

LIBRARY Michigan State University



This is to certify that the

thesis entitled

Effect of Controlled Mixing
On the Rheological Properties of
Deep-Fat Frying Batters at Different Percent Solids

presented by

Sara S. Lee

has been accepted towards fulfillment of the requirements for

Master of Science degree in Food Science

Major professor

Date 8/22/2000

MSU is an Affirmative Action/Equal Opportunity Institution

# PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

| DATE DUE | DATE DUE | DATE DUE |
|----------|----------|----------|
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |

11/00 c/CIRC/DateDue.p85-p.14

# EFFECT OF CONTROLLED MIXING ON THE RHEOLOGICAL PROPERTIES OF DEEP-FAT FRYING BATTERS AT DIFFERENT PERCENT SOLIDS

Ву

Sara S. Lee

#### A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Food Science and Human Nutrition

#### **ABSTRACT**

# EFFECT OF CONTROLLED MIXING ON THE RHEOLOGICAL PROPERTIES OF DEEP-FAT FRYING BATTERS AT DIFFERENT PERCENT SOLIDS

Ву

#### Sara S. Lee

Two types of deep-fat frying batters: adhesion and tempura batters were mixed under controlled conditions at different percent solids to study their rheological properties and coating characteristics. Optimum degree of mixing of a batter was defined as the conditions that gave the maximum amount of batter retention on a coated probe. Batters with higher percent solids needed more energy to achieve optimum mixing. In the case of batter retention, batters with higher percent solids required a longer period of time to stabilize dripping. Yield stress and thixotropic behavior were observed in both adhesion and tempura batters. Over time, changes in apparent viscosity and batter retention on the probe did not have practical relevance to the batter and breading industry. relating batter rheology with fried food quality, it was found that under-mixing a batter had more detrimental effect on fried food quality then over-mixing a batter.

#### **DEDICATION**

To my parents,

C.K. Li, V.S. Cheang-Li

and my sister Ella

for their endless support and encouragement.

#### **ACKNOWLEDGMENTS**

I would like to express my deepest thanks to Dr. Perry K.W. Ng and Dr. James F. Steffe for their guidance during my master years. I have had a wonderful time in the world of cereal grain and rheology.

Thanks are also expressed to my other committee member, Dr. Jerry Cash, for his advice and inspiration.

Special acknowledgment is extended to Mr. Richard Wolthuis for constructing the experimental probe, sample preparation cup and helical ribbon.

Appreciation is also extended to Newly Wed Foods Incorporated and Kikkoman International, Inc., for supplying their adhesion and/or tempura batters for this research.

# Table of Contents

|                                                    | Page                  |
|----------------------------------------------------|-----------------------|
| List of Tables                                     | vii                   |
| List of Figures                                    | хi                    |
| Nomenclature                                       | xiii                  |
| 1. Introduction                                    | 1                     |
| 1.1. Overview and Objectives                       |                       |
| 1.2. Definition and Types of Batters               | 1<br>3<br>4           |
| 1.2.1. Adhesion Batter                             | 4                     |
| 1.2.2. Tempura Batter                              | 4                     |
| 1.3. Basic Ingredients of Batter                   | 5<br>5<br>6<br>7<br>8 |
| 1.3.1. Wheat Flour                                 | 5                     |
| 1.3.2. Corn Flour                                  | 6                     |
| 1.3.3. Leavening Agents                            | 7                     |
| 1.3.4. Flavorants and Seasonings                   |                       |
| 1.3.5. Other Specific Ingredients                  | 9                     |
| 1.3.6. Water                                       | 10                    |
| 1.3.7. Oil and Shortening                          | 10                    |
| 1.4. Effect of Temperature on Batter Coating       | 12                    |
| 1.5. Functions of Batter Coating                   | 13                    |
| 1.6. Current Methods of Evaluating Batter Rheology | 13                    |
| 1.6.1. Zahn Cup and Stein Cup                      | 14                    |
| 1.6.2. Brookfield Viscometer                       | 14                    |
| 1.6.3. Bostwick Consistometer                      | 15                    |
| 1.6.4. Brabender Viscoamylograph                   | 15                    |
| 1.7. Rheological Measurements and Techniques       | 16                    |
| 1.7.1. Rheological Properties of Semi-fluid Food   | 16                    |
| 1.7.2. Models for Shear-Thinning Fluids            | 17                    |
| 1.7.3. Models for Time-Dependent Fluids            | 21                    |
| 1.7.4. Yield Stress in Coating Batters             | 24                    |
| 1.8. Importance of Controlled Mixing               | 26                    |
| 1.9. Methods Used to Evaluate Deep Fried Food      | 28                    |
| 2. Materials and Methods                           | 32                    |
| 2.1. Batters Tested                                | 32                    |
| 2.2. Sample Preparation                            | 32                    |
| 2.3. Mixing Time and Impeller Speed                | 36                    |
| 2.4. Batter Retention over Time                    | 39                    |

|    | 2.5.  | Steady Shear Rheological Testing                | 40  |
|----|-------|-------------------------------------------------|-----|
|    | 2.6.  | Influence of Holding Period on Batter Retention | 41  |
|    | 2.7.  | Deep-Fat Frying                                 | 42  |
| 3. | Resu  | lts and Discussion                              | 47  |
|    | 3.1.  | Optimum Mixing                                  | 47  |
|    | 3.2.  | Batter Retention over Time                      | 51  |
|    | 3.3.  | Thixotropic Behavior and Power Law Fluid        | 56  |
|    | 3.4.  | Influence of Holding Period on Batter Retention | 68  |
|    | 3.5.  | Relationship Between Batter Rheology and        |     |
|    |       | Fried Food Quality                              | 79  |
|    | 3.6.  | Practical Applications                          | 81  |
| 4. | Conc  | lusions and Recommendations                     | 85  |
|    | 4.1.  | Summary and Conclusions                         | 85  |
|    | 4.2.  | Recommendations for Future Research             | 86  |
| Αp | pendi | x                                               | 87  |
| Вi | bliog | raphy                                           | 122 |

#### List of Tables

| Table 2.1. | Batter Compositions for the Six Different Brands of Batter Mix                                                         | Page<br>34 |
|------------|------------------------------------------------------------------------------------------------------------------------|------------|
| 2.2.       | Constant Mixing Time with Four Different Impeller Mixing Speeds                                                        | 37         |
| 2.3.       | Constant Impeller Mixing Speed with Four Different Mixing Times                                                        | 38         |
| 2.4.       | Type of Food Substrate, Mixing Regime and Frying Time for Adhesion and Tempura Batters                                 | 44         |
| 3.1.       | Calculated Yield Stress of Adhesion and Tempura Batters                                                                | 55         |
| 3.2.       | Power Law Properties of Adhesion and Tempura<br>Batters Calculated from Ramping Up Steady<br>Shear Rheological Testing | 64         |
| 3.3.       | Average Weight (g) (n=2) of Dorothy Dawson's Batter Retained on the Probe over a Three-Hour Period                     | 69         |
| 3.4.       | Average Weight (g) (n=2) of Drake's Batter and Golden Dipt Batter Retained on the Probe over a Three-Hour Period       | 70         |
| 3.5.       | Average Weight (g) (n=2) of Kikkoman Tempura<br>Batter Retained on the Probe over a Three-<br>Hour Period              | 72         |
| 3.6.       | Average Weight (g) (n=2) of Tung-I Tempura and Newly Wed Tempura Batter Retained on the Probe over a Three-Hour Period | 73         |
| 3.7.       | Apparent Viscosity (Pa s) (n=3) for Dorothy Dawson's Batters over a Three-Hour Period at 15 1/s Shear Rate             | 75         |

| 3.8.  | Apparent Viscosity (Pa s) (n=3) for Drake's Batters and Golden Dipt Batter over a Three-Hour Period at 15 1/s Shear Rate             | 76    |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.9.  | Apparent Viscosity (Pa s) (n=3) for Kikkoman<br>Tempura Batters over a Three-Hour Period at<br>15 1/s Shear Rate                     | 77    |
| 3.10. | Apparent Viscosity (Pa s) (n=3) for Tung-I<br>Tempura and Newly Wed Tempura Batters over a<br>Three-Hour period at 15 1/s Shear Rate | 78    |
| A.1.  | Amount of Dorothy Dawson's Batter Picked up by<br>the Probe at Time Zero Against Amount of Energy<br>Input into Mixing               | 88    |
| A.2.  | Amount of Kikkoman Tempura Batter Picked up by<br>the Probe at Time Zero Against Amount of Energy<br>Input into Mixing               | 89    |
| A.3.  | Amount of Adhesion Batter Retained over a 5-minute Drip Period at 20°C                                                               | 90    |
| A.4.  | Amount of Tempura Batter Retained over a 5-minute Drip Period at $10^{\circ}\mathrm{C}$                                              | 91    |
| A.5.  | Steady Shear Data of Dorothy Dawson's Batter at 20°C                                                                                 | 92-95 |
| A.6.  | Steady Shear Data of Drake's Batter and Golden Spipt Batter at $20^{\circ}\text{C}$                                                  | 96-98 |
| A.7.  | Steady Shear Data of Kikkoman Tempura Batter at $10^{\circ}\mathrm{C}$                                                               | 99    |
| A.8.  | Steady Shear Data of Newly Wed Tempura Batter at $10^{0}\mathrm{C}$                                                                  | 100   |
| A.9.  | Steady Shear Data of Tung-I Tempura Batter at 10°C                                                                                   | 101   |
| A.10. | Steady Shear Data for Calculating Power Law Properties for Dorothy Dawson's Batter at 45.4% Solids                                   | 102   |

| A.11. | Steady Shear Data for Calculating Power Law Properties for Dorothy Dawson's Batter at 50.0% Solids       | 103     |
|-------|----------------------------------------------------------------------------------------------------------|---------|
| A.12. | Steady Shear Data for Calculating Power Law<br>Properties for Dorothy Dawson's Batter at<br>55.6% Solids | 104     |
| A.13. | Steady Shear Data for Calculating Power Law Properties for Drake's Batter at 50.0% Solids                | 105     |
| A.14. | Steady Shear Data for Calculating Power Law Properties for Drake's Batter at 57.1% Solids                | .06-107 |
| A.15. | Steady Shear Data for Calculating Power Law Properties for Golden Dipt Batter at 50.0% Solids            | 108     |
| A.16. | Steady Shear Data for Calculating Power Law Properties for Kikkoman Tempura Batter at 45.4% Solids       | 109     |
| A.17. | Steady Shear Data for Calculating Power Law Properties for Kikkoman Tempura Batter at 50.0% Solids       | 110     |
| A.18. | Steady Shear Data for Calculating Power Law Properties for Kikkoman Tempura Batter at 55.6% Solids       | 111     |
| A.19. | Steady Shear Data for Calculating Power Law Properties for Tung-I Tempura Batter at 43.8% Solids         | 112     |
| A.20. | Steady Shear Data for Calculating Power Law Properties for Tung-I Tempura Batter at 50.0% Solids         | 113     |
| A.21. | Steady Shear Data for Calculating Power Law Properties for Newly Wed Tempura Batter at 43.6% Solids      | 114     |
| A.22. | Steady Shear Data for Calculating Power Law Properties for Newly Wed Tempura Batter at 50.0% Solids      | 115     |

| A.23. | Weight (g) of Adhesion Batters Retained on the Probe over a Three-Hour Period               | 116 |
|-------|---------------------------------------------------------------------------------------------|-----|
| A.24. | Weight (g) of Tempura Batters Retained on the Probe over a Three-Hour Period                | 117 |
| A.25. | Shear Stress Measurements of Adhesion Batters over a Three-Hour Period at 15 1/s Shear Rate | 118 |
| A.26. | Shear Stress Measurements of Tempura Batters over a Three-Hour Period at 15 1/s Shear Rate  | 119 |
| A.27. | Weight (g) and Thickness (mm) Measurements of Food Substrates before and after Frying       | 120 |
| A.28. | Weight (g) Measurements of Food Substrates before and after Frying                          | 121 |

# List of Figures

| Figure 1.1. | Rheogram for Shear-Thinning Fluid.                                                                                         | Page<br>18 |
|-------------|----------------------------------------------------------------------------------------------------------------------------|------------|
| 1.2.        | Viscosity of Shear-Thinning Fluid.                                                                                         | 20         |
| 1.3.        | Hysteresis Loop.                                                                                                           | 23         |
| 2.1.        | Helical Ribbon and Sample Cup.                                                                                             | 35         |
| 2.2.        | Evaluation Form for Deep-Fat Fried Food.                                                                                   | 45         |
| 3.1.        | Amount of Dorothy Dawson's Batter Picked up<br>by the Probe at Time Zero in Relation to the<br>Specific Mechanical Energy. | 48         |
| 3.2.        | Amount of Kikkoman Tempura Batter Picked up<br>by the Probe at Time Zero in Relation to the<br>Specific Mechanical Energy. | 49         |
| 3.3.        | Amount of Adhesion Batter Retained over a 5-minute Drip Period at $20^{\circ}\text{C}$ .                                   | 52         |
| 3.4.        | Amount of Tempura Batter Retained over a 5-minute Drip Period at $20^{\circ}\text{C}$ .                                    | 53         |
| 3.5.        | Thixotropic Loops of Dorothy Dawson's Batter Samples at 20°C.                                                              | 57         |
| 3.6.        | Thixotropic Loops of Drake's Batter Samples at 20°C.                                                                       | 58         |
| 3.7.        | Thixotropic Loop of 50.0% Solids Golden Dipt Batter at $20^{\circ}\text{C}$ .                                              | 59         |
| 3.8.        | Thixotropic Loops of Kikkoman Tempura Batter Samples at $10^{\circ}\text{C}$ .                                             | 60         |
| 3.9.        | Thixotropic Loops of Newly Wed Tempura Batter Samples at $10^{\circ}\mathrm{C}$ .                                          | 61         |
| 3.10.       | Thixotropic Loops of Tung-I Tempura Batter Samples at $10^{\circ}$ C.                                                      | 62         |

| 3.11. | Apparent | Viscosity | of | Adhesion | Batters. | 66 |
|-------|----------|-----------|----|----------|----------|----|
| 3.12. | Apparent | Viscosity | of | Tempura  | Batters. | 67 |

# Nomenclature

| ρ                                  | Density, kg m <sup>-3</sup>                              |
|------------------------------------|----------------------------------------------------------|
| γ̈́                                | Shear Rate, s <sup>-1</sup>                              |
| $\dot{\gamma}_a$                   | Average shear rate, s <sup>-1</sup>                      |
| $\sigma_{_0}$                      | Yield stress, Pa                                         |
| n                                  | Flow behavior index, dimensionless                       |
| μ                                  | Newtonian viscosity, Pa s                                |
| $\eta_a$                           | Apparent viscosity, Pa s                                 |
| $\eta_{\scriptscriptstyle 0}$      | Limiting viscosity at zero shear rate, Pa s              |
| $\eta_{\scriptscriptstyle \infty}$ | Limiting viscosity at infinite shear rate, Pa s          |
| heta                               | Angle of inclination, rad                                |
| Ω                                  | Angular velocity [2 $\pi$ (rpm)/60], rad s <sup>-1</sup> |
| A                                  | Area, m <sup>2</sup>                                     |
| d                                  | Impeller blade diameter, m                               |
| ΔF                                 | Weight percent of coating in final fried food            |
| $\Delta F_{C}$                     | Percent increase in weight after coating                 |
| F                                  | Weight of food coating, g                                |
| $F_{1}$                            | Weight of food before coating, g                         |
| $F_2$                              | Weight of food after coating, g                          |
| $F_3$                              | Weight of fried food, g                                  |

| <b>g</b> | Gravitational acceleration, 9.81 m s <sup>-1</sup>    |
|----------|-------------------------------------------------------|
| h        | Thickness of coating, m                               |
| K        | Consistency coefficient, Pa s <sup>n</sup>            |
| k'       | Mixer viscometer constant, rad-1                      |
| $M_a$    | Average torque, N m                                   |
| p        | Power input to a mixer [M $\Omega$ ], N m s $^{-1}$   |
| T        | Thickness of coating, mm                              |
| $T_{0}$  | Thickness of food, mm                                 |
| $T_{i}$  | Thickness of fried food, mm                           |
| t        | Time, s                                               |
| V        | Volume of batter retained on the probe, $m^3$         |
| W        | Mass of batter in the mixing cup, kg                  |
| w        | Weight of batter retained on the probe, kg            |
| X        | Coating area of one side of the plate, $\mathrm{m}^2$ |
| x        | Total immersed surface area, m <sup>2</sup>           |
| у        | Distance perpendicular to the inclined plane, m       |

#### Chapter 1

#### Introduction

# 1.1. Overview and Objectives

Batter coating is not an uncommon technique in the food industry. Many food items found on today's market, such as french fries, chicken nuggets, stuffed mushrooms, fried cheese sticks, fried fish sticks and deep fried shrimp, have batter coatings on them. The practice of battering a food item and then deep-fat frying it was noted ages ago. When this food preparation method actually started is unknown, but it has been adopted by many different cultures. Dairy products, meats, seafood and vegetables can all be prepared with batter coating.

Since the 1970s, researchers have been investigating the functionality of each ingredient in the dry batter mix. Several books (Suderman and Cunningham, 1983; Kulp and Loewe, 1990) have been published to document the role of each ingredient in the batter system. However, the mixing techniques are still based on knowledge gathered with experience rather than hard core science. In addition, very few food scientists dedicate their effort solely to research batter mixing and the related rheological properties. Furthermore, no official methods are

established to evaluate the degree of mixing a batter receives, or to measure the extent of batter dripping from the food after coating.

Food rheology is the study of how food products flow and deform under applied stress or strain. Food rheological data are useful information to the batter and breading industry when dealing with process engineering calculations, monitoring product quality during and after production, tracking quality changes within target shelf life and relating food texture with sensory results.

The objectives of this research were:

- To examine the importance of controlled mixing during the preparation of coating batters, by investigating adhesion and tempura batters of three different commercial brands each.
- To measure rheological properties of adhesion and tempura batters at different percent solids.
- 3. To correlate results from the batter stages with the final fried food quality of food items with different batter coatings.

#### 1.2. Definition and Types of Batters

"A semi-fluid substance, usually composed of flour and other ingredients, into which principal components of food are dipped or with which they are coated, or which may be used directly to form bakery foods" is the definition of batter according to the Federal Food, Drug, and Cosmetic Act part 110 (1986). In respect to the batter and breading industry, a more specific definition of deep-fat frying batter is "a liquid mixture comprised of water, flour, starch and seasonings into which food products are dipped prior to cooking (Suderman and Cunningham, 1983)". Other related terms like coatings and pick-up can be described as "the batter and/or breading adhering to a food product after cooking" (Suderman and Cunningham, 1983) and "the amount of coating material adhering to the food product" 1983), respectively. Cunningham, (Suderman and Food products that are prepared with deep-fat frying batter include, but are not limited to, chicken pieces, pork chops, mushrooms, zucchini, cucumber, shrimps, fish sticks and cheese sticks. Generally, coating batter for deep-fat frying can be divided into two subgroups: adhesion batter and tempura batter (Suderman and Cunningham, 1983; Kulp and Loewe, 1990; and Shinsato et al., 1999).

#### 1.2.1. Adhesion Batter

Adhesion batter can be used in conjunction with breading or breadcrumbs. In this case, adhesion batter holds the food substrate and the outside breading together. Chemical leavening agents are usually not included in adhesion batter. Within the category of adhesion batters, there are wheat flour based, corn flour based, starch based and traditional (egg and milk based) batters (Kulp and Loewe, 1990).

#### 1.2.2. Tempura Batter

Tempura/puff batter has a composition similar to that of adhesion batter, but with the addition of chemical leavening agents. Breading or breadcrumbs may also be included in tempura coating applications. Food coated with tempura batter has a puffy, bulky and crispy appearance. On the industrial scale, handling tempura batter requires special care. Common pumping machines used to transfer adhesion batter are not used to transfer tempura batter because pumping may have a detrimental effect on the leavening system. Extra precautions are needed when handling tempura batter.

#### 1.3. Basic Ingredients of Batter

Basic ingredients of adhesion batter and tempura batter include wheat flour, corn flour, sodium bicarbonate, acid phosphate, salt, sugar, flavorings, seasonings and/or other specific ingredients tailored to specific food applications (Suderman and Cunningham, 1983). Functional behaviors of these ingredients have been widely researched and are briefly discussed in the following sections:

#### 1.3.1. Wheat Flour

Wheat flour furnishes both protein and starch to a batter system. Between soft wheat flour and hard wheat flour, a batter coating made with soft wheat flour has better color after frying and requires less water during mixing, because soft wheat flour generally contains a lower level of damaged starch and less protein (Hoseney, 1994). Damaged starch has fractured granules, which swell up more by absorbing more water than undamaged granules, resulting in elevated batter viscosity. Therefore, to maintain a uniform viscosity, more water is needed if hard wheat flour is used in the dry mix.

The other main contribution to a batter system from wheat flour is protein. Commercial batter mixes can contain up to 15.75% of crude protein (Grodner et al., 1991).

Protein functions as a water, fat and flavor binder; it contributes color and textural characteristics to the coating. Gluten proteins found in wheat flour will develop a protein matrix during mixing and maintain structure of the coating after deep-fat frying (Kulp and Loewe, 1990; Novak et al., 1987). This protein matrix is especially important for gas retention in tempura batter to achieve and maintain an aerated and porous texture. Gluten protein also has a high water binding capacity that may contribute to toughness in the fried coating (Kulp and Loewe, 1990). Hard wheat flour, although it contains more gluten protein, is not a preferred choice because it also results excessive browning, rough coating surface and excessive oil absorption during the deep-fat frying process (Olewnik and Kulp, 1993).

#### 1.3.2. Corn Flour

Corn flour, the second major ingredient in dry batter mix, contains mainly starches and is used to fine-tune the batter viscosity. This in turn affects the pick-up and the amount of coating on the fried food (McGlinchey, 1994). Apart from adjusting the viscosity, corn flour also improves the flavor, color and texture of the fried coating. It is a carrier for spice blends and it also

improves crispness and appearance of a fried food. The major component in corn flour is "starch". When compared on a weight-to-weight basis, starch binds significantly less water than protein and therefore, reduces the total water holding capacity of the batter and mellows the toughening effect of the gluten protein. Carotene pigments in yellow corn flour give fried products a natural golden brown color. Corn flour also extends the holding time of the fried product under heat lamps, gives lower greasiness, and improves freeze/thaw stability (Shinsato, 1999).

## 1.3.3. Leavening Agents

Sodium bicarbonate and acid salts make up the chemical leavening system in batter. A wide selection exists for the acid-leavening agents: tartaric acid, potassium hydrogen tartrate, monocalcium phosphate, sodium acid pyrophosphate, sodium aluminum phosphate, dicalcium phosphate dihydrate and sodium aluminum sulfate (Kulp and Loewe, 1990). Their reaction rates, addition levels and neutralization values determine the efficiency of the leavening systems. More than one acid salt is usually used to ensure carbon dioxide production throughout the lifetime of the batter. It is also important that the leavening system can withstand the

temperature stress and agitation stress during the holding period.

#### 1.3.4. Flavorants and Seasonings

Sugar, salt and other seasonings add flavor and visual changes to the coating. Different food substrates need different taste profiles. The choice of flavorants ranges spices and herbs to liquid/spice extracts artificial flavors. When choosing what flavor system to use, one has to take into consideration the type of food substrate involved, whether pre-dusting will be used and the cooking temperature (Kulp and Loewe, 1990). Some complement very well with the target substrates, while others do not result in tasty products. In addition to incorporating flavorants and seasonings in the dry mix, pre-dusting the food with special mixes is another way to add flavor. Cooking temperature is another important aspect in overall flavor development. If the cooking temperature is too high, volatile flavors will flash off easily. Therefore, one needs to make sure the chosen flavor system can withstand the cooking conditions to successfully deliver taste and aroma to the consumers. Other flavor concerns over time include: flavor migration within the food; color leaching by some flavorants like paprika; and settling of larger particulate flavorants during the hydrated state (Suderman, 1993).

### 1.3.5. Other Specific Ingredients

In commercial batter mixes, starches are modified in four different ways: oxidation, substitution, dextrinization and pre-gelatinization (McGlinchey, 1994; Shinsato, 1999). Batters with oxidized and substituted starches adhere to the food substrates tighter. Dextrins increase crispness of the fried foods. High amylose starches give a more chewy and firm coating texture. Pregelatinized starches absorb more water and are used to fine-tune the batter viscosity.

Hydrocolloids are another type of specialty ingredient used in batter mixes. They function similarly to modified starch: control viscosity, control water absorption, form gels/films with other ingredients to resist handling abuse, serve as an oil barrier, and prevent moisture migration (Suderman and Cunningham, 19883; Kulp and Loewe, 1990; Hsia et al. 1992; Dow Chemical, 1997; Balasubramaniam et al, 1997). Examples of hydrocolloids include gelatin, carboxymethylcellulose (CMC), hydroxypropylmethylcellulose, guar gum, agar and xanthan. Hydrocolloids are sometimes preferred over modified starches because they perform well

at much lower levels, resulting in a less diluting effect on the protein in the base batter.

#### 1.3.6. Water

Water hydrates the ingredients and facilitates the development of a protein matrix in batter. Both amount and temperature of the water are important to the overall batter development. Batter is made up of one and a half to two parts batter mix with one part water (Suderman and Cunningham, 1983). The amount of water partially determines the viscosity of the batter; temperature of the water affects reaction rate of the leavening systems plus hydration degree of protein, starch and other minor ingredients. Water temperature is recommended to be between  $40^{\circ}\text{F} - 60^{\circ}\text{F}$  ( $4^{\circ}\text{C} - 16^{\circ}\text{C}$ ) for optimum batter preparation (Kulp and Loewe, 1990).

# 1.3.7. Oil and Shortening

Oil and shortening have two roles in batter-coated foods: they are ingredients in the coating, and they also are the heat transfer media during frying. As an ingredient, oil or shortening helps to lubricate the batter and tenderize the fried coating texture. As a frying media, oil transfers heat to set the shape of the coating and cook

the food. Several types of oils or shortenings are usually used as frying media: soybean oil, cottonseed oil, corn oil, peanut oil, canola oil, palm oil and tallow (Kulp and Loewe, 1990). Each has its unique fatty acid composition and will produce different flavor, color, and texture characteristics in the final products. Therefore, an oil or shortening should be chosen to complement the target food The composition of fatty acids and degree of hydrogenation determine physical properties of system. Oil with a low melting point and low solids content usually gives a cleaner, non-greasy mouthfeel (Kulp and Loewe, 1990). During the frying process, three chemical reactions occur oil: hydrolysis, oxidation in and polymerization (Bennion et al., 1976; Fritsch. Suderman and Cunningham, 1983). These three reactions cause most of the degradation in oil. Hydrolysis and oxidation result in an off, rancid flavor and foaming of the oil. Polymerization will darken the oil, increase the viscosity, cause foaming and increase oil absorption of the fried Therefore, quality of frying oil and the frying conditions need to be monitored carefully. Antioxidants, like polyphenolic compounds from defatted cottonseed flour, can be incorporated in the coating batter to slow down oil degradation (Rhee et al., 1992). As general guidelines,

frying temperature should be between  $360^{\circ}\text{F} - 380^{\circ}\text{F}$  ( $182^{\circ}\text{C} - 193^{\circ}\text{C}$ ), and depending on the food substrates, the frying time can range from one minute for vegetables to 10 minutes for chicken pieces (Flick et al., 1989; Suderman and Cunningham, 1983).

# 1.4. Effect of Temperature on Batter Coating

In both commercial and household environments, food substrates for deep-fat frying may be stored in a frozen or cooled state. Temperature of the food substrates is known to affect adhesion of the coating batter (Suderman and Cunningham, 1983; Kulp and Loewe, 1990). Frozen broiler drumsticks can improve batter adhesion slightly (Suderman and Cunningham, 1983; Kulp and Loewe, 1990), as a smaller amount of crumb is lost upon cooling of the fried poultry. In the batter and breading industry, it is well known that the layer of frozen water on the seafood surface, called "ice glaze", will prevent good adhesion of coating batter (Kulp and Loewe, 1990). The smooth ice surface does not allow firm physical or chemical adhesion and results in extensive "blow off" during the frying process. Corrective measures like sprinkling salt onto the seafood surface or increasing the salt content in the predust can melt part of the ice glaze and lower the incidence of "blow off" during deep-fat frying (Kulp and Loewe, 1990).

#### 1.5. Functions of Batter Coating

Coating is primarily used to enhance the appearance and taste profile of the food. It adds bulky appearance and color to the product. With flavors and spices, coating completes the flavor profile of the food. Batter coating gives a crispy texture and enhances the pleasure of eating. Batter coating also functions as a moisture barrier. Batter coating covers the entire food surface and absorbs the natural food juice that leaks out of the food. It also reduces oil uptake during frying (Nakai and Chen, 1986) and reduces dilution or loss of natural flavor volatiles from the food (Nawar et al., 1990). Depending on the choice of special ingredients, coating may also slow down the oxidation process in the frying oil.

#### 1.6. Current Methods of Evaluating Batter Rheology

The batter and breading industry, like many areas in the food science field, is still using empirical means to evaluate properties of their batters. Although these methods serve to characterize the batter, the collective results are not easily compared. The collected measurements

are unique to each method and each instrument. This makes cross comparison and transfer of knowledge quite difficult. Within the current batter and breading industry, there are five most commonly use instruments to measure batter viscosity: the Zahn cup, the Stein cup, the Brookfield viscometer, the Bostwick consistometer, and the Brabender Viscoamylograph (Kulp and Loewe, 1990).

#### 1.6.1. Zahn Cup and Stein Cup

The Zahn cup and Stein cup are mostly used for on-line quality checks. The amount of time it takes to empty the batters through a small hole at the bottom of the cup indicates the fluidity of the batter. For thin batters, Zahn cups are preferred because of their smaller hole size, while Stein cups are more suitable for thick batters (Kulp and Loewe, 1990; Steffe, 1996).

#### 1.6.2. Brookfield Viscometer

The Brookfield viscometer is another instrument commonly used to measure the viscosity of fluid material. The company manufactures quite a number of models that can operate with various spindles and revolution per minute (rpm) settings. Since batters exhibit non-Newtonian behavior (Hoseney, 1994), the properties measured by the Brookfield equipment are empirical. In addition, the

measurements collected from different spindles have no correlation with each other and therefore interchanging use of models is not advised (Kulp and Loewe, 1990).

#### 1.6.3. Bostwick Consistometer

The Bostwick consistometer is a trough type device. It has two compartments separated by a spring-loaded gate. On the floor of the inclined trough are markings that show the distance traveled by test material over time. When the gate is lowered to form a reservoir, batters are poured in until overflowing. Timing starts when the spring is released; the distance traveled by the batters after 30 seconds is recorded. Although the testing procedures seem simple, many factors exist that can invalidate the final readings. These include obtaining the consistometer level, timing, and reading the marking accurately.

### 1.6.4. Brabender Viscoamylograph

Brabender Viscoamylograph is another example of an empirical instrument used in the batter and breading industry. It was initially designed to characterize starch solutions during gelatinization. But from time to time, it has also been used to evaluate viscosity of batters. The batter samples in the rotating bowl are heated, held and

cooled during the testing cycle. An amylogram with Brabender viscosity units are plotted against time to show the starch quality in the batter samples (Kulp and Loewe, 1990; Steffe, 1996).

#### 1.7. Rheological Measurements and Techniques

### 1.7.1. Rheological Properties of Semi-Fluid Food

Eugene C. Bingham (1929) defines rheology as the study of flow and deformation. When force is applied, materials are deformed and exhibit either solid or fluid or both kinds of behaviors. Batters are one of those food that exhibit both elastic (solid) and viscous (liquid) behaviors (Baird et al., 1981). Since many fluid foods, including batters, exhibit negligible elastic behavior; rheological properties are dominated by viscous behavior. Cunningham and Tiede (1981), Hsia et al. (1992), and Lane and Abdel-Ghany (1986) have reported a relationship between apparent viscosity and pick-up (percent coating weight). Hsia et al. (1992) also found batters have time-dependent behavior with apparent viscosity decreasing over time upon continuous mixing. When examining the time-independent behavior of batters, Hsia et al., (1992) and Castell-Perez and Mishra (1995) found that batters have a flow behavior

index (n) of less than one and that they are shear-thinning materials.

#### 1.7.2. Models for Shear-Thinning Fluids

Fluid foods can be broadly classified as Newtonian and non-Newtonian. On a rheogram, Newtonian fluids have a linear relation between shear stress and shear rate. Examples of Newtonian fluids are water, glycerol and vegetable oil (Barnes et al. 1989). For non-Newtonian fluids, the relation between shear stress and shear rate is non-linear. When the shear stress increases at increasing rate with the shear rate, the fluid is known to exhibit shear-thickening or dilatant behavior. Examples for shear-thickening fluids are certain types of honey or a 40% corn starch slurry (Steffe, 1996). On the other hand, when the shear stress increases in a decreasing rate with the shear rate, the fluid is known to exhibit shear-thinning or pseudoplastic behavior. Examples of shear-thinning fluids are applesauce, fruit puree and orange juice concentrate (Steffe, 1996). A shear-thinning rheogram can be divided into three sections (Figure 1.1.): a lower Newtonian region, a middle region and an upper Newtonian region. At very low shear rates, the apparent viscosity, also called the limiting viscosity at zero shear rate  $(\eta_0)$ , is constant

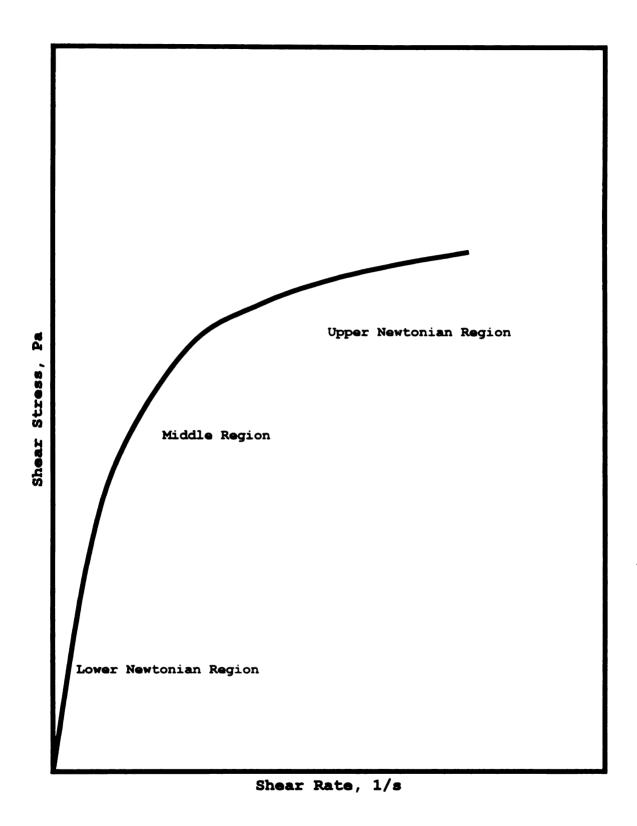



Figure 1.1. Rheogram for Shear Thinning Fluid.

against increasing shear rate (Figure 1.2.). The same phenomenon, but at much higher viscosity is observed again at very high shear rate. The limiting viscosity at infinite shear rate ( $\eta_{\infty}$ ) again is constant against increasing shear rate. The middle region of the curve can be mathematically represented with the power law equation:

$$\sigma = K(\dot{\gamma})^n \tag{1}$$

For shear-thinning fluids, *n* is between zero and one. The power law equation is a special case of the Herschel-Bulkley Model (Steffe, 1996), which is able to represent many types of fluid behavior:

$$\sigma = K(\dot{\gamma})^n + \sigma_0 \tag{2}$$

Rotational viscometers are very useful in studying shear-thinning properties of fluid food. These are fundamental testing instruments that shear test materials either under controlled stress or under controlled rate conditions. When choosing the controlled rate method, rheograms with shear stress plotted against shear rate can be generated. If power law trend line is fitted to the

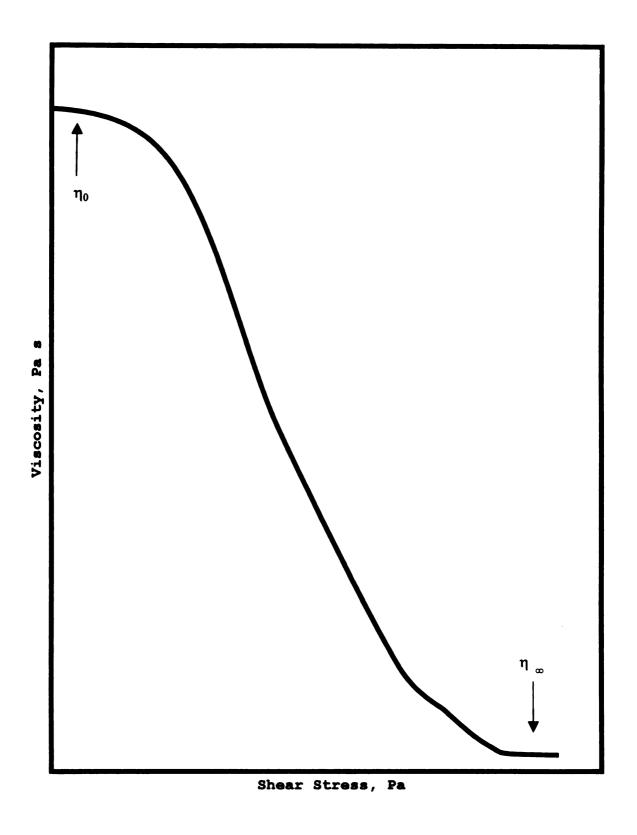



Figure 1.2. Viscosity of Shear-Thinning Fluid.

data, K and n values can then be determined. For batters, a parallel plate setting is preferred because undissolvable particles like spices may exist and generate too much interference when cone and plate sensors are used (Steffe, 1996).

### 1.7.3. Models for Time-Dependent Fluids

Another type of rheological behavior that non-Newtonian fluids could have is time-dependency. behavior is caused by changes in the fluid structure over time (Steffe, 1996). Since ideal time-dependent fluids are inelastic, the response to external stress is instantaneous. The observed behavioral changes are not caused by a delayed response as for elastic materials. Within non-Newtonian fluids, there are two kinds of timedependent behavior: thixotropic and rheopectic (Steffe, 1996). For thixotropic materials, shear stress and apparent viscosity decrease over time at fixed shear rates. This behavior is also described as time-dependent thinning. Rheopexy on the other hand, has increasing shear stress and apparent viscosity over time at constant shear rates, and is also known as time-dependent thickening. Examples of thixotropic fluids are baby food, yogurt and batters (Steffe, 1996), and an example of rheopectic material is modified waxy corn starch (Rao et al., 1997).

Both thixotropic and rheopectic behaviors may be completely reversible, partially reversible irreversible. Changes that thixotropic fluids undergo over time can be represented by the "sol-gel" transition as observed in baby food (Steffe, 1996). When the fluids are allowed to rest, they slowly develop three-dimensional networks that act like gel. When an external force, like shear, is applied, the three-dimensional networks are disturbed and the fluids exhibit minimum thickness. They are then referred to as being in the "sol" state. In the case of reversible thixotropic behavior, the threedimensional network will rebuild and fluids will resume the "gel" state.

Rotational viscometers are very useful for detecting time-dependent behavior. They have the ability to alternately shear then rest the test material at controlled settings. Or the viscometers can ramp shear rate up and down and record behaviors of the materials on a rheogram. If hysteresis loops are generated in rheograms, then the test material exhibits time-dependent behavior (Figure 1.3.). A bigger area between the up and down curves (shaded area in Figure 1.3.) indicates greater time-dependent

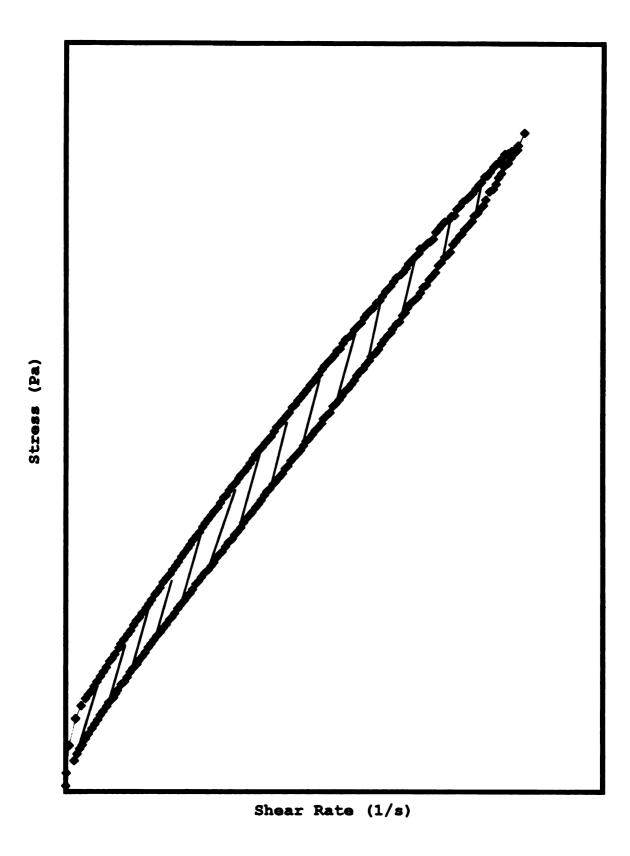



Figure 1.3. Hysteresis Loop.

behavior (Steffe, 1996).

### 1.7.4. Yield Stress in Coating Batters

Yield stress can be defined as the minimum amount of to initiate flow. required Ιn fluid stress suspensions, the major factors causing yield stress are intermolecular hydrogen bonds and molecular entanglement (Heckman, 1977). There are many methods that can be used to evaluate the yield stress of fluid materials: Lang and Rha (1981) reported a comparison of some of them; others like Charm (1962) worked on Casson's equation; Churchill (1988) discussed measuring yield stress on an inclined plate; Kee et al. (1980) mentioned a static technique to measure yield stress; and Kee et al. (1988) proposed a method to measure postwithdrawal drainage of different types of fluids.

The method known as "vertical plate coating" measures the amount of fluid remaining on a plate after plate withdrawal from a sample (Lang and Rha 1981). In this technique, a test plate is fixed to a support to ensure it remains vertical throughout the test period. The plate is then lowered into the sample and raised up at preset rates. After dripping for a fixed period of time, the plate is weighed and the yield stress calculated as:

$$\sigma_0 = 2\rho hg \tag{3}$$

To conduct this test, the surface of the plate needs to be slip proof and the minimum adhesive force between the plate and the coating material must be greater than the yield stress.

Churchill (1998) modeled shear stress on an inclined plate. The author expressed shear stress as a function of y:

$$\sigma = f(y) = g\rho(h - y)\sin\theta$$
 [4]

As y approaches zero, shear stress becomes maximum. If the maximum shear stress is greater than the yield stress, the coating material will flow down the plate due to gravitational pull. When the inclination angle is  $90^{\circ}$ , Churchill's equation can provide a simplified expression for the maximum value of h:

$$h_{\max} = \frac{\sigma_0}{g\rho} \tag{5}$$

The above methods, although similar, do not result in identical yield stress values for the same material. Lang

and Rha (1981) have reported similar observations. Therefore, when reporting yield stress values, one needs to specify how the yield stress data were collected.

# 1.8. Importance of Controlled Mixing

Mixing can be defined as "a unit operation that involves the intermingling of two or more dissimilar materials to obtain a desired degree of uniformity (Steffe, 1996)." In batter preparation, the main goal is to blend the dry powder with water until uniform and to keep the undissolved materials, like starch granules and spices, in suspension. The degree of mixing can affect batter performance. Batters not adequately mixed will have lumps of powder within them. This has an adverse effect on the consistency of coating thickness, resulting in poor product quality (Suderman and Cunningham, 1983).

One way to monitor the degree of mixing received by the batter is to calculate the amount of power consumed during mixing. Power consumption in mixing a power law fluid can be described with the following equation:

$$\frac{p}{d^5\Omega^3\rho} = \frac{A\eta}{d^2\Omega\rho} \tag{6}$$

where: 
$$\eta = K(\dot{\gamma}_a)^{n-1}$$
 [7]

 $\dot{\gamma}_a = k'\Omega \tag{8}$ 

To apply these equations, a range of experiments need to be done to find the k' value. One way is through the "Slope Method" (Steffe, 1996). The "Slope Method" requires power law fluid standards and is relatively simple. However, the disadvantage of the "Slope Method" is that small errors may become magnified into large errors as the power curve is plotted on a semi-log scale. The "Matching Viscosity Method" (Steffe, 1996) is another means to calculate k'. Fewer power law standard fluids are required but it is more labor intensive and there are more calculations involved.

A simple parameter known as the "Specific Mechanical Energy Input (SME)" can be used to monitor energy input into batters. SME is a popular calculation in the extrusion industry for determining the amount of energy used to mix materials (Onwulata et al., 1998; Choudhury and Gautam, 1998; Gogoi et al. 1996; Schwartzberg et al. 1995 and Lue et al. 1994). It relates energy input with time, speed, average torque, and mass of the test material:

$$SME = \frac{M_a * \Omega * t}{W}$$
 [9]

The calculations involved are easier to carry out and the mixing time and mixer speed can be changed during testing.

### 1.9. Methods Used to Evaluate Deep Fried Food

There are two main ways to evaluate a fried food: subjective evaluations using sensory methods or objective evaluations measuring the chemical and physical properties of the fried food. For sensory methods, a three-point scale or a nine-point hedonic scale is commonly used (Kulp and Loewe, 1990). Both require trained panelists and report results in average numbers. Many aspects of a fried food, like coating adhesion, presence of void, pillowing or blowoff during frying are concerns for evaluations (Suderman and Cunningham, 1983; Kulp and Loewe, 1990). Voids are bare areas on the food substrate not covered by the coating batter. This happens frequently when coating seafood. The problem can be caused by excessive line speed during commercial batter coating, unexposed areas on the seafood substrates, excessive or absence of pre-dusting materials, smooth surface of ice crystals outside the frozen seafood or air pockets trapped between seafood and batter during batter application.

A second defect in fried products is called "blow-off". Blow-off refers to pieces of batter that are ripped

off the food during the frying process. The initial contact of wet batter and hot frying oil has a shocking effect on the batter. If there is excessive batter on the food substrate, it will be forced away from the food and fried as a separate entity. These blow-off units sink to the bottom of the fryer, clog the oil recycling systems, or float on the frying oil surface.

Another defect associated with blow-off is presence of air pockets on the fried food surface, called "pillowing". Pillowing is caused by water vaporizing during frying and is first noticed when food exits the fryer. Once cooled, the puffed pockets collapse and result in a wrinkled unappealing appearance. These puffed pockets usually are darker in color than other areas of the food product and are easily broken off during storage and transportation.

There are a number of objective evaluation methods widely used in the batter and breading industry. Each method tackles only a specific quality aspect of the fried products: Hunter and Agtron units measure the coating color; texture analyzer measures the coating compressibility; and specific AOAC methods (Official Methods of Analysis of AOAC International, 2000) analyze different amounts of nutrients present in the food and/or coating. On the aspect of coating adhesion, Suderman and

Cunningham (1983) calculate the percentage breading loss to reflect the degree of adhesion:

The US Government has regulations that the batter and breading industry must follow. Frozen battered and/or breaded seafood must meet the Code of Federal Regulations, title 21, chapter I, part 161, subpart B (CFR, 2000). This subpart specifies the minimum weight of seafood in each type of batter and/or breaded product. In addition, the United States Department of Commerce has outlined in its Seafood Inspection Program the standards for grading fishery products (USDC, 2000). The coated seafood products are to be graded in both frozen and cooked states. Final grade of the coated seafood is governed by a two-part inspection. The first part is a score deduction test and the second part is a subjective sensory evaluation. Appearance, uniformity, absence of defects and ease of separation in the frozen state are some areas of concern in the scoring deduction test. There are sub-areas within each area of concern for more detailed evaluation. The initial score of coated seafood is 100; pre-assigned points are deducted from the base score if defects are found. In the subjective sensory evaluation, flavor and odor of the cooked seafood are the main concerns. Results from both parts are then combined and the coated seafood is graded into three different categories: U.S. Grade A, U.S. Grade B and Substandard.

# Chapter 2

### Materials and Methods

#### 2.1. Batters Tested

The three brand names for adhesion batter dry mixes used in this study were Dorothy Dawson's Batter Mix, Drake's Batter Mix, and Golden Dipt Batter Mix. The three brand names for tempura batter mix were Kikkoman Tempura Batter Mix, Tung-I Tempura Batter Mix, and Newly Wed Tempura Batter Mix. These mixes were either bought from the grocery store or acquired directly from the manufacturer. Out of these six brand names, only Dorothy Dawson's Batter Mix and Kikkoman Tempura Batter Mix were used in the mixing time and impeller speed test. For the frying test, Drake's Batter Mix was chosen to represent the adhesion batter and Kikkoman Tempura Batter Mix was chosen to represent the tempura batter. For the rest of the research, except the deep-fat frying test, all six brands of batter mix were evaluated.

# 2.2. Sample Preparation

Fresh batter at 45.4%, 50.0% or 55.6% solids was Prepared from Dorothy Dawson's Batter Mix and from Kikkoman Tempura Batter Mix. For both mixes, the manufacturers' recommended level was 50.0% solids. The remaining four brands of batter were prepared at two different levels of percent solids: the manufacturers' recommended level and 50.0% solids. Preparing the batter at the manufacturers' recommended level ensured batters were evaluated at the expected consistency. Preparing the batters at 50.0% solids set a common ground for comparison. Table 2.1. provides a detailed breakdown of the batter mix solids and water amounts according to brand name.

A fresh batter sample was mixed for each individual test to eliminate changes in batter properties over time. prepared by slowly adding mix Batter was powder deionized water during the first two minutes of agitation. Agitation was accomplished with a helical ribbon mixing system (Figure 2.1.). During mixing, the helical screw was turned in a clockwise direction, lifting particles from the side of the mixing cup and circulating them down at the center. A Servodyne mixer head (Cole-Parmer Instrument Company, Model 5000-20) was used to carry out controlled mixing. Desired mixing time and speed were entered at the control panel to adjust the mixing regimes. Torque, measured by the Servodyne mixer head, was read from the Servodyne mixer head window, and used to calculate the specific mechanical energy input (SME):

Table 2.1. Batter Compositions for the Six Different Brands of Batter Mix

| Brand                | % Solids | Water (g) | Batter Mix' (g) |
|----------------------|----------|-----------|-----------------|
| Dorothy Dawson's     | 45.4     | 76.4      | 63.6            |
| Batter Mix**         | 50.0     | 70.0      | 70.0            |
|                      | 55.6     | 62.2      | 77.8            |
| Drake's Batter Mix** | 50.0     | 70.0      | 70.0            |
|                      | 57.1     | 60.0      | 80.0            |
| Golden Dipt Batter   | 50.0     | 70.0      | 70.0            |
| Mix**                |          |           |                 |
| Kikkoman Tempura     | 45.4     | 76.4      | 63.6            |
| Batter Mix***        | 50.0     | 70.0      | 70.0            |
|                      | 55.6     | 62.2      | 77.8            |
| Tung-I Tempura       | 43.8     | 78.75     | 61.3            |
| Batter Mix***        | 50.0     | 70.0      | 70.0            |
| Newly Wed Tempura    | 43.6     | 79.8      | 60.2            |
| Batter Mix***        | 50.0     | 70.0      | 70.0            |

Assume percent moisture in the batter mix is negligible to mimic the actual application.

\*\* Adhesion Batter

<sup>\*\*\*</sup> Tempura Batter

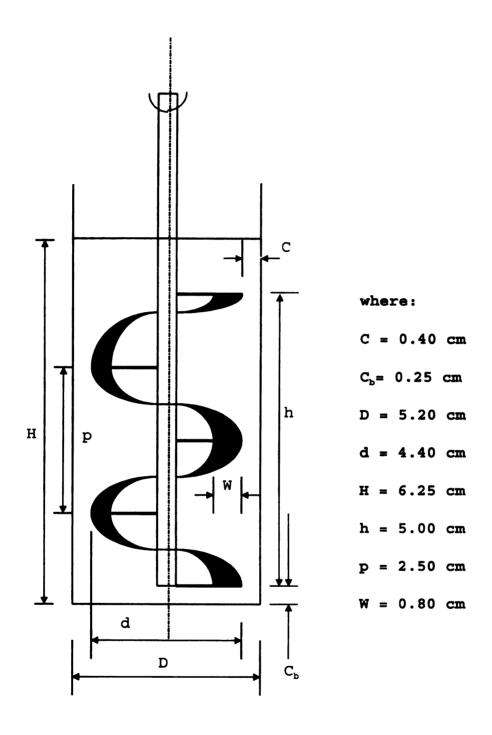



Figure 2.1. Dimension for Helical Ribbon and Sample Cup.

$$SME = \frac{M_a * \Omega * t}{W}$$
 [9]

# 2.3. Mixing Time and Impeller Speed

One type of adhesion batter mix (Dorothy Dawson's Batter Mix) and one type of tempura batter mix (Kikkoman Tempura Batter Mix) were chosen for this test. Results from this part of the experiment determined the mixing regimes for the remaining tests. Preliminary mixing tests were done on the batters to determine the mixing time and mixing speed used in this experiment. Both batters were mixed in two ways: 1) Constant mixing time with four different mixing speeds (Table 2.2.) and 2) Constant mixing speed with four different mixing times (Table 2.3.).

For Dorothy Dawson's Batter Mix, batter was prepared by mixing at 300 rpm for 2, 3, 4, and 6 minutes. It was also mixed for 4 minutes at 100, 200, 300 and 600 rpm. For the Kikkoman Tempura Batter Mix, batter was mixed at 270 rpm for 2, 2.5, 3 and 5 minutes. It was also mixed for 3 minutes at 70, 170, 270 and 470 rpm.

Immediately after mixing, batters were evaluated with a TA-XT2 Texture Anaylzer (Texture Technologies Corp., Scarsdale, NY/Stable Micro Systems, Godalming, Surrey, UK). A rectangular Plexiglas probe, attached to the probe

Table 2.2. Constant Mixing Time with Four Different Impeller Mixing Speeds

| Type of Batter | Time (min) | Impeller Mixing Speed (rpm) |  |  |  |
|----------------|------------|-----------------------------|--|--|--|
|                |            | 100                         |  |  |  |
| Adhesion'      | 4          | 200                         |  |  |  |
|                |            | 300                         |  |  |  |
|                |            | 600                         |  |  |  |
| Tempura**      |            | 70                          |  |  |  |
|                | 3          | 170                         |  |  |  |
|                |            | 270                         |  |  |  |
|                |            | 470                         |  |  |  |

Three brands used as adhesion batter samples are Dorothy Dawson's Batter Mix, Drake's Batter Mix and Golden Dipt Batter Mix.

<sup>\*\*</sup> Three brands used as tempura batter samples are
Kikkoman Tempura Batter Mix, Tung-I Tempura Batter
Mix and Newly Wed Tempura Batter Mix.

Table 2.3. Constant Impeller Mixing Speed with Four Different Mixing Times

| Type of Batter | Time (min) | Impeller Mixing Speed (rpm) |  |  |  |
|----------------|------------|-----------------------------|--|--|--|
|                | 2          |                             |  |  |  |
| Adhesion*      | 3          | 300                         |  |  |  |
|                | 4          |                             |  |  |  |
|                | 6          |                             |  |  |  |
| Tempura**      | 2          |                             |  |  |  |
|                | 2.5        | 270                         |  |  |  |
|                | 3          |                             |  |  |  |
|                | 5          |                             |  |  |  |

Three brands used as adhesion batter samples are Dorothy Dawson's Batter Mix, Drake's Batter Mix and Golden Dipt Batter Mix.

<sup>\*\*</sup> Three brands used as tempura batter samples are Kikkoman Tempura Batter Mix, Tung-I Tempura Batter Mix and Newly Wed Tempura Batter Mix.

T) re ba 2. рa Wa tŀ pr II.

30 re

γie

carrier of TA-XT2, was lowered into the batter and then removed at a rate of 10mm/s for 100 mm. The plexiglas probe was taken down immediately after the probe carrier of the Texture Analyzer stopped moving (time zero) and the probe coated with batter was weighed on an analytical balance to determine the amount of batter picked up by the probe. The weight of batter picked up by the probe at time zero was plotted against the SME value for that particular batter. The mixing regime resulting in the highest amount of batter retained on the probe at time zero was used to mix that batter type for the remaining tests.

#### 2.4. Batter Retention

All six brands of batter mix were involved in this part of the research. Right after mixing, a fresh sample was evaluated with the Texture Analyzer. A known area of the Plexiglas probe was lowered into the batter and programmed to be withdrawn at a speed of 10 mm/s for 100 mm. After that, the probe was held in position for up to 300 seconds. During this period, the weight of batter retained on the probe was measured and was plotted against time.

Assuming a uniform coating on the Plexiglas probe, yield stress of a batter can be calculated as follows:

First, the volume of batter retained on the Plexiglas probe (V) is calculated by measuring the weight of batter retained on the probe (w) and dividing it by the density of the tested batter  $(\rho)$ :

$$V = \frac{w}{\rho} \tag{11}$$

From V, thickness of the coating on the probe (h) can be found with the total immersed surface area (x):

$$h = \frac{V}{x} \tag{12}$$

Finally, h can then be inputted to calculate yield stress  $(\sigma_{\scriptscriptstyle 0})$  of the batter:

$$\sigma_0 = h\rho g \tag{13}$$

# 2.5. Steady Shear Rheological Testing

All six brands of batter mixes were involved in this portion of the research. After mixing, steady shear properties of fresh samples were evaluated with a Haake RS-100 rheometer (Haake Inc., Paramus, N.J.). Since adhesion batters may contain grainy particles, the parallel plate

geometry with a 2 mm gap size was used. For tempura batters, gap size was reduced to 1 mm. For the adhesion batters, steady shear properties were tested by ramping shear rate between  $0.16 \text{ s}^{-1}$  and  $50 \text{ s}^{-1}$ . Each test was run for 600 seconds with 50 measurement points distributed evenly within the shear rate range. For tempura batters, the steady shear properties between 0.16 s<sup>-1</sup> and 20 s<sup>-1</sup> were studied. Each test lasted 120 seconds with 20 measurement points distributed evenly within the shear rate range. Rheogram data and power law properties of batters were collected. Tempura batter was tested up to 20 s<sup>-1</sup> only, because edge failure was observed beyond 20s<sup>-1</sup>. Tempura batter at mid-height of the gap started to recess then leak out from the top and bottom surfaces of the parallel plates. This caused a sharp drop in shear stress indicating maximum shear rate for tempura batter in this 1-mm parallel plate setting had been reached.

### 2.6. Influence of Holding Period on Batter Retention

The Texture Analyzer and the Haake RS-100 were both used to evaluate the batters during a three-hour holding period. Batter was allowed to rest for 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, 90, 120, 150 and 180 minutes after preparation. At the designated time, a known area of a

Plexiglas probe was lowered into, and removed from, the batter. The amount of batter picked up by the probe at time zero was then weighed. For the studies with the Haake RS-100, steady shear testing, set as ramping up only, was done at 0, 15, 30, 45, 60, 90, 120, 150 and 180 minutes to detect time-independent behavior. The collected shear stress at  $15 \, \text{s}^{-1}$  shear rate is reported as apparent viscosity:

$$\eta = K(\dot{\gamma})^{n-1} \tag{14}$$

# 2.7. Deep-Fat Frying

Drake's Batter Mix and Kikkoman Tempura Batter Mix were the two batters used in this test. They were mixed at the manufacturers' recommended levels, 57.1% and 50.0% solids, respectively. Each type of batter was mixed at three different speeds of agitation, with a constant mixing time for each regime. Three kinds of food (Singleton brand frozen cocktail shrimp, Meijer brand string cheese and fresh cucumbers) were used as food substrates for coating. Shrimp were thawed overnight in the refrigerator and cucumbers were cut into % inch slices and blanched for one minute prior to the test. The food substrates were predusted with Golden Dipt Predusts Mix before being dipped

into batters. Shrimp and string cheese were coated with adhesion batters while sliced cucumbers and shrimps were coated with tempura batters. All samples were dripped for two minutes before frying. Table 2.4. lists batter mixing and frying conditions. Before the coating was applied, groups of five shrimp or sliced cucumber pieces with similar size and shape were pre-picked. This ensured food substrates having similar weight and coating surface area. Each frying test was repeated three times. Two small deepfat frying cookers were used to fry the coated food. The frying media was Meijer brand canola oil and the frying temperature was  $360^{\circ}F - 380^{\circ}F$  ( $182^{\circ}C - 193^{\circ}C$ ). New oil was used each day to avoid interference from oxidized oil. Finally, food products were evaluated according to their weight change and appearance. An evaluation sheet (Figure 2.2.) was filled out after cooling to note the observations during coating and frying. The percent increase in weight  $(\Delta F_{\epsilon})$  after coating was calculated as:

$$\Delta F_C = \frac{F_2 - F_1}{F_1} * 100 \tag{15}$$

Table 2.4. Type of Food Substrate, Mixing Regime and Frying Time for Adhesion and Tempura Batters

| Batter        | 8      | Food               | Food   | Mixing | Mixing | Frying |
|---------------|--------|--------------------|--------|--------|--------|--------|
|               | Solids | Substrate          | Piece/ | Time   | Speed  | Time   |
|               |        |                    | Group  | (min)  | (rpm)  | (min)  |
| Adhesion 57.1 |        | Shrimp             | 5      | 4      | 100    | 1.5    |
|               |        |                    |        |        | 300    |        |
|               | 57 1   |                    |        |        | 600    |        |
|               | 37.1   | String             | 4      | 4      | 100    | 1.0    |
|               |        |                    |        |        | 300    |        |
|               | Cheese |                    |        | 600    |        |        |
| Tempura 50    |        | Shrimp             | 5      | 3      | 70     | 1.5    |
|               |        |                    |        |        | 270    |        |
|               | 50.0   |                    |        |        | 470    |        |
|               | 30.0   | Sliced<br>Cucumber | 5      | 3      | 70     | 1.5    |
|               |        |                    |        |        | 270    |        |
|               |        |                    |        |        | 470    |        |

Drake's Batter Mix was used as the adhesion batter.

<sup>\*\*</sup> Kikkoman Tempura Batter Mix was used as the tempura batter.

| Type of B | atter:                    |
|-----------|---------------------------|
| Solids Ra |                           |
|           |                           |
| Mixing Ti | me:                       |
| Mixing Sp | eed:                      |
| Food Subs | trate:                    |
| 3         | fore Coating:             |
| 1         | ter Coating:              |
| % Change  | in Weight:                |
| Thickness | of Food:                  |
|           | of Fried Food:            |
|           | of Coating:               |
| During Co |                           |
|           | ecing.                    |
|           | Reason 1: Shape           |
| _         | Reason 2: Air pocket      |
|           | Reason 3: Batter too thin |
| During Fr | ving:                     |
| _         |                           |
| i         |                           |
| Color:    |                           |
| 1         |                           |
| After Coo |                           |
| Weight of | Fried Food:               |
| Weight of | Coating:                  |

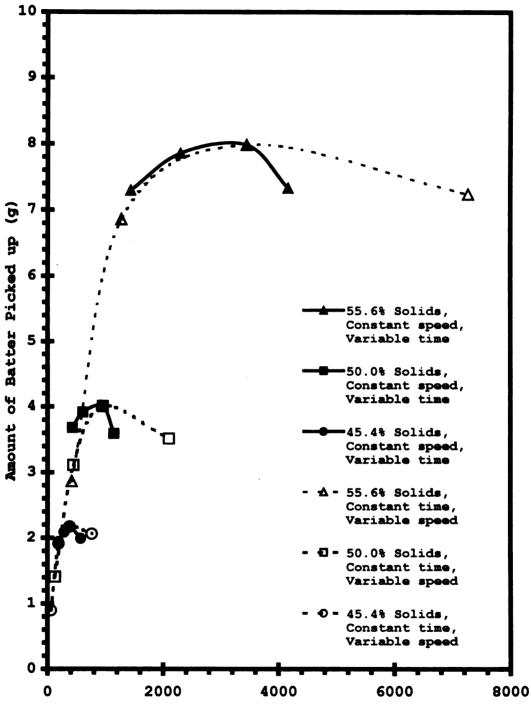
Figure 2.2. Evaluation Form for Deep-Fat Fried Food.

Thickness of coating (T) is calculated as:

$$T = \frac{T_1 - T_0}{2} \tag{16}$$

Weight percent of coating in final fried food  $(\Delta F)$  is calculated as:

$$\Delta F = \frac{F}{F_3} * 100$$
 [17]


### Chapter 3

### Results and Discussion

### 3.1. Optimum Mixing

Optimum degree of mixing occurs when the maximum amount of batter is retained on the probe. The amount of batter retained is determined by the amount of energy input during mixing. It was found that batters with higher percent solids needed more energy to achieve optimum mixing. When plotting batter retention against specific mechanical energy input (Figure 3.1.), an optimum mixing curve was found. In this study, the part of the optimum mixing curve to the left of the peak was considered as the region of under-mixing while the part of over-mixing.

As shown in Figure 3.1., Dorothy Dawson's Batter at 55.6% solids received optimum mixing when the SME was between 2,500 and 3,500 N m/kg. For batter at 50.0% solids, optimum mixing occurred when SME was approximately 1,000 N m/kg, and at 45.4% solids, optimum mixing was achieved when SME was approximately 350 N m/kg. Results from Kikkoman Tempura Batter Mix were shown in Figure 3.2. Batter at 55.6% solids received optimum mixing when SME was approximately 1,600 N m/kg. When the batter was at 50.0%



Specific Mechanical Energy Input (N m/kg)

Figure 3.1. Amount of Dorothy Dawson's Batter Picked up by the Probe at Time Zero in Relation to the Specific Mechanical Energy.

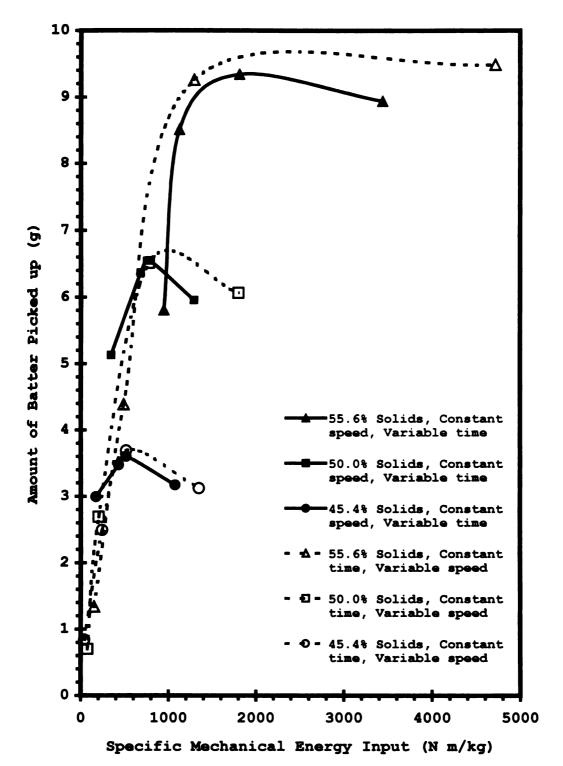



Figure 3.2. Amount of Kikkoman Tempura Batter
Picked up by the Probe at Time
Zero in Relation to the Specific
Mechanical Energy.

solids, optimum mixing was found when SME was between 700 and 1,000 N m/kg; and when batter was at 45.4% solids, the optimum energy input was 600 N m/kg. This shows that for both brands of adhesion batter and tempura batter tested in this part of the studies, the amount of energy needed to obtain optimum-mixing increases with percent solids. Extra energy is needed to blend the additional solids to uniform consistency.

Kikkoman Tempura Batters at different percent solids behaved differently when they were over-mixed. For the 45.4% solids and 50.0% solids batters, the batter amount retained on the probe decreased quickly after the SME exceeded the optimum level of 600 N m/kg and 1,000 N m/kg, respectively. But for batters with 55.6% solids, the batter amount retained on the probe remained fairly constant after the SME amount exceeded the 1,600 N m/kg optimum level. This shows that Kikkoman Tempura Batter at higher percent solids can withstand more over-mixing than batters at lower percent solids. Additional experiments need to be conducted to confirm this behavior.

### 3.2. Batter Retention over Time

Dripping of most adhesion batters stabilized after two minutes (Figure 3.3.). Drake's Batter Mix at 57.1% solids was the only one that required more than two minutes to stabilize. Viscosity of this batter was so high that dripping did not stabilize within the five-minute test period. This high viscosity was caused by the large amount of solids in the batter. The large quantities of gluten proteins and starches formed more networks during mixing and resulted in a stringy batter. Golden Dipt Batter Mix at 50.0% solids showed a similar dripping curve as Drake's Batter Mix at 57.1% in the beginning, but it quickly stabilized after 120s: with fewer solids in the batter, fewer networks were formed during mixing resulting in a less stringy batter. Generally, batters with lower percent solids need a shorter time period to stabilize dripping. Dorothy Dawson's Batter at 55.6% solids took two minutes to stabilize dripping; at 50.0% solids, it took about one minute; and at 45.4% solids, it took only 40 seconds.

The times required to stabilize dripping of the tempura batters were plotted in Figure 3.4. All tempura batters stopped dripping after three minutes. Kikkoman Tempura Batter at 55.6% solids took three minutes to stabilize dripping; at 50.0% solids, it took two minutes

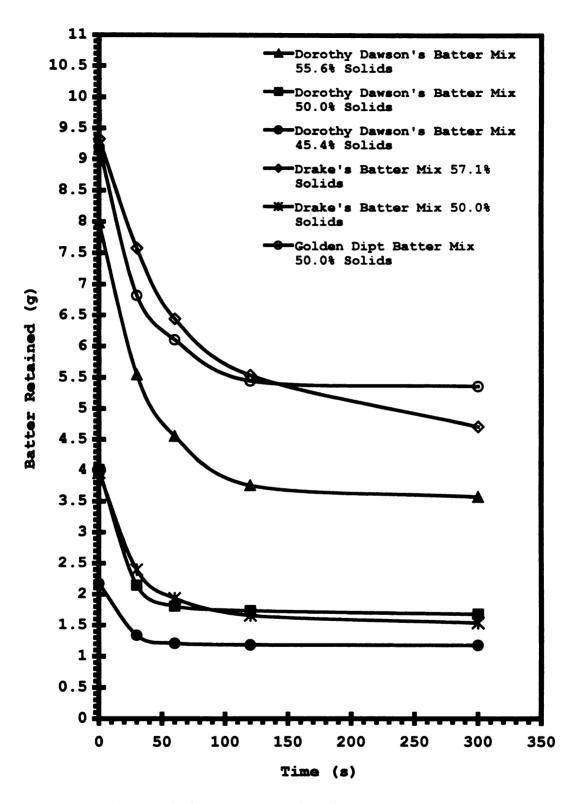



Figure 3.3. Amount of Adhesion Batter Retained over a 5-minute Drip Period at 20°C.

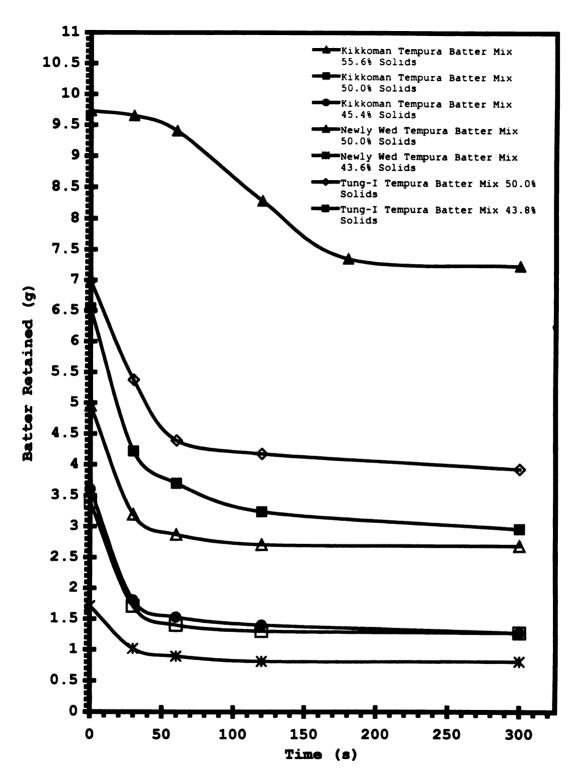



Figure 3.4. Amount of Tempura Batter
Retained over a 5-minute Drip
Period at 20°C.

si r

p ġ.

re gr

> 50 Bâ

> Bu

ba re

in ad

det

Tab bat

ing Dor

thirty seconds; and at 45.4% solids, it took one minute to stabilize dripping. The same trend in dripping time relative to percent solids was observed for both Kikkoman Tempura Batter and Dorothy Dawson's Batter: the higher the percent solids, the longer the time needed to stabilize dripping.

Another phenomenon observed (Figures 3.3. and 3.4.) was that at the same percent solids, batter mixed from different brands did not result in similar levels of batter retention on the probe after drip stabilization. The greatest difference was noticed for adhesion batters. At 50.0% solids, Dorothy Dawson's Batter Mix and Drake's Batter Mix had around 1.7g of batter retained on the probe. But at the same level, Golden Dipt Batter Mix had 5.4g of batter retained, which was three times more than the amount retained by the other two brands. This reflected the great influence batter ingredients had on the viscosity and adhesion characteristics of the hydrated batter mixes.

Yield stress values of the batters were also determined in this part of the experiment and recorded in Table 3.1. Generally, density of the batters, amount of batter retained at time zero, and yield stress values all increased as percent solids in the batters increased. Dorothy Dawson's Batter Mix at three different percent

Table 3.1. Calculated Yield Stress of Adhesion and Tempura Batters

| Brand                     | %<br>Solids | Density (g/cm <sup>3</sup> ) | Batter<br>Retained<br>(g) | Yield Stress<br>(Pa) |
|---------------------------|-------------|------------------------------|---------------------------|----------------------|
| Dorothy                   | 45.4        | 1.15                         | 2.18                      | 4.99                 |
| Dawson's                  | 50.0        | 1.16                         | 4.01                      | 9.20                 |
| Batter Mix                | 55.6        | 1.19                         | 7.98                      | 18.31                |
| Drake's                   | 50.0        | 1.14                         | 3.96                      | 9.08                 |
| Batter Mix                | 57.1        | 1.20                         | 9.32                      | 21.39                |
| Golden Dipt<br>Batter Mix | 50.0        | 1.16                         | 9.19                      | 21.08                |
| Kikkoman                  | 45.4        | 1.10                         | 3.60                      | 8.26                 |
| Tempura                   | 50.0        | 1.14                         | 6.54                      | 15.01                |
| Batter Mix                | 55.6        | 1.18                         | 9.73                      | 22.31                |
| Tung-I<br>Tempura         | 43.8        | 1.12                         | 3.39                      | 7.78                 |
| Batter Mix                | 50.0        | 1.15                         | 6.99                      | 16.03                |
| Newly Wed<br>Tempura      | 43.6        | 1.07                         | 1.71                      | 3.92                 |
| Batter Mix                | 50.0        | 1.11                         | 4.96                      | 11.37                |

solids batters had very close density readings, falling between 1.15 and 1.19 g/cm<sup>3</sup>. The amount of batter retained on the probe at time zero for these three different percent solids batters, on the other hand, had a wide range varying from 2.18 g to 7.98 g. This wide range of readings were magnified when the yield stress values were calculated. Hence, yield stress values for the Dorothy Dawson's batter samples ranged from 4.99 to 18.31 Pa. Results similar to those found from the Dorothy Dawson's batter were also observed with the remaining brand batters.

# 3.3. Thixotropic Behavior and Power Law Fluid

Thixotropic loops of all six brands were plotted in Figures 3.5. to 3.10. Among the three brands of adhesion batter mixes, batters made from Drake's Batter Mix exhibited almost no thixotropic behavior. Batters made from Dorothy Dawson's Batter Mix and Golden Dipt Batter Mix showed some degree of thixotropic behavior. As the percent solids increased in Dorothy Dawson's batter, thixotropic behavior increased. The tested shear rate range for Golden Dipt Batter was between 0.16 s<sup>-1</sup> and 20 s<sup>-1</sup> only because beyond this range, the rheometer started to show erratic results: shear stress values increased and decreased randomly and dramatically. Within the 0.16 s<sup>-1</sup> to 20 s<sup>-1</sup>

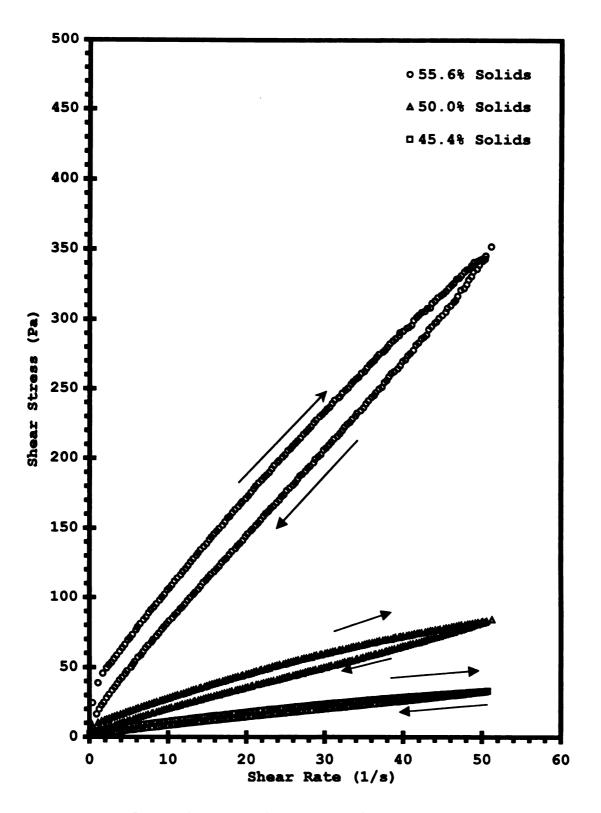



Figure 3.5. Thixotropic Loops of Dorothy Dawson's Batter Samples at  $20^{\circ}$ C.

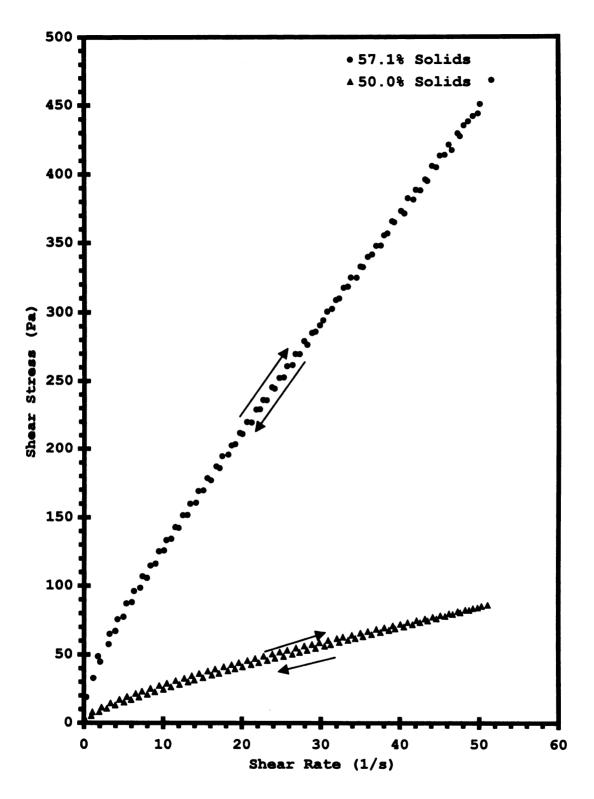



Figure 3.6. Thixotropic Loops of Drake's Batter Samples at 20°C.

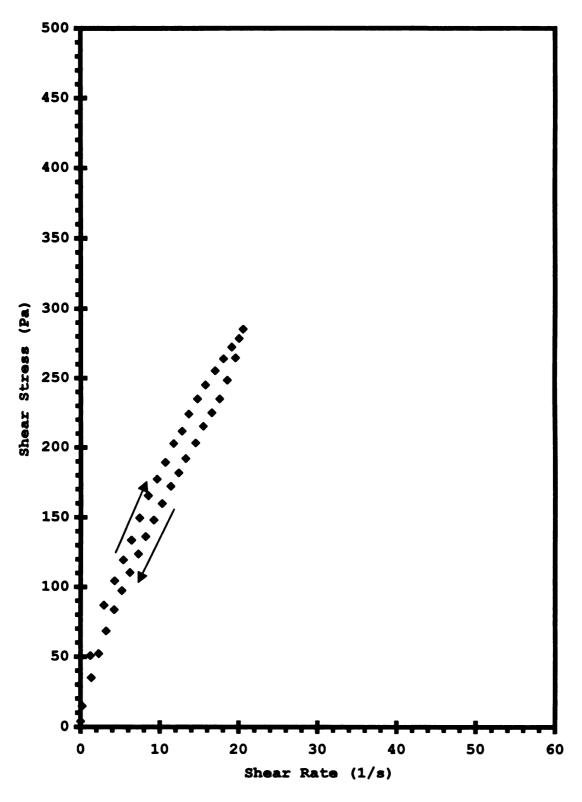



Figure 3.7. Thixotropic Loop of 50.0% Solids Golden Dipt Batter at  $20^{\circ}\text{C}$ .

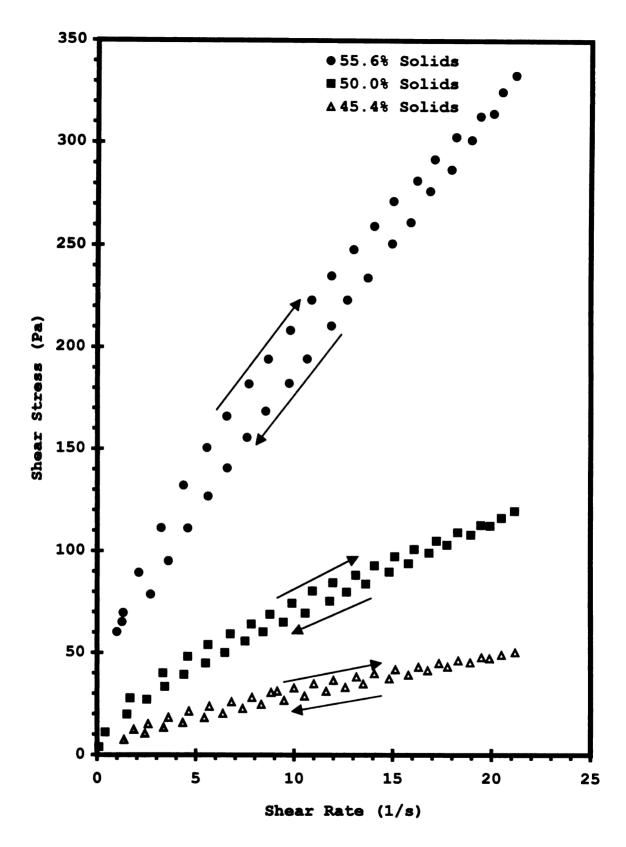



Figure 3.8. Thixotropic Loops of Kikkoman
Tempura Batter Samples at 10°C.

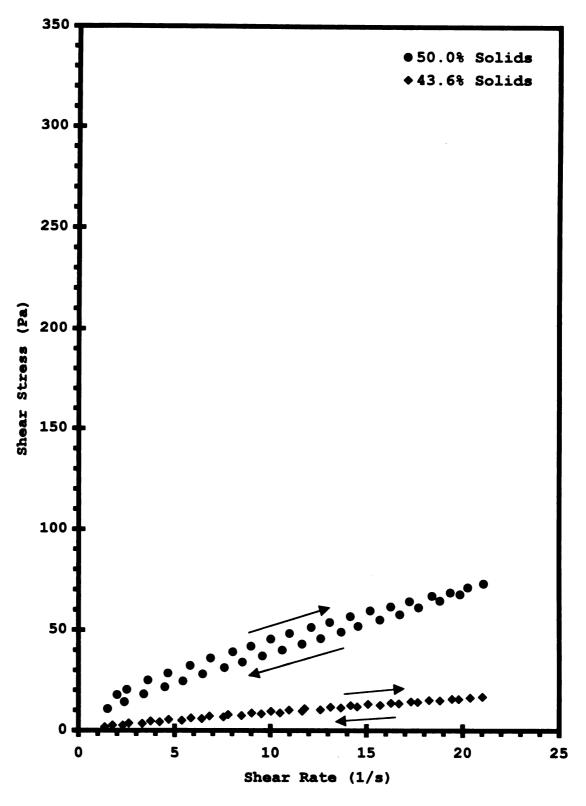



Figure 3.9. Thixotropic Loops of Newly Wed Tempura Batter Samples at 10°C.

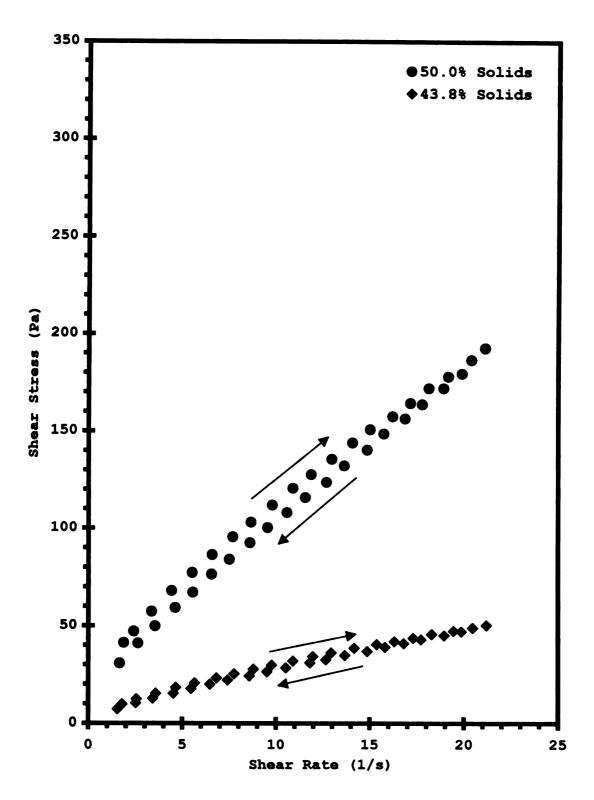



Figure 3.10. Thixotropic Loops of Tung-I
Tempura Batter Samples at 100C.

shear rate range, all three tempura batter mix brands showed some degree of thixotropic behaviors. Like the Dorothy Dawson's batters, degree of thixotropic behavior increased with increase in percent solids.

Power law properties of the six adhesion and tempura batter mix brands are summarized in Table 3.2. All K values were greater than one and all n values were smaller than one. Low n values mean both adhesion and tempura batters exhibit shear-thinning behavior. The K values behaved in the same way for adhesion and tempura batters: increasing as percent solids increased. In Newtonian and Bingham plastic fluids, K is more commonly known as the viscosity  $(\mu)$  and plastic viscosity  $(\mu_{pl})$ , respectively. In shearthinning fluids, although K does not represent the overall viscosity, it can be used to show relative thickness of different fluids. When comparing Figures 3.5. to 3.10., it can be noted that 50.0% solids batters with higher K values have higher rheograms, meaning thicker texture. Other evidence can also be seen in Figures 3.3. and 3.4. Among the 50.0% solids adhesion batters, Golden Dipt batter has the highest K value (44.38 Pa s<sup>n</sup>) and the highest amount of batter retained over a 5-minute drip period (Figure 3.3.), followed by Dorothy Dawson's Batter with a K value of 7.20

Table 3.2. Power Law Properties of Adhesion and Tempura

Batters Calculated from Ramping Up Steady Shear
Rheological Testing

| Brand                      | % Solids | K (Pa s <sup>n</sup> ) | n (-) | r²   |
|----------------------------|----------|------------------------|-------|------|
| Dorothy                    | 45.4     | 2.88                   | 0.61  | 0.99 |
| Dawson's                   | 50.0     | 7.20                   | 0.62  | 0.99 |
| Batter Mix*                | 55.6     | 22.32                  | 0.65  | 0.99 |
| Drake's                    | 50.0     | 6.67                   | 0.63  | 0.99 |
| Batter Mix*                | 57.1     | 31.14                  | 0.66  | 0.99 |
| Golden Dipt<br>Batter Mix* | 50.0     | 44.38                  | 0.60  | 0.99 |
| Kikkoman                   | 45.4     | 7.71                   | 0.61  | 0.99 |
| Tempura                    | 50.0     | 20.40                  | 0.59  | 0.99 |
| Batter Mix**               | 55.6     | 68.09                  | 0.56  | 0.99 |
| Tung-I<br>Tempura          | 43.8     | 6.94                   | 0.65  | 0.99 |
| Batter Mix**               | 50.0     | 29.78                  | 0.63  | 0.99 |
| Newly Wed<br>Tempura       | 43.6     | 1.71                   | 0.75  | 0.99 |
| Batter Mix**               | 50.0     | 14.44                  | 0.54  | 0.99 |

<sup>\*</sup> Shear Rate is between  $0.16 \text{ s}^{-1}$  and  $50 \text{ s}^{-1}$ 

<sup>\*\*</sup> Shear Rate is between 0.16  $s^{-1}$  and 20  $s^{-1}$ 

Pa  $s^n$  and medium amount of batter retained. Drake's batter has the lowest K value  $(6.67 \text{ Pa } s^n)$  and lowest amount of batter retained. The same conclusion can be drawn from the three 50.0% tempura batters in Figure 3.4. Tung-I Tempura Batter has the highest K value  $(29.78 \text{ Pa } s^n)$  and highest amount of batter retained. Kikkoman Tempura batter has an intermediate K value  $(20.40 \text{ Pa } s^n)$  and a medium amount of batter retained. Newly Wed Tempura Batter has the lowest K value  $(14.44 \text{ Pa } s^n)$  and least amount of batter retained.

Another important factor that is an indicator of overall viscosity is the flow behavior index, n. For shearthinning fluids, the closer the flow behavior index is to 1, the straighter the rheogram curve. As mentioned before, all batters tested here had n values lower than one. Adhesion batters had n values between 0.60 and 0.66. Tempura batters had nvalues between 0.54 and 0.75. Variations in these n values are relatively small. When fitting the K and n values from Table 3.2. into equation 14, apparent viscosity in relation to shear rate can be found. Figures 3.11. and 3.12. show apparent viscosity of adhesion and tempura batters at different percent solids. batters exhibited very similar downward change apparent viscosity against increasing shear rate. This means batters in this study exhibited similar degree of

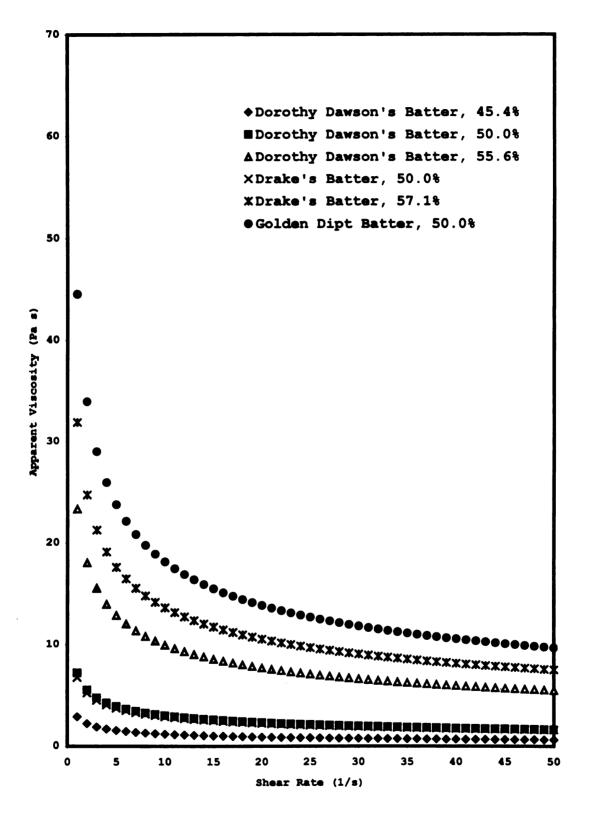



Figure 3.11. Apparent Viscosity of Adhesion Batters.

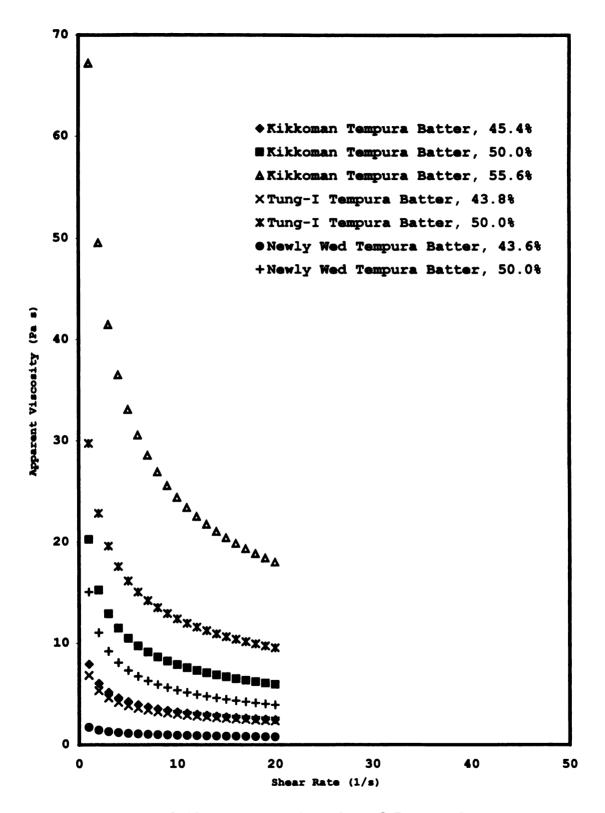



Figure 3.12. Apparent Viscosity of Tempura Batters.

shear-thinning properties regardless as to the type of batter or the amount of solids in the batter.

# 3.4. Influence of Holding Period on Batter Retention

One would expect the average weight of batter retained on the probe to increase over time because as starches and protein molecules hydrate, they swell in size and cause the batter to increase in viscosity. However, an increase in average weight of batter retained on the probe over time is not observed for the three brands of adhesion batter tested. Tables 3.3. and 3.4. list the collected data. For Dorothy Dawson's Batter at 45.4% solids, the maximum difference in the average weight of batter retained was 0.42g (2.23g - 1.81g). The data collected over the threehour period were statistically different. At 50.0% solids, the maximum difference increased to 0.73g (4.29g - 3.56g) and data also differed statistically. When Dorothy Dawson's Batter was at 55.6% solids, the maximum difference was 1.22g (8.80g - 7.58g), but no statistically significant differences were found among readings. For Drake's Batter prepared at 50.0% solids, the maximum difference between average batter weight retained on the probe was (4.13g - 3.50g) with no significant differences readings. But at 57.1% solids, the maximum difference

Table 3.3. Average Weight (g) (n=2) of Dorothy Dawson's Batter Retained on the Probe over a Three-Hour Period

| Time<br>(minutes) | 45.4%<br>Solids     | 50.0%<br>Solids     | 55.6%<br>Solids |
|-------------------|---------------------|---------------------|-----------------|
| 0                 | 2.03°               | 3.56ª               | 8.42            |
| 5                 | 2.12 <sup>d,e</sup> | 3.78 <sup>a,b</sup> | 8.64            |
| 10                | 2.22 <sup>e</sup>   | 4.13 <sup>a,b</sup> | 8.30            |
| 15                | 2.23 <sup>e</sup>   | 4.29 <sup>b</sup>   | 7.58            |
| 20                | 2.18 <sup>d,e</sup> | 4.14 <sup>a,b</sup> | 8.55            |
| 25                | 2.21 <sup>e</sup>   | 4.1 <sup>a,b</sup>  | 8.80            |
| 30                | 2.18 <sup>d</sup>   | 4.15 <sup>a,b</sup> | 8.44            |
| 45                | 2.12 <sup>d,e</sup> | 4.09 <sup>a,b</sup> | 8.50            |
| 60                | 2.11 <sup>d,e</sup> | 4.04 <sup>a,b</sup> | 8.65            |
| 75                | 2.11 <sup>d,e</sup> | 4.11 <sup>a,b</sup> | 8.56            |
| 90                | 1.81ª               | 4.23 <sup>a,b</sup> | 8.40            |
| 120               | 1.89 <sup>a,b</sup> | 4.14 <sup>a,b</sup> | 8.76            |
| 150               | 2 <sup>b,c</sup>    | 4.14 <sup>a,b</sup> | 8.52            |
| 180               | 2.07 <sup>c,d</sup> | 4.18 <sup>a,b</sup> | 8.07            |

Values in the same column with different letters are significantly different (P < 0.05).

Table 3.4. Average Weight (g) (n=2) of Drake's Batter and Golden Dipt Batter Retained on the Probe over a Three-Hour Period

Drake's Batter Mix

Golden Dipt Batter Mix

| Time 50 (minutes) Sol 0 3. | 50.08  | 57.1%                 |
|----------------------------|--------|-----------------------|
|                            |        |                       |
|                            | Solids | Solids                |
|                            | 3.79   | 8.07 <sup>c,d</sup>   |
|                            | 4.13   | 8.10 <sup>c,d</sup>   |
| 10 4                       | 4.04   | 7.84 <sup>b,c,d</sup> |
| 15 4.                      | 4.32   | 8.11 <sup>c,d</sup>   |
| 20 4                       | 4.04   | 7.60ª,b               |
| 25 4.                      | 4.11   | 7.55ª'b               |
| 30 4                       | 4.09   | 7.24ª                 |
| 45 4.                      | 4.04   | 8.25                  |
| 60 4                       | 4.00   | 8.24 <sup>d</sup>     |
| <b>75</b> 3.               | 3.70   | 8.04 <sup>c,d</sup>   |
| .E 3.                      | 3.65   | 7.86 <sup>b,c,d</sup> |
| 120 3.                     | 3.62   | 7.71 <sup>b,c</sup>   |
| 150 3.                     | 3.55   | 7.72 <sup>b, c</sup>  |
| 180 3.                     | 3.50   | 7.27ª                 |

8.81<sup>d,e,f</sup> 8.61<sup>b,c,d</sup> 8.68<sup>c, d, e</sup> 8.67°, d, e 8.96<sup>f,9</sup> 8.56<sup>b,c</sup> 8.88°, f 8.49b,c 9.37<sup>h</sup> Solids  $9.13^{9}$ 8.38<sup>b</sup>  $9.12^{9}$ 50.08 7.75ª (minutes) Time 150 120 9 10 15 75 20 25 30 45 9 S 0

Values in the same column with different letters are significantly different

8.42<sup>b</sup>

180

(P < 0.05)

increased to 1.01g (8.25g - 7.24g) and there were statistical differences among readings. For Golden Dipt Batter prepared at 50.0% solids, the maximum difference was 1.62g (9.37g - 7.75g) with statistical differences among readings.

For tempura batters, the readings are listed in Tables 3.5. and 3.6. The expected trend, i.e., batter weight retained on the probe increasing over time, was also not observed with the tempura data. For Kikkoman Tempura Batter at 45.4% solids, there were no significant samples differences in average weights of batter retained on the probe over the three-hour test period. The maximum difference in the average weight was 0.56g (4.19g - 3.63g). When the percent solids increased to 50.0%, significant differences were found among readings and the maximum difference was 0.88g (7.23g - 6.35g). A similar observation was found when the percent solids were further increased to 55.6%. In this case, statistical differences were found among readings and the maximum difference was 2.59g (10.73g -8.14g).

For Tung-I Tempura Batter samples at 43.8% solids and 50.0% solids, statistical differences were found among readings and the maximum differences in average weight were 1.07g (4.44g - 3.37g) and 2.01g (9.25g - 7.24g),

Table 3.5. Average Weight (g) (n=2) of Kikkoman Tempura
Batter Retained on the Probe over a
Three-Hour Period

| Time<br>(minutes) | 45.4%<br>Solids | 50.0%<br>Solids       | 55.6%<br>Solids       |
|-------------------|-----------------|-----------------------|-----------------------|
| 0                 | 3.63            | 6.35ª                 | 10.36 <sup>e,f</sup>  |
| 5                 | 3.75            | 6.73 <sup>b,c</sup>   | 9.61 <sup>c,d,e</sup> |
| 10                | 3.92            | 7.05 <sup>e,f,g</sup> | 8.69 <sup>a,b,c</sup> |
| 15                | 3.74            | 6.97 <sup>d,e,f</sup> | 8.94 <sup>a,b,c</sup> |
| 20                | 3.66            | 6.89 <sup>c,d,e</sup> | 8.80 <sup>a,b,c</sup> |
| 25                | 4.01            | 7.04 <sup>e,f,g</sup> | 8.62 <sup>a,b</sup>   |
| 30                | 4.06            | 6.72 <sup>b,c</sup>   | 8.14ª                 |
| 45                | 4.07            | 7.14 <sup>f,g</sup>   | 10.2 <sup>d,e,f</sup> |
| 60                | 4.19            | 7.08 <sup>e,f,g</sup> | 10.73 <sup>f</sup>    |
| 75                | 3.66            | 7.20 <sup>g</sup>     | 10.2 <sup>d,e,f</sup> |
| 90                | 4.03            | 7.23 <sup>g</sup>     | 9.24 <sup>b,c</sup>   |
| 120               | 3.99            | 6.97 <sup>d,e,f</sup> | 9.36 <sup>b,c,d</sup> |
| 150               | 3.97            | 6.84 <sup>c,d</sup>   | 8.51 <sup>a,b</sup>   |
| 180               | 3.87            | 6.55 <sup>b</sup>     | 8.71 <sup>a,b,c</sup> |

Values in the same column with different letters are significantly different (P < 0.05).

Table 3.6. Average Weight (g) (n=2) of Tung-I Tempura and Newly Wed Tempura Batter Retained on the Probe over a Three-Hour Period

Tung-I Tempura Batter Mix

| Time      | 43.8%                | 50.08                   |
|-----------|----------------------|-------------------------|
| (minutes) | Solids               | Solids                  |
| 0         | 3.37ª                | 7.3ª,b                  |
| 5         | 3.84 <sup>b</sup>    | 7.29ª,b                 |
| 10        | 3.75 <sup>a,b</sup>  | 7.58ª,b,c               |
| 15        | 3.95 <sup>b</sup>    | 7.24ª                   |
| 20        | 4.10 <sup>b, c</sup> | 7.74ª,b,c               |
| 25        | 4.08 <sup>b, c</sup> | 7.84ª,b,c               |
| 30        | 4.16 <sup>b,c</sup>  | 7.35ª,b                 |
| 45        | 4.44 <sup>c</sup>    | 7.76ª,b,c               |
| 09        | 4.08 <sup>b,c</sup>  | 8.22 <sup>b, c, d</sup> |
| 75        | 4.18 <sup>c</sup>    | 9.09 <sup>d, e</sup>    |
| 06        | 3.92 <sup>b</sup>    | 9.07 <sup>d, e</sup>    |
| 120       | 3.96 <sup>b</sup>    | 9.25                    |
| 150       | 4.04 <sup>b,c</sup>  | 8.32 <sup>c,d,e</sup>   |
| 180       | 3.91 <sup>b</sup>    | 8°08°, b, c             |
|           |                      |                         |

Values in the same column with different letters are significantly different

(P < 0.05).

# Newly Wed Tempura Batter Mix

| Time      | 43.68               | 50.08               |
|-----------|---------------------|---------------------|
| (minutes) | Solids              | Solids              |
| 0         | 1.70                | 4.85ª               |
| ß         | 1.84ª               | 5.43ª,b             |
| 10        | 1.99ª               | 5.57 <sup>a,b</sup> |
| 15        | 2.29ª               | 5.46 <sup>a,b</sup> |
| 20        | 2.33ª               | 5.54ª,b             |
| 25        | 2.31                | 5.52ª'b             |
| 30        | 2.50 <sup>a,b</sup> | 6.03 <sup>a,b</sup> |
| 45        | 3.49 <sup>b,c</sup> | 2,83e,b             |
| 09        | 4.09 <sup>c,d</sup> | 6.14 <sup>b</sup>   |
| 75        | 3.63°               | 2.73ª,b             |
| 06        | 4.45 <sup>c,d</sup> | 2.70ª,b             |
| 120       | 4.94 <sup>d</sup>   | 5.50 <sup>a,b</sup> |
| 150       | 4.70 <sup>d</sup>   | 2.35 <sup>a,b</sup> |
| 180       | 4.73 <sup>d</sup>   | 5.42ª,b             |

respectively. For Newly Wed Tempura Batter samples at 43.6% solids and 50.0% solids, significant differences were also found among readings, and the maximum differences in average weight were 3.24g (4.94g - 1.70g) and 1.29g (6.14g - 4.85g), respectively.

Tables 3.7. and 3.8. list the apparent viscosities of adhesion batters over a three-hour period. The apparent viscosity is expected to increase as time increases, but not all batters showed this trend. For Dorothy Dawson's Batter at 45.4% solids, apparent viscosity increased from 0.98 Pa s to 1.49 Pa s over time. At 50.0% solids and 55.6% solids, the expected trend was not found. For Drake's Batter, apparent viscosity increased over time when the batter was at 50.0% solids but the same trend was not observed with batter at 57.1% solids. For Golden Dipt Batter at 50.0% solids, apparent viscosity remained the same over the three-hour test period.

For tempura batters, results are listed in Tables 3.9. and 3.10. Kikkoman Tempura Batters at all tested solids levels did not have apparent viscosity increases over time. For Tung-I Tempura Batter at 43.8% solids, apparent viscosity increased as holding time increased, but this trend was not found when the percent solids was increased to 50.0%. Results from Newly Wed Tempura Batters were very

Table 3.7. Apparent Viscosity (Pa s) (n=3) for Dorothy Dawson's Batters over a Three-Hour Period at 15 1/s Shear Rate

| Time<br>(minutes) | 45.4%<br>Solids     | 50.0%<br>Solids | 55.6%<br>Solids |
|-------------------|---------------------|-----------------|-----------------|
| 0                 | 0.98ª               | 2.54            | 8.16            |
| 15                | 1.10 <sup>a,b</sup> | 2.61            | 7.73            |
| 30                | 1.17 <sup>b,c</sup> | 2.70            | 7.55            |
| 45                | 1.20 <sup>b,c</sup> | 2.73            | 7.50            |
| 60                | 1.24 <sup>b,c</sup> | 2.85            | 7.42            |
| 90                | 1.31 <sup>c,d</sup> | 2.86            | 7.71            |
| 120               | 1.48 <sup>d,e</sup> | 2.86            | 7.75            |
| 150               | 1.49 <sup>e</sup>   | 2.80            | 8.16            |
| 180               | 1.46 <sup>d,e</sup> | 2.92            | 8.05            |

Values in the same column with different letters are significantly different (P < 0.05).

Table 3.8. Apparent Viscosity (Pa s) (n=3) for Drake's Batters and Golden Dipt Batter over a Three-Hour Period at 15 1/s Shear Rate

Golden Dipt Batter Mix Drake's Batter Mix

Solids

(minutes) Time

50.08

14.13

15

13.61

30

13.42

45

14.98

|                 |       |                     |                   |                         |                       |                       |                       |                     |                     | 1 |
|-----------------|-------|---------------------|-------------------|-------------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---|
| 57.1%<br>Solids | 7.57ª | 80°8                | 7.78ª,b           | 7.86ª,b                 | 7.87ª,b               | 7.85ª,b               | 7.65ª,b               | 7.74ª,b             | 7.71 <sup>a,b</sup> |   |
| 50.0%<br>Solids | 2.05ª | 2.17 <sup>b,c</sup> | 2.15 <sup>b</sup> | 2.19 <sup>b, c, d</sup> | 2.22 <sup>b,c,d</sup> | 2.17 <sup>b,c,d</sup> | 2.21 <sup>b,c,d</sup> | 2.25 <sup>c,d</sup> | 2.25 <sup>d</sup>   |   |
| Time (minutes)  | 0     | 15                  | 30                | 45                      | 09                    | 06                    | 120                   | 150                 | 180                 |   |

Values in the same column with different letters are significantly different (P < 0.05).

13.62 12.95

150

180

13.73

120

14.14

9

13.73

9

76

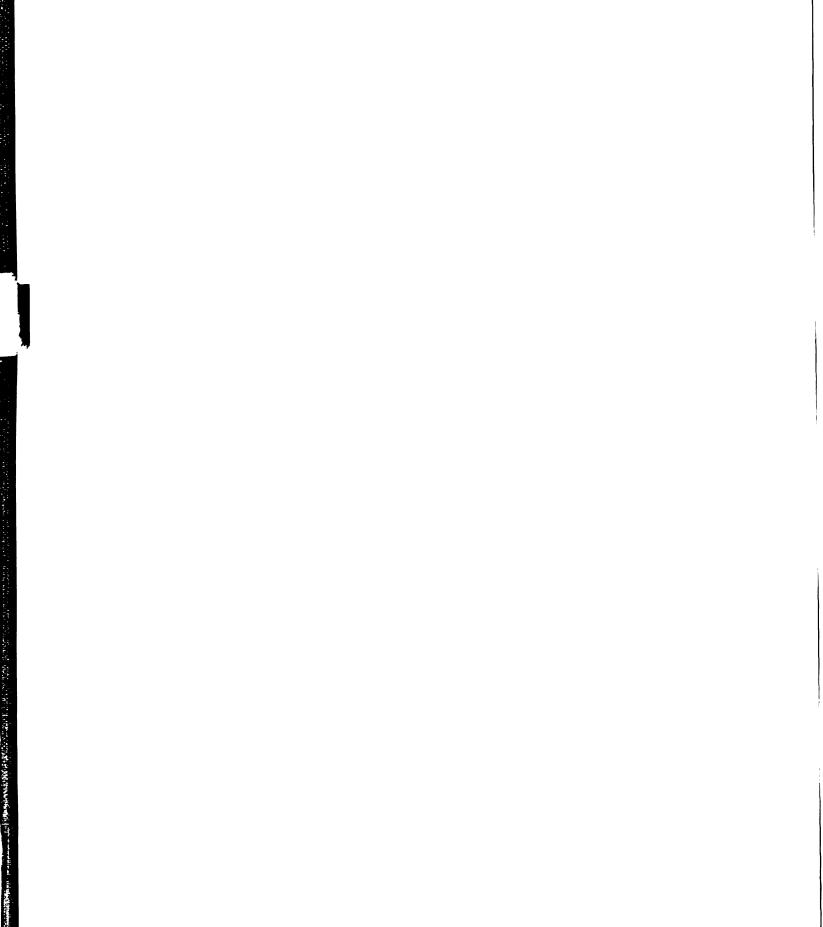



Table 3.9. Apparent Viscosity (Pa s) (n=3) for Kikkoman Tempura Batters over a Three-Hour Period at 15 1/s Shear Rate

| Time<br>(minutes) | 45.4%<br>Solids | 50.0%<br>Solids | 55.6%<br>Solids |
|-------------------|-----------------|-----------------|-----------------|
| 0                 | 2.70            | 6.87            | 20.80           |
| 15                | 2.96            | 6.51            | 22.31           |
| 30                | 2.80            | 6.68            | 21.68           |
| 45                | 2.97            | 6.74            | 21.52           |
| 60                | 2.87            | 6.35            | 20.11           |
| 90                | 2.80            | 6.53            | 20.06           |
| 120               | 2.76            | 6.54            | 20.26           |
| 150               | 2.84            | 6.06            | 19.99           |
| 180               | 2.59            | 5.94            | 19.20           |

Values in the same column are not significantly different (P < 0.05).

Table 3.10. Apparent Viscosity (Pa s) (n=3) for Tung-I Tempura and Newly Wed Tempura Batters over a Three-Hour Period at 15 1/s Shear Rate

Tung-I Tempura Batter Mix

50.0% Solids

43.6% Solids

(minutes)

Newly Wed Tempura Batter Mix

4.49

 $1.23^{b}$ 

15

4.03

0.90ª

0

4.08

 $1.19^{b}$ 

9

4.10

1.24<sup>b</sup>

9

4.17

 $1.19^{b}$ 

120

4.04

 $1.21^{b}$ 

 $1.25^{b}$ 

180

150

4.23

4.36

1.15<sup>b</sup>

45

3.84

 $1.11^{b}$ 

30

| Time         | 43.8%                                    | 50.08        |
|--------------|------------------------------------------|--------------|
| (minutes)    | Solids                                   | Solids       |
| 0            | 2.52ª                                    | 10.62        |
| 15           | 2.85ª,b,c                                | 10.91        |
| 30           | 2.74ª,b                                  | 11.13        |
| 45           | 2.87ª,b,c                                | 11.32        |
| 09           | 5.98 <sup>b,c</sup>                      | 11.32        |
| 06           | 5.89ª,b,c                                | 11.07        |
| 120          | 3.07 <sup>b,c</sup>                      | 10.93        |
| 150          | 3.06 <sup>b,c</sup>                      | 10.71        |
| 081          | 3.15 <sup>c</sup>                        | 10.93        |
| 4+ a; souley | Values in the same column with different | n with diffe |

same column with different letters are significantly different Values in the

(P < 0.05).

similar to results from Tung-I Tempura Batters. At 43.6% solids, the apparent viscosity of Tung-I Tempura Batter increased over time but the same behavior was not found when the percent solids was increased to 50.0%.

# 3.5. Relationship Between Batter Rheology and Fried Food Quality

When string cheese was coated with under-mixed adhesion batter, the percent increase in weight between uncoated and coated cheese varied from 0.13% to 8.25%. A very thin layer of coating, 0.05mm, was found on these products that tended to blow off and cause pillowing during frying. When string cheese was coated with batter that had received optimum mixing, the percent increase in weight between uncoated and coated products increased to 29.94%. Also, thicker coatings (0.23mm) were found on the product and no blow off or pillowing was observed during frying. When string cheese was coated with over-mixed batter, the percent increase in weight between uncoated and coated string cheese samples decreased to 28.25%. In this case, thickness of the coating was unchanged at 0.23mm and no blow off or pillowing was found during the frying process.

When under-mixed adhesion batter was applied to shrimp, the percent increase in weight between uncoated and

coated shrimp varied from 4.78% to 12.67%. Thickness of the coating could not be measured because shrimp do not have a uniform shape like string cheese. But the under-mixed coating was found to constitute 41.27% of the fried food weight. When optimally mixed batter was applied to shrimp, weights increased by 31.90%. After frying, weight of the coating constituted 60.18% of the total food weight. When shrimp were coated with over-mixed batter, product weight increased by 32.84%, and after frying, 50.36% of the fried food weight was coating. Voids and pillowings were consistently found on the food during and after frying.

As for shrimp coated with under-mixed tempura batter, percent increase in weight before and after coating varied between 5.93% and 22.93%. Neither thickness of coating nor percent of coating in the final fried food product could be determined. That is because the coating was so thin that it could not be separated from the shrimp. But it was observed that shrimp decreased in size after frying. Without a thick layer of coating to absorb the natural juice from the shrimp, it migrated into the frying oil and thus shrimp shrank in size. When shrimp were coated with optimally mixed tempura batter, the percent increase in weight before and after coating was 37.25%. The final coating constituted 55.58% of the fried food product by weight. In the case of

over-mixed tempura batter, the coated shrimp increased in weight by 30.87% and, after frying, 41.89% of the final product was coating by weight. Voids were constantly observed in fried shrimp because they have bodies that curve inward and shield the abdomen from batter.

As for cucumber slices coated with under-mixed tempura batter, the percent increase in weight before and after coating was between 7.01% and 11.29%. After frying, 24.28% of the fried food was coating. Excessive blow off was observed during frying mainly because the batter was thin and watery. When coated with optimally mixed batter, cucumber samples increased in weight by 33.14%. After frying, coating constituted 48.86% of the food weight. With over-mixed tempura batter, weight of the cucumber sample increased by 34.13%, and 50.37% of the fried product weight was coating.

# 3.6. Practical Applications

Every brand and every style of batter comes from a unique formula; it is unrealistic to come up with a universal mixing regime for all batters. It is more useful to provide a method to determine when the optimum mixing of batter is achieved. This is exactly what the optimum mixing test utilizing the Texture Analyzer is doing. By mixing a

batter at different speeds and durations while measuring torque, SME may be calculated. By relating SME to the amount of batter retained on a probe, an optimum mixing curve is found. Using this curve, batter mix manufacturers can provide better recommendations to their consumers on how to achieve maximum performance from their mixes. In addition, since the plexiglas probe with fixed dimensions is the customary test probe, characteristics of different brands of batter mix can be compared easily. Variations in formulation from the same brands can also be found without interference from irregular size, shape and varying moisture contents of food substrates.

The batter retention experiments showed there was a batter dripping period after coating. This becomes important cost reduction information for the batter and breading industry. The industry can either design pipes or equipment to collect the drippings or formulate batters with shorter dripping periods to optimize through-put and batter consumption.

Consistency coefficient (K) and flow behavior index (n) are also useful parameters for the batter and breading industry. The K value shows relative thickness of different batters while n reflects the degrees of shear-thinning behavior in a batter. When trying to maintain a constant

percent solids and constant viscosity for quality control purposes, steady shear tests can be run on sample batters to evaluate rheological behavior. This information is a good quality control indicator.

Aging influence on batter retention and batter viscosity are not as extreme as one would expect. Over the three-hour test period, although statistical some differences are found in both adhesion and tempura batters, these differences are so small that they are not expected relevant in practical applications. As long batters are kept at the recommended temperature and used within three hours, no practical differences in weight of batter retained on the probe or apparent viscosity of batters are expected.

When relating batter rheology with quality of fried food, it is better to overmix a batter rather than to undermix it. When a batter is undermixed, it is not uniform and the amount of batter picked up by food substrates will vary widely. During frying, natural juice from food substrates will migrate outwards to the frying oil and cause blow off and pillowing. Over-mixing a batter, on the other hand, seems to have a less negative effect on the batter properties. The amount of over-mixed batter picked up by the food substrate does not deviate as much as when

the batter is undermixed, and the food has more batter coating to absorb the natural food juice and prevent oil absorption by the food.

### Chapter 4

### Conclusions and Recommendations

# 4.1. Summary and Conclusions

For both adhesion and tempura batters, inputting the correct amount of energy during mixing results in maximum level of batter retained on a test probe. Maximum amount of batter retained on the probe was interpreted as optimum degree of mixing. Within the same brand, percent solids in batter had a major influence on the amount of batter retained on the probe, the length of time needed to stabilize dripping, thickness of the batters, and yield stress values of the batters.

Both adhesion and tempura batters were found to be shear-thinning and exhibit thixotropic behavior. In terms of rheological properties, measuring different batters' K values assisted in comparing their relative thicknesses. Double checking consistency of batter samples' n values to 0.6 can serve as a quality control indicator for both adhesion and tempura batters.

Increasing the holding period was hypothesized to increase the apparent viscosity and amount of batter retained on the probe. But the collected apparent viscosity data and batter retention weights did not confirm this

assumption. No practical changes in apparent viscosity and weight of batters retained on the probe were observed for adhesion or tempura batters over the three-hour test period.

When string cheese, shrimp and cucumber were coated with either adhesion or tempura batters with different degrees of mixing, it was found that the highest quality fried food were coated with batters that received optimum mixing. Food coated with under-mixed batter had lower quality attributes then those coated with over-mixed batter. Hence, under-mixing a batter had the greatest detrimental effect on final food quality.

### 4.2. Recommendations for Future Research

Some areas for future research include the following:

- Compare the industrial mixing system with the laboratory mixing system to determine the scale-up parameters.
- 2. Perform thorough sensory tests to characterize and distinguish among foods coated with batters that received different degrees of mixing.

APPENDIX

Table A.1. Amount of Dorothy Dawson's Batter Picked up by the Probe at Time Zero Against Amount of Energy Input into Mixing

| (Minutes)     | SME (N m/kg) | Batter<br>Retained (g) | rpm         | SME (N m/kg) | Batter<br>Retained (g) |
|---------------|--------------|------------------------|-------------|--------------|------------------------|
| Percent Solid |              | 1                      |             | ì            |                        |
| 2             | 1529.705     | 4.71                   |             |              | 1.25                   |
| 2             | 1147.279     | 7.65                   | 100         | 382.305      | 3.47                   |
| 2             | 1529.705     | 8.18                   | 100         | 382.305      | 2.07                   |
| 2             | 1529.705     | 8.63                   | 100         | 382.305      | 4.67                   |
| 3             | 2294.558     | 8.01                   | 200         | 1274.349     | 6.35                   |
| 3             | 2294.558     | 7.95                   | 200         | 509.739      | 5.25                   |
| 3             | 2294.558     | 7.49                   | 200         | 1656.653     | 8.03                   |
| 3             | 2294.558     | 7.97                   | 200         | 1656.653     | 7.79                   |
| 4             | 4015.476     | 7.92                   | 300         | 4015.476     | 7.92                   |
| 4             | 3059.410     | 8.07                   | 300         | 3059.410     | 8.07                   |
| 4             | 3441.837     | 7.87                   | 300         | 3441.837     | 7.87                   |
| 4             | 3250.623     | 8.06                   | 300         | 3250.623     | 8.06                   |
| 6             | 3728.656     | 7.15                   | 600         | 7264.943     | 7.31                   |
| 6             | 4302.296     | 7.40                   | 600         | 7264.943     | 7.34                   |
| 6             | 4302.296     | 7.32                   | 600         | 7264.943     | 7.18                   |
| 6             | 4302.296     | 7.41                   | 600         | 7264.943     | 7.09                   |
| Percent Solid | s: 50.0%     |                        |             | -            |                        |
| 2             | 478.033      | 3.67                   | 100         | 127.435      | 1.22                   |
| 2             | 382.426      | 3.84                   | 100         | 127.435      | 1.63                   |
| 2             | 382.426      | 3.60                   | 100         | 127.435      | 1.73                   |
| 2             | 478.033      | 3.63                   | 100         | 127.435      | 1.06                   |
| 3             | 573.639      | 4.15                   | 200         | 509.739      | 2.64                   |
| 3             | 573.639      | 3.70                   | 200         | 509.739      | 3.86                   |
| 3             | 573.639      | 3.86                   | 200         | 509.739      | 3.51                   |
| 3             | 717.049      | 3.97                   | 200         | 254.870      | 2.44                   |
| 4             | 956.066      | 4.01                   | 300         | 956.066      | 4.01                   |
| 4             | 956.066      | 4.06                   | 300         | 956.066      | 4.06                   |
| 4             | 956.066      | 4.13                   | 300         | 956.066      | 4.13                   |
| 4             | 956.066      | 3.84                   | 300         | 956.066      | 3.84                   |
| 6             | 1147.279     | 3.55                   | 600         | 1911.827     | 3.47                   |
| 6             | 1147.279     | 3.55                   | 600         | 2294.193     | 3.44                   |
| 6             | 1147.279     | 3.70                   | 600         | 2294.193     | 3.66                   |
| 6             | 1147.279     | 3.58                   | 600         | 1191.827     | 3.50                   |
| Percent Solid | s: 45.4%     |                        | <del></del> |              |                        |
| 2             | 191.213      | 1.81                   | 100         | 63.717       | 1.18                   |
| 2             | 191.213      | 1.98                   | 100         | 63.717       | 0.59                   |
| 2             | 191.213      | 1.99                   | 100         | 63.717       | 0.81                   |
| 2             | 191.213      | 2.00                   | 100         | 63.717       | 1.01                   |
| 3             | 286.820      | 1.98                   | 200         | 254.870      | 1.98                   |
| 3             | 286.820      | 2.09                   | 200         | 254.870      | 1.86                   |
| 3             | 286.820      | 2.06                   | 200         | 127.435      | 1.88                   |
| 3             | 286.820      | 1.87                   | 200         | 127.435      | 1.95                   |
| 4             | 382.426      | 2.08                   | 300         | 382.426      | 2.08                   |
| 4             | 382.426      | 2.21                   | 300         | 382.426      | 2.21                   |
| 4             | 382.426      | 2.24                   | 300         | 382.426      | 2.24                   |
| 4             | 382.426      | 2.16                   | 300         | 382.426      | 2.16                   |
| 6             | 573.639      | 1.95                   | 600         | 764.731      | 2.09                   |
| 6             | 573.639      | 2.01                   | 600         | 764.731      | 2.03                   |
| 6             | 573.639      | 1.94                   | 600         | 764.731      | 2.03                   |
| 6             | 573.639      | 2.07                   | 600         | 764.731      | 2.10                   |

Table A.2. Amount of Kikkoman Tempura Batter Picked up by the Probe at Time Zero Against Amount of Energy Input into Mixing

| National management |              | B            | <del></del> | <del></del>  | In           |
|---------------------|--------------|--------------|-------------|--------------|--------------|
| Mixing Time         | SME (N m/kg) | Batter       | rpm         | SME (N m/kg) | Batter       |
| (Minutes)           | L            | Retained (g) |             |              | Retained (g) |
| Percent Solid       |              |              |             | •            |              |
| 2                   | 1032.259     | 5.72         | 70          | 200.737      | 1.56         |
| 2                   | 860.216      | 5.99         | 70          | 133.825      | 1.05         |
| 2                   | 1032.256     | 6.30         | 70          | 133.825      | 1.44         |
| 2                   | 860.216      | 5.18         | 70          | 133.825      | 1.31         |
| 2.5                 | 1290.324     | 9.19         | 170         | 487.466      | 5.93         |
| 2.5                 | 1290.324     | 7.22         | 170         | 487.466      | 3.92         |
| 2.5                 | 1290.324     | 8.10         | 170         | 487.466      | 3.77         |
| 2.5                 | 1290.324     | 9.53         | 170         | 487.466      | 3.92         |
| 3                   | 1548.388     | 9.25         | 270         | 1290.324     | 10.14        |
| 3                   | 1806.453     | 8.86         | 270         | 1290.324     | 8.67         |
| 3                   | 1806.453     | 8.20         | 270         | 1290.324     | 8.76         |
| 3                   | 2064.518     | 10.05        | 270         | 1290.324     | 9.46         |
| 5                   | 3440.863     | 8.93         | 470         | 5391.699     | 9.39         |
| 5                   | 3440.863     | 7.97         | 470         | 4493.083     | 9.71         |
| 5                   | 3440.863     | 9.77         | 470         | 4493.083     | 9.20         |
| 5                   | 3440.863     | 9.08         | 470         | 4493.083     | 9.64         |
| <u> </u>            | 3470.003     | 3.08         | 570         | 6538.613     | 8.97         |
| 1                   |              |              | 570         | 5993.729     |              |
|                     |              |              |             |              | 9.15         |
|                     |              |              | 570         | 5448.844     | 9.11         |
| D 0-1/d             | 50.00        | L            | 570         | 5448.844     | 8.90         |
| Percent Solid       |              | 1 4 20       | ام ح        | 1 100 200    |              |
| 2                   | 344.086      | 1            | 70          | 100.369      | 0.70         |
| 2                   | 344.086      | 4.89         | 70          | 66.912       | 0.91         |
| 2                   | 344.086      | 5.49         | 70          | 66.912       | 0.65         |
| 2                   | 344.086      | 5.75         | 70          | 66.912       | 0.54         |
| 2.5                 | 645.162      | 6.47         | 170         | 324.977      | 2.40         |
| 2.5                 | 860.216      | 6.39         | 170         | 162.489      | 2.91         |
| 2.5                 | 645.162      | 6.22         | 170         | 162.489      | 2.48         |
| 2.5                 | 645.162      | 6.37         | 170         | 162.489      | 2.97         |
| 3                   | 774.194      | 6.88         | 270         | 774.194      | 6.61         |
| 3                   | 774.194      | 6.01         | 270         | 774.194      | 6.33         |
| 3                   | 774.194      | 6.33         | 270         | 774.194      | 6.56         |
| 3                   | 774.194      | 6.95         | 270         | 774.194      | 6.53         |
| 5                   | 1290.324     | 5.71         | 470         | 1797.233     | 5.98         |
| 5                   | 1290.324     | 5.86         | 470         | 1797.233     | 6.05         |
| 5                   | 1290.324     | 6.17         | 470         | 1797.233     | 6.24         |
| 5                   | 1290.324     | 6.05         | 470         | 1797.233     | 5.96         |
| Percent Solid       | s: 45.4%     |              |             |              |              |
| 2                   | 172.043      | 3.09         | 70          | 66.912       | 0.64         |
| 2                   | 172.043      | 2.62         | 70          | 33.456       | 1.03         |
| 2                   | 172.043      | 3.07         | 70          | 33.456       | 1.21         |
| 2                   | 172.043      | 3.20         | 70          | 33.456       | 0.49         |
| 2.5                 | 430.108      | 3.43         | 170         | 162.489      | 2.73         |
| 2.5                 | 430.108      | 3.62         | 170         | 162.489      | 2.09         |
| 2.5                 | 430.108      | 3.26         | 170         | 324.977      | 2.43         |
| 2.5                 | 430.108      | 3.59         | 170         | 324.977      | 2.72         |
| 3                   | 516.129      | 3.45         | 270         | 516.129      | 3.52         |
| 3                   | 516.129      | 3.80         | 270         | 516.129      | 3.52         |
| 3                   | 516.129      | 3.69         | 270         | 516.129      | 3.87         |
| 3                   | 516.129      | 3.47         | 270         | 516.129      | 3.86         |
| 5                   | 1290.324     | 2.83         | 470         | 1347.925     | 3.38         |
| 5                   | 1290.324     | 2.83         | 470         | 1347.925     | 3.24         |
|                     | 860.216      | I            | 470         | 1347.925     | 3.59         |
| 5                   |              | 3.64         |             |              |              |
| 5                   | 860.216      | 3.77         | 470         | 1347.925     | 2.28         |

Table A.3. Amount of Adhesion Batter Retained over a 5-minute Drip Period at 20°C

| Batter             | % Solids | 0s   | 30s  | 60s  | 120s | 300s |
|--------------------|----------|------|------|------|------|------|
| Dorothy Dawson's   |          |      |      |      |      |      |
| Batter             | 55.6     | 7.92 | 5.37 | 4.56 | 3.84 | 3.38 |
|                    | 55.6     | 8.07 | 5.64 | 4.65 | 3.63 | 3.30 |
|                    | 55.6     | 7.87 | 5.60 | 4.73 | 3.82 | 4.07 |
|                    | 55.6     | 8.06 | 5.56 | 4.28 | 3.74 | 3.53 |
| Dorothy Dawson's   |          |      |      |      |      |      |
| Batter             | 50.0     | 4.01 | 2.22 | 1.79 | 1.67 | 1.57 |
|                    | 50.0     | 4.06 | 2.26 | 1.89 | 1.68 | 1.64 |
|                    | 50.0     | 4.13 | 2.01 | 1.76 | 1.85 | 1.62 |
|                    | 50.0     | 3.84 | 2.09 | 1.79 | 1.74 | 1.89 |
| Dorothy Dawson's   |          |      |      |      |      |      |
| Batter             | 45.4     | 2.08 | 1.42 | 1.21 | 1.25 | 1.12 |
|                    | 45.4     | 2.21 | 1.31 | 1.20 | 1.20 | 1.29 |
|                    | 45.4     | 2.24 | 1.38 | 1.23 | 1.20 | 1.11 |
|                    | 45.4     | 2.17 | 1.25 | 1.19 | 1.09 | 1.18 |
| Drake's Batter     | 57.1     | 9.52 | 7.07 | 6.06 | 5.20 | 4.79 |
|                    | 57.1     | 9.14 | 7.48 | 6.46 | 5.70 | 4.84 |
|                    | 57.1     | 9.51 | 7.73 | 6.55 | 5.52 | 4.47 |
|                    | 57.1     | 9.12 | 8.01 | 6.66 | 5.70 | 4.70 |
| Drake's Batter     | 50.0     | 3.94 | 2.49 | 1.97 | 1.55 | 1.47 |
|                    | 50.0     | 3.96 | 2.45 | 1.93 | 1.66 | 1.45 |
|                    | 50.0     | 4.01 | 2.27 | 1.95 | 1.74 | 1.63 |
|                    | 50.0     | 3.92 | 2.38 | 1.89 | 1.69 | 1.59 |
| Golden Dipt Batter | 50.0     | 9.20 | 7.08 | 6.18 |      | 5.28 |
|                    | 50.0     | i i  | 6.23 |      |      | 5.55 |
|                    | 50.0     | 9.05 | 6.74 | 5.57 |      | 5.19 |
|                    | 50.0     | 9.13 | 7.21 | 6.26 | 5.50 | 5.38 |

Table A.4. Amount of Tempura Batter Retained over a 5-minute Drip Period at  $10^{\circ}\text{C}$ 

| Batter                                | % Solids | 0s    | 30s   | 60s   | 120s | 300s |
|---------------------------------------|----------|-------|-------|-------|------|------|
| Kikkoman Tempura                      |          |       |       |       |      |      |
| Batter                                | 55.6     | 10.05 | 10.05 | 10.03 | 8.69 | 6.60 |
|                                       | 55.6     | 9.25  | 9.75  | 9.55  | 8.56 | 7.91 |
|                                       | 55.6     | 10.14 | 9.48  | 9.09  | 8.78 | 7.65 |
|                                       | 55.6     | 9.46  | 9.32  | 8.95  | 7.07 | 7.21 |
| Kikkoman Tempura                      |          |       |       |       |      |      |
| Batter                                | 50.0     | 6.88  | 3.79  | 4.00  | 3.09 | 3.13 |
|                                       | 50.0     | 6.01  | 4.37  | 3.47  | 3.48 | 2.48 |
|                                       | 50.0     | 6.33  | 4.45  | 3.43  | 3.24 | 3.08 |
|                                       | 50.0     | 6.95  | 4.26  | 3.90  | 3.15 | 2.83 |
| Kikkoman Tempura                      |          |       |       |       |      |      |
| Batter                                | 45.4     | 3.45  | 2.07  | 1.45  | 1.56 | 1.25 |
|                                       | 45.4     | 3.80  | 1.97  | 1.50  | 1.38 | 1.32 |
|                                       | 45.4     | 3.69  | 1.22  | 1.64  | 1.40 | 1.26 |
|                                       | 45.4     | 3.47  | 1.97  | 1.53  | 1.27 | 1.29 |
| Newly Wed Tempura                     |          |       |       |       |      |      |
| Batter                                | 50.0     | 4.65  | 3.23  | 2.66  | 2.81 | 3.08 |
|                                       | 50.0     | 5.07  | 3.01  | 2.90  | 2.52 | 2.90 |
|                                       | 50.0     | 5.22  | 3.34  | 2.85  | 2.78 | 1.90 |
| · · · · · · · · · · · · · · · · · · · | 50.0     | 4.88  | 3.20  | 3.08  | 2.72 | 2.87 |
| Newly Wed Tempura                     |          |       |       |       |      | 3    |
| Batter                                | 43.6     | 1.65  | 0.82  | 0.89  | 0.84 | 0.81 |
|                                       | 43.6     | 1.71  | 1.67  | 0.91  | 0.82 | 0.82 |
|                                       | 43.6     | 1.75  | 0.81  | 0.89  | 0.86 | 0.8  |
|                                       | 43.6     | 1.73  | 0.76  | 0.89  | 0.73 | 0.81 |
| Tung-I Tempura                        |          |       |       |       |      |      |
| Batter                                | 50.0     | 7.01  | 5.61  | 3.46  |      | 3.32 |
|                                       | 50.0     | 7.42  | 5.43  | 5.09  |      | 4.26 |
|                                       | 50.0     | 6.49  |       | 4.54  |      | 3.01 |
|                                       | 50.0     | 7.03  | 5.15  | 4.49  | 4.05 | 5.13 |
| Tung-I Tempura                        | ;        |       |       |       |      |      |
| Batter                                | 43.8     | 3.14  | 1.85  | 1.44  |      | 1.22 |
|                                       | 43.8     |       | 1.54  | 1.56  |      | 1.30 |
|                                       | 43.8     |       | 1.64  | 1.50  |      | 1.30 |
|                                       | 43.8     | 3.40  | 1.81  | 1.42  | 1.32 | 1.31 |

Table A.5. Steady Shear Data of Dorothy Dawson's Batter at  $20^{\circ}\text{C}$ 

| 45.4%  | Solids  | 50.0%  | Solids | 55.6%  | Solids |
|--------|---------|--------|--------|--------|--------|
| Shear  | Shear   | Shear  | Shear  | Shear  | Shear  |
| Rate   | Stress  | Rate   | Stress | Rate   | Stress |
| [1/s]  | [Pa]    | [1/s]  | [Pa]   | [1/s]  | [Pa]   |
| 0.063  | 9.831   | 0.456  | 6.902  | 0.723  | 3.654  |
| 1.1    | 38.784  | 1.539  | 11.406 | 1.461  | 4.748  |
| 2.199  | 49.47   | 2.183  | 12.681 | 2.199  | 5.33   |
| 2.827  | 53.492  | 2.875  | 14.242 | 2.859  | 5.936  |
| 3.456  | 58.43   | 3.503  | 15.561 | 3.613  | 6.425  |
| 4.194  | 63.832  | 4.273  | 16.903 | 4.257  | 6.946  |
| 4.885  | 69.36   | 4.917  | 18.101 | 4.885  | 7.392  |
| 5.466  | 73.163  | 5.529  | 19.365 | 5.545  | 7.972  |
| 6.11   | 78.648  | 6.173  | 20.762 | 6.173  | 8.466  |
| 6.896  | 83.791  | 6.943  | 22.12  | 6.912  | 8.976  |
| 7.54   | 88.775  | 7.587  | 23.476 | 7.571  | 9.502  |
| 8.2    | 92.946  | 8.215  | 24.563 | 8.2    | 9.94   |
| 8.954  | 98.002  | 8.969  | 25.895 | 8.954  | 10.403 |
| 9.55   | 102.237 | 9.582  | 27.063 | 9.582  | 10.816 |
| 10.194 | 106.719 | 10.242 | 28.155 | 10.226 | 11.253 |
| 10.838 | 111.721 | 10.901 | 29.531 | 10.886 | 11.78  |
| 11.624 | 116.247 | 11.64  | 30.727 | 11.655 | 12.237 |
| 12.268 | 120.701 | 12.315 | 31.839 | 12.284 |        |
| 12.912 | 125.632 | 12.959 | 33.166 | 12.928 | 13.196 |
| 13.65  | 130.265 | 13.572 | 34.295 | 13.556 | 13.611 |
| 14.153 | 134.287 | 14.184 | 35.385 | 14.31  |        |
| 14.938 | 138.607 | 14.954 | 36.494 | 14.97  | 14.57  |
| 15.551 | 143.476 | 15.614 | 37.831 | 15.582 |        |
| 16.226 | 147.7   | 16.242 | 38.888 | 16.195 | 15.415 |
| 16.996 | 152.047 | 16.996 | 39.992 | 17.012 | 15.79  |
| 17.64  | 157.275 | 17.624 | 41.269 | 17.64  | 16.305 |
| 18.253 | 161.064 | 18.268 | 42.312 | 18.268 | 16.652 |
| 19.007 | 165.349 | 18.912 | 43.402 | 1      |        |
| 19.509 | 168.975 | 19.541 | 44.342 | 19.541 |        |
| 20.279 | 173.234 | 20.295 | 45.392 | 20.295 |        |
| 20.954 | 178.083 | 20.97  | 46.589 | 20.923 |        |
| 21.583 | 182.323 | 21.708 | 47.735 | 21.693 | 18.76  |

| Table A.5.       | (cont'd)           |                 |        |                 | ı                |
|------------------|--------------------|-----------------|--------|-----------------|------------------|
| 22.305           | 186.476            | 22.337          | 48.621 | 22.337          | 19.156           |
| 22.965           | 189.986            | 22.934          | 49.654 | 22.981          | 19.642           |
| 23.562           | 194.999            | 23.64           | 50.873 | 23.578          | 20.026           |
| 24.206           | 198.449            | 24.253          | 51.789 | 24.379          | 20.371           |
| 24.976           | 202.644            | 25.007          | 52.784 | 25.007          | 20.762           |
| 25.667           | 206.957            | 25.683          | 53.826 | 25.635          | 21.136           |
| 26.279           | 210.805            | 26.311          | 54.769 | 26.264          | 21.535           |
| 26.939           | 214.691            | 27.081          | 55.831 | 27.049          | 21.916           |
| 27.646           | 218.984            | 27.677          | 56.681 | 27.677          | 22.277           |
| 28.274           | 222.796            | 28.306          | 57.35  | 28.306          | 22.665           |
| 28.918           | 227.475            | 28.934          | 58.513 | 28.95           | 23.079           |
| 29.704           | 231.515            | 29.61           | 59.27  | 29.578          | 23.427           |
| 30.316           | 235.436            | 30.348          | 60.185 | 30.332          | 23.802           |
| 30.976           | 239.469            | 31.008          | 61.261 | 30.976          | 24.132           |
| 31.777           | 243.459            | 31.793          | 62.036 | 31.604          | 24.512           |
| 32.248           | 246.77             | 32.264          | 62.816 | 32.233          | 24.823           |
| 33.002           | 250.342            | 33.05           | 63.72  | 33.018          | 25.136           |
| 33.631           | 254.986            | 33.646          | 64.59  | 33.662          | 25.499           |
| 34.322           | 258.214            | 34.322          | 65.426 | 34.306          | 25.866           |
| 35.092           | 262.359            | 35.076          | 66.349 | 35.076          | 26.235           |
| 35.736           | 267.197            | 35.673          | 67.4   | 35.704          | 26.657           |
| 36.317           | 270.088            | 36.333          | 67.684 | 36.333          | 26.881           |
| 36.914           | 274.579            | 36.945          | 68.911 | 37.118          | 27.258           |
| 37.699           | 277.678            | 37.715          | 69.569 | 37.573          | 27.561           |
| 38.28            | 282.148            | 38.39           | 70.106 | 38.359          | 27.815           |
| 39.019           | 285.887            | 39.003          | 71.355 | 39.003          | 28.121           |
| 39.553           | 290.251            | 39.663          | 71.857 | 39.631          | 28.481           |
| 40.432           | 293.352            | 40.417          | 72.572 | 40.417          | 28.713           |
| 41.061           | 295.515            | 41.061          | 73.291 | 41.029          | 29.129           |
| 41.689           | 301.177            | 41.736          | 74.184 | 41.658          | 29.312           |
| 42.317           | 304.688            | 42.302          | 74.783 | 42.302          | 29.574           |
| 43.056           | 307.689            | 43.103          | 75.642 | 43.056          | 29.917           |
| 43.637           | 311.327            | 43.715          | 76.116 | 43.7            | 30.155           |
| 44.344           | 315.344            | 44.391          | 76.897 | 44.328          | 30.582           |
| 45.098           | 318.217            | 45.113          | 77.637 | 45.098          | 30.85            |
| 45.773<br>46.386 | 322.279            | 45.757          | 78.338 | 45.757          | 31.038           |
| 47.045           | 325.729<br>329.289 | 46.386<br>47.03 | 79.085 | 46.386<br>47.03 | 31.335<br>31.579 |
| 47.045           | 333.881            | 47.03           | 80.369 | 47.627          | 31.852           |
| 47.730           | 333.001            | 41.133          | 00.309 | 41.021          | 31.032           |

| Table A.5. | (cont'd) |        | 1      |        | 1      |
|------------|----------|--------|--------|--------|--------|
| 48.428     | 336.189  | 48.412 | 81.082 | 48.396 | 32.126 |
| 48.962     | 340.829  | 49.087 | 81.798 | 49.056 | 32.456 |
| 49.716     | 342.32   | 49.873 | 82.473 | 49.684 | 32.678 |
| 50.438     | 345.312  | 50.501 | 83.059 | 50.454 | 32.899 |
| 50.36      | 343.066  | 50.297 | 82.382 | 50.297 | 32.677 |
| 49.621     | 338.875  | 49.653 | 81.349 | 49.669 | 32.18  |
| 48.852     | 334.064  | 48.852 | 80.145 | 48.899 | 31.714 |
| 48.271     | 328.19   | 48.271 | 78.554 | 48.271 | 31.224 |
| 47.705     | 322.005  | 47.595 | 77.503 | 47.627 | 30.766 |
| 46.873     | 316.417  | 46.998 | 76.416 | 46.998 | 30.284 |
| 46.386     | 312.214  | 46.37  | 75.035 | 46.37  | 29.833 |
| 45.569     | 307.863  | 45.616 | 74.094 | 45.6   | 29.491 |
| 44.925     | 302.576  | 44.956 | 73.075 | 44.956 | 28.968 |
| 44.218     | 298.031  | 44.202 | 71.684 | 44.171 | 28.579 |
| 43.574     | 294.559  | 43.574 | 70.682 | 43.542 | 28.193 |
| 42.946     | 288.532  | 42.93  | 69.728 | 42.93  | 27.733 |
| 42.302     | 285.798  | 42.317 | 68.494 | 42.286 | 27.48  |
| 41.595     | 281.298  | 41.658 | 67.597 | 41.658 | 26.875 |
| 40.872     | 275.243  | 40.888 | 66.544 | 40.888 | 26.501 |
| 40.275     | 270.746  | 40.244 | 65.3   | 40.228 | 26.081 |
| 39.615     | 266.534  | 39.631 | 64.384 | 39.631 | 25.688 |
| 38.861     | 262.273  | 38.861 | 63.279 | 38.83  | 25.323 |
| 38.186     | 258.533  | 38.217 | 62.262 | 38.202 | 24.96  |
| 37.605     | 254.419  | 37.668 | 61.176 | 37.573 | 24.601 |
| 36.929     | 249.701  | 36.961 | 60.139 | 36.929 | 24.125 |
| 36.317     | 245.185  | 36.317 | 59.224 | 36.317 | 23.748 |
| 35.579     | 241.338  | 35.579 | 58.279 | 35.531 | 23.421 |
| 34.95      | 236.359  | 34.872 | 57.044 | 34.903 | 22.98  |
| 34.102     | 232.429  | 34.133 | 56.192 | 34.149 | 22.612 |
| 33.505     | 228.001  | 33.505 | 55.016 | 33.631 | 22.293 |
| 32.892     | 224.521  | 32.94  | 54.18  | 32.877 | 21.864 |
| 32.264     | 219.947  | 32.264 | 53.242 | 32.233 | 21.573 |
| 31.62      | 215.792  | 31.62  | 52.206 | 31.604 | 21.063 |
| 30.866     | 211.603  | 30.819 | 51.357 | 30.819 | 20.734 |
| 30.206     | 207.458  | 30.222 | 50.096 | 30.191 | 20.277 |
| 29.547     | 202.638  | 29.562 | 49.3   | 29.562 | 19.933 |
| 28.793     | 199.293  | 28.824 | 48.374 | 28.934 | 19.592 |
| 28.164     | 194.363  | 28.149 | 47.321 | 28.306 | 19.254 |
| 27.567     | 190.881  | 27.536 | 46.448 | 27.536 | 18.816 |

| Table A.5. | (cont'd) |        | ı      |        | ı      |
|------------|----------|--------|--------|--------|--------|
| 26.861     | 187.431  | 26.923 | 45.55  | 26.876 | 18.424 |
| 26.264     | 182.52   | 26.295 | 44.465 | 26.279 | 18.036 |
| 25.525     | 178.68   | 25.478 | 43.588 | 25.478 | 17.653 |
| 24.834     | 174.021  | 24.85  | 42.464 | 24.85  | 17.254 |
| 24.237     | 170.013  | 24.253 | 41.513 | 24.206 | 16.86  |
| 23.483     | 165.859  | 23.483 | 40.605 | 23.593 | 16.53  |
| 22.839     | 162.013  | 22.855 | 39.738 | 22.808 | 16.145 |
| 22.211     | 158.464  | 22.211 | 38.881 | 22.164 | 15.765 |
| 21.536     | 153.713  | 21.551 | 37.764 | 21.551 | 15.279 |
| 20.813     | 149.34   | 20.766 | 36.842 | 20.75  | 14.947 |
| 20.153     | 145.756  | 20.185 | 35.843 | 20.138 | 14.601 |
| 19.556     | 141.085  | 19.525 | 34.745 | 19.494 | 14.134 |
| 18.85      | 137.252  | 18.881 | 33.919 | 18.881 | 13.763 |
| 18.143     | 133.127  | 18.143 | 32.909 | 18.237 | 13.362 |
| 17.467     | 128.272  | 17.514 | 31.805 | 17.467 | 12.985 |
| 16.855     | 125.124  | 16.87  | 31.072 | 16.855 | 12.631 |
| 16.211     | 120.532  | 16.226 | 30.027 | 16.195 | 12.149 |
| 15.472     | 116.673  | 15.472 | 28.872 | 15.441 | 11.791 |
| 14.844     | 112.402  | 14.828 | 27.919 | 14.797 | 11.39  |
| 14.153     | 107.902  | 14.184 | 26.857 | 14.153 | 10.919 |
| 13.446     | 103.547  | 13.43  | 25.841 | 13.399 | 10.52  |
| 12.802     | 99.681   | 12.818 | 24.845 | 12.912 | 10.172 |
| 12.142     | 95.064   | 12.158 | 23.658 | 12.111 | 9.758  |
| 11.561     | 91.699   | 11.53  | 22.685 | 11.514 | 9.339  |
| 10.116     | 83.016   | 10.132 | 20.67  | 10.1   | 8.434  |
| 9.488      | 78.776   | 9.472  | 19.657 | 9.456  | 7.994  |
| 8.844      | 74.138   | 8.828  | 18.486 | 8.844  | 7.502  |
| 8.105      | 69.769   | 8.09   | 17.353 | 8.058  | 7.076  |
| 7.461      | 65.618   | 7.446  | 16.355 | 7.414  | 6.644  |
| 6.817      | 60.865   | 6.817  | 15.055 | 6.77   | 6.134  |
| 6.173      | 57.078   | 6.189  | 14.025 | 6.189  | 5.69   |
| 5.561      | 52.165   | 5.561  | 12.863 | 5.576  | 5.242  |
| 4.775      | 47.416   | 4.822  | 11.706 | 4.775  | 4.764  |
| 4.147      | 42.648   | 4.147  | 10.591 | 4.115  | 4.263  |
| 3.534      | 38.146   | 3.519  | 9.248  | 3.487  | 3.782  |
| 2.906      | 33.487   | 2.78   | 7.909  | 2.733  | 3.233  |
| 2.199      | 28.036   | 2.121  | 6.602  | 2.121  | 2.722  |
| 1.555      | 22.788   | 1.539  | 5.362  | 1.492  | 2.183  |
| 0.927      | 16.382   | 0.895  | 3.697  | 0.848  | 1.482  |

Table A.6. Steady Shear Data of Drake's Batter and Golden Dipt Batter at  $20^{\circ}\text{C}$ 

|        | Drake's | Batter |         | Golden Di | pt Batter |
|--------|---------|--------|---------|-----------|-----------|
| 50.0%  | Solids  | 57.1%  | Solids  | 50.0%     | Solids    |
| Shear  | Shear   | Shear  | Shear   | Shear     | Shear     |
| Rate   | Stress  | Rate   | Stress  | Rate      | Stress    |
| [1/s]  | [Pa]    | [1/s]  | [Pa]    | [1/s]     | [Pa]      |
| 0.157  | 2.423   | 0      | 2.799   | 0         | 3.955     |
| 1.068  | 7.859   | 0.314  | 18.952  | 0.209     | 14.788    |
| 2.215  | 11.341  | 1.791  | 48.679  | 1.236     | 50.794    |
| 3.362  | 14.331  | 3.236  | 65.064  | 2.932     | 86.918    |
| 4.492  | 16.981  | 4.225  | 75.601  | 4.294     | 104.423   |
| 5.435  | 19.113  | 5.341  | 87.1    | 5.383     | 119.507   |
| 6.535  | 21.447  | 6.315  | 96.142  | 6.409     | 133.72    |
| 7.32   | 23.035  | 7.398  | 106.928 | 7.435     | 149.481   |
| 8.404  | 25.092  | 8.404  | 114.856 | 8.524     | 165.493   |
| 9.519  | 27.214  | 9.456  | 125.301 | 9.634     | 177.431   |
| 10.493 | 28.904  | 10.399 | 133.424 | 10.681    | 189.451   |
| 11.592 | 30.862  | 11.53  | 142.882 | 11.729    | 202.949   |
| 12.692 | 32.554  | 12.488 | 151.56  | 12.818    | 211.921   |
| 13.635 | 34.409  | 13.43  | 159.991 | 13.655    | 224.246   |
| 14.577 | 35.967  | 14.467 | 169.242 | 14.765    | 235.15    |
| 15.661 | 37.861  | 15.598 | 178.625 | 15.792    | 245.136   |
| 16.603 | 39.285  | 16.729 | 187.169 | 17.027    | 255.252   |
| 17.703 | 41.018  | 17.483 | 194.586 | 18.075    | 263.692   |
| 18.692 | 42.503  | 18.677 | 202.58  | 19.122    | 272.023   |
| 19.604 | 43.984  | 19.729 | 211.69  | 20.064    | 278.125   |
| 20.703 | 45.59   | 20.64  | 219.737 | 20.567    | 284.722   |
| 21.661 | 46.992  | 21.803 | 228.852 | 19.604    | 264.346   |
| 22.745 | 48.689  | 22.682 | 235.832 | 18.556    | 248.535   |
| 23.845 | 50.243  | 23.813 | 245.042 | 17.593    | 235.148   |
| 24.787 | 51.647  | 24.74  | 251.869 | 16.588    | 225.224   |
| 25.73  | 52.962  | 25.714 | 260.252 | 15.499    | 215.446   |
| 26.845 | 54.586  | 26.782 | 269.106 | 14.535    | 203.448   |
| 27.913 | 56.125  | 27.882 | 278.447 | 13.278    | 192.221   |
| 28.871 | 57.238  | 28.887 | 284.281 | 12.378    | 181.931   |
| 29.814 | 58.55   | 29.861 | 289.919 | 11.373    | 172.195   |
| 30.929 | 60.107  | 30.788 | 299.704 | 10.283    | 159.871   |

| Table A.6. | (cont'd) |        |         |       | 1       |
|------------|----------|--------|---------|-------|---------|
| 32.029     | 61.492   | 31.887 | 308.056 | 9.236 | 148.076 |
| 32.798     | 62.503   | 32.861 | 316.973 | 8.189 | 136.215 |
| 33.913     | 63.876   | 33.788 | 324.379 | 7.288 | 123.856 |
| 35.013     | 65.466   | 35.013 | 332.423 | 6.22  | 110.414 |
| 35.956     | 66.63    | 35.94  | 339.449 | 5.194 | 97.369  |
| 37.024     | 68.173   | 36.992 | 347.487 | 4.231 | 83.705  |
| 38.029     | 69.321   | 38.013 | 355.239 | 3.225 | 68.459  |
| 39.097     | 70.812   | 39.019 | 365.578 | 2.283 | 52.17   |
| 40.055     | 71.857   | 40.165 | 373.038 | 1.361 | 35.025  |
| 40.982     | 73.037   | 40.998 | 382.346 |       |         |
| 42.097     | 74.526   | 42.003 | 388.381 |       | j       |
| 43.165     | 75.814   | 43.197 | 395.864 |       | ì       |
| 44.124     | 77.027   | 44.061 | 405.749 |       |         |
| 45.082     | 78.163   | 45.019 | 413.19  |       |         |
| 46.181     | 79.528   | 46.166 | 421.109 |       |         |
| 47.265     | 81.084   | 47.265 | 429.416 |       |         |
| 48.223     | 82.114   | 48.051 | 435.173 |       | ŀ       |
| 49.166     | 83.242   | 49.197 | 441.919 |       |         |
| 50.25      | 84.789   | 50.093 | 450.746 |       |         |
| 51.019     | 85.798   | 51.538 | 468.331 |       |         |
| 49.747     | 83.741   | 49.841 | 443.826 |       |         |
| 48.695     | 81.979   | 48.6   | 438.118 |       |         |
| 47.579     | 80.147   | 47.564 | 427.331 |       |         |
| 46.637     | 78.997   | 46.527 | 417.191 |       |         |
| 45.679     | 77.549   | 45.632 | 413.804 |       | i       |
| 44.595     | 75.813   | 44.579 | 404.735 |       |         |
| 43.495     | 74.353   | 43.448 | 394.762 |       |         |
| 42.537     | 73.035   | 42.584 | 387.983 |       |         |
| 41.579     | 71.603   | 41.705 | 381.261 |       |         |
| 40.495     | 70.021   | 40.574 | 371.093 |       |         |
| 39.396     | 68.497   | 39.286 | 364.711 |       |         |
| 38.61      | 67.356   | 38.437 | 356.571 |       |         |
| 37.542     | 65.904   | 37.589 | 347.769 |       |         |
| 36.427     | 64.309   | 36.49  | 341.216 |       | ł       |
| 35.327     | 62.813   | 35.327 | 332.055 |       | į       |
| 34.369     | 61.49    | 34.51  | 324.288 |       | 1       |
| 33.442     | 60.105   | 33.411 | 317.871 |       |         |
| 32.327     | 58.698   | 32.311 | 309.208 |       | 1       |
| 31.243     | 57.086   | 31.4   | 301.803 |       | l       |

| Table A.5. | (cont'd) |        |         |
|------------|----------|--------|---------|
| 30.458     | 56.011   | 30.285 | 293.537 |
| 29.342     | 54.329   | 29.311 | 285.217 |
| 28.259     | 52.852   | 28.29  | 275.76  |
| 27.3       | 51.467   | 27.3   | 269.023 |
| 26.389     | 50.066   | 26.421 | 261.065 |
| 25.274     | 48.446   | 25.306 | 252.188 |
| 24.19      | 47.123   | 24.159 | 244.018 |
| 23.216     | 45.521   | 23.138 | 235.599 |
| 22.148     | 43.948   | 22.29  | 229.003 |
| 21.174     | 42.5     | 21.221 | 219.364 |
| 20.075     | 40.859   | 20.059 | 210.959 |
| 19.132     | 39.343   | 19.148 | 203.438 |
| 18.237     | 37.978   | 18.253 | 195.707 |
| 17.106     | 36.169   | 17.169 | 185.935 |
| 16.179     | 34.72    | 16.038 | 177.087 |
| 15.08      | 32.913   | 15.095 | 169.697 |
| 13.964     | 31.129   | 14.169 | 160.751 |
| 13.163     | 29.819   | 13.069 | 151.744 |
| 12.095     | 27.973   | 11.954 | 142.344 |
| 10.996     | 26.115   | 11.027 | 134.291 |
| 10.053     | 24.489   | 10.116 | 125.804 |
| 8.954      | 22.504   | 9.032  | 116.196 |
| 8.011      | 20.782   | 7.917  | 105.797 |
| 6.959      | 18.674   | 7.1    | 98.548  |
| 5.953      | 16.823   | 6.032  | 88.029  |
| 5.058      | 14.983   | 4.995  | 77.379  |
| 3.958      | 12.747   | 3.974  | 67.113  |
| 2.875      | 10.259   | 3.126  | 57.567  |
| 1.932      | 7.937    | 2.058  | 44.69   |
| 0.927      | 4.99     | 1.21   | 32.817  |

Table A.7. Steady Shear Data of Kikkoman Tempura Batter at  $10^{\circ}\mathrm{C}$ 

| 45.4%           | Solids           | 50.0%          | Solids             | 55.6%           | Solids           |
|-----------------|------------------|----------------|--------------------|-----------------|------------------|
| Shear           | Shear            | Shear          | Shear              | Shear           | Shear            |
| Rate            | Stress           | Rate           | Stress             | Rate            | Stress           |
| [1/s]           | [Pa]             | [1/s]          | [Pa]               | [1/s]           | [Pa]             |
| 9.142           | 31.14            | 1.257          | 65.186             | 0.094           | 3.856            |
| 1.854           | 12.365           | 1.319          | 69.695             | 0.408           | 11.029           |
| 2.576           | 15.08            | 2.105          | 89.44              | 1.665           | 27.706           |
| 3.613           | 18.227           | 3.236          | 111.415            | 3.33            | 40.041           |
| 4.65            | 21.318           | 4.367          | 132.225            | 4.587           | 48.166           |
| 5.686           | 23.74            | 5.561          | 150.648            | 5.623           | 53.961           |
| 6.817           | 25.951           | 6.566          | 166.077            | 6.754           | 59.301           |
| 7.854           | 28.085           | 7.697          | 182.005            | 7.823           | 64.109           |
| 8.828           | 30.521           | 8.671          | 194.112            | 8.765           | 68.867           |
| 9.99            | 32.73            | 9.802          | 208.14             | 9.896           | 74.356           |
| 10.996          |                  | 10.87          |                    | 10.933          |                  |
| 12.001          | 36.505           | 11.875         |                    | 11.969          | 84.476           |
| 13.163          | 38.203           | 13.006         |                    | 13.132          | 88.215           |
| 14.074          | 39.788           | 14.043         | 259.381            | 14.074          | 92.804           |
| 15.142          |                  | 15.017         | 271.532            | 15.111          | 97.266           |
| 16.305          |                  |                | 281.592            | 16.085          | 100.834          |
| 17.342          |                  |                |                    | 17.216          | 104.926          |
| 18.315          | 46.169           |                | 302.794            | 18.284          | 109.155          |
| 19.478          |                  | 19.384         | 312.972            | 19.446          | 112.673          |
| 20.483          |                  | 20.483         | 325.044            | 20.483          | 116.249          |
| 21.174          | 50.224           | 21.174         | 333.096            | 21.143          | 119.609          |
| 19.886          |                  | 20.043         | 314.401            | 19.918          | 112.355          |
| 18.912          | 45.273           | 18.944         | 301.391            | 18.944          | 107.908          |
| 17.781          |                  | 17.938         | 287.032            | 17.75           |                  |
| 16.776          |                  |                | 276.454            | 16.839          |                  |
| 15.802          |                  | 15.896         | 261.331            | 15.802          |                  |
| 14.828          | 37.243           | 14.954         | 250.772            | 14.828          |                  |
| 13.509          | 34.76            | 13.729         | 233.999            | 13.635          | 83.882           |
| 12.598          | 33.062           | 12.692         | 223.122            | 12.661          | 79.885           |
| 11.624          | 31.193           |                | 210.392            | 11.812          | 75.427           |
| 10.524<br>9.488 | 28.806<br>26.693 | 10.65<br>9.739 | 194.25             | 10.556<br>9.456 | 69.566           |
| 8.325           | 24.687           | 8.545          | 182.342<br>168.603 |                 | 65.142           |
| 7.383           | 24.667           | 7.603          | 155.663            | 8.419<br>7.508  | 60.369<br>55.711 |
| 6.377           | 20.287           | 6.597          | 140.748            | 6.472           | 50.058           |
| 5.435           | 18.185           | 5.623          | 126.935            | 5.498           | 44.886           |
| 4.335           |                  | 4.587          | 111.257            | 4.398           | 39.302           |
| 3.362           |                  | 3.613          | 95.125             | 3.424           | 33.32            |
| 2.419           | 10.534           | 2.702          | 78.786             | 2.513           | 27.073           |
| 1.351           | 7.41             | 2.702          | 60.258             | 1.508           | 19.795           |
| 1.331           | /.41             |                | 00.238             | 1.508           | 17./33           |

Table A.8. Steady Shear Data of Newly Wed Tempura Batter at  $10^{\circ}\text{C}$ 

| 43.69            | Solids           | 50.0% Solids     |                  |  |  |
|------------------|------------------|------------------|------------------|--|--|
| Shear Rate       | Shear Stress     | Shear Rate       | Shear Stress     |  |  |
| [1/s]            | [Pa]             | [1/s]            | [Pa]             |  |  |
| 12.975           | 9.373            | 5.812            | 37.487           |  |  |
| 1.759            | 2.542            | 2.011            | 17.661           |  |  |
| 2.608            | 3.576            | 2.513            | 20.311           |  |  |
| 3.738            | 4.629            | 3.613            | 25.051           |  |  |
| 4.681            | 5.404            | 4.65             | 28.576           |  |  |
| 5.843            | 6.218            | 5.812            | 32.372           |  |  |
| 6.817            | 7.156            | 6.88             | 36.067           |  |  |
| 7.791            | 7.869            | 8.042            | 39.238           |  |  |
| 9.016            | 8.618            | 8.985            | 42.011           |  |  |
| 10.022           | 9.49             | 10.022           | 45.609           |  |  |
| 10.964           | 10.166           | 10.996           | 48.333           |  |  |
| 11.781           | 10.929           | 12.127           | 51.351           |  |  |
| 13.132           | 11.624           | 13.1             | 53.812           |  |  |
| 14.169           |                  | 14.169           | 56.742           |  |  |
| 15.08            | 13.048           | 15.205           | 59.638           |  |  |
| 16.273           | 13.67            | 16.273           | 61.598           |  |  |
| 17.31            | 14.343           | 17.247           | 64.223           |  |  |
| 18.253           | 15.052           | 18.41            | 66.904           |  |  |
| 19.446           |                  | 19.352           | 68.573           |  |  |
| 20.389           | 16.313           | 20.263           | 71.096           |  |  |
| 21.017           | 16.778           | 21.08            | 72.988           |  |  |
| 19.792           | 15.629           | 19.855           | 67.715           |  |  |
| 18.818           | 14.905           | 18.818           | 64.499           |  |  |
| 17.656<br>16.682 | 14.146           | 17.719           | 61.171           |  |  |
| 15.708           | 13.408<br>12.591 | 16.745           | 57.673           |  |  |
| 14.514           | 11.849           | 15.708<br>14.577 | 55.083<br>51.915 |  |  |
| 13.666           | 11.225           | 13.697           | 49.051           |  |  |
| 12.598           | 10.315           | 12.629           | 45.839           |  |  |
| 11.655           | 9.62             | 11.655           | 43.035           |  |  |
| 10.493           | 8.72             | 10.619           | 40.098           |  |  |
| 9.519            | 8.238            | 9.582            | 37.216           |  |  |
| 8.482            | 7.393            | 8.545            | 34.107           |  |  |
| 7.54             | 6.683            | 7.603            | 31.303           |  |  |
| 6.409            | 5.903            | 6.472            | 28.112           |  |  |
| 5.372            | 5.029            | 5.435            | 24.593           |  |  |
| 4.21             | 4.2              | 4.492            | 21.675           |  |  |
| 3.299            | 3.448            | 3.393            | 18.105           |  |  |
| 2.293            | 2.506            | 2.388            | 14.226           |  |  |
| 1.351            | 1.698            | 1.508            | 10.703           |  |  |

Table A.9. Steady Shear Data of Tung-I Tempura Batter at  $10^{\circ}\mathrm{C}$ 

| 43.88           | Solids           | 50.0% Solids     |                    |  |  |  |
|-----------------|------------------|------------------|--------------------|--|--|--|
| Shear Rate      | Shear Stress     | Shear Rate       | Shear Stress       |  |  |  |
| [1/s]           | [Pa]             | [1/s]            | [Pa]               |  |  |  |
| 8.985           | 26.172           | 2.985            | 62.188             |  |  |  |
| 1.791           | 9.786            | 1.885            | 41.289             |  |  |  |
| 2.545           | 12.431           | 2.419            | 47.15              |  |  |  |
| 3.581           | 15.264           | 3.362            | 57.419             |  |  |  |
| 4.65            | 18.288           | 4.43             | 68.091             |  |  |  |
| 5.655           | 20.657           | 5.529            | 77.381             |  |  |  |
| 6.817           | 23.179           | 6.597            | 86.5               |  |  |  |
| 7.76            | 25.315           | 7.697            | 95.608             |  |  |  |
| 8.796           | 27.727           | 8.671            | 103.152            |  |  |  |
| 9.77            | 29.776           | 9.802            | 111.991            |  |  |  |
| 10.901          | 31.929           | 10.901           | 120.709            |  |  |  |
| 11.969          | 34.247           | 11.875           | 127.777            |  |  |  |
| 12.943          | 36.122           | 12.975           | 135.748            |  |  |  |
| 14.169          | 38.534           | 14.074           | 144.146            |  |  |  |
| 15.362          | 40.406           | 15.017           | 150.95             |  |  |  |
| 16.305          | 41.943           | 16.211           | 157.663            |  |  |  |
| 17.31           | 43.705           | 17.153           | 164.525            |  |  |  |
| 18.284          | 45.67            | 18.127           | 172.128            |  |  |  |
| 19.446          | 47.376           | 19.164           | 178.163            |  |  |  |
| 20.452          | 48.944           | 20.389           | 186.765            |  |  |  |
| 21.174          | 50.259           | 21.112           | 192.848            |  |  |  |
| 19.855          | 47.039           | 19.886           | 179.705            |  |  |  |
| 18.944          | 45.075           | 18.912           | 172.128            |  |  |  |
| 17.719          | 42.963           | 17.781           | 163.883            |  |  |  |
| 16.808          | 40.966           | 16.87            | 156.596            |  |  |  |
| 15.802          | 39.02            | 15.739           | 148.806            |  |  |  |
| 14.86           | 36.857           | 14.86            | 140.506            |  |  |  |
| 13.666          | 34.76            | 13.635           | 132.392            |  |  |  |
| 12.661          | 32.534<br>30.949 | 12.692<br>11.561 | 123.855<br>115.985 |  |  |  |
| 11.812          |                  | 10.587           | 108.224            |  |  |  |
| 10.524<br>9.519 | 28.469<br>26.394 | 9.55             | 100.388            |  |  |  |
| 9.519<br>8.577  | 24.258           | 8.608            | 92.663             |  |  |  |
| 8.577<br>7.414  | 24.258           | 7.508            | 84.114             |  |  |  |
| 7.414<br>6.472  | 19.964           | 6.566            | 76.467             |  |  |  |
| 5.466           | 17.74            | 5.561            | 67.277             |  |  |  |
| 4.524           | 15.282           | 4.618            | 59.302             |  |  |  |
| 3.424           | 12.699           | 3.55             | 49.886             |  |  |  |
| 2.513           | 10.291           | 2.639            | 41.1               |  |  |  |
| B .             | 7.233            | 1.665            | 30.713             |  |  |  |
| 1.539           | 1.233            | 1.003            | 30.713             |  |  |  |

X. N. St.

Table A.10. Steady Shear Data for Calculating Power Law Properties for Dorothy Dawson's Batter at 45.4% Solids

| Shear Rate | Shear Stress | Shear Rate | Shear Stress | Shear Rate | Shear Stress |
|------------|--------------|------------|--------------|------------|--------------|
| [1/s]      | [Pa]         | [1/s]      | [Pa]         | [1/s]      | [Pa]         |
| 0.487      |              | 0.456      | 2.165        | 0.628      | 1.624        |
| 1.398      |              | 1.319      | 4.798        | 1.304      | 3.17         |
| 2.435      |              | 2.388      | 6.117        | 2.325      | 4.397        |
| 3.534      |              | 3.503      | 7.218        | 3.456      | 5.552        |
| 4.65       |              | 4.602      | 8.158        | 4.571      | 6.576        |
| 5.592      |              | 5.545      | 8.95         | 5.529      | 7.366        |
| 6.566      |              | 6.519      | 9.619        | 6.613      | 8.29         |
| 7.634      |              | 7.603      | 10.465       | 7.587      | 9.017        |
| 8.592      |              | 8.545      | 11.145       | 8.498      | 9.719        |
| 9.692      |              | 9.66       | 11.96        | 9.598      | 10.554       |
| 10.493     |              | 10.587     | 12.638       | 10.571     | 11.284       |
| 11.718     |              | 11.702     | 13.422       | 11.53      | 11.844       |
| 12.661     |              | 12.629     | 14.071       | 12.598     | 12.619       |
| 13.76      |              | 13.713     | 14.827       | 13.697     | 13.367       |
| 14.687     |              | 14.828     | 15.585       | 14.797     | 14.086       |
| 15.645     |              | 15.629     | 16.058       | 15.582     | 14.606       |
| 16.745     | 13.871       | 16.713     | 16.849       | 16.698     | 15.359       |
| 17.86      |              | 17.829     | 17.541       | 17.797     | 16.055       |
| 18.802     | 14.931       | 18.787     | 18.126       | 18.881     | 16.769       |
| 19.745     |              | 19.713     | 18.742       | 19.682     | 17.24        |
| 20.829     | 16.033       | 20.797     | 19.453       | 20.782     | 17.961       |
| 21.944     | 16.57        | 21.928     | 20.135       | 21.897     | 18.636       |
| 22.902     | 17.039       | 22.839     | 20.677       | 22.824     | 19.198       |
| 23.829     | 17.534       | 23.798     | 21.249       | 23.782     | 19.811       |
| 24.929     | 18.099       | 24.881     | 21.941       | 24.866     | 20.457       |
| 26.028     | 18.631       | 25.997     | 22.645       | 25.981     | 21.113       |
| 26.955     | 19.13        | 26.939     | 23.174       | 26.751     | 21.557       |
| 27.913     | 19.572       | 27.866     | 23.757       | 27.85      | 22.209       |
| 28.997     | 20.084       | 28.981     | 24.372       | 28.95      | 22.848       |
| 30.112     | 20.647       | 30.081     | 24.994       | 30.049     | 23.52        |
| 31.055     | 21.085       | 30.992     | 25.551       | 30.992     | 24.084       |
| 32.013     | 21.506       | 31.981     | 26.041       | 31.919     | 24.583       |
| 33.097     | 22.067       | 33.081     | 26.685       | 33.002     | 25.184       |
| 34.023     | 22.475       | 34.165     | 27.236       | 33.976     | 25.695       |
| 35.139     | 22.956       | 34.966     | 27.666       | 35.076     | 26.334       |
| 36.081     | 23.397       | 36.065     | 28.227       | 36.018     | 26.781       |
| 37.181     | 23.935       | 37.134     | 28.873       | 37.118     | 27.41        |
| 38.265     | 24.385       | 38.108     | 29.316       | 38.233     | 27.994       |
| 39.066     | 24.719       | 39.05      | 29.736       | 39.003     | 28.404       |
| 40.165     | 25.2         | 40.118     | 30.346       | 40.134     | 28.974       |
| 41.108     | 25.613       | 41.233     | 30.881       | 41.202     | 29.496       |
| 42.207     | 26.128       | 42.192     | 31.394       | 42.144     | 30.024       |
| 43.307     | 26.523       | 43.118     | 31.775       | 43.071     | 30.503       |
| 44.265     | 26.972       | 44.218     | 32.324       | 44.186     | 31.04        |
| 45.365     | 27.425       | 45.302     | 32.822       | 45.286     | 31.554       |
| 46.307     | 27.831       | 46.26      | 33.212       | 46.244     | 31.854       |
| 47.25      | 28.24        | 47.202     | 33.717       | 47.202     | 32.431       |
| 48.318     | 28.678       | 48.302     | 34.283       | 48.271     | 32.985       |
| 49.433     | 29.146       | 49.402     | 34.71        | 49.354     | 33.545       |
| 50.203     | 29.407       | 50.344     | 35.112       | 50.171     | 33.855       |

Table A.11. Steady Shear Data for Calculating Power Law Properties for Dorothy Dawson's Batter at 50.0% Solids

| Shear Rat    | e Shear | Stress                 | Shear Rate       | Shear Stress                    | Shear Rate       | Shear Stress     |
|--------------|---------|------------------------|------------------|---------------------------------|------------------|------------------|
| [1/          | 3]      | [Pa]                   | [1/s]            | [Pa]                            | [1/s]            | [Pa]             |
| 0.2          | 51      | 3.131                  | 0.314            | 5.795                           | 0.581            | 4.849            |
| 1.           | 21      | 8.229                  | 1.272            | 10.918                          | 1.225            | 8.636            |
| 2.3          | 09      | 11.042                 | 2.34             | 13.398                          | 2.278            | 12.281           |
| 3.           | 44      | 13.588                 | 3.471            | 15.674                          | 3.424            | 15 <b>.561</b>   |
| 4.3          | 98      | 15.673                 | 4.43             | 17.517                          | 4.54             | 18.45            |
| 5.4          | 98      | 17.979                 | 5.529            | 19.598                          | 5.498            | 20.763           |
| 6.6          | 13      | 20.175                 | 6.629            | 21.402                          | 6.597            | 23.198           |
| 7.5          | 56      | 21.759                 | 7.414            | 23.058                          | 7.43             | 24.9             |
| 8.4          | 82      | 23.663                 | 8.529            | 24.971                          | 8.514            | 27.115           |
| 9.5          | 98      | 25.723                 | 9.629            | 26.937                          | 9.613            | 29.375           |
| 10.          | 54      | 27.415                 | 10.571           | 28.567                          | 10.556           | 31.241           |
| 11.6         | 55      | 29.425                 | 11.671           | 30.459                          | 11.655           | 33.392           |
| 12.7         |         | 31.13                  | 12.613           | 32.085                          | 12.598           | 35.127           |
| 13.6         |         | 32.886                 | 13.713           | 33.925                          | 13.729           | 37.235           |
| 14.6         |         | 34.436                 | 14.656           | 35.472                          | 14.813           | 39.195           |
| 15.7         |         | 36.317                 | 15.755           | 37.322                          | 15.582           | 40.614           |
| 16.6         |         | 37.89                  | 16.698           | 38.796                          | 16.698           | 42.537           |
| 17.7         |         | 39.59                  | 17.797           | 40.674                          | 17.797           | 44.377           |
| 18.7         |         | 41.111                 | 18.928           | 42.439                          | 18.865           | 46.257           |
| 19.6         |         | 42.502                 | 19.698           | 43.659                          | 19.682           | 47.534           |
| 20.7         |         | 44.308                 | 20.782           | 45.359                          | 20.782           | 49.31            |
| 21.6         |         | 45.788                 | 21.865           | 47.025                          | 21.865           | 51.086           |
| 22.8         |         | 47.429                 | 22.839           | 48.517                          | 22.839           | 52.608           |
| 23.7         |         | 48.791                 | 23.782           | 49.826                          | 23.766           | 53.973           |
| 24.8         |         | 50.416                 | 24.881           | 51.47                           | 24.866           | 55.613           |
| 25.9<br>26.8 |         | 52.07<br><b>53.464</b> | 25.965           | 53.07<br><b>54.</b> 22 <b>3</b> | 25.965           | 57.353           |
| 27.          |         | 54.84                  | 26.798<br>27.897 | 55.683                          | 26.923<br>27.882 | 58.705<br>60.035 |
| 28.9         |         | 56.309                 | 28.965           | 57.275                          | 28.934           | 61.729           |
| 30.0         |         | 57.835                 | 30.081           | 58.777                          | 30.049           | 63.133           |
| 30.9         |         | 59.079                 | 31.023           | 60.222                          | 30.992           | 64.514           |
| 31.9         |         | 60.49                  | 32.123           | 61.608                          | 31.934           | 65.589           |
| 33.0         |         | 61.957                 | 33.065           | 62.815                          | 33.018           | 67.282           |
| 34.1         |         | 63.482                 | 33.992           | 63.995                          | 34.133           | 68.463           |
| 34.9         |         | 64.311                 | 35.092           | 65.506                          | 34.935           | 69.325           |
| 36.0         |         | 65.946                 |                  | 66.63                           | 36.003           | 70.941           |
| 37.1         |         | 67.277                 |                  | 67.969                          | 37.149           | 72.155           |
| 38.0         |         | 68.622                 | 38.092           | 69.238                          | 38.06            | 72.998           |
| 39.0         |         | 69.857                 | 39.034           | 70.105                          | 39.16            | 74.401           |
| 40.1         |         | 71.228                 | 40.134           | 71.815                          | 40.087           | 75.645           |
| 41.0         |         | 72.15                  |                  | 72.91                           | 41.233           | 76.77            |
| 42.1         |         | 73.8                   | 42.144           | 74.269                          | 42.302           | 78.078           |
| 43.2         | 13      | 74.996                 | 43.244           | 75.469                          | 43.087           | 78.736           |
| 44.2         |         | 75.986                 | 44.186           | 76.462                          | 44.249           |                  |
| 45.3         |         | 77.2                   | 45.302           | 77.899                          | 45.317           | 80.818           |
| 46.2         |         | 78.557                 | 46.276           | 79.085                          | 46.213           | 81.892           |
| 47.1         |         | 79.748                 | 47.218           | 80.059                          | 47.14            | 82.882           |
| 48.2         |         | 81.038                 | 48.333           | 81.172                          | 48.192           | 83.834           |
| 49.3         |         | 82.338                 |                  | 82.338                          | 49.244           | 85.111           |
| 50.1         |         | 82.924                 | 1                | 83.332                          | 50.344           | 86.26            |

Table A.12. Steady Shear Data for Calculating Power Law Properties for Dorothy Dawson's Batter at 55.6% Solids

| Shear Rate | Shear Stress | Shear Rate | Shear Stress | Shear Rate      | Shear Stress       |
|------------|--------------|------------|--------------|-----------------|--------------------|
| [1/s]      | [Pa]         | [1/s]      | [Pa]         | [1/s]           | [Pa]               |
| 0.707      | 21.811       | 0.016      | 2.814        | 0.408           | 17.904             |
| 2.121      |              | 0.534      | 17.163       | 2.011           | 38.45              |
| 3.33       |              | 2.073      | 34.28        | 3.299           | 48.575             |
| 4.288      |              | 3.314      | 44.133       | 4.445           | 56.819             |
| 5.419      |              | 4.304      | 51.388       | 5.404           | 63.162             |
| 6.535      |              | 5.404      | 58.995       | 6.409           | 69.482             |
| 7.477      |              | 6.535      | 66.02        | 7.493           | 76.202             |
| 8.435      |              | 7.351      | 70.891       | 8.404           | 81.846             |
| 9.566      | 87.002       | 8.435      | 77.331       | 9.503           | 88.586             |
| 10.477     | 92.943       | 9.535      | 83.879       | 10.477          | 94.485             |
| 11.592     | 99.533       | 10.493     | 89.241       | 11.561          | 101.03             |
| 12.692     | 105.74       | 11.608     | 95.259       | 12.535          | 106.459            |
| 13.65      | 112.087      | 12.582     | 100.878      | 13.587          | 113.464            |
| 14.577     | 117.809      | 13.65      | 107.076      | 14.546          | 119.004            |
| 15.677     | 124.401      | 14.577     | 112.138      | 15.504          | 124.568            |
| 16.619     | 129.863      | 15.692     | 118.079      | 16.588          | 131.118            |
| 17.75      | 136.785      | 16.588     | 123.454      | 17.687          | 137.254            |
| 18.692     | 142.515      | 17.75      | 129.349      | 18.661          | 142.874            |
| 19.792     | 148.243      | 18.881     | 135.21       | 19.761          | 149.525            |
| 20.703     | 154.21       | 19.635     | 139.486      | 20.703          | 154.708            |
| 21.693     | 160.108      | 20.719     | 145.574      | 21.818          | 161.186            |
| 22.792     | 165.989      | 21.693     | 150.688      | 22.777          | 166.312            |
| 23.829     | 172.045      | 22.761     | 156.516      | 23.656          | 172.045            |
| 24.85      | 177.744      | 23.75      | 161.629      | 24.803          | 178.145            |
| 25.745     | 183.403      | 24.787     | 167.28       | 25.902          | 184.082            |
| 26.829     |              | 25.934     | 172.766      | 26.798          |                    |
| 27.787     |              | 26.813     |              | 27.756          |                    |
| 28.903     |              | 27.725     | 182.993      | 28.903          |                    |
| 29.861     |              | 28.871     | 188.53       | 29.955          |                    |
| 30.976     |              | 29.939     |              | 30.913          |                    |
| 32.029     |              | 30.929     |              | 31.871          |                    |
| 32.845     |              | 31.84      | 204.499      |                 | 224.295            |
| 33.913     |              | 32.971     | 210.068      | 34.055          |                    |
| 35.029     |              |            | 215.198      | 34.887          |                    |
| 36.003     |              |            | 218.604      | 35.971          |                    |
| 37.024     |              | l .        | 223.463      | 37.039          |                    |
| 37.982     |              | 36.961     | 229.596      |                 | 250.097            |
| 39.176     |              | 4          | 232.501      | 39.003          | 254.899            |
| 40.087     |              |            | 238.137      | 39.992          | 262.598            |
| 40.982     |              | i e        | 242.664      | 41.123          |                    |
| 42.129     |              | 41.171     | 248.582      | 42.082<br>43.15 | 272.988<br>276.329 |
| 43.275     |              | 42.239     | 251.928      |                 |                    |
| 44.234     |              | 43.024     | 258.77       | 44.108          | 284.944            |
| 44.925     |              | 44.186     | 262.512      | 45.27           | 289.043            |
| 46.181     |              | 45.365     | 272.4        | 46.229          |                    |
| 47.281     |              | 46.071     | 275.739      | 47.108          | 299.422            |
| 48.192     |              | 47.092     | 278.844      | 48.239          |                    |
| 49.15      |              | 48.223     | 282.56       | 49.244          | 308.921            |
| 50.25      | 312.834      | 49.276     | 289.553      | 50.25           | 313.638            |
|            |              | 50.265     | 292.822      |                 |                    |

Table A.13. Steady Shear Data for Calculating Power Law Properties for Drake's Batter at 50.0% Solids

| Shear Rate       | Shear Stress | Shear Rate | Shear Stress | Shear Rate       | Shear Stress     |
|------------------|--------------|------------|--------------|------------------|------------------|
| [1/s]            | [Pa]         | [1/s]      | [Pa]         | [1/s]            | [Pa]             |
| 0.188            | 2.629        | 0.157      | 2.423        | 0.503            | 4.399            |
| 1.084            | 7.549        | 1.068      | 7.859        | 1.131            | 7.768            |
| 2.356            |              | 2.215      | 11.341       | 2.372            | 11.436           |
| 3.33             |              | 3.362      | 14.331       | 3.346            | 13.886           |
| 4.461            | 16.571       | 4.492      | 16.981       | 4.461            | 16.416           |
| 5.419            | 18.593       | 5.435      | 19.113       | 5.309            | 18.142           |
| 6.503            |              | 6.535      | 21.447       | 6.377            | 20.283           |
| 7.477            |              | 7.32       | 23.035       | 7.477            | 22.483           |
| 8.435            | 24.3         | 8.404      | 25.092       | 8.451            | 24.063           |
| 9.519            | 26.29        | 9.519      | 27.214       | 9.519            | 26.067           |
| 10.493           | 28.154       | 10.493     | 28.904       | 10.509           | 27.847           |
| 11.561           | 29.874       | 11.592     | 30.862       | 11.42            | 29.295           |
| 12.676           | 31.756       | 12.692     | 32.554       | 12.519           | 31.185           |
| 13.462           | 32.942       | 13.635     | 34.409       | 13.603           | 32.914           |
| 14.546           | 34.722       | 14.577     | 35.967       | 14.734           | 34.665           |
| 15.645           | 36.434       | 15.661     | 37.861       | 15.504           | 35.878           |
| 16.588           | 37.8         | 16.603     | 39.285       | 16.588           | 37.62            |
| 17.703           | 39.467       | 17.703     | 41.018       | 17.719           | 39.192           |
| 18.645           | 41.048       | 18.692     | 42.503       | 18.677           | 40.548           |
| 19.761           | 42.502       | 19.604     | 43.984       | 19.745           | 42.183           |
| 20.687           | 43.918       | 20.703     | 45.59        | 20.703           | 43.593           |
| 21.787           | 45.622       | 21.661     | 46.992       | 21.818           | 45.127           |
| 22.745           |              | 22.745     | 48.689       | 22.745           | 46.387           |
| 23.845           |              | 23.845     | 50.243       | 23.703           | 47.801           |
| 24.771           |              | 24.787     | 51.647       | 24.787           | 49.306           |
| 25.698           |              | 25.73      |              | 25.902           | 50.73            |
| 26.845           |              | 26.845     | 54.586       | 26.813           | 52.105           |
| 27.772           |              | 27.913     |              | 27.756           | 53.391           |
| 28.903           |              | 28.871     | 57.238       | 28.84            | 54.839           |
| 29.814           |              | 29.814     | 58.55        | 29.939           | 56.234           |
| 30.788           |              | 30.929     | 60.107       | 30.913           | 57.459           |
| 31.856           |              | 32.029     |              | 31.871           | 58.699           |
| 32.94            |              | 32.798     | 62.503       | 32.924           | 60.182           |
| 33.913           |              | 33.913     | 63.876       | 1                | 61.413           |
| 34.997           |              | 35.013     |              | 35.013           | 62.774           |
| 35.956           |              | 35.956     | 66.63        | 35.971           | 63.795           |
| 37.024           | 65.664       | 37.024     | 68.173       | 37.039           | 65.383           |
| 38.139           |              | 38.029     | 69.321       | 38.202           | 66.466<br>67.64  |
| 38.924           | 67.844       | 39.097     | 70.812       | 38.924           |                  |
| 40.04            | 69.113       | 40.055     | 71.857       | 40.04            | 68.825           |
| 41.108           |              | 40.982     | 73.037       | 40.935           | 70.103           |
| 42.082           |              | 42.097     | 74.526       | 42.082<br>43.213 | 71.268<br>72.527 |
| 42.993<br>44.108 |              | 43.165     | 75.814       |                  | 72.527<br>73.627 |
|                  |              | 44.124     | 77.027       | 44.124           | 74.694           |
| 45.05            |              | 45.082     | 78.163       | 45.05            |                  |
| 46.166           |              | 46.181     | 79.528       | 46.15            | 76.114           |
| 47.265           |              | 47.265     | 81.084       | 47.092           | 76.98            |
| 48.161           |              | 48.223     | 82.114       | 48.239           | 78.115           |
| 49.323           |              | 49.166     | 83.242       | 49.292           | 79.435           |
| 50.077           |              | 50.25      | 84.789       | 50.234           | 80.678           |
| 51.192           | 82.336       | 51.019     | 85.798       | 50.957           | 81.303           |

Table A.14. Steady Shear Data for Calculating Power Law Properties for Drake's Batter at 57.1% Solids

| Shear Rate | Shear Stress | Shear Rate | Shear Stress | Shear Rate | Shear Stress |
|------------|--------------|------------|--------------|------------|--------------|
| [1/s]      | [Pa]         | [1/s]      | [Pa]         | [1/s]      | [Pa]         |
| 0.314      |              | 0.314      | 18.952       | 0.298      | 19.182       |
| 1.963      |              | 1.791      | 48.679       | 1.775      | 50.199       |
| 3.236      |              | 3.236      | 65.064       | 3.22       | 67.357       |
| 4.383      |              | 4.225      | 75.601       | 4.21       | 78.255       |
| 5.341      |              | 5.341      | 87.1         | 5.341      | 90.047       |
| 6.299      |              | 6.315      | 96.142       | 6.299      | 99.49        |
| 7.414      |              | 7.398      | 106.928      | 7.398      | 110.044      |
| 8.545      |              | 8.404      | 114.856      | 8.435      | 118.468      |
| 9.488      |              | 9.456      | 125.301      | 9.456      | 128.338      |
| 10.462     | 131.813      | 10.399     | 133.424      | 10.43      | 136.385      |
| 11.357     |              | 11.53      | 142.882      | 11.545     | 146.552      |
| 12.456     | 147.583      | 12.488     | 151.56       | 12.613     | 156.466      |
| 13.603     | 155.964      | 13.43      | 159.991      | 13.383     | 162.854      |
| 14.514     | 163.748      | 14.467     | 169.242      | 14.498     | 172.056      |
| 15.519     | 171.07       | 15.598     | 178.625      | 15.614     | 181.248      |
| 16.572     | 179.294      | 16.729     | 187.169      | 16.556     | 189.717      |
| 17.687     | 187.786      | 17.483     | 194.586      | 17.656     | 199.377      |
| 18.645     | 195.777      | 18.677     | 202.58       | 18.598     | 207.037      |
| 19.509     | 203.08       | 19.729     | 211.69       | 19.713     | 215.88       |
| 20.703     | 211.25       | 20.64      | 219.737      | 20.625     | 223.707      |
| 21.74      | 219.736      | 21.803     | 228.852      | 21.567     | 231.754      |
| 22.714     | 227.103      | 22.682     | 235.832      | 22.682     | 240.259      |
| 23.656     |              | 23.813     | 245.042      | 23.798     | 250.035      |
| 24.834     | 242.368      | 24.74      | 251.869      | 24.74      | 256.931      |
| 25.792     | 251.308      | 25.714     | 260.252      | 25.683     | 264.333      |
| 26.845     | 256.364      | 26.782     | 269.106      | 26.766     | 273.84       |
| 27.756     | 264.576      | 27.882     | 278.447      | 27.85      | 281.822      |
| 28.84      | 273.254      | 28.887     | 284.281      | 28.73      | 287.436      |
| 30.002     |              | 29.861     | 289.919      | 29.767     | 295.875      |
| 30.866     |              | 30.788     | 299.704      | 30.929     | 305.407      |
| 31.997     |              | 31.887     | 308.056      | 31.856     | 313.57       |
| 33.034     |              | 32.861     | 316.973      | 32.892     | 322.022      |
| 33.929     |              | 33.788     | 324.379      | 33.898     | 327.933      |
| 35.092     |              | 35.013     | 332.423      | 34.919     | 337.872      |
| 35.924     |              | 35.94      | 339.449      | 36.128     | 345.048      |
| 37.087     |              | 36.992     | 347.487      | 36.851     | 351.732      |
| 38.029     |              | 38.013     | 355.239      | 37.982     | 359.625      |
| 39.034     |              | 39.019     | 365.578      | 39.144     | 367.412      |
| 39.945     |              | 40.165     | 373.038      | 39.977     | 377.63       |
| 40.982     |              | 40.998     | 382.346      | 41.029     | 388.084      |
| 42.019     |              | 42.003     | 388.381      | 42.05      | 392.464      |
| 43.165     |              | 43.197     | 395.864      | 43.056     | 402.206      |
| 44.077     |              | 44.061     | 405.749      | 44.092     | 408.494      |
| 45.16      |              | 45.019     | 413.19       | 45.003     | 416.987      |
| 46.134     |              | 46.166     | 421.109      | 46.197     | 421.626      |
| 47.407     |              | 47.265     | 429.416      | 47.218     | 431.087      |
| 48.082     |              | 48.051     | 435.173      | 48.192     | 436.224      |
| 48.946     |              | 49.197     | 441.919      | 49.166     | 443.932      |
| 50.171     |              | 50.093     | 450.746      | 50.25      | 448.078      |
| 51.601     |              | 51.538     | 468.331      | 51.459     | 472.26       |
| 49.763     | 415.748      | 49.841     | 443.826      | 49.779     | 442.448      |

| Table A.14. | (cont'd | )      | ı       |        | 1       |
|-------------|---------|--------|---------|--------|---------|
| 48.522      | 411.14  | 48.6   | 438.118 | 48.648 | 435.908 |
| 47.595      | 400.787 | 47.564 | 427.331 | 47.469 | 429.938 |
| 46.621      | 391.261 | 46.527 | 417.191 | 46.621 | 420.799 |
| 45.679      | 387.284 | 45.632 | 413.804 | 45.789 | 413.394 |
| 44.658      | 378.801 | 44.579 | 404.735 | 44.626 | 403.013 |
| 43.48       | 371.283 | 43.448 | 394.762 | 43.48  | 395.563 |
| 42.584      | 364.129 | 42.584 | 387.983 | 42.553 | 389.275 |
| 41.563      | 357.425 | 41.705 | 381.261 | 41.532 | 384.121 |
| 40.589      | 349.555 | 40.574 | 371.093 | 40.479 | 371.968 |
| 39.411      | 342.519 | 39.286 | 364.711 | 39.411 | 363.075 |
| 38.642      | 334.907 | 38.437 | 356.571 | 38.5   | 355.714 |
| 37.479      | 328.02  | 37.589 | 347.769 | 37.542 | 351.258 |
| 36.458      | 318.948 | 36.49  | 341.216 | 36.395 | 341.123 |
| 35.327      | 312.138 | 35.327 | 332.055 | 35.327 | 332.607 |
| 34.448      | 303.818 | 34.51  | 324.288 | 34.479 | 327.567 |
| 33.489      | 297.609 | 33.411 | 317.871 | 33.489 | 318.321 |
| 32.39       | 288.973 | 32.311 | 309.208 | 32.358 | 309.829 |
| 31.29       | 281.226 | 31.4   | 301.803 | 31.4   | 302.943 |
| 30.473      | 275.339 | 30.285 | 293.537 | 30.285 | 294.142 |
| 29.39       | 268.442 | 29.311 | 285.217 | 29.358 | 287.008 |
| 28.321      | 259.356 | 28.29  | 275.76  | 28.274 | 277.773 |
| 27.316      | 252.426 | 27.3   | 269.023 | 27.332 | 270.098 |
| 26.389      | 245.276 | 26.421 | 261.065 | 26.217 | 262.206 |
| 25.321      | 236.99  | 25.306 | 252.188 | 25.29  | 253.791 |
| 24.222      | 228.849 | 24.159 | 244.018 | 24.206 | 244.806 |
| 23.232      | 222.277 | 23.138 | 235.599 | 23.091 | 236.837 |
| 22.18       | 213.74  | 22.29  | 229.003 | 22.321 | 229.613 |
| 21.206      | 206.456 | 21.221 | 219.364 | 21.19  | 220.782 |
| 20.075      | 198.453 | 20.059 | 210.959 | 20.106 | 211.982 |
| 19.117      | 191.099 | 19.148 | 203.438 | 19.179 | 204.012 |
| 18.253      | 183.208 | 18.253 | 195.707 | 18.237 | 196.762 |
| 17.106      | 174.891 | 17.169 | 185.935 | 17.122 | 187.512 |
| 16.022      | 167.226 | 16.038 | 177.087 | 16.022 | 178.156 |
| 15.048      | 158.725 | 15.095 | 169.697 | 15.237 | 171.53  |
| 14.169      | 150.758 | 14.169 | 160.751 | 14.153 | 162.214 |
| 13.053      | 142.343 | 13.069 | 151.744 | 13.053 | 152.917 |
| 12.142      | 134.696 | 11.954 | 142.344 | 12.064 | 144.14  |
| 11.153      | 127.151 | 11.027 | 134.291 | 11.043 | 134.755 |
| 10.069      | 118.303 | 10.116 | 125.804 | 10.1   | 126.308 |
| 9.016       | 108.79  | 9.032  | 116.196 | 9.001  | 116.519 |
| 8.027       | 100.684 | 7.917  | 105.797 | 7.901  | 106.207 |
| 7.147       | 92.516  | 7.1    | 98.548  | 7.147  | 98.993  |
| 6.048       | 82.931  | 6.032  | 88.029  | 6.079  | 88.216  |
| 4.948       | 72.403  | 4.995  | 77.379  | 4.964  | 77.03   |
| 4.021       | 63.675  | 3.974  | 67.113  | 4.021  | 67.804  |
| 3.094       | 54.287  | 3.126  | 57.567  | 3.126  | 57.604  |
| 2.042       | 41.95   | 2.058  | 44.69   | 2.042  | 44.461  |
| 1.084       | 28.733  | 1.21   | 32.817  | 1.225  | 32.679  |

Table A.15. Steady Shear Data for Calculating Power Law Properties for Golden Dipt Batter at 50.0% Solids

| Shear | Rate   | Shear | Stress  | Shear | Rate   | Shear | Stress  | Shear | Rate   | Shear | Stress  |
|-------|--------|-------|---------|-------|--------|-------|---------|-------|--------|-------|---------|
|       | [1/s]  |       | [Pa]    |       | [1/s]  |       | [Pa]    |       | [1/s]  |       | [Pa]    |
|       | 0.209  |       | 18.414  |       | 0.021  |       | 3.856   |       | 0.272  |       | 17.542  |
|       | 1.424  |       | 56.009  | ŀ     | 0.209  |       | 14.733  |       | 1.361  |       | 56.935  |
| l     | 3.142  |       | 84.298  |       | 1.026  |       | 55.311  |       | 3.079  |       | 92.092  |
| İ     | 4.335  |       | 99.842  |       | 2.932  |       | 96.293  |       | 4.377  |       | 110.311 |
|       | 5.424  |       | 113.529 |       | 4.273  |       | 114.649 |       | 5.508  |       | 125.028 |
|       | 6.472  |       | 126.034 |       | 5.362  |       | 129.252 |       | 6.576  |       | 136.625 |
|       | 7.54   |       | 137.737 |       | 6.409  |       | 143.609 |       | 7.582  |       | 147.651 |
|       | 8.566  |       | 149.174 |       | 7.477  |       | 157.792 |       | 8.629  |       | 160.633 |
| 1     | 9.613  |       | 162.35  |       | 8.524  |       | 171.409 |       | 9.634  |       | 175.168 |
|       | 10.744 |       | 171.801 |       | 9.488  |       | 183.697 |       | 10.828 |       | 185.946 |
|       | 11.812 |       | 180.514 | 1     | 10.66  |       | 196.774 |       | 11.854 |       | 195.999 |
|       | 12.818 |       | 191.596 | :     | 11.666 |       | 209.66  |       | 12.901 |       | 205.316 |
| ·     | 13.907 |       | 199.811 |       | 12.65  |       | 219.974 |       | 13.865 |       | 213.974 |
|       | 14.87  |       | 206.685 | :     | 13.907 |       | 236.93  |       | 15.101 |       | 222.141 |
| ł     | 15.896 |       | 213.825 | :     | 14.954 |       | 245.057 |       | 16.064 |       | 229.092 |
|       | 17.027 |       | 219.672 | :     | 16.001 |       | 255.334 |       | 17.216 |       | 232.838 |
|       | 18.137 |       | 223.64  |       | 17.09  |       | 262.549 |       | 18.2   |       | 236.539 |
| 1     | 19.227 |       | 227.796 | :     | 18.137 |       | 269.204 |       | 19.31  |       | 240.815 |
|       | 20.127 |       | 230.996 | :     | 18.975 |       | 275.61  | ;     | 20.274 |       | 243.086 |
| ]     | 20.525 |       | 235.222 |       | 20.127 |       | 278.294 |       |        |       |         |

Table A.16. Steady Shear Data for Calculating Power Law Properties for Kikkoman Tempura Batter at 45.4% Solids

| Shear 1 | Rate  | Shear Stress | Shear Rate | Shear Stress | Shear Rate | Shear Stress   |
|---------|-------|--------------|------------|--------------|------------|----------------|
|         | [1/s] | [Pa]         | [1/s]      | [Pa]         | [1/s]      | [Pa]           |
| (       | 314   | 3.543        | 10.022     | 26.444       | 0.314      | 3.62           |
|         | 0.88  | 9.28         | 1.759      | 9.815        | 0.817      | 7.486          |
| 1 2     | 2.011 | 16.44        | 2.608      | 12.199       | 2.105      | 13.696         |
|         | 3.55  | 22.036       | 3.613      | 14.676       | 3.424      | 17.882         |
| 4       | 1.587 | 24.954       | 4.681      | 17.043       | 4.555      | 21.274         |
|         | 5.843 | 28.524       | 5.686      | 18.824       | 5.561      | 23.646         |
|         | 6.629 | 30.898       | 6.817      | 20.678       | 6.692      | 26             |
| 7       | 7.854 | 34.079       | 7.885      | 22.442       | 7.665      | 2 <b>8.137</b> |
|         | 9.016 | 36.772       | 8.828      | 23.527       | 8.671      | 30.79          |
| ]       | 9.959 | 39.298       | 10.022     | 24.782       | 9.896      | 33.092         |
| 10      | 0.901 | 41.472       | 11.027     | 26.443       | 10.901     | 34.905         |
| 12      | 2.189 | 44.162       | 11.969     | 28.032       | 11.875     | 37.126         |
| 13      | 3.132 | 46.172       | 13.132     | 29.537       | 13.038     | 39.266         |
| 14      | 1.169 | 49.051       | 14.137     | 30.598       | 13.98      | 40.749         |
| 15      | 5.142 | 51.314       | 15.111     | 31.817       | 15.017     | 43.029         |
| 10      | 6.336 | 52.947       | 16.054     | 33.032       | 16.022     | 44.454         |
| 17      | 7.279 | 54.353       | 17.342     | 34.729       | 17.247     | 46.637         |
| 18      | 3.284 | 56.147       | 18.284     | 35.682       | 18.221     | 48.158         |
| 19      | 9.164 | 58.649       | 19.478     | 36.884       | 19.384     | 49.704         |
| 20      | .515  | 60.746       | 20.452     | 38.018       | 20.295     | 50.994         |
| 21      | 1.269 | 61.711       | 21.206     | 38.986       |            |                |

Table A.17. Steady Shear Data for Calculating Power Law Properties for Kikkoman Tempura Batter at 50.0% Solids

| Shear | Rate   | Shear Stress | Shear Rate | Shear Stress | Shear Rate | Shear Stress |
|-------|--------|--------------|------------|--------------|------------|--------------|
|       | [1/s]  | [Pa]         | [1/s]      | [Pa]         | [1/s]      | [Pa]         |
|       | 4.178  | 48.064       | 1.979      | 34.025       | 0.126      | 3.874        |
|       | 1.854  | 28.037       | 1.571      | 29.072       | 0.314      | 10.796       |
|       | 2.482  | 32.651       | 2.388      | 36.216       | 1.382      | 28.915       |
|       | 3.487  | 39.21        | 3.456      | 44.102       | 3.142      | 44.461       |
|       | 4.587  | 45.744       | 4.587      | 51.673       | 4.461      | 53.709       |
|       | 5.623  | 51.425       | 5.718      | 58.431       | 5.466      | 59.72        |
|       | 6.723  | 57.081       | 6.723      | 63.873       | 6.597      | 66.105       |
| l     | 7.791  | 62.654       | 7.791      | 70.147       | 7.603      | 71.313       |
|       | 8.796  | 66.184       | 8.796      | 75.3         | 8.671      | 76.987       |
|       | 9.896  | 70.81        | 9.896      | 80.464       | 9.833      | 82.075       |
| ] 1   | 0.996  | 76.551       | 10.996     | 86.359       | 10.776     | 86.452       |
| ] 1   | 1.969  | 79.929       | 12.158     | 90.993       | 11.844     | 91.516       |
|       | 13.1   | 83.974       | 13.069     | 94.974       | 13.038     | 95.8         |
| ] 1   | 14.137 | 87.842       | 14.137     | 100.236      | 13.949     | 99.589       |
| 1     | 15.111 | 91.752       | 15.111     | 103.858      | 15.017     | 104.112      |
| 1     | 16.273 | 95.312       | 16.273     | 108.117      | 15.991     | 107.444      |
| 1     | 17.185 | 98.694       | 17.216     | 111.249      | 17.216     | 111.829      |
| 1     | 18.441 | 102.894      | 18.473     | 116.358      | 18.19      | 115.123      |
| 1     | 19.415 | 106.462      | 19.415     | 119.774      | 19.289     | 119.173      |
| 2     | 20.452 | 110.146      | 20.483     | 123.628      | 20.326     | 122.576      |
|       | 21.3   | 113.255      | 21.269     | 127.264      |            |              |

Table A.18. Steady Shear Data for Calculating Power Law Properties for Kikkoman Tempura Batter at 55.6% Solids

| Shear | Rate  | Shear | Stress | Shear R | ate   | Shear | Stress | Shear | Rate  | Shear | Stress |
|-------|-------|-------|--------|---------|-------|-------|--------|-------|-------|-------|--------|
|       | [1/s] |       | [Pa]   | [:      | l/s]  |       | [Pa]   |       | [1/s] |       | [Pa]   |
|       | 1.948 |       | 9.64   | 9       | 142   |       | 31.14  |       | 0.314 |       | 3.62   |
| Ì     | 1.539 |       | 8.418  | 1       | . 854 |       | 12.365 |       | 0.817 |       | 7.486  |
|       | 2.545 |       | 11.438 | 2       | . 576 |       | 15.08  |       | 2.105 |       | 13.696 |
|       | 3.581 |       | 13.959 | 3       | 613   |       | 18.227 |       | 3.424 |       | 17.882 |
|       | 4.681 |       | 16.554 | 4       | 1.65  |       | 21.318 |       | 4.555 |       | 21.274 |
|       | 5.686 |       | 18.637 | 5       | . 686 |       | 23.74  |       | 5.561 |       | 23.646 |
|       | 6.817 |       | 20.722 | 6       | .817  |       | 25.951 |       | 6.692 |       | 26     |
|       | 7.885 |       | 22.9   | 7       | 854   |       | 28.085 |       | 7.665 |       | 28.137 |
|       | 8.828 |       | 24.615 | 8       | 828   |       | 30.521 |       | 8.671 |       | 30.79  |
|       | 9.99  |       | 26.493 | !       | 9,99  |       | 32.73  |       | 9.896 |       | 33.092 |
| 1     | 1.058 |       | 28.547 | 10      | . 996 |       | 34.848 | 1     | 0.901 |       | 34.905 |
| 1     | 1.969 |       | 30.199 | 12      | .001  |       | 36.505 | 1     | 1.875 |       | 37.126 |
| 1     | 3.163 |       | 31.927 | 13      | .163  |       | 38.203 | 1     | 3.038 |       | 39.266 |
| 1     | 4.137 |       | 33.623 | 14      | .074  |       | 39.788 |       | 13.98 |       | 40.749 |
| 1     | 5.142 |       | 35.104 | 15      | .142  |       | 41.88  | 1     | 5.017 |       | 43.029 |
| 1     | 6.305 |       | 36.768 | 16.     | .305  |       | 43.092 | 1     | 6.022 |       | 44.454 |
| 1     | 7.216 |       | 38.17  | 17.     | 342   |       | 44.879 | 1     | 7.247 |       | 46.637 |
| 1     | 8.284 |       | 39.785 | 18      | 315   |       | 46.169 | 1     | 8.221 |       | 48.158 |
| 1     | 9.415 |       | 41.436 | 19.     | 478   |       | 47.715 | 1     | 9.384 |       | 49.704 |
| 2     | 0.483 |       | 42.705 | 20.     | 483   |       | 48.944 | 2     | 0.295 |       | 50.994 |
| 2     | 1.206 |       | 43.702 | 21.     | 174   |       | 50.224 |       |       |       |        |

Table A.19. Steady Shear Data for Calculating Power Law Properties for Tung-I Tempura Batter at 43.8% Solids

| Shear | Rate  | Shear Stress | Shear Rate | Shear Stress | Shear Rate | Shear Stress |
|-------|-------|--------------|------------|--------------|------------|--------------|
|       | [1/s] | [Pa]         | [1/s]      | [Pa]         | [1/s]      | [Pa]         |
|       | 1.759 | 10.052       | 1.791      | 9.786        | 1.665      | 10.473       |
|       | 2.576 | 12.8         | 2.545      | 12.431       | 2.513      | 13.486       |
| 1     | 3.613 | 15.563       | 3.581      | 15.264       | 3.581      | 16.555       |
|       | 4.681 | 18.473       | 4.65       | 18.288       | 4.65       | 19.794       |
| ĺ     | 5.655 | 20.832       | 5.655      | 20.657       | 5.686      | 22.375       |
| i     | 6.817 | 23.248       | 6.817      | 23.179       | 6.786      | 24.929       |
|       | 7.76  | 25.339       | 7.76       | 25.315       | 7.854      | 27.702       |
|       | 8.828 | 27.829       | 8.796      | 27.727       | 8.796      | 29.909       |
| l     | 9.99  | 30.041       | 9.77       | 29.776       | 9.99       | 32.314       |
| 1     | 0.933 | 31.956       | 10.901     | 31.929       | 10.996     | 34.848       |
| 1     | 1.969 | 34.218       | 11.969     | 34.247       | 11.969     | 36.829       |
| 1     | 3.163 | 36.298       | 12.943     | 36.122       | 13.132     | 38.93        |
| 1     | 4.106 | 38.051       | 14.169     | 38.534       | 14.074     | 40.718       |
| 1     | 5.142 | 40.158       | 15.362     | 40.406       | 15.111     | 42.772       |
| 1     | 6.242 | 41.848       | 16.305     | 41.943       | 16.116     | 44.258       |
| 1     | 7.373 | 43.899       | 17.31      | 43.705       | 17.247     | 46.003       |
| 1     | 8.284 | 45.405       | 18.284     | 45.67        | 18.535     | 48.158       |
| 1     | 9.446 | 47.174       | 19.446     | 47.376       | 19.478     | 49.531       |
| 2     | 0.452 | 48.703       | 20.452     | 48.944       | 20.452     | 51.029       |
| 2     | 1.143 | 49.911       | 21.174     | 50.259       | 21.174     | 52.337       |

Table A.20. Steady Shear Data for Calculating Power Law Properties for Tung-I Tempura Batter at 50.0% Solids

| Shear | Rate   | Shear Stress | Shear Rate | Shear Stress | Shear Rate | Shear Stress |
|-------|--------|--------------|------------|--------------|------------|--------------|
|       | [1/s]  | [Pa]         | [1/s]      | [Pa]         | [1/s]      | [Pa]         |
|       | 2.231  | 50.934       | 2.482      | 65.746       | 5.372      | 85.717       |
|       | 2.45   | 53.927       | 1.885      | 48.509       | 2.231      | 45.812       |
| 1     | 3.33   | 64.231       | 2.388      | 55.237       | 2.293      | 47.827       |
| l     | 4.461  | 76.252       | 3.393      | 66.671       | 3.424      | 60.065       |
| 1     | 5.498  | 86.501       | 4.43       | 78.565       | 4.43       | 70.855       |
| 1     | 6.597  | 95.95        | 5.655      | 89.862       | 5.623      | 81.539       |
|       | 7.665  | 105.494      | 6.66       | 99.096       | 6.629      | 90.144       |
|       | 8.671  | 114.487      | 7.697      | 109.369      | 7.697      | 99.741       |
|       | 9.802  | 123.08       | 8.671      | 118.201      | 8.671      | 107.707      |
|       | 10.87  | 132.049      | 9.802      | 127.948      | 9.833      | 116.309      |
| ] ]   | 1.844  | 139.325      | 10.901     | 137.678      | 10.901     | 125.585      |
| ] 1   | 12.975 | 147.955      | 12.064     | 146.68       | 11.938     | 132.795      |
| ] 1   | 4.043  | 155.347      | 13.006     | 154.538      | 13.006     | 140.567      |
| ] 1   | 14.985 | 163.244      | 14.074     | 163.821      | 14.043     | 148.015      |
| 1     | 16.116 | 170.098      | 15.048     | 170.949      | 15.048     | 156.034      |
| ] 1   | 17.122 | 176.696      | 16.211     | 178.366      | 16.211     | 163.18       |
| İ     | 18.41  | 185.534      | 17.185     | 184.92       | 17.122     | 169.053      |
| ] 1   | 19.321 | 191.18       | 18.19      | 192.849      | 18.378     | 177.428      |
| 1 2   | 20.452 | 199.102      | 19.384     | 199.67       | 19.321     | 183.014      |
| 2     | 21.112 | 205.748      | 20.42      | 207.264      | 20.358     | 190.624      |

Table A.21. Steady Shear Data for Calculating Power Law Properties for Newly Wed Tempura Batter at 43.6% Solids

| Shear | Rate   | Shear | Stress | Shear | Rate  | Shear | Stress | Shear | Rate   | Shear | Stress |
|-------|--------|-------|--------|-------|-------|-------|--------|-------|--------|-------|--------|
|       | [1/s]  |       | [Pa]   |       | [1/s] |       | [Pa]   |       | [1/s]  |       | [Pa]   |
|       | 1.602  |       | 2.542  |       | 1.445 |       | 2.015  |       | 1.225  |       | 2.272  |
|       | 2.639  |       | 3.576  |       | 2.608 |       | 2.996  |       | 2.545  |       | 3.662  |
|       | 3.676  |       | 4.738  | l     | 3.738 |       | 3.908  |       | 3.581  |       | 4.958  |
| i     | 4.712  |       | 5.64   |       | 4.618 |       | 4.678  |       | 4.869  |       | 5.948  |
|       | 5.906  |       | 6.461  |       | 5.906 |       | 5.456  | İ     | 5.781  |       | 6.815  |
|       | 6.88   |       | 7.406  |       | 6.849 |       | 6.275  |       | 6.786  |       | 7.817  |
|       | 8.137  |       | 8.146  |       | 7.823 |       | 6.947  |       | 7.823  |       | 8.605  |
|       | 8.828  |       | 8.798  |       | 9.079 |       | 7.583  |       | 8.922  |       | 9.433  |
| :     | 10.022 |       | 9.563  | ŀ     | 9.99  |       | 8.171  |       | 9.927  |       | 10.242 |
| :     | 10.933 |       | 10.422 | 1     | 0.996 |       | 8.964  | :     | 10.933 |       | 11.07  |
| :     | 12.189 |       | 11.179 | 1     | 2.252 |       | 9.619  | :     | 12.127 |       | 11.85  |
| :     | 13.132 |       | 11.915 | 1     | 3.195 |       | 10.376 |       | 13.1   |       | 12.575 |
| :     | 14.043 |       | 12.592 | 1     | 4.074 |       | 10.85  | :     | 14.106 |       | 13.306 |
| :     | 15.048 |       | 13.357 |       | 15.08 |       | 11.51  | :     | 15.048 |       | 14.165 |
| :     | 16.273 |       | 13.987 | 1     | 6.242 |       | 12.044 | ] :   | 16.211 |       | 14.724 |
|       | 17.279 |       | 14.687 | 1     | 7.247 |       | 12.657 | :     | 17.185 |       | 15.611 |
| 1     | 18.19  |       | 15.442 | 1     | 8.158 |       | 13.442 | ] :   | 18.158 |       | 16.238 |
| ] :   | 19.446 |       | 16.122 | 1     | 9.478 |       | 13.932 | ] :   | 19.384 |       | 16.936 |
| :     | 20.389 |       | 16.72  | 2     | 0.389 |       | 14.486 | :     | 20.326 |       | 17.57  |
| :     | 20.923 |       | 17.211 | 2     | 1.017 |       | 14.849 |       |        |       |        |

Table A.22. Steady Shear Data for Calculating Power Law Properties for Newly Wed Tempura Batter at 50.0% Solids

| Shear | Rate  | Shear Str | ess  | Shear | Rate  | Shear | Stress | Shear | Rate  | Shear | Stress |
|-------|-------|-----------|------|-------|-------|-------|--------|-------|-------|-------|--------|
|       | [1/s] |           | [Pa] |       | [1/s] |       | [Pa]   |       | [1/s] |       | [Pa]   |
|       | 0.88  | 18        | .951 |       | 2.325 |       | 20.376 |       | 1.854 |       | 19.307 |
|       | 1.445 | 22        | .881 |       | 2.482 |       | 22.127 | 1     | 2.482 |       | 22.172 |
| i     | 2.639 | 26        | .126 | 1     | 3.581 |       | 27.603 |       | 3.519 |       | 27.299 |
| l     | 3.77  | 29        | .568 |       | 4.618 |       | 31.741 | i     | 4.65  |       | 30.792 |
|       | 4.869 | 32        | .927 | i     | 5.718 |       | 35.951 |       | 5.749 |       | 34.052 |
| l     | 5.843 | 35        | .922 | Ì     | 6.786 |       | 39.915 |       | 6.817 |       | 37.099 |
|       | 6.849 | 39        | .423 |       | 7.791 |       | 43.387 |       | 7.728 |       | 39.453 |
|       | 7.76  | 42        | .712 | İ     | 8.922 |       | 47.012 |       | 8.954 |       | 42.36  |
|       | 9.173 | 46        | .475 | l     | 9.99  |       | 50.545 |       | 9.896 |       | 44.817 |
|       | 9.99  | 49        | .053 | 1     | 0.933 |       | 53.453 | 1     | 0.933 |       | 47.89  |
| 1     | 1.027 | 51        | .917 | 1     | 2.095 |       | 56.78  | 1     | 2.127 |       | 50.683 |
| 1     | 2.127 | 55        | .158 | 1     | 3.069 |       | 59.449 | 1     | 3.038 |       | 53.596 |
| 1     | 3.132 | 58        | .013 | 1     | 4.106 |       | 62.533 | 1     | 4.106 |       | 56.186 |
| 1     | 4.137 | 6         | 0.75 | 1     | 5.268 |       | 65.418 | 1     | 5.237 |       | 58.501 |
| ] 1   | 5.142 | 63        | .513 | 1     | 6.211 |       | 67.473 | 1     | 6.179 |       | 61.095 |
| 1     | 6.305 | 66        | .179 | 1     | 7.247 |       | 70.515 | 1     | 7.185 |       | 63.669 |
| 1     | 7.185 | 68        | .862 | 1     | 8.221 |       | 72.82  |       | 18.19 |       | 65.656 |
| 1     | 8.158 | 72        | .104 | 1     | 9.415 |       | 75.423 | 1     | 9.101 |       | 67.716 |
| 1     | 9.415 | 74        | .265 | 2     | 0.389 |       | 78.335 | 2     | 0.295 |       | 70.056 |
| 2     | 0.452 | 76        | .763 |       | 21.08 |       | 80.191 |       |       |       |        |
|       | 21.08 | 79        | .216 |       |       |       |        |       |       |       |        |

Table A.23. Weight (g) of Adhesion Batters Retained on the Probe over a Three-Hour Period

|                   | Doro            | thy Daws<br>Batter | on's            |                 | ke's<br>ter     | Golden Dipt<br>Batter |
|-------------------|-----------------|--------------------|-----------------|-----------------|-----------------|-----------------------|
| Time<br>(minutes) | 45.4%<br>Solids | 50.0%<br>Solids    | 55.6%<br>Solids | 50.0%<br>Solids | 57.1%<br>Solids | 50.0%<br>Solids       |
| 0                 | 2.01            | 3.74               | 8.78            | 3.03            | 8.00            | 9.05                  |
|                   | 2.04            | 3.37               | 8.06            | 2.65            | 8.13            | 9.69                  |
| 5                 | 2.15            | 3.73               | 9.15            | 3.27            | 8.14            | 8.76                  |
|                   | 2.09            | 3.82               | 8.12            | 2.21            | 8.06            | 9.00                  |
| 10                | 2.17            | 4.15               | 8.71            | 2.39            | 7.77            | 8.84                  |
|                   | 2.28            | 4.11               | 7.89            | 1.50            | 7.91            | 9.07                  |
| 15                | 2.20            | 4.20               | 7.56            | 1.16            | 8.10            | 8.70                  |
|                   | 2.26            | 4.38               | 7.59            | 0.95            | 8.12            | 8.91                  |
| 20                | 2.14            | 4.14               | 9.31            | 3.03            | 7.63            | 8.47                  |
|                   | 2.22            | 4.13               | 7.79            | 1.44            | 7.57            | 8.65                  |
| 25                | 2.18            | 4.12               | 9.84            | 3.54            | 7.55            | 8.27                  |
|                   | 2.24            | 4.08               | 7.75            | 1.43            | 7.55            | 8.49                  |
| 30                | 2.20            | 4.18               | 8.65            | 2.27            | 7.15            | 7.79                  |
|                   | 2.16            | 4.12               | 8.22            | 1.94            | 7.32            | 7.71                  |
| 45                | 2.10            | 3.99               | 8.90            | 2.81            | 7.92            | 8.23                  |
|                   | 2.13            | 4.18               | 8.09            | 1.78            | 8.58            | 9.11                  |
| 60                | 2.06            | 3.96               | 9.27            | 3.25            | 8.11            | 8.81                  |
|                   | 2.16            | 4.11               | 8.03            | 1.76            | 8.36            | 9.43                  |
| 75                | 2.11            | 4.13               | 9.19            | 2.95            | 7.88            | 8.47                  |
|                   | 2.10            | 4.09               | 7.93            | 1.74            | 8.20            | 8.74                  |
| 90                | 1.55            | 4.39               | 8.84            | 2.90            | 7.70            | 9.09                  |
|                   | 2.07            | 4.06               | 7.95            | 1.82            | 8.01            | 9.17                  |
| 120               | 1.67            | 4.13               | 9.15            | 3.35            | 7.63            | 8.71                  |
|                   | 2.10            | 4.14               | 8.37            | 2.13            | 7.79            | 8.64                  |
| 150               | 1.99            | 4.14               | 9.14            | 3.01            | 7.40            | 8.70                  |
|                   | 2.00            | 4.13               | 7.89            | 1.76            | 8.04            | 8.27                  |
| 180               | 2.11            | 4.23               | 8.20            | 1.86            | 7.26            | 8.44                  |
|                   | 2.02            | 4.13               | 7.93            | 1.78            | 7.27            | 8.40                  |

Table A.24. Weight (g) of Tempura Batters Retained on the Probe over a Three-Hour Period

|                   | Kikk            | oman Ter        | npura           | _               | Tempura         | 1               | y Wed           |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                   | Batter          |                 |                 |                 | ter             |                 | Batter          |
| Time<br>(minutes) | 45.4%<br>Solids | 50.0%<br>Solids | 55.6%<br>Solids | 43.8%<br>Solids | 50.0%<br>Solids | 43.6%<br>Solids | 50.0%<br>Solids |
|                   |                 |                 |                 |                 |                 |                 |                 |
| 0                 | 3.25            | 6.64            | 9.92            | 3.23            | 7.39            | 1.72            | 4.81            |
|                   | 4.01            | 6.05            | 10.79           | 3.51            | 7.21            | 1.67            | 4.89            |
| 5                 | 3.26            | 6.47            | 9.28            | 3.62            | 7.58            | 1.83            | 5.47            |
|                   | 4.23            | 6.99            | 9.93            | 4.05            | 6.99            | 1.85            | 5.38            |
| 10                | 3.29            | 7.03            | 8.77            | 3.62            | 7.31            | 1.85            | 5.72            |
|                   | 4.54            | 7.06            | 8.60            | 3.87            | 7.85            | 2.13            | 5.41            |
| 15                | 3.07            | 6.92            | 9.23            | 3.73            | 7.01            | 2.31            | 5.59            |
|                   | 4.41            | 7.01            | 8.64            | 4.17            | 7.47            | 2.26            | 5.33            |
| 20                | 2.90            | 6.94            | 8.58            | 4.02            | 7.76            | 2.22            | 5.52            |
| İ                 | 4.42            | 6.83            | 9.02            | 4.18            | 7.71            | 2.43            | 5.56            |
| 25                | 3.51            | 7.11            | 8.66            | 3.84            | 7.19            | 2.36            | 5.55            |
|                   | 4.50            | 6.96            | 8.57            | 4.32            | 8.49            | 2.26            | 5.49            |
| 30                | 3.46            | 6.97            | 7.29            | 3.84            | 6.95            | 2.36            | 5.82            |
| 1                 | 4.65            | 6.48            | 8.98            | 4.47            | 7.74            | 2.64            | 6.23            |
| 45                | 3.00            | 7.46            | 10.00           | 4.25            | 8.12            | 4.20            | 6.35            |
|                   | 5.15            | 6.82            | 10.39           | 4.63            | 7.40            | 2.78            | 5.55            |
| 60                | 3.46            | 6.94            | 10.08           | 4.25            | 7.79            | 4.81            | 6.67            |
|                   | 4.92            | 7.22            | 11.38           | 3.90            | 8.64            | 3.37            | 5.61            |
| 75                | 3.25            | 7.22            | 10.63           | 4.44            | 9.25            | 4.30            | 6.28            |
|                   | 4.07            | 7.18            | 9.76            | 3.92            | 8.92            | 2.95            | 5.18            |
| 90                | 3.55            | 7.39            | 9.15            | 3.89            | 9.41            | 4.10            | 5.90            |
|                   | 4.51            | 7.06            | 9.33            | 3.94            | 8.72            | 4.80            | 5.49            |
| 120               | 3.37            | 6.89            | 9.31            | 3.86            | 9.84            | 5.05            | 5.77            |
|                   | 4.60            | 7.05            | 9.41            | 4.05            | 8.66            | 4.83            | 5.23            |
| 150               | 3.53            | 6.98            | 9.07            | 4.00            | 8.50            | 4.64            | 5.50            |
|                   | 4.41            | 6.70            | 7.94            | 4.08            | 8.15            | 4.75            | 5.19            |
| 180               | 3.69            | 6.50            | 8.51            | 3.70            | 7.96            | 4.75            | 5.57            |
|                   | 4.04            | 6.60            | 8.91            | 4.12            | 8.21            | 4.71            | 5.27            |

Table A.25. Shear Stress Measurements of Adhesion Batters over a Three-Hour Period at 15 1/s Shear Rate

|           | Doro   | thy Daw | son's   | Dra    | ke's    | Golden Dipt |
|-----------|--------|---------|---------|--------|---------|-------------|
|           |        | Batter  |         | Bat    | cter    | Batter      |
| Time      | 45.4%  | 50.0%   | 55.6%   | 50.0%  | 57.1%   | 50.0%       |
| (minutes) | Solids | Solids  | Solids  | Solids | Solids  | Solids      |
| 0         | 13.227 | 36.317  | 124.401 | 29.763 | 111.136 | 206.685     |
|           | 16.058 | 37.322  | 118.079 | 31.426 | 116.458 | 245.057     |
|           | 14.606 | 40.614  | 124.568 | 30.938 | 113.196 | 222.141     |
| 15        | 15.528 | 35.703  | 115.383 | 32.385 | 123.067 | 204.524     |
|           | 17.624 | 39.194  | 113.249 | 32.717 | 118.459 | 215.521     |
|           | 16.326 | 42.634  | 119.003 | 32.440 | 121.962 | 215.816     |
| 30        | 17.166 | 38.555  | 111.136 | 32.634 | 113.249 | 195.575     |
|           | 18.252 | 39.072  | 111.452 | 31.780 | 117.483 | 205.531     |
|           | 17.444 | 43.729  | 117.159 | 32.385 | 119.384 | 211.481     |
| 45        | 17.285 | 41.020  | 114.687 | 33.135 | 119.548 | 192.777     |
|           | 20.207 | 39.317  | 107.693 | 32.912 | 117.375 | 199.172     |
|           | 16.500 | 42.602  | 115.329 | 32.606 | 116.673 | 212.066     |
| 60        | 18.581 | 42.061  | 117.159 | 32.745 | 116.458 | 191.664     |
|           | 19.248 | 41.492  | 102.937 | 33.304 | 120.862 | 210.750     |
|           | 18.150 | 44.904  | 113.834 | 33.697 | 116.835 | 215.373     |
| 90        | 18.395 | 39.901  | 121.907 | 32.137 | 114.634 | 192.081     |
| Ī         | 19.971 | 41.777  | 107.125 | 33.332 | 118.568 | 222.666     |
|           | 20.359 | 47.100  | 118.079 | 32.385 | 120.095 | 221.616     |
| 120       | 21.682 | 41.083  | 117.646 | 34.378 | 112.825 | 193.894     |
|           | 22.956 | 41.586  | 109.251 | 32.968 | 116.350 | 207.915     |
|           | 21.862 | 45.895  | 121.631 | 32.164 | 115.222 | 215.890     |
| 150       | 21.258 | 40.459  | 125.853 | 34.179 | 113.621 | 194.523     |
|           | 24.554 | 42.188  | 114.848 | 34.179 | 117.483 | 202.660     |
|           | 21.059 | 43.535  | 126.358 | 32.856 | 117.267 | 215.742     |
| 180       | 19.269 | 42.698  | 121.686 | 34.407 | 115.920 | 188.069     |
|           | 22.634 | 44.281  | 114.634 | 34.150 | 118.513 | 211.115     |
|           | 23.678 | 44.510  | 126.078 | 32.717 | 112.349 | 183.760     |

Table A.26. Shear Stress Measurements of Tempura Batters over a Three-Hour Period at 15 1/s Shear Rate

|           | Kikkoms | ın Tempur | a Batter | Tung-I Tes | mpura Batter | Newly Wed To | empura Batter |
|-----------|---------|-----------|----------|------------|--------------|--------------|---------------|
| Time      | 45.4%   | 50.0%     | 55.6%    | 43.8%      | 50.0%        | 43.6%        | 50.0%         |
| (minutes) | Solids  | Solids    | Solids   | Solids     | Solids       | Solids       | Solids        |
| 0         | 43.029  | 104.112   | 297.205  | 33.061     | 170.949      | 13.357       | 65.418        |
|           | 41.564  | 100.734   | 306.494  | 40.065     | 151.012      | 14.165       | 57.337        |
|           | 36.798  | 104.112   | 332.272  | 40.220     | 156.034      | 13.168       | 58.501        |
| 15        | 41.470  | 93.620    | 284.000  | 44.258     | 178.367      | 21.090       | 65.658        |
|           | 48.741  | 94.730    | 359.470  | 40.873     | 154.475      | 17.017       | 74.267        |
|           | 42.932  | 104.469   | 360.332  | 43.093     | 158.104      | 17.334       | 62.026        |
| 30        | 40.313  | 96.189    | 291.666  | 37.243     | 176.763      | 16.626       | 60.864        |
|           | 39.941  | 93.475    | 345.551  | 43.673     | 162.031      | 17.714       | 57.300        |
|           | 45.606  | 110.830   | 338.368  | 42.389     | 162.095      | 15.782       | 54.755        |
| 45        | 45.045  | 99.141    | 301.743  | 40.873     | 184.036      | 17.916       | 70.974        |
|           | 42.516  | 95.070    | 341.251  | 43.868     | 167.949      | 18.282       | 67.028        |
|           | 46.004  | 109.261   | 325.502  | 44.454     | 157.475      | 15.707       | 58.312        |
| 60        | 47.042  | 98.498    | 271.615  | 45.209     | 183.017      | 19.723       | 62.532        |
|           | 40.096  | 91.276    | 326.778  | 44.030     | 166.201      | 17.235       | 61.096        |
|           | 42.071  | 95.848    | 306.758  | 44.749     | 160.188      | 16.723       | 60.135        |
| 90        | 40.561  | 97.561    | 265.914  | 42.804     | 179.238      | 18.611       | 64.382        |
|           | 39.173  | 97.512    | 333.837  | 43.157     | 158.104      | 19.575       | 62.845        |
|           | 46.071  | 98.943    | 303.059  | 44.291     | 160.632      | 17.394       | 57.263        |
| 120       | 39.357  | 101.837   | 302.357  | 48.160     | 172.986      | 17.613       | 62.532        |
|           | 41.722  | 96.043    | 292.442  | 44.356     | 154.475      | 19.090       | 60.864        |
|           | 43.125  | 96.482    | 316.913  | 45.540     | 164.526      | 16.743       | 64.422        |
| 150       | 39.787  | 92.611    | 303.586  | 43.028     | 175.433      | 16.645       | 65.658        |
|           | 48.126  | 93.909    | 298.336  | 47.785     | 150.152      | 19.809       | 57.674        |
|           | 39.910  | 86.311    | 297.814  | 47.075     | 156.221      | 17.956       | 58.501        |
| 180       | 39.142  | 95.070    | 275.450  | 54.064     | 167.754      | 19.300       | 65.400        |
|           | 38.141  | 90.281    | 291.752  | 45.407     | 157.161      | 18.756       | 61.560        |
|           | 39.387  | 82.162    | 296.770  | 42.102     | 166.718      | 18.283       | 63.198        |

Table A.27. Weight (g) and Thickness (mm) Measurements of Food Substrates before and after Frying

| Food<br>Substrate: |                      | g Cheese<br>n batter        | with coating         | Shrimp with adhesion<br>batter coating |                             |                      |  |
|--------------------|----------------------|-----------------------------|----------------------|----------------------------------------|-----------------------------|----------------------|--|
|                    | Undermixed<br>Batter | Optimum-<br>mixed<br>Batter | Over-mixed<br>Batter | Undermixed<br>Batter                   | Optimum-<br>mixed<br>Batter | Over-mixed<br>Batter |  |
| $F_1(g)$           | 29.82                | 28.68                       | 258.12               | 32.94                                  | 36.23                       | 34.85                |  |
|                    | 26.96                | 31.72                       | 28.62                | 34.74                                  | 37.04                       | 36.04                |  |
|                    | 27.69                | 28.52                       | 28.70                | 33.93                                  | 39.43                       | 36.30                |  |
| $F_2(g)$           | 29.86                | 40.37                       | 39.15                | 37.72                                  | 52.35                       | 49.60                |  |
|                    | 27.25                | 45.68                       | 40.52                | 38.73                                  | 53.02                       | 54.94                |  |
|                    | 30.18                | 40.91                       | 39.44                | 35.63                                  | 60.45                       | 55.33                |  |
| $F_3(g)$           |                      |                             |                      | 37.72                                  | 53.02                       | 49.60                |  |
|                    |                      |                             |                      | 38.73                                  | 52.35                       | 54.94                |  |
|                    |                      |                             |                      | 35.63                                  | 60.45                       | 55.33                |  |
| F (g)              |                      |                             |                      | 15.90                                  | 32.35                       | 28.13                |  |
|                    |                      |                             |                      | 16.57                                  | 29.62                       | 32.41                |  |
|                    | <u> </u>             |                             |                      | 13.85                                  | 38.06                       | 33.18                |  |
| $T_{o}$ (mm)       | 1.76                 | 1.76                        | 1.76                 |                                        |                             |                      |  |
|                    | 1.76                 | 1.76                        | 1.76                 |                                        |                             |                      |  |
|                    | 1.76                 | 1.76                        | 1.76                 |                                        |                             |                      |  |
| $T_1$ (mm)         | 1.866                | 2.25                        | 2.23                 |                                        |                             |                      |  |
|                    | 1.878                | 2.22                        | 2.22                 |                                        |                             |                      |  |
|                    | 1.846                | 2.41                        | 2.19                 |                                        |                             |                      |  |

F = Weight of Food Coating (g)

 $F_1$  = Weight of Food before Coating (g)

 $F_2$  = Weight of Food after Coating (g)

 $F_3$  = Weight of Fried Food (g)

 $T_0$  = Thickness of Food (mm)

 $T_1$  = Thickness of Fried Food (mm)

Table A.28. Weight (g) Measurements of Food Substrates before and after Frying

| Food<br>Substrate: |                      | Cucumber<br>batter o        |                          | Shrimp with tempura batter coating |                             |                          |  |
|--------------------|----------------------|-----------------------------|--------------------------|------------------------------------|-----------------------------|--------------------------|--|
|                    | Undermixed<br>Batter | Optimum-<br>mixed<br>Batter | Over-<br>mixed<br>Batter | Undermixed<br>Batter               | Optimum-<br>mixed<br>Batter | Over-<br>mixed<br>Batter |  |
| $F_1(g)$           | 47.31                | 48.07                       | 47.57                    | 29.47                              | 31.52                       | 30.98                    |  |
|                    | 50.64                | 49.05                       | 46.75                    | 30.34                              | 31.41                       | 31.19                    |  |
|                    | 49.18                | 47.64                       | 47.66                    | 30.13                              | 31.94                       | 30.61                    |  |
| $F_2(g)$           | 41.97                | 75.91                       | 70.60                    | 27.82                              | 50.48                       | 47.07                    |  |
|                    | 47.09                | 70.02                       | 70.35                    | 24.68                              | 49.56                       | 45.77                    |  |
|                    | 44.20                | 70.89                       | 74.71                    |                                    | 51.17                       | 41.69                    |  |
| $F_3(g)$           | 42.00                | 73.71                       | 68.54                    |                                    | 48.18                       | 44.57                    |  |
|                    | 45.68                | 67.52                       | 68.32                    |                                    | 47.44                       | 43.06                    |  |
|                    | 43.49                | 68.64                       | 72.62                    |                                    | 49.14                       | 39.30                    |  |
| F (g)              | 10.31                | 38.24                       | 34.57                    |                                    | 26.39                       | 22.70                    |  |
|                    | 9.58                 | 30.86                       | 35.28                    |                                    | 26.44                       | 23.83                    |  |
|                    | 11.87                | 33.63                       | 35.61                    |                                    | 27.65                       | 18.90                    |  |

F = Weight of Food Coating (g)

 $F_1$  = Weight of Food before Coating (g)

 $F_2$  = Weight of Food after Coating (g)

 $F_3$  = Weight of Fried Food (g)

**BIBLIOGRAPHY** 

## **BIBLIOGRAPHY**

Baird, D.G. 1981 Dynamic viscoelastic properties of soy isolate doughs. Journal of Texture Studies. 12: 1-16.

Balasubramanian, V.M., Chinnan, M.S., Mallikarjunan, P. and Phillips, R.D. 1997. The Effect of Edible Film on Oil Uptake and Moisture Retention of a Deep-fat Fried poultry Product. Journal of Food Process Engineering. 20: 17-29.

Barnes, H.A., Hutton, J.F. and Walters, K. 1989. An Introduction to Rheology. Elsevier Science Publishers Co., New York.

Bennion, M., Stirk, K.S. and Ball, B.H. 1976. Changes in Frying Fats with Batters Containing Egg. Journal of The American Dietetic Association. 68(3): 234-236.

Bingham, E.C. 1929. Fluidity and Plasticity. Mc Graw-Hill Book Co., New York.

Bourne, M.C. 1982. Food Texture and Viscosity: Concept and Measurement. Academic Press. New York.

Castell-Perez, M.E. and Mishra, A.K. 1995. Research Note: Flow Behavior of Regular and Peanut-Fortified Idli Batters. Journal of Texture Studies. 26: 273-279.

Charm, S.E. 1963. The Direct Determination of Shear Stress-Shear Rate Behavior of Foods in the Presence of a Yield Stress. Journal of Food Science. 28: 107-113.

Choudhury, G.S. and Gautam, A. 1998. Comparative Study of Mixing Elements During Twin-Screw Extrusion of Rice Flour. Food Research International. 31(1): 7-17.

Churchill, S.W. 1988. Viscous Flows: The Practical Use of Theory. Butterworths, Boston.

Code of Federal Regulations, 2000. Requirements for specific standardized fish and shell fish. Title 21, Chapter I, Part 161, Subpart B, Sections 161.175 and 161.176.

Cunningham, F.E., and Tiede, L.M. 1981. A Research Note: Influence of Batter Viscosity on Breading of Chicken Drumsticks. Journal of Food Science. 46: 1950, 1952.

Dow Chemical 1997. Methocel Food Gums: Fried Food/Batters. Brochure 194-01290-497GW. The Dow Chemical Co., Midland, MI.

Flick, G.J., Gwo, Y., Ory, R.L., Baran, W.L., Sasiela, R.J., Boling, J., vinnett, C.H., Martin, E. and Arganosa G.C. 1989. Effects of Cooking Conditions and Post-preparation Procedures on the Quality of Battered Fish Portions. Journal of Food Quality. 12: 227-242.

Fritsch, C.W. 1981. Measurement of Frying Fat Deterioration: A Brief Review. Journal of American Oil Chemist Society. 58: 272.

Gogoi, B.K., Oswalt, A.J., Choudhury, G.S. 1996. Reverse Screw Eelment(s) and Feed Composition Effects During Twin-Screw Extrusion of Rice Flour and Fish Muscle Blends. Journal of Food Science. 61(3): 590-595.

Gogoi, B.K., Choudhury, G.S., Oswalt, A.J. 1996. Effects of Location and Spacing of Reverse Screw and Kneading Element Combination During twin-Screw Extrusion of Starchy and Proteinaceous Blends. Food Research International. 29(5/6): 505-512.

Grodner, R.M., Andrews, L.S. and Martin, R.E. 1991. Chemical Composition of Seafood Breading and Batter Mixes. Cereal Chemistry. 68(2): 162-164.

Heckman, E. 1977. Starch and its Modifications for the Food Industry. In Food Colloids (H. Graham, ed.) pp464-477. AVI Publishing Co., Westport, CT.

Hoseney, R.C. 1994. Principles of Cereal Science and Technology. 2<sup>nd</sup> Edition. American Association of Cereal Chemists, Inc., St. Paul. Minnesota.

Hsia, H.Y., Smith, D.M. and Steffe, J.F. 1992. Rheological Properties and Adhesion Characteristics of Flour-Based Batters for Chicken Nuggests as Affected by Three Hydrocolloids. Journal of Food Science. 57(1): 16-18, 24.

Kee, D.D., Schlesinger, M. and Godo, M. 1988 Postwithdrawal Drainage of Different Types of Fluids. Chemical Engineering Science. 43(7): 1603-1614.

Kee, D.D. Turcotte, G., Fildey, K and Harrison. 1980. Research Note: New Method for the Determination of Yield Stress. Journal of Texture Studies. 10:281-288.

Kulp, K and Loewe, R. (ed.) 1990. Batters and Breadings in Food Processing. American Association of Cereal Chemists, Inc., St. Paul, Minnesota.

Lane, R.H. and Abdel-Ghany, M. 1986. Viscosity and Pick-up of a Fish and Chip Batter: Determinants of Variation. Journal of Food Quality. 9: 107-113.

Lang, E.R. and C. Rha. 1981. Determination of Yield Stresses of Hydrocolloid Dispersions. Journal of Texture Studies. 12: 47-62.

Lue, S., Hsieh, F., Huff, H.E. 1994. Modeling of Twin-screw Extrusion Cooking of Corn Meal and Sugar Beet Fiber Mixtures. Journal of Food Engineer. 21(3): 263-289.

McGlinchey, N. 1994. Batter By Far - Speciality Starches in Battered and Breaded Foods. Food Technology Europe. 1(5): 96, 98, 100.

Nakai, Y. and Chen, T.C. 1986. Effects of Coating Preparation Methods on yields and Compositions of Deep-Fat Fried Chicken Parts. Poultry Science 65: 307-313.

Nawar, W., Hultin, H., Li, Y., Xing, Y., Kelleher, S. and Wilhelm, C. 1990. Lipid Oxidation in Seafoods Under Conventional conditions. Food Reviews International 6(4): 647-660.

Novak, F., Olewnik, M. and Kulp, K. 1987. Functionality of Flour in Batter Systems. (Abstract.) Cereal Foods World. 32: 659.

Official Methods of Analysis of AOAC International. 2000. 17<sup>th</sup> Edition. Baithersburg. Maryland.

Olewnik, M. and Kulp, K. 1993. Factors Influencing Wheat Flour Performance in Batter Systems. Cereal Food World. 38(9): 679-684.

Onwulata, C.I., Konstance, R.P., Smith, P.W., Holsinger, V.H. 1998. Physical Properties of Extruded Products as Affected by Cheese Whey. Journal of Food Science. 63(5): 814-818.

Rao, M.A., Okechukwu, P.E., Silva, P.M.Sda., Oliveira, J.C. 1997. Rheological Behavior of Heated Starch Dispersions in Excess Water: Role of Starch Granule. Carbohydrate Polymers. 33(4):273-283.

Rhee, K.S., Housson, S.E. and Ziprin, Y.A. 1992. Enhancement of Frying Oil Stability by a Natural Antioxidative Ingredient in the Coating System of Fried Meat Nuggests. Journal of Food Science. 57(3): 789-791.

Schwartzberg, H.G., Wu, J.P.C., Nussinovitch, A., Mugerwa, J. 1995. Modelling Deformation and Flow During Vapor-induced Puffing. Journal of Food Engineer. 25(3): 329-272.

Shinsato, E., Hippleheuser, A.L. and Van Beirendonck, K. 1999. Products for Batter and Coating Systems. The World of Ingredients. January/February: 38-49,42.

Steffe, J.F. 1996. Rheological Methods in Food Process Engineering. 2<sup>nd</sup> edition. Freeman Press. East Lansing, MI.

Suderman, D.R. 1993. Selecting Flavorings and Seasonings for Batter and Breading Systems. Cereal Food World. 38(9): 689-694.

Suderman, D.R. and Cunningham, F.E. (ed.) 1983. Batter and Breading Technology. AVI Publishing Company, Inc., Westport, Connecticut.

United State Department of Commerce. 2000. Seafood Inspection Program. U.S. Standards for Grades of Fishery Products. [Online] Available <a href="http://www.seafood.nmfs.gov/standard.html">http://www.seafood.nmfs.gov/standard.html</a>, January 1, 2000

