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ABSTRACT

SEMANTIC CLASSIFICATION IN IMAGE DATABASES

By

Aditya Vailaya

Due to the huge amount of potentially interesting documents available over the

Internet, searching for relevant information has become very difficult. Since image

and video are a major source Of these data, grouping images into (semantically)

meaningful categories using low-level visual features is an important (and challeng-

ing) problem in content-based image retrieval. Using Bayesian classifiers, we attempt

to capture high-level concepts from low-level image features. Specifically, we have

developed Bayesian classifiers for semantic image classification (indoor vs. outdoor,

city vs. landscape, and sunset vs. forest vs. mountain), image orientation detection,

and Object detection (detecting regions Of Sky and vegetation in outdoor images).

We demonstrate that a small codebook (the Optimal codebook size is selected using

a modified MDL criterion) extracted from a learning vector quantizer can be used

to estimate the class-conditional densities Of the Observed features needed for image

classification. We have developed an incremental learning paradigm, a feature selec-

tion scheme, a rejection scheme, and a classifier combination strategy using bagging



to improve classifier performance. Empirical results on a large database (~ 24, 000

images) Show that semantic categorization and organization of the database using the

proposed classification schemes improves both retrieval accuracy and efficiency.
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Chapter 1

Introduction

Information is inherently multimodal. Humans can efficiently and effectively process

information simultaneously in multiple dimensions. These multiple media modali-

ties/types, that aid effective communication, can be characterized into speech, audio,

image, video, and textual data. Recently, there has been a Significant amount of inter-

est in digital storage, retrieval, and transmission of multimedia data. This is mainly

driven by technological breakthroughs (such as powerful processors, high-Speed net-

working, high—capacity storage devices, improvements in compression algorithms, and

advances in processing of audio, Speech, image, and video signals) which allow us to

digitize, store, and transmit audiovisual content in a very cost effective and efficient

manner. Multimedia systems are now not only economically feasible, but also highly

desirable.

A number of commercial organizations have large image and video collections Of

programs, news segments, Sporting events, paintings, and artifacts that are being

digitized for convenient on-line access. The advent of digital photography and dig-
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ital video further allows more and more people to have their personal collection Of

photographs and other audiovisual content available on the Internet. These digital

databases are not a dream of the future, but have become a reality. Organizing these

digital libraries into a small number Of categories and providing effective indexing is

imperative for accessing, browsing, and retrieving useful data in “real-time”.

Due tO the huge amount of potentially interesting documents available over the

Internet, searching for relevant information has become very difficult. According to

the Gilder technology report [1] (Aug, 1999) and the Netsizer review [2] (Jan 21,

2000) there exist over 70 million hosts on the Internet with over 4, 000 TeraByteS of

information. Images and video are a major source Of these data. Current solutions for

searching this humungous amount of data primarily deal with textual information;

many text-based search engines such as Yahoo(TM) [3], Altavista‘TM) [4], LycoslTM) [5],

Ezeiteum) [6], GooglelTM) [7] etc. are available on the World Wide Web. These search

engines are among the most visited Sites on the web, indicating a huge demand for

efficient search tools on the Internet. However, identifying “keywords” for audiovisual

content is a difficult problem as no generally recognized description Of this material

exists. For example, it is currently not possible to automatically search for a par-

ticular picture, say, “Arnold Schwarzenegger on a motorbike in Terminator”, or a

“hilarious ten minute video scene”. AS another example, a basketball coach might

be interested in querying a video database to retrieve a particular type of play for

developing a defensive strategy for his team. Can a basketball video be automati-

cally segmented into meaningful “plays” (e.g., defensive and Offensive strategies, foul

plays, dunks, etc.) to support such queries? These numerous applications (and also
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other applications in stock video, satellite imaging, medical imaging, education and

distance learning, etc.) have identified the need Of a solution to the problem of effi-

ciently searching for various types Of multimedia material Of interest to the user. The

goal of this thesis is to extract low-level image features for semantic categorization of

image and video content which will lead to an eflicient retrieval.

1.1 Text-based Retrieval Systems

Traditionally, textual features, such as filenames, caption and keywords have been

used to annotate and retrieve image databases. However, there are several problems

associated with text-based queries. First of all, human intervention is required to

describe and tag the contents of the images in terms Of a selected set of captions and

keywords. In most of the images there are several Objects that could be referenced,

each having its own set Of attributes. Further, we need to express the spatial relation-

ships among the various objects in an image to understand its content. AS the size Of

the image databases grows, the use of keywords becomes not only complex but also

inadequate to represent the image content. The keywords are inherently subjective

and not unique. Often, the preselected keywords in a given application are context

dependent and do not allow for any unanticipated search. If the image database is

to be shared globally then the linguistic barriers will make the use Of keywords in-

effective. Another problem with this approach is the inadequacy Of commonly used

textual descriptions Of attributes such as color, shape, texture, layout, and sketch.

Consider the picture Of a picnic scene shown in Figure 1.1. Various Objects that
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are associated with the picture which may later be used for querying, could be the

individuals in the picture, the clothes they are wearing, their gender, the color of

their clothes, the background in the image, the activity Of the people in the image

(standing, sitting, laughing, eating, etc.), the spatial relationships between the various

people, and so on. There doesn’t seem to be a standard textual representation of all

these attributes. Later, while querying the database, a user can think of a number of

other textual attributes to describe this picture, such as, “Show me a picture where

Joe Smith is wearing a t—shirt with a PRIP logo”, which had not been tagged with

the images in the database. A larger number of attributes of keywords is typically

needed to represent an image.

 

Figure 1.1: A photograph of a picnic scene.

For manual image retrievals, we generally do not store textual descriptions for

various images, but have a general notion Of what an image contains. One of the main

goals in content-based retrieval research is to automatically extract features that aid

in representing and retrieving multimedia data. For example, face detection followed

by face recognition can be used to extract information of people in a scene (such

4



as in Figure 1.1). Current computer vision techniques are not able to automatically

extract and identify objects in an image. State-Of-the-art face recognition systems

can detect and recognize only frontal faces in images [8]. Similarly, text detectors

can be used to locate regions Of text in images, provided the individual characters are

significantly large and have a high contrast. An OCR can then be used to identify

the text. Thus, queries like “Show me a picture where Joe Smith is wearing a t-shirt

with a PRIP logo” can be retrieved based on automatic face and text recognition

(which are currently hot topics of research).

1.2 Content-Based Image Retrieval Systems

Due to the limitations of the traditional text-based systems in providing indices to

digital libraries, there has been an intense activity in developing multimedia retrieval

methods based on automatically extracting features from the visual content. Var-

ious systems have been developed for content-based image and video retrieval, the

most prominent of these being QBIC [9], Photobook [10], FourEyes [11], SWIM [12],

Virage [13], ViBE [14], VideOQ [15], Visualseek [16], Netra [17], and MARS [18].

These systems follow the paradigm of representing image and video content using a

set of low-level attributes, such as color, texture, shape, layout, and global motion

which are archived along with the multimedia database. A retrieval is performed by

matching the features Of a query image or video clip with features Of the database

documents. Users typically do not think in terms of low-level features while querying

digital databases, i.e., user queries are typically based on semantics (e.g., “show me a

5



sunset image”) and not on low-level image features (e.g., “Show me a predominantly

red and orange image”). AS a result, most of these multimedia retrieval systems have

poor performance for specific queries. For example, Figure 1.2(b) Shows the top-10

retrieved results (based on color histogram features) for the query in Figure 1.2(a)

on a database Of 2, 145 images Of city and landscape scenes. While the query image

has a Specific monument (a tower here), some Of the retrieved images in Figure 1.2(b)

include scenes Of mountains and coasts. Thus, there is a need for a higher level Of

abstraction (a semantic level) to aid in effective and efficient search Of the multime-

dia data. A successful grouping of the database images into semantically meaningful

classes [19] can greatly enhance the performance of a content-based image retrieval

system. Figure 1.2(c) shows the top-10 retrieved results (again based on color his-

togram features) on a database Of 760 city images for the same query. These results

Show that filtering out landscape images from the image database prior to query-

ing can improve the retrieval results. Similarly, Figures 1.3(b) and (c) Show top-10

retrieved results (based on color histogram features) for a landscape query in Fig-

ure 1.3(a) on a database of 2,145 city and landscape images and 1,386 landscape

images, respectively. Again, it can be seen that filtering out the city images from the

database prior to querying improves the retrieval results in Figure 1.3(c).

The limitations Of current “content-based” image and video retrieval systems have

led to a need to model human perception of image content tO improve the accuracy

and efficiency of retrievals. One method to decode human perception is through the

use Of a relevance feedback mechanism [20], where the user and the system can interact

with each other tO improve the retrieval performance. Although, the use of relevance

6



 

   
 

    
Figure 1.2: Color-based retrieval results; (a) query image; (b) top-10 retrieved images

from 2,145 city and landscape images; (c) top-10 retrieved images from 760 city

images; filtering out landscape images prior to querying improves the retrieval results.



 

  
 

 

   
 

Figure 1.3: Color—based retrieval results; (a) query image; (b) top-10 retrieved im-

ages from 2,145 city and landscape images; (c) top-10 retrieved images from 1,386

landscape images; filtering out city images prior to querying improves the retrieval

results.



feedback is important to improve retrieval results, there is still a need for extracting

high-level semantic information from multimedia data. Various psychological studies

and experiments [21, 22, 19] have confirmed this, leading to a renewed interest in

extracting semantic (or pseudo-semantic) information from image and video data [11,

23, 24, 25, 26, 19, 27, 28, 29, 30]. Most Of the current systems manually insert

these semantic tags into image databases. Queries combining both semantic tags

(keywords) as well as low-level image features are then used for efficient retrieval. TO

highlight this issue, we present retrieval results using the QBIGTM) image retrieval

engine [31]. Figures 1.4(a) and (b) Show the retrieval results for the query image

(top left image in each figure) using color and texture features, respectively. Adding

semantic tags like the keyword “people” improves the retrieval results as seen in

Figures 1.5(a) and (b). Automatic face detection techniques [8] can be used to locate

the presence of people in an image which can then be tagged along with the image. As

another example, Figure 1.6 Shows the retrieval result using QBIC for a sunset query

image (top left image in the figure) using color histogram based search. When the

keyword “sunset” is added to the query, the retrieval results become more meaningful

as seen in Figure 1.7. Manually tagging each database image is not only tedious, but

is highly subjective. For example, the author feels that the third and fourth images

in the top row and the first image in the second row in Figure 1.6 are sunset images.

However, since these were not tagged with the “sunset” keyword in the database,

they were not retrieved in Figure 1.7. Thus, there is a need for an automatic and

objective means Of assigning semantic indices to images in a database.
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Figure 1.6: Retrieval result of QBIGTM) image retrieval engine on a sunset query

image (top left image) using color histogram features
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Figure 1.7: Retrieval result of QBIGTM) image retrieval engine on a sunset query

image (top left image) using the keyword, sunset, along with color histogram features;

use of a keyword (sunset) improves the retrieval result as compared to Figure 1.6.



1.3 Image Storage Standards

It is generally agreed that a combination of textual features, low-level content-based

features (color, texture, etc.), and semantic categories is necessary for efficient mul—

timedia retrieval. However, lack of a standard to represent multimedia content as

well as the features describing them has made it extremely difficult to design multi-

media information retrieval systems. The Moving Picture Experts Group (MPEG)

is a working group under ISO/IEC in charge of the development of international

standards for compression, decompression, processing, and coded representation of

moving pictures, audio, and their combination. The various standards that MPEG

has produced (or is currently producing) are: (i) a standard for storage and retrieval of

moving pictures and associated audio on storage media (MPEG-1); (ii) a standard for

digital television (MPEG-2); (iii) a standard for multimedia applications (MPEG-4);

and (iv) a content representation standard for information search (MPEG-7).

MPEG-7, formally called Multimedia Content Description Interface, aims to stan-

dardize the description of various types of multimedia information, associated with

the content itself, to allow fast and efficient searching of material that is of interest to

the user [32, 33, 34, 35]. According to MPEG-7, multimedia data should be appended

by a standardized set of words, descriptions, or features representing a rich concept,

that can be related to several levels of abstraction, offering the possibility of different

levels of discrimination of image and video. This implies that the same image/video

can be described using different types of features, tuned to application of interest.

For example, descriptions for video may include a lower abstraction level of color,
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texture, shape, layout, and motion features, whereas semantic information about the

scene could be coded at the highest level of abstraction. For the picnic image shown

in Figure 1.1, MPEG-7 descriptors could be defined as follows:

0 Low-Level Features: local and global color, texture, and shape features.

0 Semantic Descriptors: Picnic scene, names of people present, type of clothes

they are wearing, activity of people in the image (standing, eating), location

where picture was taken (X park), time the picture was taken, name of the

photographer, occasion for the picnic, etc.

While the low-level features can be automatically extracted, they do not carry

sufficient information for efficient and accurate retrieval. Hence, there is a need to

index the multimedia data with semantic descriptors of the scene. However, not

all of the high-level descriptors, which carry rich information about the scene, can

be automatically extracted. For example, from the image alone, the name of the

photographer or the location where the image was taken cannot be identified. On the

other hand, face and text detectors can automatically identify some of the high-level

descriptors that can be tagged with the above image.

Figure 1.8 shows the MPEG-7 processing chain. It includes feature extraction

(analysis), the description itself, and the search engine (application). Automatic

extraction of image features (or descriptors) will be extremely useful to generate

MPEG-7 descriptions. However, with the current state-of-the-art computer vision

algorithms, automatic extraction of features is not always possible, especially, at the

higher semantic level of abstraction. This is the reason why the scope of MPEG-
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Figure 1.8: MPEG-7 processing chain.

7 does not include the feature extraction process. Rather, MPEG-7 assumes that

these descriptions are already available (either automatically extracted or manually

annotated). Regardless of how features are extracted from multimedia data, they

need to be efficient and effective for content-based retrieval and browsing. The goal

of this thesis is to address this issue of automatic assignment of specific high-level

semantic tags to images and video frames.

1.4 Indexing and Classification

As discussed above, there is a need for automatic conceptual indexing and categoriza-

tion of images to enhance the performance of content-based image retrieval systems.

Semantic image classification can also be used for content-based image processing

in smart printers and cameras. Efficient filtering and printing techniques can be em-

ployed if the semantic class of an image is known a priori. For example, indoor images

are usually close-ups. This information can be used by a smart printer to print the

details in an indoor image. However, this rather difficult problem (semantic image

classification) has not been adequately addressed in current image database systems.
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The main problem is that only low-level features can be reliably extracted from images

as opposed to higher level features such as the nature of objects present in the scene

and their inter-relationships. For example, color histograms can be easily computed

for any color image, but presence/absence of sky, trees, buildings, furniture, people,

etc., cannot be reliably extracted from general images. One attempt to solve this

problem is the hierarchical indexing scheme pr0posed by Zhang and Zhong [36, 37],

which uses a Self-Organization Map (SOM) to perform clustering based on color and

texture features. This indexing scheme was further applied in [38] to create a texture

thesaurus for indexing a database of large aerial photographs. However, the success

of such clustering-based indexing schemes is often limited, largely due to the low-level

feature-based representation of image content. For example, Figures 1.9(a)-(d) show

two images (a fingerprint and a landscape image) and their corresponding edge di-

rection coherence feature vectors (these features are defined in [19]). Although, these

two images denote two very different concepts, their edge direction features are highly

similar; the Euclidean distance between the corresponding histograms is only 0.0147

(distances are in the range [0,1]). This shows the limitations of low-level features

in capturing semantic content in an image. Yet, as we shall show later, the same

edge direction features have sufficient discrimination power for city vs. landscape

classification. In other words, specific low-level features can be used in constrained

environments to discriminate between certain conceptual image classes.

To achieve the goal of automatic categorization and indexing of images in a large

database, we need to develop robust schemes to identify salient image features that

capture a certain aspect of semantic content of these images. This necessitates an

17



initial specification/definition of pattern classes, so that the database images can be

organized in a. supervised fashion.
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(c) Landscape Image (d) Edge Direction Coherence Feature Vector

Figure 1.9: Edge direction coherence vector features for (a) fingerprint and (c) land-

scape image; The distance, d(b, d), between these two histograms is 0.0147.

1.5 Proposed Research

Psychophysical and psychological studies have shown that scene identification in

humans can proceed, in certain cases, without any kind of object identifica—

tion [39, 40, 41]. Biederman [39, 40] proposed that an arrangement of volumetric

primitives (geons), each representing a prominent object in the scene, may allow rapid

18



scene identification independently of local object identification. Schyns and Oliva [41]

demonstrated that scenes can be identified from low-spatial-frequency images that

preserve the spatial relations between large-scale structures in the scene, but which

lack the visual detail to identify local objects. In addition, they reported that scene

identification when it was presented for a very short duration (40—50 ms) was based

more on low-frequency information (global image features) than on high-frequency

information (edges) in the image (while both low-frequency and high-frequency fea-

tures are extracted from the image in the short time duration, low-frequency features

were weighted more). Human subjects, when presented with low-frequency represen-

tation of an image for a very short duration (40 ms), were able to identify the scene

type (city scene, room, etc.) with approximately 85% accuracy. These results sug-

gest the possibility of coarse scene identification from global low-level features before

the identity of objects is established. The results further suggest that by attending

first to the coarse scale (low-frequency features), the visual system can get a quick

and rough estimate of the input to activate plausible scene schemes in the memory,

while attending to fine information (high-frequency features) allows refinement, or

refutation, of the raw estimate. Thus, for an unknown scene that needs a fast cat-

egorization, more salient - but uncertain - low-frequency (coarse) information may

be more efficient for an initial estimate of the scene’s identity. To quote Navon [42],

“forest-before—trees is a better strategy than trees-before-forest”. Based on the initial

guess, verification can then proceed using more accurate high-frequency features.

The goal of this thesis is to concentrate on the extraction of content-based low-

level features and their application in developing semantic categorization of image

19



and video content to aid in effective and efficient image and video data browsing

and retrieval. We do not attempt to understand multimedia content, but we address

the issue of making a rough estimate of the scene identity in terms of a number of

semantic classes. For example, the picnic scene in Figure 1.1 can be tagged as follows:

outdoor scene, has vegetation (trees and grass), has man-made structures, does not

have sky, has people (six), and has text (PRIP). These semantic tags are then used

as indices into the database. Users can now formulate their query in terms of these

semantic tags.

Rather than first generating a multi-class classification, we believe that it may

be more feasible to perform multiple two-class classifications based on features which

have high discriminability for the particular two classes. Thus, we propose to develop

multiple binary classifiers for image data which are later combined in a hierarchical

fashion to generate semantic indices.

Figure 1.10 shows the proposed system block diagram. The system is divided into

archiving and retrieval stages. During archiving, low-level features representing at-

tributes such as color, texture, shape, motion, etc., are extracted from the multimedia

data and archived in the database. These low-level features are also used to extract

Specific high-level scene descriptions for the multimedia data which are then stored

along with the low-level features. Figure 1.11 shows our proposed system for building

semantic indices into multimedia data using visual cues. An input image is fed to two

levels of processing: (i) scene identification based on global image features; and (ii)

object detection based on local image features. The solid lines show the flow of con-

trol in the system. Initially, global low-level features are used for scene classification.
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As an example, we show how images can be classified into a hierarchy of semantic

classes. Images are first classified into indoor or outdoor classes. Outdoor images

are further classified into city or landscape classes. A subset of landscape images is

further classified into sunset, forest, and mountain classes. The above hierarchy was

identified based on experiments with human subjects on a small database of 171 im-

ages [19] and is briefly described in Chapter 4.1. In the retrieval and browsing mode,

the low-level features are used along with the high-level scene description (semantic

tags) to constrain the search space and provide more efficient and accurate retrieval

results.

The scene classification information is also used with local image features to detect

the presence of specific objects (sky, vegetation, people, etc.). The dashed lines in

Figure 1.11 show the desired flow of control, but these paths have not currently been

implemented in our system. The two modules for scene classification and object

detection may in fact interact and coordinate to generate semantic tags. However,

we currently rely on the scene information (presumed more reliable) to direct the

object detection module and not the other way around. These modules can also send

feedback to the feature extraction module if the low-level features being used do not

have sufficient discriminatory information for classification. Finally, both the scene

classification and object detection modules output semantic tags which are used to

generate indices into the image database.

The classification problems formulated above are addressed in this thesis using

Bayesian learning and inference mechanism. The probabilistic models required for

the Bayesian approach are estimated during the training phase; in particular, the
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Figure 1.11: Proposed system for automatically building semantic indices in image

databases.

class—conditional probability density functions of the observed features are estimated

under a Learning Vector Quantization (LVQ) framework [43, 25, 44]. An MDL-type

principle [45, 28] is used to determine the optimal size of codebook vectors from

the training samples for the various classifiers. The maximum a posteriori (MAP)



1.6 Issues in Semantic Classification

A major drawback with content-based retrieval is that images that do seem to be

perceptually similar need not be exactly similar in appearance. In fact, two images

that describe the same semantic scene (city scene or landscape scene) need not have a

high pixel-based correlation value. For example, Figure 1.12 shows four images that

belong to the city class. These images differ considerably in their pixel-wise correlation

value. We (humans) can identify these images as belonging to the city class but it is

extremely difficult for a computer vision system to identify and group such images into

the same class. As another example, Figure 1.13 shows four landscape images. It can

again be seen that automatically developing models for the landscape image class is a

very difficult problem. As a final example, Figure 1.14 presents four images belonging

to the mountain image class. Although these images are perceptually similar, they

differ markedly in their appearance. Given the current state-of-the-art in computer

vision algorithms, it is not possible to reliably identify various objects (such as sky,

mountains, buildings, etc.) in an arbitrary image. However, we will show in this thesis

that constrained problems such as discriminating between global scenes such as city

and landscape images, or indoor and outdoor images, can be addressed using specific

low-level features. Furthermore, we show that the image classification information can

be used to extract objects that have a high probability of occurrence in that image.

For example, we demonstrate results of extracting regions of sky and vegetation in

outdoor images.

Training the classifiers is another major issue in content-based image classification
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Figure 1.12: A subset of city images.

and retrieval. Humans do not assign a single class label to an image and many

of the semantic classes overlap. For example, Figures 1.15(a) and (b) show two

images belonging to both city and landscape (sunset) image classes. Modeling this

fuzziness in an automatic classifier is a very difficult problem. In order to simplify

the problem at hand, we do not consider fuzzy classification of images. Rather, we

assume that every image belongs to only one class. This assumption simplifies the

generation of training samples. Each image is assigned to the class that it most

resembles (as determined by the system designer). Both the images in Figure 1.15(a)

and (b) were assigned to the landscape class. Our classifiers then output the final

classification result for an input image by assigning it a probability (confidence) of

belonging to each of the given classes (which can be used as a fuzzy membership value)

and choosing the class with the maximum a posteriori class probability. The images

in Figures 1.15(a) and (b) were assigned to the landscape class with a probability of

0.98 and 0.01, respectively, using our city vs. landscape classifier. The result suggests
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Figure 1.13: A subset of landscape images

that Figure 1.15(b) would not be retrieved in case of a query on landscape images,

even though the user may be querying for a sunset image.

1.7 Thesis Outline

The thesis is organized as follows. Chapter 2 presents a brief literature survey on

image and video database retrieval systems. In Chapter 3, we discuss the Bayesian

framework for image classification and present an introduction to Vector Quantization

(VQ) and density estimation along with a detailed description of the MDL principle

for selecting an optimal codebook size. Chapter 4 discusses the hierarchical classifi-

cation of vacation images along with the implementation issues and choice of feature

sets for the various binary classifiers. Chapter 5 presents another application of the

above Bayesian methodology for automatic orientation detection of digitally scanned

images. Chapter 6 discusses methods to improve classifier robustness. In Chapter
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Figure 1.14: A subset of images from the mountain image class.

7, we develop classifiers to detect specific objects (sky, vegetation, people) in an im-

age. We discuss the efficiency of a retrieval system based on the above classification

scheme on a database of approximately 24, 000 images in Chapter 8. Chapter 9 finally

concludes the thesis and presents directions for future work.

27



 
(b)

Figure 1.15: Fuzzy membership: Two images belonging to both the city and landscape

(sunset) image classes; a user assigned these images to the landscape class.
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Chapter 2

Literature Review

A number of image and video database retrieval systems that perform retrieval based

on low-level image features have been reported in the literature. In the case of image

databases, a feature vector which describes various visual cues, such as shape, texture,

or color is computed for each image in the database. Given a query image, its feature

vector is calculated and those images which are most similar to this query based on an

appropriate distance measure in the feature space are retrieved. The feature selection

methods proposed in the literature can be broadly classified into two categories on

the basis of the approach used for extracting the image attributes [46]. The spatial

information preserving methods derive features that preserve the spatial information

in the image. It is possible to reconstruct the image on the basis of these feature

sets. Representative techniques in this category include polygonal approximation

of the object of interest, physics-based modeling, and principal component analysis

(PCA). The non-spatial information preserving methods extract statistical features

that are used to discriminate objects of interest. These include features based on
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color histograms, color moments, and statistical shape and texture features such as

edge direction histograms, Tamura texture features, wavelet-based texture features,

etc. In the following section, we briefly review the color-, shape-, and texture-based

image retrieval methods.

2. 1 Image Features

Most image retrieval systems use shape, texture, and color to represent an image and

retrieval is based on the similarity of features derived from these cues. Although,

color seems to be a highly reliable attribute for image retrieval, situations where

color information is not present in the images require the use of shape and/or texture

attributes for image retrieval. Moreover, retrieval based on a single image attribute

might lack sufficient discriminatory information warranting a need for the use of

multiple low-level image attributes. For example, color-based approaches cannot

distinguish between a red apple and a red Ferrari. Additional shape information

can very easily distinguish these two objects. We now briefly describe some of the

image attributes and the associated low-level features that have been reported in the

literature.

2.1.1 Color

Most of the recent work on color feature extraction has concentrated on color his-

tograms. Some of the earlier works include color indexing using histogram inter-

section [47, 48] and reference color methods [49]. The 3-D histogram intersection
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technique described in [47] uses 16 x 16 x 16 bins and the resulting matching is rel-

atively fast. Reference color method [49] improves the performance further by using

fewer reference color bins. Color histograms are generally invariant to translation

and rotation of the images and normalizing the histograms leads to scale invariance.

However, color histograms do not incorporate spatial adjacency of pixels in the image

and may lead to inaccuracies in the retrieval. Other schemes such as PCA on color

features [10] maintains the spatial adjacencies. More recently, local color histograms

and local color moments [50, 19, 28] have been used to capture some spatial color

information. A further histogram refinement method that captures spatial coherence

in each color bin (color coherence vector) has been proposed in [51]. A color coher-

ence vector is a color histogram refinement scheme that divides each bin into coherent

and non-coherent pixels [51]. A pixel in a bin is said to be coherent if it is part of a

large similarly-colored region. This concept was further extended to local histograms

in [19].

Another issue in color feature extraction is its representation. While the RGB

color space has been most commonly used, it does not model the human perception

of color. HSV and LUV color spaces better model human color perception. A

comparison of color features and color Spaces for image indexing and retrieval can be

found in [52]. The authors report that while no single color feature or color space is

best, the use of color moment and color histogram features in the LUV and HSV

color spaces yielded better retrieval results than in the RGB color space.
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2.1.2 Shape

Although humans can effectively use color to differentiate among natural objects,

many artificial (man made) objects cannot be distinguished on the basis of color

alone. Moreover, humans when presented with binary or grayscale images can easily

distinguish among these. Various schemes have been proposed in the literature for

shape—based retrieval. These include polygonal approximation of the shape [48]; shape

matching using relaxation techniques [53], which uses relaxation methods to find

acceptable combinations of matches between pairs of angles on two shapes; image

representation on the basis of strings [54, 55], which represent the shape of objects as

strings and consider string matching techniques for retrieval; comparing images using

the Hausdorfl' distance [56], which measures the extent to which each point of the

stored database image lies near some point of the query and vice versa; experiments

in point matching techniques [57], which extract a set of distinctive local features

from the query and the model, and then match the resulting point patterns; image

registration by matching relational structures [58], which uses relational structures to

represent images; shape matching based on chord distributions [59], which uses chord

length distribution for image matching; image representation using Codons [60], which

uses continuous curve segments in an image that are separated by concave cusps. to

represent the object shape; matching objects using Fourier descriptors [61]; and object

matching using invariant moments [62].

The above techniques rely on a single concise feature to describe the shape. A

major limitation of using a single shape model in image database retrieval is that
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it might not be possible to extract the corresponding features in a given application

domain. Moreover, shape-based representation schemes are not generally invariant

to large variations of image size, position, and orientation. In order to incorporate

invariance to rigid motions (rotation and translation), these methods need to be

applied for all possible rotations and translations, thereby, reducing the speed of the

retrievals. Vailaya et a1. [63] describe a hierarchical scheme where a combination of

shape filters can be quickly applied in the first stage with a more detailed matching

in the second stage for efficient shape-based retrieval of trademark images. Edge

direction histograms and moment invariant shape features act as efficient pre—filters for

shape matching. A more computationally intensive matching stage using deformable

templates then orders the filtered images according to their similarity to the query

trademark.

2.1.3 Texture

Variations of image intensities that form certain repeated patterns are called visual

texture [64]. These patterns can be the result of physical properties of the object

surface (roughness, peakedness), or be the result of reflectance differences such as the

color on a surface. Humans can very easily recognize a texture, yet it is very difficult

to define it. Texture analysis is an important and useful area of study in computer

vision. Most natural surfaces exhibit texture and it may be useful to extract texture

features for querying. For example, images of wood, grass, etc. can be easily classified

based on the texture rather than shape or color.
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Texture models developed in the literature can be divided into the following four

classes [64]. Statistical methods define texture in terms of the spatial distribution of

grey values. These include the use of co-occurrence matrices [65] and autocorrelation

features (extracting repetitive nature of placement of texture elements). Geometric

methods are characterized as being composed of “texture elements” or primitives.

These include Voronoi tessellation features [66] and structural methods that extract

the texture primitives [67]. Model based methods assume an underlying image model

to describe and synthesize texture. These include the use of random field mod-

els [68], fractals [69], and SAR texture models [70]. Signal processing methods use

frequency analysis of the image to classify texture. The schemes include the use of

spatial domain [71] and Fourier domain [72] filtering, and the use of Gabor filters

and wavelet models [73, 38]. A number of research studies have shown that the Ga-

bor and MSAR (multiresolution simultaneous autoregressive) texture models seem to

outperform other texture models in content-based retrieval and indexing [38, 11].

2.1.4 Summary of Low-Level Image Features

Table 2.1 briefly describes the various low-level image features that have been widely

used for content-based image retrieval along with their advantages and limitations.

In terms of color, the most widely used features are color histograms [47, 48], color

moments [50, 28], and color coherence vectors [51, 19]. These features describe the

global properties in an image and can be easily extracted from the image. A major

limitation is their inability to appropriately represent local spatial information or ob-

34



jects in an image. Shape features more aptly describe objects in an image. Commonly

used shape and contour features are polygonal approximation of the shape [48], shape

representation via invariant moments [62, 63], and shape representation via Fourier

descriptors [61]. Shape features provide a higher level of abstraction in terms of shape

of objects in an image. However, these require good segmentation algorithms to ex-

tract objects of interest from an image. Since objects in an image can occur at any

scale, orientation, or translation, matching based on shape features is more expen-

sive than based on the color features. Texture features provide an intermediate level

of abstraction in an image. Low-level texture features can provide both global and

local information, but are hard to define. Commonly used features include the use

of co—occurrence matrices [65], multi-resolution simultaneous auto regressive (MSAR)

texture features [70], and Gabor filter models [73, 38]. Like color features, texture

features are extracted automatically from an image. Moreover, they are limited in

their ability in describing the semantic content in the image. Another limitation of

texture features is the high computational complexity of matching based on these

features.

2.1.5 Image Segmentation

The above defined features can be extracted either globally or locally (from sub-blocks

in the image) from an image. However, they are more effective if they are extracted

from individual homogeneous regions (segments) in an image. Image segmentation

thus plays an important role in image retrieval. Segmenting images into “meaning-
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ful” parts is a very diflicult problem. Many techniques have been reported in the

literature for image segmentation [74, 66, 73, 70, 75, 76, 77, 78]. A main limitation

of these image segmentation methods is that the resulting homogeneous regions may

not represent any “meaningful” object of interest. In fact, most semantic objects

have heterogeneous regions. In this thesis, we will also address the issue of texture

representation of semantic concepts such as sky and vegetation, without attempting

image segmentation.

2.1.6 Combining Multiple Features

Retrieval based on a single image attribute lacks sufficient discriminatory informa-

tion and might not be able to accommodate large scale and orientation changes. For

large databases, we need to extract multiple features for querying the database. A

number of studies have been carried out which combine the various features for effi-

cient and effective querying by image content. These systems are briefly described in

Section 2.3.

2.2 Feature Extraction from Video

The paradigm of using visual cues has also been extended for video database retrieval

by several researchers [79, 37, 80, 81]. A video clip is first segmented into shots (shot

detection). Each shot is then represented in terms of a number of (generally few)

key frames (key frame extraction) [82, 83, 84, 85]. Features describing the color,

texture, and shape content in the key frames along with features describing motion
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vectors over a set of frames near the key frames are then used for retrieval. Key frame-

based representation does not take into consideration important objects (e.g., tracking

basketball players) in the video. The object-based approach to video segmentation

and representation represents shots in terms of the objects (key objects) present [86,

87, 15, 88]. Automatic extraction of key objects is in itself a very challenging problem.

Object-based representation is thus currently restricted to specific types of videos

where extracting objects is relatively simple, e.g., news video where anchor person

is an important object, specific sport videos such as tennis, where segmentation of

moving players is relatively simple, etc. More recently, a different approach to video

database browsing and retrieval based on a systematic integration of all the available

media such as video, audio, and close-caption text has been proposed [13, 89, 90].

Although, it seems logical to use multimedia for understanding video, much research

is needed in order to understand and analyze each of the individual cues.

While there has been a substantial progress in video database retrieval based on

shot detection, retrieval based on a video clip (say, a few seconds of video) is only

now receiving some attention [91, 92, 93]. A clip can be described as a set of shots

describing a particular event; for example, a dialogue clip between two people may

include interspersed single shots of the individuals involved as well as combined shots

showing the two individuals. As another example, a free-throw segment in a basketball

video might consist of a close-up of the player, followed by a side view of the court

during the free-throw. These shots inherently carry more semantic information than

a single shot. Querying on the basis of clips as a unit, attempts to improve the speed

of retrievals by avoiding initial segmentation of video into shots and identification of
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key frames. We next briefly describe some of the current image and video database

retrieval systems.

2.3 Image and Video Database Retrieval Systems

A number of general purpose image and video retrieval systems have been developed.

These systems attempt to combine multiple low-level features based on shape, color,

texture, and motion cues for retrieval.

0 QBIC: The QBIC system [94, 9, 95] has developed methods to query large on-

line digital libraries using image and video content as the basis of the query.

In other words, the system allows users to search through databases consisting

of very large numbers of images using sketches, layout or structural descrip-

tions, texture, color, and sample images. QBIC techniques serve as database

filters and reduce the search complexity for the user. These techniques limit

the content-based features to those parameters that can be easily extracted,

such as color distribution, texture, global shape of an image, and layout. The

system offers a user a virtually unlimited set of unanticipated queries thus al-

lowing for general purpose applications rather than catering to a particular

application. Color- and texture-based queries are allowed for both images and

objects, whereas shape-based queries are allowed only for individual objects and

layout-based queries are allowed only for the entire image.

0 Photobook: Photobook and FourEyes [10, 11] provide a set of interactive tools

for browsing and searching image sequences. The features used for querying
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can be based on both text annotations and image content. The key idea behind

the system is semantics-preserving image compression, which reduces images to

a small set of perceptually significant coefficients. These features describe the

shape and texture of the images in the database. Photobook uses multiple image

features for querying general purpose image databases. The user is given the

choice to select features based on the appearance, shape, and texture to browse

through large databases. These features can be used in any combination with

textual features to improve the efficiency and accuracy of the retrievals.

Virage: Similar to QBIC, Virage [13, 96] supports visual queries based on arbi-

trary combinations of color, composition (color layout), texture, and structure

(object boundary information). The users can adjust the weights associated

with the atomic features according to their own emphasis. Virage also provides

general purpose features (as described above) and problem specific features (e. g.,

features for face recognition, medical applications, etc.).

VisualSEEk and WebSEEk: VisualSEEk and WebSEEk [16, 97] are text- and

image feature-based search engines. They allow spatial relationship query of

image regions as well as visual feature extraction from compressed domain. The

visual features used are color sets and wavelet transform based texture features.

Binary tree based indexing algorithms are used to speed up the retrieval process.

Netra: Netra [17, 38] is a prototype image retrieval system using color, texture,

shape, and spatial location information in segmented image regions to search

and retrieve similar regions from the database images. The main features of
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Netra are a set of Gabor filter based texture features [38] and an edge flow

based image segmentation scheme [77].

MARS: MARS [18, 20] uses integration of database management systems

(DBMS) and information retrieval (IR), integration of indexing and retrieval

tasks, and integration of computer and human expertise for image retrieval.

The main goal of MARS is not to find the single best feature representation,

but rather on how to organize various visual features into a meaningful retrieval

architecture which can dynamically adapt to different applications and differ-

ent users. MARS formally proposes a relevance feedback architecture to decode

human perceptual models.

ViBE: Video Browsing Environment (ViBE) [14] allows a user to organize large

video sequences. A video sequence is initially segmented into shots using the

Generalized Trace obtained from DC-sequence of the compressed data stream.

Each shot is represented by a hierarchical tree structure of key frames. These

shots are also automatically classified into pre-determined pseudo—semantic

classes. A similarity pyramid data structure is used to present results to the

user. ViBE also uses relevance feedback to decode human models of semantic

classes.

VideoQ: VideoQ [15, 98, 99] presents a real-time, interactive system on the

Web for video browsing and retrieval, based on the visual paradigm. Spatio-

temporal attributes are the main focus of VideoQ for video retrieval. The

system automatically segments and tracks objects and regions of interest based
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on color, texture, shape, and motion features. VideoQ allows users to query

based on animated sketch using multiple objects and their trajectories.

STAR: System for Trademark Archiving and Retrieval [49] uses a combination

of color and shape features for retrieval purposes. The color of an image is

represented in terms of the R, G, and B components, whereas the shape is

represented in terms of a combination of outline-based features (sketch of the

images) and region-based features (objects in an image). The features used to

describe both the color and shape in an image are non-information preserving

or ambiguous in nature. Although these features cannot be used to reconstruct

the image, they are useful as approximate indicators of shape.

Other: Vailaya et al. [63, 100] proposed a method for trademark image database

retrieval based on object shape information. This system achieves both the de-

sired efficiency and accuracy using a two-stage hierarchy: in the first stage, sim-

ple and easily computable shape features are used to quickly browse through the

database to generate a moderate number of plausible retrievals when a query is

presented; in the second stage, the candidates from the first stage are screened

using a deformable template matching process to discard spurious matches. Re-

trieval results show that the top most image retrieved by the system agrees with

that obtained by human subjects, but there are significant differences between

the ranking of the top 10 images retrieved by the system and the ranking of

those selected by the human subjects. This demonstrates the need for develop-

ing shape features that are better able to capture human perceptual similarity of
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shapes. An improved heuristic has been suggested for more accurate retrievals.

The proposed scheme matches filled-in query images against filled-in images

from the database, thus using only the gross details in the image. Experiments

have shown that matching on the filled-in database retrieves more images that

have similar content to the query image (as judged by users).

While a number of systems have been developed for image indexing and retrieval,

there is a lack of a proper methodology to evaluate their performance. No standard

datasets and sets of queries exist that can provide comparison between the existing

approaches. Moreover, the semantic nature of the queries confounds the issue. Iden-

tifying ideal retrieval results for a query image is not only subjective, but also time

consuming. Therefore, most of the above systems do not report quantitative analysis

of their performance.

Most of these above systems and much of the past research has concentrated

on the low-level feature extraction stage. Although, these features can be extracted

automatically, they have their limitations for content-based image and video retrieval.

These features are hard-coded into the system and are usually application specific. For

different applications, the features and the associated weights have to be specifically

tweaked for efficient performance. A typical user of these systems does not have the

basic knowledge of feature extraction and thus, is unable to use the system effectively.

In fact, users have to be trained well enough before they can effectively use the

system. Due to the presence of a large variety of images (natural scenes, man made

objects, etc.), the user needs to use effective features that are most expressive in
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identifying the class of the query object and retrieve stored images from that class.

For example, while querying for scenes containing buildings, it is more meaningful to

query on the basis of texture than on the basis of color, but while trying to identify

images of plants and grass, it may be more meaningful to query on the basis of green

color and texture. Since the user has to specify a combination of features to use for

querying, the retrieval results critically depend on the ability of the user to identify

expressive features for the query. This has led to an interest in automatically selecting

image features for retrieval purposes and automatically extracting certain high-level

semantics from image and video data.

2.4 Incorporating Learning

A general purpose image database system should be able to automatically select

salient image features for retrieval purposes [101]. Picard and Minka [23] describe an

interactive learning system using a society of models. Instead of requiring universal

similarity measures or manual selection of relevant features, this approach provides

a learning algorithm for selecting and combining groupings of the data, where these

groupings are generated by highly specialized and context-dependent features. The

selection process is guided by a rich user interaction where the user generates both

positive and negative retrieval examples (relevance feedback). A greedy strategy is

used to select a combination of existing groupings from the set of all possible group-

ings. These modified groupings are generated based on the user interactions and over

a period of time, these replace the initial groupings that have a very low weightage.
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Thus, the system improves on its performance over a period of time through user

interaction and feedback. For a formal and comprehensive work on use of relevance

feedback for image retrieval, the reader can refer to [20].

2.5 Identifying Semantic Categories

Another major challenge in content-based retrieval is that users typically think in

terms of semantic concepts. Unless these semantic concepts are identified in the

image and video data, retrieval cannot be efficient and effective (one of the goals of

MPEG-7). This has led to some recent research in extracting conceptual information

from multimedia data. Table B1 in Appendix B briefly tabulates results of various .

image classification systems reported in the literature.

A number of attempts have been made to understand high-level semantics from

images using low-level features. Yiu [102] and Szummer and Picard [24] propose al-

gorithms for indoor-outdoor scene classification. Yiu reports results on a database of

500 images and uses color and dominant directions to do the classification. Szummer

and Picard show results on a larger database of 1, 343 images. They propose a com-

bination of color and texture (MSAR - multiresolution, simultaneous autoregressive

model [70]) features on 4 x 4 blocks of images to do the classification. These systems

report classification accuracies of approximately 90%.

Forsyth et al. [103] use specialized grouping heuristics to classify coherent regions

in an image under increasingly stringent conditions to recognize objects in the image.

They demonstrate recognition of trees by fusing texture and geometric properties,
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and learn blob-like landscape concepts using grouped features. However, they do

not report the efficiency of classification or the accuracy of the retrievals on a large

database based on classification of regions into blobs.

Yu and Wolf [104] use one-dimensional hidden Markov models along horizontal

and vertical blocks of images to do scene classification. Quantized color histogram

vectors are used as features for the image sub-blocks and the hidden Markov models

are used to learn statistical templates from examples. The scheme suffers from the

drawback that the one-dimensional model does not capture spatial relationships well.

Gorkani and Picard [105] have proposed the use of dominant orientations found

using a multiscale steerable pyramid in 4 x 4 sub-blocks of 98 images to discriminate

between city/suburb scenes from photos of landscape scenes. They classify an image

as a city scene if a majority of sub-blocks have a dominant vertical orientation or

a mix of vertical and horizontal orientations. Their database consisted of vacation

photographs provided by British Telecom (BT). Their system misclassified 7 out of

the 98 database images.

Torralba and Oliva [29] propose the use of discriminant structural templates for

organizing scenes along various semantic axes. They classify the global scene repre-

sented by an image along two axes; (i) degree of naturalness which represents artificial

vs. natural images; and (ii) degree of openness which represents panoramic views (e.g.,

coast, beach, long distant city shots) vs. closed environments (such as forest scenes,

or close—up of tall buildings). A supervised learning stage using linear discriminant

analysis (LDA) is used to generate the decision boundaries along the various semantic

axes. The classification is further based on Gabor texture features extracted either
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from the entire image or from sub-blocks in the image. The authors report how dif-

ferent semantic image classes such as beach, city centers, skyscrapers, etc., appear

along these semantic axes.

Ratan et al. [30] have developed a multiple-instance learning scheme to model am-

biguity in supervised learning examples in natural scenes. Each image can represent

multiple concepts. To model these ambiguities, each image is modeled as a bag of

instances (sub—blocks in the image). A bag (image) is labeled as a positive example

of a concept if there exist some instances representing the concept (a concept could

be a car, a waterfall scene, etc.). A bag is labeled as a negative example if there exist

no instances representing the desired concept. Using a small collection of positive

and negative examples, the authors propose to learn the concept (in terms of rele-

vant sub-blocks) and use it to retrieve images containing a similar concept from large

databases.

2.6 Discussion

Image and video features that can be reliably extracted are low-level features. Systems

have been developed that use multiple low-level features for retrieval and browsing.

Users typically think in terms of high-level semantic concepts when querying and

browsing multimedia databases. There is thus, a need to extract these concepts

and provide annotations for the multimedia data. These automatically extracted

annotations can then be coded along with the data as proposed in MPEG-7.

Extracting high-level conceptual information from low-level image features is a
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challenging problem. The concepts that users are interested in depend on the intended

application and the current user needs. Automatically, extracting all such relevant

information may not be possible. However, we shall show in this thesis that certain

semantic concepts can be identified in a constrained environment.
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Chapter 3

Bayesian Learning Framework

Our goal is to provide semantic indices into image databases to aid in effective retrieval

of multimedia data. We approach the problem in a data driven fashion. Rather than

build rules for extracting semantics from an image, we build binary classifiers based

on a set of low-level features extracted from the image data. Conceptual classification

is thus based on learning, in a supervised fashion, the distribution of these low-level

features under the various classes of interest, from a rich source of training data.

A number of learning schemes have been reported in the literature that can be

used for supervised classification. Due to its simplicity, ease of use, and ability to

combine different sources of information, we use a Bayesian learning and inference

framework for our binary classifiers. Bayesian theory provides a formal (probabilistic)

framework for image classification problems. It requires that all assumptions be

explicitly specified to build models (observation model, prior, loss function) which

are then used to derive an “optimal” decision/classification rule. Optimality here

means that, under the assumed models, there does not exist any other classification
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rule which has a lower expected loss. The Bayesian paradigm has been successfully

adopted in a number of image analysis and computer vision (both low and high level)

problems, such as restoration, segmentation, and classification (see [106, 107] and the

references therein). However, its use in content—based retrieval from image databases

is just being realized [25].

3. 1 Basic Elements

The Bayesian framework requires that all the entities involved in decision making be

adequately formalized:

e Each observed image 3 belongs to a set I of possible images.

0 The set I is assumed to be partitioned into K classes, (2 = {w1, L02, mom}; these

classes are exhaustive and mutually exclusive, i.e., any image so from I belongs

to one and only one class.

0 Each observed image a: is modeled as an observation of a random variable X,

whose class-conditional probability density function for class w,- is written as

fxlwlwil-

0 An a priori knowledge concerning the classes is expressed via a probability

density function defined on the set of classes, {p(w1),p(w2),...,p(wK)}, with

{:1 17(9):) = 1-

e A loss function, £(w, <22) : Q x O —> 72, specifying the loss incurred when class (I;

is chosen and the true class is w. As is common in classification problems, we
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adOpt the “0/1” loss function; £(w,w) = 0, and £(w,t2)) = 1, ifw aé t2).

0 Finally, the solution of the classification problem is a decision rule 6 (1:) : I —> O

which maps any possible observed image into one of the available classes.

3.2 Image Features

In many image analysis problems, it is typical that the classification is based on,

say, m features extracted from the observed image, rather than directly on the raw

pixel values. Let y _—_ {y1, y2, . . .,ym} denote the set of m features based on which

the classification procedure must operate. As a result, the class-conditional density

function can be written as

fx(-’D I w) E fv(y | w)- (3-1)

The classification problem can be stated as: “given a set of observed features, y, from

an image 2:, classify a: into one of the K classes in D”.

3.3 Classification Rule

In the Bayesian framework, all inferences are based on the a posteriori probability

function, which is obtained by combining the class-conditional observation models

with the a priori class probabilities (Bayes law):

_ fv(ylw)19(w)

Mac | y) — ffly) , (3.2) 
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where the denominator, fy(y), in Eq. (3.2) is the unconditional (or marginal) proba-

bility density function of the observed features, which serves simply as a normalizing

constant.

The “0/ 1” loss function leads to the most common criterion in Bayesian classifi-

cation problems: choose the class whose a posteriori probability is maximum. This

is known as the maximum a posteriori (MAP) criterion, and is given by

a? = arg gig {p(w l y)} = are ’3sz {fy(y | w)p(w)}- (3-3)

In addition to reporting the MAP classification of a given image, say wk, the Bayesian

approach also assigns a degree of confidence to that classification, which is propor-

tional to p(wk | y). We next describe a procedure to estimate the class-conditional

density functions.

3.4 Density Estimation Using Vector Quantization

The performance of the Bayes classifier clearly depends on the ability of the feature

set 3] to discriminate among the various classes. Moreover, since the class-conditional

densities have to be estimated from training data, the accuracy of these estimates is

also critical. Choosing the right set of features for a given classification problem is

a difficult problem which requires expert knowledge about the problem domain. We

concentrate instead on estimating the class-conditional densities for which we adopt

a Vector Quantization (VQ) based approach [44].
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3.4.1 Vector Quantization

Vector Quantization (as its name implies) is a compression/quantization technique

that is applied to vectors rather than scalars. Just like scalar measurements can

be quantized by rounding off or setting thresholds, VQ quantizes a group of mea-

surements (components of a feature vector) together. Thus, VQ takes as input a

p—dimensional vector and quantizes it into a p—dimensional reproduction vector. A

VQ can be specified by a set of reproduction vectors and a rule for mapping input

vectors to the reproduction vectors.

In the compression and communication applications, a Vector Quantizer is de-

scribed as a combination of an encoder and a decoder. A p—dimensional VQ consists

of two mappings: an encoder 7 which maps the input alphabet (A) to the channel

symbol set (M), and a decoder B which maps the channel symbol set (M) to the

output alphabet (A), i.e., 7(y) : A —> M and fl(v) : M —> A. A distortion measure

D(y,y) specifies the cost associated with quantization, where g = fi(y(y)). Usu-

ally, an optimal quantizer minimizes the average distortion under a size constraint on

M. The generalized Lloyd algorithm for vector quantization uses the mean square

error (MSE) criterion for distortion and is equivalent to a K-means clustering algo-

rithm [108], where K is the size of the output alphabet, A : [37,, i = 1, . . . , K}. An

input vector y E A is quantized into one of the K output vectors 3);, also referred to

as codebook vectors, such that

May.) s 1301.3)», v 1 s ,- s K. (3.4)
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These codebook vectors define a partition of the p-dimensional feature space, ac-

cording to Eq. (3.4), into the so—called Voronoi cells, {S,—, i = 1, 2, . . . , K}. Figure 3.1

shows an example of such a 2-D Voronoi tessellation where the g, are shown as square

dots. As the data points get closer, the convex cells around the points become more

compact. According to Eq. (3.4), an input vector is assigned the codebook vector of

the cell it falls into. A comprehensive study of VQ, choice of distortion measures,

and use of VQ in classification and compression (along with further references) can

be found in [109, 44].

 

  

 

 

Figure 3.1: Voronoi Tessellation for 2-D data points.

3.4.2 VQ as a Density Estimator

Vector quantization provides an efficient tool for density estimation [44]. Consider it

training samples from a class w. In order to estimate the class-conditional density of

the feature vector y given the class a), i.e., fy(y [ w), a vector quantizer is used to

extract q (with q < n, hopefully q < n) codebook vectors, 1:,- (1 g j s q), from the
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n training samples. It has been shown (see [44]) that in the so-called high-resolution

approximation (i.e., for sufficiently small Voronoi cells), the class-conditional density

can be approximated as a piecewise-constant function over each cell 53-, with value

mi

My | w) e WM). (3.5) 

where mJ- and Vol(SJ-) are the frequency of training samples falling into cell Sj and

the volume of the cell 5,, respectively. This approximation fails if the Voronoi cells

are not sufficiently small, as is the case when the dimensionality of the feature vector

y is large. The class-conditional densities can then be approximated using a kernel-

based approach [44, 25], approximating the density by a mixture of Gaussians, each

centered at a codebook vector. In most VQ algorithms, the codebook vectors are

iteratively selected by minimizing the MSE (mean square error) which is the sum

of the Euclidean distance of each training sample from its closest codebook vector.

Hence, an identity covariance matrix can be assumed for the Gaussian components

used to represent the densities [25], resulting in the following (approximate) class-

conditional densities:

My l w) oc im. * exp(—|ly — villi/2). (3.6)
i=1

A more comprehensive approach would be to use the Mahalanobis distance [108]

in estimating the codebook vectors; but, if feature dimensionality is high and the

number of training samples is small, the estimated covariance matrices are likely to
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be singular.

3.4.3 Selecting Codebook Size

A key issue in using vector quantization for density representation is the choice of the

codebook size (value of q). It is clear that, given a training set, the VQ-approximated

likelihood (probability) of the training set will keep increasing as the dimensionality

of the codebook grows; in the limit, we would have a code vector for each training

sample, with the corresponding probability equal to one. To address this issue, we

adopt the minimum description length (MDL) principle [45]. MDL is an information-

theoretic criterion which has been used for model selection in several problems in

computer vision and image processing (see [110], and references therein). We start

by noting that the VQ learning algorithm basically looks for the maximum likelihood

estimates of the parameters of the mixture in Eq. (3.6). The first key observation

behind MDL is that finding an ML estimate is equivalent to finding the Shannon

code for which the observations have the shortest code-length [45]; this is so because

Shannon’s optimal code-lengthl, for some set of observations, 32 : {y(1), . . . , y(n)},

obeying the joint probability density function f(y [0(q)), is simply [111, 110]

1204901)) = -10sf(y|w,9(q))- (3-7)

 

1In bits or acts, if base-2 or natural logarithms are used, respectively [111].
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Under the assumption of independent samples, y(j) (1 _<_ j S n), the joint likelihood

in Eq. (3.7) can be written as

L(yl=9<q -Zlogf(y(j).Iw 9m) (3.8)

where 9(0) contains the codebook vectors, {vj : 1 S j S q}, and the weights mj. The

second fundamental fact is that the parameters themselves are also part of the code,

in the following sense: a code word representing 32 can not be decoded by itself; only

a full knowledge of f (32 My») (i.e., of its parameters) allows reconstructing the code

and respective decoder. Accordingly, the MDL criterion states that the description

code-length to be minimized by the estimate must include not only the data code-

length but also the code-lengths of the parameters. The resulting criterion for the

choice of q (codebook size) is then

r = arg mqin {Lemon + Liam}- (3.9)

Finally, concerning the parameter description length, L(0(q)), the common choice

is L(0(q)) = (C (q) /2) log n, where n is the sample size and C (q) = {q + q dim(y)} is

the number of real-valued parameters needed to specify a qth-order model and dim()

represents the dimension of the feature space [45]. This is an asymptotically optimal

choice, which is only valid when all the parameters depend on all the data, which is

not the case in the present problem. The weights in]- are, in fact, estimated from all

the data; however, each 11,- is estimated from the in, samples that fall in the associated
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cell. Accordingly, we obtain the following modified MDL (MMDL) criterion,

«7

2qlogn +—-——y); log(mJ-n71),} (3.10)a = arg mgn {LO/16h)

where the first term is the negative log-likelihood of the observations, the second one

accounts for the weights mj, while the third one corresponds to the codebook vectors

themselves.

To better understand the MDL principle, consider the following 2-class mixture

densities:

0 Class 1 (col): Bimodal bivariate Gaussian with pl = [1 1]T, p2 = [4 4]T, and

21:22:21.

0 Class 2 (tag): Bimodal bivariate Gaussian with #1 = [4 1]T, [1.2 = [1 4]T, and

21:22:].

The goal of the MDL criterion is to select a model that is both accurate (is able

to describe/represent the training data well, Eq. (3.7)) and simple (Occam’s razor:

simpler the model, better the generalization capability). The data code-length and

the parameter code-length (Eq. (3.9)) represent the accuracy and the simplicity of

a model, respectively. Figures 3.2(a)-(d) show 200 patterns per class (100 patterns

per mixture) for the above mentioned 2-class mixture problem. Codebook vectors

extracted from the training data are represented by an. Figures 3.3(a)-(c) show the

plots for the data, parameter, and combined code-lengths for varying codebook size.

While Figure 3.3(a) shows how the data code-length reduces with increase in code-
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book size, Figure 3.3(b) shows how the parameter code-length increases. The MDL

criterion, Figure 3.3(c) selects the optimal codebook size as that which minimizes

the sum of the data and parameter code-lengths. In this case, the codebook size

of 4 is the optimal choice which agrees with the data generation model. Alternate

unsupervised schemes to estimate the mixture desities have also been reported in the

literature [112]. However, much research is required to make these robust under high

dimensional feature vectors.
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q=2; (b) q=4; (C) q=6; (d)q=8.
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3.5 Classification Algorithm

We now present an algorithm for the Bayesian classification procedure.

1. Collect a set of images from the various classes of interest and randomly divide

them into independent training and test sets. More comprehensive the training

and test sets, more robust is the classifier.

2. Identify a set of salient features for the given classification problem. A feature

is said to be salient if it has a high discrimination ability. In general, identifying

a salient set of features for classification is a subjective process and cannot be

easily automated.

3. Extract features from the training set.

4. Use LVQ_PAK [113] Vector Quantization package to extract a set of q, gm,” 3

q S qmax, codebook vectors per class (qmin and qmax are empirically set to 5 and

100, respectively; more complex the classification problem, larger is the value

of gmax)-

5. For a given q, identify the weights of each Gaussian in the mixture from the

training samples (determined by the number of training samples assigned to

each codebook vector).

6. Determine the optimal codebook size by the MMDL principle (Section 3.4.3).

7. Compute the class-conditional probability density as defined in Equation (3.6).
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In order to classify a test pattern, extract the features and compute the a posteriori

class probability as defined in Eq. (3.2). The MAP classification rule is then used to

classify the test pattern.

3.6 Discussion

We present a formal probabilistic framework for image classification problems. The

classifiers are built in a supervised fashion under a Bayesian learning and inference

framework. Vector Quantization is used to estimate the class-conditional probability

densities of the observed features. An MDL-type principle is used to determine the

optimal Size of codebook vectors from the training samples for the various classifiers.

The MAP criterion is used for the final classification of test images. The Bayesian

approach has the following advantages: (i) a small number of codebook vectors repre-

sent a particular class of images, thereby greatly reducing the number of comparisons

necessary for each classification; (ii) it naturally allows for the integration of multiple

features through the class-conditional densities; and (iii) it not only provides a clas-

Sification rule, but also assigns a degree of confidence in the classification which may

be used to build a reject option into the classifiers.
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Chapter 4

Hierarchical Classification of

Images

What do users typically want to search for in an image database? Users either have an

a priori idea of what they are looking for (e.g., all images containing a friend’s face) or

they have a rather vague remembrance of the images they would like to look at (e.g.,

scenic photographs for planning a vacation) [81]. In the second type of queries, there

is a need for a classification of database images based on some semantic categories.

The user can then browse through the images belonging to the desired class.

The Bayesian paradigm was applied to obtain a hierarchical classification of im-

ages. Images were first classified into indoor and outdoor classes. Outdoor images

were then classified into city and landscape classes. Finally, a subset of landscape

images was classified into sunset, forest, and mountain classes. We next describe a

small-scale experiment conducted on human subjects that formed the basis for iden-

tifying the semantic classes used in our hierarchy [19].
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4.1 Identifying Semantic Image Classes

The first step in image classification is to identify meaningful image categories that are

of interest to users and which can be automatically identified by simple and efficient

pattern recognition techniques. For this purpose, we conducted an experiment with

8 human subjects to classify a set of 171 images (images are shown in Appendix A).

We asked these subjects to group the 171 color images (including the 98 images used

by Gorkani and Picard [105]) into meaningful categories; no a priori categories were

specified or made available to the users. The goal of this experiment was to identify

semantic and abstract classes that humans assign to these images. The subjects were

given no explicit criteria for judging the similarity and they could create any number

of categories with any number of images per category. The subjects were also asked to

explain the semantic meanings of the groups that they formed and explain the reasons

for placing each image into a particular group. The subjects were given unlimited time

to complete the task, except that they had to do so in one Sitting without consulting

anyone. In general, the subjects took between 1-2 hours to complete the task.

The experimental data indicated that the number of categories selected by the

eight subjects varied from 7 to 17. Some of the categories formed by various sub-

jects included buildings, streets, cities, bridges, monuments, people, natural scenes,

mountains, farms, country Side, forests, sunset/sunrise scenes, etc. Of these numer-

ous categories, there were certain categories which were coherent in their semantic

descriptions. For example, the class of buildings, streets, and monuments, used by

some subjects can be grouped under the city class which was created by another
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subject. Similarly, the categories such as mountains, forests, farms, and country side,

can be grouped under a broader category, called natural scenes. Figures 4.1(a) and

(b) show representative images from the landscape and city clusters identified by a

human subject, respectively.

In order to generate a hierarchical grouping based on the categorization of the

human subjects, we generated a dissimilarity measure between every pair of images.

A 171 x171 dissimilarity matrix was generated, where the dissimilarity value for every

pair of images was assigned the number of subjects (out of 8) who did not group the

pair into the same category (regardless of what the actual category meant for each

subject). Note that the integer entries in the dissimilarity matrix vary from 0 to 8.

Based on the dissimilarity matrix, we performed a complete-link hierarchical clus-

tering of the 171 images. Note that clusters can be formed by cutting the resulting

dendrogram at a specific level of dissimilarity. At the highest level of dissimilarity

(by cutting the dendrogram at the dissimilarity level of 7; at level 8, all the images

are in one cluster), 11 clusters were formed. The semantic labels that can be as-

signed to these clusters and the number of images in each cluster are as follows: (i)

forests and farmland (37 images), (ii) natural scenery and mountains (19 images),

(iii) beach and water scenes (6 images), (iv) pathways (roads and streams, 9 images),

(v) sunset/sunrise shots (21 images), (vi) city Shots (38 images), (vii) bridges and city

scenes with water (6 images), (viii) monuments (9 images), (ix) towers and pictures of

Washington DC (5 images), (x) a mixed class of city and natural scenes (20 images; 9

images are long distance city shots, while 11 images are long distance shots of fields),

and (xi) a face image (1 image). We refer to the mixed category of long distance city
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Figure 4.1: Representative images of (a) landscape and (b) city clusters identified by

a user.
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and landscape Shots as the miscellaneous class.

We organized the 11 categories identified above into a hierarchy as Shown in Fig-

ure 4.2. The first four classes (forests, natural scenery, beach scenes, and pathways)

can be grouped into a single class, labeled natural scenes (71 images). The clusters

of city shots, monuments, and shots of Washington DC can be grouped into the cat-

egory of city scenes (58 images). At the next level, the sunrise/sunset group can be

classified into the category of landscapes (92 images). Finally, the landscapes, the

city scenes, the miscellaneous class, and the lone face image are grouped together into

one class (all 171 images). Hence, this rather small database can be considered to

have two major classes (city shots and landscapes) at the highest level of grouping

which accounts for 150 out of the 171 images.

In order to verify that the above hierarchy is reasonable, we used a multidimen-

sional scaling algorithm to construct a 3-D pattern matrix for the 171 images from

the 171 x 171 dissimilarity matrix. We then applied a K-means clustering algorithm

to partition the 3-D data. In our experiments, we used K = 2 and K = 4. Our

goal was to verify if the main clusters in the data agreed with the hierarchy shown

in Figure 4.2. Setting K = 2, we obtained two clusters of 62 and 109 images, re-

spectively. The first cluster consisted of predominantly city images, while the second

cluster consisted of landscape images. Figures 4.3 and 4.4 Show images from the city

and landscape classes, respectively. Note that the face image was misclassified into

the landscape image class. The following clusters were obtained with K = 4; (i) city

scenes (70 images), (ii) sunrise/sunset images (21 images), (iii) forest and farmland

scenes and pathways (49 images), and mountain and coast scenes (31 images). In
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Figure 4.2: A hierarchical organization of the 11 categories obtained from the den-

drogram generated by complete-link clustering of 171 images using the dissimilarity

matrix provided by 8 users; the number of images in each category is indicated in the

parenthesis.
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order to view the clusters in the 3-D feature space, we generate plots of the 171 pat-

terns along two axes at a time. Figures 4.5(a)-(c) Show the three plots of the 171

patterns in 2-D feature Space. The labels of various clusters are marked in the plots.

The plots Show that the sunrise/sunset image class is very well separated from the

other three classes. The mountain image class is well separated from the forest class

(and the city class is well separated from the other classes) in two of the three plots.

Figure 4.5(a) shows an additional class of water scenes which consists of long distance

city and landscape images that contain water bodies (sea and ocean). This class of

images is not as well separated in the other two feature subspaces. These experi-

ments verify that our database of 171 images consists of two main classes: city and

landscape. Moreover, the landscape images can be broadly classified into three major

categories, i.e., sunrise/sunset images, forest and farmland images, and mountain and

coast images, respectively.

Based on the above experiments, we Simplified the classification hierarchy as shown

in Figure 4.6. The solid lines Show the classification problems addressed in this paper.

At the highest level, images can be divided into indoor, outdoor, and other images.

Outdoor images can then be further classified into city, landscape, and other classes.

Landscape images can then be dichotomized into sunset, mountain, forest, and other

classes. While the above hierarchy is not in itself complete (a user may be interested in

querying the database for images captured in the evening - (day/night classification),

images containing faces (face vs. non-face classification), or images containing text

(text vs. non-text classification)), it is a reasonable approach to Simplify the image

retrieval problem.
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Figure 4.3: Images from the city class.
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Figure 4.4: Images from the landscape class.
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Figure 4.5: 2—D plots of the 3-D 171 patterns along two dimensions; (a) along di-

mensions 1 and 2; (b) along dimensions 1 and 3; and (c) along dimensions 2 and



 

. _._,..

’:‘,.,-. ,
. . '3

r
. . --

, .-i

‘--.',,‘r.

z
I

a
z

a
r

z
I

otheriFaces/Close-Up) City Landscape

#- , .7. .1 me é,”_ H - ...

“n- .. . MI)

I a r“ i [211‘       

Sunset Mountain, Forest

  
Figure 4.6: Simplified hierarchy of images; solid lines show the classification problems

addressed in this thesis.

The indoor vs. outdoor classification problem can be stated as follows: Given an

image, classify it as either an indoor or an outdoor image. Most of the images can

indeed be classified into one of these two classes. Exceptions include close-up shots,

pictures of a window or door, etc. Outdoor images can be further classified into city

vs. landscape images [19, 27] which can be posed as follows: Given an outdoor image,

classify it as either a city or a landscape image. City images can be characterized

by the presence of man-made objects and structures such as buildings, cars, roads,
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etc. Natural images, on the other hand, lack these structures. A subset of landscape

images can be further classified into one of the sunset, forest, and mountain classes.

Sunset images can be characterized by saturated colors (red, orange, or yellow), forest

images have predominantly green color distribution due to the presence of dense

trees and foliage, and mountain images can be characterized by long distance shots of

mountains (either snow covered, or barren plateaus). We assume that the input image

does belong to one of the classes under consideration. This restriction is imposed,

because automatically rejecting images that do not belong to the specific classes (such

as city or landscape) based on low—level image features alone is in itself a very difficult

problem (see Figure 1.9).

4.2 Implementation Issues

Experiments were conducted on two databases of 5, 081 (indoor vs. outdoor classi-

fication) and 2,716 (city vs. landscape classification and a further classification of

landscape images) images. The two databases, henceforth referred to as database

D1 and database D2, have 866 images in common, thus the entire database contains

6, 931 distinct images. These images were collected from various sources (Corel stock

photo library, scanned personal photographs, key frames from digitized video of tele-

vision serials, images captured using a digital camera, and images downloaded from

the web) and are of varying sizes (from 150 x 150 to 750 x 750). The color images

are represented by 24-bits per pixel and stored in JPEG format. The ground truth

for all the images was assigned by a single subject. Images in this dissertation are
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presented in color. We next describe the low-level features that were extracted from

the images.

4.3 Image Features

We extract global image features that capture the general essence of an attribute in the

image. These include: local color histograms and coherence vectors [19], Spatial color

moments [28], edge direction histograms and coherence vectors [19], DCT coefficient

features [19], and sub-block MSAR texture features [70, 24]. We next describe these

features in detail.

4.3.1 Color Histograms

We define color features in terms of a histogram in the quantized HSV color space.

It was reported in [52] that color histograms in the HSV color space yielded better

results during image retrieval than color histograms in other color spaces. The RGB

space is uniformly sampled into 16 x 16 x 16 bins which are represented by the center

color and transformed to the HSV color space. The 4, 096 colors in the HSV space

are then clustered into 64 colors using a K-means clustering algorithm [108]. A

look-up table is generated to map every RGB value to a bin based on the cluster

membership. We extract 5 local color histograms for every image (top left quarter,

top right quarter, bottom left quarter, bottom right quarter, and central quarter) to

incorporate spatial information (320 features per image). A color Similarity matrix,

A(i, j ), (generated from the distances between the 64 color centers) is used to smooth
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the histograms as follows:

64

H (i) = 2 HO) * A(M’),

i=1

where H is the original histogram and H' is the smoothed histogram. The smoothing

spreads the value of a bin into bins of similar color.

4.3.2 Color Coherence Vector

A color coherence vector is a color histogram refinement scheme that divides each bin

into coherent and non-coherent pixels [51]. A pixel in a bin is said to be coherent

if it is part of a large similarly-colored region. An 8-neighbor connected component

analysis is used to extract connected regions of the same color. Pixels in regions

whose size exceeds a threshold (1% of image size) are counted as coherent pixels,

and those from smaller regions count towards non-coherent regions. We extended the

color coherency concept to our local histograms in the quantized HSV Space leading

to a 640-dimensional feature vector. Figures 4.7(a)-(h) Show a city and landscape

image and their color histogram and color coherence vector features, respectively.

Long distance landscape (mountains, sunset/sunrise, etc) shots tend to have more

coherent pixels (large regions of similar color, see Figures 4.7 (f) and (h)), whereas

city scenes and some landscape scenes (forest images) tend to have an equal fraction

of coherent and non-coherent pixels (see Figures 4.7 (e) and (g)).
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Figure 4.7: Color-based features for (a) city and (b) landscape image; (c) and (d)

show the color histogram features for (a) and (b); (e) and (f) Show the coherent color

bins for (a) and (b); (g) and (h) show the non-coherent color bins for (a) and (b).

77



4.3.3 Spatial Color Moment Feature Vector

First- and second-order moments in the LUV color space were used as color features

(it was pointed out in [52] that moments in the LUV color space yielded better results

during image retrieval than moments in other color Spaces). The image was divided

into 102 sub-blocks and six features (3 each for mean and standard deviation) were

extracted from each sub-block (600-dimensional feature vector). The features thus

capture the low frequency spatial color information in the image. Figures 4.8(a)—(d)

Show a typical indoor and outdoor image and their spatial color moment features in

the LUV color space. Indoor images tend to have more uniform illumination because

they are close-up shots. Outdoor images, on the other hand, tend to have more varied

illumination and chrominance changes. These effects are captured by the spatial color

moments, with more variation in the values for typical outdoor images. Note that

each feature vector is composed of the mean and the variance for the L, U, and V

components of every block.

4.3.4 Edge Direction Histograms

We define texture in an image in terms of an edge direction histogram [114]. The

Canny edge detector is used to extract the edges in an image. We have modified

the edge direction histograms defined in [114] by adding an extra bin to measure the

frequency of non-edge pixels in the image. A total of 73 bins are used to represent the

edge direction histogram; the first 72 bins are used to represent edge directions quan-

tized at 5° intervals and the last bin represents a count of the number of pixels that
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Figure 4.8: Spatial color moment features for a typical (a) indoor and (b) outdoor

image; (c) and (d) Show the spatial color moment features, where the x-axis represents

the feature terms and the y-axis represents the feature values, in the LUV color space

over 10 x 10 sub-blocks of an image.

didn’t contribute to an edge. To compensate for different image sizes, we normalize

the histograms as follows:

Ha) = H(i)/ne, ie [o,...,71]; H(72) = H(72)/np,

where H(t) is the count in bin i of the edge direction histogram, ne is the total number

of edge points detected in the image, and np is the total number of pixels in the image.
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4.3.5 Edge Direction Coherence Vector

The coherency concept of color histograms [51] was extended to edge direction his-

tograms in [19]. An edge direction coherence vector stores the number of coherent

versus non-coherent edge pixels with the same directions (within a quantization of 5°).

A threshold (0.1% of image size) on the size of every connected component of edges in

a given direction is used to decide whether the region is coherent or not. This feature

is thus geared towards discriminating structured edges from arbitrary edge distribu-

tions when the edge direction histograms are matched. A 145-dimensional feature

vector represents the edge direction coherence vector for an image. Figures 4.9(a)-

(h) show a city and landscape image and their edge direction histograms and edge

direction coherence vector features, respectively. As can be seen in Figures 4.9 (e)

and (f), the city images tend to produce coherent edge pixels in the vertical direction,

where as most edges in landscape images are non-coherent. The coherent edge pixels

in the vertical direction in the city images (and the lack of these in landscape images)

increase the discriminating power of the edge direction coherent vectors over the edge

direction histograms for the two classes under consideration.

4.3.6 DCT Coefficients

Color and texture features are also described in terms of the Discrete Cosine Trans-

form (DCT) coefficients of an image. Since every image in the database is represented

in the JPEG compressed format, extracting DCT features is relatively efficient. Cen-

tral moments of second- and third-order [115, 100] of the DCT coefficients were used
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Figure 4.9: Edge direction-based features for (a) city and (b) landscape image; (c)

and (d) Show the edge direction histogram features for (a) and (b); (e) and (f) show

the coherent edge direction bins for (a) and (b); (g) and (b) show the non-coherent

edge direction bins for (a) and (b).
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to represent an image. In particular, 4 moments for each of the 17 DCT coefficients

(first 9 coefficients in the intensity field and the first 4 DCT coefficients in the two

chrominance fields) were used as the features. The resulting 68-dimensional feature

vectors were then normalized to zero mean and unit variance. The DCT coefficients

store the coded version of LUV color features in 8 x 8 pixel blocks. Hence, these fea-

tures are similar to the spatial color moment features. The difference is that the DCT

features capture more of the global distribution (moments of DCT coefficients over

the entire image) rather than local sub-block distributions captured by the spatial

color moment features described above (spatial color moments in image sub—blocks).

4.3.7 MSAR Texture Features

The multiresolution Simultaneous autoregressive model for texture features

(MSAR [70]) have been shown to be among the best texture features on the Bro-

datz album [11]. The model constructs the best linear predictor of a pixel based on

a non-causal neighborhood. The features used to describe various textures are the

weights associated with the predictor. Szummer et al. [24] used three different neigh-

borhoods at scales of 2, 3, and 4 to yield a 15-dimensional feature vector. As in [24],

every image was divided into 4 x 4 sub-blocks and MSAR features were extracted

from each sub-block. Figures 4.10(a)-(d) Show two images and their corresponding

sub-block MSAR texture features. Homogeneous image regions yield texture features

with very low values.
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Figure 4.10: MSAR texture features; (a) and (b) show two database images; (c) and

(d) show the sub-block MSAR texture features; homogeneous image regions yield

very low values of texture feature.

4.3.8 Feature Saliency

The accuracy of a classifier depends on the underlying representation of the images

The more discriminative the features, better is the classification accuracy. There-

fore, we need to develop robust schemes to identify salient image features that have

sufficient discriminative power for each of the above classification problems.

A given feature is said to have a large discrimination power if its intra—class

(within-class) variance is small and the inter—class (between-class) variance is large.

We thus empirically constructed distributions for the intra— and inter-class distances

for the given set of features for each classification problem. We present the results on
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city vs. landscape image classification problem using database D2. The intra—class

distribution was generated by computing the distances between every pair of images

in the same class. The inter-class distribution was generated by computing the dis-

tance of every image in the city class to every image in the landscape class. Based

on the overlap of the intra- and inter-class distance distributions, we can identify the

more discriminative features for the given classification problem.

The Euclidean distance metric was used to generate the intra—class and the inter-

class distance distributions for the database images. Figures 4.11(a)-(d) show the

intra- and inter-class distributions for four different feature sets, namely, color his-

togram, DCT moment, edge direction histogram, and edge direction coherence vector

features. The color coherence vectors and spatial color moments yield similar inter-

class and intra—class distributions as the color histograms. The large overlap between

the two distributions based on color histograms and DCT coeflicients shows that

these features are not suited for the city vs. landscape classification problem. On

the other hand, the distributions based on the edge direction coherence vectors have

a substantially smaller overlap (especially, at lower distance values). These results

suggest that the use of a small set of near neighbors based on edge direction features

is better in discriminating between the two classes than the color histograms and

DCT coefficient features. In order to verify the claim, we used Sammon’s non-linear

projection algorithm to plot the high-dimensional patterns in two dimensions. As can

be seen in Figures 4.12(a) and (b), the edge direction coherence vectors do a better

job in discriminating between the given two classes (edge direction coherence vectors

yield a piecewise linear boundary).
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Figure 4.11: Intrarclass and inter-class distance distributions using (a) color his-

tograms; (b) DCT moments; (c) edge direction histograms; (d) edge direction co-

herence vectors; solid-line represents the intra—class distance, while the dotted-line

represents the inter-class distance; x-axis represents inter—image distance; y-axis rep-

resents the frequency.

Man—made objects in the city images usually have strong vertical and horizontal

edges, whereas non-city scenes tend to have edges randomly distributed in various

directions. A feature based on the distribution of edge directions can discriminate

between the two categories of images. On the other hand, color features would not

have sufficient discriminatory power as man-made objects have arbitrary color distri-

butions (two buildings need not have the same color). We feel that color features may

be better suited for further classification of landscapes (natural scenes) where colors

are relatively constant (grass has a yellowish-green hue, sky has a blue hue, etc).
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Figure 4.12: 2-D projections of (a) edge direction coherence vector features and (b)

color coherence vector features; * represents the landscape patterns and + represents

the city patterns; only a subset of 2, 716 patterns has been plotted here for clarity of

display.
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We use a similar approach to identify appropriate features for the other classifiers.

For example, outdoor images tend to have uniformity in spatial color distributions,

where the sky iS on top and is typically blue in color. Indoor images tend to have more

varied color distributions and have more uniform lighting (most are close up Shots).

Thus, it seems logical to use spatial color distribution as a feature for discriminating

between indoor and outdoor images. On the other hand, shape and texture features

may not be useful, since objects with similar shapes and textures (peOple, furniture,

plants, edges due to walls, etc.) can be present in both indoor and outdoor images.

Therefore, we use Spatial color information features that represent these qualitative

attributes of indoor and outdoor classes.

In the case of classification of landscape images into sub-categories, such as sunset,

forest, and mountain, global color distributions seem to adequately describe these

sub-classes. Sunset pictures typically have highly saturated colors (mostly yellow and

red); mountain images tend to have a sky in the background (typically blue); and

forest images tend to have more greenish distributions (presence of dense foliage).

Based on the above observations, we use color features (histograms and coherence

vectors) in the HSV color Space for further classification of landscape images [19].

Table 4.1 briefly describes the qualitative attributes of the various classes and the

features used to represent them.
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Table 4.1: Qualitative attributes of classification problems and the associated low-

level features.

 

  

 

 

 

   

Classification Qualitative Low-level

Problem Attributes Features

Indoor vs. spatial color and 10 x 10 sub-block color

Outdoor intensity distributions moments in LUV Space

City vs. distribution of edge direction histograms

Landscape edges and coherence vectors

Sunset vs. global color distributions color histograms and

Forest vs. and saturation values coherence vectors

Mountain in HS'V space 
 

4.4 Vector Quantization

A number of experiments were conducted to study the robustness and limitations of

the VQ-based Bayes classifier for the classification problems mentioned in Table 4.1.

For every pattern class, half of the database images were used to train the VQ for

each of the image features. The MMDL principle described in Section 3.4.3 was used

to determine the codebook Size from the training samples for the various classifiers.

We present the results of applying the MMDL principle to the indoor vs. outdoor

classifier for the spatial color moment features and the city vs. landscape classifier

based on the edge direction coherence vector features.

Figures 4.13(a)-(c) Show the plots of the criterion function {L(y|e(,,) + L(0(q))}

which needs to be minimized (Eq. (3.9)) vs. the codebook Size, q, for the spatial color

moment features for (a) indoor, (b) outdoor, and (c) both the classes. As can be seen

in the figures, q : 10 minimizes the criterion in Eq. (3.9) for the indoor class, while

q = 15 minimizes the criterion for the outdoor class. Combining the two classes yields

q = 30 as the optimal number of codebooks for the indoor vs. outdoor classifier based
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on the training samples. Using the results, 15 codebook vectors were extracted for

both indoor and outdoor classes. Similar plots for the edge direction coherence vector

are Shown in Figures 4.14(a)-(c). Note that now, q = 15 minimizes the criterion in

Eq. (3.9) for the city class, whereas q = 20 is optimal for the landscape class. For the

combination of the two classes, q = 40 is the optimal size of the codebook based on

the training samples. Based on the above analysis, 40 codebook vectors (20 per class)

were selected for the city vs. landscape image classifier. For a further classification of

landscape images, a codebook of 5 vectors was selected for each class. The codebook

vectors for each class were then stored as prototypes for the class. Table 4.2 Shows

the number and dimensionality of the codebook vectors for the various classification

problems.

Table 4.2: Codebook vectors used for the various classifiers.

 

 

 

 

 

Classification # of Codebook Feature

Problem Vectors / Class Dimensionality

Indoor/Outdoor 15 600

City/Landscape 20 145

Sunset/Forest/Mountain 5 640     
 

4.5 Experimental Results

We present classification accuracies on a set of independent test patterns (hold-out

error) as well as on the training patterns (re-substitution error).
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Figure 4.13: Determining the codebook size for spatial color moment features for

the indoor vs. outdoor classification problem; (a) indoor class; (b) outdoor class; (c)

indoor and outdoor classes combined.
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Figure 4.14: Determining the codebook Size for edge direction coherence vectors; (a)

city class; (b) landscape class; (c) city and landscape classes combined.
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4.5.1 Indoor Vs. Outdoor Classification

Database D1 was used to train the indoor vs. outdoor classifier. This database

consisted of 2, 470 indoor and 2, 611 outdoor images. Apart from the color moment

features, we also used the sub-block MSAR texture features [24], the edge direction

features, DCT features, and the color histogram features for the classification. MSAR

features yielded an accuracy of around 75% on the test set; edge direction histogram,

DCT, and color histogram features yielded an accuracy of around 60%; and the color

moment features yielded a much higher accuracy of around 90%. These results show

that the spatial color distribution (which captures intensity/illumination changes) is

more suited for indoor vs. outdoor classification. A combination of color and tex-

ture features did not yield a better accuracy than the color moment features alone.

Table 4.3 shows the classification results for the color moment features for the in-

door vs. outdoor classification problem. The classifier performed with an accuracy

of 94.2% and 88.2% on the training set and an independent test set (Testl in Ta-

ble 4.3), respectively. On a different test set (Test2 in Table 4.3) containing 1,850

images from database D2, the classifier performed with an accuracy of 89.5%. The

classification accuracy of 90.5% was obtained on the entire database of 6,931 images.

Szummer et al. [24] use a K-Nearest Neighbor classifier and leave-one-out criterion

to report classification accuracies, for the indoor vs. outdoor classification problem,

of approximately 90% on a database containing 1, 324 images. Thus, our classifier’s

performance is comparable to those reported in the literature. A major advantage of

the Bayesian classifier is its efficiency due to the small number of codebook vectors
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needed to represent the training data.

Figures 4.15 and 4.16 Show a representative subset of the misclassified indoor

and outdoor images. Presence of bright spots either from some light source or from

sunshine through windows and doors seems to be a main cause of misclassification of

indoor images. The main reasons for the misclassification of outdoor images are as

follows: (i) uniform lighting on the image mostly as a result of a close-up shot and

(ii) low contrast images (some of the indoor images used in the training set were low

contrast digital images and hence, most low contrast outdoor images were classified

as indoor scenes). The above experimental results show that spatial color distribution

captured in the sub-block color moment features has sufficient discrimination power

for the indoor vs. outdoor classification problem. Moreover, since the training and

test set error rates are not very different, the classifier has not been overly trained.

Table 4.3: Classification accuracies (in %) for indoor vs. outdoor classification prob-

lem using color moment features; Testl and Test2 are two independent test sets.

 

 

 

 

 

Test Data Database Size Accuracy (%)

Titaining Set 2, 541 94.2

Testl 2, 540 88.2

Test2 1, 850 89.5

Entire Database 6, 931 90.5     
 

4.5.2 City Vs. Landscape Classification

We now address the city vs. landscape classification problem and a further classifica-

tion of landscape images into sunset, forest, and mountain classes using the Bayesian

framework. Table 4.4 shows the classification results for the city vs. landscape classifi-
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cation problem using database D2. Edge direction coherence vector provides the best

accuracy of 97.0% for the training data and 92.9% for the test data. A total of 126

images were misclassified (a classification accuracy of 95.3%) when the edge direction

coherence vector was combined with the color histogram feature vector. Figures 4.17

and 4.18 show representative subsets of the misclassified city and landscape images,

respectively. Most of the misclassifications for city images could be attributed to the

following reasons: (i) long distance city shots at night (which made it difficult to

extract the edges), (ii) top view of city images (lack of vertical edges in the images),

(iii) highly textured buildings, and (iv) trees obstructing the buildings. Most of the

misclassified landscape images had strong vertical edges from tree trunks, close-ups

of stems, fences, etc., that led to their assignment to the city class.

Table 4.4: Classification accuracies (in %) for the city vs. landscape classification

problem; the features are abbreviated as follows: edge direction histogram (EDH),

edge direction coherence vector (EDCV), color histogram (CH), and color coherence

vector (CCV); accuracies in bold represent the best classification accuracies using

individual features and a combination of features on the entire database.

Test EDH EDCV CH CCV EDH EDH EDCV EDCV

Data & CH & CCV & CH & CCV

Training Set 94.7 97.0 83.7 83.5 94.8 95.4 96.4 96.9

Test Set 92.0 92.9 75.4 76.0 92.5 92.8 93.4 93.8

Entire Database 93.4 95.0 79.6 79.8 93.7 94.1 94.9 95.3

 

 

 

 

 

          
 

We also evaluated the classification accuracy using the edge direction coherence

vector on an independent test set of 568 outdoor images from database D1. A total

of 1,177 images of the 4,181 outdoor images in database D1 contained close ups of

human faces. We removed these images for city vs. landscape classification. Recent

advances in face detection algorithms show that faces can be detected rather reli-
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ably [8]. Of the remaining images, we extracted 568 test images that were not part

of database D2. The edge direction features yielded an accuracy of 90.0% with 57

misclassifications out of the 568 images. Combining color histogram features with the

edge direction coherence vector features reduced the misclassification in the above ex-

periment to 56, again showing that edge direction features have enough discriminative

power for the city vs. landscape classification problem.

4.5.3 Further Classification of Landscape Images

A subset of 528 landscape images from database D2 was classified into the sunset,

mountain, and forest classes. While our limited experiments on human subjects [19]

revealed classes such as sunset/sunrise, forest and farmland, mountain, pathway, wa-

ter scene, etc., these classes were not consistent among the subjects in terms of the

actual labeling of the images. We found it extremely difficult to generate a seman-

tic partitioning of landscape images. We thus restricted classification of landscape

images into three classes that could be more unambiguously distinguished, namely,

sunset, forest, and mountain classes. Of these 528 images, a human subject labeled

177, 196, and 155 images as belonging to the forest, mountain, and sunset classes,

respectively. A 2-stage classifier was constructed. First, we classify an image into

either sunset or the forest & mountain class. The above hierarchy was based on

the categories identified by the human subjects as shown in Figure 4.6(a), where the

sunset cluster seemed to be more compact and separated from the other categories

in the landscape class. We next address the forest vs. mountain classification prob-
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lem. Table 4.5 shows the results for the classification of landscape images into sunset

vs. forest & mountain classes. The color coherence vector provides the best accu-

racy of 99.2% for.the training data and 93.9% for the test data. Color features do

much better than the edge direction features here, since color distributions remain

more or less constant for natural images (blue sky, green grass, trees, plants, etc).

A total of 18 images were misclassified (a classification accuracy of 96.6%) when the

color coherence vector feature was used. We find that combining feature vectors does

not improve the classification accuracy. This shows that color coherence vector has

sufficient discrimination ability for the given classification problem.

Table 4.5: Classification accuracies (in %) for the sunset vs. forest & mountain classifi-

cation; accuracies in bold represent the best classification accuracies using individual

features and a combination of features on the entire database; SPM represents the

spatial color moment features.

 

 

 

 

 

          

Test EDH EDCV CH CCV SPM EDH EDH EDCV EDCV

Data & CH & CCV & CH & CCV

Training Set 88.3 88.3 96.2 99.2 98.9 95.9 96.6 95.5 97.0

Test Set 86.3 89.0 89.7 93.9 93.9 90.1 95.4 90.5 95.1

Entire Database 87.4 88.7 93.0 96.6 96.4 93.0 96.0 93.0 96.1
 

 

Table 4.6 shows the classification results for the individual features for forest vs.

mountain classes (373 images in the database). Spatial color moment features pro-

vide the best accuracy of 98.4% for the training data and 93.6% for the test data.

A total of 15 images were misclassified (a classification accuracy of 96.0%) when the

spatial color moment features were used. Again, the combinations of features did not

perform better than the color features, showing that these features are quite adequate

for this classification problem. Note that the spatial color moment features and the
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color coherence vector features yield similar accuracies for the classification of land-

scape images. However, the database of 528 images is very small to identify the best

color feature for the classification of landscape images. Using color coherence vector

features adds to the complexity of the classifiers (feature extraction and additional

storage).

Table 4.6: Classification accuracies (in %) for the forest vs. mountain classification;

accuracies in bold represent the best classification accuracies using individual features

and a combination of features on the entire database.

 

Test EDH EDCV CH CCV SPM EDH EDH EDCV EDCV

Data & CH & CCV & CH & CCV

Training Set 83.4 78.1 92.0 98.9 98.9 94.1 98.4 93.6 98.4

Test Set 87.1 77.2 91.4 91.9 93.6 93.0 92.5 93.5 91.9

Entire Database 85.3 77.7 91.7 95.5 96.0 93.6 95.5 93.6 95.2

 

 

 

 

            

4.6 Discussion

Content-based indexing and retrieval has emerged as an important area in computer

vision and multimedia computing. User queries are typically based on semantics and

not on low-level image features. Providing semantic indices into large databases is

a challenging problem. Psychological and psychophysical studies have shown that

scene identification in humans can occur, under certain conditions, without any kind

of object recognition form global low-level features. We have experimentally shown

that certain semantic categories can be learnt using specific low-level image features

under the constraint that the test images do belong to one of the pattern classes

under consideration. Specifically, we have developed a hierarchical Bayes classifier
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for classifying images. At the top level, images are classified into indoor and outdoor

categories. The outdoor images are then classified into city and landscape classes

(we assume a face detector is available to separates close-up images of people in

outdoor images into the “other” category) and finally, a subset of landscape images

are classified into the sunset, forest, and mountain class. Classifications based on local

color moments, color histograms, color coherence vectors, edge direction histograms,

and edge direction coherence vectors as features show promising results.
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Chapter 5

Automatic Detection of Image

Orientation

All image management systems require information about the true image orientation.

When a user scans a picture, she expects its image to be diSplayed in its correct

orientation, regardless of the orientation in which the photograph was placed on the

scanner. Moreover, people usually take photographs at a number of orientations,

but they expect the resulting images from scanned negatives to be displayed and

printed in their correct orientations. Thus, an image management system is expected

to correctly orient the input images. Currently, the above operation of orientation

detection is performed manually.
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5.1 Problem Definition

We define the image orientation detection problem as follows: “Given an image,

determine its correct orientation”. The correct orientation of an image is defined

as the orientation in which the scene (captured by the image) originally occurred.

Due to the rotation of the camera while taking a picture or incorrect placement of

the picture on a scanner, a digital image can be mis-oriented. We assume that the

input image is restricted to only four possible rotations that are multiples of 90°,

i.e., a photograph which is scanned can differ from its correct orientation by 0° (no

rotation), 90°, 180°, or 270°. This is reasonable since photographs placed on a scanner

are usually aligned with horizontal or vertical boundaries of the scanner plate. Thus,

the orientation detection problem can be represented as a four-class classification

problem with col, cog, rug, and <94 representing the four possible orientations of 0°, 90°,

180°, and 270°, respectively. Note that an image in an arbitrary orientation can easily

be rotated into one of the above four orientations by aligning the image boundaries

horizontally and vertically. Figure 5.1(a) shows an image in four possible orientations

and Figure 5.1(b) shows the true orientation detected by our algorithm for the four

input images in Figure 5.1(a).

Automatic image orientation detection is a very difficult problem. Humans use

object recognition and contextual information to identify the correct orientation of

an image. Since information regarding the presence of semantic objects such as sky,

grass, house, people, furniture, etc. and their inter-relationships cannot be reliably

extracted from general images, we rely on low-level visual features (e.g., spatial color
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W1 W2 W3 W4

(8!)

(b)

Figure 5.1: Orientation detection: (a) four possible orientations of interest; (b) correct

orientations detected by our algorithm.

   

 

   

distributions, texture, etc.) for orientation detection. Figures 5.2(a) and (b) illus-

trate the difficulty in image orientation estimation, where the true orientation cannot

be detected unless you first recognize the object present in the image (a seal and

knowledge that head of the seal should be in the top portion of the image). Close-

up images, low contrast images, or images of uniform or homogeneous texture (e.g.,

sunset/sunrise and indoor images) pose additional problems for robust orientation

estimation.
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Figure 5.2: Object detection and contextual knowledge are required to detect the

correct orientation in these images.

5.2 Implementation Issues

The orientation detection problem formulated above is again addressed using Bayes

decision theory as described in Chapter 3. Each image is represented by a feature

vector extracted from the image. The probabilistic models required for the Bayesian

approach are estimated during the training phase, wherein, the class-conditional prob-

ability density functions of the observed feature vector are estimated under a Vector

Quantization (VQ) framework.

Feature extraction is an important issue in classifier design. Since, global image

features are not invariant to image rotation, we use local regional features for the

orientation classification. An image is represented in terms of N2 blocks (N = 10)

and the features are extracted from these local regions. A number of features (e.g.,

color moments in the LUV color space [28]; color histograms in the HSV color

space [19]; edge direction histograms [19]; and MSAR texture features [70], see also

Section 4.3) were evaluated for their ability to discriminate between the four possible

orientations of an image. Feature saliency was evaluated using a K—nearest neighbor

classifier.
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Preliminary results showed that spatial color moment features yielded a much

higher accuracy for the four-class classification problem than the color histogram,

edge direction histogram, and MSAR features. Certain image classes such as outdoor

images, tend to have uniform spatial color distributions (sky is on top and typically

blue in color, grass is typically green and towards the bottom of an image, etc.), while

texture features have smaller variations with changes in image orientation. We thus,

trained our Bayesian classifier using spatial color moment features.

The number of sub~blocks, N2, was selected using a K-nearest neighbor classifier,

on a database of 4, 000 images, by varying N over a small number of values (N = 3,

N = 5, and N = 10) (see Table 5.1). The experiments show that as the number of

regions (N2) was increased, the accuracies improved with the best accuracy of about

82% obtained with N = 10. We feel that as the number of regions is increased, the

color moment features are better able to describe local regions. However, this trend

would not follow for much larger values of N, since the local regions would become

too small and the second—order color moments would not capture the variation in the

local regions. Moreover, with increasing N, the complexity of the classifier increases.

Hence, we used 600 spatial color moment features in 102 regions (3 mean and 3

variance values of L, U, and V components per region) for the orientation detection

problem.
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Table 5.1: Classification accuracies of a K-NN classifier using leave-one-out-method

for the four-class orientation detection problem; accuracies are presented for the spa-

tial color moment features under varying number of regions (N2) per image.

 

Database Size N Acc (%)

4,000 3 77.1

4,000 5 77.6

4, 000 10 81.8

 

 

 

    
 

5.3 Experimental Results

We have tested our orientation detection system on two independent databases of

16,392 (D1) and 1,509 (D2) images, respectively. Database Dl consists of pro-

fessional quality images from Core] stock photo library. Database D2 consists of

photographs (an amateur’s personal collection) taken using a digital camera (mostly

indoor images in poor lighting conditions). These images were used in experiments to

determine scaling issues, i.e., robustness of a classifier trained and tested on different

datasets. Table 5.2 shows the classification results using the LVQ-base Bayes classifier

for the four-class orientation detection problem. When the classifier was tested on

the training data, it yielded accuracies of over 96%. On an independent test data,

however, the accuracy drops to approximately 87%. Training the classifier on images

from database D1 and testing on images from database D2 yielded a rather poor

classification accuracy of 77.3%. This is due to the fact that the images in database

D1 have high contrast (professional quality images), whereas those in database D2

are captured under non-optimal conditions. On the other hand, when the classifier is

trained on D1 LJ D2, it yielded classification accuracies of over 96% on the training

data and over 87% on independent test data. Figure 5.3 shows a subset of the images
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whose orientation was detected correctly. Since we do not pose any restrictions on

the input images, nor do we use any contextual information (about image content),

the above classification results are reasonable. Further, when both the databases

are combined and used for training, the classifier reported an accuracy of over 96%

(resubstitution case) on the training data (over 17, 900 images). This shows that the

classifier has a further capacity to learn.

Table 5.2: Experimental results for orientation detection on different databases.

 

 

 

 

 

Training Independent Test Accuracy Number of

Set (Database:Size) Set (Database:Size) (%) Misclassifications

D1 : 8,000 D1 : 8,392 87.2 1,071

D2 : 755 D2 : 754 87.3 97

01 : 16, 392 D2 : 1,509 77.3 342

D1+D2 : 8, 755 D1+D2 : 9,146 87.7 1,123      
 

Most of the errors were made on images with uniform or homogeneous texture (as

in close-ups of buildings, faces, trees, plants, and animals, or indoor or underwater

pictures, etc.), low contrast images (either due to poor lighting or sunset/sunrise

images), and images of top-views (lack of discriminating illumination information

across the image). Figure 5.4 shows a subset of the misclassified images.

5.4 Selecting Codebook Size

The above experiments were based on an empirical choice of codebook size. We

next demonstrate how the MMDL principle described in Section 3.4.3 can be used to

select the optimal codebook size for the orientation detection problem. The training

set consisted of 8, 755 images extracted randomly from both the databases (database
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Figure 5.3: A subset of database images whose orientations were detected correctly;

the first image in each block is the input and the second image in the block is the

image with the correct orientation as determined by our algorithm.
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Figure 5.4: A subset of images for which our orientation detection system fails: (a)

input images; (b) detected orientations.

used in the last experiment in Table 5.2). Figures 5.5(a)-(e) show the plots of the

criterion function {L(y|o(,,) + L(0(q))} which needs to be minimized (Eq. (3.9)) vs.

the codebook size, q, for each of the four classes (Figures 5.5(a)—(d)) and for the

combination of the four classes (Figure 5.5(e)). Based on these plots, q = 75 codebook

vectors were selected for each of the four classes. The new classifier yielded accuracies

of 95% (438 misclassifications out of 8, 755 images) and 87.8% (1, 112 misclassifications

out of 9,146 images) on the training set and the independent test set, respectively.
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Figure 5.5: Determining the codebook size for spatial color moment features for the

orientation detection problem; (a) class wl (0°); (b) class (.02 (90°); (c) class Log (180°);

((1) class on (270°); (e) all classes combined.
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5.5 Discussion

Automatic image orientation detection in the absence of any contextual information is

a very difficult problem. Using a Bayesian classifier, we have presented a novel solution

to the above problem. We show how the spatial color moment features can capture

information about the image orientation for most of the images in our database. The

classifier probably captures the difference in illumination and color across an image

(illumination is usually from the top) to make a decision. This premise is strengthened

by the fact that most misclassifications are on images with low—contrast and images

representing a top view of a scene. A limitation of the above Bayesian paradigm is

its dependence on the training samples and the low-level features used to represent

the images. In the next Chapter, we address the issue of improving the robustness of

the semantic classifiers.
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Chapter 6

Designing Robust Classifiers

We have shown in the previous chapters how the problem of semantic image classifica-

tion can be addressed using a Bayesian classification framework from global low-level

features. In this chapter, we propose schemes to make the classifiers more robust. In

particular, we address the following problems:

0 Feature Selection: We investigate how feature selection methods can improve

the classification accuracy (Section 6.1).

o Incremental Learning: We propose a scheme to incrementally train the classi-

fiers to incorporate additional training samples as they become available (Sec-

tion 6.2).

e Reject Option: We develop a method to locally adapt the thresholds for reject-

ing images for which the corresponding image features do not have sufficient

discriminatory information (Section 6.3).
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e Combining Multiple Classifiers: We show how combining multiple classifiers

using bagging techniques can improve classification accuracies (Section 6.4).

0 Using Different Similarity Measures: We investigate the effect of using different

similarity measures on classifier performance (Section 6.5).

0 Using Different Classification Schemes: We have primarily used a Bayesian

classifier for semantic classification of images. There has been a significant

interest in recently proposed Support Vector Machines (SVM). In Section 6.6,

we have compared the performance of SVM with Bayesian classification for the

man-made vs. natural image classification problem.

6.1 Feature Selection

It has been observed that the performance of a classifier trained on a finite number of

samples initially improves, attains a maximum, and then starts to deteriorate as more

and more features are added. This phenomenon is called the curse of dimensional-

ity [116]. Can the classification accuracy be improved using feature subset selection

methods, i.e., using only a subset of the features from a high-dimensional feature

vector? Selecting the optimal feature subset is in itself a problem of exponential time

complexity and various heuristics have been proposed to yield approximate solutions.

The problem of automatic feature subset selection is defined as follows: given a

set of features, select a subset that performs the best for a chosen classifier. In other

words, the goal is to find the optimal subset of features from a high-dimensional
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feature set under a given classification system. A robust procedure for feature subset

selection would not only reduce the complexity of the classifier, but it may also

improve the classification accuracies by eliminating redundant or highly correlated

features.

A large number of algorithms have been proposed for feature subset selection. Jain

and Zongker [117] illustrate the merits of various feature subset selection methods.

While the branch-and-bound algorithm proposed by Narendra and Fukunaga [118]

is an “optimal” procedure, it requires the feature selection criterion function to be

monotone, i.e., the addition of new features to a feature subset should never decrease

the value of the criterion function. The above requirement may not be true in small

sample size situations. Due to this, it is desirable to use approximate solutions that

are fast and also guarantee a near optimal solution. Pudil et al. [119] demonstrate that

floating search methods show great promise where the branch-and-bound method can

not be used. These results were also confirmed by Jain and Zongker [117]. Therefore,

we tested the Sequential Floating Forward Selection (SFFS) method for feature subset

selection. For details on SFFS algorithm, readers are requested to refer to Pudil et

al. [119].

We have also applied a simple heuristic procedure based on clustering the features

in order to remove redundant features [120]. A K-means clustering algorithm [108]

was used to cluster the features. Note that normally, we cluster the patterns or the

samples. The feature components assigned to each cluster are then averaged to form

the new feature. Thus, the number of clusters determines the number of features

in the subset. Although, this method does not guarantee an optimal solution for
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feature subset selection, it does attempt to eliminate highly correlated features in

high-dimensional feature vectors. We refer to this method as the Feature Cluster

(FC) method.

6.1.1 Experiments using SFFS

We have experimented with feature subset selection on the indoor vs. outdoor classi-

fier using the implementation of SFFS algorithm provided by Jain and Zongker [117].

We found the algorithm to be very slow over the entire training set of 2, 541 training

samples from database D1. We hence, sub-sampled 700 samples each from the train-

ing and test set for the feature subset selection process. The results of the feature

subset selection using SFFS can be summarized as follows.

0 The SFFS algorithm is extremely slow. It took 12 days on a Sun Ultra 2 Model

2300 (dual 300MHz processors) processor with 512 MB memory to select up to

67 features from the 600-dimensional feature vector.

0 The best accuracy of 87% on the independent test set of 700 samples was pro-

vided by a feature subset of 52 components compared to the accuracy of 88.2%

using all the 600 features.

0 Training a new classifier on the 52 features selected by SFFS using the 2,541

samples from the training set of database D1 yielded an accuracy of 82.2% on

the independent test set of 2, 540 samples. The lower accuracy on a larger test

set is in agreement with the results shown by Jain and Zongker [117] on the
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pitfalls of using feature subset selection on sparse data in a high dimensional

space.

6.1.2 Experiments using PC

In order to remove correlated features, we also clustered the features. The spatial color

moment features used in the indoor vs. outdoor and orientation detection classification

problems (feature size of 600) were clustered to generate new feature vectors of sizes

50, 75, 100, 125, 150, 175, and 200. The Euclidean distance measure was used as the

dissimilarity metric for clustering. The feature components assigned to each cluster

were averaged to define a new feature. This clustering approach was much faster than

the SFFS method taking only a few seconds on a training set size of 8, 755 samples for

the orientation detection problem. The classification accuracies for the two classifiers

for various features are shown in Figures 6.1(a) and (b). A codebook size of 30 (the

optimal size for the spatial color moments features) was used for all the features for the

indoor vs. outdoor image classifier. Best classification accuracy of 91.8% on the entire

database of 5,081 images (95.2% on the training set and 88.3% on an independent

test set of 2, 540 images) was obtained for the indoor vs. outdoor classifier when it was

trained on the feature vector having 75 components. For the orientation detection

problem, a codebook size of 100 was used for all the features. Best classification

accuracy of 92.7% on the entire database of 17,901 images (97.8% on the training

set and 87.9% on an independent test set of 9,146 images) was obtained when the

classifier was trained on the feature vector with 150 components. On identifying
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the feature components that were clustered together, we found that all groupings

were formed within features of neighboring image regions. These preliminary results

show that clustering the features (linear combination of feature components) is more

efficient and accurate than the SFFS feature subset selection method for very high-

dimensional feature vectors.

We applied the MMDL principle (described in Section 3.4.3) to generate the 0p-

timal codebook size for the new feature set. The MMDL criterion selected q = 50

(25 codebook vectors per class) as the optimal number of codebooks for the indoor

vs. outdoor classifier and q = 200 (50 codebook vectors per class) for the orientation

detection classifier based on the training samples. Figures 6.2(a)-(c) show the plots

of L(y|9(q)) + L(0(q)) (criterion to be minimized in Eq. (3.9)) vs. the codebook size,

q, for this new feature set of 75 components (for the indoor vs. outdoor classifier).

As can be seen in the figures, q = 20 minimizes the criterion in Eq. (3.9) for the

indoor class, while q = 25 minimizes the criterion for the outdoor class. Combining

the two classes (Figure 6.2(c)) yields q = 50 as the optimal number of codebooks for

the indoor vs. outdoor classifier based on the 2, 541 training samples.

Table 6.1 shows the classification accuracies for the two classifiers trained on these

new features compared against the classification accuracies of the classifier trained

on all the 600 spatial color moment features. The FC method for feature selection

improved the classifier performance from 91.2% to 92.4% for the indoor vs. outdoor

classification problem (on a database of 5,081 images), while reducing the feature

vector dimensionality from 600 components to 75 components. For the orientation

detection problem, the FC method for feature selection improved the classifier perfor-
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Figure 6.1: Classification accuracies for (a) indoor vs. outdoor classifier and (b)

orientation detection classifier, trained on varying sized feature vectors generated by

clustering (FC method) the 600-dimensional spatial color moment features; dashed

line, dotted line, and solid line represent the classification accuracies on the training

set, test set, and the entire database, respectively.
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mance from 92.0% to 93.1% on a database of 17, 901 images. Note that the low-level

spatial color moment features used for these classification problems are extracted over

10 x 10 sub-blocks in the image. Usually, neighboring sub-blocks in an image have

similar features as various objects span multiple sub-blocks (e.g., sky, walls, roads,

forest, etc., may span a number of sub-blocks in an image). Thus, feature selection

based on a combination of features (feature clustering) is more effective than select-

ing a subset of features (SFFS). We feel that other linear and non-linear techniques

for feature extraction such as PCA, Discriminant Analysis, and Sammon’s non-linear

projection algorithms may be as effective as feature clustering in reducing the feature

dimensionality.
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Figure 6.2: Determining codebook size for the 75-dimensional feature vector (gen-

erated using the FC method) for the indoor vs. outdoor classification problem; (a)

indoor class; (b) outdoor class; (c) indoor and outdoor classes combined.

Table 6.1: Classification accuracies for the indoor vs. outdoor (I/O) and orientation

detection (0D) image classification problems.

 

 
 

 

Classification New Feature Accuracy Old Feature Accuracy

Problem Size (%) Size (%)

I/O 75 92.4 600 91.2

OD 150 93.1 600 92.0       
 

121



6.1.3 Weighting Features

An appropriate weighting of the feature vectors can also increase the accuracy of the

classifiers. However, automatically selecting the optimal weights for individual feature

components is an unsolved problem. We experimentally show how scaling the feature

components to a common scale (the spatial color moment features have different

scales for the L, U, and V components) improves the classification accuracy for the

orientation detection classifier. The 150 feature components selected by the feature

selection algorithm for the orientation detection problem were normalized to the same

scale1 as follows. Let y,- represent the ith feature component of a feature vector y.

Let min,- and max,- represent the range of values for the ith feature component over

all samples. Then the scaled feature component, y], can be defined as

9:? " mini
 

I _

yr — - -

max,- — min,

Table 6.2 shows the classification accuracy for the orientation detection problem using

the scaled features. In this case, scaling improves the classification accuracy by over

3% on the independent test data. Automatically extracting the optimal weight vector

for a given feature vector is a promising direction for future research [121, 122].

 

1We acknowledge Wei-Shiuan Huang and Changjiang Yang of PRIP lab, Department of Computer

Science and Engineering, Michigan State University for their suggestion to normalize the feature

components to the same scale.
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Table 6.2: Classification accuracies for the orientation detection classifier using un-

sealed (150-dimensional feature vector extracted in Table 6.1) and scaled features;

the training and test set sizes are 8, 755 and 9,146, respectively.

 

 

 

 

Feature Accuracy on Accuracy on

Training Set (%) on Test Set (%)

Unsealed 97.1 89.4

Scaled 97.3 92.5     
 

6.2 Incremental Learning

It is well known that the classification performance depends on the training set size;

more comprehensive a training set, better _is the classification performance. Ta-

ble 6.3 compares the classification accuracies of the indoor vs. outdoor image classifier

(trained on spatial color moment features) with increasing training set sizes. As ex-

pected, increasing the training set size improves the classification accuracy. When we

trained the vector quantizer with all the available 5, 081 images using the color mo-

ment features, a classification accuracy of 95.7% (resubstitution case) was obtained

compared to 88.2% using the holdout method. This shows that the classifier still has

the capacity to learn provided additional training samples are available. The above

observations illustrate the need for an incremental learning paradigm for the Bayesian

classifiers.

Collecting a large and representative training set is expensive, time consuming,

and sometimes not feasible. Therefore, it is not realistic to assume that a classifier

can be initially trained on a comprehensive training set. Rather, it is desirable to

incorporate learning techniques in designing a classifier [123]. Over time, as additional

training samples become available, the classifier should have the capability to adapt
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Table 6.3: Effect of increasing the size of training data on classification accuracy for

the indoor vs. outdoor classifier; Test and training sets were different.

 

Training Ind. Test Accuracy

Set Size Set Size (%)

700 2, 540 75.3

1, 418 2, 540 79.8

1, 768 2, 540 86.0

2,192 2, 540 86.4

2,541 2, 540 88.2

 

 

 

 

 

 

     

to the new data while retaining the discriminating information which it has already

learnt. At the same time, the training set size can become extremely large over

time and it may not be feasible to store all of the previously learnt data. Therefore,

instead of re—training the classifier on the entire training set every time new samples

are collected, it is more desirable to incrementally update the classifier. For the

Bayesian classifier used here, the training set is represented in terms of the codebook

vectors (1),). Incremental learning involves updating these codebook vectors as new

training data become available.

6.2.1 Updating the Classifier

One method to retrain the classifier is to simply train it with the new data, i.e., start

with the previously learnt codebook vectors and update them using the new data.

This straight-forward method, however, suffers from the drawback that it does not

assign an appropriate weight to the previously learnt information. In other words, if

a classifier was trained on a large number of samples (say, a few hundred) and then

a small number of new samples (say, 10 samples that are mostly outliers) are used
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to incrementally train the classifier using the above learning paradigm, the new data

will unduly influence the current value of the codebook vectors. Learning with these

outliers will in fact lead to un-learning of the distribution based on previous samples.

Table 6.4 demonstrates the results of updating the indoor vs. outdoor classifier using

this scheme. The indoor vs. outdoor classifier was initially trained on 1, 418 images

and yielded an accuracy of 79.8% on an independent test data of 2, 540 images. The

classifier was then incrementally trained with an additional 350 images. As can be

seen, the performance of the updated classifier deteriorates on the independent test

data to 63.7%. When the classifier was further trained on an additional 773 samples

using the naive approach, the accuracy on the independent test set slightly improves

to 72.5%. Note that when the all training data were used (1, 418 + 350 + 773 = 2,541

samples), the accuracy on the independent test set was 88.2% (Table 6.3). These

results demonstrate that any robust incremental learning scheme must assign an

appropriate weight to the already learnt distribution (codebook vectors).

Table 6.4: A naive approach to incremental learning using newly acquired data (350

and 773 images) to improve the performance of a classifier that was previously trained

on 1, 418 images; accuracies are presented on an independent test set of 2, 540 images.

The initial classification accuracy of 79.8% dropped using this approach.

 

Additional Accuracy on

Training Samples Test set (%)

350 63.7

773 72.5
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6.2.2 Proposed Learning Scheme

The proposed learning scheme estimates or tries to generate the original training

samples from the codebook vectors and augments these estimated samples to the

new training set. The combined training set is then used along with the current

codebook vectors to determine the new set of codebook vectors. This method dif-

fers from traditional bootstrapping methods [108] (which assume that the original

training samples are available for sampling with replacement) in that the original

training samples are not available. In our case, the original training samples need

to be generated based on the proportion of these samples assigned to each codebook

vector (m,), and the codebook vectors themselves. Figure 6.3 illustrates this learning

paradigm for a synthetic classification problem where 2-D samples are generated from

two i.i.d. Gaussian distributions with mean vectors [1,1]T and [2,1]T, respectively,

and identity covariance matrices. We see that as the classifier is incrementally trained

with additional data, the new codebook vectors approach the true mean vectors.

We have studied the following methods to generate training samples from a code-

book vector:

0 Case 1: Using duplicates of the codebook vectors as the samples.

0 Case 2: Generating the samples from an i.i.d. multivariate normal distribution

with identity covariance matrix centered at the codebook vectors.

0 Case 3: Same as Case 2, except that we use a diagonal co-variance matrix

instead of the identity covariance matrix. The diagonal elements correspond
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Figure 6.3: Incremental learning paradigm applied to a 2-class 2-dimensional synthetic

classification problem; (at) represents the true means of the underlying densities; (<1)

represents the initial codebook vectors determined from 100 training samples per

class; (0) represents the codebook vectors trained using an additional 400 samples

from each class; and (0) represents the codebook vectors trained with an additional

500 samples from each class.

to the individual variances of features of the training samples assigned to the

respective codebook vector.

0 Case 4: Generating the samples from an i.i.d. multivariate normal distribution

with identity covariance matrix centered at the mean vector of the training

patterns assigned to a codebook vector. Note that each codebook vector need

not be the mean of the training samples assigned to it, as both positive and

negative examples influence the codebook vectors.

0 Case 5: Same as Case 4, except that we use a diagonal co—variance matrix

instead of the identity covariance matrix. The diagonal elements correspond

to the individual variances of features of the training samples assigned to the
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respective codebook vector.

The last four methods do not enforce the condition that the generated samples be

closest to the codebook vector they are estimated from. Note that the number of

samples generated from each codebook vector is the same as the number of original

training samples assigned to that codebook vector. If we had chosen to use the EM

algorithm to estimate the mixing parameters of the class-conditional densities, instead

of LVQ, then, incremental learning could be achieved by using an on-line version of

EM [124].

6.2.3 Experimental Results

We have tested the proposed incremental learning paradigm on the Bayesian classifier

for indoor vs. outdoor, city vs. landscape, and orientation detection image classi-

fication problems. Initially, half the images from the database were used to train a

classifier. The classifier was then incrementally trained using the remaining images.

The performance of the classifier was then compared to that of a classifier trained

on the entire set of database images (non-incremental learning). Table 6.5 shows

the classification accuracies for the various classifiers with and without incremental

learning. The best classification accuracies achieved for each of the classifiers were

95.9% for the city vs. landscape classifier (on 2,716 images), 94.6% for the indoor vs.

outdoor classifier (on 5, 081 images) and 95.3% for the orientation detection classifier

(on 17, 901 images). When each of the classifiers was trained using the entire training

database, the accuracies achieved were 97.0%, 95.7%, and 95.2%, respectively. These
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results show that a classifier trained incrementally is able to achieve almost similar

accuracies as one trained with all the data. We feel that the reduction in classification

accuracies of around 1% for the indoor vs. outdoor and city vs. landscape classifiers

is mainly due to our inability to reliably generate representative training samples

from the codebook vectors. We further see that all the five methods used to estimate

the training samples perform equally well. Since Case 1 requires the least additional

storage (only one real number denoting the total number of training samples used to

train the classifier so far), it seems to give the best accuracy vs. storage trade-off.

Table 6.5: Classification accuracies (in %) with and without incremental learning.

 

 

 

 

 

 

 

 

Incremental Learning City vs. Indoor vs. Orientation

Method Landscape Outdoor Detection

Case 1 95.9 94.1 95.3

Case 2 95.8 94.3 95.3

Case 3 95.8 94.5 94.9

Case 4 95.8 94.3 95.1

Case 5 95.9 94.6 94.2

Non-Incremental 97.0 95.7 95.2      
 

6.3 Reject Option

It is well known that introducing a reject option in a classification problem can result

in a reduction in the error rate. The most widely used reject criteria for Bayesian

classifiers are the distance reject option and the ambiguity reject option [125, 126,

127, 128]. The distance reject option addresses the problem of outlier detection, i.e.,

a test pattern is rejected if its distance to the nearest training pattern (or the stored

prototypes) is larger than a threshold. The ambiguity reject option rejects those test
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patterns which lie near the class boundaries and for which the classifier assigns a low

confidence value. In this paper, we address the problem of improving the classification

accuracy of a VQ-based supervised Bayesian classifier by deve10ping a reject option.

We Show how a simple, yet novel scheme for local adaptation of rejection criteria can

improve the error vs. reject characteristics of our classifier over those achieved by

using the commonly adopted global thresholds for ambiguity and outlier rejection.

6.3.1 Rejection Scheme

The goal of rejection is to improve the classification accuracy by rejecting outliers and

patterns for which the classifier has a low confidence. The outlier and ambiguity reject

Options can be formalized for the Bayesian classifiers as follows. Let p(w,- | 3;) represent

the posterior probability of class w,- given y. Then pattern vector y is classified into

class w,- if the following conditions are satisfied: (i) p(w, I y) 2 p(wj I y), Vj aé i; (ii)

p(w,- | y) 2 t1(y); and (iii) % 2 t2(y), Vj 7E i; where t1(.) and t2(.) represent the

thresholds for outlier and ambiguity rejection, respectively. If either (ii) or (iii) is not

satisfied, pattern y is rejected.

Defining Local Thresholds

Typically, the two threshold (t1 and t2) are selected globally, i.e., the thresholds are

constant over the entire feature space. Here, we show how computing the above

thresholds in local regions (around the test patterns) improves the error vs. reject

characteristics of the VQ-based Bayesian classifier. The feature space is divided into

regions and thresholds are selected for each region. The higher the classification

130



accuracy in a region, the lower is the threshold value. Note that the codebook vectors

(vi) act as prototypes of the training samples and can be used to partition the feature

space into various regions. We have used two schemes to partition the feature space.

The first scheme uses the Voronoi tessellation based on the codebook vectors. Let

{R1, R2, . . . ,Rn} represent the partition of the feature space R, where 72,- is defined

33,

‘m=%yWy-mWSHy-wWJ¢iISquL $0

where q is the codebook size. The second scheme further partitions R, based on the

second closest codebook vector as follows:

Rw=nyy—WWSHy—WWSHy—WW, on

i¢i¢hlsk£ql

Figure 6.4 shows the partitioning for a set of 4 codebook vectors, 1);, 1 g i S 4. The

solid lines represent the partitions considering only the near neighbor. The dashed

lines represent the partitions when two nearest neighbors are considered. The main

goal of partitioning the high-dimensional feature space is to identify those regions for

which the classifier has high accuracies. Test samples belonging to regions with low

classification accuracy (either due to less discrimination power of the given features

in that region, or non-availability of suflicient training samples from that region) are

then marked for rejection. Finer the partitioning, the better the rejection scheme.

However, more training samples are needed to robustly estimate the local thresholds

for rejection in these fine regions. There is thus, a trade-off between the complexity
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of the partitioning and the size of training set needed to reliably estimate the local
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Figure 6.4: Partitioning the feature space based on nearest codebook vectors.

Threshold Selection

The outlier rejection threshold for region R,- is chosen as the minimum posterior

probability of a correctly classified training sample falling in 7%,, i.e., t1(y) = f1(R,-) =

min¢€R,(maxJ-(p(wj | m))), where y E R,- and Va: : (a: E 7%,) /\ (a: is correctly

classified).

The ambiguity rejection threshold for a region is specified as follows. For every

region 72,-, we define g(y), the minimum ratio of the largest to the second largest

posterior probability of a correctly classified pattern in 72,-, as

9(y) = aggigfpm | aI')/p(wk l 96>).

where y E 7%,, adj and wk are the classes with the largest and the second largest
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posterior probability for sample 2:, and V2: : (a: E 72,-) /\ (a: is correctly classified).

Similarly, we define h(y), the maximum ratio of the largest to the second largest

posterior probability of a misclassified pattern in 72,-, as

h(y) = geagflwj l a=)/p(wk | 3)),

where Va: : (:c E 72,-) /\ (a: is misclassified). Ambiguity rejection threshold is then

defined as t2(y) = f2(’R,-) = min(g(y), h(y)).

In order to Operate the classifier at different reject rates, the two thresholds are

varied according to the following equation: Af,(RJ-) or 3;, where i 6 {1,2} and

r, = %;g is the ratio of correctly classified training samples (NJ-C) to the number

of misclassified training samples (Nf ) in region 72]». This heuristic forces the local
J

thresholds to increase at a higher rate in regions with a higher misclassification rate.

6.3.2 Experimental Results

We have tested our rejection paradigm on the man-made vs. natural (M/N), indoor

vs. outdoor (I/O), and orientation detection (OD) image classification problems.

These three classifiers were trained on high-dimensional feature vectors (145, 745,

and 150 features, respectively) using Kohonen’s LVQ program [113] and the optimal

size of the codebook has been selected using a modified MDL principle The man-

made vs. natural image classification is an extension of the city vs. landscape image

classification with the inclusion of indoor images into the man-made class. Man-

made class thus, consists of all the images that have man-made structures such as
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buildings, roads, cars, furniture, etc., whereas natural images lack such structures.

The indoor vs. outdoor classifier was trained using a weighted concatenation of the

GOO-dimensional spatial color moments and 145-dimensional edge direction coherence

vectors.

We conducted three sets of experiments that differed in the method for threshold

selection. The three rejection methods, called Method 1, Method 2, and Method 3,

are defined as follows: (i) Use global threshold values; (ii) Local regions are chosen

as Voronoi tessellations formed by the codebook vectors (Eq. 6.1); and (iii) Local

regions are chosen on the basis of the two nearest codebook vectors (Eq. 6.2).

Table 6.6 presents the accuracy (in %) of the various classifiers on training and

test data. The accuracies for the classifier with rejection are shown for Method 3

only. Figures 6.5(a)-(c) Show the error vs. outlier, ambiguity, and both outlier and

ambiguity reject curves, respectively, for the orientation detection classifier on the

test set. The other classifiers show similar curves. The plots show how the locally

adapted thresholds improve the error vs. reject characteristics of a classifier. Method

3 outperforms Method 1 (global) for all the three classifiers. On an average, Method

3 leads to an improvement of 3% in classification accuracy at a reject rate of 10% for

the three image classification problems as against the classifier with no reject option

(see Table 6.6). Figures 6.6(a)-(c) show a subset of images for which the classifier has

a high confidence in classification. For these images, the extracted low-level features

capture sufficient information to discern the true class. Figures 6.7(a)-(c) show a sub-

set of images that were rejected at a reject rate of 10% by the three classifiers. Most

of the images rejected by the man-made vs. natural classifier are images that contain
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both man-made structures and natural scenery (either long distance city shots or city

scenes with trees). The indoor vs. outdoor classifier has a low confidence for close-up

images. These images do not present sufficient background information to discrimi-

nate between the two classes. The orientation detection classifier rejects images with

uniform or homogeneous textures or close-up images. Color moment features do not

capture sufficient information to discriminate between the four possible orientations

for these images.

Table 6.6: Classification accuracies for image classification at various rejection levels

(0%, 10%, 50%).

 

 

  
 

 

 

 

Problem Training Test Accuracy with Rejection

Set Size Set Size 0% ] 10% 50%

M/N 2, 699 9, 895 92.3 94.8 98.0

I/O 6,931 15, 631 92.7 95.7 99.7

OD 8, 755 17, 901 93.0 96.3 99.1     
 

 

6.4 Combining Multiple Classifiers

What is the best feature set and the best classifier for a given problem? This is a very

difficult question which has evaded pattern recognition researchers for a long time.

Instead of answering this question directly, researchers have shown that combining

multiple classifiers can exploit the discrimination ability of individual feature sets

and classifiers [129, 130, 131, 132, 133]. For a brief review on classifier combination,

interested readers are referred to [134].

Bagging [135, 136] and boosting [137] are two commonly used methods of com-

bining classifiers based on statistical re-sampling techniques. Bagging uses bootstrap
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Figure 6.5: Error vs. reject curves for the orientation detection problem; (a) outlier

rejection ; (b) ambiguity rejection; (0) combined outlier and ambiguity rejection; solid,

dashed, and dotted lines represent Method 1, Method 2, and Method 3, respectively.
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(c) Orientation Detection

Figure 6.6: Images classified with a high confidence value.
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(c) Orientation Detection

Figure 6.7: Images rejected at 10% reject rate.
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techniques (randomly draw it patterns with replacement from the original training

data of size n) to generate a number of training sets. Different classifiers are then

trained on these training sets. The final classification is based on the combined out-

put (linear combination) of the various classifiers. Boosting is another statistical re-

sampling technique where individual classifiers are trained hierarchically to learn more

subtle regions of a classification problem. Each classifier in the hierarchy is trained on

a training set that overemphasizes (assigns more weights to) the patterns that were

misclassified in the earlier stages. A number of studies [135, 136, 133, 137, 138] have

shown that bagging and boosting can improve the classification accuracy of “weak”

classifiers (classifiers with near chance accuracies). However, if the classifier perfor-

mance is good, bagging and boosting do not guarantee any improvement (in fact, the

bagged or boosted classifier may perform worse than the original classifier). Specif-

ically, Mao [133] showed that boosting can in fact reduce the classification accuracy

for robust and efficient classifiers under a reject option. Mao argued that for robust

classifiers, the misclassifications are mostly due to the lack of suflicient discrimination

ability of the underlying features used for classification. Under these circumstances,

boosting does not improve classification accuracies and using additional features with

higher discrimination ability for these misclassified patterns is a more practical ap-

proach. For these reasons, we present results of combining classifiers using the bagging

ensemble only.

We have developed bagged classifiers (we empirically set the number of classifiers

in the ensemble to 10) for the man-made vs. natural and the indoor vs. outdoor

image classification problems. The bagging algorithm is described as follows.
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0 Generate bootstrapped sets (here ten) of training data for the classification

problem at hand.

0 Train different classifiers independently on the ten training sets.

0 The output of the individual classifiers is linearly combined to yield the bagged

classifier.

Figures 6.8(a) and (b) Show the classifier accuracies for the bagged classifiers

versus the original (single best) classifiers. The results show that bagging improves the

classification accuracies for both the classifiers. For the man-made vs. natural image

classifier, bagging improves classification accuracies by 0.6% at 10% rejection. In the

case of indoor vs. outdoor image classifier, improvement by the bagging ensemble is

much more significant. The bagged classifier improves the accuracy by 2% at 10%

rejection. Although bagging shows improvement in classification accuracy, a thorough

analysis is required to quantify the benefit. A number of research issues that need

to be addressed are: (i) automatic selection of number of classifiers in the bagged

ensemble; (ii) methods of combining the outputs of individual classifiers; and (iii)

increase in the complexity of classification.

6.5 Different Similarity Metrics

We have shown in Section 6.1.3 how feature weighting can affect classifier perfor-

mance. Another factor that aflects classifier accuracy is the similarity measure used.

In this Section, we analyze how changing the distance metric from Euclidean distance
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Figure 6.8: Error vs. reject curves for bagged classifiers (solid line) as against single

best classifier (dashed line); (a) man-made vs. natural; (b) indoor vs. outdoor.
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to City-block affects the classification accuracy of the man-made vs. natural image

classification problem. Figure 6.9(a) compares the classification accuracies for the

man-made vs. natural image classifier under Euclidean and City-block distance func-

tions. Figure 6.9(b) compares the classification accuracies for the bagged man-made

vs. natural image classifier (an ensemble of 10 classifiers was chosen for bagging)

under Euclidean and City-block distance functions. Both the classifiers (using the

two different distance measures) show comparable accuracies. Using Mahalanobis

distance is also an option but with the large dimensionality of the feature vector used

here, a reliable estimate of the covariance matrix will require a very large number of

training samples.
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Figure 6.9: Error vs. reject curves for the man-made vs. natural image classifiers

using City-block distance (solid line) and Euclidean distance (dashed line) as the

dissimilarity measure; (a) single best classifiers; (b) bagged classifiers.
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6.6 Experiments with SVM Classifier

Sections 6.1- 6.5 have addressed the problem of improving classifier robustness for the

LVQ-based Bayesian classification framework. Can a different classification method

provide a better classification accuracy? We empirically compare the performance of

Support Vector Machines (SVMs) with the LVQ-based classifier for the man-made

vs. natural image classification problem. SVMs have recently gained wide usage

due to newly developed efficient learning techniques [139, 140]. We have used the

SVMJight [141] software package for implementing this classifier. The classifiers

were trained on 2,699 training samples and tested on 9,895 test samples using the

edge direction coherence vector features. A number of classifiers were trained using

diflerent kernels (linear, polynomial, radial basis function, and sigmoid) for SVM.

The best classification accuracy was achieved when a polynomial kernel function of

degree 3 was used. Therefore, we report results for this SVM classifier only. The

LVQ-based classifier achieved a classification accuracy of 96.7% on the training set

and 92.3% on the test set. It selected 40 codebook vectors and took 1 msec to classify

an image (excluding the feature extraction stage) on a 333.6 MHz SUN Sparc Ultra

10 machine. The SVM-based classifier achieved an accuracy of 98.3% on the training

set and 92.9% on the test set. It selected 417 support vectors from the training set

and took 10 msec to classify an image. Table 6.7 compares the performance of the

LVQ-based classifier and this SVM classifier. Although the performance of the SVM

classifier is slightly better than the LVQ-based classifier, the improvement is achieved

at the cost of longer training and classification times. Combining the results of these
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different two classifiers is a promising direction for future research.

Table 6.7: Comparing LVQ-based and SVM classifiers on the man-made vs. natural

image classification problem.

 

Classifier Accuracy on Accuracy on Vectors Classification Time

Training Set (%) Test Set (%) Stored per Image (msec)

LVQ 96.7 92.3 40 1

SVM 98.3 92.9 417 10

 

 

 

      
 

6.7 Discussion

Selecting the best feature set and the best classifier for a given classification problem

is a challenging and difficult problem. We demonstrate how the classification per-

formance can be improved using a number of techniques. Specifically, we show how

incorporating feature selection, incremental learning, reject option, and classifier com-

bination (bagging) schemes improve classifier performance. We empirically evaluate

the effect of using different dissimilarity measures (Euclidean distance vs. City-block

distance) on the classification accuracy of the man-made vs. natural image classifier.

Both the dissimilarity measures yield comparable classification accuracies. Since LVQ

enforces the use of a fixed distance metric, we have been unable to experiment with

the Mahalanobis distance. Using other classifiers with the Mahalanobis distance mea-

sure seems a promising direction for future research. We also compare the LVQ-based

classifier to SVM classifiers (which have been reported to have a very good general-

ization capability) for the man-made vs. natural image classifier. Although an SVM

classifier yields slightly better classification accuracies than the LVQ-based classifier,
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it is more complex to train (has a number of parameters that need to be tweaked), it

requires more training and classification time, and it requires more storage space to

represent the class models.
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Chapter 7

Object Detection

We have shown in Chapter 4 how specific global low-level image features can be

used for image classification. Organizing images into categories can be useful for

browsing purposes (when the user has a vague remembrance of the pictures she would

like to look at). However when users are searching for a particular concept (e.g., a

person, a waterfall scene, a car, etc.), they are typically interested in specific objects

and their inter-relationships. There is thus, an added need to identify objects of

interest from images. Object identification in general is an unsolved problem in

pattern recognition and computer vision. However, based on our success in image

classification, we propose using the category information to detect objects that are

likely to occur in such types of images.

The generated object-level tags can aid both in effective query formulation and

in improving retrieval efficiency and accuracy. Figure 7.1(b) shows an example of a

retrieval for the query in Figure 7.1(a) where the scene classification information is

used. The query image is assigned the tags outdoor and man-made by the semantic
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classifier. The retrieval is performed on the subset of database images that match the

query indices. Since the semantic classifiers are not perfect, the image with the pen-

guins is also retrieved in Figure 7.1(b). If information regarding the presence/absence

of sky and vegetation can be extracted from outdoor images, then a user has addi-

tional freedom in formulating her query. She can now further restrict the query to

those images that have sky but lack vegetation. Figure 7.1(c) shows the results of

the new query. Using additional object information improves the retrieval, retrieving

two additional images of sail boats in the top 10 retrievals.

7.1 Detecting Natural Textures

As the first task, we attempt to detect natural regions such as sky and vegetation

in outdoor images. A future extension of the work is to detect man-made objects

such as buildings, roads, cars, etc., in outdoor images. The problem of sky detection

can be formulated as follows: Can regions of sky be automatically extracted from

outdoor images? Examples of various sky scenes include clear skies, cloudy skies, sky

at sunrise or sunset, night sky, etc. Detecting regions of sky and classifying them into

sub—categories can generate additional semantic indices such as sunset scene, cloudy

sky, night scene, etc. These tags can further aid in retrieval of images from large

databases.

Detecting regions of sky in an outdoor image is a difficult problem. This is due

to variations in color and texture of sky regions under different conditions (highly

saturated colors in orange and yellow hue for sunset images, to textured clouds) as
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Figure 7.1: Image retrieval results on a database of 23,898 images: (a) query image;

(b) top 10 retrieved images when the search is restricted to outdoor images with man-

made structures; (c) search is further restricted to images with sky and no vegetation.
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well as presence of uniform colors and homogeneous textures in regions of water, walls,

snow, etc. Figure 7.2 shows five database images with blocks (16 x 16) detected as

sky by our algorithm.

 

Figure 7.2: Images with blocks detected as sky.

The vegetation detector identifies regions of vegetation in outdoor images. Users

can define queries in terms of presence/absence of vegetation (trees, grass, plants and

bushes) and also their location in the image. Examples of various vegetation scenes

include forest scenes (trees and dense foliage), regions of images with trees (either

close-up or a long distance shot), grass and lawns, gardens and bushes, etc. Figure 7.3

shows five images from our database with blocks (16 x16) of vegetation as detected by

our algorithm. We can see that the various vegetation patches differ widely in their

color and texture. While long distance shots of vegetation (and also lawns) have little

texture and are green in color, close-up shots of trees and bushes are highly textured.

On the other hand, scenes of flowers or trees in the autumn season have varied colors

(fall colors which are not necessarily green). Under darkness, however, both texture
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and color information is absent from vegetation scenes. These intra—class variations

make the problem of automatic detection of vegetation regions difficult.

M v..: |

- . h ‘ .

  

  

  
Figure 7.3: Images with blocks detected as vegetation.

We have used the Bayesian classification framework described in Chapter 3 for

sky and vegetation detection. To localize these regions, we divide the image into

16 x 16 blocks. Color, texture, and spatial position features are extracted from each

block. Classification of a block as sky or non-sky (for vegetation detector, each block

is classified as vegetation or non-vegetation) is then based on the distribution of low—

level features. We briefly describe the image features used to detect regions of sky in

an image.

0 Color: We use 6 color moment features (mean and variance in LUV color space)

to describe the color in a block [28].

0 Texture: We have used two diflerent models that have been widely used in the

texture analysis research.
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— Gabor Features: We use 56 Gabor features (mean and variance in 4 ori-

entations and 7 scale features) to describe the texture in a block [73]. Ma

and Manjunath [38] have shown that Gabor features have a strong dis-

crimination power for various types of textures.

— MSAR Features: We use 30 MSAR (Multi-resolution Simultaneous Auto—

Regressive features: mean and variance in 3 resolutions and 5 features per

resolution) to describe the texture in a block [70]. Picard and Minka [11]

have shown that MSAR features outperform other texture features on the

Brodatz dataset.

0 Position: We use the center coordinates of a block as 2-dimensional position

features.

The sky detector thus uses either 64 (color position, and Gabor) or 38 (color, position,

and MSAR) feature components for classification.

For vegetation detection, we use a combination of color and MSAR features only

and do not use the position features, since there are no specific restrictions on where

plants, trees, branches, etc., can occur in a scene. Therefore, the feature vector for

every 16 x 16 pixel block consists of 36 feature components.

7.1.1 Detecting Regions of Sky

We have trained our sky detector on regions extracted from 471 images. These images

are part of the Corel stock photo library and are stored in the JPEG format. A total of

29,614 sky blocks and 90,183 non-sky blocks were used for training. Both Gabor and
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MSAR features yielded similar accuracies in terms of the number of blocks correctly

classified. However, visual inspection on our database shows that MSAR features

are more robust. We have empirically chosen 25 codebook vectors per class (total

of 50 codebook vectors for our 2—class classification problem). The classifier achieves

an accuracy of 89.4% and 96.7% for individual sky and non-sky blocks using MSAR

features along with the color and position features. Figure 7.4 shows a subset of the

independent test images where the classifier was able to reliably detect the presence of

sky. These results show that the classifier can detect sky in varying conditions, such

as in the presence of clouds, at sunrise or sunset, etc. The classifier has been trained

to discriminate between sky and water (reflections of sky in water have been labeled

as regions of non-sky). In most cases, the classifier is able to distinguish between sky

and its reflection in water (with the help of position features). Figure 7.5 shows a

subset of the test images where our classifier fails. The sky detector fails to detect

regions of sky that have highly textured clouds. The detector also fails to discriminate

regions of sky from regions of water in sunrise/sunset images (most sunset training

images displayed scenes of entire sky and hence, the position features yielded very

little discriminatory information) and other uniform regions such as regions of snow,

water, and walls of buildings.

7.1.2 Detecting Regions with Vegetation

We trained the vegetation detector on 106,896 blocks from 400 images. The training

set consisted of 24,818 vegetation blocks and 82,078 non-vegetation blocks. Using
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(a) Images w ere sky is present.

 

(b) Images where sky is absent.

Figure 7.4: Correct classification results for sky detection.

a codebook size of 100 vectors per class, we achieved an accuracy of 94.4% on the

training set (97.2% on non-vegetation blocks and 84.6% on vegetation blocks). Since

regions of vegetation vary far more than those of sky, we require more codebook

vectors per class for the vegetation detector. Figures 7.6(a) and (b) show a subset

of images where regions of vegetation have been correctly classified. The vegetation

detector has a very high accuracy on plants and foliage that are sufficiently textured

(are not close-up images or too long distant shots). Figure 7.7 shows a subset of images

with false detection and misclassification. Most of the misclassifications of vegetation

blocks are usually due to lack of texture present in the regions (long distant shots or
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Figure 7.5: Incorrect classification results for the sky detector.

scenes of grasslands). Non-vegetation regions with strong green color (e.g., wings of

a parrot, or mast of the sail in Figure 7.7) are misclassified as vegetation.

7.2 People Detection

Detecting the presence of people in images is an important step in generating se-

mantic indices in image databases. Images can be categorized based on the pres-

ence/absence of people, number of people, or the names of the people (if faces can

be reliably extracted and fed to a robust face recognition algorithm). In recent years,

the problem of detecting people, especially face and skin detection, has received con-
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(b) Images where vegetation is absent.

Figure 7.6: Correct classification results for vegetation detection.

siderable attention [142, 143, 8, 144, 145, 146]. A number of approaches have been

reported in the literature for face detection. These include skin color model-based

approaches [147, 148, 146], geometric model-based approaches [149], statistical ap-

proaches [145], and view-based approaches [144, 8, 150]. Although it is very easy for

humans to locate and identify faces, no system exists that can reliably and automat-

ically detect human faces in unconstrained conditions. The best reported algorithms
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Figure 7.7: Incorrect classification results for the vegetation detector.

can only reliably detect frontal faces in constrained conditions. In the case of image

databases, no assumptions can be made about the background, pose and size of faces,

illumination, etc., and face detection cannot be used in isolation to detect people.

Figure 7.8(a) shows three example images with people in‘ them. While face detection

algorithms can probably detect the male face in the first image in Figure 7.8(a), the

other images pose a problem to such algorithms. A “weaker” (more general) filter,

such as one based on the skin color model, will probably be more effective to detect

people in such images. Figure 7.8(b) demonstrates the result of applying a skin color

filter on the images in Figure 7.8(a). Note that the skin color model does not nec-

essarily detect people - it acts as a filter to detect regions in the image that contain

skin colored pixels. This can be followed by shape models to reliably detect head and

limbs in the regions that pass the skin color filter.
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Figure 7.8: Detecting people: (a) A subset of database images containing people; (b)

skin regions detected by our algorithm.
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We address the problem of detecting people in arbitrary images in a hierarchical

fashion. We currently employ three stages in the hierarchy, namely, skin color filter,

connected component analysis, and texture filter. Each stage in the hierarchy acts

as a filter to sieve out images that do not contain people. At the first stage, we

employ a skin color filter to detect regions with skin color. It has been shown that

human skin color forms a relatively tight cluster in certain color spaces (such as the

HS plane of the HSV color space, the normalized RG plane, and the UV plane of

the YUV color space) even when different races are considered [146]. A simple filter

can thus be built using this model. We have used the skin color filter devised by

Bakic and Stockman [151]. Figure 7.9(b) shows the result of applying the skin color

filter on the picnic image in Figure 7.9(a). The second stage consists of extracting

connected components of skin color. Small regions (an empirical threshold is set) are

filtered out in this step. The third stage removes regions of homogeneous texture.

Images with regions that pass the three filters are marked as likely to contain people.

These regions are then represented by bounding rectangular blocks. Figure 7.9(c)

shows the output of the skin detector after the third stage. Figure 7.10 shows a set

of images with the corresponding output of the skin color filters. Note that although

the system has a high accuracy where skin color regions are present, the lack of

use of any shape and texture information leads to a number of false alarms. We

evaluated the algorithm on a database of 4, 158 images of size larger than 256 x 256

(the database contained 2, 121 images with people and 2, 037 images without people).

A hit rate (correct detection of people) of 94.4% was achieved as against a false alarm

rate (algorithm detected skin regions where no people were present in the image)
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of 30.4%. An empirical threshold of 25 x 25 was set on the size of the connected

skin components. The 620 false alarms were attributed mainly to: animals and birds

(51%), regions corresponding to wood (trees, branches, furniture, etc.) and flowers

(18.9%), fireworks (18.4%), and dry land and buildings (8.9%). Figure 7.11 shows a

set of images where non-human-skin regions pass the skin color filter. As future work,

we are interested in adding geometric and shape-based filters to extract elliptical and

cylindrical regions which correspond to head and limbs in people to reduce the false

alarm rate [146]. The face detectors reported in the literature can also be applied to

detect frontal faces in the regions that pass the skin detector.

7.3 Text Detection

A successful multimedia search tool will involve a combination of image, audio, and

textual information. In our thesis, we have concentrated on extracting semantics from

visual content. Text present in images and video frames can also play an important

role in understanding the content. For example, captions in news broadcasts and

documentaries usually annotate information on where, when, and who of the reported

events [152]. Ideally, the extracted text can be fed to an OCR for recognition. Iden-

tified words and phrases can then be used to develop semantic indices into images.

Although embedded text provide important information about the image, it is not

an easy problem to reliably detect and localize text regions. The size, color, orienta-

tion, and font of characters can vary considerably, embedded text is not necessarily

horizontal, and the background may be very cluttered [152, 153].
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Figure 7.9: Detecting Skin Regions: (a) input image; (b) pixels corresponding to skin

color; (c) result after filtering regions of small size and homogeneous texture.
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Figure 7.10: Detecting Skin Regions: Correct classification results.
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Figure 7.11: Detecting Skin Regions: False alarms.

Jain and Yu [153] describe an automatic framework for locating text in images

and video frames. Their system can take, as input, binary images, synthetic Web im-

ages, color images, and video frames. The original image is first preprocessed where

the number of colors are reduced (color quantization using bit dropping and color

clustering). Next, the image is decomposed into multiple foreground images. Con-

nected component analysis and a text identification module are then applied to each

foreground image. Finally, the output from all the channels (foreground images) are

composed together to identify locations of text in the input image. Although the

authors propose good results on scanned images, video frames, and Web images, the

experiments with our database images yielded discouraging results. We have evalu-

ated the algorithm on a database of 100 images of automobile racing that contained
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text (mostly billboards with advertisements and text on the racing cars). The al-

gorithm detected 257 blocks as text blocks in the 100 images. Of these, only 38

(14.8%) were correct classifications, and 219 (85.2%) were false detections. Even in

cases where regions of text could be identified, the algorithm was unable to prop-

erly localize them, mostly combining multiple text blocks into a single large block.

We attribute the poor performance of Jain and Yu’s algorithm to the following two

reasons. (i) The images present in our database are of very low resolution and text

regions are small in size. Jain and Yu had reported results on high resolution im-

ages with predominant text regions. (ii) Our database images have a large variation

in background. In most cases, the background cannot be easily distinguished from

the foreground text regions. Moreover, man-made structures in the background lead

to errors. These structures present strong horizontal and vertical edges similar to

text regions. Figure 7.12 shows the results of the text location algorithm on three

database images. Blocks detected as text are represented by rectangular bounding

boxes in white. Developing algorithms to automatically locate text in general images

is a promising direction for future research.

7.4 Discussion

Detecting specific objects reliably from general images is a very difficult problem. We

show how image classification information can aid in the detection of specific objects

occurring in that scene. Specifically, we address the problems of detecting regions

of sky and vegetation in outdoor images using color, texture, and spatial position
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Figure 7.12: Text location results on three database images.
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features. Our classifier that classifies individual blocks in an image shows encouraging

results. The classifier takes less than 20 ms to classify all the blocks in an image of

size 384 x 256 pixels (note that this time does not include the feature extraction

stage). This method can thus be used in the first stage of a multi-stage classifier

where the later stages can combine information from different blocks to improve the

classification accuracy. Moreover, the information about the primary codebook vector

that a sky or vegetation block is assigned to can be further used to build semantic

indices such as a day scene, a night scene, a sunrise/sunset scene, presence of clouds in

the sky, close-up shot, long distant shot, etc., for an image. We also present empirical

results for people detection using a skin color filter. Directions for future research

include adding shape and geometric models to detect head and limbs in the regions

that pass the skin color filter. We are also interested in extending our work to detect

other objects such as buildings, cars, furniture, etc., in images classified as having

man-made structures.
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Chapter 8

Image Retrieval

Organizing large image databases into a small number of categories and providing

effective indexing is imperative for accessing, browsing, and retrieving useful data in

“real-time”. If the categories are semantic in nature, a user has more flexibility in

defining queries in terms of these semantic concepts rather than specifying queries on

low-level features (color, texture, etc.). In this Chapter, we empirically evaluate the

benefits of our semantic classifiers for image retrieval.

8.1 Automatic Extraction of Semantic Tags

We have shown in Chapter 4 that semantic scene information can be extracted from

global low-level features. Our system achieves accuracies in the low 90% for indoor

vs. outdoor and man-made vs. natural image classification problems. We now exper-

imentally evaluate how organizing the database using semantic information improves

retrieval efficiency and accuracy. We have conducted experiments on a database of
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approximately 24,000 images. Every image in the database is fed to the indoor vs.

outdoor and man-made vs. natural image classifiers. The classifiers are operated

at a level corresponding to 5% rejection of the training patterns. Table 8.1 displays

the labels assigned to all the images in our database. Around 5.3% of the database

images were rejected by the indoor vs. outdoor classifier. The man-made vs. natural

classifier rejected around 23% of the images. The higher rejection for the man-made

vs. natural classifier was mainly due to the presence of many outliers (correspond-

ing to images of fireworks, candy backgrounds, fruits and vegetables, images of birds

and air shows, images of car races, and long distant sailing images) which were not

represented in the training set.

Table 8.1: Labels assigned using semantic image classifiers.

 

[Images]Indoor Outdoor]Man-Made Natural

[23,898] 4,661 17,989 1 5,760 12,432

 

   
 

8.1.1 Retrieval Efficiency

We have compared two methods for retrieval. The first method uses the semantic

indices to filter the database images and then the retrieval is performed on the subset

of images that match the query image indices. The second method retrieves images

from the entire database. Our goal is to analyze the effect of organizing the database

images into semantic categories on retrieval efficiency and accuracy.

One of the benefits of providingflhigh-level semantic tags is to aid in browsing

and formulating queries. Rather than formulate queries in terms of low-level features

(color distributions), a user can now formulate queries in terms of semantic concepts.
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For example, if a user is interested in a beach scene, the user needs to search through

natural, outdoor images only. Object-level indices (presence/absence of sky, vege-

tation) can be further used to restrict the search on images with sky but that lack

vegetation.

Another benefit in organizing the database is the improvement in classification

efficiency (speed). Rather than search the entire database for a query, indexing the

database reduces the search space. For example, in our database of 23,898 images, a

search on a query image labeled as outdoor and man-made is performed on only 3, 212

images (the search space is reduced to 13.4% of the database images) and on a query

image labeled as outdoor and natural, the search is performed on only 6, 808 images

(28.5% of the database). Thus, indexing aids in retrieval efficiency. However, is this

increase in efficiency achieved at the cost of accuracy? How does the performance of

semantic classifiers affect retrieval accuracy (precision)?

8.1.2 Retrieval Accuracy

We define retrieval accuracy in terms of precision only, since it is extremely difficult to

measure the recall (manually ranking the 24,000 images for each query is an extremely

tedious task). We define precision as the number of images in the top K retrievals

that match the semantic tags of the query image. For the sake of simplification, we

use the tags assigned by only the indoor vs. outdoor and man-made vs. natural image

classifiers. Note that this definition is more objective than the normal definition of

precision (number of retrieved images that are “similar” to the query image). Different
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users may vary in the notion of similarity between two images, however, users are more

prone to agree on the class labels of two images. We have conducted the following

experiments to measure the precision rate: (i) a pseudo-objective method; and (ii) a

subjective method.

0 Pseudo-objective Method: We present every image in the database, that was

not rejected by both the classifiers, as a query. A set of K = 20 images are

retrieved using low-level spatial color moment features from the entire database.

The number of images (71,), of the K retrieved images, that match the query in-

dices is a pseudo-objective measure of precision. If the semantic classifiers were

perfect, n,/K would be an objective evaluation of the precision rate. For such

perfect classifiers, the theoretical precision rate when the search is performed

on the classified database would be 100%, i.e., all the images retrieved match

the query image tags. We compare the experimental precision rate when the

retrieval is performed on the entire database to the theoretical precision rate.

Since our classifiers have a misclassification rate of around 6% (under a 5%

reject rate), the maximum precision achievable theoretically is 88.4% (94 =1: 94

assuming that the indoor vs. outdoor and man-made vs. natural classifiers

are independent), i.e., approximately 88 images out of 100 retrieved images will

match both the tags of the query image. Note that the above analysis is neg-

atively biased as it assumes a random selection of retrieved images from the

set of images that match the query tags. In reality, the subset of images that

match the query tag are further ranked based on the distribution of the low-level
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features used for retrieval. Measuring the difference of the experimental pre-

cision rate, nr/K, with the theoretical precision rate yields a pseudo-objective

measure of the improvement in accuracy due to classification of the database

images. Our experiments yielded an experimental precision rate of 72.5% when

the entire database was searched as against a theoretically maximum possible

precision of 88.4% when only the classified database is searched. Indexing or

classification thus, improves the retrieval accuracy.

Subjective Method: Manually evaluating the retrievals yields a more precise

measure of precision. However, manually evaluating the precision rate for all

the images presented as query is not possible. Not only is it a humungous task

to evaluate the retrieval results, it is also subjective. We evaluated 25 ran-

domly selected query images and evaluated the retrieval results. We counted

the number of relevant images (images that matched the query image tags) in

the K retrievals when (i) the entire database was searched; and (ii) when the

database was classified based on the semantic indices (no filtering was done in

the case of don’t care labels in the query image; however, while counting the

precision rate, the true class of the query image was taken into account). The

experiment yielded an average precision rate of 73.4% when the entire database

was searched and an average precision rate of 86% when the retrieval was per-

formed on the filtered database. On an average for these 25 queries, only 28.3%

of the database was searched when the semantic indices were used for filtering

the database. These results further demonstrate that organizing the database
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images improves both retrieval efficiency (speed) and accuracy (precision). Fig-

ure 8.1(a)-(c) demonstrate the improvement in precision for an example query.

Figure 8.1(b) and (c) show the top 10 retrieval results for the query image in

Figure 8.1(a) on the classified database and the entire database, respectively.

The query was assigned the label indoor and man-made by the semantic clas-

sifiers. Only 2,173 of the 23,898 images were searched when the classification

information was used for retrieval (Figure 8.1(b)). Note that although the

indoor vs. outdoor classifier misclassified the query image (it is actually an

outdoor image), the retrieval results on the classified database are more precise

than those on the entire database. Our current retrieval method allows a user

to select semantic tags during retrieval and in the above case, the search can

be restricted to only those images with man-made labels, rather than to those

images that have a combination of indoor and man-made labels. We achieve

similar results for the modified query.

8.2 Discussion

In this Chapter, we demonstrate the benefits of organizing large image databases into

semantic categories. Although the semantic classifiers are not perfect, we show how

filtering the database according to semantic indices improves not only the retrieval

efficiency (speed) but also the retrieval accuracy (precision). Our experiments on a

database of 24,000 images yields an improvement in the precision rate of 14% when

retrieval is performed on the classified database as opposed to the entire database.
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Figure 8.1: Classification and retrieval: (a) query image; (b) top 10 retrieval results on

classified database (2, 173 images); (c) top 10 retrieval results on the entire database

(23,898 images).
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Chapter 9

Conclusion and Future Work

Content-based indexing and retrieval has emerged as an important area in computer

vision and multimedia computing. Current solutions for searching image and video

data primarily deal with textual and low-level image features. While extracting tex-

tual features requires manual intervention, the low-level features lack sufficient ex-

pressive power. User queries are typically based on semantics and not on low-level

image features. It is therefore, imperative to provide semantic indices into large

databases. Organizing and categorizing the images based on semantic indices can

then aid in query formulation, browsing, and retrieval. This chapter summarizes the

contributions of this thesis. Several directions for future research are also outlined.

9.1 Contributions

PsychOphysical and psychological studies have shown that, in certain cases, humans

can guess (with an accuracy of around 85%) the identity of scenes from low-frequency
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representation of the images in as less as 40 ms without any kind of object identifica-

tion. In this thesis, we show how specific global low-level image features can be used

to learn certain semantic categories. Specifically, we have developed semantic image

classifiers using a LVQ-based Bayesian framework for scene identification (indoor vs.

outdoor image classification, man-made vs. natural image classification, sunset vs.

forest vs. mountain image classification, and automatic image orientation detection)

and object detection (detecting sky, vegetation, and people). Our semantic image

classifiers have been tested on a large number of images (over 10,000 images each)

and yield accuracies in the low 90%. Table 9.1 summarizes the results of our semantic

image classifiers. The classifiers are also computationally efficient, each taking only

1 ms to classify an input image.

Table 9.1: Classification accuracies of various semantic image classifiers; I/O, M/N,

OD, S/MF, and M/F represent the indoor vs. outdoor, man-made vs. natural,

orientation detection, sunset vs. mountain and forest, and mountain vs. forest image

classifiers, respectively.

 

 

 

 

 

 

 

Classification Training Test Accuracy on

Problem Set Size Set Size Test Set (%)

I/O 6,931 15,631 92.7

M/N 2,699 9, 895 92.3

OD 8, 755 17, 901 93.0

S/MF 264 528 96.6

M/F 187 373 96.0      
 

The accuracy of the above classifiers depends on the feature set used, the training

samples, and their ability to learn from the training samples. We have developed a

number of techniques to improve the performance and robustness of the Bayes clas-

sifiers. We have developed a learning paradigm to incrementally train a classifier as
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additional training data become available. The proposed learning scheme estimates

the already learnt training samples from the existing codebook vectors and augments

these to the new training set for re-training the classifier. A classifier trained incre-

mentally has comparable accuracies to the one which is trained using the true training

samples.

We have developed a feature selection method to address the curse of dimension-

ality issue. The performance of a classifier trained on a finite number of samples starts

deteriorating as more and more features are added after a certain number, called the

optimum measurement complexity. We demonstrate how feature clustering can be

used to considerably reduce (up to 87.5% reduction for the indoor vs. outdoor classi-

fication problem) the dimensionality of high-dimensional feature vectors. We further

show that this dimensionality reduction leads to improved classification accuracies.

It is well known that introducing a reject option in a classification problem can

result in a reduction in the error rate. We have deveIOped a rejection scheme for

VQ-based Bayes classifiers. We devise a measure of confidence in classification based

on the maximum posterior probability of a class given the test sample and the ratio

of highest to the second highest posterior probability. Based on the above confidence

parameters, we define thresholds for outlier and ambiguity rejection. We empirically

demonstrate how these thresholds can be locally adapted to improve the error vs.

reject characteristics of a classifier.

It is believed that combining multiple classifiers leads to an increase in robustness

of the classifier in terms of bias-variance dilemma, handling different feature types and

scales, and exploiting the discrimination ability of individual features and classifiers
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(experts). Bagging is a classifier combination strategy that uses bootstrap techniques

(randomly draw n patterns with replacement from the original training data of size

n) to generate a number of training sets. We empirically demonstrate how bagging

can improve the accuracies of the semantic image classifiers.

Finally, we demonstrate on a large database of 24,000 images, how organizing the

database according to the semantic indices not only improves retrieval efficiency, but

also its accuracy. Efficiency is improved due to reduction in search space, only images

with indices matching the query image indices are searched. Usually, improvements in

efficiency are achieved at the cost of accuracy. However, we empirically demonstrate

how semantic indices can be used to also improve the precision rate (accuracy) of the

retrievals. Moreover, the semantic indices aid users in query formulation; users can

formulate queries in terms of semantic concepts, such as “retrieve images of a city

scene”, rather than in terms of low-level color and texture features.

9.2 Future Research

There are a number of research issues which need to be addressed in the future. Our

semantic image classifiers generate tags for the entire image. The system can be

extended to classify segmented regions in an image. This would, in turn, require a

robust segmentation algorithm. Other promising directions for future research are

in the area of automatic feature extraction (can relevant features be automatically

extracted from images given a classification problem?), classifier selection (compare

and contrast multiple classifiers for a given problem), and information fusion (com-
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bining multiple features and multiple classifiers/experts). DeveIOping other semantic

classifiers (day vs. night) and detecting objects (buildings, cars, furniture, regions of

text, etc.) are also imperative for improving the retrieval performance. The final goal

is to generate multiple semantic indices to aid in browsing, searching, and retrieving

image and video data in real-time.
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Appendix A

Image Database Used for Defining

Semantic Classes

A database of 171 images was used for defining semantic classes. These images were

collected from a number of sources and include the 98 images used in [105].
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Appendix B

Semantic Image Classification

Table B.1: Comparing semantic image classification systems reported in the litera-

ture; - signifies data not reported in the corresponding paper.

 

 

 

 

 

 
 

 

 

 

 
 

 

Index Classification Classification Database Accuracy Cross

Problem Method Size (%) Validation

Forsyth et al. [103] 12-Class Semantic Decision 208 63.5 Yes

Classification "flee

Yiu [102] Indoor vs. Outdoor K-NN, SVM 500 90 No

Szummer et al. [24: Indoor vs. Outdoor K-NN 1,343 90 Yes

Gorkani et al. [105] City vs. Landscape Rule-based 98 92.9 Yes

Torralba et al. [29] Artificial vs. Natural LDA 2, 600 92 Yes

2-Class Classification LDA 1, 500 ' 97 -

of Natural Images

2-Class Classification LDA - 98 -

of Artificial Images

Vailaya et al. [154] Indoor vs. Outdoor LVQ 15, 631 92.7 Yes

Man-made vs. Natural LVQ 9, 895 92.3 Yes

Sunset vs. Forest vs. Mountain LVQ 528 96 Yes     
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