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ABSTRACT

A COMPARISON OF COHORT GA WITH CANONICAL SERIAL AND ISLAND-

MODEL DISTRIBUTED GA’S

By

Huafeng Pei

This thesis considers the cohort genetic algorithm, a new type of genetic

algorithm introduced by Holland. The cohort GA differs in several ways from the

traditional canonical serial GA and island-model distributed GA, and was

developed as a means of reducing “hitchhiking” - premature convergence of

currently low-significance loci located near loci at which good building blocks are

found early in the search process. The objective of this work is a comparison of

one version of the cohort GA with canonical serial and island-model distributed

GA’s on the basis of their abilities to reduce hitchhiking. The comparison is done

on two test functions: royal road function and hyperplane-defined function. It is

experimentally shown that even though theoretically the cohort GA can reduce

hitchhiking, the particular version of the cohort GA tested is prone to another

form of premature convergence and performs worse than the other GA’s. It is

also shown that a small change in the placement of offspring among cohorts in

the cohort GA may dramatically change its performance. This suggests that

further work on the cohort GA may be fruitful.
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INTRODUCTION

Genetic algorithm (GA) is a family of optimization methods introduced by

Holland in 1975 [1]. It has been successfully applied to many different types of

problems since then. Much research has been done in order to understand how

the GA works and how to improve its performance.

The cohort GA is a new type of GA designed by Holland [2]. It is aimed at

reducing the “hitchhiking” effect that occurs in the process of a GA searching for

an optimal solution. Hitchhiking is a form of premature convergence that will

hinder the GA or even make it unlikely for the GA to find a good solution for a

given problem. Hitchhiking occurs when the maximum reproduction rate is high.

That is, the expected offspring of the best individual in the population is set to be

two or more. If the maximal reproduction rate reduced to 1.1 or 1.2, the second

offspring of the best individual would be produced with a probability determined

by the fractional part of its fitness. Then the best individual’s gain become

uncertain. Cohort GA is designed to reduce reproduction rates without using

probabilities. It is believed that cohort GA’s mechanism will reduce hitchhiking,

thus improve the performance of GA. In this work, I will use empirical study to

verify that whether a cohort GA can reduce hitchhiking effect and therefore

improve the performance of GA’s by comparing it with canonical serial GA’s and

island-model distributed GA.



Chapter 1 will introduce what the hitchhiking effect is, how it is discovered

and the distinctions between cohort GA, canonical serial GA and island-model

distributed GA. Chapter 2 will present a detailed experimental design.

Comparison results are given in Chapter 3, and conclusions are given in Chapter

4.



CHAPTER1

BACKGROUND

GA is inspired by the evolutionary theory. In most implementations, GA

encodes the potential solution of a target problem as a binary string, which is

analogous to a chromosome. An initial population of binary strings (individuals) is

generated randomly. Each individual is evaluated by a fitness function or an

evaluation function. Fitness value indicates how well this potential solution

solves the problem and determines the number of offspring this particular

individual can produce. Genetic operators such as crossover and mutation are

applied to the population in order to explore the solution space. Crossover is the

exchange of parts of two strings and mutation is flipping individual bits. The

population will evolve through this evolutionary process. The GA is considered to

be successful if the evolution results in the optimal solution to the problem.

1.1 Building block hypothesis and Royal Road functions

Holland’s building block hypothesis states that a GA’s searching power for

the optimal solution comes from its ability to form solutions by repeatedly

combining short, highly-fit schemata (or building blocks) to longer schemata, then

to a complete solution [3]. The term “building blocks” refers to specific bit patterns



that contribute to high fitness. In order to test this hypothesis, a set of test

functions -- Royal Road functions (RR) -- were designed [4, 5,6,7].

Royal Road functions were constructed from a small set of pre-defined

building blocks with known fitness. Higher level building blocks consist of some

lower level building blocks. The fitness of an individual is determined by which

building blocks it is an instance of. Figure 1 and Figure 2 showed R1 and R2 two

RR functions from [5]. The difference between R1 and R2 is that R1 doesn't have

intermediate-order schemata.

********************************************************.

s‘=11111111 .c1=8

2 ******** ************************************************.

s _ 11111111 ,c2=8

3 **************** ****************************************.

s - 11111111 .c3=8

4 ************************ ********************************_

s _ 11111111 ,c4=8

5 ******************************** ************************_

s — 11111111 ,05=8

6 **************************************** ****************.

s _ 11111111 ,c6=8

7 ************************************************ ********.

S — 11111111 ,c7=8

8 ********************************************************

s — 11111111;c8=8

Sopt=111111111111111111111111111111111111111111111111111“111111111115

Figure 1: Royal Road Function R1. The fitness function R1(x) (where x is a bit

string) is computed by summing the coefficients 03 corresponding to each of the

given schemas ($1) of which x is an instance. For example, R1(1111111100...0) =

8and R1(111111111111111100...0) = 16.





********************************************************.

s‘=11111111 ,c1=8

2 ******** ************************************************.

s _ 11111111 ,c2=8

3 **************** ****************************************.

s _ 11111111 .c3=8

4 ************************ ********************************_

s — 11111111 ,c4=3

************************.

11111111 ,05=8

SS ********************************

6 **************************************** ****************.

s = 11111111 ,c6=8

7 ************************************************ ********.

s _ 11111111 ,c7=8

3 ******************************************************** .

s = 11111111,c8=8

************************************************. 9 16

89:1111111111111111 .0

********************************°

1111111111111111 .010=16

S") ****************

11 ******************************** ****************.

- 1111111111111111 ,C11=16

SQ__************************************************1111111111111111;c12::16

********************************.

$13:11111111111111111111111111111111 ,c13=32

S“ ********************************

— 11111111111111111111111111111111;c14=32

sop.=1111111111111111111111111111111111111111111111111111111111111111;

Figure 2: Royal Road Function R2. The fitness function R2(x) (where x is a bit

string) is computed by summing the coefficients cs corresponding to each of the

given schemas ($3) of which x is an instance. For example, R2(1111111100...0) =

8and R2(111111111111111100...0) =32.

According to the building block hypothesis, the hierarchical structure of R2

function should enable a GA to find the optimum solution quicker than R1.



However, even though R2 was designed to lay out a “royal road” for the GA to

follow to the global optimum, the GA actually did worse on R2 than R1 in which

the intermediate-order schema is removed. This is due to the phenomenon of

hitchhiking.

1.2 Hitchhiking

Hitchhiking is an effect that when a building block is discovered, the alleles

at loci that are near the building block spread through the population almost as

rapidly as the building block itself [2,4,5]. Because these alleles usually have little

to do with good schemata, hitchhiking results in reducing exploration in the parts

proximal to the building block. In the RR case, once an instance of a higher-order

schema is discovered, its high fitness allows the schema to spread quickly in the

population, with zeros in other positions in the string hitchhiking along with the 13

in the schema’s defined positions. It thus slows finding of the ones in the other

positions, or, for practical run length, prevents it entirely. For example, in R2,

fitness values go up exponentially with the level of the schema, and strings that

are instances of the order-16 schema receive much higher fitness than strings

that are only instances of the order-8 schema (32 vs. 8). So the instances of

1111111111111111*...* will soon take over the entire population once they

appear, often with many zeros in the right half of the string. Those zeros are

hitchhikers. This hitchhiking effect canceled the progress that the population has

ever made for generating the schema ****************1111111111111111*...*.
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The GA must start over to discover the second schema, thus seriously hurting

the GA’s performance.

Some attempts have been made to reduce the hitchhiking effect [6,8,9].

The Royal Road functions R3 and R4 [6] were developed to reduce the severity

of hitchhiking that occurred in R2 by reducing the large fitness jump that occurred

when an instance of a new level of RR was found. Figure 3 shows R4, a modified

version of R2 with fitness jump equal to 0.2 when an instance of a new level of

RR is found. R3 also contains non-coding regions (also called introns) in which

the lowest-level order-8 schemata are each separated by bit positions that do not

contribute to fitness. The most likely positions for hitchhikers are those close to

the highly fit schema’s defined positions, since they are less likely to be

separated from the schema’s defined positions by crossover [6,8]. These

attempts did reduced hitchhiking to some degree.

Level 1: S1 82 83 S4 85 $6 $7 $3 89 S10 S11 S12 S13 S14 S15 S16

Level 2: (S1 82) (33 S4) (35 Se) (37 Se) (89 S10) ($11 812) (S13 S14) (S15 S16)

Level 3: (S1 8; 33 S4) (85 Se 87 Se) (89 S10 S11 S12) (S13 S14 S15 S16)

Level 4: (S1 82 $3 $4 85 Se S7 Se) (Sg S10 S11 S12 S13 S14 S15 S13)

Figure 3: Royal Road Function R4. Each 31 is an order 8 schema. The desired

schemas are s1to $3 and combinations of them. A String that is not an instance of

any desired schema receives fitness 1.0. Every time a new level is reached, a

small increment u = 0.2 is added to the fitness. For example, strings at level 1

(that are instances of at least one level-1 schema) have fitness 1+0.2.



In Holland’s point of view [2], hitchhiking occurs because of the high

maximum reproduction rate. In order to enable the building blocks that are

presented in the best individuals to spread out in the population quickly, the best

individual in the population is set to produce 2 or more offspring in each

generation typically. This high maximum reproduction rate setting is the source of

the hitchhiking.

Increasing the mutation rate while keeping the maximum reproduction rate

high will reduce hitchhiking. But the high mutation rate will result in the population

not being able to retain information about building blocks that have already been

discovered.

If the maximal reproduction rate is set to a relative low value, such as 1.1

or 1.2, the mutation rate could be set low enough to retain building blocks that

have already been discovered. But it will become uncertain that how many

generations it will take for the second offspring of the best individual to occur

because the second offspring is generated with probability much less than 1 in

each generation. Some schemata may be found only after a long search process

and this setting becomes the source of extreme variance. In order to control this

variance, and reduce hitchhiking, Holland proposed the cohort genetic algorithm.

1.3 Cohort GA

The cohort GA is intended to reduce hitchhiking by lowering the

reproduction rate without using probabilities [2]. In the cohort GA, the population

is divided into an ordered set of sub-populations. These sub-populations are
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called cohorts. The initial population is generated randomly. Individuals in cohort

1 will produce offspring first. Then the individuals in the successive cohorts will

have chances to produce. When the last cohort is reached, the process begins

again with cohort 1. In this given order, reproduction is carried out by cycling

through the cohorts. When it is time for an individual in a cohort to reproduce, the

individual crossovers with another individual in the same cohort, then the

offspring undergo mutation probabilistically. The fitness of an offspring

determines the cohort into which the offspring will be put, which in turn

determines when its turn is to produce offspring. In this way, a string with high

fitness will produce offspring quicker than a string with low fitness. Over an

extended interval, the string with higher fitness will produce more offspring than

the string with lower fitness. Figure 4 describes the reproduction process in the

cohort GA, supposing the population is divided into N cohorts and each cohort

has M individuals initially.

All strings in the population can produce a fixed number of offspring when

it is their turn to reproduce, no matter what their fitness values are. This method

lowers the reproduction rate. Theoretically, this method will reduce the

hitchhiking effect. In order to verify this idea, I will describe, in the next two

sections, how the cohort GA is distinct from the canonical serial GA and island-

model distributed GA in term of their mechanisms. Then I will report an

comparison study on these three GA’s in chapter 2 and 3.
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Figure 4: Reproduction process of cohort GA. a) Initial Cohorts. b)

Offspring of the individuals in cohort 1 will go to cohort j, with

2<j<N, where j is larger as the fitness is smaller. 0) The process is

repeated for each cohort in turn, until it meets the termination

condition.
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1.4 Canonical Serial GA and its distinction from cohort GA

The canonical serial genetic algorithm is also called simple GA or

traditional GA. It follows the basic structure of GA. Canonical GA works on a

population of binary strings. The most charming feature of canonical serial GA is

that it is simple and powerful. Figure 5 describes a typical process of canonical

serial GA.
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Figure 5: Canonical GA working process
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There are two basic differences between the canonical serial GA and the

cohort GA. First, a canonical serial GA is a generational GA and the cohort GA is

a steady state GA. A generational GA selects parents from the old population to

produce offsprings and the offsprings form a new population. This new

population becomes the old population when the whole new population is

created. Being a steady state GA [10,11,12], a cohort GA, on the other hand,

selects parents from the population, and their offspring are placed back in the

population (in other cohorts). The parents will be deleted to keep the size of the

population constant. The individuals other than parents may be deleted, too, if

the each parent individual produces more than one offspring. The second

difference is that a canonical serial GA operates on a single large population

while a cohort GA splits the big population into small cohorts and sequentially

works on each cohort.

1.5 Island-model distributed GA and its distinction from Cohort GA

One common problem in the canonical serial GA approach is premature

convergence. Selection may drive all the bits in some positions to a singe value

after several generations. If this happens without the population converging to a

satisfactory solution, then the population has prematurely converged [10]. The

island-model distributed GA (coarse-grain parallelism GA) [13] is intended to

assist the user in avoiding premature convergence on difficult multimodal

problems. Rather than a single large population, an island-model distributed GA

maintains multiple, separate subpopulations that evolve independently. Each of

12



these subpopulations could run as a normal genetic algorithm. These GA’s could

be different types of GA or the same type of GA with the same or different

parameter settings. Individuals in each subpopulation can be exchanged

between sub-populations according to a migration strategy. Figure 6 shows a

migration strategy between six subpopulations.

H/K/

  
 

Figure 6: A migration strategy of an island-modal GA. Beside

the direction of the migration, a migration strategy may also

include other related parameters, such as the number of

migrants.

Even though the cohort GA and island-model distributed GA both work on

subpopulations, they are different in several ways. First, their placement of the

offspring is different. In the cohort GA, the offspring of one cohort will be placed

among all other cohorts except the current cohort; this will ensure that

13



information discovered in one cohort spreads through the whole population. In an

island-model distributed GA, each subpopulation evolves itself just like a

canonical serial GA. Offspring form a new generation within each subpopulation.

Information exchange occurs in a migration process that happens only

occasionally. Second, a cohort GA is steady state, while, an island-model

distributed GA is generational; however, depending on parameter settings, an

island model distributed GA can be made to have any behavior changing from

pure generational (“generation gap” = 1.0) to steady state (“generation gap” = 0).

14



CHAPTER 2

EXPERIMENTAL DESIGN

2.1 Experiment objective

The main purpose of this work is to test whether a cohort GA can reduce

the hitchhiking effect or not. By comparing a cohort GA with a serial canonical

GA and island model distributed GA, I also tested whether a cohort GA is more

efficient than other GA’s. Another objective of this work is to test how some

factors affect a cohort GA’s performance.

2.2 Testbed - Royal Road function and HDF function

2.2.1 Royal Road function description

The Royal Road (RR) function used in this work is Holland’s revised

version of the RR function.1 The RR function takes a binary string (chromosome)

as input and produces a real number fitness value. A chromosome is composed

of 2k nonoverlapping contiguous regions, each of length b+g. My experiments

take Holland’s default settings, in which k is 4, b is 8, and g is 7. Therefore there

 

1 Holland presented this version of RR at the Fifth International Conference on Genetic

Algorithms in 1993 and then posted it to the Internet Genetic Algorithms mailing list. I take Jones

T’s “ A Description of Holland’s Royal Road Function” [14] as reference and use some different

notations.

15



are 16 regions of length 15, giving an overall string of length 240. The part of

length b is called a block (and is a basic building block) and the part of length 9 is

called the intron part (which will not contribute to fitness). The calculation of the

fitness of a chromosome is separated into two steps: PART calculation and

BONUS calculation.

In PART calculation, each block is considered individually and in the same

way. Each block receives a fitness value, and all these fitness values in a

chromosome are added to produce the total PART. The fitness of each block is

based on how many one bits it contains. If the number of ones in a block is less

than or equal to a limit M, every one adds to the block’s fitness by v. Thus with

the setting v equal to 0.02 and M equal to 4, a block with three one’s would have

fitness 3 x 0.02 = 0.06. If a block contains more than M ones, but less than b

ones, it receives —v for each one over the limit. Thus a block with six ones is

assigned a fitness of (6-4) x -0.02 = -0.04. If a block consists entirely of ones, it

receives 0 from the PART calculation. However, it will receive BONUS, and it is

said to be complete.

The BONUS calculation rewards completed blocks and some

combinations of completed blocks with the concept of “levels”. At the lowest

level, 0, rewards are given for the complete blocks (i.e., blocks that consist

entirely of ones). The first completed block receives u* as its fitness. Any

additional complete blocks receive a fitness of u. Thus with the setting u* equal to

1, u equal to 0.3, a chromosome that contained three complete blocks would

16
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receive a BONUS fitness of 1.0+(2x0.3) = 1.6 for level 0. At the next level, level

1, pairs of blocks are rewarded. Suppose we label the blocks from left to right as

B0, B1,..., B381. The function then rewards any completed pair (B21,Bgi.,1) for

OSI<2“". As at level 0, the first completed pair of blocks receives u*, and

additional completed pairs receive u. In general, there are k+1 levels, and at level

0 s l < k, contiguous sets of 2' complete blocks, whose first block is labeled Bzil

with 0 s i < 2"", are rewarded. At all levels, the first such set of complete blocks

receives fitness u*, and additional sets of completed blocks receive fitness u. The

total fitness for the level is the sum of these fitnesses. Thus with k equal to 4, the

BONUS fitness calculation rewards completed single blocks (level 0) and

rewards the completion of the sets of completed blocks:

{30. B1}. {32, Ba}. {34. 35}. {36. B7}. {38. Be}. {310. B11}. {312. 313}. {314. 315}

(level 1)

{30. B1, 52. Ba}. {34. 35. 36. B7}. {38. Be. Bro. 311}. {312. 313. 314. 315} (level

{30. 31. 32. Ba. 34. 35, 36. B7}. {38. Be. 310. B11. B12. 313. 314. 315} (level 3)

{30, B1. B2. 33, B4. 35. 36. 37, Be. Be. 310. B11. B12. B13. B14. B15} (level 4)

The total BONUS is computed by adding the fitness at each of the k+1

levels, and the fitness of a chromosome is the sum of the total PART and the

total BONUS.
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2.2.2 The motivation of using the RR function

The hitchhiking phenomenon was noted by Holland while using the

original RR functions to test the building block hypothesis. Thus it is natural to

use the RR function as a testbed to compare cohort GA’s performance with other

GA’s. The characteristics of the RR function, such as known building blocks,

known fitness and a hierarchical structure of building blocks, should enable us to

track the GA’s performance over time. The revised RR function is especially

good for testing because it incorporates the idea of “deception” or a fitness valley

that the GA must cross to find a global optimal solution.

2.2.3 HDFs description

Hyperplane-defined functions (HDFs) are a set of randomly generated

functions. They are extensions to the Royal Road functions and are designed to

allow a large number of building blocks to be combined in a variety of ways. They

also incorporate the idea of “pot holes”, which refers to the fitness valleys that

must be crossed in order to reach the global optimum. The interactions among

the building blocks are more dramatic in HDFs than in RR.

Similar to RR, HDFs are composed of sets of pre-defined schemata with

known fitness. The fitness of an individual chromosome is simply the sum of the

fitness of the schemata that it contains.

u(x) = max{0, Zu(s)}

seSIxes
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where S is the set of component schemata, s is one of the component schemata

and x is the chromosome to be measured.

To generate an HDF function, one must specify the following parameters:

chrl: the length of a chromosome

nelt: the number of elementary schemata

maxl: maximum length of elementary schemata

minl: minimum length of elementary schemata

npr: the number of additional positions in refinements of elementary

schemata

nocom: number of combinants to be produced.

Here I give a description on how to generate a HDF in general:

1In=a

2). Randomly generate an elementary component schema

a) Choose the new schema’s order 0, which is a random number

between mini and maxl.

b) Choose 0 loci, each locus is a random number between 0 and chrl.
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c) Generate a new schema s by assigning a random allele from the set

{0, 1} to each of the loci selected in b), and assign don’t-care values

(*) to the remaining loci.

d) Assign s a fitness u(s). Put the new schema in S and Se, where Se

is the set of elementary schemata. Let n = n+1. if n == nelt, go to 3),

If not, go to 2).

3). Add a refinement of a randomly selected elementary schema to 8,

produced by adding “nearby”, randomly chosen defining bits to the

schema.

a) Generate a set of eligible refinement positions that are distinct from

any positions in the schemata of Se.

b) Form the combinations ofpositions generated by 3a.

0) Form a new schema s’ from s in Se by assigning a random allele

from the set {0, 1} to each of the undefined loci chosen in step 3b.

d) Assign the new schema a fitness u(s). Put the new schema in S and

Sr, where Sr is the set of refined schemata.

4). Form new compound schemata by combining elementary and refined

schemata.
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a) Generate designations of all combinants of number nocom. The

designations refer to the sets of indices for elementary and refined

schemata in S.

b) Generate defining positions and values for each combinant (new

schema). The new schema is the intersection of schemata in its

designed set that was generated in 4a). If the schemata are

incompatible at one or more loci, resolve the conflicts by setting

each locus to a random allele from the set {0, 1}. Assign each new

schema a fitness u(s). Put the new schema in S.

0) Stop.

In the experiments of this work, the fitness value of each schema is

assigned as following: all the schemata in Se are assigned fitness 2, all the

refined schemata are assigned fitness —1, and all the combinant schemata are

assigned fitness 3. In this way, the refined schemata serve as “pot holes”.

Figure 7 shows the HDF that is used in this work.
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Loci:

{4 5 6 7 8} {9 10 11 12 13 14} {15 16 19 20 21 22}

{22 24 29} {28 29 31} {28 30 31 33} {39 40 41 43 44}

{55 56 57 58 59 61 62} {4 5 6 7 8 15 16 19 20 21 22}

{15 16 19 20 21 22 24 29} {15 16 19 20 21 22 28 29 31}

{22 24 29 28 31} {28 29 31 39 40 41 43 44} {4 5 6 7 8

11} {9 10 ll 12 13 14 19} {15 16 19 20 21 22 29} {22 24

29 31} {28 29 31 33} {28 30 31 33 40} {39 40 41 43 44

59} {8 9 10 11 12 13 14} {9 15 16 19 20 21 22} {21 22

24 29} {22 28 29 31} {29 28 30 31 33} {31 39 4O 41 43

44} {41 55 56 57 58 59 61 62}

Allele:

{l l 0 O 0} {1 l l 1 0 0} {O 0 0 0 0 0} {l O 0} {1

0 1} {l 0 l l} {0 1 0 l 0} {l O 0 O 0 0 0}

{l 1 O 0 0 0 0 0 0 0 0} {O 0 0 0 0 0 0 O}

{0 0 0 0 0 0 l 0 l} {l 0 0 1 l} {l 0 l 0 1 0 l O}

{l 1 O 0 0 1} {l 1 1 1 0 0 0} {0 0 0 0 0 0 0}

{l O 0 l} {l 0 l 1} {l 0 l 1 1} {0 l 0 l 0 0}

{O 1 1 1 l 0 0} {l 0 0 O 0 0 O} {O l 0 0} {l 1 0

l} (0 1 0 1 l} {1 0 l 0 l O} {0 l O 0 0 0 0 0}

Values:

{2 2 2 2 2 2 2 2 3 3 3 3 3 -1 -1 -1 -1 —1 -1 -1 —l

-1 —1 -1 —1 —1 —1}

Figure 7: HDF generated with the following setting: chrl = 80, nelt = 8, mini = 6,

maxl = 12, nrp = 2, and nocom = 5. Each parenthesized expression represents a

schema. For example, the first schema’s defining positions are 4, 5, 6, 7, 8, the

defining values of each position are 1, 1, 0, 0, 0, respectively, and the fitness of

this schema is 2.

2.2.4 The motivation of using the HDFs

The HDFs are easy to generate, hard to optimize, and easy to analyze.

They also overcome some of the RR’s drawbacks:

- They don’t have a simple hill.

- There are many paths to any improvement.

- The interactions among the building blocks are more dramatic. A large

number of building blocks can be combined in a variety of ways. Most

combinations offer no improvements. Some combinations will produce

22



such improvement that will not produce further improvement. Some

combinations will decrease the performance in the sense that the

combined building block performs more poorly than the elementary

building blocks that constitute it. Some combinations will produce

further improvements and lead to higher order building blocks.

- They have more levels than RR and allow multiple improvements

without the saturation effect. Saturation effect refers to that RR may

not reach a new level even after a long period of search, it occurs

when a large part of the chromosome must be fixed to get further

improvements.

- Complexity is easy to control.

The experiments done by Holland [2] suggest that the cohort GA worked

very efficiently on HDFs. It was shown that previously discovered schemata

could be combined to yield longer schemata. At every stage, discovered

schemata were retained, and the number of instances of the schemata increased

as the cohort GA keeps running. To verify Holland’s result and compare the

efficiency of the cohort GA with other GA’s, I tested the same HDF on three GA’s

in an attempt to see the cohort GA’s ability to cross the “pot holes” and achieve

higher fitness without severe hitchhiking.
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2.3 Performance Criteria

Based on the different nature of the two test functions, I chose different

criteria to measure the GA’s performance. The RR function has explicit levels.

Therefore, for the RR, I measured the number of function evaluations required to

achieve a certain RR level. In order to measure the degree of the convergence in

the intron part of the chromosome, | generated a relatively short chromosome in

HDF (equal to 80). For each intron locus, I measured the difference between the

total number of ones and the total number of zeros of all chromosomes in the

population and used the absolute value of their difference as a criterion. I also

measured the maximum fitness value that the various GA’s achieved given a

fixed number of function evaluations.

2.4 Cohort GA implementation detail

There are many ways to implement the cohort GA’s central idea. I used

Holland’s version in [2] and made some modifications during the series of my

tests. Figure 8 and 9 shows how Holland’s cohort GA works, in some detail.

The following parameters need to be specified before running the cohort

GA.

chrl: length of the chromosome

nocoh: the number of cohorts

lencoh: initial size of each cohort
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Crossover two selected

chromosomes to produce four
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(to be extended in Figure 9)
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chromosomes randomly
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Calculate each offspring’s fitness

 
 

 

Put each offspring in a cohort,

according to its fitness: if the fitness

is smaller, then put it in a later
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Figure 8: Cohort GA’s implementation in detail.
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Select a crossover point

and crossover two selected

chromosome to produce

two offsprings:off[1], off[2]  
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Select another crossover point

and crossover the same two

selected chromosome to produce

two offsprings:off[3], off[4]  
 

I
 

   

  

 

i=1
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' ' andom[ l ,2]=1 ‘7

 

 ‘_ Flip one randomly

chosen bit in off[i]

   

yes   

 

Figure 9: Crossover and mutation part of the cohort

GA. Extended from Figure 8.

2.4 Modifications made to the original cohort GA

Several factors that may affect a cohort GA’s performance, such as

population size, offspring placement strategy, deletion strategy and crossover

candidates chosen. These factors are considered during the tests, corresponding
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changes are made to the original implementation, and repeated tests are done

with different settings and implementations.

Population size

It also includes the relationship between nocoh and lencoh. Holland’s

default setting is nocoh = 20 and lencoh = 20; thus population size is 400. I

chose different values for nocoh and lencoh and different combinations of these

values to perform the tests in an attempt to see how these two parameters affect

the cohort GA’s performance.

Offspring placement strategy

Which specifies cohort an offspring with a certain fitness value will be

placed in. It will affect selection pressure as well as interactions between cohorts.

In Holland’s original implementation, an offspring with fitness u is placed in cohort

d, where d is determined by the equation:

(I = mod(t + doub, nocoh), where t is the current cohort number and

doub = I2 x umax/ u}, where umax is maximum fitness value found so far.

In this way, an individual with fitness umax is placed in the cohort next to

the current cohort. And other individuals will be placed in a cohort based on the

ratio of umax and its fitness value. An individual with higher fitness value will be

put nearer the current cohort, and vice-verse.

During the experiments in RR, I found out that with this implementation,

the individuals tend to accumulate in a small set of cohorts. In order to spread the
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individuals among all the cohorts and keep the cohort GA working as intended, I

tried a new placement strategy with

doub = {(nocoh — 1) + (u — umin) x (2 — nocoh +1) / (umax — umin) I and

umin is the minimum fitness found so far. In this way, a chromosome with the

fitness umin will be placed in the cohort nocoh —1 from the current cohort (which

is the farthest cohort from the current cohort) and a chromosome with the fitness

umax will be placed in the cohort next to the current cohort. Other individuals will

be placed in a cohort between 2 and nocoh — 1 from current cohort with the doub

value proportional to the individual’s fitness value.

The above strategy is deterministic. I also tried to put the offspring in a

randomly selected cohort with some probability in order to produce more

migration effect by providing the opportunity for inter-cohort mating.

Deletion strategy

Each paired individual will produce four offspring. To keep the population

size constant, the parents are deleted as well as two other chromosomes which

are randomly selected from two other cohorts. The cohorts that are the source of

chromosomes for deletion are also randomly selected. The deletion of random

chromosomes from random cohorts affects the cohort GA’s ability to keep the

good individuals found so far; it also affects selection pressure. In the original

implementation, the source cohorts from which to delete chromosomes are

randomly selected from cohort positions nocoh/2 to nocoh-1 relative to the

current cohort; that is, the distant half of the cohorts. I also tried to delete
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chromosomes randomly from 2 to nocoh —1 relative to the current cohort to lower

the selection pressure.

Crossover candidate

In the original implementation, both parents are selected from the current

cohort. I tested the one parent selected from the current cohort and with some

probability another parent is randomly selected from another cohort. This

strategy is also an attempt to provide inter-cohort mating.

2.5 Implementation details of canonical serial GA and island-model distributed

GA

Though the procedure of a typical GA is well known, implementation

details vary from system to system. And even very small differences in

implementation may result in significant changes. Here I give the details of my

implementation of a canonical serial GA and island-model distributed GA.

The canonical serial GA and island-model distributed GA software used

was “GALOPPS” (The “Genetic Algorithm Optimized for Portability and

Parallelism” System) [15]. The following are the descriptions of the steps of the

GA that GALOPPS provided and which was used in my experiments.

2.5.1 Implementation of canonical serial GA

1) Create initial population (generation 0). The individuals of the initial

population are generated randomly. Each bit in each individual is

equally likely to be initialized to a 1 or a 0.
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2)

3)

Evaluate the fitness of each individual in the current generation. Also

calculate the maximum fitness, average fitness, standard deviation of

the fitness and other statistics of the current population.

Terminate the program if the maximum generation number is reached.

Otherwise, continue. The maximum generation number is specified in

an input file.

Select the survivor or parents of the next generation, using “stochastic

universal sampling” [16] selection method to select a list of

chromosomes that will be the parents or the survivors of the next

generation, sampling with the replacement; the size of the list is equal

to the population size.

Reproduce. Here I take two choices. One is the straight canonical

serial GA and another one allows niching of the population by using

crowding and incest reduction. The latter technique is intended to help

reduce premature convergence of the population. Employing this

technique in my comparisons helped us to see where cohort GA

stands among these techniques which reduce premature convergence.

In the straight canonical serial GA, both parents are uniform randomly

selected from the list generated by step 4. One point crossover is

performed on the parents and single bit mutation or multi-bit mutation is

performed according to the crossover rate and mutation rate. The

offspring then replace the parents.
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The niching technique includes two mechanisms: one is crowding and

another is incest reduction [15]. With incest reduction, pairs for

crossover are picked by choosing the first parent at uniform random

from the above list, then uniform randomly choose several possible

candidates for the other parent; the number of candidates I used is 3.

Among three candidates, the one with the greatest Hamming distance

from the first parent is picked as the second parent. After the crossover

(and any mutation) is done, for each child, “crowding-factor" (here, 3)

members of the above list are selected (at uniform random). Among 3

candidates, the one with smallest Hamming distance from the child will

be replaced.

The list generated by step 4 is not altered in this process. All individuals

in this list are used in some crossover and/or mutation operation, or

else survive unaltered into the next generation.

6) Go to step 2.

2.5.2 Implementation of island-model distributed GA

The island-model distributed GA divides the whole population into several

subpopulations. It provides a chance for parallel execution by allowing use of

several processors or computers. In my experiments, I use one workstation to

serially simulate parallel execution. In that approach, I only use the distributed

GA’s ability of preventing premature convergence but not its ability of parallel

execufion.
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In this case, each subpopulation is simulated for some number of

generations called a cycle. Each population receives one turn per cycle. At the

beginning of each population’s turn, it reads one or more individuals from each of

its declared neighboring subpopulations according to a master table. In addition

to the neighboring subpopulations of each subpopulation, the master table also

defines how many individuals are to migrate in from each neighbor each cycle,

whether these migrants include the best individual and/or some number of

randomly selected individuals, and which individuals are to be replaced by

migrants. Immigration incest reduction and immigration crowding factor are used

to direct the donating and receiving process. When a migrant is to be selected

randomly and immigration incest reduction is used, the number “immigration

incest reduction” of candidates are randomly chosen first. Then the one with the

farthest Hamming distance from the best individual of the receiving

subpopulation is selected. Immigration crowding factor refers to the random

choice in the receiving subpopulation of migration_crowding_amount candidates

for replacement, and picking the one that is closest in Hamming distance to the

migrant to be replaced by the migrant.

The run of each subpopulation is same as for the canonical serial GA with

crowding and incest reduction.
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CHAPTERS

RESULTS

The experiments described in this chapter investigate the argument for the

cohort GA by comparing it with a canonical serial GA and island-model

distributed GA and studying some of the implementation issues involved in

cohort GA. All these experiments were performed on the RR function and the

HDF. Each experiment was run 20 times and the results were the average of 20

runs.

3.1 Comparison of results using the RR function

3.1.1 Initial experiments

The first set of experiments investigates the performance of five different

GA’s on the RR function. The GA’s include: original cohort GA, cohort GA with

new placement implementation, the island-model distributed GA, the canonical

serial GA and the canonical serial GA with niching.

The original cohort GA setting is as follows:

Number of cohorts: 20

Initial size of each cohort: 20

33



Population size: 400

Offspring placement strategy: doub = I2 x umax / u} (note that d’s

calculations are always the same)

Deletion strategy: nocoh/2 to nocoh —1

Crossover: within the same cohort.

Stopping criterion: the total number of function evaluations exceeds

300,000

I also ran the cohort GA with the new offspring placement strategy:

doub = {(nocoh — 1) + (u — umin) x (2 — nocoh +1) / (umax — umin) I

The tests on canonical serial GA’s and island-model distributed GA were

done with the population size equal to 400 and following parameter settings:

Canonical serial GA:

Crossover rate: 0.15 (one point crossover)

Mutation rate: 0.0002 (per bit. Thus, 0.048 per chromosome)

Linear scaling with ratio of best fitness to mean fitness equal to 1.25

Stopping criterion: the generation that allows the total number of function

evaluations to exceed 300,000

When niching was used:
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Parameters are the same as canonical serial GA, plus:

Crowding factor: 3

Incest reduction: 3

Island-model distributed GA:

Number of subpopulations: 8

Population size of each subpopulation: 50

The settings of each subpopulation are the same as for the canonical GA

with crowding and incest reduction. Migration neighbors are showed in Figure 10.

/@\e

o\®/@

Figure 10: The neighboring subpopulation for each subpopulation,

each subpopulation has two neighbors. For example, subpopulation 0

has subpopulation 1 and subpopulation 7 as its neighbors.
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Number of cycles: 10

Number of neighbors of each subpopulation: 2

The number of migrant: 2 (one is the best, one is random)

Immigration incest reduction: 3

Immigration crowding factor: 4

The above parameter settings are to be taken as the defaults. In the

following experiments I will only report the exceptions.

Table 1 lists the results on the RR function, of five GA’s with population

size equal to 400. Surprisingly, the cohort GA is the worst. In a total of 20 runs at

this setting, the cohort GA achieves only level 1 and only in 5 runs. The results

with the new placement implementation are much better. All the runs reached

level 1 and seventy percent of the runs reached level 2. The other GA’s achieved

level 1 and level 2 with a smaller number of function evaluations, but also in a

smaller percentage of the runs. In most runs, they did not reach level 2 within the

number of function evaluations of the stopping criterion.

GA’s used to work better on RR while the population size is larger.

Because when the population size is larger, it is more possible for the initial

population to contain all the basic building blocks GA’s need to get to further level

through crossover. Othenlvise, it might take GA’s a very long period of time to get
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the basic building blocks through mutation. Therefore, the larger population sizes

are used in the rest of the experiments on RR.

 

 

 

 

 

 

 

 

 

 

       

Ievel1 level2 level3 level4

original cohort average 61326 (25%)

GA

std. dev 60606

cohort GA with average 1786 28779 (7%)-

new placement

implementation

std. dev 923 41898

Island-model average 11344 59046 (65%)

distributed GA

std. dev 8975 24390

Canonical Serial average 1927 5552 (45%)

GA

std. dev 853 1572

Canonical Serial average 1885 5306 (35%)

GA with niching

std. dev 720 678

 

 
Table 1: The average number of function evaluations until the optimum is found

and the standard deviation of this average. The number in parentheses is the

percentage of runs that the GA achieved that level. Average number shown

without parentheses means hundred percent of runs achieved that level. Blank

entries indicate that the level was never achieved in 300,000 function

evaluations.

3.1.2 Varying the number of cohorts and initial size of each cohort

To test the effect of population size on the cohort GA, I ran the cohort

GA’s on different numbers of cohorts and different initial sizes of each cohort.

The number of cohort equaled: 20, 35, and 50. The initial size of the each cohort
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equaled: 20, 40 and 80. Thus, the population size varied from 400 to 4000. The

results are listed in Table 2 to Table 5.

Table 2 shows that with the original cohort GA, the average number of

function evaluations used to achieve level 1 is relatively small, with the number of

cohorts equal to 20 and the cohort size equal to 40 and 80. With a cohort size of

80 and the number of cohorts at 35 or 50, most of the runs reached level 1, but

also with many more function evaluations. This could be due to the population

sizes being much bigger in these two cases. The initial population is more likely

to contain instances of level 1 building blocks or schemata similar to them. In the

latter case, after a long period of search, mutation led the RR to reach level 1.

This confirmed that we need a bigger population size for RR. However, even

though the number of cohorts, the cohort size and their ratio had some impact on

the original cohort GA, it never achieved RR level 2 in all the runs I tried, due to

the accumulation of individuals in only few cohorts.

With the new offspring placement implementation, most runs have

achieved RR level 2, and a small number of runs achieved RR level 3, as shown

in Table 4 and Table 5. This shows that the new offspring placement

implementation improved the performance of the cohort GA. For the rest of the

experiments on RR, I will only report the results of using the new offspring

placement implementation. The cohort GA’s performance didn’t change linearly

with changing of the number of cohorts, cohort size or population size. But it is

shown that with the number of cohorts equal to 20, the cohort GA performs better

overall, especially with cohort size equal to 80.
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cohort size #ofcohorts= #ofcohorts= #ofcohorts=

20 35 50

20 average 61327 (25%) 38282 (40%) 60356 (45%)

std. dev 60606 33704 49227

40 average 6093 (45%) 9124 (60%) 34577 (60%)

std. dev 15062 1 9969 62927

80 average 16136 (50%) 139569 (80%) 151198

std. dev 45328 1 57056 1 71 798 
 

 
Table 2: Results of the original cohort GA. The average number of function

evaluations to achieve level 1 and the standard deviation of this average.

 

 

 

 

 

 

 

 

cohort size # of cohorts #- of cohorts = # of cohorts =

= 20 35 50

20 average 1786 2854 3215

std. dev 923 1 063 1970

40 average 3352 3697 4392

std. dev 141 2 2295 2962

80 average 5151 4727 6541

std. dev 2093 3288 4430    
 

Table 3: Results of cohort GA with new placement implementation. The average

number of function evaluations to achieve level 1 and the standard deviation of

this average.
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cohort size #ofcohorts= #ofcohorts= #ofcohorts=

20 35 50

20 average 28779 (70%) 37431 (80%) 44014 (55%)

std. dev 41 898 17337 27720

40 average 49627 (80%) 52819 (75%) 46973 (75%)

.std. dev 43897 261 08 36142

80 average 35433 (95%) 59598 (80%) 64613 (85%)

std. dev 1 8686 32518 41379    
 

 
Table 4: Results of cohort GA with new placement implementation. The average

number of function evaluations to achieve level 2 and the standard deviation of

this average.

 

 

# of cohorts =

 

 

 

 

 

 

cohort size # of cohorts = # of cohorts =

20 35 50

20 average 65647 (15%) 73216 (10%)

std. dev 14330 1 1677

40 average 148545 (10%) 165175 (15%)

std. dev 14332 61756

80 average 107102 (30%) 316671 (5%)

std. dev 7142    
 

Table 5: Results of cohort GA with new placement implementation. The average

number of function evaluations to achieve level 3 and the standard deviation of

this average.
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Based on this observation, I proceeded with tests with the number of

cohorts equal to 20 and 35 and the cohort size varying from 20 to 200, in an

attempt to see whether the ratio of the cohort size and the number of cohorts

really has some effect on the cohort GA’s performance. The results are listed in

Table 6 and Table 7.

While setting the number of cohorts at 20 still gives overall better

performance, the performance doesn’t improve linearly with an increase of the

cohort size. The ratio of the cohort size and the number of cohorts doesn’t seem

to determine the cohort GA’s performance.

 

 

 

 

 

 

 

 

 

 

 

 

       

cohort size level 1 level 2 level 3 level 4

20 average 1786 28779 (70%)

std. dev 923 41898

40 average 3352 49627 (80%) 148545 (10%)

std. dev 141 2 43897 14332

80 average 51 51 35433 (95%) 1071 02 (30%)

std. dev 2093 1 8686 7142

120 average 5586 43111 (85%) 165575 (40%)

std. dev 2981 20938 61669

160 average 7800 56257 (90%) 172955 (35%)

std. dev 4351 26904 50264

200 average 6577 49952 (80%) 193042 (20%) 420068 (5%)

std. dev 4412 25705 71 593
 

 
Table 6: The average number of function evaluations until the optimum is found

and the standard deviation of this average. The number of cohorts is 20. The

stopping criterion for this test is the total number of function evaluations

exceeding 500,000.
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cohort size level 1 level 2 level 3 level 4

20 average 2854 37431(80%) 65647 (15%)

std. dev 1 063 17337 14330

40 average 3697 52819 (75%) 165175 (15%)

std. dev 2295 26108 61756

80 average 4727 59598 (80%)

std. dev 3288 32518

120 average 6587 65740 (75%)

std. dev 4030 37449

160 average_ 6806 73607 (80%)

std. dev 4698 23745

200 average 6806 73607 (80%)

std. dev 4698 23745     
 

 
Table 7: The average number of function evaluations until the optimum is found

and the standard deviation of this average. The number of cohorts is 35. The

stopping criterion for this test is the total number of function evaluations

exceeding 500,000.

The island-model distributed GA and canonical serial GA’s were tested on

population sizes of 1600 and 4000. These population sizes are those that gives

better performance on the cohort GA. Table 8 and Table 9 list the comparison

results.

The results show that among four GA’s, the island-model distributed GA

and the two canonical serial GA’s give significantly better results than the cohbrt

GA. This may indicate some defects of the implementation of the cohort GA or

defects that relate to the RR’s shortcomings.
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GA type level 1 level 2 level 3 level 4

cohort GA with average 5151 35433 (95%) 107102 (30%)

new placement

implementation std. dev 2093 18686 7142

Island-model average 2782 17860 36865 (90%)

distributed GA

std. dev 1529 4428 f 1 0538

Canonical average 5658 18360 31394 (70%)

Serial GA

std. dev 2374 4258 5402

Canonical average 5248 21458 50321 (95%)

Serial GA with

niching std. dev 2390 5041 16129       
 

Table 8: The average number of function evaluations until the optimum is found

and the standard deviation of this average. The population size is 1600. The

subpopulation size in the island-model distributed GA is 200 and the number of

subpopulations is 8.
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GA type level 1 level 2 level 3 level 4

cohort GA with average 6577 49952 (80%) 193042 (20%) 420068(5%)

new placement std. dev 4412 25705 71593

implementation

Island-model average 3353 36117 76048

distributed GA std. dev 185 5782 16013

Canonical average 8210 38561 79776

Serial GA std. dev 5458 8578 13681

Canonical average 8125 39345 84292

Serial GA with

niching std. dev 5279 7854 17292

      
 

 

Table 9: The average number of function evaluations until the optimum is found

and the standard deviation of this average. The population size is 4000. The

subpopulation size in island-model distributed GA is 200 and the number of

subpopulations is 8.

The new offspring placement implementation gives the cohort GA

obviously better performance, but during the experiments we still can see that the

individuals tend to be accumulated in a small number of cohorts instead of

spreading among all the cohorts after a certain number of cycles. Table 10 and

11 illustrate the degree Of accumulations of the original and new offspring

placement implementations respectively. The number of cohorts here is 20 and

initial cohort sizes are 20. With the original offspring placement, after only 20

cycles and about 1000 function evaluations, the population has prematurely

converged with the maximum fitness 1.86, RR level 0. The individuals have

accumulated in 10 cohorts instead of being spread among 20 cohorts. With the
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new offspring placement, after 160 cycles and 8000 function evaluations, the

population has converged with the maximum fitness 4.3, RR level 1.

 

  
 

 

 

 

 

 

 

  

number number of maximum cohort sizes

of circles evaluations fitness value

InIIIaISIzeS {201 207 201 20! 20’ 201 20r 2O! 20! 20!

20, 20, 20, 20, 20, 20, 20, 20, 20, 20}

5 228 1.84 {0, 0, 0, 0, 0, 43, 35, 42, 53, 45,

44, 30, 22, 16, 22, 10, 5, 8, 6, 19}

10 564 1.84 {1, O, 0, 0, 0, 0, 0, 0, 0, 0,

70, 61, 57, 59, 58, 51, 22, 15, 5, 1)

20 1316 1.86 {80, 56, 60, 56, 51, 41, 28, 19, 7, l,

l, O, O, O, 0, 0, O, 0, 0, 0}

30 2020 1.86 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

61, 58, 62, 57, 51, 44, 44, 17, 3, 3}

40 2688 1.86 {65, 50, 65, 57, 64. 43, 34, 14, 8, 0,

0, O, 0, O, 0, 0, 0, 0, 0, 0}

80 5284 1.86 {48, 67, 66, 61. 48, 40, 28, 20, 15, 6,

1, O, O, 0, O, 0, 0, O, 0, 0}

160 10524 1.86 {45, 53, 63, 56, 64. 44, 39, 29, 6, l,

O, O, 0, O, 0, O, O, 0, O, O}   
 

Table 10: Maximum fitness values and cohort sizes recorded in a type cohort GA

run at some number of circles. Original offspring placement implementation.

 



 

  
 

 

 

 

 

 

 

 

  

number number of maximum cohort sizes

of circles evaluations fitness value

Initialsizes {20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20}

5 204 1.84 {6, 2, 5, l, 0, 19, l7, l7, 20. 15,

11, 13, 18, 28, 31, 29, 39, 41, 52, 35}

10 376 1.96 {23, 17, 27, 15, 16, 12, 3, 3, 2, O,

8, 12, 15, 27, 30, 26, 35, 41, 51, 36}

20 940 2.02 {14, 9, 23, 6, 35, 10, 18, 15, 8, 15,

32, 33, 49, 44, 33, 25, 15, 10, 5, O}

30 1308 2.26 {17, 13, 7, 5, 2, 5, 3, 0, 0, 0, 57, 35,

59, 56, 44, 34, 21, 17, 14, 10}

40 2008 2.34 {30, 44, 24, 30, 20, 12, 46. 27, 43. 39,

42, 8, 10, 16, 6, 1, l, 0, 0, O}

80 4320 3.52 {1, 39, 52, 57, 30, 54, 69, 33, 37, 16,

9, 0, 1, 0, O, 1, 0, 0, 0, 0}

160 8456 4.3 {6, 62, 82, 74, 77, 47, 43, 7, 0. 0,

0, 1, 0, 0, 0, 0, 0, O, 0, 0}

180 9728 4.3 {21, 0, 0, 0, 0, 0, 0, 0, 0, 119,

111, 78, 48, 20, 2, o, o, o, o, 0}   
 

Table 11: Maximum fitness values and cohort sizes recorded in a type cohort GA

run at some number of circles. New offspring placement implementation.

The result of this accumulating is a kind of premature convergence. A

large amount of individuals tend to be put within a few cohorts, indicating that

their fitness values are similar to a degree that they could not be separated by

the current offspring placement strategy. The similarity of the fitness might

indicate the similarity of the structure of the chromosome. This might be due to
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one of RR’s shortcoming: saturation effect. Saturation effect refers to the fact that

a large part of the chromosome must be fixed to achieve a further RR level.

Therefore, before RR achieves a new level, a long period of search needs to

occur to get substantial improvement in fitness. This might result in most of the

chromosomes in the whole populations being similar, or there might exist some

groups of chromosomes, with each group having similar chromosomes with

similar fitness values. When crossover happens within the same cohort among

the similar chromosomes, there is little chance to get any improvement.

3.1.3 Varying crossover candidate and offspring placement

To give a better chance for the individuals with more different structures to

mate, I tried two strategies that will enable inter-cohort crossover: choose

different crossover candidates and non-deterministic placement of the offspring.

To change the crossover candidate, one candidate is still selected from

the current cohort, and with the probability 0.1, another candidate is randomly

chosen from another cohort. In another words, one-tenth of the second

candidates do not come from the current cohort.

In non-deterministic offspring placement, the offspring may be placed in a

randomly selected cohort, rather than using the calculation of d. The probability

of this random placement was also set to 0.1.

Tables 12, 13 and 14 list the results of employing the two strategies.
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cohort size #of cohort #of cohort #of cohort

= 20 = 35 = 50

20 average 2729 2780 3886

std. dev 1046 1737 2767

40 average 4177 5533 4924

std. dev 3227 2556 3358

80 average 5428 8596 8770

std. dev 2573 4161 4542

      
 

Table 12: The average number of function evaluations to achieve level 1 and the

 

standard deviation of this average.

 

 

 

 

 

 

    

cohort size #of cohort: 1101 cohort: #ofcohort:

20 35 50

20 average 59376 (65%) 23229 (40%) 40770 (55%)

std. dev 54162 24682 49555

40 average 72828 (30%) 29839 (65%) 33986 (50%)

std. dev 104787 18161 19129

80 average 37266 (60%) 52150 (70%) 43366 (40%)

std. dev 15101 23541 11095  
Table 13: The average number of function evaluations to achieve level 2 and the

standard deviation of this average.
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cohort size # of cohort = # of cohort = # of cohort =

20 35 50

 

20 average 36949 (5%)

std. dev

40 average 138433 (15%) 40184 (5%)

 

 

 

std. dev 91292

80 average 152437 (10%) 118787 (15%) 74651 (5%)

 

 

std. dev 40165 62362      

Table 14: The average number of function evaluations to achieve level 3 and the

standard deviation of this average.

Comparing TablesIO, 11 and 12 with Tables 3, 4, and 5, we can see that,

with this setting, the cohort GA needs more function evaluations to achieve a

certain level. These results show that employing the inter-cohort crossover didn’t

improve the cohort GA’s performance. This might be due to a potential defect of

the implementation of inter-cohort crossover. This might also be due to the fact

that the RR’s saturation effect is too strong to be overcome by the cohort GA.

In an attempt to alleviate the premature convergence, I also tried to

reduce the selection pressure by changing the implementation of deletion from

deleting from second half of the cohorts to deleting from all cohorts except the

current cohort. With this change, the performance of the cohort GA went down.

49



This shows that the selection pressure alone is not a big factor in causing

premature convergence of the cohort GA on RR.

3.1.4 Summary

The experiments described in this section investigate the cohort GA’s

performance on the RR function, Several parameters and implementations are

changed in order to see what their effects are on the cohort GA’s performance.

The results of these experiments indicate that the number of cohorts and

the offspring placement have the most effect on cohort GA performance on RR.

The number of cohorts equal to 20 gives the best overall performance, especially

when the initial cohort size is 80. But this ratio of cohort size and the number of

cohorts can not be generalized. A new implementation of offspring placement in

an attempt to spread all the individuals among all the cohorts gives a great

improvement in the cohort GA. But compared with an island-mode distributed GA

and two canonical serial GA’s, the best cohort GA’s performance is still worse

than the other two. The RR function’s drawbacks might cause this version of the

cohort GA to fail. But there might be some practical problems that also have the

characteristics of the RR function. So there is a need to find another way to

implement the cohort GA’s central idea and avoid the problems found here.

3.2 Comparison results using HDF

To use HDF as a direct tool to verify the cohort GA’s effect on hitchhiking,

l generated a small HDF with chromosome size equal to 80. It is easier to look

directly at the intron loci when the chromosome size is small. The measurement l
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use is to calculate the total number of zeros and the total number of ones at each

intron locus in the whole population. Then the sum of their absolute differences

should indicate the degree of convergence of intron loci.

Because HDF don’t have an explicit concept of level, I measured

maximum fitness values that the different GA’s achieved given the number of

function evaluations equal to 2500 and 6000. I chose the maximum number of

function evaluations as 6000 because the GA’s likely either have already found

the optimum solution or have prematurely converged at that time. In these

experiments, I only compared cohort GA, canonical serial GA and canonical

serial GA with niching techniques.

3.2.1 Varying population size

In the initial experiments I used Holland’s original implementation for the

cohort GA. The population size equals to 200, 400 and 800. The number of

cohorts was 20 and the cohort sizes were 10, 20 and 40. Tables 15 and 16 list

the comparison results for population size 200. Since the results are quite similar,

I did a t-test on the data from all 20 runs in order to test whether the difference is

significant.
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Canonical Serial GA (1) Canonical Serial GA

with niching (2)

cohort GA(3)

 

maximum

fitness after

2500

evaluations

sum of the

differences

in intron

part

maximum

fitness after

2500

evaluations

sum of the

differences

in intron

part

maximum

fitness after

2500

evaluations

sum of the

differences

in intron

part

 

average 13.90 3896.60 14.30 2404.80 8.90 1982.50
  std. dev  3.34  759.90  2.74  486.19  1.71  327.59
 

 

t-test on maximum fitness t-test on sum of the differences

 

 

 

  

(1 ,2) 0.597465326 2.02091 E-06

(1 .3) 1.59564E-05 4.277955.03

(2,3) 3.67275E-07 0.003991985  
 

Table 15: Comparison of the maximum fitnesses reached by three GA’s after

2500 function evaluations and the sum of the differences in intron parts.

Population size is 200. The small table shows the t-test results. The numbers in

parentheses represent the source of the data. For example, (1, 2) means the

data from the 20 runs on canonical serial GA and canonical serial GA with

niching. The cell with bold font indicates the difference is significant at 0.05 level.
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Canonical Serial GA (1) Canonical Serial GA

with niching (2)

cohort GA(3)

 

maximum

fitness after

6000

evaluations

sum of the

differences

in intron

part

maximum

fflness

afler6000

evaluation

8

sum of the

differences

in intron

part

maximum

ffiness

afler6000

evaluation

5

sum of the

differences

in intron

part

 

average 14.35 4688.90 15.60 2039.90 9.65 2368.20
  std. dev  3.66  2214.26  3.05  472.10  1.53  386.05
 

 

t-test on maximum fitness t-test on sum of the difference

 

 

 

(1,2) 0.19023366 8.24062E-05

(1 ,3) 2.67546E-05 0.000161509

(2,3) 1.98192E-08 0.034474718    

Table 16: Comparison of maximum fitness reached by three GA’s after 6000

function evaluations and the sum of the difference in intron part. The small table

shows the t-test results.

The results showed that with both numbers of function evaluations (2500

and 6000), the canonical serial GA with niching gets better results. Especially for

the sum of differences of the intron parts, the canonical serial GA with niching

does significantly better than without niching. This indicates that by employing a

niching technique, the convergence of the intron part is greatly reduced. Even

though the convergence of the intron part of the cohort GA is at about the same

level as that of the canonical serial GA with niching, its maximum fitness level is
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significantly lower than those of the other two GA’s, so its the lower convergence

should not be given much weight.

The results for population sizes 400 and 800 are similar to those for

population size 200, except that the results didn’t have much difference when the

number of function evaluations reached 2500, because when the population

sizes are larger, it took more evaluations for initialization of the initial populations.

But as the search went on, the same pattern as with population size 200

appeared.

In these HDF tests, the cohort GA always showed earlier convergence,

and the phenomenon of individuals accumulating in a small number of cohorts

existed, as with the RR function. Thus I applied the new implementation of

offspring placement from the RR runs to the HDF in the next experiments.

3.2.2 Varying the offspring placement implementation

The same offspring placement implementation as in RR was tried for HDF.

Thus, in the calculation of the cohort into which the offspring would be placed, I

used

doub = I(nocoh — 1) + (u — umin) x (2 — nocoh +1) / (umax — umin) I

instead of

doub = I2 x umax/ u}.
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Tables 17 and 18 list the comparison results between the original cohort

GA and the cohort GA with the new implementation. The population size is 400.

The t-tests on the two paired data sets indicate no significant difference between

the two implementations. From the observations of the experiments, I found out

that the new implementation of offspring placement in HDF didn’t alleviate the

degree of accumulation of individuals in some small number of cohorts. With

population size 800, I got the similar results. These results indicate that we

cannot generalize the effect of the new implementation on RR to other test

functions or practical problems while using the cohort GA.

 

 

 

 

 

original cohort cohort GA with new

GA placement

maximum sum of the maximum sum of the

fitness after differences in fitness after differences in

2500 intron part 2500 intron part

evaluations evaluations

average 9.05 2974.4 8.45 2847.4

std. dev 1 .57 286.94 1 .36 831 .20    
 

Table 17: Comparison of maximum fitness reached by two cohort GA’s after

2500 function evaluations and the sum of the differences in intron part.
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original cohort cohort GA with new

GA placement

maximum sum of the maximum sum of the

fitness after differences in fitness after differences in

6000 intron part 6000 intron part

evaluations evaluations

avergge 9.35 3419 8.9 3966.15

std. dev 1 .87 794.18 1.48 477.89     
 

Table 18: Comparison of maximum fitness reached by two cohort GA’s after

6000 function evaluations and the sum of the differences in intron part.

Besides the above experiments, I also tested the relationship between the

number of cohorts and the cohort size by conducting paired experiments. The

pairs included 10/20 versus 20/10, 10/40 versus 20/20, and 10/80 versus 20/40

(x/y, x representing the number of cohorts and y representing the cohort size).

Each pair had the same population size. The results of these experiments

showed that the ratios didn’t have a significant impact on the performance of the

cohort GA.

3.2.3 Summary and discussion

The results of the experiments on HDF showed that the canonical serial

GA with niching could reduce the convergence of the intron part very much. This

means that crowding and incest reduction did maintain the population diversity

and reduce premature convergence. The results also confirmed that the
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implementation of the cohort GA I used might have some defects in comparison

to the implementation used by Holland.

One particular parameter setting (mutation rate) may have had a negative

effect on the HDF runs reported here for the non-cohort GA runs. In contrast with

the cohort GA, which did one or more mutation each individual in the current

cohort with probability 1/2, the non-cohort GA rates were set lower. I used the

same mutation rate per bit (0.0002) as on RR. It gives a relatively low mutation

rate (0.016) per chromosome. Another way of viewing the difference is that in

the cohort GA, nearly all new individuals are generated by crossover, and half

are also subject to mutation, whereas in these non-cohort GA runs, of RR, about

34 of the new individuals resulted from crossover and 1/4 from mutation. However,

for HDF was about 90% new individuals resulted from crossover and only about

10% from mutation. With an increased rate, the non-cohort GA’s might give even

better performance, and this could be explored further.
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CHAPTER 4

CONCLUSIONS

The cohort genetic algorithm is designed as a means of reducing

premature convergence, specifically, hitchhiking. In this thesis, I investigated one

version of the cohort GA’s performance on the RR function and the HDF and

compared the cohort GA with canonical serial GA and island-model distributed

GA in order to see how well the cohort GA works in comparison with other

techniques for preventing premature convergence. The experiments showed that

even though theoretically the cohort GA should work well in dealing with

hitchhiking and be more efficient, the implementation affects its performance very

much. This version of the cohort GA didn’t perform better in any of the

comparison tests clue to another form of premature convergence, in which the

individuals tend to accumulate in a few cohorts instead of spreading among all

the cohorts.

Besides using the original implementation, I also tested different settings

and implementations in order to see how some factors affect a cohort GA’s

performance. The factors included population size, offspring placement strategy,

deletion strategy, and inter-cohort crossover. Among these factors, population

size, which also includes the relationship between the number of cohorts and
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cohort size and the offspring placement strategy, had the most significant effect

on its performance. In particular, a new implementation of offspring placement in

an attempt to spread all the individuals among all the cohorts gives a great

improvement in the cohort GA on RR.

The experiments also showed that crowding and incest reduction

performed very well in preventing premature convergence. The degree of intron

convergence was greatly reduced after using these niching techniques.

The comparison results indicate that the potential defects exist in this

version of the cohort GA, and the fact that a small change of placement of

offspring among cohorts greatly improved the cohort GA’s performance also

suggests that further work on the cohort GA may be fruitful. Here are two

suggestions for future work:

1) Set an upper limit on the cohort size during the run according to the

initial cohort size, For example, if the initial cohort size is 20, the

maximum cohort size during the run could be set to 35. In this way, the

individuals are forced to spread among the cohorts. The calculation of

which cohort an offspring is to be placed in could be done as usual, but

if its cohort size has already reach the upper limit, the offspring could

be placed in another cohort that has fewer individuals. The new

receiving cohort could be calculated deterministically or

probabilistically.
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2) Use the mean fitness value (umean) in the offspring placement

strategy. Place the individuals with fitness values between umin and

umean into the first half of the cohorts and place the individuals with

fitness value between umean and umax into the second half of the

cohorts. Also follow the principle that the individual with higher fitness

value should be put nearer the current cohort.

The detailed implementation issues regarding those changes need to be

considered carefully. However, even a trial-and-error process would help us to

better understand the cohort GA and to advance it.
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APPENDIX

GLOSSARY

allele The value at a particular locus in a chromosome.

basic building blocks The smallest groups of loci that may affect the fitness of

an individual of a GA population.

building block A collection of particular alleles at particular loci that contribute

to the fitness of an individual of a GA population.

building block hypothesis The hypothesis that the GA finds solutions by

finding low order, highly-fit building blocks and recursively combining these

building blocks to form higher-order, even-more-fit building blocks until a

solution is found.

crossover rate The probability that two individuals that have been chosen to be

parents will crossover.

early convergence When the entire population of the GA converges to a sub-

optimal solution. This state may be temporary (the evolution of solutions

continues) or permanent (no additional building blocks can be found).

function evaluation The evaluation of a single individual by the GA.

Hamming distance The number of locations that differ in two binary individuals

of equal length. For example, the strings 01011 and 11001 have aIHamming

distance of two since bits zero and three are different.
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loci (pl of locus) The positions of bits (or other values) in a chromosome.

mutation rate The probability that a single bit (locus) of a GA individual will be

complemented (changed). Sometimes, instead, the probability that any

mutation will occur on a chromosome at a given time.

intron part (also called non-coding area) Bits (or loci) between two building

blocks of a GA function which are completely ignored by the fitness function.
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