

LIBRARY Michigan State University

This is to certify that the

thesis entitled

PHOTOINDUCED CLEAVAGE OF CARBON-HALOGEN BOND FOR MONO-HALOGENATED 2',4',6'-TRIMETHYLBENZOPHENONES

presented by

Yijun Tang

has been accepted towards fulfillment of the requirements for

M.S. degree in Chemistry

Date _____08/18/00

O-7639

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

6/01 c:/CIRC/DateDue.p65-p.15

PHOTOINDUCED CLEAVAGE OF CARBON-HALOGEN BOND FOR MONO-HALOGENATED 2',4',6'-TRIMETHYLBENZOPHENONES

Ву

Yijun Tang

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Chemistry

2000

ABSTRACT

PHOTOINDUCED CLEAVAGE OF CARBON-HALOGEN BOND FOR MONO-HALOGENATED 2',4',6'-TRIMETHYLBENZOPHENONES

By

Yijun Tang

One of the general reactions of mono-halogenated 2',4',6'-trimethylbenzophenones is the carbon-halogen bond cleavage when the reactant is exposed to ultraviolet light source with proper wavelength. This type of reaction, on which my research has been focused, is believed to be occurring from the lowest triplet states. Quenching with triplet quenchers supports such thinking as well as provides triplet lifetime of reactant molecules.

Photoinduced carbon-bromine bond cleavage and carbon-iodine bond cleavage have been studied by Professor Peter J. Wagner. By comparing with his study, some important conclusion can be made. It seems that halogenated 2',4',6'-trimethylbenzophenones have similar behavior as their non-alkyl-substituted analogues, in terms of reaction rate constant and triplet lifetime. Only apparent difference lies in the reactions of 3-bromo-benzophenones and 4-bromo benzophenones, 2',4',6'-trimethyl and non-substituted.

For iodo-2',4',6'-trimethylbenzophenones, the carbon-iodine bond cleavage is the only major pathway of deactivation of the excited triplet reactant molecules. 2-iodo-2',4',6'-trimethylbenzophenone and 4-iodo-2',4',6'-trimethylbenzophenone have a larger carbon-iodine bond cleavage constant than

3-iodo-2',4',6'-trimethylbenzophenone, which is consistent with the electron density of π^* orbital, indicating $^3(n,\pi^*)$ state is responsible for the reaction.

As for bromo-2',4',6'-trimethylbenzophenones, the quantum yields of dehalogenated 2',4',6'-trimethylbenzophenone formation from 3-bromo-2',4',6'-trimethylbenzophenone and from 4-bromo-2',4',6'-trimethylbenzophenone are very low. This may suggest some competing reactions. One likely possibility is hydrogen abstraction from solvent by the triplet ketones. 2-bromo-2',4',6'-trimethylbenzophenone undergoes more efficient carbon-bromine bond cleavage reaction with a much higher quantum yield compared to 3- and 4- bromo-2',4',6'-trimethylbenzophenones.

Both the rate constants and the quantum yields of dehalogenated ketone formation are small in the case of chloro-2',4',6'-trimethylbenzophenones because of the relatively high carbon-chlorine bond energy.

Dedicated to my parents, sister, wife and those who made this paper possible.

For with You is the fountain of life; in Your light we see light.

Psalm 36:9

ACKNOWLEDGMENTS

First of all, I must thank Professor Peter J. Wagner. As the boss in this group and my advisor, his brilliant understanding of and invaluable experience in physical photochemistry has benefited my study so much that I never thought I would meet with any difficulties that could not be overcome in the course of my graduate life. No one got surprised when the information came that he had won the Inter-American Photochemical Society Award in Photochemistry. I also appreciate that he has guided me in selecting some critically useful courses. Professor Wagner is kind of a strict man, which comforts me in that I know I deserved whatever the title I achieved in this group. On the other hand, his sense of humor has impressed me a lot, especially when he releases those humorous remarks with a serious looking.

I would also like to thank all other professors in my committee, who are Professor James E. "Ned" Jackson, Professor Gary J. Blanchard, and Professor David P. Weliky. In the past three years, we had several enjoyable party-like committee meetings, which will be shining pearls worthy of recalling in the string of my life. I am very grateful to the precious discussion that they have offered.

I owe a lot to the following co-workers in our group: Mr. Jong-Ill Lee, Dr. Hyo-Jung Yoon, and Ms. Varsha Govardhan. The good time we have spent together in the lab bears in my mind forever.

At last but absolutely not the least, I would like to thank my loving wife Danyan for having been backing me up while we start our new life in the United States of America.

TABLE OF CONTENTS

Abstract	ii
Acknowledgements	vi
List of Tables	viii
List of Figures	ix
List of Abbreviations	x
INTRODUCTION	1
A. Mechanism of carbon-halogen bond cleavage for	
halogenated aromatic ketones	1
B. Competitions with carbon-halogen bond cleavage	
B1. Competition at bond cleavage stage: Hydrogen abstraction	
B2. Competition at hydrogen abstraction stage: Recoupling	
C. Electronic states of benzophenones	
D. Kinetics and quenching study	
E. Goals of research	
L. Could of 1000aron	
RESULTS AND DISCUSSIONS	11
A. Quantum yield	
B. Quenching study	
C. Conclusion	
EXPERIMENTAL	18
A. Synthesis	
A1. Chloro-2',4',6'-trimethylbenzophenones	
A2. Bromo-2',4',6'-trimethylbenzophenones	
A3. lodo-2',4',6'-trimethylbenzophenones	
B. Identification	
C. Quantum yields	
D. Quenching study	
D. Quonoming olday	·····
DEEEDENCES	20

LIST OF TABLES

Table 1. The quantum yields of some BPs in cyclopentane	11
Table 2. Room temperature photokinetics for some XM ₃ BPs in cyclopentane	
Table 3. Melting points of XM ₃ BPs	24
Table 4. Spectroscopic features of some benzophenones	

LIST OF FIGURES

Figure 1. Mechanism of photoinduced cleavage of	
Carbon-halogen bond for oIBP	1
Figure 2. Fate of triplet halo-benzophenone molecules in cyclopentane	3
Figure 3. Benzocyclobutenol formation from 2,4,6-	
trialkylbenzophenones	3
Figure 4. Fate of halogen phenyl radical pair after bond cleavage	4
Figure 5. Energy diagram of excited triplets of halophenyl ketones	5
Figure 6. Mechanistic representation with rate constants	
Figure 7. Quenching by naphthalene of M ₃ BP formation from oBrM ₃ BP	
Figure 8. Quenching by naphthalene of M ₃ BP formation from mBrM ₃ BP	13
Figure 9. Quenching by naphthalene of M ₃ BP formation from pBrM ₃ BP	
Figure 10. Quenching by naphthalene of M ₃ BP formation from oIM ₃ BP	14
Figure 11. Quenching by naphthalene of M ₃ BP formation from mIM ₃ BP	
Figure 12. Quenching by naphthalene of M ₃ BP formation from pIM ₃ BP	
Figure 13. Synthesis of XM ₃ BP	18

LIST OF ABBREVIATIONS

BP	benzophenone
BrBP	bromo-benzophenone
BrM ₃ BP	bromo-2'4'6'-trimethylbenzophenone
CIBP	chloro-benzophenone
CIM ₃ BP	chloro-benzophenonechloro-2',4',6'-trimethylbenzophenone
IBP	iodo-benzophenone
IM ₃ BP	iodo-2',4',6'-trimethylbenzophenone
M ₃ BP	2',4',6'-trimethylbenzophenone
<i>m</i> BrBP	
	3-bromo-2'4'6'-trimethylbenzophenone
<i>m</i> CIBP	3-chloro-benzophenone3-chloro-2',4',6'-trimethylbenzophenone
mCIM ₃ BP	3-chloro-2',4',6'-trimethylbenzophenone
<i>m</i> IBP	3-iodo-benzophenone3-iodo-2',4',6'-trimethylbenzophenone
<i>m</i> IM ₃ BP	3-iodo-2',4',6'-trimethylbenzophenone
	3-halo-benzophenone
	3-halogenated 2',4',6'-trimethylbenzophenone
oBrBP	2-bromo-benzophenone
=	2-bromo-2'4'6'-trimethylbenzophenone
oCIBP	2-chloro-benzophenone
	2-chloro-2',4',6'-trimethylbenzophenone
oIBP	2-iodo-benzophenone2-iodo-2',4',6'-trimethylbenzophenone
olM ₃ BP	2-iodo-2',4',6'-trimethylbenzophenone
oXBP	2-halo-benzophenone 2-halogenated 2',4',6'-trimethylbenzophenone
oXM ₃ BP	2-halogenated 2',4',6'-trimethylbenzophenone
pBrBP	4-bromo-benzophenone
pBrM ₃ BP	4-bromo-2'4'6'-trimethylbenzophenone
pCIBP	4-chloro-benzophenone
pCIM ₃ BP	4-chloro-2',4',6'-trimethylbenzophenone
	4-iodo-benzophenone
	4-iodo-2',4',6'-trimethylbenzophenone
<i>p</i> XBP	4-halo-benzophenone
	4-halogenated 2',4',6'-trimethylbenzophenone
	quencher
	halo-benzophenone
XM ₃ BP	halogenated 2',4',6'-trimethylbenzophenone

INTRODUCTION

Ketones are always the objects of study in photochemistry because the longest wavelength of absorption for the carbonyl group in ketones exceeds 280 – 300 nm.² Wavelength in that area can be obtained easily in most photochemistry laboratories. Carbon-halogen bond cleavage for mono-halogenated benzophenones occurs from the triplet state because of rapid intersystem crossing.^{3,4} Study of the reactivity of halophenyl ketones helps us to understand the triplet state of a molecule.

A. Mechanism of carbon-halogen bond cleavage for halogenated aromatic ketones.

Carbon-halogen bond cleavage in halogenated aromatic ketones has been studied widely.⁵ The mechanism has been proposed by P. J. Wagner.

Figure 1. Mechanism of photoinduced cleavage of carbon-halogen bond for oIBP¹

The mechanism is similar for other XBPs and XM₃BPs. Upon excitation, the carbon-halogen bond breaks and a radical pair is formed. This radical pair is believed to be an "in-cage" tight one and the two components may

diffuse apart to form free halogen atom and phenyl radical. The phenyl radical abstracts hydrogen from solvent molecule; thus, dehalogenated benzophenones are formed.

B. Competitions with carbon-halogen bond cleavage.

Mechanism of cleavage indicates a two-step reaction: bond cleavage and hydrogen abstraction. Competitions may occur at either step.

B1. Competition at bond cleavage stage: Hydrogen abstraction.

The possibility of competition from physical decay is out of the question because the research indicates that the rate of bond cleavage is on the order of 10⁸ s⁻¹ in cyclopentane, which is much faster than typical phosphorescence emission process.^{6,7} Besides, physical radiationless decay process of ketone triplet cannot compete efficiently either.¹ Thus, I will only discuss chemical competition in this paper. In addition to bond cleavage, another decay of ketone triplet is hydrogen abstraction, intermolecular or intramolecular.

When phenyl ketone molecules abstract hydrogens from their environment instead of experiencing carbon halogen bond cleavage, α -hydroxy radicals are formed. Pinacols then are produced by coupling of such hydroxy radicals. Figure 2 shows the procedure.

Figure 2. Fate of triplet halo-benzophenone molecules in cyclopentane. (X=Br or I)¹

The rate of hydrogen abstraction from the environment is based on the identity of the phenyl ketones and the character of solvent molecules.

When the ketone molecules contain γ -hydrogens, like benzylic hydrogen in XM_3BPs , intramolecular hydrogen abstraction may also occur. The following figure shows the process.

Figure 3. Benzocyclobutenol formation from 2,4,6-trialkylbenzophenones⁸

The significance of those two kinds of competition can be illustrated by the concentrations of pinacol and of benzocyclobutenol in the product mixture if there is any.

B2. Competition at hydrogen abstraction stage: Recoupling.

A contact radical pair is formed immediately after the carbon-halogen bond breaks. The fate of halogen phenyl radical pair is shown in the following figure. Again, we will just use oIBP as an illustration.

Figure 4. Fate of halogen phenyl radical pair after bond cleavage

Recoupling of halogen phenyl radical pair competes with the diffusion apart of those two radicals, which is reflected in the quantum yield of dehalogenated benzophenone formation.^{1,4}

C. Electronic states of benzophenones.

As good sensitizers, benzophenone molecules induce rapid intersystem crossing between triplet states and singlet states of themselves; thus the reactivity of benzophenone is confined to the triplet states,⁴ especially the lowest triplet states because of the lower energy compared to higher level triplet states. The rate of vibrational relaxation from higher triplet states to the lowest triplet states is very fast.^{2,8} For this reason, I will only talk about the triplet states of benzophenone.

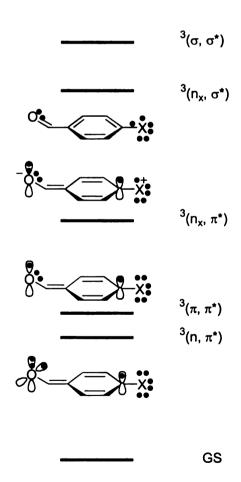


Figure 5. Energy diagram of excited triplets of halophenyl ketones⁴

The lowest triplet state of benzophenone is the ${}^3(n,\pi^*)$ state. 1 ${}^3(\pi,\pi^*)$ state is only a few kcal/mol higher than the lowest triplet state 3 and also plays an important role in the reaction.

Because of the small energy gap between $^3(n,\pi^*)$ and $^3(\pi,\pi^*)$ states, both of them are considered as "reactant".⁴ However, the dissociative states are $^3(\sigma,\sigma^*)$ and $^3(n_x,\sigma^*)$.⁹ The coupling of "reactant" states with dissociative states is needed in the course of carbon-halogen bond cleavage.

The $^3(n,\pi^*)$ is the only state responsible for the C-X bond cleavage for iodinated benzophenones, 1,6 while the $^3(\pi,\pi^*)$ states dominates the C-X bond cleavage for brominated benzophenones. The coupling of the $^3(n,\pi^*)$ state with the $^3(\sigma,\sigma^*)$ state explains the behavior of carbon-iodine bond cleavage for iodinated benzophenones. For the isomers of brominated benzophenones, the lone pair p orbital on bromine atom couples with benzoyl π system, producing comparable coupling of "reactant" state with dissociative state.

D. Kinetics and quenching study.

Figure 6 shows the pathway of the C-X bond cleavage for XM₃BPs.

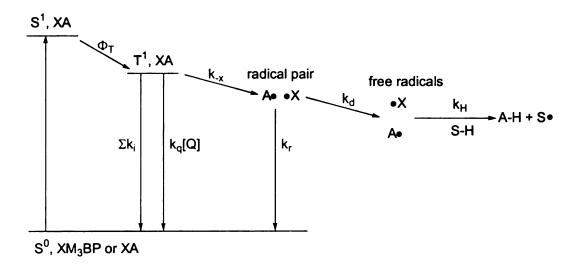


Figure 6. Mechanistic representation with rate constants

 Φ_T is the quantum yield of triplet formation, which can be considered as 1 in C-X bond cleavage of benzophenones. 10 k_x is the rate constant of C-X bond cleavage and k_q is the rate constant of quenching. Q is the quencher. Σk_i is the sum of the rate constants of decay pathways other than C-X bond cleavage and quenching. Actually, the only apparent competition results from intermolecular and intramolecular hydrogen abstraction (*refer to* **Part B1** of **INTRODUCTION**) based on previous studies of carbon-halogen bond cleavage from benzophenones; 1,4,6 therefore, Σk_i can be replaced with $k_{H1}[SH]$ and k_{H2} , where k_{H1} is the rate constant of intermolecular hydrogen abstraction and k_{H2} is the rate constant of intramolecular hydrogen abstraction. k_d is the rate constant of diffusion apart of the "contact" radical pair which is formed immediately after C-X bond cleavage. k_r is the rate constant of radical recoupling from

the "contact" radical pair. k_H is the rate constant of hydrogen abstraction of phenyl radicals from solvent.

The quantum yield of M₃BP formation can be expressed by the following equation.

$$\Phi = \Phi_T \cdot \frac{k_{-x}}{k_{-x} + k_a[Q] + \sum k_i} \cdot \frac{k_d}{k_d + k_r}$$
(1)

As Φ_T is almost 1¹⁰ and Σk_i can be replaced with $k_{H1}[SH] + k_{H2}$ the above equation is revised as follows.

$$\Phi = \frac{k_{-x}}{k_{-x} + k_q[Q] + k_{H1}[SH] + k_{H2}} \cdot \frac{k_d}{k_d + k_r}$$
 (2)

When there is no quencher added, the quantum yield is denoted as Φ_0 . The following equation can be easily derived from Equation 2.

$$\Phi_0 = \frac{k_{-x}}{k_{-x} + k_{H1}[SH] + k_{H2}} \cdot \frac{k_d}{k_d + k_r}$$
(3)

Professor P.J. Wagner has studied the factors that affect Φ_0 and has found that it increases with increasing k_d . Viscous solvent produces smaller k_d value, which decreases Φ_0 .^{1,4}

From Equations 2 and 3, Stern-Volmer equation is obtained, which is shown as Equation 4.

$$\frac{\Phi_0}{\Phi} = 1 + k_q \tau[Q] \tag{4}$$

 τ is the triplet lifetime when there is no quencher. The expression of τ is shown in Equation 5.

$$\frac{1}{\tau} = k_{-x} + k_{H1}[SH] + k_{H2} \tag{5}$$

By varying the concentration of quencher, [Q], a series of Φ_0/Φ value can be obtained. The plot of Φ_0/Φ against [Q] is a straight line with a slope of $k_q\tau$. As the value of k_q , $k_{H1}[SH]$ and k_{H2} can be obtained by reliable estimate, ^{10,11,14} the triplet lifetime, therefore k_x , can also be obtained.

$$k_{-x} = \frac{1}{\tau} - k_{H1}[SH] - k_{H2} \tag{6}$$

For benzophenones in cyclopentane, the value of $k_{H1}[SH]$ is less than $0.1\times10^6~s^{-1}$ for oXBPs and oXM_3BPs ; $7.6\times10^6~s^{-1}$ for mXBPs and mXM_3BPs , and $6.3\times10^6~s^{-1}$ for pXBPs and pXM_3BPs . The value of k_{H2} is $1.7\times10^6~s^{-1}$.

E. Goals of research.

Carbon-halogen bond cleavage of XBPs has been well studied by Professor P.J. Wagner's group; however, the same kind of cleavage of XM₃BPs has not been fully studied. The only related reports are limited to the graduation dissertation of Martin Sobczak.⁸

The purpose of my research is to understand the chemistry, in particular carbon-halogen bond cleavage of XM₃BPs. The benzene ring with three methyl groups in an XM₃BP molecule is almost perpendicular to the carbonyl group. We are interested in how that twisted benzene ring affects carbon-halogen bond cleavage. We also expect that such research might provide information that helps to understand the nature of triplet states of organic molecules.

RESULTS AND DISCUSSIONS

A. Quantum yield.

The quantum yields of M₃BP formation in cyclopentane for various XM₃BP were measured at room temperature under irradiation of 313 nm. The results are listed in Table 1.

Table 1. The quantum yields of some BPs in cyclopentane

Benzophenones	Quantum yield
oCIM₃BP	0.0066
oBrM₃BP	0.009
<i>m</i> BrM₃BP	0.0007
<i>p</i> BrM₃BP	0.0013
olM₃BP	0.16
mlM₃BP	0.21
<i>p</i> IM₃BP	0.34
oBrBP ^b	0.09
<i>m</i> BrBP⁵	0.002
pBrBP ^b	0.003
<i>m</i> IBP ^c	0.28
<i>p</i> lBP ^c	0.27

a. in cylclohexane

The quantum yield decreases in the order of oIM₃BP, oBrM₃BP, and oCIM₃BP, which is consistent with C-X bond strength. This indicates that the weaker the C-X bond is, the more readily it breaks. Former researches also indicate the similar decreasing trend of quantum yield.^{1,4,5,14} The C-CI bond does not break for CIBPs, and the quantum yield of BrBPs is smaller than that of the corresponding IBPs.

b. ref. 4

c. ref. 1

Some interesting conclusion may be made when the quantum yields of XM₃BPs are compared with those of XBPs.

For BrBPs, the *ortho* isomer has a much larger quantum yield than the *meta* or *para* isomers. The fact is also true in the case of BrM₃BPs. This has been explained by the direct through space electron transfer between bromine atom and the adjacent carbonyl group.^{4,15}

B. Quenching study.

The quenching study was carried out in about 0.01M cyclopentane solution under exposure of 365 nm irradiation with naphthalene as the quencher. The reaction of acetophenone formation from 0.01M valerophenone was the actinometer. The value of $k_q\tau$ is gleaned from Stern-Volmer plot. The value of k_q for 2,4,6-trimethylbenzophenone in benzene has been measured, which is 5×10^9 M⁻¹s⁻¹.^{11(a)} Quenching is a diffusion-controlled process; therefore, the value of k_q decreases with increasing viscosity of solvent. The value of k_q for halogenated 2',4',6'-trimethylbenzophenone in cyclopentane is estimated as 10^{10} M⁻¹s⁻¹ because the viscosity of cyclopentane is lower than that of benzene.¹¹ Stern-Volmer plots are shown in Figures 7-12 and the result of quenching study is shown in Table 3.

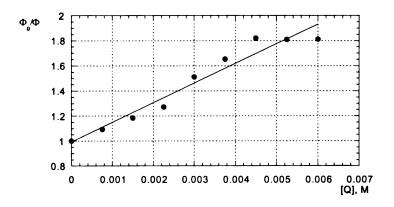


Figure 7. Quenching by naphthalene of M₃BP formation from oBrM₃BP

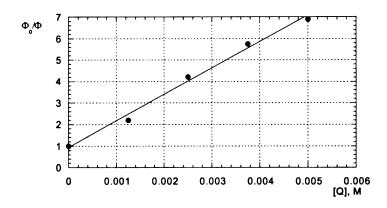


Figure 8. Quenching by naphthalene of M₃BP formation from mBrM₃BP

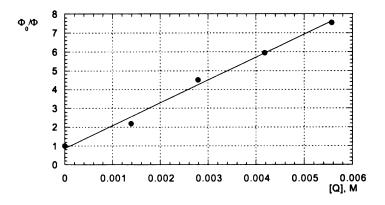


Figure 9. Quenching by naphthalene of M₃BP formation from pBrM₃BP

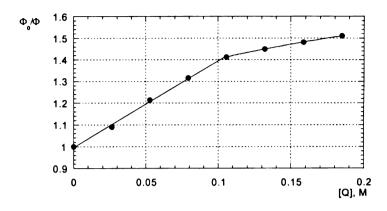


Figure 10. Quenching by naphthalene of M₃BP formation from olM₃BP

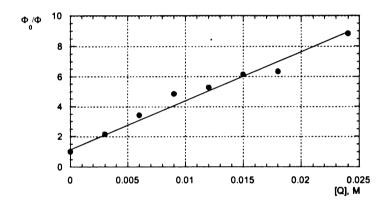


Figure 11. Quenching by naphthalene of M₃BP formation from mIM₃BP

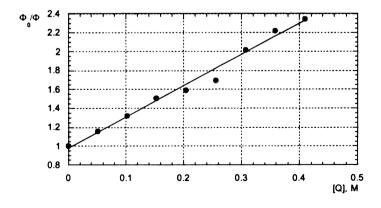


Figure 12. Quenching by naphthalene of M₃BP formation from pIM₃BP

Table 2. Room temperature photokinetics for some XM₃BPs in cyclopentane^a

Benzophenones	Φ	$k_{q}\tau (M^{-1})$	$1/\tau (10^8 \text{ s}^{-1})$	k _H (10 ⁸ s ⁻¹) ^d	k _{-x} (10 ⁸ s ⁻¹) *
oBrM₃BP	0.009	173.5	0.58	0.017	0.56
mBrM₃BP	0.0007	1228.7	0.081	0.093	<0.001
<i>p</i> BrM₃BP	0.0013	1211.6	0.083	0.080	0.003
olM₃BP	0.16	3.98	25.1	0.017	25.1
mIM ₃ BP	0.21	308.7	0.32	0.093	0.23
<i>p</i> IM₃BP	0.34	3.31	30.2	0.080	30.1
oBrBP ^b	0.09	-	0.6	<0.001	0.6
mBrBP ^b	0.002	•	0.076	0.076	0.001
<i>p</i> BrBP⁵	0.003	-	0.063	0.063	0.001
mIBP ^c	0.28	265	0.37	0.076	0.30
<i>p</i> lBP ^c	0.27	3.0	32	0.063	32

- a. $k_q = 10^{10} \text{ M}^{-1} \text{S}^{-1}$ (ref. 11);
- b. ref. 4:
- c. ref. 1:
- d. for XBPs, $k_H=k_{H1}[SH]$; for XM₃BPs, $k_H=k_{H1}[SH]+k_{H2}$; $k_{H1}[SH]$ is assumed to be $<0.001\times10^8 \text{ s}^{-1}$, $0.076\times10^8 \text{ s}^{-1}$, and $0.063\times10^8 \text{ s}^{-1}$ for $oX(M_3)BPs$, $mX(M_3)BPs$ and $pX(M_3)BPs$ in that order (ref. 14); $k_{H2}=0.017\times10^8 \text{ s}^{-1}$ (ref. 10);
- e. kx is obtained according to Equation 6.

The photochemistry of XM₃BPs is almost the same as that of XBPs. *Meta* brominated isomers have comparable C-X bond cleavage rate constants as *para* brominated isomers, while *meta* iodinated isomers C-X bond cleavage rate constants almost 100 times faster than *para* iodinated isomers.

This phenomenon has been thoroughly explained by P.J. Wagner.^{1,4,6} Only the $^3(n,\pi^*)$ state is responsible for the cleavage reaction for iodinated benzophenones,^{1,6} while $^3(\pi,\pi^*)$ state dominates the dissociation process for brominated benzophenones.⁴ A major difference between those two kinds of triplet states is that both *meta* and *para* electron-donating

substituents interact very strongly with the benzoyl π system in the $^3(\pi,\pi^*)$ states. 16 Consequently, the strong interaction gives comparable coupling with dissociative states; thus carbon halogen bond cleavage rate constants for *meta* and *para* brominated benzophenones are almost the same. On the contrary, halogen atoms do not interact equally at *meta* and *para* positions for iodinated benzophenones since the "reactant" state for iodinated benzophenones is $^3(n,\pi^*)$. The spin density in the π^* orbital is much larger at *para* position than at *meta* position, 17 which is thought to be the reason that iodinated benzophenones shows great positional dependency. 1

For IBPs and IM₃BPs, the triplet decay rate constant is almost the same as the C-I bond cleavage rate constant since C-I bond cleavage is the only apparent decay process. However, hydrogen abstraction from solvent competes with C-Br bond cleavage for BrBPs (*refer to* **Part B1** of **INTRODUCTION**). The hydrogen abstraction rate is on the order of 10⁷ s⁻¹ for BrBPs in cyclopentane, ^{4,6,8} which is much faster than the rate constant of C-Br bond cleavage. Therefore, further investigation is needed to find out the rate constant of hydrogen abstraction for XBrM₃BPs, in order that the carbon halogen bond cleavage rate constant can be figured out.

C. Conclusion

We have found that XM₃BPs bear similar photophysical and photochemical characters as XBPs although the molecular geometries are different.

Benzene ring **A** is almost conjugated with the carbonyl group for XBPs while it is perpendicular to the carbonyl group for XM₃BPs.⁸ It indicates that carbon-halogen bond cleavage on benzene ring **B** is not significantly affected when the geometry of benzene ring **A** changes from a coplanar ring to a perpendicular ring. In another word, the twisted ring **A** does not change carbon halogen bond cleavage a lot.

EXPERIMENTAL

A. Synthesis.

Generally speaking, XM₃BPs were made according to the following scheme.

$$X_{\frac{||}{||}}$$
 OH $\frac{SOCl_2}{X_{\frac{||}{||}}}$ $X_{\frac{||}{||}}$ CI $\frac{Mesitylene}{AlCl_3}$ $X_{\frac{||}{||}}$

Figure 13. Synthesis of XM₃BP

The intermediate chlorides might be solids or oil substances. The final products are all solids.

As the photochemical study does not require much amount of chemicals, I concentrated on purity of the product more than on the yield. In most occasions, several times of recrystallization were needed.

A1. Chloro-2',4',6'-trimethylbenzophenones.

3.75g appropriate chlorobenzoic acid was refluxed with 30 mL thionyl chloride for about 12 hours. At this point, the reactant mixture was a clear solution. The excessive thionyl chloride was removed and crude acid chloride was obtained. The crude acid chloride was dissolved in a small amount of 1,2-dichloroethane.

A mixture of 3.8g aluminum chloride, 3.5g mesitylene and 25 mL 1,2-dichloroethane was cooled to 0°C. The acid chloride was then added into the mixture drop by drop. The reaction mixture was stirred for 24 hours. Then the reaction was quenched with a mixture of 15mL concentrated hydrochloric acid and 60g ice. The aqueous layer was extracted with dichloromethane twice. The combined organic layer was washed with water, 5M sodium hydroxide and water, twice each, and then was dried over magnesium sulfate. The solvent was removed and the crude product was recrystallized from petroleum ether. Charcoal might be needed if the color of product is not white.

oCIM₃BP:

¹**H-NMR** (benzene-*d*₆, 300MHz, δ ppm): 2.06 (s, 3H), 2.07 (s, 6H), 6.62 (s, 2H), 6.69 (m, 2H), 7.07 (dd, 5.7, 1.2 Hz, 1H), 7.38 (dd, 7.2, 1.8 Hz, 1H); ¹³**C-NMR** (CDCl₃, 75MHz, δ ppm): 19.7, 21.1, 126.8, 128.8, 131.5, 131.7, 132.7;

FTIR (KBr, cm⁻¹): 761(s), 916(s), 1252(s), 1437(s), 1586(s), 1674(vs), 2363(w), 2916(br);

GC-MS (m/z): 147.1(52.79%), 208.0(57.94%), 223.0(100%), 257.1(M^{+}), 259.2(M^{+}).

pCIM₃BP:

¹**H-NMR** (CDCl₃, 300MHz, δ ppm): 2.07 (s, 6H), 2.33 (s, 3H), 6.90 (s, 2H), 7.41 (d, 8.7 Hz, 2H), 7.74 (d, 8.7 Hz, 2H);

¹³C-NMR (CDCl₃, 75MHz, δ ppm): 19.3, 21.1, 128.4, 129.1, 130.7, 134.1; FTIR (KBr, cm⁻¹): 812(s), 903(s), 1091(s), 1167(s), 1274(s), 1572(s), 1655(s), 1925(m), 2907(br);

GC-MS (m/z): 147.0(100%), 208.2(47.92%), 223.2(97.62%), 257.1(M^{+}), 259.2(M^{+}).

A2. Bromo-2',4',6'-trimethylbenzophenones.

5g appropriate bromobenzoic acid was refluxed with 8 mL thionyl chloride and 25 mL chloroform for about 4 hours. At this point, the reactant mixture was a clear solution. The solvent and unreacted thionyl chloride were removed and crude acid chloride was obtained. The crude acid chloride was dissolved in a small amount of 1,2-dichloroethane.

A mixture of 4g aluminum chloride, 3.6g mesitylene and 25 mL 1,2-dichloroethane was cooled to 0°C. The acid chloride was then added into the mixture drop by drop. The reaction mixture was stirred for 24 hours before the reaction was quenched by a mixture of 15mL concentrated hydrochloric acid and 60g ice. The aqueous layer was extracted with dichloromethane twice. The combined organic layer was washed with water, 5M sodium hydroxide and water, twice each, and then was dried over magnesium sulfate. The solvent was removed and the crude product

was recrystallized from ethanol. Charcoal might be needed if the color of product is not white.

oBrM₃BP:

¹**H-NMR** (benzene-*d*₆, 300MHz, δ ppm): 2.01 (s, 3H), 2.07 (s, 6H), 6.61 (s, 2H), 6.67 (m, 2H), 7.30 (d, 2.4 Hz, 1H), 7.33 (dd, 7.8, 1.5 Hz, 1H); ¹³**C-NMR** (CDCl₃, 75MHz, δ ppm): 19.8, 21.1, 127.3, 128.8, 131.8, 132.7, 134.9, 135.3;

FTIR (KBr, cm⁻¹): 897(s), 1242(s), 1292(s), 1433(s), 1584(s), 1674(s);
GC-MS (m/z): 147.1(80.60%), 208.1(97.01%), 223.2(100%), 302.2(M⁺⁻), 304.2(M⁺⁻).

mBrM₃BP:

¹**H-NMR** (benzene- d_6 , 300MHz, δ ppm): 1.94 (s, 6H), 2.07 (s, 3H), 6.60 (m, 3H), 7.20 (m, 1H), 7.56 (d, 7.8 Hz, 1H), 8.21 (t, 1.8 Hz, 1H);

¹³C-NMR (CDCl₃, 75MHz, δ ppm): 19.3, 21.1, 128.0, 128.4, 130.3, 131.9, 134.1, 136.3;

FTIR (KBr, cm⁻¹): 1260(s), 1420(s), 1560(s), 673(s);

GC-MS (m/z): 147.0(100%), 208.2(45.65%), 223.2(79.57%), 302.2(M⁺), 304.2(M⁺).

pBrM₃BP:

¹**H-NMR** (CDCl₃, 300MHz, δ ppm): 2.04 (s, 6H), 2.31 (s, 3H), 6.87 (s, 2H), 7.56 (d, 9.0 Hz, 2H), 7.64 (d, 8.7 Hz, 2H);

¹³C-NMR (CDCl₃, 75MHz, δ ppm): 19.2, 21.1, 128.4, 130.8, 132.1, 134.0, 136.0, 136.1, 138.8;

FTIR (KBr, cm⁻¹): 834(s), 892(s), 1051(s), 1158(s), 1265(s), 1440(s), 1585(s), 1658(s), 1931(w), 2917(br);

GC-MS (m/z): 147.0(81.36%), 208.0(67.80%), 223.1(100%), 302.1(M⁺⁺), 304.1(M⁺⁺).

A3. lodo-2',4',6'-trimethylbenzophenones.

5g appropriate iodobenzoic acid was refluxed with 8 mL thionyl chloride and 25 mL chloroform for about 4 hours. At this point, the reactant mixture was a clear solution. The solvent and unreacted thionyl chloride were removed and crude acid chloride was obtained. The crude acid chloride was dissolved in a small amount of 1,2-dichloroethane.

A mixture of 3.2g aluminum chloride, 2.9g mesitylene and 25 mL 1,2-dichloroethane was cooled to 0°C. The acid chloride was then added into the mixture drop by drop. The reaction mixture was stirred for 24 hours before the reaction was quenched by a mixture of 15mL concentrated hydrochloric acid and 60g ice. The aqueous layer was extracted with dichloromethane twice. The combined organic layer was washed with water, 5M sodium hydroxide and water, twice each, and then was dried

over magnesium sulfate. The solvent was removed and the crude product was recrystallized from petroleum ether. Charcoal might be needed if the color of product is not white.

olM₃BP:

¹**H-NMR** (CDCl₃, 300MHz, δ ppm): 2.09 (s, 6H), 2.29 (s, 3H), 6.85 (s, 2H), 7.13 (m, 1H), 7.31 (m, 2H), 8.04 (d, 7.2 Hz, 1H);

¹³**C-NMR** (CDCl₃, 75MHz, δ ppm): 19.7, 21.1, 128.0, 128.7, 131.6, 132.7, 135.2, 142.0;

FTIR (KBr, cm⁻¹): 889(s), 1003(s), 1275(s), 1415(s), 1607(s), 1666(s); GC-MS (m/z): 147.0(54.60%), 208.0(80.46%), 223.0(100%), 350.0(M⁺⁻).

mlM₃BP:

¹**H-NMR** (CDCl₃, 300MHz, δ ppm): 2.05 (s, 6H), 2.31 (s, 3H), 6.88 (s, 2H), 7.15 (t, 7.8 Hz, 1H), 7.66 (d, 7.8 Hz, 1H), 7.88 (d, 7.8 Hz, 1H), 8.16 (t, 1.8 Hz, 1H);

¹³C-NMR (CDCl₃, 75MHz, δ ppm): 19.4, 21.1, 94.8, 128.4, 128.7, 130.5, 134.2, 137.8, 138.8, 139.0, 142.2;

FTIR (KBr, cm⁻¹): 847(s), 1169(s), 1261(s), 1419(s), 1555(s), 1607(s), 1666(s), 2335(w);

GC-MS (m/z): 147.0(100%), 208.0(56.34%), 223.0(88.73%), $350.1(M^{+})$.

pIM₃BP:

¹**H-NMR** (CDCl₃, 300MHz, δ ppm): 2.04 (s, 6H), 2.30 (s, 3H), 6.87 (s, 2H), 7.48 (d, 8.4 Hz, 2H), 7.79 (d, 8.4 Hz, 2H);

¹³C-NMR (CDCl₃, 75MHz, δ ppm): 19.5, 21.3, 102.5, 128.6, 130.9, 134.3, 136.7, 138.3, 138.9

FTIR (KBr, cm⁻¹): 818(s), 977(s), 1141(s), 1259(s), 1437(s), 1553(s), 1666(s), 1922(m), 2952(br);

GC-MS (m/z): 147.0(59.84%), 208.0(65.35%), 223.0(100%), 350

M.P. (°C) M.P. lit. (°C) Benzophenones 99~101.8 18 oCIM₃BP 101.0~101.5 67~69.5 ¹⁹ pCIM₃BP 68.0~68.5 113~115 20 110.9~111.0 oBrM₃BP 86~87 21 84.5~85.5 mBrM₃BP 70.5~71.2 70~73 ²² pBrM₃BP 97~98 ²³ 94.5~95.0 olM₃BP 85~86 ²³ mIM₃BP 84.0~84.5 72~73 ²³ 78.0~79.0 pIM₃BP

Table 3. Melting points of XM₃BPs

UV and phosphorescence

XM₃BPs have shown similar UV and phosphorescence spectroscopic characters as corresponding XBPs.

Table 4. Spectroscopic features of some benzophenones ^a

Benzophenones	λ _{max} (nm)	n, π* λ _{max} (nm)	Phosphorescence 0, 0 in nm (kcal/mol)
oCIM₃BP	214.8	335	-
oBrM ₃ BP	214.4	338	-
olM ₃ BP	220.2	342	-
mlM ₃ BP	226.2	341.9	441 (64.9)
pIM ₃ BP	206.0	341.2	437 (65.5)
oBrBP⁵	-	-	412 (69.5)
mIBP ^c	-	347	419 (68.3)
<i>p</i> IBP ^c	•	348	422 (67.8)

a. The sample concentration is about 0.01M in cyclopentane for UV spectra and about 0.0001M in 1:1 MeOH/EtOH for phosphorescence.

B. Identification.

Varian 3400 gas chromatograph and Hewlett-Packard 3392A integrator were used. Product from C-X cleavage was identified by comparing its retention time with the retention time of authentic M_3BP . The column was DB-210 50% tri-fluoropropyl methyl polysiloxane. The temperature of column was programmed as: 3 minutes at $80^{\circ}C$, increasing to 200 at the rate of $10^{\circ}C/min$., and then staying at $200^{\circ}C$ infinitely. The temperature of the injector was $200^{\circ}C$ and that of the detector was $220^{\circ}C$. The pressure of carrier gas helium was set at 80 lbs per square inch. The injection amount was $2 \mu L$.

The coincidence of retention time indicated the C-X cleavage product was dehalogenated 2,4,6-trimethyl benzophenone.

C. Quantum yields.

Quantum yields depict efficiency of certain process such as formation of some product and some decay pathways of excited states. In my

b. ref. 4

c. ref. 1

research, I studied the quantum yield of dehalogenated benzophenone formation. The quantum yield is defined as the following equation.

$$\Phi = \frac{[P]}{I_a} \tag{7}$$

where [P] is the concentration the product formed and I_a is the intensity of light absorbed by reactant molecules.

[P] was measured by gas chromatography with hexadecane as the internal standard. I_a was measured by an chemical actinometer. In chemical actinometry, a photochemical reaction with well-known and wide-accepted quantum yield is used to quantify the intensity of absorbed light by reactant molecules.² In my research, I used the reaction of acetophenone formation from valerophenone.

$$\Phi_{known} = \frac{[acetophenone]}{I_a} \tag{8}$$

where Φ_{known} is the well-known and wide-accepted quantum yield under experimental conditions, [acetophenone] is the concentration of acetophenone formed from valerophenone and l_a is the intensity of light absorbed by valerophenone molecules.

The following instruments were used: 1) Rayonet photochemical reactor; 2) Photo chem lamp UV 450W immer type produced by Ace Glass

Incorporated; and 3) Shimadzu UV-160 UV-visible recording spectrophotometer with Hewlett-Packard 3393A integrator. The XM₃BP sample and valerophenone were exposed to the same light source for the same time at room temperature. The UV spectra had indicated that almost all photons were absorbed by either valerophenone molecules or XM₃BP molecules; therefore, the I_a in Equation 7 is the same as the I_a in Equation 8. The quantum yield can be calculated according to Equation 9, which is derived from Equations 7 and 8.

$$\Phi = \frac{[P]}{[acetophenone]} \cdot \Phi_{known} \tag{9}$$

D. Quenching study.

Naphthalene was used as the quencher. To accomplish quenching study, ten culture tubes were charged with 2.8 mL about 0.01 M XM₃BP solution. Each culture tube also contained internal standard, whose concentration was the same and could be calculated out exactly. The first culture tube was free of quencher and the other nine culture tubes were loaded with quencher of different concentration. The quencher concentration in those tubes were all known.

The ten culture tubes were degassed by three circles of freeze-vacuumthaw. Then, the ten culture tubes were set on a merry-go-round apparatus and were exposed to UV light. After some time of irradiation, the concentration of product M_3BP was detected by gas chromatography. Under the experimental condition, the $[P]_0/[P]$ value is the same as the Φ_0/Φ value in Equation 4.

$$\frac{\Phi_0}{\Phi} = 1 + k_q \tau[Q] \tag{4}$$

[P]₀ is the concentration of formed M_3BP when quencher was absent and [P] is the concentration when quencher was in presence. The value of $k_q\tau$ was obtained from the Stern-Volmer plot of Φ_0/Φ against [Q].

REFERENCES

- 1. Wagner, P.J.; Waite, C.I. J. Phys. Chem. 1995, 99, 7388-7394;
- 2. Gilbert, A.; Baggott, F. Essentials of Molecular Photochemistry; Blackwell Science; 1991;
- 3. (a) Rentzepis, P.; Mitschele, C.J. *Anal. Chem.* **1970**, *42*, 20A; (b) Anderson, R. W., Jr.; Hochstrasser, R.M.; Lutz, H.; Scott, G.W. *Chem. Phys. Lett.* **1974**, *28*, 153;
- 4. Wagner, P.J.; Sedon, J.H.; Gudmundsdottir, A. *J. Am. Chem. Soc.* **1996**, *118*, 746-754;
- 5. (a) Baum, E.J.; Pitts, J.N. *J. Phys. Chem.* **1966**, *70*, 2066; (b) Baum, E.J.; Wan, J.K.S.; Pitts, J.N. *J. Am. Chem. Soc.* **1966**, *88*, 2652;
- 6. Wagner, P.J.; Sedon, J.; Waite, C.; Gudmundsdottir, A. *J. Am. Chem. Soc.* **1994**, *116*, 10284-10285;
- 7. Cowen, D.O.; Drisco, R.L. *Elements of Organic Photochemistry*; Academic Press: New York, **1969**;
- 8. Sobczak, M. Ph.D Thesis, Michigan State University, 1997;
- (a) Nagaoka, S.; Takemura, T.; Baba, H. Bull. Chem. Soc. Jpn. 1985, 58, 2082; (b) Dzvornik, M.; Yang, S.; Bersohn, R. J. Chem. Phys. 1974, 61, 4408; (c) Hwang, H.J.; El-Sayed, M.A. J. Chem. Phys. 1992, 96, 856; (d) Nakaoka, S.; Takemura, T.; Baba, H.; Koga, N.; Morokuma, K. J. Phys. Chem. 1986, 90, 759;
- 10. Ito, Y.; Nishimura, H.; Umehara, Y.; Yamada, Y.; Tone, M.; Matsuura, T. *J. Am. Chem. Soc.* **1983**, *105*, 1590-1597;
- 11. (a) Wagner, P.J.; Kochevar, I. *J. Am. Chem. Soc.* **1968**, *90*, 2232-2238; (b) Scaiano, J.C.; Leigh, W.J.; Meador, M.A.; Wagner, P.J. *J. Am. Chem. Soc.* **1985**, *107*, 5806-5807;

- 12.(a) Wagner, P.J.; McGrath, J.M. *J. Am. Chem. Soc.* **1972**, *94*, 3849; (b) Lewis, F.D.; Magyar, J. G. *J. Am. Chem. Soc.* **1973**, *95*, 5973; (c) Wagner, P.J. *J. Am. Chem. Soc.* **1967**, *89*, 5898;
- 13. Wagner, P.J.; Kelso, P.A.; Kemppainen, A.E.; McGrath, J.M.; Schott, H.N.; Zepp, R.G. *J. Am. Chem. Soc.* **1972**, *94*, 7506-7512;
- 14. Wagner, P.J.; Truman, R.J.; Scaiano, J.C. *J. Am. Chem. Soc.* **1985**, *107*, 7093;
- 15. Cao, Q. Ph.D. Thesis, Michigan State University, 1991;
- 16. Wagner, P.J.; Kemppainen, A.E.; Schott, H.N. *J. Am. Chem. Soc.* **1973**, *95*, 5604;
- 17. Mucha, J.A.; Pratt, D.W. J. Chem. Phys. 1974, 66, 5339;
- 18. (a) Newman, M.S.; Scheurer, P.G. J. Am. Chem. Soc. 1956, 78, 5004-5007;
 (b) Bunnett, J.F.; Hrutfiord, B.F. J. Org. Chem. 1962, 27, 4152-4156;
 (c) Derenberg, M.; Hodge, P. Tetra. Lett. 1971, 3825-3828;
- 19. (a) Yuldashev, K.Y. *J. Org. Chem. USSR (Engl. Transl.)* **1977**, *13*, 2204-2206; (b) Wiegers, K.E.; Smith, S.G. *J. Am. Chem. Soc.* **1977**, *99*, 1480-1487; (c) Fuson, R.C.; Armstrong, M.D. *J. Am. Chem. Soc.* **1941**, *63*, 2650-2652;
- 20. (a) Tanner, D.D.; Yang, C.M. *J. Org. Chem.* **1993**, *58*, 5907-5914; (b) Fuson, R.C.; Armstrong, M.D. *J. Am. Chem. Soc.* **1941**, *63*, 2650-2652;
- 21. Fuson, R.C.; Armstrong, M.D. J. Am. Chem. Soc. 1941, 63, 2650-2652;
- 22. (a) Fuson, R.C.; Armstrong, M.D.; Speck, S.B. *J. Org. Chem.* **1942**, *7*, 297-302; (b) Wiegers, K.E.; Smith, S.G. *J. Am. Chem. Soc.* **1977**, 99, 1480-1487; (c) Fuson, R.C.; Armstrong, M.D. *J. Am. Chem. Soc.* **1941**, *63*, 2650-2652;
- 23.(a) Patent; Kaken; BE 850042; **1978**; FR; US 4124726; **1978**; *Chem. Abstr.*; EN; 90; 168289; **1979**; (b) Patent; Kaken Chemical Co. Ltd.; DE 2659580; **1977**; GE; *Chem. Abstr.*; EN; 87; 167732; **1977**.

