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ABSTRACT

INCORPORATING FACTOR ANALYSIS INTO

HIERARCHICAL MODELS

By

Yasuo Miyazaki

This dissertation incorporates a factor analysis model into a two-level hierarchical

linear model (HLM). It provides the model layout in HLM format and derives the

maximum likelihood estimators. A computational program to implement the theory is

developed. Special attention is focused on the application ofthe model in order to create a

bridge between the statistical model and applications in education and human

development. That is, I describe in detail when and in what context the model might be

useful and the kinds of research questions that can be addressed using this model, so that

researchers who are interested in substantive issues rather than statistical issues can

immediately apply the model to their research.

Real as well as artificial data sets are used to illustrate the theory, the application,

and the interpretation of the results. In the last Chapter, extensions of this model and their

settings are mentioned.
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Chapter 1. Introduction

1-1. Motivation of the Study

Suppose that researchers are interested in how influences of students’ gender,

race, SES, family structure, IQ, and pretest score on their achievements vary from school

to school. This is a typical research question that motivated the development ofthe

hierarchical linear model (HLM) (Bryk & Raudenbush, 1992), which is alternatively

called the multilevel model (Goldstein, 1995), the random coefficient model (Longford,

1993); and, often in statistics and biostatistics literature, the mixed model. (See, for

example, SAS manual (1996) for Proc Mixed). The HLM can be implemented by several

software programs, such as HLM (Bryk, Raudenbush, & Congdon, 1996), MLWin

(Goldstein et al., 1998), SAS Proc Mixed (SAS Institute, 1996), and MIXOR (I-Iedeker,

D., & Gibbons, R. D., 1996).

After the software became available, a fair amount of educational research was

devoted to this issue (See, for example, Aitkin, Anderson, & Hinde (1980), Aitkin &

Longford (1986), De Leeuw & Krefi (1986), Goldstein (1986), Raudenbush & Bryk

(1986), and Lee & Bryk (1989) among others). Often, however, we don’t have enough

data to support a complex model that has many parameters. Specifically, if we increase

the number ofrandomly varying coefficients, we need a larger sample size per cluster.

In an meta-analysis settings, suppose that we have multiple effect size estimates

from a collection of independent studies that test the same hypotheses, and we wish to

synthesize these effect sizes. In this setting, it is sometimes as important to make an

inference about variance components as about fixed effects because the variances indicate
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how much the effects sizes vary from study to study (Raudenbush, Becker, & Kalaian

(1988), Kalaian & Raudenbush (1996)). Though in theory we can model as many the

random effect sizes as we want, the number ofthe independent studies is usually

relatively small in meta analysis (about 50 - 100 at most), naturally limiting for the

number ofrandom effects that can be estimated from the data at hand.

A more classical and standard application of multivariate random effects is a

psychometric analysis for multivariate outcomes. For example, if researchers want to

know the reliabilities of a test that is supposed to measure multiple constructs, we may

formulate a two-level hierarchical model using dummy variables at level-1 as predictors.

Then we ask how scores from multiple domains or items vary among students. From the

variance estimates, we can determine the test reliabilities for each domain.

In the growth model literature within the hierarchical modeling framework, we

often model the individual growth trajectory by a polynomial at level-1. At level-2 the

coefficients of the level-1 model, that is, the person-specific growth parameters, become

multivariate outcomes. In such a growth study, it is ofien researchers’ substantive interest

to examine correlations among the growth parameters, for example, the correlation

between initial status and rate of growth. If the growth function is complex, there will be

a large number ofrandom effects at level 2.

The mixture of multivariate outcomes and growth models also applies to the

context where we have many random effects in level-2. In this case, correlations within

individuals occur for two reasons; one is that multiple measures are available for the same



individual and the other is that a single measure is taken over time for the same

individual.

In a statistical sense, the common theme in the above examples is that the

researchers wish to study many random effects simultaneously. Ifwe have a large enough

sample to estimate many parameters in the level-2 variance-covariance matrix (we will

call this the “tau matrix”), it is possible to estimate such a large model. However, even in

such a case, researchers who analyze data using a two-level hierarchical linear model still

sometimes encounter the problem of slow convergence or even worse, noconvergence,

because the tau matrix is really singular.

In statistical literature, the problem of a singular tau estimate is known as the

Heywood case (Heywood (1931)) or boundary solution problem (Catchpole & Morgan

(1994)). This problem occurs when the estimates reside near/at the boundary ofparameter

space. The currently most common approach to remedy this problem is to get rid of some

of the random terms at level-2 and to re-estimate the smaller number of parameters in the

tau matrix. Sometimes this approach does not make sense since removing a random term

not only removes the large correlation that we want to get rid of, but also removes the

variances that we want to keep in the model when the variation of the corresponding term

exists.

Actually, we can find many examples ofthe above cases where the tau-matrix has

high correlations among random terms. For example, Bryk & Raudenbush (P. 141-144,

Chapter 6, 1992) reanalyzed Huttenlocher et al. (1991)’s children’s vocabulary growth

data. The quadratic growth trajectory was formulated and they found the high correlations



among random coefficients of the initial status, SIOpe, and rate of acceleration (Table 6.5,

1.000 — 0.982 - 0.895

P. 144, Bryk & Raudenbush, 1992), which was - 0.982 1.000 0.842 . Later the

-— 0.895 0.842 1.000

intercept was dropped completely from the model, but the correlation between the slope

and the rate of acceleration was still very high at 0.904.

As a biostatistics example, Longford (P.136, 1993) analyzed the weights of

newborn rats nested within litters and found that the correlation between the mean rat

weights adjusted by diet contrasts and litter size and the gender gap in weight among

0505 — 0.139 . .

, and the correlation rslitters was almost -1.0 (r = [_ 0.139 0.038

A £0! -00139 , . .

u ., . = . . = as —l.0034,thou htlus estimate rs not

A °’ u") JIM, J(0505)(0.038) g

 

 

admissiblel).

In psychometrics, we are often interested in measuring the true score of the

student. Suppose there is a general aptitude test that consists of4 domains such as Math,

Science, Reading, and Social Studies and each domain consists of 10 testlets whose

scores are given simply by adding up the correct responses for the items in the testlet. If

we conceive the above situation as testlets nested within students and we know which

domain each testlet is supposed to measure, then there are four true scores for each

student and those are likely to be highly correlated because high ability students are likely

produce high scores in any domains, in general. Then, if we have such data as repeated

 

' Longford used the Fisher scoring algorithm, which can produce the estimate outside of the parameter

space. The results are the case of this out-of-bounds estimate by Fisher scoring.
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measurements for students (testlets are nested within subjects), we can expect the high

tau-correlation matrix for the random coefficients that describes between-student

variation.

Ifwe take down our analysis down to the item level in the above scenario, then

we have dichotomous outcome instead of continuous outcome. This is a scenario ofusing

an item response theory (IRT) model (I-Iambleton, Swarninathan, & Rogers (1991)). The

IRT model fits a nonlinear function that decomposes the log-odds of a correct response

into an item-specific part and a person-specific part. The most standard IRT model is a

unidimensional model and is in an exploratory factor analysis mode, but there is a multi-

dimensional IRT model in terms of dimensionality, for example, see Reckase (1991).

Even the multi-dimensional IRT model is still estimated by exploratory mode analysis,

i.e., we are interested in how many dimensions we need to represent the item-person

interaction. It is possible to execute a confirmatory mode analysis if we formulate the

multi-dimensional IRT model with a hierarchical-model format. We will illustrate this

point in Chapter 6. In this sense, the IRT model can be considered to be a non-linear

version of correlated outcomes within subjects, corresponding to the previous linear and

continuous version of correlated outcomes within subjects. In fact, Rasch model, the

simplest IRT model, can be formulated by a hierarchical model by conceptualizing that

items nested within examinee (Kamata (1998)). Raudenbush & Sampson (1999) applied

the Rasch model to the items measuring neighborhood environments in terms of physical

and social disorder. Their model can be seen as a multivariate Rasch model because they

used dummy variables to represent different constructs.



Most ofthe above cases involve micro aspects where we are interested in

individual differences and in individual variability. However, we can find the examples in

other substantive disciplines. For example, from organizational sociology, data from

National Adult Literacy Survey study analyzed by Raudenbush and Kasim (1998)

involves the regression of literacy on ethnicity conceived as European-American,

African-American, Hispanic-American, Asian-American, and Other ethnicity. Thus, four

dummy variables are required to represent ethnicity. If these dummy variables’ regression

coefficients are allowed to vary from state to state, it can be speculated that those random

coefficients might be highly correlated because of the similar social distribution of the

minority disadvantage. Another example can be found in meta-analysis literature. Becker

(1988) found the rather high correlation 0.91 between the experimental and control

standardized mean changes across studies.

These above cases all suggest that those random coefficients share some part in

common and tell us that once we know one of the random errors, we can discern the other

to some extent. Then, it might be reasonable to think about a latent variable that is shared

by those random coefficients and that produced the high correlation. In this scenario, a

factor analysis model is one of the candidates to represent this idea. In factor analysis, we

consider a small number of latent variables that explain the correlation among a larger

number of observed variables. In this sense, the factor analysis model is useful for

obtaining a parsimonious summary by reducing the number ofparameters in a technical

sense, but also it might extract the essential relationship among the constructs that play a



central role in the social theory. Further, it might help explore and elaborate or test and

confu'rn the theory in mind.

Also, there are computational advantages of incorporating the factor analysis

model to HLM. That is, in the current HLM, when some ofthe correlations get close to

the boundary values such as 1 or - l , then its convergence gets very slow, or in the worst

scenario, it terminates without giving the estimates. Ifwe use the factor analysis model,

we can expect quick and stable convergence because in factor analysis model, we are not

estimating the covariances that are close to their boundary.

1-2. Overview of Past Studies of Multilevel Latent Variable Modeling

In this section, I review the current state of the research in the field of multilevel

latent variable modeling, which is an effort in combining multilevel modeling, structural

equation modeling, and item response theory (IRT) modeling. It is a goal of scientific

research to integrate different classes of models.

Since the original model was developed in each tradition to solve specific types of

problems, each modeling framework inherently has its own characteristic strengths and

weaknesses. Ifwe take the approach of incorporating another framework based on one

framework, then the newly-developed model and the methodology are reminiscent of the

parent’s model characteristics.

Therefore, here we review those studies by emphasizing the underlying ideas to

develop the model and summarize the similarities and differences as well as the strengths



and weaknesses. We also describe a methodology that can be a potential building block

of a broader class of model, specifically, that of Jennrich & Schluchter’s (1986) work.

1-2-1. Papers on Latent variables in HLM

Incorporating latent variables within the hierarchical linear model (HLM) can be

found in Raudenbush, Rowan, and Kang (1991), where classical test theory was

introduced into their level-1 model to handle measurement error variation. Most social

science research involves instruments that are supposed to measure certain constructs, but

they produce measurement errors. If these measurement errors are ignored, then

maximum likelihood estimates of correlations will be attenuated (Lord & Novick, 1968,

page 69-74) as will be the regression coefficients. As a result, we will get biased

estimates. The instrument used by Raudenbush, Rowan, and Kang (1991) is the

Administrator Teacher Survey (ATS), which is a questionnaire that asked the high school

teachers about school climate consisting of 35 items that are supposed to measure the five

constructs. They used a three-level model in which the level-l units were items, the level-

2 units were teachers, and the level-3 units were schools. In their model, using five

dummy variables at level-1 specified which items were intended to measure which of five

constructs. Thus five latent variables which played a role of true scores in classical test

theory were specified in the level-1 model. At level-2, those latent variables in turn

became multivariate outcome variables defined on teachers. At level-3, the school mean

of each entry varied over schools. The unrestricted model had no predictors in each level.

This enabled the authors to do psychometric analysis, i.e., to estimate the internal



consistency reliability of observed-scale scores. A major contribution of this approach

was that they clarified the ambiguity that occurred from computing usual Cronbach’s a

(1951) by ignoring the school-clustering effects and separated it to two components, the

reliability of the teacher-level measures and the reliability of school-level measures. The

results showed that we could recover the attenuated correlation by incorporating the

measurement model. Another aspect of this level-1 model can be considered as a special

case of confirmatory factor analysis with factor loading weights specified as unity.

Actually they found evidence that the number of factors was less than five by computing

the eigenvalues for each teacher or school-level covariance matrices. This paper

incorporated the measurement error in dependent variables in their level-1 model which

served as a measurement model, and then used the true scores as dependent variables at

level-2 that served as a structural model. In this sense, this was a prelude for complete

structural equation modeling (SEM) which incorporate measurement errors in both

dependent and independent variables.

In fact, Raudenbush and Sampson (1997) further extended this line of approach to

formulate a model that allowed measurement errors both in dependent and independent

variables. The model was formulated to examine the extent to which neighborhood social

control (Z) mediates the association between neighborhood social composition (X) and

violence (Y) in Chicago. The model was three-level model (measure, person, and

neighborhood were the units for each level), and Y and Z involved measurement errors

and X did not. Also Y and Z were measured at level-l and X was at level-3. Then at

level-1, for measure 1' for personj in neighborhood k, a measurement model was



formulated to represent the set of true scores and error scores using dummy variables as

in the previous Raudenbush, Rowan, and Kang (1991)’s model. That is:

Level-1:

R0,, =D,,.j,,(Y,.k +gjk)+ 02,1.“ij +vjk), (1-1-1)

5,, ~ N(0,afi,, )

vjk ~ N(O,0'221.,,),

where DW is an indicator variable taking on a value of 1 if R”, is a measure of perceived

violence and 0 if not, and D2,], is an indicator variable taking on a value of 1 if Ry, is a

measure of social control and 0 if not (i = 1,2; j = 1,...,Jk; k = 1,...,K). Note that this

formulation allows missing data such as when a person provides a measure of perceived

violence but not of social control, and vice versa. The level-2 model was formulated for

personj in neighborhood k:

Level-2:

_ T

Y/k — Yr +ij7‘yk +rjjk

z}, = Z, + W114, + r”, (1-1-2)

(”1") 0 f” “l’ka ~N( O ’ (2,, Q: )’

where W]: = (Agej,‘ , Gender}, , SESjk ) that was used for adjusting for background

differences. The level-3 model describes the variation across neighborhood of adjusted

neighborhood mean perceived violence and social control:
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Level-3:

Y1: = X116); +uyk 9

Zk = Xkrfl: + “:1: : (1'1'3)

uv. O T T.-

wm» ‘- »uzjk 0 Try Tzz

where XI was measures about neighborhood environments such as poverty

concentration, ethnic isolation, and percent of foreign born, that were considered

measured without error. For other regression components in level-2 model was fixed for

parsimony:

fry]. = flyo, (1-1-4)

”:1: = 76:0 '

Since the above model has the same structure of the model in Raudenbush,

Rowan, and Kang (1991), the parameters such as fly , ,6: , ,Byo , .520 for fixed effects, and

T», , Tyz , and T: for the random effects could be estimated by the standard method.

However, their interest was to evaluate the mediating effect of social control (Z) on the

regression model of social composition (X) on perceived violence (Y) at the

neighborhood level. This was done by considering conditional distribution of YIZ, X

from Y,Z|X . Since (YkT, ZI )T in the model Equation 1-1-3 had multivariate normal

distribution, the conditional distribution of YIZ, X was obtained by standard normal

theory. To obtain the decomposition formula, the standard structural equation modeling

(SEM) (or originally, the path analysis) idea was used. That is, they first wrote the

-11-



regression ofY on X and Z, and the regression ofZ on X. Creating the reduced form (the

regression of Y on X) gave the formulae for the decomposition of total effect into direct

and indirect effects. The all necessary quantities to evaluate the decomposition were the

Tfunctions of fly, ,6, , flyo, ,6;o T y, , and Tu.
W ’

The decomposition of total effects into direct and indirect effect among latent

variables is often executed by the SEM and thus it can be considered to be an attempt to

integrate the HLM and the SEM to a broader class ofmodel basing on HLM and then

incorporating SEM. The only difference is that the model by the HLM used classical test

theory model instead of factor analysis model that is often formulated by the SEM.

If the’dependent variable is not continuous, say, dichotomous, we need a different

model and the estimation method. Often, measurement instruments in social sciences

such as cognitive achievement test consists of dichotomous items. In Raudenbush and

Sampson (1999), the systematic social observation (hereafter, $80) was used to measure

the physical and social disorders of face blocks in Chicago neighborhood. The evaluation

ofthe 880’s items were dichotomous. A three-level model involved items within face

blocks within neighborhood. The level-1 model was a Rasch model (Rasch, 1960) that

related item responses to item difficulties and face-block severities. At level-2, between

face-blocks within cluster, the face blocks were outcomes depending on neighborhood -

level intercepts. At level-3, neighborhood intercepts varied over neighborhoods. This

analysis produced psychometric properties such as internal consistency reliabilities at

each level.

-12-



Similarly, Cheong and Raudenbush (1999) applied Rasch Model to Child

behavior Check List 4-18 (hereafter CBCL 4/18) (Achenbach, 1991) to calibrate the

extent of severity of the externalizing behavioral problems of the children for each item.

They used dummy variables to represent two different constructs (aggression and

delinquency) indicator in level- 1.

In psychometrics, the application ofHLM to Item Response Theory (IRT) model

can be found in Kamata (1998), where he used the Rasch Model. Note that in

psychometric literature, the item severity to measure the extent to which the

neighborhood was disordered is replaced by item difficulty and the neighborhood

propensity to social disorder is referred to as person ability. Bock (1988), and Adams,

Wilson & Wu (1997) took a different direction, where they started from a 2 or 3-

pararneter IRT model.

1-2-2. Structural Equation Models (Mean and Covariance Structure Models)

As we mentioned in the above when we refer to Raudenbush and Sampson

(1997), the framework of separating a statistical model into a measurement model and

structural model has a long tradition in mean and covariance structure models or

structural equation models (SEM), which are implemented by package softwares such as

LISREL (Joreskog & Sorbon (1995), EQS (Bentler & Wu (1995)), AMOS (Arbuckle

(1995)), and SAS CALIS procedure (SAS Institute Inc. (1990)), and M-Plus (Muthén

(1998)) among others. In mean and covariance structure models, the measurement model

is usually expressed as a confirmatory factor analysis model (CFA), which utilizes factors

-13-



as latent variables. The primary goal of factor analysis is to explain the covariances or

correlations between many observed variables by relatively few underlying unobserved

factors. In this sense, it is a data reduction technique. CFA, as contrasted to traditional

exploratory factor analysis (EFA), implies that a model is constructed in advance, the

number of factors is set by the researcher, whether a factor influences an observed

variable is specified, some direct effect of factor on observed variables are fixed to zero

or some other constant, covariances of factors can be estimated or set to any value, etc.

Thus, in CFA, there are more opportunities that the researcher’s idea are reflected on the

model.

As suggested in the previous section, hierarchical linear model (HLM) and

structural equation modeling (SEM) has much in common as methodology. In growth

modeling context, Willet & Sayers (1994) showed that growth trajectory approach taken

by HLM could be done by SEM if the data are balanced. Several methodologists claim

that, compared to HLM, SEM approach has an advantage in terms of flexibility of

modeling of the complex structure of variance-covariance matrix that naturally arises

when we formulate a complicated causal model (Muthén & Curran (1997), Willet &

Sayer (1996), Chou & Bentler (1998)). However, it is limited in dealing with nested

structure of data and unbalanced designs because the model is estimated fi'om sufficient

statistics such as either the correlations or the means and the covariances. An attempt to

incorporate clustered data structure and dealing with unbalanced and missing data which

is a feature advantage ofHLM can be found in, for example, Muthén (1989).
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Recently Muthén (1998) developed a methodology which integrates categorical

and continuous latent variable models. Latent categorical variable plays a role of a

classification variable in multiple-group SEM, but the group membership is unobserved

and is determined from the data such that a person is classified into the class that has the

highest probability. In growth modeling context, this methodology not only adds more

flexibility of the modeling that can reflect a class of substantive developmental theories

which concerns with discrete transitions or qualitative changes rather than quantitative

changes, but also provides a practically very useful way of predictive diagnostics in

preventive or intervention research.

Comprehensive and systematic treatment of latent variable models including

factor analysis, latent trait analysis (IRT), latent profile analysis, and latent class analysis

can be found in Bartholomew & Knott (1999).

1-2-3. Modeling the Error Structure

An attempt to incorporate various patterns of the error covariance structure into

unbalanced repeated measures was made by Jennrich and Schluchter (1986) in a

longitudinal study context, where we can consider the case when the study was executed

perfectly in a designed way, i.e., no missing observations. If there are no missing

observation, we can utilize the standard MANOVA, or MANCOVA model. The key idea

oftheir model was to introduce a covariance structure model for the complete data and

then to link the observed outcome and the complete data by missing observation

indicators. They formulated the standard MANCOVA growth model for that complete
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data and considered various error structures for the complete data error terms that were

used in the standard models such as time series model. Those include compound

symmetry, heteroskedastic errors, auto-regressive errors, and so on. Exploratory mode

factor analysis model which put a constraint on covariance matrix (D , (I) = I (identity

matrix) was one of the structures they listed. The key assumption for the missing data

matrix was missing at random (MAR).

This line of approach can be seen in Thurn (1997). He explicitly stated that the

key assumption for the missing data matrix was missing at random (MAR). Thurn

specially focused on individual differences and individual variation. Starting from

standard MANCOVA model for repeated measurement on human subjects, he formulated

the two-level hierarchical linear model. In addition to showing various patterns of

covariance structure of both level-1 and level-2, he addressed the sensitivity of inferences

for small sample size data that is often the case in psychological studies by using a

multivariate t-distribution instead of a multivariate normal distribution for modeling the

variation of random coefficients.

1-2-4. Multilevel Factor Analysis

Longford and Muthén (1992) analyzed data having eight domains in mathematics

for the 8th grade from the Second International Mathematics Study (SIMS) carried out in

1982, and they considered a model with factor structures at both the student and school

level. They used Fisher scoring to obtain maximum likelihood estimates for this model.

Their theory was developed for the exploratory factor analysis phase, not for the
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confirmatory phase. The main objective was to see whether the factor loading matrices

had the same patterns at the student and school level.

Muthén (1991) developed the multilevel factor analysis model from the SEM

perspective and showed that if sample size per the level-2 unit was large, the

conventional SEM approximate estimator worked well, providing similar results to those

of the Longford and Muthén (1992) for the same SIMS data set.

Muthén, Khoo, and Gustafsson (1998) extended this approach to multiple groups.

They used the eighth graders’ l6 achievement scores from National Educational

Longitudinal Study (NELS) administered in 1988, conceptualizing that urban Catholic

and urban public schools are two distinct populations. Thus this methodology is a

generalization of conventional latent variable multiple-group analysis to two-level

clustered data.

Though multilevel factor analysis is already developed, there are certain cases

where it appears useful to incorporate the factor analysis model directly into standard

hierarchical linear and non-linear models. That is, seeing the level-1 model ofHLM as a

model that generates latent variables that represent the true scores , in a broader sense, we

apply the factor model for those random parameters such that the true score can be

decomposed into a common score and a specific score in level-2 model. Then, we can

clearly assess how much variation is explained by communality and how much is by the

specificity. This decomposition can not be done by standard factor analysis because

specificity is confounded with error variance in the model. Thus, in Chapter 2, we will

give a rationale for incorporating a factor structure in level-2 in HLM in more detail.
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Chapter 2. Specific Settings in which the Proposed Models are Useful

In this chapter, contexts in which incorporating factor analysis structures into

HLM would be useful will be discussed in more detail. Next the model can be laid out in

terms of a hierarchical linear model. Technical issues such as method of estimation and

derivation of computational formulae will be discussed in Chapter 3.

2-1. Slopes-as-Outcomes Model in Organizational Studies

Suppose that in a school effectiveness study such as High School and Beyond

(Coleman, Hoffer, & Kilgore (1982)), we want to know that how much the relationship

between math achievement and student characteristics such as race, gender, SES vary

among schools. Suppose, in fact, that there are six covariates at level 1, then naturally, we

might formulate

L-l:

Y1,- = :30,- +fljxlij +fl21x2ij +ij3ij + fluxw +flSJ'x5ij +36%“,- + 5i} ’ (2'1'1)

it'd

where 8,}. ~ N(0,0'2) and xly,x20,x3ij,x4y,x50, and x6”. is the certain covarrates of

student characteristics for student i in school j.

At level 2, suppose that those coefficinets all randomly vary among schools after

being accounted for by a certain school characteristic W! .
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A); =700 +701Wj +qu

H} =7ro +711Wj +qu

:82} =720 +721Wj +qu

7st =730 +731Wj +u3j

flu =74o +7.41% +u4j

:65} =750 +751W1 +qu

flea,- =76o +7ij +u6j

(2-1-2)

where uJ. = (uoj, u”, uzj, u3j, us], u61)T is considered to be distributed as mean of 0 and the

covariance of r , a 7 x 7 symmetric matrix. This is fairly large model since the number of

unique parameters in tau-matrix is (7 x 8)/2=28 and the data may not provide enough

information to detect all the variances and covariances, or the current algorithm may not

converge in reasonable time. However, if indeed u”. and u2j go together and

an , u“. , us]. and u6j. go together, then we formulate the factor model for

T

u)- "(uojgurpuzpu3./"u4j’u51’u6j)
as
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In matrix notation, the above models can be written as

L-l:

y} = XPBJ. +8}, 8,. ~ N(0,0'21,,/)
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,6, = W,y + Anj. (2-1-5)

Note that

r = D(u,) = A‘I’AT. (2-1-6)

By using a factor model, we reduce the number of variance-covariance parameters

estimated from 28 to 10.

2-2. Growth Models in Human Development Studies

Suppose that in a child development study, an outcome is modeled by a linear

function of age and want to know how much variability exists among children for

intercept and the rate of growth. Then, the model is

L-l:

Y,, = no, + 7r,,a,, + 6,,- , 8,, ~ N(O,0'2) (2-2-1)

where a,, is the age of child i at time t for t = 1,..., T, , and i = 1,..., n. Or, in more

compactly,

Y,, = A,,T7r, + 8,, , (2-2-2)

where A,, = (1, a,,)T and 7:, = (7:0,, 7r,,)T.

In matrix notation for child i,

Y, = A,7r, + a, , 8, ~ N(0,o*21,,) (2-2-3)
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where Y, :(K,,...,YTI,)T, A, = E ,and g, =(g,,,...,g,,,)r. Inis the T, x T,identity

matrix.

The level-2 model describes the variability of those person-specific parameters

among children.

L-2:

7r , = + u u , 0 r r

(JMOMJ: :1»

Or, in matrix notation,

7:, = y + u,, u, ~ N(0, 1). (2-2-5)

Now suppose we suspect that u,, and u,, are correlated with the correlation of 1 or

-1. Then using the proposed model, we formulate

u” - '7‘” 27 ~ N(0 w ) (2-2-6)
u.,=/1no,-’ °’ ’ °° '

In matrix notation,

/
_
\

K
.

\
-

\
_
_
_
/

ll

1

[1)("°-’)’ 770,- ~ N(0,woo).

or

uj = A77), 170] ~ N(O’LP) (2'2'7)

This implies that the variance and covariance matrix of uj. is

r = A‘I’AT. (2-2-8)

-21-



Thus, using a factor model, we reduce the number of parameters 7 from 3 (too, rm, 1'”)

tom/00.x).

2-3. Psychometric Analysis of Multivariate Outcomes

Suppose that we have a math test for 3rd grade comprised of 9 testlets (a testlet is

a group of questions that are closely related in terms of the topic within a test) and the

score from each testlet is the number of correct responses aggregated from the items that

belong to the testlet. In this setting, each score from a testlet can be considered to be

continuous and the score is standardized so that each testlet score has approximately the

same variance, or the same standard deviation in the population, say, a unit standard

deviation. This homogeneity of variance assumption is not restrictive for application,

because test scores are inherently interval scale so that we can always standardize as long

as we only consider one population problem that doesn’t involve group comparisons.

Thus in practice we standardize the scores using sample standard deviations for each

testlet among students. This standardization procedure should be acceptable if the number

of students is fairly large so that sample standard deviation is very close to the population

standard deviation. Further, suppose that the test was constructed so that the first three

testlets measure arithmetic proficiency, the second four testlets measure algebraic

proficiency, and the third two testlets measure geometric proficiency. Then, the following

model might be formulated. For testlet score Y, for testlet i and studentj,

L-l:

Y, = AjD“, +,8sz2,. +,6,,D3,, + 8,, (2-3-1)
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where Dl ,. , 0,, and D3,. are the indicators of which construct the item i indicates, and

(id

5,. ~ N(0, 0'2 ). More explicitly, if the examinee i has all the testlet scores, then

      

KY”) (1 0 0) (3”)

Y2} 1 O O 52}

Y3, 1 0 0 5,,

Y4,- 0 1 0 ,4}. 5,,

Y5, = 0 1 0 ,8“. + 85,- . (23-2)

)2,- 0 1 0 '35, 6,,

Y7, 0 1 0 £7,

11,,- 0 0 1 £8,

\Kij/ K0 0 1} \591')

Note that the level-1 model is actually a classical test theory model that

decomposes the observed score 1’, into the true score and the error score 8,. In this

example, there are three true scores for each studentj, arithmetic proficiency true

score A, , algebraic proficiency true score ,6” , and geometric proficiency true score ,6” ,

depending on which construct the item is supposed to measure. In matrix notation,

Equation (2-3-2) can be written as

y, = x,,6, +8, ,3, ~ moo-21“,). (2-3-3)

Then, at level-2, the three true scores for the examineej vary among examinees.

L-2:

A] = 710 + u” “11 0 TH 2'12 1,3

:82} = 7'20 +u2j , ”2; ~ N( O a 721 1'22 723 ) (2'3'4)

A} = 730 + “31 “31' 0 2'3, T32 2'33

Or in matrix notation,
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,B, =7+u,, u, ~N(0,r).

If we suspect the correlation between u,, and 1:2, to be near unity, then we

formulate

In matrix form, this is written as

u, = A0,, ’70,- ~ N(0,‘I’)

and the variance-covariance matrix of uj is

r = A‘I’AT.

(2-3-5)

V’or

. 2-3-6,1”) ) ( )

(2-3-7)

(2-3-8)

By using the factor model, we reduce the number ofparameters in r from 6 to 4. Also,

notice that by using a factor model at level-2, we might be able to say that there are

actually two constructs instead of three. But an altemateive argument is that, as the

variances are different, i.e., 1,, at T33 , we might consider that the second and the third

measure the different construct (Cheong & Raudenbush (1999)). In either interpretation,

the reliability ( Cronbach’s a type internal consistency) of the test score on the examinee

level (level-2) can be obtained.
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Chapter 3. Approach and Model Layouts

3-1. The Model

All the examples in sections 1, 2, and 3 of Chapter 2 can generally be written as

L-l:

Y1 =X,,B,+r,, (3'1)

where insa n, x 1vector, insa n, x R matrix, ,6, isa Rxl vector, and rjisa n, x1

vector, and

r, ~ N(0,0'21,,) (3-2)

where 1,, denotes identity matrix of size n,.

L-2:

,8, = W,7+u, (3-3)

where W, is a R x F matrix for F is a number of fixed effects parameters, 7 is a F x 1

vector, uj is a R x 1 vector. And for uj , we considered factor structure,

u, = A0,, (3-4)

where Aisa Rx M matrix, 77, isa Mxl vector (R2 M),and

u, ~ N(O, 1), (3-5)

7], ~ N(0,‘P)- (3'6)

Thus, we have

2' = A¢AT. (3-7)

The combined model of the level-1 and the level-2 models is
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Y, = X,W,7+X,An, +r,. (3-8)

Considering the case where we fix some of the elements of uj and not others of

,6, , the more general model can be written as

Y, = A,,y + Aszn, +r,, (3-9)

where

r, ~ N(0,0'21,,) and 77, ~ N(0,‘I’). (3-10)

Note that Y, is a nj x lvector of observed scores, AU is a nj x F matrix where F is a

number of fixed effects parameters, 7 is a F x l parameter vector, A2, is a nj. x R matrix

for R is a number of random effects, A is a R x M ( R 2 M) factor loading matrix, 77,. is

a M x 1 vector of factor scores, and r, is a nj x l residual vector. And 0'2 is a common

variance of each element of r, , In] is a nj x n, identity matrix, and ‘I’ is a variance-

covariance matrix of 77, .

3-2. Similarities and the Difference from the Multilevel Factor Analysis Model

The multilevel factor analysis model formulated by Longford and Muthén (1992)

was

L-l:

Y, =g, +A,7},, +4., (3-11)

L-2:

#1- = #+ A2772, +6.,» (3-12)

-26-



Thus this model assumes each student i in schoolj has p-variate complete

observation.

Ifwe translate the above model to the HLM notation, we would first formulate an

unconditional model (no predictors in both level-l and level-2 model) as

L-l:

Yij=fl0j+rij’ n,- ~N,,(0,2:,), (3-13)

where Y, is a P x lvector of outcomes for student i in school j, )60, a P x lvector of the

school means, r, a P x lvector of student level error, and Z, is a P x P covariance

matrix that is common to all the students across schools, and that represents the vvithin-

school between-student variability for P variates. Now we consider the school level

model.

L-2:

,80, = yo, + u,, , uO, ~ NP(O,22) (3-14)

where 700 is the vector grand means, and 11,, is the vector of school level disturbances,

and 22 is a P x P covariance matrix that represents the between-school variability. If we

make the combined model by plugging Equation 3-14 into Equation 3-13, we obtain

Combined model:

Y,=y00+uo,+r, (3-15)

Let 2 E D[Y,.] , P x P matrix. Then from Equation 3-15, it is clear that

2 = 2, + 2,. (3-16)
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Now we incorporate factor analysis model both in level-1 and level-2 residuals.

That is, for level-1, let

r, =A,77,,.+Zj,., 77,, ~N(0,‘I’,), é, ~N(0,Q,) (3-17)

where A, is aP x M, level-l factor loading matrix , 77,, is a M, x llevel-l factor score

vector, g, is a P x 1 level-1 uniqueness vector, and Q, is a diagonal matrix.

For level-2, let

uj=A277,,+§,,, 77,,~N(0,‘P,), §,~N(0,Qz) (3-18)

where A2 is a P x M2 level-2 factor loading matrix , 172,. is a M2 x llevel-2 factor score

vector, 52,. is a P x 1 level-2 uniqueness vector, and Q, is a diagonal matrix. After

incorporating the factor structure, we have

2, = A,‘I’,Af + (2, (3-19)

and

Z, = A2‘112A72~ + (22. (3-20)

Note that since they were interested in exploring the factor pattern, they gave

constraints ‘1’, = IMl and ‘1’, = [MI in order for the model to be identifiable. Thus,

covariance matrices actually modeled are

2, = A,A’, + Q, (3-21)

and

E, = AzAT2 + (2,. (3-22)

They were interested in testing
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H02A, = AZ.

This hypothesis involves testing M, = M2 , i.e., the number of factors in student level is

equal to the number of factors in school level.

To summarize the similarities and differences between my model and Longford &

Muthén’s model (1992), it can be stated in the followings.

Similarities:

1. Both approaches use a factor analysis model in the multilevel model.

Differences:

1. My model only has factor structure at level-2, but Longford & Muthén’s model has

factor structure at both level-1 and level-2.

2. My model has independent variables in both at level-1 and level-2, but Longford &

Muthén’s model does not have them either at level-1 or level-2.

3. My model is a confirmatory factor analysis model, but Longford & Muthén’s model is

an exploratory factor analysis model. That is, my model has known and fixed elements in

factor loading matrix A , but Longford & Muthén’s model estimates all the elements in

level-1 and level-2 factor loading matrices (A, , A2) and let ‘1’, and ‘I’, , factor score

covariance matrices in level-1 and level-2, be identity matrices in order for the model to

be identified.

4. My model can handle level-1 observations missing at random while Longford &

Muthén’s model requires all the students to have complete observations in terms of

outcome.
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3-3. Identification

When we start using a factor analytic type of the model that involves a

decomposition of the covariance matrix which is a case of the confirmatory factor

analysis (CFA) model, we often encounter model identification problems. The

interpretations of the parameter estimates are meaningless if we estimate the parameters

of the unidentified model. Therefore, model identification must be established before we

estimate the parameters in the model.

Model identification is concerned with whether the parameters of the model are

uniquely estimable, assuming a sufficiently large sample. Issues of model identification

in confirmatory factor analysis (CFA), which is a special case of SEM (see the model at

the section 2-2 of Chapter 1), are detailed in, for example, Bollen (1989). Therefore, here

we briefly describe what it is, what the problems are, and what is the current status of our

knowledge on model identification of CFA.

In CFA, the population covariance matrix X is a ftmction of a R x 1 vector of

parameters 6 , which contains all of the unknown and unconstrained parameters of the

model.

A CFA model can be written as

y= A77+§, (3-23)

where y is a R x 1 vector of deviation scores from the sample mean of observed

variables so that we have E(y) = 0 ; 77 is a M x 1 vector ofcommon factors; A is a

R x M matrix of factor loadings relating the observed y ’s to the latent 77 ’s; and cf is a

R x 1 vector of residual or unique factor, which is a combined element ofunique factor
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and measurement error. Let 2 be the population covariance matrix of y , i.e.,

2‘. = D[y] = E(ny) . Let ‘I’ be the covariance matrix of the 77 , i.e., LI’ = D[q] , and let

Q be the covariance matrix of .5 , i.e., Q = D[5] . We assume that the population means

of 27 and 4‘ are zero and 77 and 5 are uncorrelated. That is, we assume E(77) = 0,

E(g) = 0 , and Cov( 77, 4‘) = E[ng"T] = 0. Then, we obtain the covariance equation,

2 = A‘I’AT + Q. (3-24)

Thus 2 is represented as a function of the A , ‘I’ , and Q. In the CFA model, some

constraints are placed on A and/or ‘I’ based on the prior knowledge of the subject matter

that researchers are studying. Let q, be the number of unknown parameters in A , q2 be

the number of the unknown parameters in ‘I’ , and q3 be the number ofunknown

parameters in the Q , and let q be the total number ofunknown parameters in the right

hand side of Equation (3-24). Then we have q = q, + q2 + q,. We represent all of these

parameters as a q x 1 vector 6.

A model is said to be identified if all parameters in the vector 6 are identified.

Thus a model is identified if 2 = 2(6,) = 2(62) implying that 6, = 62 , where 6, and 62

are the parameter vectors that have any specific values. Note that 6, and 62 are different

even if one of the corresponding elements are different. Negating the proposition, the

model is not identified if there exist 6, and 62 such that 6, ¢ 62 and 22 = 2(6,) = 2(62).

Another way of saying this is that if the parameters in 6 are solved uniquely by a

function of the population parameters in 2 , then the model is identified because

estimation involves using sample data to obtain estimates of population parameters. In
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confirmatory factor analysis (CFA), this involves using the sample covariance matrix of

the observed variables, called S , which is sufficient for 2 under a balanced design and

given our assumptions, to estimate the parameters in A, ‘1’, and Q.

The latter definition of identification suggests a method to demonstrate model

identifiability. That is, if all parameters in 6 are represented by unique functions of

elements of Z , then the model is identified. If not, the model is said to be unidentified.

When there is only one way to express the parameters in 6 , the model is said to be just

identified. If there are several ways, then the model is said to be overidentified. In most

cases, we try to formulate an overidentified model, because it provides an opportunity to

test our hypothesis. Representing a model with a smaller number of parameters than the

number ofunique parameters in the population covariance matrix 2 reflects our attempt

to explain or describe a complex phenomena by a relatively simple theory.

The argument of identifiability of a multilevel factor model can be made in the

same way since 2’ can be seen as the counterpart of a population covariance matrix of

observed variables in SEM, which is denoted as 2 . That is, if r is the positive semi-

definite, the identification condition follows those given by the confirmatory factor

analysis (CFA) model. Thus, we first smnmarize the current status ofour knowledge

about identification ofCFA model.

The trouble in assessing identifiability ofCFA models is that not only we have

not found necessary and sufficient conditions, but also we have not yet even found a

relatively general, widely applicable sufficient condition. Currently there are a couple of

necessary conditions known. They are useful, but the model that satisfies the necessary
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conditions is not necessarily an identifiable model. It only gives a hope that can be

identified. Therefore, a pitfall in which we could fall is a case in which a model satisfies

the necessary conditions, but is not an identifiable model, and we run the software

without knowing the fact and the software gave the estimate. In this case, the estimate is

meaningless'. On the other hand, models that satisfy sufficient condition are guaranteed

to be identified. If we know the sufficient condition, we are sure that the estimates

obtained by running the software are meaningful. Therefore, a sufficient condition is

stronger condition than a necessary condition.

One way to know whether the formulated model is identified is to algebraically

solve the simultaneous nonlinear equations in terms ofunknown parameters. If each

parameter in 6 can be represented uniquely by a function of the elements in 2 and by

the pre-specified parameters, then the model is identified. This is the only necessary and

sufficient condition of model identification ofCFA models that we know So far.

However, since the simultaneous nonlinear equations to be solved become very complex

when the model gets large and since we may not know a systematic way of solving them,

it is often a very difficult task to know whether the unique solution is obtainable or not.

Therefore, though it is a necessary and sufficient condition, solving the simultaneous

nonlinear equations is not considered to be a good way to demonstrate the model

identification. Long (1979) characterized this problematic status as “proving that a model

 

' A remedy for this is that using the different starting values of the parameters, we see if we get the same

estimates. This strengthens our confidence that the model is identified, but it is not still enough because

there are infinitely many starting values in the parameter space and we can not test all of them.
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is identified presents one of the greatest practical difficulties in using the confirmatory

factor model” (page 36).

In terms of necessary conditions for identification of CFA, there are generally two

necessary conditions available. Kline (1998) summarized those necessary conditions as:

1) the number of parameters to be estimated 5 number of observed

R(R+l)

2

 

unique variances and covariances (q s ). (3-25)

2) every factor must have a scale, i.e., unit variance of each factor

should be defined.

The second condition can be achieved by either fixing each factor variance to unity or by

setting an element of each column of the factor loading matrix A to a constant, usually 1,

which sets one of the factor loading one for each factor.

Since identifiable models must satisfy these conditions and both conditions are

easy to check, they are very useful for screening unidentified models. However, even

after screening the unidentifiable models using these necessary conditions, many

unidentifiable models remain, having different patterns of factor loadings.

Some works have been made concerning sufficient condition for identification of

CFA models. For example, the two and three indicator rules and Bollen’s slightly more

general condition for the three indicator rule (Bollen, 1989) provide some methods. Davis

(1993) extended these works and found the general sufficient conditions for identification

of CFA with factor complexity of one, where the factor complexity is defined as the

number of factors on which observed variables load at most, and factor complexity of one
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means that each observed variable loads on one and only one latent variable. This

condition allows that measurement errors be correlated. However, the scope of these

sufficient conditions are limited because these conditions apply only to CFA model of

factor complexity of one, a rather simple model. Thus we only can use these rules of

sufficient conditions for simple factor loading models. These do not apply to factor

models that have a cross-loading structure, which is defined as some of the observed

variables load on more than one factor.

It seemed promising at first look for a sufficient condition for uniqueness of factor

loading matrix A under rotation provided by Howe (1955) and Jdreskog (1979).

Joreskog (1979) provided a sufficient condition for the uniqueness (not for model

identification) of A under rotation for the confirmatory factor analysis (CFA) model. The

CFA model that Jdreskog (1979) used adds another assmnption for 6 , that is, each

element in .5 is uncorrelated with each other element. This additional assumption

constrains the Q to be a R x R diagonal matrix which contains only the variances of 5 in

the main diagonal, with all off-diagonal elements fixed to 0. It is assumed that all

diagonal elements of Q are unknown parameters to be estimated.

The scales of the latent variables 77 can be determined either by the requirement

that ‘I’ is a correlation matrix or that there is a fixed constant (usually set as l) in each

column of A . The remaining elements of A are either fixed to zero or are unknown

parameters to be estimated.

The sufficient conditions for uniqueness (again, not for model identification) that

was stated by Joreskog (1979) are:
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(a) ‘1’ is a symmetric positive definite matrix with diag(‘1’) = IR ,

(b) A has at least n-l fixed zeros in each column, and

(c) AS has rank n-l, where A, , S = l,2,...,n , is the submatrix of A

consisting of the rows of A which have fixed zero elements in the (3-26)

.S“h column.

Several authors of books on confirmatory factor analysis (for example, see pages

43-44 of Long (1979)) confused a sufficient condition for uniqueness of A under rotation

with a sufficient condition for identification. Bollen and Joreskog (1985) clarified this

misunderstanding by showing an example in which uniqueness of A under rotation does

not guarantee the identification of the model. An example of an unidentified model they

used was unidentified because the parameters in Q needed to be estimated. The A and

‘1’ were unique under rotation if the parameters in Q were known. However, since

parameters in Q parameters need to be estimated, then unidentification occurred.

Therefore, if there are no parameters in Q in the model, it seems that the condition that

Howe (1950) and Joreskog (1979) proposed is a sufficient condition for identification as

long as the examples I’m going to use.

Now we consider the identification issue for HLM that involves a factor analysis

structure. If we replace the r matrix in HLM as 2 in CFA, the same thing can be said

about the model identification. The requirement of r as a covariance matrix of u,. is that

it should be positive semi-definite matrix, the same as the condition required for 2 . The

only difference is that the HLM factor model (see Equation (3-7)) does not involve the

unique residual variance, Q (see Equation (3-24)), though it can be easily added.
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Therefore, we restate the conditions for identification for the HLM factor model, which

are the same for identification of CFA models, with an additional necessary condition

that is useful for screening unidentified models.

We first describe the simple necessary conditions to check. If these conditions are

not met, the model will not be identified. Thus, we can use these conditions to screen the

turidentified models at the first stage of model consideration.

Necessary conditions:

1. the number of parameters estimated 3 the number ofparameters in r

R(R+l)

(q S ——2)-

2. every factor must have a scale, i.e., unit variance of each factor (3-27)

should be defined.

3. M2 independent constraints on A (or ‘1’) must be given, where M is the

number of factors.

The first two are the same necessary conditions in CFA model. Necessary condition 1 is

simply states that the number of equations must be at least as many as the number of

unknowns. Thus, we need at least the same number of independent equations as the

number of unknown parameters to be estimated.

Necessary condition 2 states that the M scales are necessary for each factor in the

M x 1 vector, 77 because in order to calibrate the variance of a random variable in terms

of variance of factor, the unit variance of the factor must be defined on the first hand.
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The third necessary condition that I propose derives from the indeterminacy ofthe

factor model. Given a positive semi-definite covariance matrix I and a number of M

factors which satisfy the equation I = A‘I’AT. Let A' = AT and ‘1" = T""1’TT'l for any

m by m invertible matrix T. Then A"1"A'T = (AT)(T"‘1’TT"l )(TTAT) = A‘I’AT = 1.

Thus the pair (A. ,‘1’°) produces the same 2' as that of (A, ‘1’). Therefore, in order to

uniquely identify A and ‘1’ , we need to specify T, i.e., we need to impose M2 (the

number of elements in the matrix T) constraints on A or ‘I’ . Thus, if there are less than

M2 restrictions on either A or ‘I’ , then both A and ‘1’ are not be identifiable (See Pages

553 - 557 of Anderson (1984)).

There are two ways of determining the scales of each factor. One is to set the

diagonal of ‘1’ to unity, which scales the variances of all latent factors to one. Another

way is to set one of the elements in A for each column to one. Since we want to keep the

same metric in I], as in u, in our multilevel confirmatory type factor model in Equation

(3-9), we choose the second option. That is, we fix an element of each column of the

factor loading matrix A as 1. By doing that, we are specifying a unique variance at level-

2 unit as the reference variance of the factor.

If we choose to scale the latent factors 77 by setting an element for each column

of A to one, then the 2nd and the 3rd necessary conditions can be summarized as one

necessary condition, which is, the linear transformation matrix should be the identity

matrix, i.e., T = 1M . In this condition, the 2nd necessary condition is represented by the
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fact that we fix all the diagonal elements of T to 1, and the 3rd necessary condition is

represented by the fact that we set all the M2 elements in Tto either 1 or 0.

Though only two conditions out of three are independent, I formalize three

necessary conditions for identification for our HLM2F model represented in Equation (3-

9) for practical purpose in the followings:

If the model in Equation (3-9) can be identified, it must satisfy the following two

conditions, otherwise the model cannot be identified:

1. the number of parameters estimated must be smaller or equal to the number

 

. . . R( R + 1)

of unrque parameters 1n r , i.e., q S 2 .

2. every factor must have a scale, i.e., unit variance of each factor (3-28)

should be defined.

3. the linear transformation matrix T must be the identity matrix, i.e., T = IM

under the transformations A. = AT and ‘1" = T"‘I’TT'1 .

We confirm that the 3rd condition above is truly the necessary condition by the

following reasoning: The model is not identified if the model is not unique under linear

transformation of A and ‘1’ because there exist at least two pairs, (A,‘1’) and (A. ,‘1”)

that produces the same I , which is the definition of unidentified model. Therefore, our

statement is if there exists a non-trivial M x M linear transformation matrix T , which

means that T is not the identity matrix, then the model is not identified. Taking the

contrapositive, we can say that if the model is identified, then the linear transformation

matrix Tmust be the identity matrix. This states that T = IM is a necessary condition for
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the model identification. Note that the second necessary condition is exact when we

choose to scale the latent factors 77 by setting an element in each column of A to one. If

we choose another scaling option, which is setting ‘1’ = 1M , then Tcan be either T = IM

or T = —1M because of the arbitrariness of the sign of the factor loading matrix.

In terms of the sufficient conditions, we do not know them yet. We know that if

we can solve the covariance equations uniquely for the unknown parameters in 6, the

model is identified, and thus the solvability of covariance equations in terms of 6 is a

necessary and sufficient condition. In this situation, it seems most practical to proceed as

follows:

1) Formulate the specific model and check its identification by two necessary

conditions.

2) If the necessary conditions are satisfied, then we check the identification by

attempting to algebraically solve the covariance equations. If it is solved, then

the model is identified. If not, treat the model as unidentified.

Therefore, I present the model identification issue in detail for the specific models that

will be used in Chapter 5. First, I will describe the context of the data because

specification of the A matrix not only depends on the identifiability of the model but also

on the substantive knowledge of the context. That is, it is not useful to estimate the

parameters of the model that aren’t substantively interesting.

As a classical application of a factor model, we consider a setting where subtests

are nested within examinees. Though this does not require a hierarchical model, we can

-40-



see a hierarchical model as a technique for data reduction. This is useful because it allows

comparison to the models where we have a lot of experience.

Specifically, suppose that a test involves 4 subtests, mathl, math2, verball, and

verba12 and that each subject takes two parallel alternative forms at each test in a

relatively short time span. We assume that there are no missing cases and that there is no

learning effect or memory effect for the two occasions of the measurements. There are

100 subjects. Thus we create a situation in which subtests are nested within students and

each student has 8 observations, which results in 800 observations total. Now we assume

that the true scores of subtests mathl and math2 are perfectly correlated as are those for

verball and verba12. Thus we can have 2 factors, mathematical and verbal proficiency.

The correlation between mathematical and verbal true scores is 0.50. Then the model can

be formulated in a hierarchical model form as

L-l:

K} = '4le0 + IBIJXM + '631X3ii+ ,64,X,,. + 54';

4

= 2'6qu17 + 547

(Pl

iid

, 5,, ~ N(0, 0'2) (3-29)

where X,, = 1 if ith observation is qth subtest, and 0 if not. The standard HLM2 specifies

the level 2 model as

L-2:

761} = 710 + “I;

fly =720 +112, (3-30)

763} =730+u3j

7641:740 +114}
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(

“Ij 0 TH T12 713 2'14

u2 . 11.7 0 r r r r
j 12 22 23 24

where ~ N , , and the supposed level 2 model reduces

“31 O 2'13 2'2, 2'33 2'34

“4j K 0 714 1'2, 2'34 744

the number of parameters at level 2 as

L-2:

A] =710 +’71j

7621 =720+21n|j

783; =73o +7721

764} =74o +1202j

where the unique four level 2 errors are reduced to two, i.e.,

u,, 1 0

“27' = ’11 O (7711] and (”IIJTN((O) (W11 W12))

“31‘ O 1 7727‘ , 7727' O , W12 W22

”47' O 42

Note that there is a relationship between u, and 77, as

”j = A”;

and thus

2' = A‘I’AT.

In element wise, it can be represented in a set of equalities:

711 7'12 713 714 W11 ’11er W12 ’12le

712 2'22 723 2'2, _ 11W” A12W” A1W12 A1’12W12

1,3 2'23 T:13 2'34 - W12 A1W12 W22 A2W22

{,4 2'2, z'34 744 ’12 W12 A1/12W12 ’12 W22 ’1; W22

1 = A‘I’AT =

and if we write this in a correlation form denoted as p, , then
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1.0 1.0 p p

,0 = 1.0 1.0 p p , (3-36)

' p p 1.0 1.0

p p 1.0 1.0

where p = corr(77,,, 772,) = -\/-=—@\/-=.

' W11 W22

WCSCI 710 :720 :730 =740 =500, 0'2 =25, 11,:08 12 =12, 1”,, =100,

11/22 =100, W12 = 50 SO that corr(7},,,7}2,) = 0.50, amediurn size correlation. Thus we

specified the r as

In T, 2 T, 3 T” 100 80 50 60

T: 7.2 72, 7,, 7,, _ 80 64 4o 96 , (3-37)

T13 1’23 T33 T34 50 40 100 120

1,, 1,, T3, 1'“ 60 96 120 144

and as a correlation,

1.0 1.0 050 050

1.0 1.0 050 050

p: 050 050 1.0 1.0 '

050 050 1.0 1.0

(3-38)

The true model, as shown in the above, and from which we will generate the data

is called “model 1”.

Model 1: The assumed correct model

It has the factor loading matrix of

1

2.

H
0
0

0

0

3
»
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We see from it that the unique element u, j and u,, only loads on the first factor and the

variance ratio is one to 2,2 . Similarly, the unique element u,, and u“. loads only on the

second factor and the variance ratio is one to 71,3 .

The most general model among two factors can be formulated by letting all the

elements in the factor loading matrix A be free, unknown parameters except setting two

1’s at the position of (1,1) and (3,2) for scaling purposes. It is named “model 2” and is

represented as:

Model 2: Saturated, but not identified model

1 2,

A = 11 71,

,1, 1

’13 ’2

This is an unidentified model because it does not satisfy the necessary condition (2). This

can be shown by checking the uniqueness of the linear transformation matrix T. Let

1 716 x+/l6u y+/l,v l A;

T=(x y].Then,/\ —AT= 3'1 14(3‘ Y): 11x+14u 11y+l4v = A; ’1;-

u v 715 1 u v 715x+u 25y+v ,1, 1

’13 A2 713x+27u lsyi'flqv 3:5 ’1';

Thus we have conditions for A. that need to be satisfied, which are

x+&u=L

&y+v=L
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This simultaneous equations have infinitely many solutions other than

,u=—1—v=l andy=—2-—.Thusthex=1,y=0,u=l, and v=l,forexample, x=

2716 3 32.,N
l
—
—

linear transformation T is not the identity matrix. Therefore (A,‘1’) is not unique.

Therefore model 2 is not identified.

Specifying the factor loading matrix as a 4 by 2 matrix reflects the researcher’s

belief about how many factors exist for the data. We specified that there are two factors

T . . .
and that u, = (u,,, u,,, u,,, u,,) are linear combrnatrons oftwo factors (7},,,772,. ).

This model is a saturated model in the sense that there are as many unknown elements

involved in A as possible when we have two factors. However, as we proved in the

previous paragraph, it is not an identified model because of nonexistence of unique linear

transformation matrix. Though it is an unidentified model, it is worth mentioning the

substantial meanings of the numbers of the rows and the numbers of the columns of the

A . The numbers of the rows tell us how many residuals unique to the random coefficient

,6, exist and the numbers of columns tell us how many common factors exist. In CFA,

we decide the numbers ofcommon factors mostly from the substantive knowledge, either

theoretical knowledge or common sense.

As a more general than the model 1, and as an identifiable model, researchers may

formulate the following model.
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Model 3: Identified model, but a misspecified model

0

71

A

o
}
.
-

1

As 42

This is an identified model and the model 1 is nested within this model, because if

we fix 2., = 71, = 0 , we obtain model 1. In order to test identifiability, we take two steps.

That is, we first check the necessary conditions by (3-28). If the necessary conditions are

satisfied, then we proceed to solve the covariance equations to see if indeed the model is

identifiable.

Thus, we first check the three necessary conditions. The first one is satisfied

 

R(R+l)

2
because {the number of parameters in Tau} ( ) = 10 (R = 4) 2 {the number of

parameters estimated} (q) = 8 ( 4 + 3 + 1). It is clear that the second condition is also

satisfied because there are 1’s in each column of A at the position (1,1) and (3 ,2). To

y
check the third condition, consider an invertible 2 by 2 matrix T = [x J . Then,

II V

1 o x y 1 0

A'=AT= 71, 71, [x y): 71.,x+/t,u li,y+/t,v = A, A;

0 l u v u v 0 1 '

1, 2. 1,.+7,u Asywv 2; A;

Thus we have conditions for A' that need to be satisfied, which are

0

I) = I, . Therefore, the transformation is

1

x=1,y=0,u=0, and v=1,thatis, T=[0

unique, so A is unique under linear transformation. Since all of the three necessary
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conditions are satisfied, there is a hope that this is an identified model. In order to check

whether it is an identified model, we see an algebraic solution. Simultaneous equations

that we should solve for unknown parameters are obtained from 1 = A‘I’AT . That is,

1,, 1,, 1,3 1,, l 0 l 0 T

712 1'22 ’23 1,, _ ’11 ’11 (W11 W12) A1 '11

1,, 723 731 Tu - 0 1 W12 W22 0 l

1'14 721 ’14 Tu ’11 A1 ’11 '12

( W11 W12

_ ’11W11'1'A'1W12 A1W12 +14W22 [1 ’11 0 A!)

- W12 W22 0 ’11 I '12

KA1W11+11W12 13%: +32sz

( W11 31W11+11W12 W12 31W11+12W12

_ A1W11‘1‘3’4W12 11(11W11+11W12)+’11(’hW12+’14W22) AW12+34W22 Aria-rWu+14W12)+11(11W12+’14Wn)

- W12 ’11le 7'14sz W22 ’11le +12sz 
KAWII+AZW12 31(A1W11+’11W12)+’14(A1W12+32W22) ’lJle‘l'Ang A<AW11+12W11)+21(11W12+12W22

Thus, we have simultaneous equations

r

  

1;!” = 1,, ................................................................................ (1)

2,1/1” +24%, = 1,, ................................................................... (2)

1,111,, +71,u/,, = 1,, ................................................................... (4)

, 2101,16,, +2,1//,,)+/t,(}l,1//,, + 2.4%,) = 1,, .................................. (5)

711/4, + 714%, = 1,3 ................................................................... (6)

713(A,1//,,+ 2.,1/1,,)+ xi,(/i,1//,, +2,1,1/,,) = 1,4 .................................. (7)

1y,, = 133 ................................................................................ (8)

131/4, + 2.,1/1,, = 13, .................................................................. (9)

,1,(/1,1//,, + A,1//,,) + xl,(/i,1//,, + 71,1,1/,,) = 144 .................................. (10)

It can be seen that from Equations (2) and (6), we can solve for 71, and 71, because w” ,

1,11,, , and 1,11,, can be easily solved by Equations (1), (3), and (8) respectively. From

Equations (4) and (9), we can solve for A, and 71,. Therefore, the model is identified.

Actually it is an overidentified model because there are other ways to obtain the

-47-



solutions, For example, once we have solutions on 1,11”, W12 , w,, , A, , and 714 , we can solve

for 71, and 71., from Equations (7) and (10).

There are several characteristics that make this model one ofthe most

substantively sensible models. First, the dimensionality was reduced from 4 to 2, and we

specified that the number of unique factors is two. Specifying the first row of A as (1,0)

and the third row as (0,1) make u,, = 77,,, and u,, = 7;,,, which means that the unique

randomness of mathl is the score of first factor, and the unique randomness of verball is

the score of second factor. The model defines that the variance factor 1 is exactly the

variance of 6,, , the variability of mathl scores among examinee, and nothing else. The

same thing can be said to the variance of 6,, , variability of verball scores among

examinees. This model is considered to be substantively most sensible.

Model 4: identified model, but a misspecified model

A: ,‘1’=(1//,,).

.1
».

a
)
.
a
:
-

This model is an identified model and is nested within model 1 so that we can apply the

deviance test. The fact that this model is nested within the model 1 can be shown as

follows. For model 4, we have
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A‘I’AT= (W11)(1 ’11. ’1; AJ)

1
}
)
.
i
t

3
”
.

'
—

W1.1 A;W1.1 ’13. W1.1 ’1; W1.1

= 11. W11 ’11.2 W11 21. ’1; W1.1 ’11.); W11

’15. W11 111; W11 15.2 W1.1 As. ’1; W11

XiW1.1 ’11.];W1.1 ’15. liW1.1 33.2 W11

We compare this expression to the model 1’s counterpart:

1 0 W11 W12

A‘I’AT= ’11 0 [W11 W12](1 ’11 O 0]: 11W” 31W12 [1 31 0 0]

0 1 W12 W22 0 0 1 ’12 W12 W22 0 O 1 ’12

O ’12 A12W12 ’12sz

W11 31W” W12 ’12le

_ A1W11 112W” 11le A1A2W12

_ W12 ’11le W22 12W22

12W12 A1’hW12 ’12sz 122sz

In this expression, we let the correlation of latent variables be 1 to reflect our idea for

model 4 that every 4 u, ’s has completely correlated with each other. That is,

 

W2 0 o o o

pin/7h; =W :11“, W12 =VW11VW22 -Thenlet W11=W117 ’11 =’11 9 W22 =15VW117

,1, = . . Then starting from model 4, we obtain model 1. Therefore, model 4 is nested
 

a
t
:

3
°
.

within model 1. This process can be summarized by saying that after we set the

correlation between two latent variables as 1, then we rescale the V1,, and 71, by A; ,

where A; is newly specified as a element of the factor loading matrix A .
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Chapter 4. Estimation and Inference

To estimate the parameters in the model (3-9), we adopt the method of full

maximum likelihood (MLF) via Fisher scoring, adapting Longford’s (1987) approach.

We choose full maximum likelihood (MLF) as a method of estimation instead of

restricted maximum likelihood (MLR)'.

If we look at the model (3-9) from the general linear model point ofview by

letting

e, = A21921 +0, (4'1)

we have

Y,=A,,6l+e,,e,~N(0,V,) (4-2)

where

V, = A,,A‘1’ATA,T, + 021,, . V (43)

Let ¢ = (94 , ¢, ,..., ¢Q )Tbe a Q x 1 vector of underlying parameters that produce V, . It is

well known that, conditional on the maximum likelihood estimate (MLE) of q) , the MLE

of 61 is asymptotically orthogonal to the MLE of (15 because the Hessian component

 

’ The difference between MLR and MLF is that we specify a flat prior for the fixed effects in the case of

MLR but not for MLF. The choice of model specification between MLF and MLR has pros and cons. The

advantage of MLF is that the derivation is easier than MLR and is completely fit to the frequentist notion

of Maximum Likelihood estimation. However, MLF underestimates variance component parameters

because it doesn’t take the uncertainty of the fixed effects. Thus, MLF produces biased estimates for

variance components parameters whereas the corresponding MLR estimates are unbiased. However, MLF

has advantage in terms of hypothesis testing because MLF allows deviance test for both fixed effects and

random effects whereas MLR is only for random effects.
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621 .

E[—] is 0, where 1 1S the log likelihood of the model (3-9). The MLE of 6 is given

56151“

by generalized least squares (GLS) as

6'11... = (Ail/"A11" AIV'W (44)

J

where A, = [A,T,,A,T,,---,A,T,]T, a N x Fmatrix for N = Zn, , the total number oflevel-l

7-1

J .

units, V = 031V,, a N x N matrix, Y= [11T,}’,T,~-,Yf]r, a N x 1vectorofobservations.
J:

Note that GB denotes the direct sum operator. And the asymptotic covariance matrix of

Q.MLE is

D[ei.m.1=<A.’V"A. 1“ (4-5)

5’1

461615

r ] =02, we just need a series of scoring
 

where V is evaluated at 6,“. Since E[

iterations with respect to ¢ to obtain 43,“. After we obtain 65W, , we compute 61M“, by

formula (4-4).

The log likelihood based on Equation (4-2) is

N 1 1

WM ; Y) E log L(6l,¢ ; Y) = — 310g(27r)- 5 logl VI- EeTV‘VB, (4-6)

J

where e = 63' e, . Since Y is a random sample of size J of Y, ,
I:

 

2 This is generally true when we take derivative of I twice with respect to the fixed effects 12 and the

random effects ¢ successively, and then take the expectation with respect to the distribution.
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J

1(0.,¢,;Y)=le(a.¢;13) <4-7)

I"

where

n l 1 _

4161,7302 logL,(61.¢;Y,)= --,ilog(2z)—§Iog1V,I—,eIV,'e,.. (4-8)

Longford (1987) gives the score vector and Hessian of the log-likelihood function (4-8)

in terms of element wise formula. Raudenbush (1994) showed the formulae in more

compact matrix form. The key results are for the q x 1 score vector

 

  

61, 1 6vecV, r

S, EE=§( 3,, ) (vecM,) (4-9)

where

M, = V,"(e,ef — V, )V,’1 (4-10)

and

J

S = 25,. (4-11)
j=l

For the q x q Hessian matrix,

H _ E 621, 1(6vecV,]T V" ®V" (6%ch 412

j: [wa¢T]_'—2 a¢ (j j) a¢ (' )

and

J

Hz 2H,. (4-13)

j=1

We apply the above general formulae to obtain (3,4,5. The details of the derivation

and the algorithm are in the Appendix.
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To implement the Fisher scoring algorithm, we need a starting value of the

parameters in the variance-covariance matrix V, . Though it is arbitrary, we need to

provide a good starting value to obtain the MLE within the parameter space and its

quicker convergence. Though V, is a function of three components, i.e., 7t , w , and 0'2

(See Equation (A-4) in the Appendix), the hard part of providing a good starting value is

in 71 and 1,11 , which are the vector of unknown elements of A and unique elements of

‘1’ (Starting values for the estimate of 0'2 can be found in the section of Starting Values in

the Appendix). One way to obtain the starting values for the estimates of A and 11/ is by

analogy to the factor analysis. That is, we execute principal component factor analysis on

the positive semi-definite f , which is obtained by using the same method as current

HLM2, and then take advantage of the pre-specified structure of A to find the initial

estimate of A , which is denoted by A”). Then solving 1 = A‘I’AT for ‘1’ and substituting

A by A”) and 1 by zT , we can obtain ‘1"0’ , the initial estimate of ‘1’. The details of the

step was shown in Appendix.

Finally I note that in order to obtain approximate standard errors for 6M”. , we will

compute the information matrix by

Inf0.= —H (4-14)

where H is evaluated at (3%,. Then, the asymptotic standard errors for grim are

computed by

 s.e.(¢3,) = (r = 1,..., Q) (4-15)
1

Info."
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where ¢, is the rth element of vector ¢ and Info.” is the corresponding rth diagonal

element of the information matrix ( Info. ). For the standard error of 61 , the MLE of fixed

effects 61 , we will compute the asymptotic covariance

D[élszr'A. )" we

where V is evaluated at q; , the MLE of covariance structure parameter ((1. Then the

standard error of the rth element of a vectoré is given by

s.e.(é,,) = [(A,TV"A, )-' 1,, V (4-17)

for r = 1,2,..., F. Note that since qi, and 61, are known to be asymptotically normally

distributed, we can use them for the inference by keeping in mind that it’s an

approximation.3

 

3 The large sample normal approximation for the standard error of 6 is poor in most applications so that

other techniques are required in practice (Bryk & Raudenbush, 1992, Chapter 3).
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Chapter 5. Computational Examples

In this chapter, I will demonstrate how the proposed model can be applied to real

data sets and when it is useful to do so. I first show that the HLM2 factor analysis model

(HLM2F) includes the standard HLM2 model as a submodel, by using a model

formulated in Bryk & Raudenbush (1992) for the High School and Beyond data. The next

example shows a case when the HLMZF model is usefirl, using the data from

Huttenlocher et a1. (1991) on children’s vocabulary growth. The third example shows

how to specify the factor analysis model when the Tau-matrix (the level-2 variance-

covariance matrix) is relatively large such that specification of the factor structure is less

obvious. The fourth example uses artificial data with known parameters. The purpose of

demonstrating this example is not only to provide a check for the validity of the

computation, but also to demonstrate how to formulate a reasonable model, i.e., a

substantively meaningful and an identifiable model. Further, it illustrates how to evaluate

and correct mis-specified models.

5-1. High School and Beyond

I use the High School and Beyond (HS & B) to demonstrate that the standard

HLM2 model is a submodel of the two-level Hierarchical Linear Model with Factor

structure (HLM2F).

The data is a subsarnple from the 1982 High School and Beyond Survey, and

includes information on 7,185 students nested within 160 schools. In Table 4.5 on page

72 of Bryk & Raudenbush (1992), the results of the following model are presented:
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HLM2 model:

L-l:

_ iid

Y, :60, +6,,(SES—SES_,),, +£,,,£,. ~N(0,0'2)

L-2:

a), = yo, + y,,(Sector),- + 702(SES.,-)j + “0}
(5-1)

,6, = 7,0 +y,,(Sector), +y,,(SES,,), + u,,,

(2:1)TN((3),(:$: :20).

Here, Y, is the math achievement score for student i in schoolj; SES,, is a measure ofthe

socio-economic status (SES) of student i in schoolj; SES.)- is the sample mean of SES of

the schoolj; and Sector, is the indicator variable taking on a value of ‘one’ for Catholic

schools and ‘zero’ for public schools.

Since the model which I developed in Chapter 3 uses the full maximum likelihood

with the Fisher scoring algorithm and the default HLM2 uses the restricted maximum

likelihood with the EM algorithm, we set the estimation method ofHLM2 as comparable

as possible to the HLM2F. This can be done by setting the HLM2 optional specification

to MLF (Full maximum likelihood) and the number of Fisher iterations to 1. Setting the

number of Fisher iterations to l specifies the program to run all the way by Fisher
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scoring, but if the algorithm fails for some reason], then the algorithm switches back to

the EM algorithm.

The results ofHLM2 by MLF with the number of Fisher scoring = I are in the

second column of Table 5.1.

The HLM2F model equivalent to the above model can be specified by setting the

factor loading matrix as the identity matrix ofthe size of the number ofrandom effects in

HLM2. This can be shown as follows.

HLMZF model:

L-l:

— iid

Y, = 6,, + 6,, (SES — SES,), + a, ,5, ~ N(0,0'2)(Same as L-l model oquuation (5.1))

L-2:

flu} =700+701(Secmr)j+Yoz(SES,,)j+1°77” +0'772j . (5'2)

6, = 7,, +7,,(Sector), +7,,(SES,,), +0- 77,, +1-77,,

where

(:22) N13111: 1;»

In matrix form, the level-2 model can be written as

6, = W,7 + A77, (5-3)

 

I Most typical reason of this failure is that Fisher will produce negative definite i" .
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1 Sector, SES,, 0 o 0 J
h W.= __ ,

w ere ’ [0 0 0 1 Sector, SES,,

' l 0

Y=(7ooa 7017 702’ 710’ 711’ 7l2)r’A=(O J’and 771=(7701’ ’7'1)T'

Thus ifwe set A =1, in the HLM2 model, then u, = 77, and 1 = A‘I’AT = ‘1’.

The results using HLMZF are in the third column of Table 5.1. As can be seen by

comparing the results, the HLM2F reproduced almost exactly the same estimates for all

of the parameters including the standard errors. This is evidence that the newly developed

program is working.
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Table 5.1 Results of the Analysis for High School and Beyond Survey

 

# iterations until convergence

HLM2

5

HLMZF

3

 

Fixed effects estimates

 

700
12.128 (0.197)2 12.128(0.197)

 

701
1.227 (0.303) 1.227(0.303)

 

 

702
5.332 (0.366) 5.332(0.366)

 

710
2.946 (0.154) 2.946(0.154)

 

711
-1.644 (0.237) -1.644(0.237)

 

712
1.042 (0.296)  1.042(0.296)

 

Random effects estimates

 

0,2 36.721 (0.626) 36.721(0.619)

 

10,, (or woo for HLM2F)
2.317 (0.355) 2.317(0.353)

 

1,0 (or W10 for HLM2F) 0.188 (0.196)

(0.483 as corr.)

0.186(0.193)

 

1,, (or 31,, for HLM2F) 0.065 (0.208) 0.065(O.204)

 

 

 

Log-likelihood at convergence -23247-30 -23248.22

# parameters estimated 10 10

46494.592 46496.44
Deviance   
 

 

2 Note. ( ) represents the standard error computed from the Information matrix.
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5-2. Infant Vocabulary Growth

The purpose of demonstrating the analysis of infant vocabulary grth data is to

show where it is useful to apply the HLM2F model. The data come from a recent study of

children’s vocabulary development during the second year of life ((Huttenlocher, Haight,

Bryk, Seltzer, & Lyons, 1991). Huttenlocher et 31. investigated the relationship between a

child’s early vocabulary acquisition and maternal use of language, hypothesizing that

exposure to the mother’s spoken language has a positive relationship to the growth of the

vocabulary of the young child. Gender differences in vocabulary growth were also

considered (Huttenlocher et al., 1991).

Two groups of mother-infant pairs, with six boys and five girls in each, provided

from 5 to 7 observations per infant in their early stages of life. More specifically, the first

group consisted of 11 children who were observed at their home on six or seven

occasions at 2-month intervals during the period from 14 to 26 months of age. For some

cases, the 14-months data point was missing. The second group consisted of another 11

children who were observed at 16, 20, and 24 months. The time dimension was (Age -

12),,- months, assuming that at 12 months a child’s vocabulary size was zero.

Huttenlocher et al. (1991) first formulated the following full quadratic

unconditional model.

it'd

1,1: Y,= 6,, +6,,(Age-12),,+ 6,,(Age-12)2,,+ 8,, 5., ~N(0,0'2)
I
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AU=700+u0j (5'4)

“0) m, 0 700 T01 10,

“11 ”N O 7 10, 711 1,,

“2j 0 702 1,, 713

Obtaining the results that H0: 10,, = 0 and 70,, = 0 and 7,0 = 0 can hold statistically and

A

knowing that Corr(u,, , u,,) z 1, they formulated the following final level-1 model which

left only the quadratic term:

L-l:

Y, = 6,,(Age -12); + 8,, a, TN(0,0'2)

At level-2, they modeled the rate of acceleration by the individual characteristics such as

group membership, gender, and the amount that the mother spoke to the child.

L-2:

6,, = 7,, + y,,(Group), + 7,,(Gender), + 7,, log( Momspeak), + 11,, , (5-5)

iid

(“21) ~ N((O),(100)) -

where (Group), = 1 if the child is in group 1, and 0 otherwise; (Gender), = 1 if the child

is a girl, and 0 if a boy; and log( Momspeak), is the natural logarithm of the number of
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words that the mother spoke to the childj, measured once at the first occasion ofthe

observation. The results for this model are in the second column of Table 5.23.

The fact that the estimate of the correlation between u,, and u,, was high may not

necessarily indicate that the rate of growth does not vary from child to child, which is a

question that was left in Huttenlocher et a1. (1991)’s model. To investigate this point,

Bryk & Raudenbush (1992) used the following model:

L-l:

Y, = 6,.(Age -12), + 6,,(Age —12);+ 5,, 5,. It'll/(0,02)

L-2

6,,=u,,

6,, = y,,, + 7,,( group), + 7,,(gender), + 7,, log( Momspeak), + u,, (5-6)

where

(2:3)TN((3),(::; 2:»

The results showed that 1,, = 16.94 (See the row for 1,, at column 3 in Table 5.2),

which was significantly different from 0, and the u,, and u,, were highly correlated. This

suggested that it was not necessary to estimate the covariance 1,, , because the null

 

3 The results were obtained by reanalyzing the model by HLM2 version 4.92, specifying full maximum

likelihood (MLF) and # Fisher acceleration = 1. This specification induced slightly different results from

Huttenlocher et a1. (1991) which used the restricted maximum likelihood (MLR) and EM algorithm. The

same thing can be said in the next results of Bryk and Raudenbush’s model.
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hypothesis 1,, = ,/1,, - 1,, held, in the p0pulation, at .05 level, but it was necessary to

estimate both variances, 1,, and 1,, because those were not zero.

The above result implies a factor analytic type model. Reparameterizing the 1,, as

. . . T . .

1,, = 713,1” by usrng the vanance ratio 71,2, = —22- , and then setting 1, , = 71,,1,,g1ves the

11

same constraint as 1,, = ,/1,, - 1,, . Thus, we obtain a factor analytic type (HLM2F)

model by giving certain constraints on the elements of 1 matrix ofthe original HLM2

model, which in turn, implies that the HLMZF model that will be formulated is nested

within the HLM2 model.

This idea is formally formulated by a factor analysis type model. That is,

In L-2 model, we let

“0} :77”

“1} =121771j,

or, in matrix form,

and the covariance equation is

W11 321W”)

D . =A‘I’ T:

[11,] A (321er A'irWn

Thus, we formulate the following model:

L-l:

_ 2

K; - 74,-(1489-12), +flz,(Age—12), +8,
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(5-7)

(5-8)

it‘d

3, ~ N(0,a’)



L-2:

A}: 771} (5'9)

6,, = y,,, + 7,,(Group), + 7,,(Gender), + 7,, log( MomSpeak), + 3,,7),,

id

where 77,, l~ N(0,1//00).

The results of this reduced model are in the fifth column of Table 5.2. In order to

use the likelihood ratio test to examine whether the above factor model is statistically

acceptable, we run the standard HLM2 model in two ways, one is to run the HLM2

software and another is to run the HLM2F program by setting A = 1,. Those results are

in the third column of the table below, under the caption HLM2 (Bryk and Raudenbush’s

model), and in the fourth column, under the caption HLM2F (Bryk and Raudenbush’s

model)’.

 

’ It should be noted that the results for the standard HLM2 model executed by HLMZF showed a close

match to the HLM2 results. However, a run by HLMZF was problematic because the estimate of

‘I" became a negative definite matrix in the early stage of scoring iteration even though several different

starting values were tried. The values on the table were obtained when we ignored the fact that the estimate

of ‘I’ became a negative definite matrix during the iteration. For this reason, we take the results by HLMZF

for the saturated model as a reference. On the other hand, HLM2 was executed by choosing MLF and the

number of Fisher iterations = 1. This specification lets HLM2 run repeatedly under Fisher scoring

algorithm as long as the estimate of ‘1’ does not become a negative definite matrix during the iteration; if it

does, then HLM2 returns to the EM algorithm, which is a default algorithm. Thus, probably this is how

HLM2 produced the results: HLM2 first tried to estimate by scoring but it failed, and then used BM.
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Table 5.2 Results of the Analysis for the Infant Vocabulary Growth Datas

 

# iterations

until convergence

HLM2

(Huttenlocher

et al’s model)

 

HLM2

(Bryk and

Raudenbush’s

Model)

8

 

HLMZF

(Bryk and

Raudenbush’s

Model)

4

 

HLMZF

(Reduced

Model)

 

Fixed effects estimates

 

720
2.150(0.277) 2.088(0.140) 2.181(0.139) 2.180(0.139)

 

721
0.802(0.345) 0.599(0.290) 0.593(0.288) 0.598(0.289)

 

722

-1.105(0.327) -o.904(o.279) -0.902(0.278) -o.904(o.279)

 

7'23
0.886(0.327)

 
0.827(0.268) 0.826(0.267)  0.827(0.268)

 

Random effects estimates

 

2 819.366(113.622) 707.866(107.832) 711.025(98.197) 708.412(98.233)

 

 

 

 

 

 

  

CT

1.,(t/InforHLM2F) N.A. 16.940(15.402) 16.3266(13.438) 16.8429(5.256)

1}! N.A. 1.709(0.978) 1.77651(0.864) N.A.

(0.985 as earn.)

132 0.566(0.177) 0.178(0.128) 0.172(0.119) N.A.

A?! N.A. N.A. N.A. 0.102(0.0262)

Log-likelihood at - 639 . 22 ~ 632 . 505 ~ 632 . 502 - 632 . 504

convergence

# parameters estimated 6 8 a 7

I)evjance 1278.436 1265.010 1265.004 1265.008    
 

We compare the results in column 3 for the full model (Bryk and Raduenbush’s

model) and those in column 5 for the reduced model (reduced by factor model). First, notice

that the point estimates and their estimates of the standard error for the fixed effects are almost

the same for the two models. The estimates of level-1 error variance (03) are also almost the

 

5 Note:

1. HLM2 results were obtained by setting Full maximum likelihood and # Fisher acceleration =l. When we set

the # Fisher acceleration =5. then the results in column 3 took 867 iterations to converge.

2. ( ) is the standard error.

3. The cutoff criterion for getting out of the Fisher scoring loop for HLMZF is ‘relative change in the squared

length of parameter estimates’ < IO’”. which is the same value as HLM2. though HLM2 uses changes in log-

likelihood.

 



(0'2) are also almost the same, but there is a small difference for the standard errors. For

the level-2 variance-covariances, we can recover the estimates of the original variance-

covariances ifwe compute them using the points estimates in the reduced model and the

covariance equation in Equation (5-8) for the original Tau-matrix. Thus:

27,91?” = 0.10229 x 16.8429 = 1.72286,

2319/?“ = 0.102292 x 16. 8429 = 0.176231.

These values closely match those in the second column of Table 5.2, i.e., f” = 1.709 and

522 = 0.178 respectively, which are the corresponding elements in the 2' matrix. This

means that we can recover the original I estimate, and this fact is especially useful when

we cannot directly obtain the estimate ofr , which is often the case when 5 is not fill]

rank, as happened in this data when we used the Fisher scoring in HLM2F.

The comparison of the deviances for the nested models can be used to assess

model fit using a likelihood ratio test. The deviances for the full model (1265.010) and

for the reduced model (1265.008) are basically the same. Thus, the deviance test clearly

shows that the reduced model is statistically acceptable.
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5-3. Scholastic Aptitude Test (SAT) Meta-analysis of Coaching Effects

The purpose of this demonstration is to give an example where the 1 matrix is of

relatively large dimensions. When the size of r is large, we can formulate many different

factor structures, which adds a complexity to the modeling. At this point, discipline

specific theory and knowledge about particular data and variables should inform

decisions regarding the number of factors (M), and which elements of factor loading

matrix (A ) to fix and what values to use, etc. After deciding on the general framework of

the factor structure, mathematical knowledge of model identification can be applied to

decide whether the model in mind is an identified model.

In the SAT meta-analysis for coaching effect data, we create a 4 x 4 1' matrix.

The data consist of 48 studies on coaching effects on the SAT scores (Becker, 1990).

Only 46 studies were analyzed for our analysis because two studies had no information

on coaching hours. The SAT scores were reported for the two subtests, SAT-Math (SAT-

M) and SAT-Verbal (SAT-V). Each study provides a part ofthe information on

standardized mean change scores between pretest and posttest on SAT-M, SAT-V for

coached and uncoached groups. A study is considered to be complete if it provides four

standardized mean change scores, i.e., standardized mean change score for the coached

group on SAT-M, standardized mean change score for the uncoached group on SAT-M,

standardized mean change score for the coached group on SAT-V, and standardized mean

change score for the uncoached group on SAT—V. Table 5.3 shows a number of studies

classified by available standardized mean change scores and whether a control group
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(uncoached group) was used in the study. From that table, we see that only 19 studies,

which is about 42% of the studies, had a complete set of information.

Table 5.3 Classification of SAT Studies

Existence of Control Group

 

 

 

 

 

 

Available Standardized Yes No Row Subtotal

Mean Change

Both SAT-M and SAT-V 19 2 21

SAT-M only 1 3 4

SAT-V only 13 8 21

Column Subtotal 33 13 Total 46     
One of the strengths of a hierarchical analysis is that diverse patterns of data

information can be put together and all the information can be used for statistical

inference assuming that data are missing at random (Little and Rubin, 1989). This will be

the method of analysis used on the above meta-analysis data, which utilizes data from 27

studies (about 58 %) that are incomplete. Unless using a hierarchical model, information

from more than half of the studies can be totally discarded or it will be used less

effectively. In a small data set such as this meta-analysis data, it is too costly.

Model:

Let dy. be the standardized mean change score in the ith observation of thejth

study, which can be defined as
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4(nij—2) )7 —l_’.
21'] ll]

)
'7 = 4n”. — 5 SM (5-10)

where 172,]. is the sample post-test average for observation 1' of studyj; 17“.]. is the sample

pre-test average for observation 1' of studyj, S,” is the sample standard deviation of the

post test for observation i of studyj which is assumed to well approximates the pooled

4("1/ ’2) for Yzii - Yw

sample standard deviation, and the coefficient ——

4n”. — 5 S

is used as a

ray

multiplying factor to ensure that d,.j is an unbiased estimator of the population

#217

standardized mean change 6,}. =—% (Becker, 1988), where p, ,1. is the population

post-test mean for observation i of studyj, ,u, ,1. is the population pre-test mean for

observation i of studyj, and a is the population standard deviation that is common to

both pre-test and post-test.

Let X, be the indicator for SAT-M score for the coached group, X2 be the

indicator for SAT-M score for the uncoached group, X3 be the indicator for SAT-V score

for the coached group, and X4 be the indicator for SAT-V score for the uncoached group.

Thus, XI ,.j = 1 if d0 is the observation of SAT-M score for coached group, and 0

otherwise; X2,.j = 1 if d”. is the observation of SAT-M score for uncoached group, and 0

otherwise, X3 = 1 if d”. is the observation of SAT-V score for coached group, and 0ij

otherwise; X4 ,j = 1 if dU is the observation of SAT-V score for uncoached group, and 0

otherwise. Defining the variables as above, we formulate the level-1 HLM model:
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L-l:

d”.=Aij+flUXw+flUX3ij+fl4jX4ij+sw (5-11)

where i = 1,...pj for pj is the number of observations of standard mean diflerence d”.

available for the studyj, andj = 1,2, ....,46. Within the study, the error 8,)— ’s are correlated

because even within a study, sources of errors come from the same set of people. This is

the difference between this model and the standard HLM model where the level-l errors

are assumed independent. The dependency of the within-study errors occurred because

the model is multivariate, which implies that the data have common sources of variation

within a study. The variances and covariances ofthe covariance matrix ofthe vector of

within-study error a}. = (£11,...,£ij. )T (VJ. = D[sj], a pj x pj symmetric matrix) can be

computed by the following formula (Becker, 1990):

 

2(1 " pp?) 502

+ a
. 2n .

.I J

Var(£,.j) a V”. = (5-12)

where nj is the number of subjects in the studyj, and pm, is the population pretest-

posttest correlation. In this analysis, the value of p,.P = 0.88 will be used as the

approximate population correlation between pre- and posttest SAT scores for both SAT-

M and SAT-V for all subjects, following DerSimonian and Laird (1983). Similarly the

covariances of the covariance matrix of the vector of within-study error can be computed

by the following formula (Becker, 1990).

 

5,..5,...
Cov(a..a..)aVii.~=:" + ’zjzp’, (5-13)

I j

-70-



where p,,..j is the population correlation between the dependent variables associated with

estimated standardized mean differences i and i ' . This correlation may be estimated

from the sample, deduced from published test information or imputed on the basis of past

research. In the SAT meta-analysis case, we use pm}. = 0.66 if the pair of (i , i ’) is Math

and Verbal in the same experimental group (either in the coached group or uncoached

group), which is taken from the test manual (Gleser & Olkin, 1994). If the pair ofthe

observation unit (i , i’ ) is in the different groups, i.e., coached and uncoahed group, p“,

= 0.00 since those observations are independent.

As we saw in the above, the within-study error variance-covariance are known in

the meta-analysis settings. In HLM terms, this type of model is said to be the V-known

model.

The level-2 model is a multivariate regression model and the time for coaching in

hours is used to model ,6” and A}. , the means of standardized mean difference for SAT-

M and SAT-V for the coached groups.

L-2:

,6”: 7,0 + 7,,(Coaching Hours)j + u”.

,sz = yzo + u,,]. (5-13)

,6” = 720 + 721(Coaching Hours)J. + “31

,6“ = y“, + u,,].

where
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f (

ulj\ 0 TH 712 713 714 \

“21' ”d 0 721 1'22 723 724

3

“3j 0 731 2’32 733 734 :

W41) \0 741 742 2'43 2'“)
    

and (Coaching Hours)1 is the hours of coaching for the studyj.

This model is substantively interesting and meaningful by two reasons: One is

that if we center Coaching Hours around zero as we just did in the Equation (5-13), then

the fixed effect 7,0 is the expected standardized mean change for SAT-M for the coached

groups at the absence of coaching and thus y“, — 720 represents the expected difference

between coached and uncoached groups for SAT-M under no treatment (coaching),

which is a possible result because some of the studies were not randomized experiments.

Similar interpretation can be made for 730 — 7,0 , which is the expected difference

between coached and uncoached groups for SAT-V under no treatment. The second

reason is that Ifwe center Coaching Hours around its grand mean, then

7,0 — 720 represents the mean gains in the experimental groups compared to the

standardized mean change of the control groups for SAT-M, and 730 — 740 is the mean

gains in the experimental groups compared to the standardized mean change of the

control groups for SAT-V, assuming that the model is correctly specified6.

To solve V-known HLM model, we capitalize the fact that the level-1 error

variance-covariance matrix V]. is known for all j;j = 1,2,...,], where J is the number of

 

6 Actually model misspecification is possible. Kalaian and Raudenbush (1996) used the natural logarithmic

transformation of the hours of coaching, being concerned with a curvilinear relationship from the

observations of the scatterplots. Thus, including quadratic term may show a better fit. Here I used a linear

model for simplicity of demonstrating the point.
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studies that was used in Kalaian and Raudenbush (1996). That is, using Cholesky

. . _ 'r . . . . .

factorization, VJ. — Fij , where F]. 18 a pj x p1 lower triangular posrttve defimte

matrix, we transform the level-1 within study model in Equation (5-11) by multiplying

F1." from the left. Then the transformed level-1 model has i.i.d. error variance for all the

studies with the fixed unit variance. Therefore, we can apply HLM2 and HLM2F

software by fixing the level-1 error variance (02) = l.

The results of this model by HLM2 is shown in the second column ofTable 5.4.

The results for the same model by HLM2F was not obtained because the estimate of

‘1’ becomes negative definite during the early stage of scoring iteration. The estimate of

rwas

0.0775 0.0874

0.0874 0.1045

- 0.0360 - 0.0352

-0.0156 -0.0191

f:

and as a correlation,

1.000

. _ 0.972

p‘ " -O.562

-0307

0.972

1.000

- 0.472

- 0.324

-0.0360 -0.0156

-00352 -00191
, (5-14)

0.0532 0.0364

0.0364 0.0334

-O.562 -0.307

-0472 -0.324
. (5-15)

1.000 0.863

0.863 1.000

As we can see from the correlation estimates, 2° is almost singular and has two high

correlation blocks, which caused the slow convergence that is shown by the very large

number of iterations in HLM2 as 2911 EM iterations, and caused the inability of

obtaining the estimation by HLM2F which utilized Fisher scoring.
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Table 5.4 Results of the Analysis for the SAT Coaching Effects Data7

 

# iterations until convergence

HLM2

(Full model)

2911

HLM2F

(Reduced model a)

13

HLMZF

(Reduced model b)

8

 

Fixed effects estimates

 

0.290(0.071)

 

 

 

 

 

  
 

 

 

 

 

 

 

 

7m 0-317(0.0692) 0.264(0.0679)

y” 0.00716(0.000896) 0.00701(0.00110) 0.00760(0.00115)

720 0.263(0.0709) 0.254(0.0614) 0.253(0.0655)

730 0-183(0.0517) 0.176(0.0459) 0.187(0.0537)

7“ 0.00467(0.00158) 0.00481(0.00091) 0.00455(o.00126)

y“, 0-140(0-0357) 0.1409(0.0321) 0.1417(0.034a)

Random effects estimates

0'2 N-A- N.A. N.A.

THO/l” for HLMZF a& b) 0-0775(0-0241) 0.0867(0.0243) 0.0612(0.0206)

61 0.0674(0.0269) N.A. "A

722 0.104(0.oaao) NA. NJ.

IMO/1,, for HLM2F a& b) '0-036010-0‘54) ~0o0269(0-0135) -0.0325(0.00893)

r32 -0.0352(0.0180) N.A, NJ.

133(sz for [-11,sz a& b) 0.0532(0.0137) 0.0496(0.0117) 0.0536(0.00611)

 

Z',I(W3I for HLMZF b)
-0.0156(0.0125) N.A. -0.0167(0.00673)

 

T42
-0.0191(0.0146) NOA. N.A.

 

raw/,2 for HLM2F b)
0.0364(0.0102) NOA. 0.0329(0.00325)

 

Tao/I33 for HLM2F b)
0.0334(0.00958) N.A. 0.0324(0.00464)

 

 

 

 

  
,1“ N.A. 1.010(0.0541) 1.122(0.0717)

N.A. 0.817 0.0556 N.A.
2'42

( )

Log-likelihood at convergence '279-689 -307-693 -284.424

# parameters estimated 16 11 13

Deviance 559.378 615.386 556.646   
 

 

7 Note

I. ( ) is the standard error

2. The cutoff criterion for getting out of the Fisher scoring loop for HLMZF is ‘relative change in the squared

length of parameter estimates’ < 10", which is the same value as HLM2. though HLM2 uses changes in log-

hkehhood.
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From the pattern of f , we can imagine a simple pattern of factor structure. That

. T

18, we formulate the factor model for level-2 error vector uj. = (u,,. , uzj , 11,]. , u,,.) as

  

”U = 7711’

“21 =12lnlj’ (5-16)

“31 = 7b},

“41 = 427b,“-

or, in matrix form,

fa”) 1 0

_ “21 121 O [’70]

ll]. _ “3,- _ 0 1 Tbj _' A7719 (5’17)

(1141.) O 142

l 0

0

where A = ’12 , and 77]. =[m1]

1 772}

o 4.

The pattern of factor loading matrix A and the length of factor score vector 77!.

characterizes our idea about how the level-2 errors are correlated. That is, we hypothesize

that the 4 level-2 random errors (uj = (“u , uzj , u”. , u“. )T) after controlling for the

coaching time can be represented by two unique level-2 unit latent random errors

(77]. = (17,]. , "21)T)’ and the SAT-M unique variability for coached and uncoahed groups

((uU , uzj )) can be explained by a common factor 77,}. , and the SAT-V variability for

coached and uncoahed groups ((“31 , u“. )) can be explained by a common factor 7721..

Formally, we formulate a HLM2 factor (HLM2F) model as follows:
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d”. zflij +flle2ij +14sz1; +1641X4ij +50

L-2:

,6”: 7,0 + 7,,(Coaching Hours)j + 77,]. (5-18)

'62} =72o +2210”

,6”. = 730 + y3,(Coaching Hours)j + 772].

.34} = 740 + 142772},

W11 W12

) . We refer to this model as the reduced

W21 W22

where [77"] ~ N(O,\I’) for LP =[

21

‘model a’.

Note that having specified the level-2 errors as Equation (5-16) or (5-17), we

structured the r covariance matrix as

W11 121W” W12 ’142W12

121W“ 121W11 X21W12 121142W12

W21 ’142 W21 W22 ’10sz

142 W21 121142 W21 142 W22 1'32 W22

D[uj] = Aomjw = A‘PAT = . (5-19)

Note also that ‘model a’ in Equation (5-18) is nested within the full model in

Equation (5-13). This fact can be shown in a similar way that I did for the 2 by 2 2'

matrix case for the infant vocabulary growth data in section 2 of Chapter 5 (see page 62).

Another way of finding the constraints on the 1 matrix in order for the reduced model

(model a) be nested within the full model is obtained by comparing Equation (5-19), the

expression ofthe structured I created by formulating the HLM2F model (model a), with

the unstructured and saturated r in Equation (5-13), which was formulated by HLM2.
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Using this comparison and with a little algebra, we find five constraints on the 2'

matrix:

711722 = T221’ 733744 = 7423’

73,133 = 213743 ’ r3314, = 743731: (5'20)

and 1,,2'332'42 = 721743731 -

Thus we obtain Equation (5-19) from the saturated 1 matrix in Equation (5-13) by

defining

T 7

W11: 7119 121=—2'l_, W22 = 733: ’142 :43", (5‘21)

711 2'33

and W21: 731

with these five constraints. Note that the first two constraints in Equation (5-20)

correspond to the statements that the squared correlation between u,j and u,, equals to

one (p31,,2 = 1) and the squared correlation between u,,. and u,,. equals to one ( p3)", = 1).

The results of ‘model a’ is shown in the third column of Table 5.4. To test the

model fit, we use a deviance statistic. The deviance test suggests that ‘model a’ does not

fit as well as the full model, D, — D0 = 615.386 - 559.378 = 56.008 with 5 (16-11) d.f., P-

value < 0.0001 , where D, is the deviance for model a, and D0 is the deviance for HLM2

model.

The next step is to try to find a statistically acceptable model. Since the nmnber of

parameters is reduced from 16 to 11 and the estimate of 1 matrix is almost insufficient

rank, the number of parameters of a model that shows a good fit must be between 11 and

16.
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One model that satisfies this condition can be obtained by carefully looking at the

estimated tau matrix produced by the HLM2 full model. The estimated tau matrix with its

correlation matrix form reveals that the upper lefi 2 by 2 block matrix is closer to singular

that the lower right 2 by 2 block matrix because the upper has the correlation 0.972

whereas the lower’s one is 0.863. Based on this observation, we consider a model that

only u, j and u, 1. completely share the common variance. Thus we formulate the following

model:

L-l:

dii = AJXU/ +152.in111' IBUX‘M)’ 1' flux“) + 50'

L-2:

,6”: y“, + 7,,(Coaching Hours)j + 77,]. (5-22)

flu = 720 + 42.17.,-

.33,- = rm + 7,,(Coaching Hours)1 + 77,,

[34, = 7.. + 773,,

’71; W11 W12 W13

where 77,, ~ N(031’) for ‘1’ = (u,, W22 «[1,, . We refer to this model as the

’73; W31 W32 W33

reduced ‘model b’. Similar argument that we did for ‘model a’ tells that ‘model b’ is

nested in the HLM2 model, and it is clear that ‘model a’ is a nested model in ‘model b’.

Note that the factor model that we used in ‘model b’ for the level-2 error vector

1‘.

uj=(u,j, u,,, u,,, u,,.) rs
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("0‘ 1 0 0
7],.

”21' 421 0 0 I

ui_ 1131- — O 1 O ’72} "Anj’ (5'23)

04,-; 0 o 1 ’7”

1 0 0

, 0 0 ”‘1'
whereA= 0 1 O ,andq,= u,,.

0 o 1 "31'

The results of fitting ‘model b’ is in column 4 of Table 5.4. The deviance test

reveals that ‘model b’ does not fit as well as the full model, but we marginally reject the

null hypothesis at 0.05 level because D, — D0 = 568.848 - 559.378 = 9.470 with 3 (16-

13)d.f., and the P-value is 0.024, where D, is the deviance for model a, and D0 is the

deviance for HLM2 model.

Knowing that ‘model b’ is rejected though it is marginal, we still continue the

investigation of the model that fits to the data. The number of parameters ofthe model

that fits now must be between 13 and 16. One model that satisfies this condition is

specified by adding a specificity component to the model, which will be presented in

section 1 of Chapter 6. This model adds four specific variance parameters on ‘model a’,

and thus if all of these are statistically significantly different from zero, the number of

parameters of the model is 15, which is one smaller that the HLM2 model. To fit the

model that has unique specificity is a t0pic of future study whose model is formulated in

section 1 of Chapter 6.

Finally, I would mention that the results and substantial interpretation for the two

dimension HLM2 factor model are consistent with those of Kalaian & Raudenbush
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(1996), which analyzed the studies that had the pair of SAT-M and SAT-V, where major

substantive conclusions were that coaching was more effective for SAT-M than SAT-V,

and the between-study unique effect of SAT-M and SAT-V was negatively correlated.

However, the current analysis provides a more precise information on what way study

variability emerged and it utilized all of the available studies, whereas Kalaian &

Raudenbush (1996)’s model required the existence of control group for each study, which

will result in 33 studies for this data set (see Table 5.3).
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54. Results from the Simulated Data

The purpose of this analysis is not only to see whether the theory and the

computer program that I developed can recover the parameter values well, but also to

evaluate the capacity of the methodology to distinguish between true model and

alternative incorrect models in the context of large data application. To answer these

questions, I generate the artificial data with known parameters.

We consider a situation in which subtests nested within students that was already

stated in section 3 of Chapter 3. To summarize the settings, a test consists of4 subtests,

mathl, math2, verball, and verba12, and each student, the total of 100 students, takes one

form of the test at the first testing occasion and takes a parallel alternative form ofthe test

at the second testing occasion. No missing observations were assumed. Thus we created a

situation that can be conceived as subtests are nested within students. Each student has 8

observations for 100 students, with the total observations of 800. We assumed that true

scores of subtests for the same domain such as mathl and math2, and verball and

verba12, are perfectly correlated and also assumed that the correlation between

mathematical and verbal proficiency was 0.50. Therefore, non-orthogonal two factors,

mathematical and verbal proficiency were considered.

The model was formulated as in Equations (3-29) and (3-31), and the parameters

in the model were setas 7.0 =720 =73.) =24, =500, 0'2 = 25, 2, =0.8 2, =12,

61,, = 100 , W22 = 100 , 01,, = 50. It should be noted that the model is an identified model

as shown in section 3 of Chapter 3.
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Checking the Data that are generated:

We generate the 800 observations in total, 2 observations from each subtest and

thus 8 observations for each subject. The descriptive statistics for this data is in the

 

following tables.

Table 5.5 Descriptive Statistics of 4 Generated Outcomes

The MEANS Procedure

Variable N Mean Std Dev Mininul Maxilun

math1 200 500.7896272 10.7851935 472.3574900 536.1797700

nathz 200 500.0342420 9.1171437 468.6287800 523.6194500

verb1 200 499.2721306 11.5485774 475.0847300 528.3763000

verb2 200 499.4860767 13.2175895 466.3821800 535.9121100

 

To see whether the generated data are reasonable with regards to the means and

the standard devratrons, we let y“, a ymxlf, , yzy- E- yam,- =1 . y;,-,- 5 ymxw-l . and

y“, s ymxw=1° Then srnce y”, =fl, +63}. 35,-,- =13),- +6‘,-,-. 3’31,- =.33,- +31), and

Y4.) :16” +31)" we have E(J’1g)=710 25009 E(yzij)=720 =500: E(y3ii)‘= 730 =5009

and E(yw) = no = 500 for the respective means, and

s.d.(y,,,) =W:W:We 11.18,

s.d.(y,,.)=W:W:75 £9.43,

s.d.(y,,)=W=W=./iz_ssrrr8,and

s.d.(y,,j) =W=W= «[169 513.00 for each standard deviation.

Comparing these population means and standard deviations with the

corresponding sample means and the standard deviations in Table 5.4, we recognize that
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the sample statistics of the means and the standard deviations are close to the populations

values.

be seen in Table 5.6 or as a correlation matrix in Table 5.7.

For the second moment property, the sample variance and covariance matrix can

Table 5.6 Sample Covariance Matrix of4 Generated Outcomes

Covariance Matrix, DF = 199

natht math2 verb1 verbz

matht 116.3203994 74.5273374 47.8142300 59.2826475

math2 74.5273374 83.122308? 29.7039157 41.4890456

verb1 47.8142300 29.7039157 133.3696391 128.1651658

verb2 59.2826475 41.4890456 128.1651658 174.7046711

Table 5.7 Sample Correlation Matrix of4 Generated Outcomes

Pearson Correlation Coefficients, N s 200

Prob > |r| under H0: Rho=0

nath1 nathz verb1 verb2

math1 1.00000 0.75793 0.38388 0.41588

<.0001 <.0001 <.0001

math2 0.75793 1.00000 0.28212 0.34429

<.0001 <.0001 <.0001

verb1 0.38388 0.28212 1.00000 0.83983

<.0001 <.0001 <.0001

verb2 0.41586 0.34429 0.83963 1.00000

<.0001 <.0001 <.0001

The population covariance matrix can be represented as

y. 14. +02 2,1,,” 111.. 4.17.. 125 80 50 60

D yz _ 11W” ’112W11‘i'0'2 11Wrz 412W12 = 80 89 40 48 ,

y. 17., 1,01,, 11/2. +02 1.11/2. 50 40 125 120

_ y4 _ ‘ 12W12 111'!le 12sz 122sz +02 60 48 120 169  
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and as a correlation matrix,

FY11 l

  

Comparing these expected values with the sample values, the generated data are

again reasonable.

Finally we check the distribution of each observed variable, y, , y, , y3 , and y4 ,

using the Shapiro-Wilk test for normality. The results are in Table 5.8.

Table 5.8 Shapiro-Wilk Test for Normality for the Generated Outcomes

y, 0.758

p y, ‘ 0.400 0379 1 0.826 '

y, _ 0.413 0391 0.826 1

0.758 0.400 0.413

1 0379 0.391

 

 

 

 

 

 

Outcome Shapiro-Wilk Statistic P-value

(W) (Pr. < W)

Math 1 0 . 9958 0 . 8432

Math 2 0 . 9936 0 . 5480

Verbal 1 0.9881 0.0918

Verbal 2 0 . 9919 0 . 3347  
 

All of the P-values computed from the Shapiro-Wilk statistic are greater than .05.

That implies that each outcome can be considered to have a normal distribution, which

we expect because each outcome was generated from the sum oftwo independent normal

variates.

The above results all indicate that the data were generated accurately as we

specified in the model.
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Now we move to the analysis. Here we formulate a series of identified models

discussed in section 3 of Chapter 3, and fit those series ofmodels that only differ in the

level-2 variance-covariance structure to the generated data. Thus, all of the following four

models, model 0, model 1, model 3, and model 4, have the same level-l model as written

in Equation (3-29). The difference comes in at the level-2 model error structure. The

standard HLM2 expresses the level-2 model for this artificial data as,

  

L-2:

161} = 710 + “11

,6 . =7 +u
2, 20 21 (5_24)

fl3j = 730 + “3}

flu = 740 '1' “4}

where

“U K 0 711 7,, 713 T14 \

“21' TN 0 712 7,, 723 1,4

“31 O 713 723 1'3, 1'34

“41 K O 714 724 2"34 744 1

Or in matrix notation,

flj=Wj7+uj, u, ~N(O,r) (5-25)

V T

Where16j=(flj2 :82}: flip flu) aWj=I427=(712 729 732 74) ,and

T

u,=(u,j, u,,, u,,, u,,).

All ofthe models deal with factoring uj and they can be written as in the matrix

form
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uj = A77]. (5-26)

in general. The covariance structure can be written as

r = A‘I’AT. (527)

Thus, structuring the 7 matrix and adding restrictions on it, all the models can be derived

from the standard HLM2 model, which I call here “model 0”. That means that all ofthe

following models are nested within model 0.

Model 0:

Model 0 can be specified by a standard HLM model, but ifwe use the HLMZF

formulation, this model can be expressed by setting A as 4 x 4 identity matrix, i.e.,

T

A = I, and by setting 77,. = (77,], u,,, 773,, 774,.) , and thus by setting ‘1’ as a

4 x 4 symmetric variance-covariance matrix.

Model 1:

Model 1 is the model from which we generated the data. Therefore, it is the model

1

that should best fit to the data. Model 1 is obtained by setting A = g

0

0

0

l 9

12

T

77,. = (7);], u,,) in Equation (5-26), and ‘1’ as a 2 x 2 variance-covariance matrix in

Equation (5-27).
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Note that model 1 is nested within model 0, which was already shown at section 3

of Chapter 5 when we analyzed the SAT meta-analysis of coaching effects data (see

Equation (5-17).).

Model 2:

Since model 2 was an unidentified as shown in Section 3 of Chapter 3, it will be

omitted from the analysis.

Model 3:

0

. . . ,1 T

Model3 rs specified by setting A: ‘ , 77,. =(77U, 77,1.) and ‘I’ asa

3
‘
s
}
:
—

1

15

2 x 2 variance-covariance matrix. Note that model 3 is nested within model 0, and then,

model 1 is nested within model 3. The fact that model 3 is nested within model 0 can be

shown in a similar way that I did for the SAT meta-analysis of coaching effect data in

section 3 of Chapter 5 by comparing the structured r with the unstructured r. The fact

that model 1 is nested within model 3 can be easily obtained by constraining A, = 0 and

,1, =0.
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Model 4:

Model 4 is specified by setting A = , 77, = (77,1) and ‘1’ as a 1x lvariance-

,1,

32

covariance matrix (scalar). Note that model 4 is nested within model 1 as shown in

section 3 of Chapter 3 and thus it is the most restrictive model.

To summarize, a series of 4 models that are formulated above has the following

nested models structure, Model 4 c Model 1 c Model 3 c: Model 0 (‘ c ’ reads ‘nested

within’). The model number, its characteristics, and the number ofparameters estimated

in the 2' matrix is summarized in Table 5.9.

Table 5.9. Characteristics of the Specified Modelsl

 

 

 

 

 

 

Model Model Characteristics # parameters estimated in the

Tau matrix

0 Saturated HLM2 model 4(5)/2 = 10

4 factors

3 2 factors cross loading 4 + 3 = 7

mis-specified model

1 2 factors simple loading 2 + 3 = 5

correct model

4 1 factor 3 + l = 4

mis-specified model    
 

Results:

The results are shown in Table 5.10. The estimates of fixed effects are very

similar across all the models including the standard errors and all the 95% confidence

 

' Note: Model 4 c Model 1 c Model 3 c Model 0.
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intervals captures the true values, i.e., 7,, = y,, = y3, = 7,, = 500. The large number of

iteration of Model 0 indicates that the level-2 variance-covariance is near singular. It was

estimated by HLM2 as:

124.300 98.940 48.818 65.533

- _ 98.940 81.295 40.195 49.139

T — 48.818 40.195 94.183 1 12.590 ’

65533 49.139 112590 143.791

and as a correlation matrix,

1.000 0.984 0.451 0.490

0.984 1.000 0.459 0.454

0.451 0.459 1.000 0.967 ’

0.490 0.454 0.967 1.000

P5:

which supports near singularity argument.

The results for Model 1 represent that the estimates capture all of the true

parameters in the model within the range of95% confidence intervals.
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Table 5.10. Results of the Analysis for the Simulated Data by Four Models2

 

# iterations until convergence

Model 0

1309

Model 1

4

Model 3

6

Model 4

5
 

Fixed effects estimates
 

499.225(1.164) 499.225(1.166) 499.225(1.013) 499.225(1.045)

 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

2: 499.055(0.960) 499.055(0.963) 499.055(o.655) 499.055(o.693)

730 500.20011 .026) 500.2(1.021) 500.211.092) 500.2(0.984)

74o 500.910(1.246) 500.9111.243) 500.9111.273) 500.e1(1.166)

Factor Loading estimates

,1, 11.4. 0.60569(o.0407) 0.86281(0.0472) 0.79521(0.0676)

,1, 11.4. 1.24486(0.0562) 1.15753(0.0558) 11.4.

,1; 11.4. 11.4. 0.05810(0.0438) 1.1574510.0695)

,1, 11.4. 11.4. -0.0903(o.0493) 11.4.

21, 11.4. 11.4. 11.4. 0.91993(0.0745)

Random effects estimates

02 23.609(1.669) 25.351911 .462) 24.0167(1.365) 57.8552(3.091)

7,, 124.300(19.266) 11.4. 11.4. 11.4.

721 98.940(14.987) 11.4. 11.4. 11.4.

,2, 61 295113.193) 11.4. 11.4. 11.4.

,3] 48.818(12.965) 11.4. 11.4. 11.4.

Tn 40.195(10.716) 11.4. 11.4. 11.4.

733 94.183(15.012) 11.4. 11.4. 11.4.

7,, 65.532(15.960) 11.4. 11.4. 11.4.

7,, 49139113000) 11.4. 11.4. 11.4.

,4, 112590117079) 11.4. 11.4. 11.4.

,4, 143792122020) 11.4. 11.4. 11.4.

Wu 11.4. 123.201 (14.283) 90.5223111071) 80.2888(12.432)

W12 11.4. 50.4351(8.190) 46.2939(7.688) 11.4.

W32 11.4. 91.5432(10.901) 107.186(12.766) 11.4.

Log-likelihood 2704.02 -2707.09 -2706.93 -2660.67

# parameters estimated ‘5 1° ‘2 9

Deviance 5406.032 5414.16 5413.66 5761 .74    
 

 

2

Note:

1. Cutoff criterion for getting out of the Fisher scoring loop for HLMZF is ‘relative change in the squared

length of parameter estimates’ < 10", which is the same value as HLM2, though HLM2 used changes in

log-likelihood).

2. ( ) is the standard error

3. The saturated model was tried by HLM2F. but during the iteration. ‘1’ estimate became negative

definite.

4. Model 2 was unidentified and thus was excluded from the analysis.
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We focus on the model fit by comparing the deviance statistics. Since all the

models are nested, we can perform the deviance test. Since the order of nesting ofthe

models is Model 4 c Model 1 c Model 3 c Model 0, we perform the deviance test as in

the table below.

Table 5.11. Several Results for the Tests ofthe Model Fit

 

 

 

 

 

 

 

Test Deviance d.f. P-value

Model 3 against Model 0 5.83 4 p = 0.212

(5413.86 - 5408.03) (15-11)

Model 1 against Model 0 6.15 6 p = 0.407

(5414.18 - 5408.03) (15 - 9)

Model 4 against Model 0 353.71 7 p < 0.001

(5761.74 - 5408.03) (15 - 8)

Model 1 against Model 3 0.32 2 p = 0.852

(5414.18 - 5413.86) (11 - 9)

Model 4 against Model 1 347.56 1 p < 0.001

(5761.74 - 5414.18) (9 - 8)     
From the table, the deviance test identifies that model 1 is the most appropriate

model among the 4 models, which is the model that generated the data.

Finally, in order to evaluate how good the method of estimation shown in Chapter

4 is, 1000 data sets were generated from the model in Equation (3-29) on page 41 and in

Equation (3-31) on page 42 and parameter values on page 81. They were analyzed by

Model 1, the correct model (see page 43 and page 86).

A 95 % confidence interval on 6, where 19 is a generic symbol for any one ofthe

parameters in the model, was constructed for each data set by the form, 19 i 1.96s. 6(9) ,

where 8. 6(9) is the estimated standard error for 63 , which was obtained either from the
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method of generalized least squares for the fixed effects parameters (see Equation (4-17)

on page 54) or from the diagonal element of the information matrix (see Equation (4-15)

on page 53). The value of the multiplier of s.e.(é) was chosen as 1.96, which assumes

that 65 is normally distributed; this assumption can be justified by a reasonable conjecture

that since we have a relatively large number of repetitions (1000 times), the normal

approximation was appropriate.

Let p be the probability that the confidence interval covers the true parameter

value. For each ofthe 1000 samples a confidence interval was constructed by the above

method. We estimate p by the proportion of coverages among the 1000 repetitions, and

denote this by 13. For example, for a fixed effect parameter 7,, , 945 times out of 1000

repetitions the interval captured the true parameter value (7,, = 500) in the interval.

Therefore, the estimated coverage probability of the interval, p , is 0.945. Similarly, the

estimated coverage probability was computed for the other eight parameters in the model

and is represented in the second column of Table 5.12.
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Table 5.12. Estimated Coverage Probability and Its Confidence Interval for 1000

 

     

   

   
 

 

 

 

 

 

 

 

Simulations

Parameter Estimated coverage probability A 95% confidence interval on p

(15)

(0.931, 0.959)

0.950 (0.936, 0.964)

0.942 (0.927, 0.957)

0.949 (0.935, 0.963)

1,, 0.938 (0.923, 0.953)

2,, 0.939 (0.924, 0.954)

17,, H 0.945 (0.931, 0.959)

1,1,, 0.946 (0.932, 0.960)

1,1,, H 0.943 (0.929, 0.957)   
 

Based on the point estimate of the coverage probability ( p ), we can compute an

.. ,_ -

approximate 95% confidence interval on p by 13 i1.96,’&n—p—) , where n is the number

of replications. Thus, in our case, n = 1000. Then, for example, an approximate 95%

confidence interval on p for 7,, is

(0.945 1- 1.96 - 0.0072) 5 (0.945 i 0.014) = (0931,0959) .

An approximate 95% confidence interval on p for the other eight parameters in the

model was computed in a similar way and is shown in the third column of Table 5.12.
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The average estimated coverage probability of the confidence interval is slightly

less than 0.95, with each estimated coverage probability being close to this value. All of

the 95% confidence intervals on p for every parameter captured the true value, 0.95.

These results add credibility to the method developed in this dissertation estimating

parameters and standard errors, when the cluster level (level-2) sample size is large

enough and the parameter values are not at the boundary of the parameter space.

-94-



Chapter 6. Conclusions and Future Directions

6- 1 . Conclusions

In this dissertation, a method that incorporates factor analysis into the level-2

variance-covariance matrix of the hierarchical linear model was discussed. This approach

provides several contributions, methodologically and substantively.

6-1-1. Methodological contributions

HLM2F avoids excess simplification of level-2 variance-covariance matrix when

some pair(s) ofrandom effects have high correlation. Ifwe specify many regression

coefficients as random using the standard HLM, with maximum likelihood (ml) estimated

via the EM algorithm, the number of iterations to obtain the estimates gets too large.

However, as long as parameter estimates remain in the interior of the parameter space, the

increase in the log-likelihood is assured and we can expect convergence in a reasonable

amount oftime.

Fisher scoring, when combined with EM, can accelerate convergence quite

dramatically. When Fisher scoring fails to converge within the parameter space or it fails

to show much improvement on each iteration, a possible cause should be that parameter

estimates are close to the boundary of the parameter space. Within this boundary

estimation problem, there are two possibilities. One is that some variance estimates are

close to zero and the other is that some correlations are close to 1 or -1. The former

problem can be easily solved by setting the corresponding random level-2 error to zero.

One caution needs to be noted, however. Since setting one random level-2 error to zero
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implies that all the covariances related to this random error as well as the variance be

zero, we need to check whether we can drop the term by executing a multiparameter test

such as a deviance test.

Solving the latter problem is one of the main topics of this dissertation. That is,

the problem of either failure of convergence or slow convergence, caused by correlations

which are close to 1 or -1, was solved by using factor analysis at level-2.

There is another methodological contribution that considering factor analysis in

the level-2 variance-covariance matrix provides. That is, this methodology offers a

natural framework for modeling. If we don’t have a strong theory or prior knowledge to

make regression coefficients fixed, we want to make as many ofthese coefficients as

possible be random so that the model is more general such that it allows the regression

coefficients to vary among level-2 cluster units. However, if these random coefficients

are highly correlated, the HLM2 methodology fails under Fisher scoring or gives a very

slow convergence under EM algorithm, even when variance estimates of each random

coefficient differ from zero. In this situation, HLMZF is useful because it constrains

covariances, whose estimates have come close to the boundary using factor analysis,

while allowing variance to differ from zero. Factor analysis achieves this purpose by

decomposing the original covariance matrix into a factor loading matrix and a smaller

covariance matrix of factors.

Bryk and Raudenbush (1992) provided a guideline of level-1 model building in

their Chapter 9 (pp. 201-204). The key issue of the procedure that they discussed was

whether we fix the level-1 regression slope or make it random. In this regard, they
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suggested using statistical evidence such as point estimates, univariate 72 tests, and

multivariate deviance tests. Also they mentioned that low estimated reliabilities and the

slow rate of convergence for the EM were useful indicators, and diagnostic themselves,

for respecifying a random level-l coefficient as either fixed or nonrandomly varying.

Even after polishing the level-1 model using the above recommended treatment,

the slow rate of convergence for the EM may still occur because ofhighly correlated

random coefficients as we have seen in the examples in Chapter 5. Therefore, I propose a

slight modification of the level-1 model building procedure. That is,

1) Make as many level-1 regression coefficients random as needed, based on

evidence of non-zero variance in the coefficients;

2) If the rate of convergence is very slow, then consider using the HLM2F model.

In terms of specifying factor structure, employ substantive theory ofthe field in

question as well as the estimated correlation structure of f , if it is obtained.

3) Further, a more active use of the HLMZF model would be, when a researcher

wants to test his/her theory regarding the simultaneous variability ofthe

random effects among the level-2 units, to specify this theory by HLM2F

regarding how random effects are related.

This procedure solves a key dilemma that most of the analysts who use multilevel

modeling encounter. That is, when analysts don’t have a strong theory or prior knowledge

to make regression coefficients fixed, they want to make as many of these coefficients

random as is possible, but often the data don’t have enough information to estimate all of

the parameters. The procedure that analysts use to deal with this dilemma is to fix some
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of the coefficients that are not their focus, even when they suspect that there is no reason

that those coefficients shouldn’t vary among level-2 clusters (Bryk & Frank, 1991).

HLMZF is a solution of this dilemma.

6-1-2. Substantive contributions

Expanding modeling possibilities

I would argue that the HLMZF methodology will contribute to educational

research because this model certainly expands modeling possibilities, while maintaining

natural continuity with the standard HLM2. This statement consists of three claims:

recovery of f , improvement over current ad hoc procedures, and view of current ad hoc

procedures from the HLM2F framework.

Recovery of 2‘

Suppose a researcher wants to study many random effects simultaneously but

he/she cannot obtain a stable estimate of 7 because of limitations of both the data and the

modeling framework. Suppose, however, he/she can run the HLM2F model by reducing

the dimensionality of 2'. In this situation, the researcher can recover the 2' estimate by

constructing it from the estimates of A and ‘1‘ by f = A‘I’AT. This certainly gives the

educational researchers an opportunity to study the large 7 -matrix from the limited data

he/she has at hand if some of the random effects in fact go together.
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Improvement over the current ad hoc procedure

The second claim is that the HLMZF model represents an improvement over the

ad hoc procedures currently practiced by educational researchers when they encounter the

above situation, i.e., when they want to make many regression coefficients random, but

HLM2 does not allow for this. Let’s consider the current practice of the researchers who

are in this dilemma. To illustrate this claim specifically, recall the Equation (2-1-1), the

level-1 model formulated in a hypothetical school effectiveness study.

L-l:

11d

Y}, = 6,, +fl,x,,, +fl,,x,,, +fl,,x3,, +,B4,x4,, +,B,,x5,, +fl,,x,,, +8,, 8,, ~N(O,0’2)

At level 2, the researcher formulated the model in which all the level-1

coefficients vary randomly among schools afier being accounted for by a certain school

characteristic W, because he/she thought that there is no reason to fix some of the

coefficients.

L-2:

A); =700 +701Wj '1'qu

A} ==7’10 +711Wj +ulj

182} =72o +721Wj +u,,

#1} =730 "+73le +15}

A} =74o +741Wj +u4j

165} =750 +751Wj +qu

166} =760 +761Wj +u6j

where u, = (u,, , u, , , u,, , u,,, u,,, u,, )T is assumed to be distributed as multivariate normal

with a mean of 0 and a covariance of r , a 7 x 7 symmetric matrix. This is a fairly large
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model that has 28 unique parameters in the 7 matrix. Such a matrix is generally

estimable only if the number of level-1 units is quite large.

If the level-1 sample size is not large, the problem that the researcher faces is that

the data are insufficient to estimate all the variances and covariances. Following the

current practice, the researcher fixes the slopes that are not central to his/her research

question, and let the slopes of interest be random; thereafter he/she writes the report. This

practice is understandable, but we know that it is not the best way. It is a compromise

forced by the data and the limitation ofthe model.

However, suppose a second researcher with a different theoretical focus analyzes

the same data with a different 1' specification, producing different results. There could be

no way to evaluate the adequacy of the tWo summaries of evidence.

Using the HLM2F approach, both researchers could estimate a full 7 by 7 2' and

produce identical results. Alternative interpretations could then be evaluated in light of a

common summary of evidence.

My claim is that even with the same data, we can do a better job by improving the

modeling practice, i.e., formulating the HLM2F model with some a priori substantive

information or insight that some of the random slopes are highly correlated. Also, when

we think about the consequences that the report can produce when used for decision

making of educational policy, the impacts that the results induce can be substantial.
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View of the current ad hoc procedure from the HLM2F framework

The third claim goes to the fact that the current practice also can be considered as

a special case of the HLM2F model. For example, suppose the researcher’s interest is on

,6,, and 6,. Then, the model the researcher would use is

A); =700 +701Wj +qu

A] =710 +711Wj +qu

1621 =720 +721W}

A} =730 +731Wj

flu =740 +741Wj

165,- =75o +751Wj

fl.) =rw+r.lW,--

This model actually is equivalent to HLM2F model with

(u,,) (1 0)

“U

u,,

u,,,

O
O
O
O
O

u,,

\u6j/ \0 0)
    

which is a case in which the researcher used two latent factors and assigned 1 to (1,1) and

(2,2) elements, and 0’s to all the rest of the elements of A . Thus, the current practice is a

part of the HLM2F model framework, where the researcher naively determined the

number of factors as two and the values of factor loading matrix as 1’s and 0’s in the

specified position as in the above. If we use the HLM2F model, we can allow the

elements of A to be unknown, where the current practice fixed these at zero. Thus, the

use ofHLM2F not only can solve the dilemma that researchers currently face deciding
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which slopes they should fix, but it also reminds the researchers of alternative modeling

possibilities. Therefore, the HLM2F model not only expands the flexibility of modeling,

but also can reflect the researcher’s substantive knowledge of the model. This, in turn,

means that the HLM2F modeling requires more consideration of substantive theory

because the researcher does have to say which element of the level-2 error u, ”go

together.” Thus, in HLM2F, it is especially important to note that the decision of

specifying a factor structure must be made based on interplay between substantive

theories and statistical methods.

Substantive interpretation of latent variables

The second contribution ofthe HLM2F model to educational research from a

substantive standpoint involves interpretation of the latent variables which are used at

level-2 in HLM2F. HLM2F provides an opportunity to link level-2 random errors which

share common latent variables. Those latent variables may be meaningful substantively

and can be interpreted, as we have seen in the infant vocabulary growth example, where

we found that one and only one latent variable was necessary to describe the differential

growth pattern of vocabulary of young children. This result may refine the current

existing theory on infant vocabulary growth or motivate the researchers to create a new

substantive theory.
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Practical integpretabilig ofthe results

The third substantive contribution would have to do with interpretation ofthe

results from a practical viewpoint. When we have many intercorrelated random effects,

HLM2 results are hard to interpret practically, even in the case when a large Tau matrix is

successfully estimated. It is especially difficult to interpret many covariance parameters

simultaneously. Therefore we often interpret only the variance components, and may

overlook important evidence of shared variance. HLM2F offers an opportunity for

analysts to carefully look at the off-diagonal covariance terms to detect the shared

variance and to explore latent variables which might have important meanings. If it’s

possible to make a concise summary by reducing the dimensionality and by using latent

variables, a picture of what kind of factors influence the variability among the level-2

units then emerges. HLM2F provides this possibility.

Overall, the proposed HLM2F model creates new flexibility by integrating two

major statistical methodologies, HLM and confirmatory factor analysis. In terms ofhow

to use theory and evidence to formulate models, more work needs to be undertaken.

6-1-3. U_nsolved Methodological Problems

Confirmation of global maximtun

When maximum likelihood is chosen as a method of estimation, there is always a

possibility that the likelihood function has multiple maxima, or a flat likelihood in the

neighborhood of the maximum likelihood estimate. Thus, it is a good idea to graph the

likelihood or the log-likelihood to detect this problem. However, this is difficult since we
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have many parameters and we want to sketch the log-likelihood curve, which is a

function ofmany parameters, while the standard graph is limited to three-dimensions. To

address this issue, one might consider using the profile likelihood. This method is

appealing because we can visually see the shape of the likelihood as the function ofthe

target parameter by taking into account other estimates of parameters. The profile

likelihood can be defined (see for example, Gorthwaite, Jolliffe, & Jones, 1995) as

follows:

Definition: Profile likelihood

Consider a vector of parameters 19 = (61 , 19,), with likelihood function L(6l , 61,;y),

where y is an observed vector which comes from a density fY (y; 19). Suppose that 9,, is

the MLE of 19, for a given value of 61 , then the profile likelihood for 61 is L(6l , 61,,,;y).

The method of computing the profile likelihood involves the following steps:

1) Fix a parameter a , in which you are interested, to some specific value, e.g., 61(0).

2) Obtain the MLE of 19, , conditional on the fixed value of the target parameter, 6;.

3) Compute the likelihood L(6, , 0, ; y) by plugging those values in the likelihood formula,

i.e., obtain L(19, = 61“”,19, = 6,”).

4) Change the value ofthe target parameter 61 and repeat the steps 1) ~ 3) for all possible

61.

5) Draw the profile likelihood curve against 61.
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One technical difficulty arises when we consider the implementation of this

methodology. That is, in step 2, we need to compute the MLE for a given value of 61. If

6, involves a variance component and we choose a bad value for 61 , Fisher scoring falls

by providing a negative estimate. In our HLM2F model in Equation (3-9) (or Equation

(A-l) in Appendix), 19 = (7, 65) ,where ¢ = (2, 17, 0'2 ) (see Equation (A-9)). Suppose, for

example, 21 = (2,,2, )T and 111 = (17,, , 17,, , 17,, )7. Suppose also that we are interested in

the behavior of 17,, . Then, in this case, a = 17,, , and 61, = (77, 11’, 17,,, 17,,) . To compute

the profile likelihood of 17,, , we compute the MLE of 0, given 17,, . But ifwe fix 17,, at

an unlikely value, then Fisher scoring produces an unacceptable MLE of 0, , e.g., 7,,

becomes a negative value, etc. Thus, as long as we use Fisher scoring, we will face this

problem in computing the profile likelihood.

A solution for this might be to use the EM algorithm. The EM algorithm assures

convergence to a local maximum and thus we can compute the profile likelihood at any

point evaluated, at least, at the local MLE. This certainly motivates one to develop an EM

algorithm for the HLM2F model, but whether it is the global maximum or not is still in

question.

A non-graphical way of checking global maximum was developed by Gan and

Jiang (1999). Their claim is that a global maximizer would satisfy

56 602 “’ ’

which is consistent with the property that at the global MLE, an equality to derive the

Cramer-Rao lower bound should be satisfied,
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at 2 6’]

E4134) +E4laaT'1l=°’

where I is the log-likelihood function, 6 is an unknown parameter and 6, is the true 6.

Based on the observation on the above approximate equality, they developed a large-

sample test that is practically usable. Their Monte Carlo studies on distributions that

involve local maxima, including a normal mixture distribution, showed that the observed

significance level was close to a level and the power was very high in a sample size of

500 in a simple random sampling.

Identification

Necessary and sufficient conditions for model identification are still an unsolved

question when we use the factor analytic model. There are no sufficient conditions

known. In practice, what we can do now is, once a model satisfies the necessary

conditions, try to run the software and see if the software can produce the estimates. Then

we might try different starting values for the estimates ofthe parameters and see if the

software can produce the same estimates. If it does, we can have a little confidence that

the model is identified, though it is not mathematically proved. This practice is based on

the concept of local identification, which means that the information matrix is invertible

at the MLE.

Wald (1950) provided an alternative sufficient condition for local identification

using a Jacobian determinant which is known as Wald’s rank rule (Bollen, 1989). The

covariance equations that need to be solved are non-linear simultaneous equations in
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terms of parameters. A general way of solving non-linear equations is an iterative

algorithm using the Jacobian of the simultaneous equations. Wald’s suggestion is that if

the Jacobian has non-zero determinant at the value we plugged in to the equations, then

the parameter is identified at that value. Since these days symbolic computation of a

determinant is possible using a software package such as Mathematica (Wolfran (1991)),

Wald’s suggestion could be extended to a statement of necessary and sufficient condition

ofmodel identification, such that if the Jacobian determinant is not zero at the arbitrary

point in the parameter space, then the model is identified, and vice versa.

6-2. Future Directions

The issues of confirmation of global maximum and model identification, which

were mentioned in the section of unsolved problems, are more general statistical

problems that apply to many other models than HLM2F which I developed in this

dissertation. Clearly more studies on these topics are needed to solve these problems.

In this section, I mainly discuss extensions of the HLM2F model. Since correlated

variables are common in social and behavioral sciences, a variety ofthe extensions of

HLM2F can be considered. Those include:

a. Including a specificity parameter;

b. Multivariate hierarchical linear model with factor structure (MHLMF), where factor

analysis is applied to the multivariate HLM model;

c. Nonlinear hierarchical generalized linear model with factor structure (HGLMF), where

factor analysis is applied to the two-level hierarchical generalized linear model
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(HGLM). When the outcome variables are dichotomous responses to test items, it can

be shown that HGLMF is equivalent to a multi-dimensional two-parameter (2-P) IRT

model. This is a confirmatory item factor analysis.

6-2-1. Including smcificig parameters

Including specificity parameters into HLM2F is straight forward and is useful. As

I suggested in section 5.3, this model is immediately applicable to the SAT meta-analysis

data.

Mel:

L-l:

Y, =X,,6, +r,, (6-2-1.1)

where Y,isa n, x 1vector, X,isa n, x R matrix, ,6, isa Rxl vector, and r,isa n, x1

vector, and

r, ~ N(0,021,) (6-2-1.2)

where 1,,, denotes an identity matrix of size n,.

L-2:

fl) = W + u,- (6-2-1.3)

u, = An, + 5, (6-2-1.4)

where W,isa RxF matrix, 7isa Fxl vector, u, isa Rxl vector, Aisa Rx M

matrix, 17, is a M x 1 vector (R 2 M), and 5, is a R x1 diagonal vector, and

u, ~ N(0, r), (6-2-l.5)
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17,- ~ N(091’). (6-2—1.6)

4'} ~ N(0.Q). (6-2-1.7)

where

Q = diag(a), ,a),,...,a)R). (6-2-1.8)

Thus, we have

2' = A‘PAT + Q. (6-2-1.9)

and the total variance D[Y,] E 22 , a R x R matrix, is decomposed into

2 = z'+0'21,l

6-2-1.10

=A‘PAT +Q+ozlnl. ( )

In factor analysis terms, the first term in Equation (6-2-1.10) is called the communality

(common factor variance), and the second term is called the specificity (part ofa test’s

true variance which is not shared with any other tests in a battery) (Thurston, 1947). Note

that since we are formulating a factor model at level-2, there is no error variance lefi at

level-2 variance-covariance 2'. That is, the true variance 2' is decomposed to

communality and uniqueness by the level-2 model. In his factor analysis model, Thurston

(1947, Chapter 3) actually considered the model in terms of variance decomposition as

follows:

-109-



Total Variance = True Score Variance + Error Score Variance

Communality + Specificity + Error Variance (6-2-1.11)

True Score Variance

 

Communality + Emcificiw + Error Varinace.
 

Uniqueness

Usually in factor analysis, the equation that is represented by the third decomposition in

(6-2-1.11) is used. But by using the model represented by Equation (6-2-l.1) to (6-2-

1.10), we are able to further decompose the uniqueness into the specificity and the error

variance.

Note that if we constrain a), = 0 for all r, then it reduces to the proposed model in

Chapter 3.

In section 6-2-2, I will present the model without the specificity term, i.e., 5, =0

for allj, because in a technical sense, the model seems more useful in solving the

nonconvergence problem when some of the correlation estimates are close to l or -1,

although inclusion of the specificity term is straightforward. Then, in section 6-2-3, I will

show that the 2-Parameter Item Response Theory (IRT) model can be formulated by a

nonlinear version of the HLM2F model.

6-2-2. Multivariate HLM with a Factor Model (2-level Multivariate Model)

General Formulation of the Model

Suppose the complete data consists ofP observations. For example, if a test

consists of Pth subtests and the examinee responds to all the subtests, then we have P
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outcomes for that subject. In a longitudinal study, ifPth waves of observations are

planned, and if we have succeeded to follow up, then we have complete P waves of

observations. Often in these settings, we have missing observations. However, ifwe can

assume that missing observations occurred at random (MAR), we can use all the

information we have gotten to estimate the complete data model without bias. To develop

a general multivariate model, we utilize the idea of Jennrich and Schluchter (1986) and

Thum (1997). That is, we formulate a level-1 model by two steps. The first step of the

level-1 model links observed outcome and complete outcome, which is

L-l:

Y, = Z M r‘ (6-2-2.1)

where Y, is a scalar and ith observation ofjth level-2 unit, 1;. is a scalar and pth

observation of level-1 unit, and M,p, is an indicator and is 1 if ith observation is the

observation of pth level-1 unit, 0 if otherwise. Thus the matrix M,.p, indicates which

observation of complete data we have got, or it tells us the missing pattern ofthe

observations. In matrix notation, we can write

Y, = M,Y, , (6-2-2.2)

where Y, is a p, x 1 vector of observed data outcome, M, is a p, x P matrix of missing

pattern, and Y,‘ is a P x 1 vector of complete data observation of the outcome. Then, we

formulate the second part of the level-1 model, which is the standard formulation ofthe
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level-1 model in HLM. Thus, we formulate the standard model for the complete data, not

for the observed data.

Y,‘ = X,,6, + r,‘, 5? ~ N(0, 2), (6-2-2.3)

where )3 is the P x P variance-covariance matrix for r, , i.e., E = D[r,°] = D[Y,°| 6,].

Plugging Equation (6-2-2.3) into Equation (6-2-2.2), we obtain the level-1 model by

letting X, = M,X,°. and r, = M,r,°.

L-l:

Y, = X,,6, +r,, r, ~ N(0,Z,) (6-2-2.4)

where

Z, = M,M} , a p, x p, symmetric matrix. Notice that now we have the subscriptj in

)3 that was induced by a missing indicator matrix M, and that 22 , is actually a submatrix

of 2 , a P x P symmetric matrix. Thus, what multiplying M, and M,‘ from the lefi and

the right does is to pick up the subset of the 2 matrix. The level-2 model is a standard

formulation.

L-2:

fl) = W,7 + u,, (6-2-2.5)

Now we consider the case when u, = A7), , then we have the level-2 model

,6, = W,7 + A77,, 77, ~ N(0,‘I’). (6-2-2.6)

If we put Equation (6-2-2.2), (6-2-2.3), and (6-2-2.6) together, we obtain the combined

model.
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Y, = M,(X,°.W,7+X,'.A77, +r,). (6-2-2.7)

We write this general two-level multivariate linear model, which has a factor structure at

level-2, with a slightly more general form:

Y, = M,(A,,6l +A,,Ar], +r,)

= M,A,jg, + M,A,,A17, + Mr.
11’

(6-2-2.8)

where r, ~ N(0,Z), 77, ~ N(O,‘I’).Ifwe let X, = M,A A, = M,A,,,and e, = Mr.
I j ’ J .l ’

then we have a standard form ofHLM with level-2 factor structure as in Equation (3-9),

Y, = X,6l + A,A77, + e, , (6-2-2.9)

where 6, ~ N(O,Z,)for X,isa p, x p,symmetric matrixand 2, = M,2M,T.

Heterogeneity of variance (Note the suffix for 2 ) appears because of varying missing

pattern matrices M, , and 2, is a subset of 2 .

Now we show two examples to illustrate how to apply the above general

formulation to the specific cases.

Example 1. Growth Model

Suppose that the same math test was administered for n elementary school

students from lst grade to 5th grade, but some of the students did not take the test at some

occasions of testing. We wish, for example, to know how math proficiency of the

students grows over time and what the variation of the proficiency among the students is.

Then, in a general formulation of the multivariate model, 1’, , complete data for studentj,
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rs Y,°= (Y' , Y,',,Y3,, 13,,1’5,)T, a 5 x 1 vector in Equation (6-2-2.2), and the number of

occasions P = 5. To be specific, if student 1 took the test at all of the grades, then we have

()1!)

Y

Y31=

Y4

112,)
  

If student 2 missed the third occasion, then we have

2

2
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1Y5)

(6-2—2. 1 0)

(6-2-2.1 1)

To formulate the complete data level-1 model in Equation (6-2-2.3), suppose we

decide to use a quadratic function for modeling mean growth for studentj,.and the grade

was coded as (lst grade, 2nd grade, 3rd grade, 4th grade, 5th grade) = (-2, -1, 0, l, 2),

which centers the age variable around 3rd grade. Then, the parameter )6, is a 3 x 1 vector

,6, = (,6,,,,6,,,6,,)Tand the design matrix X; is

 

(1 -2 4)

l —1 1

1 1 l

11 2 4)
 

-114-

X, = 1 O 0 for all students. Thus, the whole level-1 model for complete data is



(11;) f1 —2 4) (r5) “‘ f0)

          

1 7“,,

Y2: 1 “1 1 fly r,., r,., 0

Y3} = 1 0 0 fl, + a} . r3} ~N( 0 ,2) (622.12)

’41 1 l 1 .32; ’4.) r;, 0

1Y5) \1 2 4) VJ); Us}; KO}

where 2: 0'3, 0'3, 0'3 0'3, 0'3, .

C741 0'42 043 0'4 0'45

  10,, 0",, 0,3 0',4 0,2 1

This is an unconstrained (or saturated) level-l covariance. Modeling this

covariance structure using a smaller number of parameters by giving restrictions such as

homogeneous case, heterogeneous but independent case, a first order autoregressive

model (AR(1)) case, factor analysis (exploratory model) case, and so forth, were

mentioned in Jennrich and Schluchter (1986) and Thum (1997).

For the level-2 model in Equation (6-2-2.5), suppose that we found a high

negative correlation between residual intercept u,, and the residual slope u,, , but no

correlation between u,, and the residual rate of acceleration u,, , and between u,, and u,, ,

even afier we included all of the necessary predictors that could explain individual

differences such as gender, race, socio-economic status (SES), then we might consider the

model in Equation (6-2-2.6). That is, it might be useful to think about

u,, 1 0 ,7 ’7

u,. = 2 0 [ °’),[ W] ~ N(0,‘I’) (622.13)
J 0

1
u,, 0 l ”U
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W11 W12)

where ‘I’ =[

W21 W22

This factor model structures the 7 as

T

T00 701 702 1 0 1 0 W11 1W” 0

W11 W12 2

7,0 7,, 7,, = 2. 0 W W Z O = 117,, 2.17,, O (6-2-2.14)

1,, 7,, 7,, 0 1 " ” 0 1 0 0 11,,

and reduces the number of parameters in 7 from 6 to 3.

Example 2. Multivariate Outcome Growth Model

Suppose that students in primary school took 2 tests such as Reading and

Mathematics each year from 1st grade to 3rd grade. In this type of study, it is natural that

we have missing observations for either or both tests at some time points for some

students. We assume that these missing patterns are missing at random (MAR). In this

setting, the complete data for each student is Y,’ = (Y'. Y' Y' Y. Y' Y' )T where if; is
lj’ 2j’ 3], 4j’ Sj’ 6}

the reading score for studentj at grade 1, Y,', is the mathematics score for studentj at

grade 1, Y3, is the reading score for studentj at grade 2, If, is the mathematics score for

studentj at grade 2, If, is the reading score for studentj at grade 3, Y,‘, is the mathematics

score for studentj at grade 3. To formulate the complete data level-l model in Equation

(6-2-2.3), suppose we decide to use linear function for the mean growth for studentj and

the grade was coded as (lst grade, 2nd grade, 3rd grade) = (-1, 0, l), which centers the

age variable around 2nd grade. Then, the parameter ,6, is a 4 x 1 vector

,3, = (.30; “[11, , ,6“, 6,, )T , where 6,, is the mean reading intercept for studentj at grade 2,
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6, is the mean reading slope for studentj , 6,, is the mean mathematics intercept for

studentj at grade 2, 6,, is the mean mathematics slope for studentj. The design matrix

X, in Equation (6.2.2.3) is

  

  
          

(1 —1 0 01

O 0 l —l

, 1 0 0 0

X, = 0 0 1 0 for all students. Thus, the whole level-1 model for complete data

1 1 0 0

k0 O 1 l)

is

(7,,) (1 -1 0 0) 0,3.) 0,3) (0)

,, 0 0 1 -1(60,) r,, r,, 0

Y,’, 1 0 0 0 6, r,°, r33 0
= .1. , , , ~N ,2 6-2-2.15)

,, 0 0 1 0 6,,- r4, r4, (0 ) (

Y5.) 1 1 0 0 Van} ’5‘} ’3‘} O

\Gj/ \O O 1 1) V6.1} \r6.j) KO)

(0'1 012 0'13 0'14 0'15 0'19

021 of (In CB4 02s 026

where 2: 0'31 0'32 0'32 0'34 0'35 036

0'51 0'52 0'53 0'54 0'5 056

  2

K0'61 062 063 064 065 0'6 /

Thus 2 matrix, i.e., within-student variance-covariance, is 6 x 6 in this case. In

addition to the ways of structuring the covariance matrix mentioned in example 1., we

can think about other patterns here because there is a content area factor, i.e., reading vs
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A 0 0

mathematics, as well as a time factor within students. For example, 2 = 0 A 0 ,

0 0 A

5:2 42

52, 522] and 015 32 x 2 null matrix, represents a block homogeneouswhere A = [

variance-covariance pattern which corresponds to 2 = 021, a homogeneous independent

variance-covariance for example 1. The within-subject variance-covariance

pattern 22 =

c
:

:
3

D
»

a
b
:

0

0 implies that reading and mathematics scores are correlated at each

A

time point within students as in A , and the within-student variance covariance is constant

over three time points, but has no correlation with other time points.

Now for the level-2 model, suppose that we found a high positive correlation

between the residual reading intercept uoj and the residual mathematics intercept uzj ,

and between the residual reading slope u”. and the residual mathematics slope 113, , but no

correlation between uoj and ul j , between uoj. and u” , between u1j and uzj , and between

uzj and "31 even after being accounted for by all of the necessary predictors such as

gender, race, socio-economic status (SES) for example, that could explain individual

differences. Then we might consider the model in Equation (6-2-2.6). That is, it might be

  

useful to think about

(u,,!) 1 O

u. 0 1 . .

‘1 = [0”), (770,) ~ N(0,‘P) (6-2-2.16)

“21 A1 0 7711 ”I;

W31) 0 32
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W11 W12)

where ‘P =[

W21 W22

This factor model structures the r as

T

o

1

o

120
2
9
0
*
—1 0

2'10 2'” 1,2 713 = 0 1(V’n W12]

1'20 715 722 723 ’11 0 W21 W22

0 32

W11 ./’12 31%| ’12le

_ W21 W22 Ail/21 Az'l’zz

_ 11W” 11%2 312W” 3132an

lei/’21 ’12sz Aszr 122sz

(6-2-2. 17)

and reduces the number of parameters in r from 10 to 5.
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6-2-3. Application to Item Resmnse Theory Model

The purpose of presenting an alternative formulation for a unidimensional 2-

parameter Item Response Theory (IRT) model here is that, since the reformulation makes

the IRT model a special case of nonlinear mixed model with factor structure, it gives us

an opportunity to examine the model and the theory, from a standard statistical point of

view. Also, the reformulation gives us a model that is easier to extend to a

multidimensional IRT model and to multiple levels of nesting.

We will first give the perspective of IRT as a nonlinear factor analysis. What we

mean by “nonlinear” here is a nonlinear transformation of the expected value ofthe

outcome is modeled by a linear combination of parameters and independent variables.

From this view, we will show that if we adopt the IRT as a nonlinear factor analysis

perspective, it is straightforward to extend the usual unidimensional IRT model to a

multidimensional IRT model. Though the current IRT model, whether uni-dimensional or

multi-dimensional, is used in the exploratory factor analysis mode, it will be shown that a

confirmatory mode non-linear factor analysis can be executed without much difficulty, if

we formulate the IRT model as a hierarchical generalized linear model (HGLM) (See

Chapter 5 & 6, Bryk, Raudenbush, & Congdon (1996)).

Usually a test consists of many items, and the items are supposed to measure the

student’s proficiency. Then we want to know the current status of the proficiency ofthe

examinee and how his/her proficiency grew over time if the longitudinal data are

available. The key for the modeling here is to represent the IRT model as the HGLM

level-1 model for a nonlinear factor analysis, and if we use dummy variables, the same
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model can be represented by HGLM with level-2 factor structure. Suppose that a test that

consists of n dichotomous items is administered for J students, whose response Ya is

scored 1 if correct, 0 if not, and suppose that J students are a random sample from the

student population. The distribution of random variable Y”. conditional on the probability

of correct response of studentj for item 1' (denoted as pg. ) is Bernoulli with mean

pg. (0 S pg. S 1) i.e., Pr(Y,J. = 1| p0.) = p”. . If we write this data generation process in a

regression form, then the sampling part of the level-1 model (the unit is item) is:

L-l Sampling Model:

X,- = p,- + 8,, (6-2-3.l)

where 5,). ~ Ber(0, py.(l — p0. )) and the 8,]. ’s are independent from each other. Note that

the conditional mean and the conditional variance of the outcome variable I; are

E(Kjlpy) =p,-,-, and Var(1£j|pg)=py(1-pg)- ‘ (6-2-3-2)

Now, for the model for the mean p”. , since the range of p”. is restricted between 0

and 1, and in order for the transformed variable to have the range theoretically -oo to +00,

we make a logit transformation, i.e.,

Pi}

1-p

 

77"} = log( ) =-—. 10g it(py) a (6'2‘3-3)

y

and then we assume that 17,]. has a normal distribution. For notational convenience, we

write the logit inverse transformation as

1

1+ exp(—n,.j)'

 

1),-,- E logit"(r7,-,~) , where p, = (6-2-3.4)

~121-



Now, the level-1 structural model for the 2-parameter IRT model for item 1' of

studentj would be:

L-l Structural Model:

n. = /1,-(0,- - 6.). (6-2—35)

Combining the level-1 sampling and structural models, we obtain the Level-l model as:

L-l Model:

Y, = logir'hwj - (2)] + 5,, (6-2-3.6)

where

8,]- ~ Ber(0, pij(l — pg. )) for O S pg. 3 l. (6-2-3.7)

and A, is the item discrimination parameter for item i, 01 is personj’s ability

(proficiency), 6,. is the ith item’s difficulty parameter. The scaling constant D 5 1.7 that

makes the logistic model comparable to the normal threshold model is omitted from the

model representation without loss of generality. Note that ifwe consider all the 2., ’s to be

the same for all the items, then it will be a Rasch model.

ANOVA gge formulation of 2-P IRT using HGLM

We now show that the inside of the inverse logit function of Equation (6-2-3.6)

can be written in the same format as the linear factor analysis model. Specifically, let’s

consider that we have only three items in the test. Then the level-1 structural model of the

2-parameter IRT model can be written as
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L-l Structural Model:

Itemlznlj =X1(6j —c5;)

Item 2: 772]. = 12(0). —62), (6-2-3.8)

Item 3: 7}”. = 2309]. — 63)

where 6]. ~ N(0,1) . The variance of 6}. was fixed to 1 in order to identify all of the item

discrimination parameters. In matrix format, Equation (6-2-3.8) can be written as

’7” ”M 31 fl. ,1,

'72.- = 4,5, + ,1, (0,)= y, + A. (9,), (6-2-3.9)

’13.; ”/1353 13 #3 33

where

,u, E -/1,.5,. for all i. (6-2-3.10)

Or, we can write it in matrix form as

77]. =,u+A6j. (6-2-3.11)

Then, at level-2 whose unit is student, we have,

6]. = fl” + uj, (6-2-3.12)

where uJ. ~ N(0,1). Note that the Var(uj) = 1 corresponds to Var(61.) = 1.

Thus the logit-transformed mean vector 77]. conditional on 6]. has the same

structure as the conditional mean of the standard one-population factor analysis model,

i.e., E(YI 0) = ,u + A6. Remember that the key assumption of the linear factor analysis is

that given the factor score (latent ability), the Y’s (outcome variables) are independent. In

the IRT case, the local independence assumption (that, given 91. , the observations Yr ’5

are independent) corresponds to the conditional independence assumption for the linear
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factor analysis model. The difference between the linear factor analysis model and IRT

model is whether the link function is identity or logit. Thus, we can view the IRT model

as a non-linear factor analysis model. If we do so, then the item difficulty parameter is the

mean of the logit, and the item discrimination parameters are contained in the factor

loadings matrix A .

Regression ape formulation of 2-P IRT using HGLM

Rasch (l-P IRT) model

Though the above formulation is useful for recognizing that the IRT model

involves a factor structure, it does not facilitate finding the estimation procedure similar

to the one which is executed by the current HGLM. In order to do that, we reformulate

the above IRT model by a hierarchical model with dummy variables, which was

introduced by Kamata (1998) and Cheong & Raudenbush (1999), who applied this model

to the 1-parameter (l -P) IRT (Rasch) model. In the following presentation, since the

level-1 sampling model is always the same, i.e., Bernoulli distribution, 1 will omit it.

To facilitate the idea of representing a 2-parameter (2-P) IRT model by HGLM,

we use no-intercept model first. As before, we have n items and J students. For item i and

studentj,

L-l Structural Model:

77,]. =A1Xw +52sz.) +AJX3U+---+flquqy+-~+,B,,Xm.j

= Zflinqij

q=l

(6-2-3.13)
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where XW. is the indicator variable and is 1 if q = i and 0 if q a: i for all i. At level-2, all

the coefficients randomly vary among students, but with the same ul j.

L-2:

fl,- = 710 + “u

:62} = 720 + ulj

(6-2-3.14)

flqj : qu + ulj

flnj = 710 + “119

where u“. ~ N(0, Too). Or, in short,

,6,” = 7,10 + u”. for q = 1,...,n. (6-2-3.15)

Notice that ul 1. is the same for all items and reflects the idea of unidirnensionality

of the IRT model, that all the items in a test are supposed to measure a single construct.

Notice also that in the Rasch model it is not necessary to fix r00 = 1, though in IRT it is

customary to do so. On the other hand, fixing some parameters is necessary for the 2-P

IRT model in order for the model to be identified.

If we put the L-l and L-2 models together, we get the combined model.

Combined Model:

'7.) = 27.0%.», MUZXW. (6-2-3.16)

q-I q=l

But since2 XW. E 1 by definition of indicator variables, it reduces to

(1:!

77,, = ZquXq, + u” . (6-2-3.17)

(Pl
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I now show that the model in Equation (6-2—3.17) is equivalent to the model

formulated by Kamata (1998), and Cheong & Raudenbush (1999), that used an intercept

model in order to fit the Rasch model to the existing HGLM setup. That is, at level-1, we

let one item, for example, the first item, be the reference item, and create (n-l) dummy

variables to represent differential item effects on response probability of studentj.

L-l structural Model:

’7"; = A); +A1X2ij +fisz31i+'"+flinIr+"'+fln-I)1Xna

= Ian + Zflqulij

q-l

(6-2-3.18)

where XW. is the indicator variable and is 1 if q = iand 0 if q ¢ i for all i. At level-2, only

intercept floj varies.

L-2:

flu} =7oo+u0)

A} = 710

a, = 720 (6-2-3.l9)

flqj = rqO

Air-l” = Yup—no

where uoj ~ N(0, 100) . The combined model can be written as,

Combined Model:

27,, = 700 + Z"0qu + u,,. (6-2—3.20)

(Pl
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If we let 6,. s -{700 + 2yquq,1} , 6}. E uoj , then the combined model is exactly

q-l

the same as the l-P IRT Rasch model except that the constant D s. 1.7 , which adjusts it to

the normal ogive model, was omitted. In IRT model terminology, 6,. represents ith item

difficulty, 6]. isjth student ability. To interpret the combined model, we consider item 1

and item 2. For item 1, 7}”. = 700 +u0j, and for item 2, 17,]. = 700 +710 +uoj. Thus, the

interpretation in words can be that the logit correct response probability of studentj for

item 1 is student’s ability uoj adjusted by the item difficulty 700 (item easiness may reflect

the exact meaning of the parameter) for item 1. And the logit correct response probability

of studentj for item 2 is student’s ability uoj adjusted by the item difficulty (700 + 7,0) for

item 2. 7,0 reflects the difference in terms of the item difficulty of item 2 compared to

item 1. If item 2 is easier than item 1, then 7,0 > 0 and thus p2,.2_plj , where p” and

p21. are the correct response probabilities for item 1 and item 2 of studentj.

It should be noted that the l-P IRT model can be considered as a non-linear two-

way ANOVA additive model with the factors, item difficulty and student ability.

2-P IRT model

Since using all n indicator variables for items without including the intercept is

more natural, I’m going to adopt a no-intercept hierarchical model formulation to

represent the following 2-P IRT model. The 2-P IRT model addsanother parameter called

item discrimination on each item. Item discrimination can be interpreted as a kind of
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item’s sharpness in distinguishing two students who have different abilities by the item.

This concept suggests the interaction between item characteristics and student ability.

That is, the effect of student ability on item response depends on an item characteristic

which we call item discrimination even afier controlling item difficulty. In other words,

some items are sharper than others in reflecting student’s ability. By this

conceptualization, we formulate the level-1 structural model as

L-l:

77y = AJXUJ +1321X2ij+m+ q/Xw+'”+flannr

" (6-2-3.21)

= Z 'qu Xqij ’

qal

or, in matrix notation,

17,,- = X374, (6-2-3.22)

where X; = (X10, ng, ,Xqij, ,ij). This notation is actually simpleth

it seems: the ith element is l and the rest of them are 0, i.e.,

X; = (0, O, ,1, ,0). Note that this is the same as the level-1 model ofthe

Rasch model. But the level-2 model is different.

L-2:

A] =710 ““11"”

fir} =720 +22“;

(6-2-3.23)

flq] = 7qo + ’1qu

flnj = 7110 +173“)
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where v”. ~ N(O, 1). It should be noted that the variance of v”. is now set to 1 for model

identification. Notice the similarity and difference between the 2-P IRT model and the

Rasch model in Equation (6-2-3. 14). The same v”. reflects that all items are measuring

one kind of ability and the different coefficient 2. implies that the sensitivity of each item

to reflect ability v”. is different; in other words, itq is the interaction effect between the

membership ofrtem q (X) and personj’s ability ( v”. ). In matrix notation,
‘7’}

,5}. =7 +Avj , vj ~ N(O,1) (6-2-3.24)

Whereflj =(AJ’IBU’W ”Bin/0T 7=(710,720,...,y"0)r,A=(2.l, ’12, ”'a 11,.)7,

4.1,).

If we combine the L-l and L-2 models together, we get

77'} = {2M1}qu} + {ZIA'Xq qy' }vlj a ‘ (6'2'3 .25)

«PI

and ifwe let p, a 274,-qu , )1, a Z}. X and 6.-= v0j then the above equation can be
q 0'} ’

q-l qul

written as

77,-,- = A1.- + 1.63, (6-2-326)

where ,u, is the item intercept for item i, A, is the item discrimination for item i, and 0] is

the ability of studentj. Using the item intercept as an item parameter is a way of

representing the 2-P IRT model (See, for example, Bock & Aitkin, 1981), but ifwe

impose a constraint on ,u, such as p, = -/1,.6} for all i, then the model becomes

= 249,. — 5,.) (6-2-3.27)
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and this is the standard 2-P IRT model. We now write the models for all n items together.

At level-l we have

L-l:

,7]. = A13]. (6-2-3.28)

where 77]. =(mj,...,nnj)r, A]. = E ,and ,6]. =(Aj,...,,6nj)r.Note that Alisthe nx n

identity matrix, i.e., Aj = In if student i responded to all of the items, which is a case of

balanced design. The level-2 model is written as Equation (6-2-3.24), and thus the

combined model is,

Combined Model:

77]. = A17 + AjAvj , vj ~ N(O,‘P) (6-2-3.29)

where 77]. is the n x 1 outcome vector, y is the n x 1 item intercept vector, A] is the

n x n design matrix, A is the n x 1 item discrimination vector (later, it will be

n x M matrix if we use M multidimensional IRT model), vj is the l x lscalar (later we

extend it to a M x 1 vector), and ‘P is a scalar variance of latent ability of studentj (later,

a M x M covariance matrix). For the above 3 items case, Equation (6-2-3.29) becomes

”I; 1 0 O 700 l 0 0 X1

77,]. = o 1 o y,, + o 1 o 12(vlj). (6-2-3.30)

0 0 1
773j 720 0 0 1 ’13

Note that the Rasch Model is a special case of the 2-P IRT model in that it lets A = 1 , a

vector of all 1’s in Equation (6-2-3.29) or (6-2-3.30). Note that though the design matrix
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A1 seems trivial (A1. = I" for all i, which is true if all the students take the same set of

items and if there is no missing observation), it can be different from student to student.

Now, notice the close similarity of Equation (6-2-3.29) to Equation (3-9), which is

the HLM2F model developed in this dissertation. In fact, by letting uj = Avj and

denoting D[uj] a r in Equation (6-2-3.29), we have I = A‘I’AT . Thus, by formulating the

IRT model by HGLM with a factor structure, we recognize that the standard 2-parameter

IRT model is a non-linear version of the model Equation (3 -9), which I call HGLM2F.

This is the reason why I say the IRT model is a non-linear version of HLM2F. Instead of

standardizing woo = l , which is the standard procedure of IRT programs, we can set 20 =

1 for model identification. Then, we can directly incorporate the algorithm ofHLM2F

into the micro iteration of HGLM, which consists of a doubly iterative procedure.

Multi-dimensional IRT model

The nice thing about this formulation is that we can easily expand it to a

multidimensional model. That is, if we think that the test is measuring multiple abilities,

then we change Equation (6-2-3.9) to

7M #1 111112 (a!)

7721 = #2 + 121122 92' (6-2-3.31)

’73} #3 131 132 J

and Equation (6-2-3.12) to

31 __ A») (“01]
[gzjj—[Ao + u”. , (6-2-3.32)
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W38 SCI t0

1'

“0} O 1 0 . .

where u, ~ N2( 0 ,I2 = O 1 ). Note that the covanance matrix of

J

the identity matrix so that the model can be identified except for the rotational

indeterminacy.

For a HGLM formulation with dummy variables, we just need to change A by

    

(31‘ (in 312‘

112 121 122

. E E 5 v1, .

addrn another column from A = to A = , and v. from v . to [ )m

g ’14 ’14! 1'42 j ( U) v2}

KAN) Kl,” 1M2)

Equation (6-2-3.29).

By this formulation, we can perform the unidimensionality test by formulating the

null hypothesis H091,2 = O for all i. Further, ifwe model the level-2 by some individual

characteristics, then we can perform a statistical test for Differential Item Functioning

(DIF) (Hambleton, Swaminathan, & Rogers, 1991).

For the longitudinal data, we can extend the IRT model to a latent ability growth

model based on this formulation. In that case, the scaling issue should be carefully

addressed in order for the latent ability growth to be meaningful.

6-2-4. Other Possibilities

Incorporating the factor model into a three level model is a natural extension of

the two level model. In the three level case, there are two possibilities ofusing the factor
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analysis model; one is in level-2 covariance matrix 1;, , and another is in level-3

covariance matrix 1,,.

Incorporating the factor model into a three level multivariate hierarchical model is

also straightforward for conceptualization.

As shown in the previous IRT application section, applying the factor analysis

model to hierarchical generalized linear model (HGLM), which has a non-linear outcome,

seems to be promising, at least to measurement models in psychometrics.
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Appendix. Derivation and Algorithm

The purpose of this appendix is to derive the Maximum Likelihood Estimators

(MLE) via Fisher scoring algorithm and to give the detailed steps of algorithm for

computation.

M:

Subscript Model (Model for each group)

Y}. = Aug + Aszryj +rj , (i =1,2,...,J) (A-l)

where

rj ~ N(0,0'21,,j),

71,- ~ N(031’).

and rjand njare independent forallj. ins n]. x 1, AUis nj x F, 19, is Fx 1, 77} isthe

Mxl factorscore vector, rj isa nj x1; Azjisa nj x R, Aist M, I'Wisthe

nj x n1 identity matrix, and ‘1’ is the positive definite M x M symmetric matrix.

By writing

ej = Asznj + rj (A-2)

in Equation (A-l), we see the model (A-l) as general linear model,

1’]. =A,j.0,+ej. (A-3)

The variance-covariance matrix is

V]. a Var(ej) = Asz‘I’ATAzrj + 021,” . (A4)
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The log-likelihood:

The Log-Likelihood I is

1 = — %[N log(27r) + (N - JM)log(0'2 ) + J logl ‘I’I-Z logl C;'] + 2(efe, — 4,1,, -AC;‘AT «Le, )/ 02],(A-5)

where C;' = (AT/1,3 Asz + 02‘1“)" that will be explained in Equation (A-16),

ejTej is given by Equation (A-27), and

Azrjej is given by Equation (A-28), to be shown later.

Computation:

In the following, the subscript for the A2 will be omitted for simplicity ofthe

formula and will be written as A , and all the subscriptj will be omitted. If it is necessary

for clarity, we will explicitly use the subscript.

Review of Standard 2-level HLM

Elements required for standard 2 level MLF, Fisher Scoring Algorithm are:

dvec(z') do'2 32 log L02, 2302;3’) - —

d¢T ,F=W,andforH=E[ 6¢T5¢ ],ATV'A,ATV2A,
  

”(V-2), and eTV'ze since

 

1 many _. -. o‘vec(V)
H:--[— V ®V ——

2 5W ‘ ) aw (A-6)

= —-12-[E’(ATV"A® A’V"A)E + ETvec(ATV‘2A)F+ FTvec(ATV’2A)E+ tr(V'2)FTF];

6”] L , , 2; . .
for S = 0g (:61 0' y), E, F, ATV"e, tr(V"), and eTV’Ze are requrred srnce
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S = QMYW“ e V" )vec(eeT - V)

2 5¢
1 (A-7)

= ~2-[Ervec(ATV"eeTV"A — ATV"A) + FT{eTV'Ze — tr(V'l )}].

Now for 2 level MLF factor model, we need the same things. But there are some

differences, because in this case,

2' = A‘I’AT (A-8)

2' is R x R and is not full and matrix which is not invertible

 

A is R x M, and ‘I’ is a M x M positive defrnite symmetric matrix.

(I) Computation 01E and F

Definition 1. Definition of ¢ vector

¢ = ({Afl}’{V/hl}’o.2 )T

A-9)
=(AT,WT,0'2)T, (

is a Q x 1 vector of unknown unique parameters in the variance covariance matrix V]. for

all j, and it is composed of three elements, a Ql x lvector A. , a Q2 x lvector 1/1 , a scalar

0'2.

(a) A QI x lvector ,1 consists of Ql unknown elements in the R x Mfactor loading

matrix A (Ql 5 RM). Thus, some of the elements (Q, ) are unknown and to be estimated

from the data, and the rest of the elements (RM — Q) are known. To construct A , we

align the unknown elements in the order of starting from (1,1) element of A and going

down the column, if we find the unknown element, then put it in the A vector. Then,
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move on to next element in the same column of A . Once we finish searching in the first

column, we move to the second column, and so on to the last Mth column of A .

Exam 1e

Ex 1.

O

O

For example, if A = A” 1 then 11 = (A?!) .

o a.

o 2..

Ex 2.

1 0 3a

A

IfA= ’1“ A” ,then A: 4'.
0 l [in

’14] 1'42 2'42

1t. 112

. . 12. Ila:
Note that rn exploratory factor analysrs model, we let A = 32 A, , all the

l 2

’14] 1‘42

elements in the A (factor loading matrix) are unknown. But, we are here thinking about

confirmatory factor analysis in which we specify some of the elements as fixed number.

In the first example, we fixed 2“ =1,,?,Jl = 0,14, = 0,2,2, 2 0,122 = 0,132 =1, and in the

second example, we fixed as 11, = 1, A.“ = 0, , 12, = O, 1.32 =1 . Thus, in our model, some of

the elements in A are known and some ofthem are unknown. The number ofknown

elements is RM — QI and the number ofunknown elements is Ql .

(b) A Q2 x 1 vector (11 consists of Q2 elements, where Q2 be the number of unique

elements in M x M variance-covariance matrix ‘I’ , and since \I’ is always symmetric,
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the number of the unique elements Q2 is Q2 = M(M + 1) / 2. We align the

Q2 x 1vector1/I as follows.

W11 W12 V’lM

W21 ll’zz

‘11: : :9V’=(V’llaV’zls”'aWMlaV’zza'l’zsama'l’m:W33a”°aV’m)T-

Wm WM

This operation is often written as w = vech(‘I’) (vector half).

Adding the number of unique elements in 02 , which is clearly 1, we have in total,

Q=Q1+Q2+1=Qt+M(—A:+2+1

elements in the vector ¢.

fig.

Max(Q,) = RM and Q2 = M(M + l) / 2 . Thus, Q2 is always exactly

M(M +1) / 2 , the number of unique elements in the symmetric matrix ‘1’ , but

Q, satisfies inequality restrictions Q1 3 RM because we fix some ofthe elements in A ,

depending on our theory.

Definition 2. Definition of E matrix

We define E matrix as

E_dvecr_(dvecr dvecr dvecr)

- d¢T _ all" ’dw’ ’de” . (A-lO)

=(E,,EW,EO,)
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The dimension ofE is a R2 x Q matrix, and E matrix consists of three parts, E,1 , EV , and

E62 , which is always a R2 x 1 vector of 0 because I does not depend on 0'2. Thus, E

matrix always has a form

E=(E1,EV,0). (A-ll)

And, E,1 is a R2 x Ql matrix, E, is a R2 x Q2 matrix.

Now,

(a) For E1 , we compute this column by column. The qth column of E1 corresponds to

dvec 2'

d/l
1}

 

, where xi?!- is the qth element of A (that is, the qth unknown element in A). The

order is determined by counting for the same column down the rows and then move to the

next column, go down the rows. Thus,

  

 

 

_ area! _ aiec(A‘PAT) _ 5(A‘I’AT)

1., " at, ‘ at, ‘ m‘ at. )
’ ’ T ’ (A-12)

- vec(-éA ‘i’AT + N? 6A )- vec(D ‘I’AT + A‘I’DT )

‘ at, at, ‘ *v *v ’

3A .. .. . . . . . .

where D10 = a: = {1 for posrtlon (1,1) 1n A and 0 for other posrtrons 1n A} for all 1, j.

1}

Example.

1 O

321 0 diecz' firecr
when A = 1 , E}1 =(EAN,E,u)=( €12] , 07142 ).Then,

0 2.2

E,“ = vec(DAil‘I’AT + MID; ) = vec{Dhl‘PAT + (DthATf).
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0 0

D l 0

’12! - O O ’

0 0

0 O O 0 O 0

DA, (VAT: 1 0 (Wu 91’1sz ’12] O 0]: Wu ’1le” V12 ’14z'l’42 ,and

' 0 0 W21 ([122 0 O l 1142 0 O 0 0

0 0 O 0 0 0

O O 0 O 0 Wu 0 0

Wu 121W” W12 ’142‘l’42 O 321W” 0 O
T A‘PDT =

D123“ + ‘2' o o 0 o + 0 v1.2 0 o

0 0 0 0 0 lat/I42 0 O

0 Wu 0 0

W11 2121V’11 W12 ’142‘l’42

O ([112 0 O

0 1'42 V’42 O 0

Then taking vec, we obtain E2,, , which is a 16 x 1 column vector. Explicitly, it is

_ o 0) (0) (0) o o o o o T

Era, — (0, V’1(1 ),0,0, W1(1 ’ZAQIV/ll 2 W12 s 122’!!!1(2 )90, V/l(2 ),0,0,0, 1:2)W1(2)’090) , Where the

superscript on the parameters means that we use the current values of estimates to

compute EA . Similarly,

E1, = (0,0,0, Wig):0,0’0a121'/’2(i))’0’0,09 VS”, wéi”,1§?’w§?’a W§§’,2/1§3’W§§’)’ -

(b) Next, for Ew , we compute it like the old I in HLM2. That is, we can compute

EV one at a time by

E, =(A®A)D;, (A-13)

where
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where w is the part in the vector ¢ whose elements are the unique elements of ‘P , as

defined in (A-9) in Definition 1.

 
  

 

1 O

O

Example.whenA= 2;! 1 ,LIJ=(ZH Zn),andy/=(Wn, W219 W22)T,then

21 22

0 142

W11

W21

W12

0' _ o'liec‘P _ W22 _(0’\’ec1/I o'veci/I area/I)

14! WT 01W” W21 W22) 3w“ , W21 , W22

(1 O 0

0 l 0

‘ o 1 0'

KO 0 1

Then, by Equation A-13, we get the 16 x 3 matrix E, by
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1

321

o

o ,1,, o ,1,, o

= (A ® A)(D. ’ DLZI ’ DJ’rz)Vll

= (A 18 A)(vecD,” , vechn , veCDVn )

Ew=(A®A)D;={

H
O
O

2
.
}
:

'
-
‘
O
O

C
O

O
H
—
‘
O

#
0
9
0

= ((A ® A)vech” , (A ® A)vecDVu , (A ® A)vech,u)

(Eu/.1 Ell’zl Esz)

  

( l 0 0 )

121 0 0

0 1 O

0 ,1,, 0

121 0 0

1221 0 0

0 2,, o

= 0 121/142 0

O 1 0 '

o ,1,, o

O O 1

o 0 ,1,,

o ,1,, o

0 221/142 0

o 0 ,1,,

\ O O 1422}

Definition 3. Definition of F vector

A 1 x Q row vector F is defined by

 

(A- 14)

E_xa_1_nlrls.
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1 O

0

when A: A“ , ‘1’ =(Wn W”) , ¢=(12,,A4z,1,z/”,1//21,y122,0'2)r,a6 x 1 column

0 1 W21 W22

0 142

MM 1 22 l

vectorandQ=Q,+Q2+1=2+-L2—+—2+1=2+—(—2:—)+1=2+3+1=6.Then,

F=(o, o, o, o, o, 1).

(2) Computation at H (Expected Hessian matrix) and S (Score vector)

Note that H is a Q x Q matrix, and S is a Q x lvector.

(a) Computation ofH (expected Hessian matrix).

 H“) = my l°ggay»,”251,5,” = i. H)” .

where

Hy) = _ g {(5"ng )) T(Vj" ® VIT' )[fl‘;:#LIMM

= .%{ET(A,TJV;'A,j ® Agni/1,} )E + 15Tvee(A,",V;2A,j )F (A-IS)

+ FT[vec(A2Tj-Vj-2A2j )]T E + (’(V;2)°FTF}I,.,M ,

where

o'lzec(z') _ id:

a¢T

 E:

To compute H3.” , we need to know A27]. VflAzj , A; VIZA2j , and tr(Vj‘2 ).

These quantities are function of Weighted Sufficient Statistics (WSS), which are
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A]; V;‘A,, ALVI'AU

WSS = AITJ. VIT'Azj ALI/j"); , for all j, the WSS is in the functions of Sufficient

Airs-m

145/1,1 Ali/4,.
1

Statistics (SS), SS = ASA”. ALYJ. , for allj, and ACjT'AT for all j. Therefore, we first

Air,-

show the computational formulae of ACJT'AT and the WSS, and then we show the

computational formulae specific to Hy).

Formula of ACjT'AT :
 

We first compute a M x M matrix

C;‘ = (ATAZTIAZA + 02‘1“)" ,j = 1,2,...,], (A-16)

and then compute a R x R matrix ACJT'AT for all j. Then, we compute the WSS for the

current ACjT'AT.

Computation of WSS:

As we can see in the following, WSS is a functions of SS and AC;'AT.

. AijflAU = 0'"Z(A,TJ.AU — A514,]. -AC;'AT «AL/1U); (A-17)

. Ami/1,j = a‘2(A,§A,j — 43A,, ~ACJT'AT -A,TjA,j); (A-18)

. AijJr'rj = 04(4); — 43A,]. .AC;‘AT - A2313); (A-19)

. ALVflAN = o-‘Z(A,"J.A,j — Ag‘jA2j -AC;‘AT -A2TjA2j); (A-20)

. .43).“); = (TR/12",); — ALA” ~AC;'AT-A2Tj1t}). (A-21)
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Computational formulae of A;V17542j , A27} V172 A2I , and tr( V172) are as follows.

0 AL. Vj.‘l A2]. is computed by the formula (A-20).

. AZTjVj"2A2j = a‘2(.«l,"jVj"A,j — Agni/1,,. -AC;'AT 45A,]. ) (A-22)

0 tr(Vj'2)=(nj — MM“ +tr{(C;"P" )2}. (A-23)

(b) Computation ofS (Score vector).

. alogL(Y;r.A.r.az)| ’ .5(1) = = st!) ,

a¢ L1,... ,2 .

where

. 1 a) Vj T —l -l T5;” =§[{_e%(;_)} {(Vj ®Vj )vec(ejej -V,)}i¢=

I _ . _ _ _ -

= 2[ETVBC(A2T1VJ 13191“er IAZ} - Azerj l"121“" FT{eIVj 23/ —”(VJ In“

‘(U

(A-24)

M‘” '

(i) T -l T -| T -2 -I

To compute S]. ,we needto know AUVj ej, ADV}. A2}, ejVj ej,and tr(Vj. ).

. T -I T -l T -2

Thus we need to know computatlonal formulae of AUVj ej , ADV]. A21. , eJ. V]. ej , and

tr(Vj’l ). To compute A; VJ."ej , All. V1754, j. , erj'Zej , and tr(Vj‘l ) , we need to have

evaluated ej , 61") , efej , and Azrjej . Those quantities are computed as in the following.

We first note that

ej = Y}. - AUQIU) , (A-ZS)

where 6}") is the current estimate of 6; , and is computed by

J J

61‘" = (Z A; V1724,j )T'Z A", VJ." Y]. . (A-26)

j=l jal
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Note that this is a function of WSS, i.e., 6;“) = f(WSS). Next we compute efej and

A222j by

efej = Yij — 26;")TAlerj + QUVAICA,1.19,“); (A-27)

Age}. = A5,); — ALA,1.9,“), for allj, (A-28)

which are also functions of SS and WSS, i.e., ere]. = f(SS, WSS) and

Agej = f(SS, WSS). Then, using these values, we can compute the quantities necessary

to compute S)".

T —l _ T -l T -l (i),
AzjVj ej _ ADV]. Y}. —A,jVj A216, , (A-29)

AT.V."A . was already given in formula (A-l8) in the computation of H(3";
21 J 21 J

elm-2ej =a“(efe, -efA,j -AC;'AT- Tiej «Leaf/1,j -ACJT'AT-A2T}A21-AC;'AT-A2Tjej) (A-30)

tr(V;‘) = (nj. — M)o"2 + tr(CjT"I’"). (A-31)

Overpll Steps via Fisher Scoring Algorithm:

Step 1. Compute and Store the Sufficient Statistics (SS), i.e.,

Alli/1U AZTJ‘AZJ'

$3 = ASA” A5,); (A-32)

Air,

for all j.

Step 2. Compute Statistics values 6:” , ¢(°’ = (2‘0", w‘o’r,az(°’)rby
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J J

61‘” = (Z A.C-A.,-)" (2 Asia). (A—33)
j=l jai

and compute the initial values of 2“” and VI”) by the method which is provided in the

next section..

2“” is computed by first COIDPUIingNote: 0'

192(3) = (Ag/1,,)" (AL); — Jig/1,195”), (A-34)

and then

1 J

0

0'“ ) = mg“,- ‘ Aljglm) " 142199)“)?- " Aljglw) ‘ A210i3))- (A’35)

Step 3. Compute a M x Mmatrix CIT' = (ATAZTj AMA + 02‘1“)"l ,j = 1,2,...,], by

constructing A , ‘I’ from ¢(°’ , and then compute AC;'AT for all j.

Note: We construct A , ‘I’ from ¢(°’ , and use them to compute C;l with 02”).

Step 4. Compute the Weighted Sufficient Statistics (WSS), i.e.,

AijfAU AQVflAU

wss= Aijf'A,j ALVflYj (A-36)
J

Asa-'1:-

for allj.

Step 5. Compute the matrix E and the vector F.

Note 1: F doesn’t change, though E changes for each Fisher Scoring iteration.

Note 2: E”) = f(¢‘°’). That is, E”) depends on ¢‘°’and E“) will change as

ti“) changes.
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Step 6. Compute H,S by the formulae in Equation (A-15) and (A-24) along with

computational formulae of the components.

Note: H,S=f(E, WSS).

Step 7. Compute the new e5“) by Fisher Scoring Algorithm, .i.e.,

r5“) = (15(0) - H"S. (A-37)

Note: ¢“) = f(H"S).

Step 8. Compute the new

J -1 J

6i” = (Z Ali-W1.) 2 Am"):- (~38)
j=l j=l

based on the new ¢"’.

Note: 6,“) = f(WSS)

Step 9. Compute the Log-Likelihood l.

The Log-Likelihood I is computed by

l J J

I: —-2-[Nlog(27t)+(N - JM)log(0'2)+ Jlogltl’l-Zloglcfl +Z(efe, — efAzj -AC;'A’ -A’-e-)/ 0’],
1=I j=| 2’ I

as in Equation (A-S), where

efej is computed by Equation (A-27), and Azrjej is computed by Equation (A-28).

Step 10. Go back to Step 3.

Note: We use the same cutoff criterion as current HLM2, i.e., change in log-likelihood, to

get out of the loop.
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Starting Values:

To start the Fisher Scoring, we use the following quantities.

 

9:°’—= (Z A,’,A,,)"(Z A,§Y)j (A-39)

j=l

9;? = (A;j .4,j.)"(A,’jYj — A; A1101”); (A-40)

J

02“”: ——Z(Y, - A1191”) — Azflé‘j’m’, — A..6.‘°’- A62‘”) (A41)
N—JR ,_ ,

_ 02(0) J r -1

V = Z<A21A21) ; (A42)
j-l

_ 1 J

D = 72@959”; (A-43)

F.

f = 1'5 — i7 ; (A-44)

F is the method ofmoments estimate in a balanced design. At this point, we check the

positive semi-definitness of the zT matrix. If the 27 matrix is not positive semi-definite

(p.s.d.), we fix it up in the following way: i

1) If a, so, set a, to .113”.

2) If 15,112 if], , let f0. =.9\/fi (use the sign of the original ii]. ); this reduction is 10

percent from the original value.

3) Now check if f is p.s.d. If yes, go to the next step. If no, go back to step 2), and let

ii}:—.8 fF an,other 10 percent reduction from the original value. Check if i" is p.s.d.

again. Keep repeating this process. If after five times of this repetition and if f is still not

p.s.d., then set all of the off-diagonal elements to O.
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With the above procedure, we obtain a p.s.d. ? , an estimate of 1. Using this i" , we first

obtain the starting values for A . We start with ‘I’ = [M . Then, since I = A‘PAT , we have

t = AAT. Since i" is p.s.d., it can be decomposed into 5 : CACT , where A is an

R x R matrix in which eigenvalues are on the diagonal, and C is an R x R matrix that the

corresponding eigenvectors are in columns. We approximate C and A by taking the first

M largest eigenvalues and the corresponding eigenvectors. We denote them as A' and

C' . Note that A. is a M x M matrix and C' is R x M matrix. Then an equality holds

.1 .1 .1

approximately f = NA” 5 C'A'C'T = (CA 2 )(A 2C”). Thus we obtain A. = C'A 2.

Now we use the information for A specification. For clarity, we use an example.

Suppose that we specified the A as A =

(211

1,,

 
Us:

122

3a:

152

in)

in

333

2'43

 
in)

  

( 1 0 ,1,)

0 l A,

O A, 1 and suppose we obtained

1, A, 0 '

(A, 0 or

from the previous decomposition. Then, we let the

f 1 0 313/133)

0 1 123 / 1a

A“) = 0 132/122 1 (A-46)

1'41 la“ 142 /’122 0

  
\151/111 0 0 /
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and use it as the starting values for the estimate of A . In case the pivotal estimates in

Am) are close to zero (in this example, either A“ or 222 or 233 ), then we use the initial

estimate in A. as it is. Note that we need to check if rank(A‘°)) = M .

Next, we compute the starting value for the estimate of lI’ based on A“) and F .

Since I = A‘I’AT and rank(A) = M , we can obtain ‘I’ by

L11 = (ATA)“(ATrA)(ATA)" because rank(ATA) = M and thus it is invertible.

Therefore, we let the starting value for the estimate of ‘I’ be

@(0) = ( [\(on‘ 8(0))-1(A‘°)TFA‘°’ Xf((ovAm)" . (A_47)

Note that we need to check whether \"1"") is positive semi-definite before we use it as the

starting value.

We leave an option for the users that they can specify the starting values for A“)

and (13(0) .

Endnote:

Derivation of log-likelihood formula in Equation (A-S ):

In general, linear model with normal distribution as in Equation (A-3), the log-

likelihood is given by

N 1 J _, 1 J T _,
l=——log(27r)+§Zlog|Vj («Z-Zara. ej, (13-1)

2 j=l j=1

where V;1 is defined in Equation (A-4) and ej is defined in Equation (A-2). By Smith’s

Theorem 2, (AQAT + ‘1’)” = LIJ'I - ‘P"A(AT‘I’"A + Q" )'1 AW",
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we have

-1_ —2 -1 T T
V. -0 (Ins—AUACIAAU),
I

where

C;' = (ATAzrjAsz +02‘I’")".

Now,

log| V1.4] = log|0"2(lnl - AUACJT'ATAZTj )l = logl 0’21", |+ loglIn1 - AszCJ'ATAZTJI

T T

2 ' 2' _

=41, log(rr )+10gA2j’A I_le’l|

  

(since

 

B=|A||D—CA"B|(=|D||A—BD"C|) |D-CA"B|=A BIA"I)
C D ’ C D '

TT

1A2)2

=_njlog(0' )HogAsz I + logl CJT'I

  

A B

(Agaiaapplylc D'=(IAIID-CA"BI)=IDIIA-BD"Cl-)

 
= --nj log(02)+ logllnll C]. — ATA2TI ,Asz

j ll

 
+ log| CI'I

= -nj log(0'2)+log(1)~1-loglCj — ATAzrjAzj-Al + logl C17"

_—_ —n, log(a'z ) + logle - ATALAUAI + log! Cj'l

= —nj log(rr2 ) + logl claim» logl C;'| (of = (AT/1,221,111 + 02%!" )")

= —n, log(02)+ Mlog(02)+ l0gl‘*"'|+log|C}'| (I‘P"|=I‘PI")

= _((nj - M) log(e2 ) + logl ‘PI—logl (:71) . (B-2)
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J J

Zlogl V;'1= — {(N — JM)log(0'2 ) + J log| all—Z logl of 1} . (13-3)

j=l j-l

And

erf'ej = 21TH.” — AZ].AC]'ATJ¢12'rj)ej/0'2

=(efej—eIA2j-ACJT'AT-Are )/0'2,
211'

(34}

where efej is computed by Equation (A-27), and Afje . is computed by Equation (A-28).
J

Thus,

J J

Zap/1%, = 2(efej — 4A,, -AC;'AT . Are )/ 02 (13-5)
21 1'

1:1 j=|

Therefore, plugging Equations (B-3) and (B-5) into Equation (B-l), we obtain the log-

likelihood

l J J .
1: -5“); log(27r) +(N - JM)log(az)+ Jlogm-Zloglqu + 2(efe, - 4A,, .AC;'AT ~A2T1ej)/az]’

I" I"

which is Equation (A-S). Notice that both ofthem are functions of WSS and AC;'AT.
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