability depends on the unxiomhl through the quantity g(p unionmn + a,), meaning the difference of A(p uniomhl + a1) with respective to mation,-$4, A(p + a.) — A(ai). In Table 4.9, through the CMLE the estimates of p, 00, and 01 are 1.4923, ~3.2775, and 2.669. These estimates are significantly different from zero. The estimated mean of unobserved heterogeneity a,- is (—3.2775 + 2.669 - uniomo). 149 d,=E(a,-|union,0) is greater than -3.2775 and less than -0.6085. That is , empirically, the individual unobserved heterogeneity of a worker tends to decrease the probability of keeping union membership, so the quantifying unobserved heterogeneity have negative effect on the response probability of union membership when we quantify the unobserved l'ieterogeneity. The significant amount of unob- served effects means that previous membership of labor union appears to be a deter- minant of future membership mostly because it is a proxy for temporally persistent unobservables that determines the choice. If there is no other exogenous explanatory variable, the result shows that the effect of temporally persistent unobservables that determines joining the labor union or not is significant. In other words, a worker participate in the union not just because he used to be a membership of the union; on the contrary, he might join the union in accordance with his own preference or some thing like the unobserved individual specific per- sistent heterogeneity. The result is consistent to the empirical result of Chapter 2, which the union membership accounts for not much of the wage rate. The estimated response of the current union membership into the probability of keeping union mem— bership in the future is measure by (A(p — 0.6085) — A(—0.6085)) instead of p when unionio = 1. The estimated state dependence for a person with average of a,- is mea- sured by the value of (A(1.49+[1,a) - A(fl.a)), equal to 0.1793, where E(Aa,-) = ao+al yo, and yo = 54% 2:?) 31,0. Replacing [1.0 with the lower and upper bounds: 62, -3.278 and E, -0.609, the range of state dependence effects is the interval of [~0.6665,-0.1088]. The upper bound is A(1.49 +170) — ME) and the lower bound A(1.49 +112) — ME). The average partial effect of response probability is of primary interest, we calcu- late the average partial effect of model (4.20). Since the unobserved heterogeneity has rarely, if ever, natural measurements, it is unclear what value we need to plug in for 150 a. A suggested solution into it is a0 = E ((1,) = (10 +01 yo. Under Assumption 4.2, the distribution of a0 is Normal(o'0 + on yo, 03) and thus its relevant density function is f(aol = «22—00 exp(—1/2(a0 _ ((183: (11 yo) )2). The estimated average partial effect. of response probability with respective to mean of heterogeneity across i is calculated by the following: / [Am + a1— A1f= 0 0.05 0.1 0.15 0.2 0.25 p 0.01 0.5833 0.4467 0.3300 0.2167 0.1433 0.0767 0.05 0.8267 0.6967 0.6033 0.4867 0.3433 0.2367 0.5 0.10 0.8967 0.8333 0.7133 0.6167 0.4967 0.3633 P\ (’94— 0.3 0.35 0.4 0.45 0.5 0.55 p 0.01 0.0400 0.0233 0.0067 0.0067 0.0033 0.0100 0.05 0.1500 0.0867 0.0467 0.0367 0.0333 0.0367 0.5 0.10 0.2433 0.1567 0.1033 0.0733 0.0633 0.0767 P\ p94: 0.60 0.65 0.70 0.75 0.80 0.85 p 0.01 0.0167 0.0267 0.0467 0.0800 0.1567 0.2467 0.05 0.0567 0.1000 0.1700 0.2767 0.4033 0.5233 0.5 0.10 0.1033 0.1800 0.2900 0.4167 0.5467 0.6833 P\ ’00—): 0.90 0.95 1.00 p 0.01 0.3833 0.5100 0.6367 0.05 0.6600 0.7700 0.8533 0.5 0.10 0.7800 0.8600 0.9167 Repetitions=300, 9: 3—0—0 :33", 9;, ,/_2 2 1.0954 (ii) 163 9 = (p,0.15,0.2,0.4,0.35,\/1._2) 90 = (P0,0.15,0.2,0.4,0.35, J17) P\p" 0 0.05 0.1 0.15 0.2 0.25 p 0.01 0.9867 0.9767 0.9467 0.9167 0.8667 0.8233 0.05 0.9967 0.9933 0.9900 0.9800 0.9567 0.9267 0.9 0.10 0.9967 0.9967 0.9933 0.9900 0.9800 0.9700 P\ ”L 0.3 0.35 0.4 0.45 0.5 0.55 p 0.01 0.7533 0.6400 0.5267 0.4033 0.3067 0.2100 0.05 0.8733 0.8533 0.7733 0.6800 0.5600 0.4533 0.9 0.10 0.9333 0.8900 0.8600 0.7967 0.6967 0.5833 P\pEL. 0.6 0.65 0.7 0.75 0.8 0.85 p 0.01 0.1300 0.0767 0.0267 0.0133 0.0033 0.0067 0.05 0.3167 0.2333 0.1500 0.0967 0.0467 0.0300 0.9 0.10 0.4833 0.3467 0.2700 0.1767 0.1067 0.0700 P\ p94 0.9 0.95 1 p 0.01 0.0067 0.0067 0.0133 0.05 0.0233 0.0433 0.0833 0.9 0.10 0.0633 0.0967 0.1300 Repetitions=300, 6: 3——00 233016;, \/_—2_ 2 1.0954 (iii) 164 6 = (p, 0.15, 0.2, 0.4, 0.35, «1.25) 90 = (p0,0.15, 02,04,035, 61.25) P\ (’95 0 0.05 0.1 0.15 0.2 0.25 p 0.01 0.5533 0.4500 0.3533 0.2667 0.1767 0.1100 0.05 0.7533 0.6567 0.5700 0.4800 0.3733 0.2867 0.5 0.10 0.8467 0.7600 0.6600 0.5800 0.4967 0.3833 P\ (’05 0.3 0.35 0.4 0.45 0.5 0.55 p 0.01 0.0533 0.0267 0.0133 0.0067 0.0033 0.0033 0.05 0.1900 0.1167 0.0633 0.0300 0.0333 0.0533 0.5 0.10 0.2933 0.2000 0.1300 0.0933 0.0833 0.1167 P\ ”L: 0.60 0.65 0.70 0.75 0.80 0.85 p 0.01 0.0100 0.0367 0.0767 0.1367 0.2267 0.3233 0.05 0.0867 0.1500 0.2467 0.3367 0.4233 0.5333 0.5 0.10 0.1667 0.2500 0.3567 0.4433 0.5400 0.6600 P\ ”of 0.90 0.95 1.00 p 0.01 0.4067 0.5233 0.6133 0.05 0.6367 0.7100 0.8133 0.5 0.10 0.7233 0.8267 0.8993 Repetitions=300, 6 = 55-5 23:01 6;, x/T2—5 2 1.1180 (ii) 165 6 = (5,015,020.41, 0.35, 61.25) 90 = (p0,0.15,0.2,0.4,0.35, 61.25) 0 0.05 0.1 0.15 0.2 0.25 p 0.01 0.9933 0.9867 0.9767 0.9333 0.8733 0.7867 0.05 1.0000 1.0000 0.9967 0.9933 0.9800 0.9467 0.9 0.10 1.0000 1.0000 1.0000 0.9967 0.9933 0.9867 P\p°—> 0.3 0.35 0.4 0.45 0.5 0.55 p 0.01 0.7067 0.6100 0.5233 0.4033 0.2933 0.2133 0.05 0.8900 0.8233 0.7200 0.6500 0.5667 0.4467 0.9 0.10 0.9500 0.9067 0.8300 0.7333 0.6633 0.5733 P\pO—T 0.6 0.65 0.7 0.75 0.8 0.85 p 0.01 0.1433 0.0900 0.0600 0.0367 0.0200 0.0067 0.05 0.3500 0.2433 0.1600 0.1033 0.0733 0.0433 0.9 0.10 0.4633 0.3600 0.2567 0.1733 0.1167 0.0900 P\ p” 0.9 0.95 1 p 0.01 0.0067 0.0000 0.0067 0.05 0.0267 0.0267 0.0533 0.9 0.10 0.0667 0.0900 0.1467 Repetitions=300, 6 = $5 23:01 6;, m 2 1.1180 (iii) 166 Table 4.1: Model a ::H0 6— — 60, where p =0 ~ 0.95 = (p. 0.2, 0.4, v1.2) 90 = (,20,0.2,0.4, 61.2) .. 6 do 021 6a W) ( 1.2 x 10-3) (0.1998) (0.4053) ( 1.0933) (’0 0.01 0.0040 0.0080 0.0120 0.0040 0.05 0.0460 0.0260 0.0460 0.0540 0.00 0.10 0.0900 0.0600 0.1060 0.1020 P\6 (0.2453) (0.2036) (0.4049) ( 1.0916) p0 0.01 0.0080 0.0080 0.0080 0.0140 0.05 0.0440 0.0400 0.0560 0.0420 0.25 0.10 0.0880 0.0760 0.1120 0.0840 P\6 (0.4918) (0.2068) (0.4046) (1.0925) p0 0.01 0.0080 0.0120 0.0120 0.0100 0.05 0.0480 0.0400 0.0460 0.0520 0.5 0.10 0.0880 0.0820 0.1040 0.1060 P\6 (0.7442 ) (0.2073 ) (0.4067) ( 1.0937) p0 0.01 0.0100 0.0120 0.0140 0.0040 0.05 0.0420 0.0380 0.0440 0.0520 0.75 0.10 0.0820 0.0900 0.1220 0.1060 P\9 ( 0.8915) ( 0.2087) (0.4097) ( 1.0967) p0 0.01 0.0100 0.0100 0.0120 0.0020 0.05 0.0540 0.0480 0.0600 0.5500 0.9 0.10 0.0960 0.0980 0.1060 0.8500 P\6 (0.9413) (0.2093) (0.4096) ( 1.0986) p0 0.01 0.0100 0.0200 0.0100 0.0100 0.05 0.0600 0.0600 0.0800 0.0300 0.95 0.10 0.0900 0.0800 0.1700 0.0800 . . ‘ 500 .. Repetltions=500, 6— 50—0 2']; 1 62" \/1.2 2 1.0954 167 Table 4.2: Model a: H0 : p = p0, where p =0 ~ 0.95 9 = (p, 0.2, 0.4, \/1.2) 90 = (p0, 0.2, 0.4, \/1.2) P\p‘L. 0 0.05 0.1 0.15 0.2 0.25 0.01 0.0040 0.0100 0.0200 0.0380 0.0680 0.1160 0.05 0.0460 0.0460 0.0720 0.1180 0.1800 0.2760 0.10 0.0900 0.1020 0.1240 0.2040 0.2860 0.4200 P\ (’94 0.30 0.35 0.40 0.45 0.50 0.55 0.01 0.1740 0.2720 0.4040 0.4920 0.6630 0.7600 0.05 0.4120 0.5000 0.6540 0.7680 0.8560 0.9220 0.10 0.5060 0.6460 0.7760 0.8860 0.9260 0.9480 P\ ’00—. 0.60 0.65 0.70 0.75 0.80 0.85 0.01 0.8580 0.9160 0.9480 0.9740 0.9940 0.9980 0.05 0.9480 0.9740 0.9940 0.9880 1.0000 1.0000 0.10 0.9740 0.9940 1.0000 1.0000 1.0000 1.0000 P\ ’00—? 0.90 0.95 1.000 0.01 1.0000 1.0000 1.0000 0.05 1.0000 1.0000 1.0000 0.10 1.0000 1.0000 1.0000 Repetitions=500, 6 = 566 2:30:01 6;, \/1.2 2 1.0954 (1) 168 Table 4.3: Model b 2H0 : 6 = 60, where p =0 ~ 0.95 = (p,0.2, 0.4, 61.25) 00 2 (p0, (12,114, V 1.25) 6 P\é la —3 do 021 a}, P0 ( —6.5 x 10 ) ( 0.2253 ) ( 0.3803 ) ( 1.0699) 0.01 0.0040 0.0060 0.0120 0.0200 0.05 0.0400 0.0440 0.0460 0.0760 0.00 0.10 0.0980 0.0960 0.0940 0.1540 P\6 (0.2392) (0.2253) (0.3878) (1.0733) p0 0.01 0.0000 0.0080 0.0120 0.0200 0.05 0.0280 0.0400 0.0480 0.0800 0.25 0.10 0.0720 0.0800 0.0780 0.1280 P\6 (0.4894) (0.2284) (0.3872) (1.0741) p0 0.01 0.0040 0.0080 0.0140 0.0180 0.05 0.0400 0.0340 0.0480 0.0740 0.5 0.10 0.0700 0.0880 0.0860 0.1400 P\6 (0.7357) (0.2326) (0.3874) (1.0778) p0 0.01 0.0060 0.0080 0.0100 0.0180 0.05 0.0400 0.0420 0.0520 0.0660 0.75 0.10 0.0760 0.0900 0.0940 0.1220 P\6 (0.8900) (0.2304) (0.3872) (1.0770) p0 0.01 0.0100 0.0100 0.0060 0.0200 0.05 0.0340 0.0420 0.0460 0.0780 0.9 0.10 0.0760 0.0920 0.0900 0.1200 P\6 (0.9379) (0.2322) (0.3905) (1.0794) p0 0.01 0.0100 0.0080 0.0040 0.0160 0.05 0.0400 0.0440 0.0480 0.0820 0.95 0.10 0.0700 0.0900 0.0940 0.1220 Repetitions=500, 6 = 35—0 2500 6"? \/1.25 2 1.1180 169 7:1 a? Table 4.4: Model b: Ho : p = p0, where p =0 ~ 0.95 9 = (p, 0.2, 0.4, 61.25) 90 = (p0,0.2,0.4, 61.25) P\pQJ‘ 0 0.05 0.1 0.15 0.2 0.25 0.01 0.0040 0.0080 0.0160 0.0440 0.0820 0.1260 0.05 0.0400 0.0620 0.0880 0.1340 0.2200 0.3200 0.10 0.0980 0.1180 0.1520 0.2340 0.3220 0.4680 P\ ()9: 0.30 0.35 0.40 0.45 0.50 0.55 0.01 0.2140 0.3100 0.4480 0.5340 0.6380 0.7420 0.05 0.4640 0.5440 0.6520 0.7520 0.8460 0.9040 0.10 0.5520 0.6720 0.7640 0.8520 0.9100 0.9540 P\ ("LT 0.60 0.65 0.70 0.75 0.80 0.85 0.01 0.8360 0.8980 0.9520 0.9700 0.9920 0.9960 0.05 0.9540 0.9720 0.9920 0.9960 1.0000 1.0000 0.10 0.9720 0.9920 0.9960 1.0000 1.0000 1.0000 P\ (JO—f 0.90 0.95 1.000 0.01 1.0000 1.0000 1.0000 0.05 1.0000 1.0000 1.0000 0.10 1.0000 1.0000 1.0000 Repetitions=500, 9 = 5150 230:”, 9;, «1.25 2 1.1180 i 170 Table 4.5: Model c :Ho : 6 = 60, where p =0 ~ 0.9 9 = (p, 0.15, 0.2, 0.4, 0.35, \/1.2) 90 = (p0, 0.15, 0.2, 0.4, 0.35, «1.2) P\‘9 P B 020 d1 692 5a P0 (-0.0108) (0.1449) (0.2085) (0.4093) (0.3741) (1.0886) 0.01 0.0000 0.0000 0.0100 0.0233 0.0100 0.0067 0.05 0.0267 0.0667 0.0367 0.0633 0.0600 0.0200 0.00 0.10 0.0900 0.0833 0.0867 0.1267 0.1200 0.0567 P\6 (0.4884) (0.1466) (0.2086) (0.4140) (0.3717) (1.0876) p0 0.01 0.0033 0.0100 0.0100 0.0133 0.0133 0.0033 0.05 0.0333 0.0300 0.0400 0.0700 0.0600 0.0333 0.5 0.10 0.0633 0.0833 0.0733 0.1300 0.1133 0.0600 P\6 (0.8901) (0.1471) (0.2129) (0.4141) (0.3670) (0.10910) p0 0.01 0.0067 0.0067 0.0100 0.0200 0.0167 0.0033 0.05 0.0233 0.0500 0.0433 0.0767 0.0433 0.0333 0.9 0.10 0.0633 0.0833 0.0900 0.1167 0.1000 0.0067 Repetitions=300, 6 = 5% 231016;, N 2 1.0954 0,- : Normal 171 Table 4.6: Model (:2 H0 : p 2 p0, where p =0 ~ 0.9 0 = (p, 0.15, 0.2, 0.4, 0.35, «1.2) 60 = (p0,0.15,0.2,0.4,0.35,\/1.2) P0 P\ —» 0 0.05 0.1 0.15 0.2 0.25 0.01 0.0000 0.0067 0.0100 0.0400 0.0567 0.1067 0.05 0.0267 0.0433 0.0633 0.1200 0.1900 0.2933 0.10 0.0900 0.0933 0.1400 0.1933 0.3033 0.4500 P\ p21 0.30 0.35 0.40 0.45 0.50 0.55 0.01 0.1900 0.2700 0.4167 0.5533 0.6767 0.7967 0.05 0.4333 0.5833 0.7000 0.8067 0.8600 0.9100 0.10 0.5933 0.7033 0.8100 0.8667 0.9100 0.9533 P\ ”L 0.60 0.65 0.70 0.75 0.80 0.85 0.01 0.0.8600 0.9000 0.9500 0.9767 0.9933 0.9967 0.05 0.9533 0.9767 0.9967 0.9967 1.0000 1.0000 0.10 0.9833 0.9967 1.0000 1.0000 1.0000 1.0000 P\ pi, 0.90 0.95 1.000 0.01 1.0000 1.0000 1.0000 0.05 1.0000 1.0000 1.0000 0.10 1.0000 1.0000 1.0000 Repetitions=300, 0 = 37116 23:01 0;, v1.2 2 1.0954 a,- : Normal 0) 172 Table 4.7: Model d 2H0 : 6 = 60, where ,0 =0 ~ 0.9 6 = (p, 0.15, 0.2, 0.4, 0.35, \/1.25) 00 = (p0,0.15,0.2,0.4,0.35, \/1.25) P\6 A 8 P do 021 022 dc P0 (0.0075) (0.1454) (0.2225) (0.3845) (0.3777) (1.0678) 0.01 0.0000 0.0000 0.0033 0.0067 0.0067 0.0167 0.05 0.0267 0.0700 0.0433 0.0500 0.0400 0.0700 0.00 0.10 0.0767 0.1133 0.0867 0.0967 0.0967 0.1433 P\6 (0.4837) (0.1425) (0.2275) (0.3909) (0.3871) (1.0790) p0 0.01 0.0033 0.0533 0.0333 0.0500 0.0333 0.0533 0.05 0.0333 0.0533 0.0333 0.0500 0.0333 0.0533 0.5 0.10 0.0833 0.1233 0.0733 0.0933 0.0967 0.1067 P\6 (0.8909) (0.1441) (0.2307) (0.3825) (0.3779) (1.0789) p0 0.01 0.0067 0.0200 0.0033 0.0233 0.0033 0.0133 0.05 0.0267 0.0667 0.0267 0.0433 0.0367 0.0433 0.9 0.10 0.0067 0.1167 0.0767 0.1033 0.0700 0.0900 Repetitionsz300, 6 = 3170 23:01 6;, v1.25 9: 1.1180 a,- : N on-normal 173 Table 4.8: Model (1: H0 : p : p0, where p :0 ~ 0.9 6 = (p,0.15,0.2,0.4,0.35, «1.25) 00 : (p0,0.l5,0.2,0.4,0.35, 1/125) P\pO—T 0 0.05 0.1 0.15 0.2 0.25 0.01 0.0000 0.0133 0.0167 0.0333 0.0667 0.1167 0.05 0.0267 0.0400 0.0767 0.1333 0.2100 0.3267 0.10 0.0767 0.0900 0.1400 0.2200 0.3400 0.4600 P\ (’05 0.30 0.35 0.40 0.45 0.50 0.55 0.01 0.2000 0.3033 0.4367 0.5233 0.6500 0.7600 0.05 0.4567 0.5400 0.6600 0.7667 0.8700 0.9100 0.10 0.5433 0.6667 0.7767 0.8733 0.9133 0.9600 P\ 60—»: 0.60 0.65 0.70 0.75 0.80 0.85 0.01 0.8600 0.9100 0.9467 0.9833 0.9933 0.9967 0.05 0.9467 0.9867 0.9933 0.9967 1.0000 1.0000 0.10 0.9867 0.9983 0.9967 1.0000 1.0000 1.0000 P\p‘f 0.90 0.95 1.000 0.01 1.0000 1.0000 1.0000 0.05 1.0000 1.0000 1.0000 0.10 1.0000 1.0000 1.0000 Repetitions=300, 6 = 3% 23:01 63-“, \/ 1.25 c: 1.180 ai : Non-normal (i) Table 4.9: Empirical Evidence for Labor Union Membership, Period21980 ~ 1987 coefficient. p“ do 021 60 CMLE 1.4923 -3.27750 2.6690 1.9997 t-statistics (9.498) (18.942) (8.993) (12.036) 174 Appendix A Conditional mean and variance The appendix A is to slove the E(y,-|y,—0)Tx1 and Var(y,~|y,-0)TxT of (2.19). The regression equation (2. 1) can be rewritten in terms of yio and the errors as ya = pt 920+ —11—:_—%ta,- + 23:1,,0’” Ei,t—j+1- According to assumptions on a“ and a,- in Chapter 2, we have E(az~|yio) = 0'0 + ail/1‘0 and hence E(yuly¢0) = Pt 920 + lI:_:Epi(01 + 10910) for t=1,. . .,T. We can write the expectation of T observaitons on individual 2' conditional on ym as follows: E(yily10): (00 +(01+P)yz‘0 ll;_l%tC¥0 +(‘11;_'%t01+/0t)yio )Txl, wheret=1,...,T. V 90/20) E Var(y,|y,~0) :- E ((3/2' — E(yz~ly.~o))(y4 — E(yilyi0)),lyi0) = E(y.y£ly.-o) — E(yilyiO)E(yilyiO), 0211 . . . 021T ail/1'0) = 5 3 9 can . . . 0277 Where wtt = E(yz'21lyz'0) “' E(yuly10)2 and (Us: = E(yisyitlyi0) _ E(yislyiO)E(yitly70)' To obtain all the elements of the covariance matrix, we need to solve the E (yfilyio) and 175 E(y,-s'y,t|y,:0) for t, s = 1,. . .,T. We write the results as follows: 1_ t 4) _ 2t a)“ : (‘1—%)2 0; +(11—_'%T)052,t:1,...,T, 0),, = (11 _ppll '11:)03+p"‘3l(11——_%2;) 5,37éts t———1,. .,T. Because E6360) 2 E((Pt 3110 + 211E465}, + 23:1:pj_1€i,t—j+1)2|yio) = p843 + <%;_%)22 + E)+ E((Z;=1pj’15,,t_j+1)2|y,0) : .0 2ty10+(lr_—%)2 ((00+011yz‘.)02 +05) )+—£T(E(5221lyio)) t 1— 1— : ,or“’t3,/,20+(-I—'%)2((C10+O‘1’yz‘0)2 +0 9+ m0?) 1— p E(yitly10)2 = (P 3110 + of:%( 00 + 01y10)) E(yz'2tlyi0) — E(yitly10)2 1_ t 1__ 2t : PgtJl‘Qo + 01—} p)2((010 + 0'1910)2 + 03) + —'0—71 _ p 03— t P2t3/120 — (11::%)2((a0 + 019402) = <%;_%’>202 + (Lg/£903. By similar manipulation, we can express the E(y,~)y,~3|y,0) - E(y,~t|y,-0)E(y,-s|yio) in terms of parameters p, 03 0E ,and time period t and s as (11:!) 1 — ’0 )0: + 2 p T-p _3 1— S P" '(1—_'%r)03- If the model includes the exogenous variable 23,-) for t = 1, . . ., T, the conditional mean will be E(yily10,~$1) : ‘11—:%C10 + (flag + p)y,-O + 23:1P’_1$i,t—j+1,3 , where Txl t = 1, . . . ,T. It, however, can be easily shown that Var(y,t|y,-0, 110,-) of (2.32) in which :13,- is assumed to be strictly exogenous, is the same as that of the basic model without 176 no other regressors beyond y,,t_1. The illustration is in the following. E(yz‘2tly1'0~:ri) Z E((Pt 3140 + 1: ptaz' + ZE=1_Pj"](1Ti,t—j+11’3 + 51‘,t—j+1))2lyiOa 513:) = 623/30 +(‘11'::pp—t)2(E(ailyiOa$i)2 + E(C?lyio, 5174)) + 2(p‘y,0 + lf::%t(13((12'l’312'0, SENSE-=1 PF] E(5Ei,t—j+1)/’3)) + 51(2):) PF] (Ii,t—j+118 + 57,t—j+1))2ly20~ 332'.) = thyEO + (1113;7th + (113/2'0 + 002713—21)2 + 0721)+ ll:_—’%2;(E(5221lyio, 5134)) + 2(ptyz'0 + lI;_'%t((0‘0 + 01940 + (12354)(Z;=1Pj—1E(~’172',t—j+1)/3)) + (23:1/fl_1E($1,t—j+1)73)2 = pz‘yi) + $392040 + my... + a)? + 03) + 1,33%: + 2(Ptyz‘0 + 17%p;t((010 + 01920 + aZEiXZEEA pH E($¢"t—j+1),3)) + (23:1pj—1E($i,t—j+l)fi)2' E(yalyio, 372V 2 (Ptyio + $601026 + 0111/20 + 0252‘) + (23:1Pj_1E($i,t—j+1)3))2 = p248 + (‘11—:‘%t)2((00 + 01910 + mm 2(Pty10 + 1r—:%‘((ao + Oil/2:0 + QQEingzl [Oi—1 E($i,t-j+1)3)) + (2321.07;1 E(5Fi,t—j+1.)3)2- Therefore, E(y?tly,-0,2:,-) — E(y,t|y,0,:r,-)2 is equal to (£65202 + (flit-)0? 1 - p BY similar manipulation, E(yityisly107Xi,max[t,s]) ' E(yitlyiOaXit)E(yislyiOaXis) is 938- s t 2.9 ily proved to be equal to (11:pp 11:1?) )0: + p|‘*3|(11—:£p7)0€2. For model (3.1) or (3.7), the conditional mean can be derived in the way similar to the previous. Similarly, we assume that Gill/2'0 N N ormal(a0 + 0130,03), Emlyn (1,- ~ Normal(0, 052). 177 We can write the expectation of T observaitons on individual 2' conditional on yw as follows: 1_5t E(yilyi0):(a + a +6 , .. a +( a +6f) , ..) ,where 0 (1 )yo 11—_—5: 0 —5‘ 1 )yo TX] t=1,...,T and 6,- E p+7(ao +0131“) +c,). Q(Ll/2'0) E vaT(y-z'lyz'0) = E ((91 - E(yily1‘0))(yi - E(yilyi0))’ly10) = E(yiyilyi0) - E(yily10)E(yilyi0)l (4)7“) . .. LUTT where em = E(yi|yio) - 436.1100)? and wst = E(y.~syu|y.o) — E(yislyiO)E(yitlyiO)- The elements of Q(y,0) are as follows: 1 .3 _ ¥ _8 _ . cast: (1_6:1_5:)0'g+61t Wiggly—>052, SaétHS‘, t: ,...,T. Because _ 5? ‘._ 43031.48) = Em: yio + lfiga + 23:54: ‘e.,._.-+1)2|y.o) 1 — 6. Z 521,110+ +(T—__5:)2(E(ailyi0)2 + 5((1'?lyz'0))+ E((Zj_161j 15”— j+1)2ly:0) 6t2 62t = 63‘9 930+(fig) ((00+alyio)+03)+—17(E( $096)) 1- 5? 11—65t2 : 612ty220 +(1—:3:T)2((010 + 011910)2+ 0a)+ 3:42702 as 1— 6i E(yitlyi0)2 = (5:910 + —_——5:(00 + 0413110))2 1 — 6- 62t9120++(T:3:)2((00 + 0‘1940)2)a 178 E(yi2tly2'0) " E(yulyz‘0)2 . 1—0. 1—62t = 6,2‘y30 + (j _ .)2((010 + (1'1y70)2+ 0a)+ —7203 “ 52ty 20 — (“—592 ((00 +Oly10)2) —06’ 1—- 62‘ We can express the E(yztyisly70) ' E(yitly10) E(yisly70) in terms 0f parameters, ,0, 03, __ s __ 23 0,2, and time period t and s as (11 _g'; i_ (203) + 6,“ S[(1—_—(:512r)0§. I If the model includes the exogenous variable (13,-, for t = 1, ..., T, we replace the assumptions on a,- and 5,, with .. . , , — 2 (It'll/10,551 N Normauao + 01310 + Xi (12:03), Eitlyi, 0, ~ Normal(0, 052). The conditional mean will be E(yily10, 5132') 1—6‘ 1— = —1—__—5:00 +( (4—5L01 + 6) )y,-0 + 2,- 153 1il?z',t—j+1,8 ’ Txl where 6,- E p+'y(ao+o'1y,~0 +53, +q) and t = 1,...,T. Var(y,)|y,0, 23,-) is different from that of the basic model without no other regressors beyond y,,t_1. The illustration is in the following. E(y?tlyi0, 332') = E((5f 910 + 9,3357% + 23:16{_1(x1,t~j+16 + €4,t—j+1))2ly10,$1) = 632730 + <1—:%§>23>2 I 1— 6t _ 62t2 = 6f‘y30 + (fimao + my“) + xi>+ 610+ —so§+ 2(6fym + i_}§§((00 + alyio + 02:13,)(Zj_16f 1E($i,t_j+1))8)) + (z; ,5; ‘E(x,,,_,+l);3)2. E(yitlyiOs 5131:)? = (53110 + gig-R00 + alyiO + 0272') +(23:153—1E($i,t-1+1)fl3))2 —6,2‘y—,20+(11—j§’:7)2((oo + (113/,0 + 012.1“ )2)+ 2(5f’yz’0 + 1%«0‘0 + (113/,0 + 0252-)(2321 56H1Ef$i,t—j+1).3)) + (2; 163 ‘E(x,,,_,+1),3)2. Therefore, E(y,2,|y,0,:r,) — E(y,t|yi0,x,~)2 is equal to (%—:—§§)20§ + (ma—)0; By similar manipulation, E(y,ty,,|y,-0, Ximax[t,s]) - E(y,-t|y,-0, x,)E(y,-s|y,-o, X3) is easily 11335,: 3:303 +6? “(£5663- _ 2' Therefore, when the state dependence interacts with the unobserved effect, the proved to be equal to ( autoregressive coefficient contains the unobserved effect and hence the conditional mean and variance depend on ym and 35,-. 180 Appendix B IV estimator for average autoregressive coefficient across population of unobserved heterogeneity In this appendix we prove that the IV estimator for dynamic model where the state dependence depends on the unobserved effects is not consistent We define some notations for polynomial in the process of proof for the simplicity of exposition as follows: 1. Let b E Rn“ be a non-zero coefficient vector b :: (b0, b1, . . . ,bn). Denote Pn a non-trivial polynomial of degree n : Pn(;r,b) E b0 + 61:13 + 62 51:2 + - -- + bn :c" E erc]. 2. For m E IR , [m] :2 {nl if n. _<_ m < 71+ 1 for some n E Z}. 181 According to the first difference equation of (3.1), we use the lagged Aythg as an instrument for A y,,¢_1 and we can write the equation as follows: E(Ay11y1,1_2) Z E(t91Ay1,1-1A3/1,1_2) + E(A€it AMT—2% (8'1) where 19,- = p + '7 6,. We make the following assumptions: Assumption B.1 : E(s,-t|y,-,t_1, . . .,yi0,a,) = O. Assumption B2 : Var(5,tly,,t_1,...,y,«0) = 03. Assumption B.3 : E(a,-|y,¢,t_1,...,y,-0) = E(a,). . Assumption B.4 : Var(a,-|y,-,t_1,...,y,-0) = 0,2,. Assumption B.5 : E(y,-0) 2 ago and Va’r(y,:0) = 050. According to Assumption 8.1 and 8.3, equation (8.1) is equal to E (Ay11y1,1—2) = 19 E(Ay1,1_1Ay1-,1_2) + 7 E(01Ay1,1_1y1,1_2), (B?) where 19 = p + 711a. The 1V estiamtor is as follows: 21:1 21:1 Ayi,tAyi,t—2 21:1 23:1,} Ayijg—lAyu—z = ,9 _,_ ’7 21:1 1:1 CiAyi,t—1Ayi,t—2 211::1 26:1 Ayi,t—1Ayi,t-2 2:1 1:1 AEitAyi,t—2 N T - 21:1 21:1 Ayi,t—1Ayi,t-2 where 19 = p + 71.10. Under Assumption 1 to 5, the probability limit of 191v is as 191v! : + (13.3) follows: . N T 131121 7v]? 21:1 21:1Ayi1tAyi1t-2 plim éjv = N—ooo . N T 181.13.} 7%? 21:1 21:1 Ayi,t—1Ayi,t—2 - N T 7 R132: NIT 21:1 21:1 CiAyi,t—1Ayi,t—2 : 19 + ’ + (8.4) . N T 13133 1111= 23:12.: Ayn—1661,: . N T 181—1.1;} fi 21:1 Zt=lAEitAyi1t—2 . 1 N T ' 13111;} W 21.—.1 21:1 Ayi.t—1Ayi,t—2 182 The proof of plim 317‘ 2:1 2;] ciAyi,¢_1Ayi,t_g 7f 0 is in the fowlling. N—ooo . N T T B11111 VII Zi=1zt=1CiAyi,t—1Ayi,t-2 : Zt=3E(CiAyi,t-1Ayi,t—2) '—"OO T : 21:3 E(Ciyi.t—1yi.t-2)_E(C‘iAyi2,t—3) (A1) (A2) (8.5) According to Assumption 8.1 to BS, equation (8.5) is solved out as follows: (A1) 2 23:3 (E ((21931th + Ci7’;l/22,t—2 + Ci (#a + Ci)yi,t—2 + Ci£i,t—1yi,t—2)) : 21:3 Efciflyiiza) + 2:3 Efcz'“/yz2,t—2) + 23:3 E(c,~ (#a + Ci)yi,t—2) (B.6) Putting the final expression of (B.6) into (A1) in (8.5), we can obtain the following equation: 23:3 E(c,- Ayi,t~1 Ayn—2) : (19 — 1 — 7) 23:3 E (CiyEt—z) + 23:3 E (Q7yEt—2) + 23:3 E (Ci (#a + Ci)yi,t—2) (37) We can sermrately solve out the three terms of (8.7), 2:23 E(c,-yi2,t_2), 231:3 E ((iifil'i'yEt—Z) as well as 23:3 E (Ci (#0 + Gilt/m4)- 23:3 E [Gigi—2] : 23:3 E _ 1 — 9?“? _ -_ 2 C,’ (19: 22/10 + mm + 23-22119: 15i,t—j-1) ] = :23 020730 + 1.11§O>E(130>Pt_2<03, b) + 2:; 03131-2(03, d) + 2 2:3 pyoagpt_2(02, e). (8.8) By the manipulation similar to (B8), we can express the other terms, 23:3 E (cn'ygt_2) in terms of (t-2)-order polynomial of 03 and 2:3 E (Ci (110 + Ci)y,~,t_2) in terms of (Lt—a—ljlorder polynomial of 03, and their relevant coefficients are function 2 2 2 - 1 N T 1 - , (mum/15,0, 00,05,0y0). Therefore, phi: W 21:1 21:1 ciAyi'tyl-¢_2 IS not zero when T is fixed. 183 Similarly, we can prove that, . y T 1 ~00 1 - N " (2) Pllm w]? 21:1 2le Amt—191,14 ¢ 0' ~:oo As we have shown, Assumption 8.1 to 8.5 can not lead to the fact that 31v is consistent. Even more,if we make the extreme assumption that 0,, 5,1 and ym are independent with each other, then 13111: fi 21:, 2;, c,Ay,-,t_1Ay,-,t_2 is not equal to zero. It is obvious that such a strong assumption appears that many expectation of terms in the right hand side of equation of (B7) vanished because any term in the form of E [Ps((c:n'1€:tn’2y$'3))] is zero; there, nevertheless, exist such non-zero terms E (Pm(c,-)cf ), where k is O or 1, since m > 2 and hence a standard IV method applied to first-differenced equation can not consistently estimate the parameter of interest. 184 BIBLIOGRAPHY 185 BIBLIOGRAPHY [1] Amemiya Y. (1985). Instrumental variable estimator for the nonlinear error- in-variables model. Journal of Econometrica, 28, 273-290. [2] Amemiya Y (1990). Two-stage instrmental variable estimators for the nonlinear-error-in-variables model. Journal of Econometrics, 44, 273-290. [3] Abramowitz, M. and I. Stegun (1964). Handbook of mathematical Func- tions with formulas, graphs and mathematical tables. National Bureau of Stan- dards Applied Mathematics Series. No. 55. Washington, DC: US. Government Printing Office. [4] Aigner, D.J., Hsiao Cheng, A. Kapteyn and T. Wansbeek (1984). La- tent variable midels in econometrics, in Handbook of Econometrics, vol.2, edited by Z. Griliches and M. Intriligator, 1322-1393. Amsterdam: North-Holland. [5] Anderson T.W. and Hsiao Cheng (1982). Formulation and estimation of dynamic models using panel data. Journal of Econometrics, 18, 47 - 82. [6] Anderson, T.W. and Hsiao Cheng, (1981a). Estimation of dynamic models with error components. Journal of the American Statistical Association, 76, 598- 606. [7] Arellano, M. (1988). A note on the Anderson-Hsiao estimator for panel data; mimeo Institute of Economics, Oxford University. [8] Arellano, M. and Bond, S.R., (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58, 277-297. [9] Balestra, P., and M. Nerlove (1966). Pooling cross-sectin and time-series data in the estimation of a dynamic model. Econometrica, 34, 585-612. [10] Bhargava, A., and J .D Sargan (1983). Estimating Dynamic random effects models from Panel data covering short time periods. Econometrica 51, 1635-59. 186 [11] Bollerslev Tim, Wooldridge J .M. (1992). Quasi-maximum likelihood esti- mation and inference in dynamic models wint time-varying covariances. Econo- metric Reviews, 11(2), 143-172. [12] Blundell Richard and Bond Stephon (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87, 115-143. [13] Berndt E.K., Hall B.H., Hall RE. and Hausman J.A. (1974). Estimation and inefficient in nonlinear structual models. Annals of Econometric and Social Measurement, 3/ 4, 653-665. [14] Butter, J.S. and Bobert Moffitt (1982). A computationally efficient quar- ture procedure for the one-factor multinomial probit model. Econometric, 50,761- 765. [15] Davidson, R. and J.G. Mackinnin (1984). Convenient specification tests for Logit and Probit models. Journal of Econometrics, 34, 241-262. [16] Gallant, A.R. and D.W. Nychka (1987). Semi-nonparametric Maximum Likelihood Estimation. Econometrica, 55, 363-390. [17] Gary Chamberlain (1987) Asymptotic efficiency in estimation with conditina] moment restrictions, Journal of Econometrics, 34, 305-334. [18] Gary Chamberlain (1992). Comment: Sequential moment rastrictions in panel data, Journal of Business and Economic Statistics, 10, 20-26. [19] Gourieroux, C.A. Monfort and A. Trognon (1984). Pseudo-Maximum Likelihood methods: Theory. Econometrics, 52, 681-700. [20] Hahn Jinyong (1999). How informative is the initial condition in the dynamic panel model with fixed effects. Journal of Econometrics, 93, 309-326. [21] Hammer, RC. and Stroud, A.J. (1956) Numerical integration over sim- plexos, Math. Tables Aids Comp.,10, 137—139. [22] Hausman, J. A. and W. E. Taylor (1981). Panel data and unobservable individual effects. Econometrica, 49, 1377-1338. [23] Holtz-Eakin, D., W.K. Newey and H.S. Rosen (1988). Estimating vector autoregressions with panel data. Econometrica, 56, 1371-1395. [24] Honoré, BE. (1993). Orthogonality Conditions for Tobit Models wiht Fixed Effects and Lagged Dependent Variables. Journal of Econometricas 59, 35-61. 187 [25] Honoré, BE. and E. Kyriadizou (2000). Panel Data Discrete Choice Models with nged Dependent Variables. Econometrica, Vol.68, No.4 839 - 874. [26] Hsiao Cheng (1986). Analysis of panel data, Cambridge: Cambridge Univer- sity press. [27] Javier Alvarez and Mannuel Arellano (1998). The time series and cross- section asymptotics of dynamic panel data eseimators. Working paper, N09808. [28] Keane, M.P. (1993) Simulation estimation for panel data models with limited dependent variables. Handbook of Statistics, Volume 11, Gs. Maddala, C.R. Rao, H.D. Vinod (eds) Amsterdam: North Holland, 545-571. [29] Kyung So Im, Seung, C. Ahn, Schmidt, P. and J .M. Wooldridge(1999). Efficient estimation of panel data models with strictly exogenous explanatory variables. Journal of Econometrics, 93, 177-201. [30] Laszio Matyas and Patrick Sevestre (1992). The Econometrics of panel data, handbook of theory and applications. Kluwer Academic publishers. [31] Maddala, G. S. (1971). The use of variance components models in pooling cross-section and time series data. Econometrica,39, 341—358. [32] Manski, C.F. (1987). Semiparametric analysis of random effects linear models from binary panel data. Econometrica,55, 357-362. [33] Manski, C.F. (1988). Analog estimation methods in econometrics, New York: Chapman and Hall. [34] Nerlove, M., (1971). Further evidence on the estimation 0 f dynamic relations from a time series of cross sections. Econometric, 39, 359-382. [35] Neyman, J ., and E. L. Scott (1948). Consistent estimates based on partially consistent observations. Econometrica,]6, 1-32. [36] Newey, W.K. and D. McFadden (1994). Large sample astimation and hy- pothesis testing. in RF. Engle and D. McFadden (eds. ), Handbook of Econo- metrics, Volume 4. Amsterdam: North Holland, 2111-2245. [37] N ickell, S. (1981). Biases in dynamic models with fixed effects, Econometrica, 49, 1417-1426. 188 [38] Patric, Sevestre and Alain, Trognon (1992). Linear dynamic models, in Laszlo Matyas, Patric Sevestre (eds), The Econometrics of Panel Data, Hand- book of Theory and Applications, 95-117. [39] Stroud, A.H. and Secrest, Don (1966). Gaussian quadrature formulas, En- glewood Cliffs: Prentice-Hal. [40] Seung, C. Ahn and Schmidt Peter (1995). Efficient estimatin fo models for dynaic panel data. Jourmnal of Econometrics, 68, 5-27. [41] Seung, C. Ahn and Schmidt, Peter (1997). Efficient estimation of dynamic panel data models: Alternative assumptions and simplified estimation. Journal of Econometrics, 76, 302-321. [42] Trognon, A.(1978). Miscellaneous asymptotic properties of ordinary least squares and maximum likelihood estimations in dynamic error components mod- els. Annales de I’INSSEE, no. 30-31, 632-657. component model. International Economic Review,12, 1-13. [43] Vella, F. and Verbeek, M. (1988). Whose ways do union raise? a dynamic model of unionism and wage rate determiniation for young men. Journal of Aplied Econometrics, 13, 163—188. [44] Wooldridge, J .M. (1994) . Estimation and inference for dependent processes, in RF. Engle and D. McFadden (eds) Handbook of Econometrics, Volume IV Amsterdam: North Holland, 2639-2738. [45] Wooldridge, J .M. (1996). Estimating systems of equations with different in- struments for different equations. Journal of Econometrics 74, 387 - 405. [46] Wooldridge, J .M. (1997). Multiplicative Panel Data models without the strict exogeneity assumption. Econometric Theory, 13, 667-678. [47] Wooldridge, J.M. (1999) . Distribution-free estimation of some nonlinear panel data models. Journal of Econometrics, 90, 77-97. [48] Wooldridge, J.M. (1999). Introductory econometrics: a modern approach. South Western College. [49] Wooldridge, J .M. (2000a). A framework for estimating dynamic, unobserved effects panel data models with possible feedback to future explanatory variables. Econometrics Letters 68, 245-250. 189 [50] Wooldridge, J .M. (2000b). The initial conditions problem in dynamic, non- linear Panel Data models with unobserved heterogeneity, mimeo. Michigan State University Department of Economics. [51] Wooldridge, J .M. (2001). Econometric analysis of cross section and Panel Data. forthcoming, MIT Press. Cambridge, MA. 190