. r7. ,. my a , .qu434»? 4» 4.3%.? » a»! .. _. x $442» a 3 ; . . w. 3. puma, a... . V . . . , . 4 , » . . Hufww u...» ‘ smug“? fl L I; 3 ”$34 3i.» . V . Find 4” , . 4).. , . . , L; . , .. . . . . ..a,. . » , N v .z I . ‘ 1363. E r .23. i. u ‘5 up, " . ‘ . .9me . fl .wf.».» In,” Ar , 34:3. .. . 21 “,3. .4: V. «Ha; S:E.E.r,,..bz: , n. ,3... . . ‘ ism zxnrmwvhufi. 5.. . 34. an. a. .i . : THESR l l‘"! ,4 x This is to certify that the thesis entitled Morphometric Analysis of Extant and Fossil Mako Sharks (ISurus, Lamnidae) presented by Lisa Beth Whitenack has been accepted towards fulfillment of the requirements for Masters degreein Geological Sciences W 49m Major professor 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution LiBRARY Michigan State University PLACE IN RETURN Box to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 044—94 '2" 4% ‘H 22.38 3905 8/01 cJClRC/DatoDuest—p. 1 5 —___._ ,,.__,___— 7— .__ MORPHOMETRIC ANALYSIS OF EXTANT AND FOSSIL MAKO SHARKS (ISURUS, LAMNIDAE) By Lisa Beth Whitenack A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geological Sciences 2001 Assistant Professor Michael D. Gottfried ABSTRACT MORPHOMETRIC ANALYSIS or EXTANT AND FOSSIL MAKO SHARKS (/SURUS; .LAMNIDAE) By Lisa Beth Whitenack Studies of fossil neoselachian sharks have largely relied on qualitative data from isolated teeth, which are abundant but problematic due to various forms of heterodonty. This issue is addressed here by using geometric morphometrics to analyze shape variation in teeth of the two extant Mako shark species, [sums oxyrinchus and I. paucus. The teeth and their relative jaw were characterized using Procrustes superposition and principle components analysis, which does distinguish between teeth of the two species and also identified characteristics of the genus. Only the third tooth (from the symphysis) displayed asymmetry between the left and right sides. Teeth of the fossil Mako I. hastalis were then subjected to similar analysis. The results do distinguish between the extant and fossil species, indicating that these morphometric techniques are and more objective than qualitative approaches. Geometric morphometric techniques can be more broadly applied in future systematic studies on other groups of sharks. ACKNOWLEDGEMENTS I owe everyone who was involved in this project a huge amount of gratitude. Thank you to Drs. Michael Gottfried, Robert Anstey, and Danita Brandt for all of their help with every aspect of this, as well as their encouragement. I am indebted to Dr. Miriam Zelditch (University of Michigan) for much last minute advice and tutoring. Also, a big thanks to Geremy Cliff (Kwa Zulu - Natal Sharks Board), Robert Purdy (National Museum of Natural History), Gordon Hubbell, Mary Anne Rogers (Field Museum of Natural History), and David Catania (California Academy of Science) for the specimen loans. Last, but not least, my husband and family gave me enough support and love for two theses. ListofTables ListofFigures Introduction . Materials and Methods Results and Discussion Conclusions Appendix . References TABLE OF CONTENTS .vi .10 16 52 ...54 .73 LIST OF TABLES List of Materials Examined Results of Clustering Analysis 11 .47 LIST OF FIGURES (a) Distribution of Isurus oxyrinchus (b) Distribution of Isurus paucus. Shaded areas represent known distributions of the species. Areas bounded by dashed lines represent areas the species is thought to inhabit (Holthe, 1998; Stevens and Scott, 1995; Gillespie and Saunders, 1995; Killam and Parsons, 1986; Munoz, 1985; Compagno, 1984) (a) [sums oxyrinchus, x0.03 (b) Isurus paucus. x0.06. Arrows indicate the pectoral fin, the external feature most commonly used to identify extant Mako species. After Compagno, 1984 .................... (a) Isurus oxyrinchus (b) Isurus paucus. Tooth series from the upper and lower jaws, left side, labial view (x0.5). After Compagno, Distribution of Isurus species through the Cenozoic and representative lower anterior tooth of each species depicted. Compiled from: Cione and Reguero, 1995; Kent, 1994; Uyeno et al, 1990, Karasawa, 1989; mCappetta" 1987; Case, 1980, Casier, 1943, Lenche, 1905 Isurus oxyrinchus tooth series from the upper and lower jaws, left side, labial view. Numbers indicate tooth positions assigned for data acquisition. After Compagno,1984 Location of landmarks shown on an Isurus oxyrinchus tooth, upper jaw, left side, second tooth from the symphysis, labial view... Procrustes shape coordinates for I. oxyrinchus, lower jaw, position 1 .. Procrustes shape coordinates for I. oxyrinchus, lower jaw, position 3... .. Procrustes shape coordinates for I. oxyn'nchus, lower jaw, positions 1, 2, and 3 Procrustes shape coordinates for I. oxyrinchus, lower jaw, positions 4, 5, 6, and 7 Procrustes shape coordinates for I. oxyrinchus, upper jaw, positions 1, 2, and 3 vi ....... 3 12 ..13 17 18 19 20 ...21 Procrustes shape coordinates for I. oxyrinchus, upper jaw, positions 4, 5, 6, and 7 Procrustes shape coordinates for I. paucus, lower jaw, positions 1, 2, and 3 Procrustes shape coordinates for I. paucus, lower jaw, positions 4, 5, 6, and 7 Procrustes shape coordinates for I. paucus, upper jaw, positions 1, 2 and 3 Procrustes shape coordinates for I. paucus, upper jaw, positions 4, 5, 6, and 7 Principle components for I. oxyrinchus, positions 1, 2, and 3, lowerjaw... Principle components for I. oxyrinchus, positions 4, 5, 6, and 7, lower jaw Principle components for I. oxyrinchus, positions 1, 2, and 3, upperjaw... Principle components for I. oxyrinchus, positions 4, 5, 6, and 7, upper jaw............... Principle components for I. paucus, positions 1, 2, and 3, lowerjaw... Principle components for I. paucus, positions 4, 5, 6, and 7, lower jaw... Principle components for I. paucus, positions 1, 2, and 3, upper jaw... Principle components for I. paucus, positions 4, 5, 6, and 7, upperjaw... Procrustes shape coordinates for I. oxyrinchus, lower jaw... Procrustes shape coordinates for I. oxyrinchus, upper jaw. .. Procrustes shape coordinates for I. paucus, lowerjaw Procrustes shape coordinates for I. paucus, upper jaw... .. Deformations shown as vectors on landmarks that represent principle components 1 (a) and 2 (b) for I. oxyrinchus, lower jaw. See Figure 3 for landmark IdentItIes vii 22 23 ...24 25 26 .28 .29 .30 .31 .32 33 34 35 .36 .37 38 .39 40 Deformations shown as vectors on landmarks that represent principle components 1 (a) and 2 (b) for I. oxyrinchus, upperjaw............ Deformations shown as vectors on landmarks that represent principle components 1 (a) and 2 (b) for I. paucus, lowerjaw........................... Deformations shown as vectors on landmarks that represent principle components 1 (a) and 2 (b) for I. paucus, upperjaw.......................... Procrustes shape coordinates for I. oxyrinchus (black circle) and Isurus paucus (gray X), lowerjaw Principle components for I. hastalis, I. oxyrinchus, and I. paucus (mean values) Procrustes shape coordinates for I. hastalis.............. .. . . viii .41 .42 .43 .45 .49 ...51 INTRODUCTION The Mako sharks (Isurus; Family Lamnidae) include two extant species: the Shortfin mako (Isurus oxyrinchus) and the Longfin mako (I. paucus). I. oxyrinchus is typically found offshore in tropical waters worldwide (warmer than 16 degrees Celsius), from the surface to a depth of ca.152 meters. I. paucus is less common than I. oxyrinchus, and therefore its distribution is not as well known; it has been hypothesized that the two species occupy similar ranges (Figure 1) (Compagno, 1984). Makos are active predators, feeding primarily on teleost fishes, including bluefish and scombrids, and small elasmobranchs up to 1 meter in total length, along with occasional squid and cetaceans (Cliff, et al,, 1990; Compagno, 1984; Stillwell and Kohler, 1982). The two extant Mako species are very similar in external appearance (Figure 2). Both species display sexual dimorphism, with the female larger than the male. Male Shortfins reach 284 cm in total length (TL), while females reach 394 cm TL. Male Longfins reach 245 cm TL; females reach 245-417 cm TL (Compagno, 1984; Pratt and Casey, 1983). The two species can be distinguished externally by the relative lengths of their pectoral fins. Shortfins have long and broad pectoral fins that are shorter than their heads; Longfins have pectoral fins that are shaped similarly to those of Shortfins, but the fins are longer than their heads and more narrowly proportioned. The two species can also be distinguished based on their teeth (Figure 3). Both species have unserrated, unicuspid teeth, Figure 1 (a) Distribution of Isurus oxyrinchus (b) Distribution of [sums paucus. Shaded areas represent known distributions of the species. Areas bounded by dashed lines represent areas the species is thought to inhabit (Holthe, 1998; Stevens and Scott, 1995; Gillespie and Saunders, 1995; Killam and Parsons, 1986; Munoz, 1985; Compagno, 1984). (b) 11131.5: (— Figure 2 (a) Isums oxyrinchus, x0.03 (b) Isums paucus, x0.06. Arrows indicate the pectoral fin, the external feature most commonly used to identify extant Mako species. After Compagno, 1984. WSRW Wéébasees (b) Figure 3 (a) [sums oxyrinchus (b) [sums paucus Tooth seIies from the upper and lower jaws, left side, labial view (x0.5). After Compagno, 1984. but the teeth of l. oxyrinchus have narrow cusps with reversed and labially recurved tips, whereas I. paucus teeth have broad cusps that are not recurved (Compagno, 1984). Seven extinct species of Isums are presently recognized (Figure 4) (Cappetta, 1987). Additional fossil species of Isums have been named, but, as is the case with a number of other fossil shark taxa based on isolated teeth, many of these assignments are dubious or represent junior synonyms. The fossil sharks that can confidently be assigned to Isurus are widely distributed and range back to the Paleocene. The earliest record of Isums is I. wink/en, from Paleocene strata of Belgium (Cappetta, 1987; Casier, 1943). I. praecursor has been recorded from Eocene sediments of Africa, Europe, Antarctica, Syria, and the southeast United States (Cione and Reguero, 1995; Kent, 1994; Cappetta, 1987). I. desori appears in the Oligocene and continues into the Pliocene. This species occurs in Europe, Africa, Japan, and the United States (Kent, 1994; Karasawa, 1989; Cappetta, 1987). Additional species join I. deson' in the Miocene: I. eschen', I. hastalis, I. planus, and I. retroflexus. I. eschen’ occurs in Europe (Cappetta, 1987; Leriche, 1905). I. netroflexus has been recorded in Europe, Australia, and the United States (Kent, 1994; Cappetta, 1987). I. planus occurs in Antarctica, Japan, and the United States (Karasawa, 1989; Cappetta, 1987). I. hastalis is the most widespread of the Miocene species, occurring in Europe, Africa, Antarctica, South America, Australia, the United States, and Japan (Kent, 1994; Uyeno et al, 1990; Karasawa, 1989; Cappetta, 1987). III“ /\ T\ I “I“ l I" ”’1‘ / 7‘s a up a Ii‘Q l'fiifgig‘ c/\ ( Recent I I ? Pleistocene I : I Pliocene . j 1' Miocene Oligocene Eocene Paleocene I. wink/eri I. praecursor I. desori I. escheri I. planus I. retroflexus I. hastalis l. oxyrinchus I. paucus Figure 4 Distribution of Isums species through the Cenozoic and representative lower anterior tooth of each species depicted. Compiled from: Cione and Reguero, 1995; Kent, 1994; Uyeno et al, 1990; Karasawa,1989; Cappetta, 1987; Case, 1980; Casier, 1943; Leriche, 1905. The Miocene also marks the first appearance of the extant species I. oxyrinchus, which is found in the United States and Japan (Case, 1980; Uyeno et al., 1980). Like the extant Makos, fossil forms of Isums are also identified on the basis of qualitative descriptions of tooth morphology. As with many neoselachians, teeth ‘ are often the only parts of Mako sharks preserved in the fossil record. The crowns of chondrichthyan teeth are composed of apatite, Ca(PO4)3F, which is insoluble and very durable. Additionally, a single shark can produce thousands of teeth in its lifetime (Correia, 1998). For these reasons, shark teeth are the most common vertebrate fossils. Despite the abundance of fossil shark teeth, studies that rely solely on isolated teeth have inherent problems. Sharks exhibit various and sometimes complicated forms of heterodonty within a given jaw (monognathic heterodonty) or between the upper and lower jaws of the same species (dignathic heterodonty) (Figure 3) (Compagno, 1988). For example, not only may the third tooth from the symphysis in the upper jaw be different in shape from the adjacent teeth in the same jaw, but it may also differ in shape from the corresponding tooth in the lower jaw. Complete shark dentitions are extremely rare in the fossil record, which means that the degree of heterodonty within fossil species is typically not well known. Tooth morphology is also affected by ontogeny. A free- swimming juvenile may have teeth that exhibit a far different morphology from those of an adult of the same species (Compagno, 1988). Some neoselachians, e.g. Carcharhinus dussumieri, exhibit sexual heterodonty, which involves differences between the males and females in the arrangement of the teeth within the jaw and/or tooth morphology (Compagno, 1988; Peyer, 1968). Tooth shape can also be convergent between closely or distantly related species. Taxonomic practice has begun to better reflect some of the challenges involved in working with isolated fossil shark teeth. In the case of Isums, a number of species (Cretoxymina manteIIi, Anomotodon sheppeyensis, Paranomotodon angustidens, Sphenodus Iundgreni, and Parotodus benedeni) that were initially placed in Isums based on tooth morphology are now considered to belong to different genera (Cappetta, 1987). Currently, two fossil species of Isums, I. desori and I. retroflexus, are considered questionable and are being investigated. I. desori has a very similar tooth morphology to I. oxyrinchus, and I. retroflexus is similar to I. paucus. It is possible that the two fossil species are synonymous with the two extant Mako species (Purdy, in press). The problems caused by heterodonty and convergence have cast doubt on qualitative studies of isolated fossil shark teeth. A more quantitative approach, using modern morphometric techniques, is employed here to establish objective criteria for distinguishing between the two extant species, I. oxyrinchus and I. paucus, and the common fossil form I. hastalis. Morphometric techniques have been applied to a wide variety of organisms, from studying birds by analyzing ratios of linear parameters of humeri (Warheit, 1992), to applying triangulation techniques to brachiopod cardinal processes (Leighton and Maples, 2000). For chondrichthyans, discriminant function analysis and quadratic discriminant analysis of linear measurements were used by Naylor and Marcus (1994) to characterize modern Carcharhinus teeth for the purpose of identifying isolated fossil teeth of the same genus; however fossil carcharhinid teeth have never . been analyzed using morphometric techniques. Quantitatively studying extant and fossil Mako shark teeth by applying the morphometric techniques of triangulation (baseline coordinates) and Procrustes superposition, as well as statistical techniques, such as principle components analysis, provide a more objective basis for taxonomic assignment than do traditional qualitative morphological descriptions. This approach may also prove appropriate for other lamnids and other groups of sharks with both extant and extinct members. MATERIALS AND METHODS Teeth of the two extant Mako species, Isums oxyrinchus and Isums paucus, were characterized morphometrically in order to identify criteria that differentiated between the two species. For this portion of the study, tooth sets and jaws of adult I. oxyrinchus and I. paucus were obtained from the collections of the National Museum of Natural History (NMNH), the Field Museum of Natural History (FMNH), the Kwa Zulu — Natal Sharks Board, and the private collection of Gordon Hubbell (Table '1). Each jaw and each of the first seven teeth posterior to the symphysis within each jaw were photographed individually using an Olympus C3000 digital camera, then digitized using Adobe Photoshop 5.0 and Adobe Illustrator 9.0. Tooth position was recorded in order to account for heterodonty (Figure 5). If the tooth was taken from either the upper left or lower right jaw, the image of the tooth was reflected about a vertical axis so that all teeth curved to the viewer’s right for ease of comparison. Seven landmarks were chosen from the labial side of each tooth to reflect the Shape of the crown and of the entire tooth (Figure 6). Those teeth that were missing landmarks (e.g. the apex of the crown was broken off) were discarded. The raw coordinate data taken from the digitization process was then run through CoordGen6 (morphometric software by David Sheets, 2001) to calculate the Bookstein shape coordinates, using the baseline coordinates (triangulation) method (Bookstein, 1991). One landmark is designated (0,0), and a second is designated (1,0), creating the baseline. The positions of the remaining landmarks are plotted relative to the baseline. This method corrects for size differences (Leighton and Maples, 2000) that may be 10 Table 1 List of Materials Examined Institution Specimen Species Specimen Number Description Field Museum of Natural FMNH 83731 I. oxyrinchus Upper and History lowerjaws Kwa Zulu — Natal Sharks SUL 92014 I. oxyrinchus Upper and Board lowerjaws UMH 9202 I. oxyrinchus Upper and lower jaws UMH I. oxyrinchus Upper and STRANDING lowerjaws WIN 93001 I. oxyrinchus Upper and lower jaws National Museum of USNM 110881 I. oxyrinchus Upper and Natural History lower jaws (test specimen) USNM 110948 I. oxyrinchus Lower jaw USNM 263282 I. oxyrinchus Upper and lowerjaws USNM Teaching I. paucus Associated Collection teeth (n=28) Gordon Hubbell (private CASTRO I. paucus Upper and collection) , lowerjaws lSUR-2-13 I. paucus Upper and lower pws LONG 1786 I. paucus Associated teeth (n=28) LONG 5599 I. paucus Associated teeth (n=28) (test specimen) OXY CASTS I. oxyrinchus Casts of associated teeth (n=28) PAUC COMP I. paucus Associated teeth (n=28) SHTF IN 11191 I. oxyrinchus Associated teeth (n=28) Michigan State University Museum VPTC I. hastalis Individual teeth (n=27) 11 “R R”? %§%%‘?sa%94 AAA. 4.4.4444 1 2 Figure 5 Isums oxyrinchus tooth series from the upper and lower jaws, left side, labial view. Numbers indicate tooth positions assigned for data acquisition. After Compagno, 1984. 12 (00) (1.0) Figure 6 Location of landmarks shown on an Isums oxyrinchus tooth, upper jaw, left side, second tooth from the symphysis, labial view. 13 present due to jaw position or age differences between free-swimming sharks. This was necessary because the ages of the sharks that the fossil teeth came from are not known. The teeth were analyzed in PCAGen6 (Sheets, 2000) to determine if any errors were made during the digitizing process. The Bookstein shape coordinates were then transformed using Procrustes superposition, which minimizes the variance between two specimens through rotation and resizing. The Procrustes coordinate data were evaluated using TwoGroup6 (Sheets, 2001) to determine if teeth from the right and left sides of the jaw display fluctuating asymmetry or antisymmetry (Palmer, 1986). If any asymmetry is present, it is necessary to keep the data from each side separate. The Procrustes shape coordinate data were then run through PCAGen 6 to perform principle components analyses in order to characterize differences in tooth morphology, both within the same species and between I. oxyrinchus and I. paucus. F-tests were also used to determine if the two species were statistically different from each other. The next step involved blind-testing of the morphometric criteria found in the first part of the study. One set of jaws for each extant species was utilized for this purpose. The designated test specimens were not used in the initial analysis. From each test specimen, a random set of teeth was chosen. The test specimens were digitized and Procrustes shape coordinates were obtained. This data was then tested against the Procrustes shape coordinates of the initial set of 14 specimens using clustering analysis to determine if they fall within the parameters established in the initial analysis. The Miocene Mako Isurus hastalis was then added to the study to determine if its teeth could be distinguished morphometrically from the extant species, and whether the jaw position of individual teeth could be assigned. Twenty-seven individual teeth of I. hastalis were obtained from the Michigan State University Museum Vertebrate Paleontology Teaching Collection. The fossil teeth were subjected to analysis similar to the first set of specimens. Promising results in this part of the study would support the use of similar morphometric techniques in studies of other groups of fossil sharks. 15 RESULTS AND DISCUSSION Testing for asymmetry Procrustes shape coordinate data were tested for statistical significance using an F-test, a resampling test which calculates the likelihood that similar data could be obtained randomly. The Procrustes shape coordinates were also graphed and visually analyzed (Figures 7 and 8). In both extant species, only jaw position 3, in both the upper and lowerjaws, displayed asymmetry (antisymmetry); the other positions were generally symmetrical. Thus for each jaw position except 3, shape coordinates of the teeth from the right and left sides of the jaw were combined into one data set. The cause of this asymmetry is not known. One possibility is “handedness” in feeding. Just as humans tend to favor their right or left hand, perhaps some sharks favor feeding from the right or left side. No studies have been performed on shark handedness, so it cannot be said whether this occurs or not. A second possibility is that it is not functional. In humans, there are small differences between the right and left sides of the face that are not correlated with function. The slight asymmetry in Makos may be similar. Characterizing the extant species For each species, the Procrustes shape coordinates for positions 1 through 7 were plotted, keeping data from the upper jaw and lower jaw separate (Figures 9 16 .F 5:68 .26.. Loan: .macoztxxo < .8 365208 mango "$52qu . 5 2:9". mo md 4.0 Nd o N6 «.0 ad 4 a _ A _ 30:323.. _ _ . X X Ox O ”Ox 0 e o en .. o w. o $ X xv‘x *. of 023:9. n x on? to. u . v.0 Nd Nd 4.0 0.0 17 ad 82m :6: 02w to. .m .5363 .26.. Loan: 635533 e 6.. monEEooo mums» $62021 .. m 952.... dd vd Nd d Nd 9%. X XX X x x. xv» so dd 4d Nd Nd 4d dd 18 .m new .N .F 20:68 .26.. 632 .mzcottxxo .. .0. 365208 965 $6285 I a 2:9...— md md To Nd o Nd Yo 0.0 md _ _ _ _ l . _ .1. H _ _ J x a cm x”% L #0 0 ex .1 «.0 Q xxxvr x I N6 0% *x “xfl xxx x a x .33... n me 0 mt. Mar. x I D I No :85 m coEmoa n a I so 92. m coEmoa n D u I we N .5368 n x « r coEmoa n O a. o 19 4o No o No So we I _ _ Julio? _ _ ._ E... u « u xx X 0030 u x O H n O W... . 0 he... “.6 x «i A 5:68 n Maw © c0268 n D m coEmoa u x 4 :oEmoa n O N 96 d .m .4 96368 $6.632 62:62.56 .. 5. 665208 365 $6285 . 3 9:6."— 4.0 Nd Nd 4d 90 20 .m can .N .F 20:33 .26.. Loan: 6:20:36 .. 6. 365208 865 862005 I 2. 2:9“. _ 4o we .3 .3 o I «we 4... ed as 4 . . _ T _ *1 .I . . . ... "w.” a a o I to e ”x I No %D OOx Ox H£¥ i7? m 0 9A». m x a x s e I o e ee .11.. Wm? a ._w x... e. I .3 Eye m coEmoa II. a» I 4o .6; , m coEmoa u D an. a l 0. O N 8:48 u x mm a. F 5:68 n O 4.0% 21 ..I 26 d .m .4 25:68 .26. Ban: 62:05:20 .. .0. 365208 865 362005 .. N_. 959.... ed to No a No to . . _ d . . no. a so «as... O I no a o A coEmoa II. a. Xena“... .. 4mm.* 1 N.O m coamoa .I. D Ma o *7 o m coEmoa u x u I S m . «3%.. 4 coawoa II. O nu .. I o I. v.0 .1.“ a. .44.... 6.....- noun «a 34$... genera... x a. D x O gamma ._ i. a I no 22 .26.. 626. .m 96 .N .F 95:63 .2823 .. 6. $652000 365 $3285 I 2 2:9“. dd 0d 4d Nd d Nd 4.0 0d 0d _ _ 4 _ 4 Imx M _ _ _ L 4.0 ‘ X 00 a. e i .1 O O O ' ..m... x I so a x x . .2. st... 3 xx... a X . . .... . .. ,. u u I we .29... m .5286 u Hm. I .3 £2. m coEmoa u D N :oEmoa n. x 3W" _. coEmoa n O .. x 23 .26.. 626. K 96 d .m .4 20:63 .6323 .. 6.. 665.368 6.65 6663691 I 4. 6.59“. 0.0 0.0 40 N0 0 N0 40 . _ _ _ . x+ _ . x Ifi .1 D . . 5...... we . . r. O ._ 6 «sum... D O u , 4.... .. n 20:68 n 0% a.. sum d :02wa n D m 8:48 I x a I. I my... a .1 4 6:68 n O f.‘ 0.0 _ 0.0 4.0 0.0 N.0 v.0 rd Nd md 4d md 24 .26.. 6&2 .m 26 .N .F «46:68 .m2o2mQ .. 6. 665468 62656 662605 I 2. 2:9“. we so to No 0 :3 to so we . . . _ _ I. q . . m. 0.4 I *fli x W O.» .1 O 3.. a. e. . I. .__... u x o W? x I i e 4% "a i new .39: m .6582 u a £2. m :2:on n D N coamoa .I. x “E. I F 6:68 n O o 4.0 N.0 Nd 4d 0d 25 .26. 662 K 96 d .m .4 66:68 62623 .. 6.. 665668 62626 6662665 I or 660.“. 4d 0.0 n .6566 n fly o 62606 n D m .6266 u x 4 .6266 n O .% at. Me 4.0 Nd d Nd _ . . . . md 4.0 0.0 N.0 v.0 ..d Nd md 26 through 16). These data were also analyzed using principle components analysis (Figures 17 through 24). On both the principle components plot and the graphs of the Procrustes shape coordinates, tooth positions 1, 2, and 3 fall into distinct clusters, while positions 4, 5, 6, and 7 fall into one cluster. This holds true for the upper and lower jaws, and for both species. Thus, for each jaw (upper and lower) and species, the jaw positions can be sorted into five groups: jaw position 1, jaw position 2, jaw position 3 (left side), jaw position 3 (right side), and jaw positions 4 through 7. This part of the analysis strongly supports the presence of monognathic heterodonty in Make sharks. The Procmstes shape coordinate data for the teeth in the upper jaw were then tested against the data for the lower jaw using an F-test. For both extant species, the differences were statistically significant (p=0.01), indicating that Make sharks also have strong dignathic heterodonty. The plots of the Procrustes shape coordinates can be used to describe the change in shape between tooth positions (Figure 25 through 28). In the lower jaws of both I. oxyrinchus and I. paucus, tooth position 1 has a long, narrow cusp and base. As the teeth are tracked to tooth position 4, the cusp becomes shorter, and the base becomes wider. The upper jaw of I. oxyrinchus and I. paucus display a similar pattern, with the exception of tooth position 3, which has a base that is as wide or wider than as the base in position 4, and a shorter cusp than position 4. These observations are supported in the principle components analysis (29 through 32). Principle component 1, which accounts for 27 .26.. 626_ .m 6.6 .N .2 6:22.62 6262.226 .. 6.. 6:6..an8 29055 I t. 229“. mS to 88 o: mod to Ed Nd won. O _ . . X X. I . _ _ A NOQ x I mod 0 «x a. O D i a I o O O x D O O n. e x a a 4 88 9505 O . m 62602 n a I 8 :6. m .6566 u D n I .38 N .6568 u x F .6268 n O I No 28 B 5358 u a m 8568 n D m :oEwoa n x v coEmoa n O D .3m_ 526. s new 6 .m .v 20:63 .macoctxxo < .2 3:28:50 0.9055 .. 2. 23!". £6 ...0 mod o 18.0 vofl NOE _ . . 1 00.0 f.— a a o 1 v0.0 # «I I4 # 4 mod x I mod I 3.0 xx I 8.0 L mod 29 .26.— .maq: .m new .N .F. 20:33 .mzcoctxxo < ._2 35:82.8 mafictm . 3 2:9“. 2.0 to mod mod ..o Pun. _ _ _ n- . _ NOQ I cod x o « Imod o o L o o n. I 8.0 o x I Ed I 85 If I mod :35 m coEmoa u aw o n I Em: I mto m coEmoa n D I id N :oEwoa n x o I 9.0 F 5:38 n O 30 .26.. Bag: 5 new .m .m .v 25:38 630::xe < .2 mEmcanoo 2305i I am 2:9". who to mod o mod ..o who «on. d _ _ _ 4+ _ _ NUQ Iwod x a D n Imod D x .4, . k. k. x v0 0 I? x o a a. n Imod o n. x a, X a I o O x {I X o I mod x O O D nu 1 3.0 o x o «. Imod 5 5368 n hr 0 a X Imod o 5:68 n D x I to m coEmoa n x a .35 v coEmo n O o 31 .26.. 826. .m can .N J 30:68 63:3 .2 .8 25:82.8 29055 . ..N 2:9“.— md 2.0 to mod o mod to 96 En. . . _ _ d 4 Ian _ _ L o 0 9:9: 0 m coEmoa n NV 9% I m coEmoa u U N 8368 u x F .5268 n O Non. m to _..0 mod mod v.0 32 .26..— .Qso. K 96 .m .m .v 30:68 .2533 .2 .8 95:09:00 23055 I NN 959“. m v.0 rd mod 0 _ _ _ _ n :oEmoa n NV 0 o 5:68 n D m coEmoa u x x v coEmoa n O 0 mod 2 J I v.0 _ 9.6 2 I Fom N0n_ «to _I.o mod mod v0.0 No.0 No.0 v0.0 mod mod 33 .26.. 53: .m new .N .9 meaning @8sz e ._8 3:38:50 2985 I «N 2.5:. who to mod o mod to m; Fun. 2 _ _ _ _ .«W. _ mwd Non. x I ..o .X Imod # I o 935 x x x I m eoEmoa n WV 0 o u a Em: x I mod N eoEwoa u D x _ I O N eoEwoa u x o n . I no r eoEmoa n O i .26.. 6am: (I new .0 .m :2 meo_._moa 620an .. 5.. fleweooEoo 29055 I VN 2:2... moo ho who No Pom . _ _ _ NOE I mad 0 i x o I No x O a a I who D D I who «I a who I who X 2 8:58 u a I ho m eoEwoa u D i a m eoEwoa u x Ioo o x v eoEmoa n O I woo 35 dd 3w..ew>>o_ 62:8...xe .. 5. 865208 265 $620er I N 239“. 0d .Vd Nd d NdLI vd dd NI.“ meoEmoau A— some. m eoEmoa u a 92. m enamoa n D N eoEmoo u x _. eoEwoa n O _ _ _ _ If r5 x D XXX 9.... . . md . vd Nd Nd vd 0d 36 26.. 6%: 62:02.55 .. 5.. 865208 265 8.2.8er I oN 2:9". F 0.0 md v.0 Nd o Nd vd md md _ _ _ _ _ _ x I... _ a _ _ x D 0x 0 A on. Ivo Q I No 0 A x I ma #ns... .1 x A 0‘0. Ix‘I D X 5% meoEmoon A Am u I No .29: m eo_._moa u «I 2% I... m eoEwoo u D N eoEwoq u x I mo F eo_._moo n O 37 26. .626. 6:0sz .. .0. 865208 wowem mmfiaeooen. I N 952“. oo o.o to «o o w. o to o.o oo . _ . . . x A _ . . In OM Ag I no. A My” A xx» x A “AA A? 2.2. AMMAAA o... x IswAuA. MA x O 1 A... .3 A A AA ..IIv weo_._woan A AAA I .29.. m eoEmoo n a 3.5.. m eoEmoa u D AA N eoEwoa u x m a F eoEwoa n O x xx»! v.0 Nd Nd vd md 38 md 26.. .63: .28sz .. 8. 365208 mawew $6285 I 6N 2:9... oo to No to wo wo nIv meoEmoou A .29.. m eo_._moa n a 92. m eoEmoa n D N eoEmoa n x F eo_._moa n O 0 N6 . F _ _ .u I. . _ . M *O x 39 (a) 1.4l— 1.2- 0.8 '- 0.6 '- o.4 - I \ (b) \ 0.6 - 0.2 - \ o J A L L l l A l 1 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1 .2 1 .4 Figure 29 - Deformations shown as vectors on landmarks that represent principle components 1 (a) and 2 (b) for I. oxyrinchus, lower jaw. See Figure 3 for landmark identities. 4O (a) 0.8 '- 0.6 '- 0.4 l- 0.2 *- 1- (b) \ 0.9? 0.8 - 0.6 h 0.5 - 0.4 0 l \ 0.3 - \ \ 0.1 - Figure 30 - Deformations shown as vectors on landmarks that represent principle components 1 (a) and 2 (b) for I. oxyrinchus, upper jaw. 41 (a) 1.2- 0.8 r- 0.6 _. 0.4 — I \ 0.8 *- O.4 _ 0.2 '- Figure 31 - Deformations shown as vectors on landmarks that represent principle components 1 (a) and 2 (b) for I. paucus, lower jaw. 42 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.2 0.8 0.6 0.4 0.2 (a) t \ l l l l l l l 0.2 0.2 0.4 0.6 0.8 1 1.2 (b) \ \ l / 3 L J l l l A l 0.2 0.2 0.4 0.6 0.8 1 1.2 Figure 32 - Deformations shown as vectors 0n landmarks that represent principle components 1 (a) and 2 (b) for I. paucus, upper jaw. 43 the majority of variation between specimens, is the length of the cusp. Principle component 2 is the size of the tooth base. Comparing extant species Procrustes shape coordinates for corresponding tooth positions (e.g. tooth position 1, upper jaw) of the two extant species were plotted and tested using an F-test. The graph of the shape coordinates showed considerable overlap of the two species (Figure 33). This was confirmed with the F-test; p-values ranged from 0.0575 to 0.49. In order to be statistically significant, p-values must be equal to or lower than 0.05. Thus, teeth of I. oxyrinchus and I. paucus are not significantly different. However, it should be noted that the sample size for this study is fairly small (10 I. oxyrinchus jaws, 5 I. paucus jaws), which may account for the high p-values. If the teeth of the two species are visually compared, there are obvious differences in morphology (Figure 3). The teeth of I. oxyrinchus are more curved than those of I. paucus, and also have longer, thinner cusps. Additional specimens would add data that may lead to better resolution in this portion of the study. Testing the methods The Procrustes shape coordinate data for the 14 test teeth were clustered with the Procrustes shape coordinate data for the teeth analyzed. The unknown tooth was given the designation of the tooth that it was paired with (species, tooth position, upper/lower jaw) (Table 2). If the unknown tooth was added to a cluster 44 .F 8:68 .26.. 62,2 ..x >99 30an .. new .2020 xowzv wzcoet2xo .. 5.. 365208 0.6% $620er I an 0.59". dd 0.0 vd Nd d Nd vd dd md . . _ _ d _ x . _ . 1 vd mma mm... x O x 4 Nd xx x x O X I a I... O l x ’02 VC& 3x o e. L Nd I vd 1 dd a... O 45 Table 2 Results of the Clustering Analysis The identification of the test specimens is based on which specimens (with known assignments) were clustered with the test specimens. The test specimen number is based on the order of specimens in the data matrix used in the clustering analysis. 46 Table 2 Results of the Clustering Analysis Test Clustered Assigned Identity Actual Identity Specimen With 222 76 and 154 I. oxyn'nchus, upper jaw, /. oxyrinchus, upperjaw, position 1 position 2 , or I. paucus, lower jaw, left side, position 3 223 99 l. oxyrinchus, upperjaw, I. oxyrinchus, upperjaw, right side, position 3 position 4 224 48 and 178 I. oxyrinchus, lower jaw, I. oxyrinchus, upper jaw, position 4 through 7 position 6 or I. paucus, lower jaw, position 4 through 7 225 146 and I. paucus, lower jaw, I. oxyrinchus, lower jaw, 150 position 1 or 2 position 1 226 81 l. oxyrinchus, upperjaw, I. oxyrinchus, lowerjaw, position 2 right side, position 3 227 164 and l. paucus, lower jaw, I. oxyrinchus, lower jaw, 174 position 4 through 7 position 5 228 78 I. oxyrinchus, upper jaw, I. oxyn'nchus, upperjaw, position 1 position 1 229 199 I. paucus, upper jaw, right I. oxyrinchus, upper jaw, side, position 3 right side, position 3 230 144 I. paucus, upper jaw, I. paucus, lower jaw, position 1 position 5 231 45 and 217 l. oxyrinchus, lowerjaw, l. paucus, lowerjaw, position 4 through 7 position 6 or I. paucus, upperjaw, position 4 through 7 232 11 I. oxyrinchus, lower jaw, l. paucus, upper jaw, position 2 position 2 233 107 and I. oxyrinchus, upperjaw, I. paucus, upperjaw, 209 position 4 through 7 position 4 or I. paucus, upperjaw, position 4 through 7 234 106 I. oxyrinchus, upperjaw. /. paucus, upperjaw, positions 4 through 7 position 6 235 72 I. oxyrinchus, upperjaw, I. paucus, upperjaw, position 1 position 1 47 composed of a pair of known teeth, it was assigned the identity of both known specimens. If the known specimens belonged to different species, tooth position, or jaw, the unknown tooth was still given the identity “A or B” (e.g. “I. paucus, upper jaw, position 1 or 2"). Species was correctly assigned 39.2% of the time, tooth position was assigned correctly 68% of the time, and assignment to the upper or lower jaw was correct 64.3% of the time. Overall, positions 4 through 7 were assigned correctly to all categories more often than 1 through 3. This may be due to the fact that there were more data for this group than for the others. I. oxyrinchus was correctly assigned to species and upper or lower jaw more often than I. paucus. Again, this may be due to the fact that there are more I. oxyrinchus specimens than I. paucus. However, I. paucus was more often assigned to the correct tooth position than I. oxyrinchus. If the graphs of the Procrustes shape coordinates are compared, the data points of I. oxyn'nchus are clustered more tightly than those of I. paucus (Figures 25 through 28). This implies that the differences in morphology for I. paucus are more pronounced than I. oxyrinchus, increasing the chance that a tooth of known species and tooth position will have a shape similar to another tooth of the same species and position. Analysis of I. haste/is Procrustes shape coordinates of 27 I. haste/is teeth were compared to the means of the Procrustes shape coordinates of the extant species and analyzed using principle components analysis (Figure 34). The principle components graph 48 ..00:_w> 60:: 02.0an .. new ..00:_w> 695 02.02.2220 .. 6.6.02. .. e0. fleweoeeao 0.9055 I 3 0.59“. mo who ho moo o moo ho Fun. _ . . A . Q. _ Non. X I ho e x O x O 0 X . e e e Imoo O X X X X «I e o «x I x I? «I If i J .1 .fl .1 .4. i I ...d 0.032 .. u AF .4 i 0.00an .. u x a. a. a w 0.» 0220:2208 .. n O a. a «.4 49 shows that the data points for I. hastalis cluster separately from the two extant species, indicating that it is a separate species. When comparing the Procrustes shape coordinate graph of I. hastalis to that of the extant species, the shapes of the clusters are different (Figures 25 through 28, 35). For example, when looking at the cluster for landmark A (the apex of the cusp), the clusters for the extant species are elongate and curved, whereas the cluster for I. hastalis is not. The tooth positions for the extant species form a distinct pattern, while I. hastalis does not show the same pattern. Therefore, the pattern of the data points cannot be used to assign tooth position to I. hastalis. 50 6.26.09. .. 00.. 00652000 oawew 00.02090 I mm 0.59". md md Vd Nd d Nd vd md Vd — _ _ _ _ . fl — 3...: e 0.. I No ...x... «a. e ee 0 e e O o f l o e e . O II... o. 3. 0‘00 1 Nd L v.0 1 md 00.. 0 0 $0 51 CONCLUSIONS The use of geometric morphometrics was successful for analyzing some aspects of tooth morphology of the extant Mako species. While tooth positions one through three have the most distinct morphology, positions 4 through 7 were correctly identified more often. As mentioned previously, this is likely due to the number of specimens in each group of jaw positions. If every tooth photographed was used, the group composed of positions 4, 5, 6, and 7 ideally would have four times as many specimens as the group that is only composed of position 1. The addition of more specimens may even the gap out and result in more correct assignments. A greater number of unbroken teeth could be added to the analysis. The methods used were also fairly successful in differentiating between the extant species and I. hastalis. This has implications for future studies of fossil Makos and other fossil sharks. As mentioned in the Introduction, some current fossil species of Isurus are questionable (I. retroflexus and I. deson). It is not clear if these species are junior synonyms of the extant taxa, or are separate species. This method may be appropriate for comparing the fossil species to the two extant species to determine if there is enough morphological difference to warrant separate designations. 52 The morphometric analyses used in this study did have one shortcoming: they were not able to distinguish I. paucus and I. oxyrinchus. The addition of more specimens, especially to the I. paucus data set, may remedy this. It is possible that some specimens sampled may actually display abnormal morphologies, which would appear as outliers in a graph that included more specimens. However, it is also possible that none of the specimens represent outliers, and that the extant Makos cannot be distinguished based on tooth morphology alone. The addition of more specimens would likely resolve this issue. In addition to answering some questions, this study has prompted new ones. Examining the tooth morphology of these sharks begs the question “why?” What about the function of these teeth causes asymmetry in the third tooth position, the similarity of teeth in jaw positions 4 through 7, and the distinct morphologies of positions 1, 2, and 3? Work has not been done on the feeding mechanics of Makos. A detailed analysis of feeding mechanics may not only answer the questions stated above, but may also give insight to tooth function of fossil Makos. 53 APPENDIX 54 83o oooo Ego ovooo moono Sumo Eooo 65o 86.. 823 F 29:83 «Kho owooo 55o Sooo «No 38o ooomo Soho 30h. voooo o Eokegao NNooo 86o ovomo Rooo ooomo moooo ovomo oooho 5F 83o m 29:83 Soho 28o ooooo Ego 38o .63 893 «Nooo moon. «Koo o 29:25: oovho Shoo mmvoo oEoo oaoo .33 who Rho oooo. ooooo e 2253: onwho ovooo ooooo Somo ooouo omooo oooNo owoho 52F ofioo o 20:03: Soho ~33 oomoo eono oooNo :oo oaoo owmo .ooh. . o 22.8% macho ooomo ooomo goo 32o ooooo omomo Noono 38o ofioo A. 6:03: ~93 85o :vo ooooo oovmo otoo Eomo Eto not... mom: . 2203: macho no mono ooooo oomoo Noooo Eooo 83 83.. omho o 29:33 oooo 28o oaoo oooo Ewo Noooo 38o ooomo ooooF voooo m. 29:03 Sho mo mono 86o Soho Sooo oooo oomoo 03h. £33 4 2.9.633 25o ovomo 28o Boo ooomo flooo oxoo homo $6.. 323 o 29:33 Nowho Rooo Booo Booo oooho ooooo otho 83o ooooF «moo. N 20:03 88o oooo ofiho 66o oomho ofioo 65o Soho 88.. Eooo o 6:33 oooo ovooo homo moomo Romo ammo Emo 86o ES. Sooo o. 6:23 .ooho ENoo 29o oooo tomo :oo ovomo memo Sh. 923 4 22.023 Sm com 30 coo E0 30 Em Em $< oo< 52:8“. 3.2. 3:3 :25 .8 00652000 Eouwxoom 55 moso 26o ovoNo mono RoNo NoNoo oooNo tho 52.. Roho N 29:03: Soho oooo oooNo omooo Rho voooo NooNo oNFNo . .Nooo 4 E953: oooho Eoo ooooo 23o nI..I.oN.o voooo Soho «who :5 one... F 29:83 oNoho Eoo mono Soho oooNo Voooo ooooo :oNo oooN.F 8.3 o 6.63: nKoho Eoo 83o ooomo oNFNo otoo oovNo Soho 88.. voooo o 2203: oooNo Eoo ovmmo oono oooho voooo NNooo omoNo vooNF ooooo m 20:03: Soho woto ooooo Noovo NoFNo otoo Noooo 8.3 83.. .ooh. N 2203: oooho ENoo Novvo :Eo Soho ENoo Soho Eooo No: 83.. F 6:03: ooooo 23o mono NNooo Noomo ooNoF ENNo NomNo 86F oNho o 29:33 NNoho NNooo SNho Rooo :vo 63o SNeo .63 £th Nooo o @3053 Soho ooNoo otho NNooo ooomo voooo mono wooNo Noon. SNoo o 29:02.3 voomo ooooo ooooo Nooo oN3o 83o go vvoho Eh. 88.. N 29:33 ooovo .Noho oNvoo voovo oFNoo oNoho voooo Nowho NEoN ENoo . 29:33 ooooo Nvooo oooNo 23o Noooo otoo Eooo BNNo NoFNF 8.3 o 6:35.. oooo otwo Noeoo :vmo ooooo oooo. Soho .ooho EN. NoKo v 22033 .Novo ooNoo £33 8.3 Eho ooooo oFNoo oooho 88.. Sh. N 22533 23o :voo SNoo ENmo Eho ooooo Eho moooo NNooN NEoo . 6:053 com com So 30 E0 30 Sm com :7. oo< 5.28.. 25.. 38m .50 .0. 00652000 Eeuwxoom 56 NNooo ooomo EoNo oo oNNo 22o. evoho BNNo voooo Novoo o 20:03: ooooo .oooo ovoho 2o ovoho oNNoo NNFNo ooNoo :03 0.8.. 4 29:38 52o 53 :«o oo ooNoo FNooo ooooo oooho 86.. Noooo N 20:03: 8.3 ENmo :ooo oo ooomo 86o ovoNo oNPNo EN. 68.. N 20:03: 86o oo .tho no ENNo NoBo ooomo Soho 25.. 6.: . emtmoo: oooho ooooo 853 no Noovo . 66o NNoo- ovoNF 88o o .6623 omoNo ooooo NoNoo oo EoNo memo. NooNo macho oovh. ooooo 0 22033 moNoo oomho EoNo no oovNo :oo 2.03 .ooho 38o Booo 4 20:02.3 oNvmo omeoo :23 oo ooooo 38o ooNoo 62o oooo. mooo N 20:33 Soho .Noho movoo ho NNooo Novoo ovmmo zoo- mooN oooho . 20:33 3.3 ooooo 39o oo toNo NNoh. Noooo 62o So? ooNoo 0 22033 ooooo 26o ooNoo no oooo 82o NNEo ovoho mthN 293 F 6:33 Em com So So 20 30 30 com E< oo< eoeaoe 26.. 33 :2: ._0. 00652000 5060.00m 57 NFNho Sooo NoNNo 58o Noooo voooo ooooo oovoo :43 oooo. v 29:03: oNNo sooo 29o oovoo Soho .63 ooooo ovoNo ooooo 9.8.. o 29:03: oooNo ooNoo mo vvooo 8:3 :3 ovooo .Noho meow. 83.. N 20:03: .oNho moNoo :vo oooo :vo NVNoo oNSo NooNo Nooh. ENQo N 20:03: Soho ooooo mono NNooo ENNo otoo Noooo oNoNo $th ooooo o 6:03: tho Soho ooooo ooooo movoo oNNoo 83o vooNo NNoNF :3. o 6:03: ooVNo ooooo oNNho oNvoo Soho voooo NVNho ovoho NFNh. Noooo N 20:80.: ovoho ooooo NoNoo oNNoo ...NNo oFNoo ooooo ooNoo 8o: 95.. N 20:03: Sooo Sooo vooho 23o ooNoo oFNoo NooNo 2.53 2%... oNvoo . 6:03: .oNho :voo Soho 58o NoNoo ooooo :ho NooNo ovoh. 623 4 29:02.3 otho Sooo NNooo NNooo oNNvo voooo ooovo oNoNo oooNF zooo N 30:33 omio ovoho NVNho ooNoo NoNoo .Nooo ooooo ooNoo 3:3 ooooo N 20.033 63o oooho ooooo ooNvo Novvo oPNoo ooooo .ooho owoh. ooVNo o 6:033 ENo Sooo Boho ooooo .Noho :oo oNNho oNoNo Eon. mooNo o 6:033 .oNho Nvooo ooooo ooooo 6.3 :03 Noooo .63 08.. .NoNo v 6.033 mooNo :voo vNNoo Nooo 55o :3. :«o ovoho NoNoF ooooo o 6.023 .Noho oooho oNNo oNNvo ooNoo oooNo NoEo 83o ooooé oNooo . 20.023 Sm 30 So 30 $0 30 $0 30 S< oo< 5280 25.. 0252.250 :2: ._00 00652000 506xoom 58 Soho VNNoo oNEo Nvooo Eooo ooooo oooNo .oSo ocoo. ooNoo N 20:03: NNho Nvooo £3 .33 383 oNNoo NNoNo oooNo oooh. :oo o 29:03: NNooo Sooo NooNo ooNoo NNSNo .Nooo ovoho NSNho moooo voooo o 29:03: oNSo Soooo oooNo .oNoo mono ...NNoS ooooo Soho oNNS NSS v 29:03: oooho NNooo mono vvooo VNNo Noooo oooNo oNNo EN: oooh. N 29:03: 363 9.9.3 Soho Sooo ooNoo oNSoo ooooo ooeho No.3 NNoh. S 29:03: evoho ooNoo mono oooo vaoo oNNoo ooooo Soho oooh. 523 N 20:03: Soho oNVoo .Soo Sooo .NoNo ooooo NoSNo 83o oNSF NVNoo o 6:03: NNooo Noovo SoNo Nvooo ovoNo :oo Soho NSNho SSS Sooo o 6:03: oooho :23 603 Sooo 83 6:3 oovNo .oNho S 88.. 3 6:03: NooNo ovooo oooho ooNoo .Noho Noooo «ooho .oSo ovoNS voooo o 20:03: oNSNo VNNoo Eooo Sooo ooooo 823 903 NNSNo EN. 88.. N 20:03: oSNo no .93 Nvooo SNoo NoNoo ooooo .oSo oNSo. 3S: . owtooo: omio o...S.o NVNwo ooNoo NoNoo .Nooo ooooo n..oNoo SS? ooooo o @2033 ooNoo oooho SNoNo mo oSNo :oo NVNvo Soho voooo Noooo v 22033 833 NoNoo .33 6:3 ooooo Eooo ooNoo 6.3 8%.. mooo N 29033 NooNo .Noho oocoo N4N4o NNooo Novoo ovooo :oo- oomN oooho . 29.033 Soho ooooo oSNoo NSoo Noooo .Nooo NNoNo ooNho oNSS oNoNo o 22033 83 NNooo mono oNooo ooVNo VNNoF ooNoo oooNo NSNF 08.. 0 22033 mo NSoo onoo ooooo ooNoo NSIoo mono oooo ooohN NNooo S 6:33 com com So 30 $0 30 30 com E< oo< Sauce 30.. Foooo 2.2, ..0. 00652000 e_06x00m 59 ovooo oNSo voooo otoo voooo NNoo oNooo oNooo moon... .oooo oNN NooNo Sooo ooSo SINoo osNo .Nooo NNNNo ooio SNoS .oooo oNN ooSo ooNho ovooo oohoo oNNoo NooS oNSo ooooo NooN.. oovNo NNN NooNo «NNoo oNovo oSNo Sooo 88.. 8.3 Nioo ooNoS ovaS oNN voooo oooho NoNNo ooooo ooooo .oooo SBo ooooo oNNoN ENoo oNN oooho ooooo ooovo Sooo Nioo NNoo NNNNo ovoho oSNS N:o.o «NN ooSo Eono NSNoo oNooo ooNNo 08.. Noooo NNooo 88.. 88.. oNN oooho «Nooo ooNho voooo NooNo goo oooNo oNooo 23... 9.2.. NNN 30 30 So coo E0 30 $0 30 E< oo< .335: 55080 583220: 20.. 00652000 5060.00m 60 NoSo oooho otho ooNho vooho ooooo Nowho Nooo- N...N.. 38o N £2033 oooo «NNoo oooo «NNoo :ho ooNoo otho Soho 03.. oNoNo 0 20.033 oooo VNNoo ooNoo Sooo ooooo ooooo ovoho ovoho moo. :3 o 29.033 oNSo ovooo oooNo Sooo oN§.o NNooF VNNo Soho ooNS wooNo v 23033 NSo ..So.o .Noho NNooo SS 88.. oNvoo vooNo NNoF 4S: o 20.033 83 oNNho ooooo NSoo ooNoo oNNoo ooooo oooo 3 oooNo N 6:033 NSo Nvooo ooooo Nvooo Ntho NoNoo ooooo oNSo ooh. vooNo o 20:33 vSho ovooo ooooo Sooo Noooo ooooo .Soo oooho ooNS oNvoo o 6:33 com 30 So 3o 30 30 30 com S< 34. 8038 32. 3.92.220: ._Ou mflumrztuooo c_0amx00m 61 NSNho vNNoo ooooo ooooo NooNo . Soho oooho .oNh. 88.. o 29:03: NoS.o ..NNoo ooooo NNooo oSINo .Nooo .Soo oooNo NoSS S v 2303: oNoNo oo Nooho .Noho NVNho oovoo ooooo Noooo ovoh. Nooo o 29.0%: 003 :36 NVNho vSoo oooNo voooo Noooo oooNo SN? Noooo N @203: NoS.o NSoo voooo ooooo oNNo NoNoo Sooo 983 $8.. Novoo F 20.03: oSho VNNoo .Soo 53o mooNo oowoo ooVNo vooNo ooooS oooo N .003: oovho ...NNoo ooNoo NNooo NNSNo ooooo vooNo oooho oNSS ooNoo o 0.03: NoS.o ooooo oNooo .oooo ooooo oNSoo ooooo vooNo Pooh. 05.. v 20.0%: Soho EN: ooNoo Soho oNNo NVNoo oNNo NoS.o NoNoS voooo N 0.03: NoS.o ooooo oooho ooNoo NoNoo NSoS ooooo :voo SoNS NSNoo N 2o: 033 3S; NSoo oNooo NNooo oooho voooo SNoo NSNo NSS oNNo o For 033 oNSo Sooo .Noho .NoNo oNooo So; SSS NVNho ooooo NNooS o 20: 033 mooNo ovooo owooo vooNo SoNo ooNh. oNvoo oooNo NoooS .NoNS N 20: 033 oo ooNoo ooNoo oo ooNho .Nooo Nwooo vSho SSE .oNoo S 29. 033 NNoho «NNoo NoNho :voo voooo S «.03 Sooo ENS ovooo o .0. 033 NoS.o ooNoo NoS.o ovooo oooho ooNoo SNoo :voo Soh. .oooo o .0. 033 ...Sho ooooo ooooo Nvooo :vo ooooo ooNoo NSoo ooooS Nooo w 0. 033 ovooo Noovo Sooo ooovo oNoNo ooooo Noooo Sooo .NoNN ooNoo S 0. 033 30 com So 3o 20 30 30 com 36 oo< 50000 30.. 338 220: 20.. 00652000 5060.000 62 oooo ooNho oNSNo Nooho NSNho oNSoo ovoho Noho oNSoo woooo v 20.0%.: NSo Soho oooNo ooNho Soho Nooho ooNho SNo ovoNS ooooo N 29.03: ooNho «NNho Soho VNNho ooooo NoNoo oooNo Soho SoNS voooo o 0:03: Soho ooNho NSho ooNho NSho :Vooo oooho ooSo Sh. ooNho o 0:03: ooSo oNoho oooNo ooNho ovSo oNNoo ENo NoS.o oNSh. ooooo N 003: oSINo oooho «ooho oNNho NSNo ooooo oNoNo ooooo woo: .Soo S 0.03: oooNo Soho oooho ooNho Soho ooooo Sho vooNo ooh. oooNo N 20.. 033 oooho .Noho Soho oooho ooooo ovoNo Sooo ooSo .NoNN vooho S 29. 033 vSho Nooho oovho oooho .03 05.. oooho So.o- oNoNS vSo.o o 0.033 ooNho NSho oooNo ovoho oNSNo NSoS Soho .oNho Nooh. <83 0 0.033 Soho Soho Soho NNoho oovho VNNoS Soho oooNo ooh. Nooho o 0.033 .03 oooho Soho ooNho oooho oNvoo oooho Soho NNooS oooNo N 0. 033 oooho NSho .oNoo oooho oovoo Soho Nooo NSNho ovooN oooho S 0. 033 com com 30 coo coo coo com com :2. co< .3002. 32. c260=00 unfowoh 5.sz 20.. 00652000 5060.00m 63 oooho oooho Nooho ooNho oSISo Sooho oooNo ooooo Sooo SINNoS N 20:03: oooho Nooho Nooho Nooho Soho oNoho vooNo oooho ooooS 228 o 2303: ooSo Nooho oNoNo SSvho oNSo SNooo Soho 62o ooooo NoSS v 2303: Soho ooNho otho oooho oooho SSoo Soho NSNSo NNoNS ooooo N 29.03: oooNo oNNho oooho oooho ooho Sooo Nooho ooNoo SoNoS SSho S 2303: oooho oNNho SSIoho SSvho NooNo SSo.o NooNo ooNho oooho SSS.o.S N 003: NoS.o ooNho Nooho oooho oooNo Sooho oooho oNNo SINNoS ooooo o 0.03: oooo oooho NoNoo SSvho oNNo ooooo Soho Soho NoSNS Sth o 0.03: oooNo Nooo ooNho ooSIoo Nooho SSo.o SSho oNvoo voth o4ooS N 003: NoS.o oNNho oNSho Soho NNoNo Soho Sooho S.NN.o ooth NNoS.S S 0.03: SoNho ooho ooho Nooo oooNo ooooS oooho oSNoo oSISS oooho S. 20: 033 NNoNo ooNho SSho ooNho oooho «NNoS Soho NoSNo .NoNoS Soho o 2m: 033 Nooho NNooo NoSho Sooho Nooho ooooo oooho NoSNo ooNoS Svooo N 2m: 033 NVNho oooho Sooho oNNho oNSho oooho Sooho oooo NNooN ooho S 29. 033 Soho Nooho oooho ho ooNho oNNoo NNoNo Shoo Sth SINNo o 0_ 033 ooNho ooNho ovoNo ooNho SNo oooho oNoNo Sooho Nth vooNo o 0_ 033 NSNSo NoSho ooNho oooho oooNo ooho oooNo SoNSo ooth NooNo v 0.033 oooho ooho oooho oooho otho SNooo oooho NSNho NoSNS SNoNS N 0:033 Ntho SNoho NNoho Soho vooho Soho oooho ooNoo oooN Nooho S 0. 033 com com coo coo $0 30 com com :6 co< 5008 30.. 0506 20.. 00652000 c.06xoom 64 NNoS.o oooho oooNo ooNho oooNo oooho S.NN.o oooho ovoS ooNho o .3385: NooSo Nvooo SNo ooNho oooNo NNoNo SNoNo oNoNo oooho 923 v .553: Nooho oooho ooNho oooho Nooho oooho oooho SooS.o ooth NoSNo o 29:85: ooSo oooho oooho oooho vooNo Nooho oovoo Sooho ooNoS ooho o outmoo: voSSo ooNho NNoNo ooNho oooNo oSooo Nooho SoSoo oooho ooooS o fitmao: oooho Nooho S.NN.o oooho SoNSo voSho SNoNo oNoNo ooho 9.3 v 5:83 oooho oNNho NoSho ho oooho oooho oNNho ovooo Sth oooNo o 35%: NNoNo oooho SNoo NNoho oSovo Nooho Nooho Soho Nth ooNho S 5.8% oooho oooho oooho Soho SNo Sooho SoSoo SSvoo S SS o .Sm_..o;o._ NNoS.o SSho ooNho SSvoo SNoNo oooho ooNho ooNho oooho oooNo o £18533 Nooho ooNho oNoNo Sooho voSho S NoSNo SNoNo SEN SSvoS N 29:33 ooSo oooho ooho SSho oSoS..o ooNho SNovo Nvooo ooooS oooho N €333 oNoSo Nooho oooho SSho oNooo ooNoS SSho o ooNSS 223 o 5:03.. NoS.o oNNho ooho NoSho oNSS..o Nooho oooho oNvoo SooSS oNoho o 5:03.. oSoSo Nooho Sooho Nooho oooho oNNho oNSvo oooho oSoSS NooNo o 5.523 SoNho ooNho Sooho ooNho oSoho oooho Soho NoS.o oNohN ovoNo S 553.. com com So can So 30 Sm 3m S< 3< 5:30.. 26.. oS.N-m=o_ ._8 «82.5500 529.com 65 SoNSo otho NVNvo oooho NVNvo Sooho Nooho voSSo oNoSS SNooo N 29.5%: NSNS.o ooNho ooNho oSoho SNoS..o SoShooooS..o Nooho oSNoS SNooo o 29:83 voSSo oNNho NoNoo SNho oovho ooho oNooo oooSo oSoSS oooho o zuofmoo: SSho otho oSoho oNNho oooho oNoho NSNho NooSo ooNhS oNoNo o “6:53: oSoSo SNoo SSho ooNho oooho ooNho SooS.o oNNo £th oSooo N 59:83 vooSo NNoho NoNho oooho Sooho «ooho NSNvo SNoNo ovooS NoNho v 6:805 ooho SSvho oooho SSvho NNoho Sooho voSho oooSo 3.th NooNo o 5.8% oooNo NoSho Nooho oooho oNNho oooNo oooho oNNo NSNhS SNoNo S 5:83 ooSo oooho NSNS.o oooho oSovo Nooho oooho SNoNo ooSNS otho o 39.533 NSNS.o oooho ooNho ho ooNS..o oooho oooho SoNSo Noth Soho v 29:259. NNoNo ooNho oSoho Noho oooho oooho oooho ovoNo oSth ooNho o 29.533 ho ooho NNoho Noho woSho NoNho oovho SoSho oSooN SoSho N 29:33 oNNho oooho SoNho oNSvo Nooho Sooho oooho ooNoo ooVNN oSNoo S 29.533 SoNSo Nooho Nooho oooho Nooho Sooho ooNho NNooo oooNS ooho N 3533 oNoSo ho NoS.o ooNho ooNho ooNho oooho NooSo ovoSS oooNo o 5533 ovoSo oooho NoS.o ooNho oooho oooho Sooho ooNoo oth oooNo o 3523 ovoNo oSoho oNNS..o oooho oooho SNoho oNvoo NooSo Nth ovoNo o 5533 SNoo oooho oNoho oooho oooho NVNoo NoNho oooho ooVNN SSho S fitmaoo Sm 3m. So So So 30 Sm 3m S< 3a. 523.. 32. 82020.. ._2 nouns—.600 529.com 66 Nooho oooho oooho oooho oooho SoSoo ooNho ooNSo oNoN ooNSS ooN oSSSo oNSho NSNho ~NNoo.o. NNoo.o Sooho NSNho ovNSo oooSS Sooho ooN ooNSo Sooho NSo.o Soho NooNo SNooo Nooho oooNo ovoSS oNoS ooN oSoho oNNho NSo.o oooho oooho SSho oNoho ooNho ovooN oooSS NoN ooNSo oSoho oooho oooho ooNho SoSho oooho oooNo oSoSS oooNo SoN ooSo oSooo ooNho oooho oooho Sooho oSoho SSho oSoSS NooNo ooN oooho oNSho oooho oNSho oooho NNoo oNoho oNooo ooth Sooho oNN Em 3m So So So 30 cam in E< 3< .352. seesaw oooo 98.. ._2 «835.600 589.com 67 oSoSo oooho oovoo oooho oSoSo «ooho oooNo vooNo oooho oooho v 25:53: oSNoo oooho oSoho ooNSo SNoo SSho oooho voSSo oNSN.S SoSho o szooo: oooSo ooNho Sooho ESho SNoNo SSho NoNho NooNo SNS SoNSS N 29:33 oooho oooho oNNho ooNho SSho NoNho oooho oooho 8:: 3o: S 29.5%: NoS.o oSoho NoNho ooNho oNoho SSho «ooho oooNo voSSS oooho N «2.8% SoNSo ooho oNSS..o voSho oSovo SNoho oNSS..o oNSNo SNoNS ooooS o $.58: NoS.o ooho NNoNo NNoo.o oooNo oNSoo ooNho oooNo ovooS Nooho o «0:83 SooS.o oooho Soho oovho ooNho oSooo «ooho oooho oooho ovooS S. 5:83 oooho ooNho oSoho NNoo.o oooho oSooS oooho NoS.o oooNS ovooS o 55%: oNoNo NNoho NoS.o ooNho ooho oooS oooho NNoNo onoS oooNS N 5.8% oooho oNNho oooho oooho oooho ho NoNeo oooho NoShS oooho S 5:83 Soho oooho Sooho oSooo SoSoo NoS.S onho oSooo coo? vooNo N 29.333 NoS.o oooho «ooho NNoo.o SNovo oooho oNoho voSSo oNSN.S oSNho o 29:33 NSNS.o ooNho vooho ooNho Nooho ooooS Nooho ovooo oooNS otho o £9523 NoSNo oooho NoNho oooho ooNho oooho S.NN.o ooSo ooth vooNo v 29:33 NoNoo ovoho oooho NoSNo oooho ooooS Nooho oooho ooth oooS N 29:259. Noho ooNho oNoho oNSvo ovoNo oooNo SoSho oooho oooNN SNho S 29:33 NooSo oooho Soho otho oNvoo oovoo SSho voSSo NoS.S oooNo N $226.. oooSo oooho Nooho oooho oNooo S oooho NSNS.o ooSS Soho o 6:95.. ovoSo NNoo.o Nooho oSoho Sooho oooho oNSvo Soho vooNS NooNo o «2.33 oNoSo oooho ooho otho NoNho Nooho Nooho SoNSo NooNS oooNo o $333 SoSoo oNSNo oooho ovoNo SoSoo NoS.S ho oNNho oNth S.NN.S o 5533 Nooho oooho oSNho ooNho oNoNo ooNho oooNo ooNSo NNooN NoS.o S 5:33 Sm 3m So can So So Sm in of 3< .328“. 3.2. 398 :6 ._8 3556.600 539.com 68 mNSNd mommd nvmvd moomd mvmvd omwmd Swmvd mom—no mmmmé mowoé Scmrooaa: pom—no mmomd mSde Nmomd $5.0 mnmmd mmmmd vvomd momoé mvmoé IDCD Em: ..maa: 3:528 390 >6 .8 8.2838 69 ooSo SNo.o. otho oooho Soho oooNo ooho oNNo «NNoS oovho N Emmaoo: Soho otho oovho ooho oooho oooho oooho S.NN.o ovooS Nooho o 29:03: NoS.o ooNho Soho oooho ovoNo SSho ovoNo NooNo SSS.o.S SNooo o 29:33 NooSo SSvho NNoN.o oooho ooNho Soho oooho oooNo oooho oooho v 29:85: oooho ooNho ooNho oNNho Noho oNSoo ooNho NoSho ooovS Nooho o 29:83 oNoNo oNNho SSho oooho oooho Svooo NoS.o oNNo oNSS..S SNooo N 29:83 Soho SSSho oooho ooNho oooho ooho NoSho ovoNo oSth oNoho S 29:33 ooNS.o Nooho Nooho oNvoo otho oNSoo oooho oooNo NNoS.S oSNho N 5:305 NoS.o ooNho oooho oooho oooho oSooo SSS..o vooNo oNoSS oooho o 35%: Nooho ho voSho Nooho SSho oooSS oSovo ooho- NoShS SNo o 55%: oooNo ooho N¢Nvo ooho Soho oooho Nooho oNoNo moo: Nowho N 5.8% SoSoo oSoho oSovo SNho oooho otho oooho oNSN.o oth ooho S 3:83 NNoS.o oooho ooho SNho oSNho SSvoS SSho NNo.o- Nooho NoSNo N 23533 NoS.o Nooho Sooho Nvoho SSho oooho NoS.o SSvoo NoS.S oooNo o 29:33 ooNS.o NoSho oooho SNoo ooNho «NNoS «ooho oooho ooooS oooNo o 29.533 oNvoo oooho ooNho voSho oooho Nooho ooNho oooho ~S.oSo.S NoNho o Em_:o33 oooho ooNho oNSN.o NNoo.o Noho S oooho NooSo ooohN oooS N 29533 NNoS.o oooho SSho NoSho Nvao oooho oooho ooNho ovooS oooNo N 3533 oooho SNoo oooho otho Nooho ooooS oooho oSooo oooSS oNSN.o o 5.533 NooSo Nooho SooS.o NoSho oooho Sooho ooho oNvoo SooS.S NoSNo o .3533 NooSo oNNho oooho NSo.o otho ooNoS NSo.o oSoSo NNoS.S SE S. 5:33 Nooho voSho NNoho SoNho NNoo.o ooNS.S oooho oooho oehS ovooS o 3:33 Em 3m So can So 30 can can E< 3< 8:38 32. ":28 033 .8 «3.2.5.000 539.com 7O NoS.o SNho ooNho oooho oooho Nooho oooNo ooNS.o Nooho Nooho N 29.53: SoNSo oNNho oooho oooho oooho Soho SNo oooho S ovooS o 29.5%: oooo SSvoo vooNo NNoo.o oooho SSho SoSoo SNoNo oNoho ovoS o 29.5%: Nooho ho oooho ho oooho oooho oooho voSSo Sth oNoNo o 29.5%: Soho SSvho Soho oooho SoSoo SNooo ooNho NoSNo S ooooS o 5.5%: ooSo ooNho Soho NNoo.o oooNo SNoho NoNoo Soho Nooho SSvoS o 5.5%: SoNSo ooNho oNooo ooNho Soho oNNho oSovo oSovo ooVNS oooho N gm: 533 ooSo ooNho Sooho otho Sooho Nooho Sooho NoS.o NooNS oooho o Em: 533 Soto SNho oooho oSoho oNSvo ooNho ooNho oNoSo NSNSS ooho o 29. 533 oNSN.o SSvho oNooo oooho SSho ooNoS oNNho oooho oNoNS SNoho S. 3.9. 533 oooNo Nooho oooho oooho oooho Sooho SSho oSNho oNvoS ooNS.S o 29. 533 NSNS.o NoSho oooho NSo.o NSo.o oooho «ooho oooSo SoNSS Nooho N .5. 533 NSNS.o ooNS.o Soho oooho oNSvo oooho ooNho oNoSo NooNS ooho o .5. 533 com com So So So So Sm 3m E< 3< 828“. 32. SoSSSzExo No“— 3352000 538.com 71 oooho oooho oooho oSooo NSNo.o NNoNo oooho ooNho oNSvS ooho ooSNo oooS.o oooho ooNho oooho Sooho ooSoo oooho voShS oooho oooho oNSoo ooNho SNo.o NooNo oNo.S Nooho ooho $th SNoo.o ooSSo ooNho oooho SNo.o oooho NSo.S oooho oooho oovNS SSho oooho oooho oNSvo voooo ooNho SSho ooNho oSoSo NNvoS NoNoo oSSSo oooho oNSS..o oNSoo oooho Noo.S Nooho So.o- oSoS..S NNoNo ovoo oNSoo oooho Soho oSoSo SSho oooho oooS.o oooS.S ooooS Nooho oSooo oNNNo oooho Soho SNooo ~oooho ooho Noo.N oNNho ooNS.o oooho oooho oSooo oooho SSho voNoo oooS.o SShS NooNo oSSSo oooho oooho oSoho Noho ovoS oooho oNo.o 3th oooho oSSSo oooho oooho oooho NNoo.o Sooho ooNho oooS.o voSoS Sooho oooho oooho NoNNo Soho ooSNo SNoo.o NooNo NoNoo NNooS NooNo ooooo oNSoo oNSvo oSooo oooho Nooho oSooo oooS.o ooSNS Sooho Nvoo oNSoo oooho oooho NNoo.o SNooo oNNho oNooo oNoSS ooho oSSSo oooho Soho oooho oSooo ooooS oNoS..o oooo- Noth BS ooooo ooNho oooho Soho oNNho NNoo Nooho oNoSo NoNo.S NoNoo ovoo oNSoo oooho ooNho NooNo oNoS NNoo.o ooho oNShS Nooho ooSSo oooho «Noho oSoS..o oooho NSSho oooho ooooo NoNo.S SSho ooNho voNoo ovao SSho oooho oNoo oooho oooho NSo.S ooSNS oooho oooho oNS..o oSooo oooho SoSoo oNNho ooNho NSo.S SSho oooho oNSoo oooho oSooo Soho 23 oooho So.o ooth NooNo ooSSo ooNho oooNo 823 8:3 oooS ooSho ovoo- Noo.N oSSo oooho «ooho oooS.o Soho ooNho ooho ooNho SNo.o- ovth NooNo oooS.o ooNho ooNho oSovo oNSS..o ooho oooho SNo.o SShS oooho Sam Sam A30 Sam .30 A50 .3m Nam S5< A5< 05> ._ouS aouasEooo 529.com 72 REFERENCES I 73 REFERENCES Becker, M.A.; Chamberlain, J.A.; Stoffer, P.W., 2000. Pathologic tooth deformities in modern and fossil chondrichthyans: a consequence of feeding-related injury. Lethaia, 133 (2): 103-118. Bookstein, F .L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, New York. 435 pp. Cappetta, H., 1987. Chondn'chthyes II, Mesozoic and Cenozoic Elasmobranchi. Gustav Fisher Verlag, New York. 193 pp. Case, GR, 1980. Selachian fauna from the Trent Formation, Lower Miocene (Aquitanian) of eastern North Carolina, U.S.A. Palaeontographica Abteilung A Palaeozoologie-Stratigraphie, 171 (1-3): 75-103. Casier, E. 1943. Contributions a l'étude des poissons fossiles de la Belgique; IV, Observations sur la faune ichthyologique du landénien. Bulletin du Musée royal d'histoire nature/[e de Belgique, 19 (36): 1-16. Cione, AL. and Reguero, M., 1995. Extension of the range of hexanchid and isurid sharks in the Eocene of Antarctica and comments on the occurrence of hexanchids in recent waters of Argentina. Ameghiniana, 32 (2): 151- 157. Cliff, G.; Dudley, S.F.J.; Davis, B., 1990. Sharks caught in the protective gill nets off Natal, South Africa, 3: the Shortfin Mako shark Isurus oxyrinchus (Rafinesque). South African Journal of Marine Science, 9: 115-126. Compagno, L.J.V., 1984. Sharks of the World, FAQ Fisheries Synopsis, 125 (4) vol. 1: 249 pp. Compagno, L.J.V., 1988. Sharks of the Order Carcharhiniformes. Princeton University Press, Princeton. 486 pp. 74 Correia, JP, 1998. Tooth loss rate from two captive Sandtiger sharks (Carcharias taurus). Zoo Biology, 18 (4): 313-317. Gillespie, GE. and Saunders, M.W., 1995. First verified record of the shortfin mako shark, Isurus oxyrinchus, and second records or range extensions for three additional species, from British Columbia waters. Canadian Field Naturalist, 108 (3): 347-350. Holthe, T., 1998. Shortfin Mako Isurus oxyrinchus caught in Northern Norway. Fauna (Oslo) 51 (3): 102. Karasawa, H., 1989. Late Cenozoic elasmobranchs from the Hokuriku District, central Japan. Science Reports of Kanazawa University, 34 (1 ): 1-57. Kent, B.W., 1994. Fossil Sharks of the Chesapeake Bay Region. Egan Rees & Boyer, Inc., Columbia. 146 pp. Killam, K, and Parsons, G., 1986. First record of the longfin mako, Isurus paucus, in the Gulf of Mexico. Unites States Fish and Wildlife Service Fishery Bulletin, 84 (3): 748-749. Leighton, LR, and Maples, 0.6., 2000. Determining utility of morphologically variable characters with an example from the strophomenide cardinal process. The Geological Society of America Abstracts with Programs. 32, 4: A-23. Leriche, M., 1905. Les poissons éocenes de la Belgique. Mémoires du Musée royal d'histoire naturelle de Belgique, 3: 49-228. Munoz, C.R., 1985. An analysis of pelagic shark catches in the northeastern Atlantic (15-40 degrees north). Investigacion Pesquera. 49(1): 67-80. Naylor, GP, and Marcus, L.F., 1994. Identifying isolated shark teeth of the genus Carcharhinus to species: relevance for tracking change through the fossil record. American Museum Novitates. 3109: 53 pp. 75 Palmer, A.R., 1986. Inferring relative levels of genetic variability in fossils: the link between heterozygosity and fluctuating asymmetry. Paleobiology. 12, 1: 1-5. Peyer, B., 1968. Comparative Odontology. The University of Chicago Press, Chicago. 347 pp. Pratt, H.L. and Casey, J.G., 1983. Age and growth of the shortfin mako, Isurus oxyrinchus, using four methods. Canadian Journal of Fisheries and Aquatic Sciences, 40 (11): 1944-1957. Purdy, R.,et al, in press. The Neogene sharks, rays, and bony fishes from Lee Creek Mine, Aurora, North Carolina. Smithsonian Contributions to Paleobiology. Sheets, D, 2001. CoordGen 6. Coordinate generating utility; also file translator to/from X1Y1, TPS file formats. Sheets, D., 2001. TwoGroup 6. Comparison of statistically significant differences in shape between two groups. Sheets, D., 2000. PCAGen 6. Principle components analysis based on partial warp scores; outputs partial warps scores and principle axis scores. Stevens, JD. and Scott, M., 1995. First record of the longfin Mako (Isums paucus) from Australian waters. Memoirs of the Queensland Museum, 38 (2): 670. Stillwell, CE. and Kohler, NE, 1982. Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences, 39 (3): 407-414. Uyneno, T.; Kondo, Y; lnoue, K., 1990. A nearly complete tooth set and several vertebrae of the lamnid shark Isums hastalis from the Pliocene of Chiba, Japan. Journal of the Natural History Museum and lnstitiute Chiba, 1: 15- 20. 76 Uyeno, T.; Haswgawa, Y.; Kakuta, T., 1980. Some shark teeth from Miocene lchishi Formation in Mie Prefecture, Japan. Bulletin of the National Science Museum Series C (Geology and Paleontology): 6 (4): 125-128. Warheit, KL, 1992. The role of morphometrics and cladistics in the taxonomy of fossils: a paleornithological example. Sytematic Biology. 41, 3: 345-369. 77