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ABSTRACT

STUDIES OF MICROGRAVITY DIFFUSION FLAMES

By

Robert W. Vance

Various topics relating to flame stability are discussed. A linear stability analysis

is performed on a set of simplified equations to discern regions of both cellular and

oscillatory flame instabilities of diffusion flames. This is performed for a one-

dimensional model and also for a two-dimensional model representing a simple version

of an “edge flame”. It is shown that the one-dimensional model agrees well with the two-

dimensional model in a qualitative sense. A one~dimensional model of laminar premixed

flame annihilation is examined to identify the effect of non-unity Lewis number on flame

front extinction. Conclusions are drawn regarding the implications for turbulent flame

stability. Additionally, a heat transfer analysis is performed for a slot-bumer

configuration of a diffusion flame. Here, characteristic profiles for the conductive heat

loss from a lifted tri-brachial flame are examined. Correlations are presented and

compared with experimental data. -
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INTRODUCTION

Let the reader be forewarned that the material herein does not consist, as is

typically the case, of a thorough and complete analysis of a single problem. Rather, the

topics, though comprising four chapters, are actually three non-related problems that can

be considered as pertaining, either directly or indirectly, to the broad field of flame

stability. Due to the inhomogeneity of this work, each chapter, save for perhaps the third

for in truth it is an extension of the second, will be treated as a separate entity wherein

pertinent literature will be discussed, results presented and conclusions drawn. Hence,

this introduction shall serve only to provide the reader with a brief description of each

problem and indications of its importance.

As noted above, the topics of flame stability are very broad. This is only to be

expected given the complicated nature of the combustion processes. Instabilities can be

caused by imbalances in thermal and mass diffusion (Chapters 2 and 3), concentrations of

oxidizer or fuel that are insufficient to maintain steady burning, since combustion is a

kinetically controlled process excessive heat losses can cause flame extinction (Chapter

5). Additionally, hydrodynamic concerns can cause flame instabilities. In turbulent

flames large strain rates can effect flame behavior, flame front curvature (wrinkled

flames) is dependant on not only the flow field but thermal-diffusive effects as well.

Furthermore, the complex nature of turbulent flames show that flame fronts are often

dynamic and interact leading to local flame front breakup and healing (Chapter 4). The

above list of different types of instabilities is not complete but gives the reader an idea of

the complicated behavior of reacting flow problems. It is due to the aforementioned

complexity that any analysis seeking to understand the role of one particular element



must seek to systematically eliminate the effects of the others without ignoring the key

characteristics of the problem that cause such instabilities to occur in the first place. In

this spirit, each chapter consists of what may be termed a “minimalist model” in which it

is believed only the barest terms are retained in order to facilitate examination of the

phenomena in question. Such work, though not rigorously accurate, is simple enough

that the conclusions drawn are not obfuscated by unneeded complexity.

In Chapter 2 a linear stability analysis is performed on a one-dimensional model

of a diffusion flame in which the fuel is convected into the reaction zone while the

oxidizer is diffused. Of particular interest is the effect on non-unity Lewis number (a

ratio of thermal diffusion to mass diffusion) as well as the role of convection. The model

produced allowed the examination of the eigenvalues for several parameters: Lewis

number, Damkohler number (a ratio of characteristic flow time to a characteristic

chemical reaction time), and the Peclet number (non-dimensional mass flux). Several

types of instabilities were observed. The first consisted of pure flame extinction, the

second involved regions of flame oscillations (Le>l) that would either lead to extinction

or dampen out to steady burning, and the third resulted in a cellular flame pattern (LeSl).

The one-dimensional model can be considered a “classic” model having been

examined extensively in the past using Activation Energy Asymptotics (AEA). The

question that begs to be answered is, how well do one-dimensional models predict flame

behavior? It is not expected that these simplified models will predict quantitative

behavior but rather give an overview of flame characteristics. To begin to answer the

above question a two-dimensional version of the model in Chapter 2 is examined. In this

model the flame is examined in the presence of a cold, chemically inert wall. This



produces and “edge-flame” that better models real flame behavior. The linear stability

analysis is carried out along similar lines as in Chapter 2. Such an analysis is very

computationally costly but in the end offers reasonable support for the one-dimensional

model.

Chapter 4 investigates the thermal-diffusive effects on laminar, premixed flame

annihilation. Such a model can be thought of as representing the local flame interaction

in turbulent flow fields. How these flames interact under different Lewis number

conditions may offer some insight into how well turbulent flames can survive. The work

in this chapter is a combination of theoretical approximations and numerical analysis,

with the prior used as support for the latter.

The usefulness of one-dimensional models cannot be ignored. However, these

models lack important features that real flames incorporate. Of particular interest is the

interaction with a nearby surface. Such a feature was incorporated in Chapter 3 but was

absent in Chapters 2 and 4. A two-dimensional model is presented in Chapter 5 in which

a tri-brachial flame (“triple flame”) quenched a small distance above a “cold” wall. The

model represents a slotted burner configuration in which the reactants are separated by an

infinitely thin divider plate. Of particular interest is the conductive heat flux distribution

along the cold adjacent boundary. By evaluating this heat flux profile, deductions can be

made about the characteristic flame thickness; provide correlations that may be used in

theoretical work; and when compared to experimental results, provide insight into which

heat transfer mechanisms are important.

It is important to note, that although all the analysis performed in the above

chapters has a theoretical bent, in all chapters some ties to existing experimental results



are made. In Chapter 2 (and subsequently Chapter 3) comparisons are made between

predicted cellular flamelet sizes with cellular flames observed in micro-gravity drop

tower flame spread experiments. The ties to turbulent flame stability are more anecdotal

and compare only the observations made by several experimentalists about observed

Lewis number effects on stability. The correlations obtained for the heat flux distribution

are compared with two experiments burning methane gas. The maximum heat flux from

the bumer-attached flames is compared with the predicted values in Chapter 5.

A brief exposition on the numerical methods used to solve the various partial

differential equations (PDEs) is provided in Chapter 6. The numerical work in this

document does not represent in any way a novel approach to solving non-linear sets of

PDEs. The description is included for sake of completeness.



ONE-DIMENSIONAL DIFFUSION FLAME STABILITY

2.1 Chapter Nomenclature

A -— Pre-exponential factor for Arrhenius reaction rate, k=Aexp(E/RT)

A,B,C,E — Generic points along the “S” curve

D - Damkohler number, D=Alel(YFoY00)/0t

E — Activation Energy

K — Wave number

Le - Lewis number

I-—- Half of separation distance between porous plates

m — Mass flux

Pe — Peclet number, Pe=ml/2por

Q — Heat release

R - Ideal gas constant

T — Non-dimensional temperature, T:T (CpLe)/QY0o

t - Non-dimensional time

w - Non-dimensional reactivity = Dyoypexp(-Ta/T)

x,y - Non-dimensional spatial coordinates

Y - Species mass fraction

y - Non-dimensional species mass fraction, y=Yi/Y,o

Z — Mixture fraction

Greek

[3 - Zeldovich number

(I) - Global stoichiometric coefficient



(b - Generic scalar variable

A - Wavelength

1,5,1“ - Arbitrary spatial function

Subscripts

a — Activation reference

c,crit — Critical value

F — Fuel

f — Flame

0 — Oxidizer

o - Reference

max - Maximum

new — New

Superscripts

/ - Perturbation term

- - Steady state term

2.2 Introduction

In the study of diffusion flames the question of stability naturally arises when the

words “ignition” and “quenching” are used. These are “near-limit” phenomena in the

sense that either the temperature or the reactant concentrations (or both) can barely

support combustion, making the transition to either a burning state for the former and a

non-burning state for the latter a distinct possibility. These concepts can be broadened

when other physical, geometric, and parametric influences are examined, such as nearby

cold surfaces in the case of spreading flames over solid and liquid fuel, or multi-step



chemistry, or disparate Lewis numbers of the reactants, or radiant losses from the gas and

from soot particulates near the flame. Before flame extinction concepts are broadened,

however, the skeletal phenomenon should be understood in the clearest possible terms.

The present article attempts to create such an understanding for a physically idealized

model of diffusion flame stability.

In addition, a second goal is sought, namely a clear exposition of diffusion flame

stability for pedagogical purposes. The authors believe this is absent in the literature.

Our interest in diffusion flame stability lies in applications to flame spread. We found,

however, that there was no complete exposition of the stability calculation for even the

simplest model problems. The original study of Kirkby and Schmitz [1] comes closest to

a full description but is hampered by the use of difficult terminology.

The mathematical analysis of the stability of partial differential equations has a

long history. It has evolved in the last few decades into a theory based on the functional

analysis of PDES in terms of their eigenvalue spectra. The analysis of stability from a

mathematical standpoint amounts to the examination of the eigenvalue spectrum of the

linearized system of equations in relation to the original spectrum of the nonlinear system

of equations. For infinitesimal disturbances the confluence of the two systems can be

rigorously demonstrated, thereby rendering the analysis of the linearized problem

mathematically representative of the original (nonlinear) problem.

The eigenvalue spectra can be examined in numerous ways. The study by Kim et

al. [2] has, for the case Le<1, postulated simplified forms of the conservation equations

on either side of the flame sheet and then used asymptotic methods to derive “jump”

conditions across the flame sheet with the goal of obtaining formulas for the dependence



of the eigenvalues on the parameters D, Le, and Pe. Extending this work with

asymptotics, Kim [3] included higher order terms in the expansion of the inner zone

solution in a more thorough examination of effects of non-unity Lewis number. The

subsequent work of Kim et al. [4] employs no asymptotic methods in Le>1 studies of

diffusion flame stability. With regard to the latter work, which demonstrates a more

complicated response1 than the Le<1 case, stability is examined by integrating the

conservation equations numerically. Transient evolution of a monotonically growing

solution indicates instability.

The overall nature of the spectrum of the eigenvalues for the diffusion flame can

be understood both in a “physical” way and from experimental observations. Consequent

to Linan’s analysis of diffusion flame structure [5], Peters [6] determined by physical

arguments that the middle branch instability must be a “fast time” instability. The “fast

time” stability discussion is the result of a simple scaling analysis: if the reaction sheet is

thin, of order [activation energy]", then in order to retain the transient term in the

diffusion equation the temporal scale factor must be of order [activation energy]1 times

smaller than the spatial scale. Laboratory observations have also produced a physical

understanding of the nature and types of instabilities (cellular, oscillatory, etc.). Among

these experimental works are ref. [7,8], which deal with flame instability in many

configurations. In addition, many spectacular photographs can be found of ceiling flame

instabilities, see especially reference [9].

Our analysis will demonstrate that the eigenvalue spectrum is vitally important,

especially for the case Le > I examined recently by Matalon and Cheatham [10] and Kim

 

' The case for Le < l is less complicated in that no upper branch instabilities are seen and the middle

branch is unstable. Furthermore, no oscillations are present for this case as are seen when Le > 1.



et a1 [4]. We shall demonstrate that the tracking of the leading eigenvalue is insufficient

for understanding the instability process. The behavior of the second and third

eigenvalues often signals imminent transitional behavior.

2.3 Model

The proposed model is a one-dimensional version of the film-diffusion flame

examined by Kim et al. [2]. There, the authors were interested in the formation of

striped, instability patterns in a one-dimensional flame sheet. A minimum of two spatial

dimensions was required to describe the pattern of instability: one coordinate lay along

the flame sheet, while the other lay perpendicular to the flame sheet. The coordinate

along the flame sheet described the striping pattern. The fragmented flame sheets have

been called “flame tubes” [11]. In this study, we are interested in the fundamental

mathematical description of the instability mechanism. This does not require the

formation of different sorts of flame patterns. For this reason, following Kirkby and

Schmitz [1], we retain as little detail as required in order to produce a mathematical

description of diffusion flame stability. The in-flame coordinate is thus deemed

inessential for the stability analysis.

The proposed one-dimensional model consists of flowing fuel and diffusing

oxidizer species on Opposite sides of the reaction sheet. Radiative heat losses have been

ignored, as have both Soret and Dufour diffusion. The flow is assumed uniform. The

chemistry is modeled with a single-step, irreversible, Arrhenius reaction. Figure 2.1

shows a schematic of the one-dimensional model that has been used in previous stability

analyses by Kim and colleagues [2,4] and Matalon and co-workers [10,12]. The latter

investigators also describe a realistic physical configuration from which this model could,



in principle, be realized in a laboratory experiment. The problem formulation proceeds

along similar lines as that of [2], producing the following set of non-dimensional

equations.

2

gl+pe£=_a'£
(2.1.a)

at 8x 8x

83's BYI BZYI -
Le?+ PCLC—a—x— = ax—z - W ,1=O,F. (2.1.b)

The equations are coupled through the non-linear reaction term, w=Dyoypexp(-

Ta/T). A single Lewis number is employed for both reactants. All terms in Eqs. (2.1) are

defined in the Nomenclature.

The boundary conditions for Eqs. (2.1) are

T=To, yp=1, yo=0, at x = -1 and T=To, yp=0, yozl, at x = +1. (2.2)

In this article we assume, for simplicity, that the fuel and oxidizer inflow

temperatures are both equal to a reference temperature, To. The symmetry of Eqs.(2.1)

and the boundary conditions implies that yo and yp are interchangeable; hence, from a

stability perspective, this formulation describes both blowing fuel and blowing oxidizer.

The configuration of figure 2.1 is a generic, simplified version of many

combustion problems. These include droplet combustion (blowing fuel from the droplet,

inward oxygen diffusion form the ambient), spray flames, jet flames, flame spread, and

diffusion flames in channels, among others. More complicated configurations require

additional geometry dependent terms; and more complicated model formulations may

require the inclusion of buoyancy or variable properties or pressure variations, or even

10



magnetic fields; but the qualitative nature of the solutions generated herein shall be

representative, as a model, for all of these configurations.

2.4 Steady State Solutions

2.4.1 Analytical Burke-Schumann Solutions

The character of the steady-state solution provides insight into the influences of

disturbances on the flame’s ultimate stability or instability. For clarification of

subsequent discussions, we present the steady Burke-Schumann solutions and briefly

describe their structure. The solution for the mixture fraction is

(1+x)

2

 z = [exp(LePe(1+ x)) — 1]/[exp(2LePe) — 1] s- [1 — LePe(1 — x)/2 + O(LePe)2]. (2.3)

When Pe=0, we have Z=(l+x)/2. It is relatively straightforward to show that when Pe is

non-zero, Z is smaller everywhere (expect at xdl) than the Pe=0 Z-distribution, i.e.,

Zp¢>o < chzo. The flame is shifted to the right by the blowing fuel, and this shift

increases as Fe increases. We will not examine the large Pe case in this article.

At the flame sheet Z=1/2=Z[=[exp(LePe(1+xf)-l]/[exp(2LePe)-1], which can be

solved to give xr=ln[cosh(LePe)] for the flame sheet location. Burke-Schumann

solutions for oxidizder, fuel, and temperature distributions are obtained by solving

Eqs.(2.1) with w replaced with a delta function:

Oxidizer side (‘1<X<Xf):

Y0=0 (2.4.a)

= _ exp(LePe(x /2)) sinh(LePe(1 + x) / 2)

F exp(LePe(x, /2))sinh(LePe(1+ xf )/2)

 (2.4.b)

T _ T ___ (T, _ T.) CXP(Pe(x / 2)) srnh(Pe(1 + x) / 2) .

exp(Pe(xf /2))srnh(Pe(1+ xf )/2)

O
(2.4.c)

 

ll



Fuel side (x,<x<l):

_ _ exp(LePe(x/ 2))sinh(LePe(1-x)/ 2)
 

 

O — . (2.4.d)

exp(LePe(xf / 2)) srnh(LePe(1 — xf ) / 2)

YF=0 (2.4.c)

T _ To = (T, _ T.» exp(Pe(x / 2)) sinh(Pe(l — x) / 2) (2.4.0

lexp(Pe(xf /2)) sinh(Pe(1 — xf )/2) '

These distributions are applicable in the regions on either side away from the

flame location. From these distributions it is possible to deduce some important facts (see

[2]). First, the outer-zone formula for Tf produces a Le-dependence in which Tf increases

as Le decreases and Tf decreases as Le increases. The roughly Le’l dependence of Tr is

well known and has been exploited in more detailed formulations of the non-dimensional

combustion equations [2]. Second, the general shape of the profiles in response to the

flow is ascertained, as is the response of the flame position to the fuel inflow.

2.4.2 Numerical Solutions

The steady state Eqs.(2.1.a,b) can be solved numerically by standard methods.

The numerical solution produces the characteristic “S” curve which plots Tmam vs D,

where Tmax is the maximum temperature in the domain. This “S” curve, to the knowledge

of the authors, was first produced and thoroughly examined by Fendell [13]. The top

branch of the curve corresponds to steady burning (under most but not all conditions), the

middle branch is unstable; and the lower branch is known as the ignition branch, see

Figure 2.2. The real “S” curve does not look like an actual S since the lower turn occurs

at a value of D that is usually many orders of magnitude larger than its value at the upper

turn. A representation of the upper turning point for Le=1, Pe=0, Ta=4 and ¢=l is shown

in Figure 2.3. At the lower turning point the Arrhenius exponential is O(exp(-E/RT0))
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whereas at the upper turning point the Arrhenius exponential is O(CXP('E/RT{)). The

“separation” in D between these two turning points is thus O(exp(E/R)(1/'l‘o-1/'I‘f)), at

least in the lowest approximation (i.e., without accounting for differences in reactant

mass fractions at the two turning points).An analysis of the “S” curve using large

activation energy asymptotics was carried out by Linan [5]. Combustion regimes in the

various parts of the “S” curve were elucidated and canonical lowest order equations

describing the mathematical character of each region were produced with accuracy that

improved as the “Zeldovich number”, [3, increased. The expansions, which proceed for

both inner (flame zone) and outer (chemical equilibrium zones) in inverse powers of B,

can be continued, at least in principle, indefinitely. Inner and outer solutions are matched

in the characteristic fashioned outlined in [14]. The expansions in B" are valid

everywhere along the “S” curve but the relative accuracy of the solutions diminishes near

the turning point where additional (higher-order) series terms are needed to maintain

accuracy. The leakage of reactants was shown to be a cause of the transition from

vigorous to non—vigorous burning. Numerous features of this S curve have been clarified

since the work of Linan [5], but the fundamental distinctions made therein (and in the

original work of Fendell[l3]) remain valid. Though some aspects of the preceding

description, such as the use of one-step chemistry, or the predominant leakage of the

“wrong” reactant, etc. [15] are unsuitable for a more comprehensive approach, the appeal

of the “S” curve remains strong. Discussions of diffusion flame stability are referred

almost exclusively to “S” curve solutions [2,4,10]. Extending or broadening them to

more realistic flame processes, geometries, and parametric ranges is desirable.
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2.5 Stability Analysis

Equations (2.1.a,b) form a set of coupled semi-linear parabolic equations [16,17].

Hence the evolution of small disturbances is governed by linearized forms of these

equations. These linearized equations are derived by writing the solution of each

dependent variable as a combination of a steady solution and a perturbation

¢<x.t) =6<x>+¢’(x.t>. (2.5)

where (I) can be T, yo, or yp, Substituting Eq. (2.5) into Eq. (2.1) and retaining only the

terms that are linear in ¢' in the Taylor series expansion of w yields the following linear

   

system:

ar’ an 321" ,
+ Pe = + w , 2.6.a

at 3x 8x2 ( )

I I 2 I

Lnfl+ PnLnQYi = 9124 — w', i=O,F , (2.6.b)
at 8x 8x

I — — Ta I — I I — Ta

W =D YOYF fiT +YOYF+YOYF XCXP “'I-‘I.’ , (2-6-9)

which is solved subject to the following boundary conditions (no disturbances at the

boundaries):

T'(il,t) = y'F(il,t) = y'0(i1,t)= 0. (2.6.d)

Since the spatial part is a linear operator with compact resolvent [17], the evolution of

small disturbances is determined by the eigenvalues of Eqs.(2.6.a-d). The eigenvalues are

the complex numbers, 0', for which Eqs.(2.6) possess a nontrivial solution in the form

T'(x, t) = t(x)exp(ot) (2.7.a)

yn(x.t) = 5(X)6Xp(ot) (2.7.b)
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y'F(x, t) = F(X)exP(6t). (2.7.c)

If all eigenvalues have negative real parts, then all solutions of the nonlinear Eqs. .( 1) that

originate as small disturbances of the steady state solution will decay exponentially to the

steady solution [16,17]. In this case the steady state solution is said to be stable. On the

other hand, if any of the eigenvalues has a positive real part then the steady state solution

is unstable, meaning that there exists a threshold disturbance size such that some

arbitrarily small initial disturbances of the steady state solution will evolve according to

the nonlinear Eqs.(2.1.a,b) to grow eventually past the threshold [16,17].

With fixed parameters the steady state solution was found first, using

Mathematica’s NDSolve in the shooting algorithm for the boundary value problem.

Error controls in the software enable the successive elimination of subsequent higher

order error terms; the steady solution is for all practical purposes exact. In other words,

the errors can be made as small as desired because it is known that the computed errors

depend quadratically on grid size. Three different meshed were used (80, 160, 320 grid

points) to reduce the computational errors.

This steady solution was used in Eqs.(2.6.a-d) along with Eqs.(2.7.a-c) for the

disturbance quantities. The resulting disturbance equations are given below as equations

2.8.a.d.

2

to+Pe§1=fi+wC (2.8.a)

3X 3x2

2

Lefio-l-PeLeE =9—5- w' , (2.8.b)

3" 3x2

2

LeF6+ PeLe-a—I: = 8—: - w' , (2.8.c)

3X 3x2
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. _ _ T _ T
w =D[YOYF[:—r-_Z'T]+ yOF+FyF:JXexp(-—%—). (2.8.d)

The equations were then discretized using a second order central difference scheme. The

resulting matrix eigenvalue problem was also solved by using Mathematica. The

computational errors of the eigenvalue also depend quadratically on the mesh size, hence

we were able to reduce eigenvalue errors below a specified tolerance. For example, when

Pe = 0.5, Le = 0.9, To = 0.05, Ta = 5, and D = 21190000 we found that the leading

eigenvalue on the middle branch was equal to 0.1612, and on the upper branch it was

equal to —0.1522. Many spot checks were made by using different numerical methods.

In particular, a Fortran based finite difference scheme was used (with no error controls)

with 300 nodes to produce the steady solution, and the eigenvalues were calculated using

standard Lapack subroutines.

The stability in the neighborhood of the upper turn, point A on figure 2.2, on the

“S” curve has been investigated for a large set of parameters:

OSPe $1, 0.1 SLe 54,1.5 STaS6.5, 0.02 STo $0.05.

A brief description of the findings appears below. In later sections lengthier discussions

of their physical significance are presented. For larger values of Pe the eigenvalue

behavior is more complicated; however, and more detailed analysis is needed before

concrete generalizations are made.

Identifying the Le effect on the eigenvalue behavior is essential in understanding

the various regimes of flame behavior. When Le S 1, the leading eigenvalue is negative

on the upper branch, implying stability, and positive along the middle branch, implying

instability. The leading eigenvalue is equal to zero at the turn, point A (see figures 2.3

and 2.6). When Le = 1 a linear combination of Eqs.(2.1) commonly called the Schvab-
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Zeldovich procedure produces two stable linear, homogeneous heat equations with a

convection term, and a nonlinear equation. The two heat equations are responsible for an

eigenvalue of multiplicity two that does not change with D (see figure 2.4 curve denoted

“62”). This constant eigenvalue is given by

-(1t/2)2/Le —(Pe/2)2Le. (2.9)

This result is obtained for yo-yp derived from Eq.(2.6.b) which is a linear heat equation

with a convective term, and can be solved explicitly. When Le=1, the solution has

multiplicity two because 2T+yo+yp satisfies the same equation. The remaining nonlinear

equation produces the eigenvalue denoted “0’1” in figure 2.4. This eigenvalue is always

positive on the middle branch, indicating instability as stated above. (Note that in all the

figures pertaining to eigenvalue distributions, the dotted line indicates a position along

the gage; branch.) It is the character of the remaining two eigenvalues on this middle

branch, however, that changes as Le is varied; the nature of this change dictates the

stability of points along the sector ABC of the “S” curve of Figure 2.2.

When Le is slightly larger than unity, the eigenvalue that has multiplicity 2 when

Le = l splits into 2 eigenvalues. One, 0'3, is still given by Eq. (2.9) and the other one, 62,

interacts with 0'] as Shown on Figure 2.5. 0'] and 62 are negative real numbers between

the turning point A and point B on the upper branch (see figure 2.2). At point B they

merge to form a complex conjugate pair with negative real parts (indicating decaying

oscillations) until point B where they again split. At point C, 0'3 becomes the leading

eigenvalue. As Le approaches unity the region between B and E shrinks to point C where

61 meets 62 on figure 2.4. As Le increases the value of 0’] at B increases, B approaches

A, and B reaches A at some critical value Lec > 1.
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When Le increases past the critical value Lee, point B moves into the region of

positive eigenvalues, Re(6) > 0, and the characteristic behavior in region ABC of Figure

2.2 is changed completely (see figure 2.6). Notice that figure 2.6 (Le>Lec) is

qualitatively the same as figure 2.5 (Ledec) with the point E (not shown) moving rapidly

towards higher D as Le is increased. When Le>Lec, the region between points A and B

on the upper branch has eigenvalues that are real and positive, indicating that perturbation

growth will occur and lead to flame extinction. Between B and C the two leading

eigenvalues form a complex conjugate pair, whose real part is positive at B and decreases

as D increases. The real parts become zero at a point C’ between B and C indicating

damped oscillations until point C (not shown) where the leading eigenvalue (0'3) is

independent of D.

On the other hand when Le is decreased below unity, 63 moves under the constant

eigenvalue as shown in figure 2.7. The constant eigenvalue is still given by Eq. (2.9).

Notice that along the upper branch all the eigenvalues are negative, while along the

middle branch 0'] is positive and 623 are negative. Thus, for Le<l the upper branch is

stable and the middle branch is unstable. The remaining constant eigenvalue disappears

in the case Leo at Le]: #1.

It has been shown that the system behavior changes when Le is increased passed

unity. Damped oscillations appear when 1 < Le < Lec, but the entire upper branch

remains stable. The beginning of the upper branch is unstable when Le > Lee.

2.5.1 Cellular Flames

“Cellular flames” have been observed in both freely propagating premixed flames

[18], burner attached diffusion flames [19,20], and micro-gravity flame spread. All these
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systems are fairly complex, involving multidimensional processes that generally include

flame-surface interactions. The qualitative nature of the cellular flame instability can be

described by examination of the proposed one-dimensional problem.

In order to allow for spatial variation along a plane of unit depth, the Eiz/ax2

operator in Eqs.(l.a,b) needs to be replaced with the Laplacian aZ/axz + 32/3)!2 and

perturbations take the form ¢’(x,y,t) = f (x)exp(6t + iKy) in place of Eqs.(2.7.a-c).

Here, K is a non-dimensional wave number in the new coordinate direction, y, which lies

in the plane ((y,z) plane, where z is the unit-depth coordinate) of the flame sheet. This

coordinate dependence will show the development of undulations in the flame, whereas

the one-dimensional formulation merely produced fluctuations about the mean flame

position, Xf. When Le = 1, the new eigenvalues, 6mm, are simply equal to the old

eigenvalues o shifted by K2, i.e. on... = o - K2. When Le e 1, the relation between o...w

and 6 is far more complex but qualitatively identical. In particular, the introduction of K

has a stabilizing influence on the flame. Two conditions need to be met in order to see the

flame stripes in the y-coordinate plane. First, the boundary control requires that K be a

multiple of 21t/L where L is the dimensionless length (y-coordinate) of the burner. If, for

example, the ratio between the length and the width of the burner is 10, then K can take

values 0.31, 0.63, Second, the new leading eigenvalue has to be very close to zero to

ensure the temporal changes of the flame structure do not rapidly vary and destroy the

striped flame pattern. The first condition, pertaining more to experimental aspects, will be

ignored in the rest of the discussion. For each unstable steady state solution near point A

on the “S” curve a K value is computed, called Kcm, such that the new leading eigenvalue

on the middle branch is identically zero. When 0 < Le < Lec on the middle branch away
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from the upper turn on the “S” curve, Km. gradually increases from zero at point A as D

is increased. When Le > Lee, the leading eigenvalue is positive near the turn A; and,

hence, a finite K, sufficiently greater than zero, is needed to stabilize the unstable steady

solution, see figure 2.8. Therefore, it is clear from figure 2.8 that cellular flames will be

more easily witnessed for conditions satisfying Le < Lee.

Of particular interest is how thermal-diffusive effects contribute to the

determination of cellular flame size. Additionally, the convection of fuel as described by

Fe is examined to identify the hydrodynamic effects. Thermal-diffusive effects are

examined by varying the Lewis number and holding Pe constant at 0.5. The results for

this numerical experiment are illustrated in figure 2.8. It is apparent that the influences of

varying Le are relatively small. The critical K values are only moderately changed

between the cases Le = 0.9 and Le = 0.3. This suggests that thermal-diffusive effects

play only a minor role in determining flame cell size. The distance, measured in D, away

from the instability point A is the main determinant of the size of the flame cells

In order to determine the effects of fuel flow on the cellular flame size several

different values of Pe were examined. The range of Pe was varied between zero and

0.75, and Le was set equal to unity so that the diffusion term and the convective term

were approximately of the same order of magnitude. In this range of Pe, the “8” curves

retain their characteristics and are simply shifted towards higher D ranges. Figure 2.9

shows the Km values for the three different flow rates, Pe=0, 0.5, and 0.75. There is

little difference between the Km, values for a zero convection diffusion flame (Pe = 0)

and one for which convection is appreciable, i.e., Pe=0.75. This leads to the conclusion

that for order—unity fuel crossflow the size of the cellular flames is little affected.
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2.5.1a Experimental Results

Calculating the wavelength in the direction normal to flame is difficult because no

physical length scale exists. There is, however, a diffusion length scale that appears in

the Damkohler number. This length is used in making comparisons with experimental

observations. Furthermore, as noted above, a smaller wave number does not necessarily

mean a larger wavelength, as can be seen in equations (2.10-2.11). The following

relationships were used to calculate a wavelength based on a diffusion length scale.

I

2
L: 4D.‘L (2.10)

YOOLeA

(2.11)

N
i
t
“

Here D is the Damkohler number, Otis the thermal diffusivity, Yoo is the mass fraction of

oxygen in the oxidizer stream, A is the Arrhenius pre-exponential factor, and It is the

disturbance wavelength. For comparisons with experimental results, where a thin

cellulose sheet was burned, the parameters for A and or were approximated by using

propane as the fuel. The values for K and Da were taken very near the turning point, i.e.,

(D-Dmm)~1000, where Dmm was found to be 1.7984e7 for the case where Le=1. It is

noted that in this region, near the stable limit, all the curves from figure 2.9 seem to be in

very good agreement. Based on these numbers, the estimated flamelet wavelength was

found to be on the order of four centimeters. This result is compared with experiments

that show the size of the flame pockets to be on the order of several centimeters. Figure

2.10 illustrates a sinusoidal waveform prior to breakup with the characteristic wavelength

shown. The distance between the peaks is 3.5 cm. Similarly, Figure 2.11 shows several
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flame pockets after breakup. It is clear from this photograph that not all the flame

pockets behave identically. In this instance the flamelet size varies by a large percentage,

but the relative order of magnitude is still several centimeters. These results Show that

that the simplified one-dimensional model was capable of predicting the order of

magnitude of the size of the flame pockets.

2.5.2 Oscillatory behavior (Le>Lec)

Oscillatory behavior in flames has been observed in microgravity candle

experiments aboard the Mir space station, as well as during droplet burning experiments

[21]. Several numerical investigations have examined oscillatory flames [4,10]. The

qualitative nature of this phenomenon can also be described with a linear stability

analysis of a one-dimensional diffusion flame.

When Le > Lee, the leading eigenvalues form a complex conjugate pair beyond the point

B on the upper curve (see figure 2.2 and 2.5). The real part is positive at B and decreases

as D increases. At point C’ the real part reduces to zero although the imaginary part is

non-zero. So, between point C’ and C on the upper curve, small perturbations will result

in damped oscillations. Between B and C’, small perturbations will oscillate with

growing amplitude leading to flame extinction. A stable periodic orbit was not found

numerically near point C’. Near C’, long lasting oscillations are expected with circular

frequency equal to the imaginary part of the leading eigenvalue pair.

The oscillatory behavior predicted by the linear stability analysis was supported

by solving Eqs.(2.1.a,b) directly using a second order correct finite-difference method. In

doing so, a graphical representation of the transient nature of the flame was achieved as

well as a search for possible steady oscillatory behavior. The results in Figure 2.12
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represent transient solutions for two points along the upper branch. The unstable solution

is representative of a D value below point C’ (Dc~=l .961E+6), while the stable solution is

for a D larger then that at point C’. The numerical investigation of the oscillatory

behavior is similar to that performed by Kim et al. [4]. Although the method is able to

identify all the characteristics of this simplified problemthat have been identified by the

preceding stability analysis, it is time consuming and does not allow Lec to be readily

evaluated.

2.6 Discussion and Conclusions

The mathematical examination of Eqs.(2.1.a,b) and the linearized small

perturbation Eqs.(2.6.a-d) in terms of the first three eigenvalues leads to a clear picture of

the overall phenomenon. The principal virtue of the model considered here is its

simplicity and the absence in it of complications that might difficulties of interpretation.

It has been stated that convection is “essential” for instabilities to occur in the

configuration of Figure 2.1 [2]. Our examination produces results for Pe=0 that are

qualitatively identical with those for PeabO. It appears that a nonzero value of Fe does not

alter the nature of the stability calculation, even though complications enter as Pe

becomes large. The stability results for Le < Lec were qualitatively simple, as the results

of section 2.5.1 demonstrate. The situation for Le > Lee, however, was more complicated.

Here, several possibilities existed, whose realization depended primarily on the

movement of the locus of the first two eigenvalues as a function of D and Le. Since a

complex conjugate pair is formed on the upper branch after point B, oscillatory behavior

there is the norm. Between A and B there are no oscillations. The critical value Lec is the

value of Le > 1 for which point B is located at the turning point A of Figure 2.2.
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It is possible that asymptotic analyses can provide approximate formulas for the

information obtained here by numerical methods of eigenvalue computation. The

asymptotic calculations, however, are tedious and lengthy (see e.g. [2] for the Le < 1

case), and provide results in terms of parameters that are, in practice, difficult to

calculate. An example of a difficult parameter to calculate is the Damkohler number

derivative [2]. The calculation of the first few eigenvalues as outlined here, however, in

complete accord with the mathematical theory of systems of equations [16,17]. The

eigenvalue computation provides an immediate and complete assessment of the diffusion

flame response, not only in the vicinity of specially chosen points of analysis (such as A)

but everywhere along the entire “S” curve.

The Nyquist-plot analysis of Kirkby and Schmitz [1] also provides

mathematically rigorous results. Nevertheless, considerably greater effort is required to

interpret and employ the results presented therein. The difference between this work and

that of Kirkby and Schmitz [1] is not mathematical rigor but ease of interpretability and

consistency with the function-theoretic analysis of partial differential equations.

For the reasons given in the previous two paragraphs, we believe that our

examination provides a comprehensive and readily understood description of diffusion

flame instability. Additional analysis of the eigenvalue spectrum is suggested by the

present analysis for the case of large Pe (where the behavior of the eigenvalues gets more

complicated) and when the values of Le differ for the two reactants. The permutations in

the latter case are numerous, as there is a blowing reactant and a diffusing reactant; Le for

both reactants may be small, large, one large the other small; and so on. In addition, the

behavior of the solution on the upper branch for Le > LeC near point B may warrant
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theoretical analysis because a bifurcation exists there (real parts of two complex

conjugate eigenvalues cross from positive to negative values in the direction of increasing

D).
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Figure 2.1 Schematic Diagram of convective film diffusion flame
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Figure 2.2 Qualitative plot of 1-D non-premixed flame Temperature vs

Damkohler number. Three distinct branches are traditionally represented.

The upper branch (above A) represents steady burning, the middle branch is

unstable, and the lower branch corresponds to the ignition branch. In actual

plots the lower turn appears at values of D many orders of magnitude higher

than D at the upper turn.
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Figure 2.3. The response curve in the vicinity of the upper turning point. Here Le=1.0,

Pe=0.0, Ta=4, ¢=1.0.
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To=0.05. Here 62 has multiplicity 2 and is independent of D. Note that 0'1

is positive on the middle branch and negative on the upper branch (dotted

curve).
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Figure 2.5. 1<Le<Lec. Real eigenvalues 0'1 and 62 merge at B to form a

complex conjugate pair until they split again at E. B moves up and E

moves to the right as Le is increased. Here, Pe=0.0, Le=l.01, Ta=4.0,

To=0.05.
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Figure 2.6. Leading two eigenvalues for Le=2.0 Ta=4.0, Pe=0, To=0.05.

Upper branch instabilities are seen up to point C’. Oscillations are

unstable between B and C’ and stable beyond C’. Pure perturbation

growth exists between A and B.

32



 

 

 

4 _

.

01
2 _

-

Re(6)

0 ~ 2"

-
2 .

.................................. 02 ‘
Kr

6
.4-A

3
d

-8 _

........ - ' ......

.  
 

1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.8 1.81

x106
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Figure 2.8. The thermal-diffusive properties of the reactants plays a

significant role in determining the flamelet size as well as the location of the

onset of instability. Here Pe=0.5, Ta=5.0, To=0.05.
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Figure 2.9. The critical wave number for Le=1 for solutions along the unstable

middle branch are relatively unaffected by the crossflow velocity. However,

the increased cross flow results in a smaller flamelet after flame front breakup.

Le=1, Ta=5.0, To=0.05.
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Figure 2.11 After the flame breaks up, the flame pockets that form are

dynamic in nature. The flame pockets do not behave uniformly in that

different sizes are observed. (colors inverted)
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TWO-DIMENSIONAL DIFFUSION FLAME STABILITY

3.1 Chapter Nomenclature

D — Damkohler number

K — Wave number

Le — Lewis number

Pe — Peclet number

T — Non-dimensional temperature

t — Non-dimensional time

w - Non-dimensional reactivity = Dyoypexp(-Tfl)

x,y - Non-dimensional spatial coordinates

Y - Species mass fraction

y - Non-dimensional species mass fraction

Greek

(1) - Global stoichiometric coefficient

2. - Wavelength

Subscripts

a - Activation reference

c,crit - Critical value

F - Fuel

f — Flame

0 — Oxidizer

o - Reference
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3.2 Introduction

The one-dimensional flame examined in Chapter 2 is a highly idealized model.

However, with only one-dimension there is no possibility of the flame interacting with a

nearby surface; and hence, some robustness may be lost. As noted in Chapter 2, there has

been a large amount of work focused on various configurations of one-dimensional

flames. There has not been, to the knowledge of the author, any work done involving

multiple dimension, stability analysis to help support the validity of the one-dimensional

model. Some work, in similar fashion to [1], states to be a multidimensional analysis

solely because a dimension perpendicular to the base state is added, as in Chapter 2, to

identify critical wave numbers even though the base state used is still one dimensional.

Some interesting work has been done by Lingens et al. [2] in which experimental data is

used to model the flow field of a bumer-attached flame. The stability analysis that is

carried out is done using a one-dimensional model in a radial coordinate but is applied at

various locations above the burner, so in some sense the work took on a

multidimensionality. Some numerical work has been done with two-dimensional models

to identify cellular flames [3] for Le<1, or flame oscillations [4] for Le>l.

The question this chapter seeks to address is, “How does the flame behavior

change with the addition of a second dimension?” Since real flames interact with

surfaces it is important to know if the one-dimensional models are missing some

important characteristics of this interaction.

3.3 Model

The governing equations are similar to those found in the previous chapter, with

the exception of a second coordinate.
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ar P or a’T azr
—a—t—+ e—a-;;=—a—x—2—+—a;§-+W (3.1.3)

aYi aYi BZYi BZYI -
LeE+PeLe 8x = 8x2 + ayz —w,1=O,F. (3.1.b)
 

The equations are coupled through the non-linear reaction term, w=Dyoypexp(-T,fl‘). A

single Lewis number is employed for both reactants. Figure 3.1 offers a graphical

representation of the model.

The boundary conditions for equations (3.1) are

T=To, yrs-=0, yo=1, at x = -1 and T=To, yp=1, yo=0, at x = +1. (3.2.a)

30)
T=To, yp=0, yo=0, at y = 0 and 3;— = 0 at y = 3 (3.2.b)

It is assumed that the far field flame, in the “in flame” coordinate, does not change with y

and the flame is essentially one dimensional at this point. This assumption would be

more valid if the “in-flame” boundary could be moved farther away from the “cold”

lower wall, but computational limitations restrict the number of nodes available.

Furthermore, we assume, for simplicity, that the fuel and oxidizer inflow temperatures

are both equal to a reference temperature, To<<Tf.

The present model offers a simplistic representation of a flarne-spread

configuration with blowing oxidizer and diffusing fuel. Additionally, the flame develops

a “flame-edge” [3,5], which will offer generally qualitative characteristics of flame-edge

behavior. It is possible to obtain a representative model for slot burners by changing the

convective term to model flowing reactants in the in flame coordinate (y-direction), this

configuration produces another edge flame namely a triple-flame structure (see Chapter

5). The present model, however, is closest to the one-dimensional model studied in
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Chapter 2 with essentially the addition of a cold inert surface to add the multi-

dimensionality.

3.4 Stability analysis

The stability analysis conducted is similar to that performed in chapter 2 and will

not be expounded on here. There are, however, some limitations that arise when

examining a two-dimensional base state. Namely, the eigenvalue calculations must be

done over the whole domain, which makes the calculation very computationally

inefficient. For this reason a relatively coarse grid was needed and, hence, some loss of

accuracy near the static turning point (see figure 2.2 point A) is unavoidable. A finite

difference algorithm was used employing a 92 x 92 uniformly spaced mesh. The

eigenvalues were obtained by employing standard Lapack subroutines designed for large

banded matrices. The coarse nature of the grid does not produce smooth, continuous

eigenvalue curves, as does the one—dimensional model. However, it is believed that the

results represent a qualitative picture of the flame behavior near the upper turning point

of the “S” curve and will allow conclusions to be drawn about the usefulness of a one-

dimensional model.

3.4.1 Eigenvalue results Le S. 1

As discussed in the previous chapter, the governing equations can be reduced to a

non-linear equation and two “heat equations”, which produce a constant eigenvalue of

multiplicity two when Le=1. Because of this, the eigenvalue behavior for unity Le is not

expected to vary greatly from the one-dimensional model. This is in fact the case as can

be seen in figure 3.2. Here 01 represents the leading eigenvalue which is negative along

the entire upper branch and turns positive (indicating instability) at the turning point. The
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second two eigenvalues are independent of D and are always negative. This is

qualitatively the same picture as the one-dimensional model (see figure 2.3). It is seen

that the required coarse grid does not produce smooth curves in the vicinity of the upper

turning point on the “S” curve. The solutions along the middle branch are difficult to

obtain, and produce “ragged” curves.

The picture becomes slightly more complicated when Le is reduced below unity.

As shown in the previous chapter (figure 2.6) there existed, among the three leading

eigenvalues, only one constant eigenvalue. It is the behavior of what is labeled the third

eigenvalue, 63, that changes as Le is deviated from unity. In the one-dimensional model

63 departed from the constant value, 62, by bending lower as the solution traveled along

the upper branch and asymptotically approached the constant 62 as the middle branch

was traversed. This behavior is also seen when Le is slightly less than unity in the two-

dimensional model, see figure 3.3. The first qualitative difference appears for the two-

dimensional model when Le is further reduced. If the Lewis number is too small 63 will

not asymptotically approach 62 but will increase past this value as the middle branch is

traversed, see figure 3.4. Although this difference does not change the physical behavior

of the system, which still exhibits stable solutions along the entire upper branch, and

unstable solutions along the middle branch with no oscillations present, one begins to see

the effect of the flame edge and the cold boundary.

As noted in the previous chapter when Le S 1 the instability manifests itself in the

form of cellular flames. The relative size of these “flamelets” is determined in part by the

critical wave number for which the “new” leading eigenvalues become zero. This is

discussed in detail in chapter 2. For the one-dimensional model it was found that Km.
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was not greatly affected by Le or Pe. This is seen also for the two-dimensional model as

seen in figure 3.5. Here various Le and Pe configurations are presented along with the

one-dimensional result for Le=1, Pe=0, and Ta=4.0. It is clear that the two-dimensional

model produces critical wave numbers that are of the same order of magnitude as

predicted with the one-dimensional model. Figure 3.5 also indicates that the critical

wave number is only slightly affected by thermal-diffusive or hydrodynamic

considerations.

It is therefore concluded, based on the above results, that for Le S l, the one-

dimensional model can accurately predict both the flame behavior, as described by the

eigenvalue spectra, and the relative order of magnitude of the cellular flame instability.

3.4.2 Eigenvalue Results Le > 1

In the previous section it was shown that flame instabilities for Le < 1 result in

cellular flames. When Le > 1 cellular flames are not observed, rather flame oscillations

can occur that either decay to stable burning or oscillations that continue to grow

resulting in flame quenching. This behavior was laid out in Chapter 2 for the one-

dimensional model. Here it was seen that if Le is large enough the upper branch

solutions exhibited pure perturbation growth or oscillation growth or decay. This

behavior is described by the eigenvalue response examined below for the two-

dimensional model. Note that in Chapter 2 the analysis was restricted to low Pe because

the eigenvalue behavior became more complicated and wasn’t the focus of the work. In

this chapter, the restriction for low Pe is used because of the coarse nature of the grid

needed to perform these calculations.



Small deviations from Le = 1 are first studied and are Shown in figure 3.6. Small

deviations from unity Le, as well as all the cases presented below, were discussed in

detail in chapter 2 (see figure 2.4) and will not be expounded here again. If one compares

the nature of eigenvalue behavior for figure 3.6 to that of figure 2.4, many similarities

arise. Primarily, the entire upper branch is stable with decaying oscillations present over

a small portion. Note figure 3.6 does not extend as far as figure 2.4 along the upper

branch, but the behavior is similar. That is, the oscillations will persist until the complex

conjugate pair 612 crosses 63 and 63 becomes the leading eigenvalue.

There exists a critical value of Le in the one-dimensional model for which larger

values produce upper branch instabilities. This is the case also for the edge-flame model.

Figure 3.7 shows the upper branch results for Le = 2.0 and as can be seen the complex

conjugate pair extends into the positive region and then breaks up. This behavior

indicates that not only do unstable oscillations exist but also pure perturbation growth.

This is the same behavior seen in figure 2.5. Both figure 3.6 and 3.7 represent eigenvalue

responses for the case of zero convection. It was seen that the characteristics of the flame

behavior didn’t change appreciably with changes in Pe when Le < 1. To identify any

effect of Fe for Le >1 the eigenvalue behavior was obtained for Le = 1.2 with Pe=0.0 and

Pe=0.5. These results appear in figure 3.8. It is seen that the changes in Pe do not alter

the behavior of the eigenvalues, with the exception that the curve is shifted towards

higher D. This is consistent with the results seen for Le < 1.

3.5 Conclusions

A two-dimensional model of an edge-flame was examined to identify the validity

of a simpler one-dimensional model. This work examined both the sub-unity Lewis
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number regime whose instability is exhibited as cellular flame behavior and the Le > 1

regime which has the characteristic of producing oscillatory behavior. It was

demonstrated that both of these regimes behave similarly to the one-dimensional model.

Although a more exacting analysis, that is a more refined mesh, will be needed to more

accurately predict the eigenvalue response. This will have to wait until more powerful

computers are available. However, this analysis should provide strong support to all the

previous, and future, work done with one-dimensional models. It is clear the basic

characteristics and qualitative behavior of flames is predicted with only the barest of

terms and dimensions.
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ONE-DIMENSIONAL LAMINAR PREMIXED FLAME

ANNIHILATION

4.1 Chapter Nomenclature

Greek

(1

Pre-exponential factor

Specific heat

Mass diffusivity of species i

Activation energy

Excess enthalpy, H = t + y —1

Integral; see equation (4.19)

Characteristic length

Lewis number, Le = NpCpD = org/D]:u

Reaction order

Chemical heat release

Non-dimensional reaction rate, R = Qy"exp{—B(l-t)/[1-or(l-t)]}

Time

Flow velocity

Flow direction (physical spatial coordinate)

Reduced mass fraction of limiting reactant, y = Yp/Yt:u

Mass fraction of limiting reactant

X

Mass coordinate, z = jpdx

—OO

Enthalpy ratio, or = 1 - Tu/Tb (also (1,. = hu/puCp)
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Zeldovich number, B = or(E/RuTb)

8 Deviation of Le from unity, 8 = [e — 1

1] Stretched mass fraction, 11 = By

1 Thermal Conductivity

v Stoichiometric coefficient

p Density

6 Non-dimensional time, 6 = t/tu

t Non-dimensional temperature, 1: = (T-Tu)/(Tf-Tu)

0) Reaction rate (units mass/vol-s)

Q Damkohler number

E Transformed spatial mass coordinate

C Normalized mass coordinate, C = z/zu

Subscripts

b Burned

f Flame or reaction zone

F Fuel — limiting reactant

i Species

m Mass

t Thermal

u Unbumed

Superscripts

a:
At location of extremal H, i.e., where dH/dC = 0
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4.2 Introduction

Recent advances in the speed and accuracy of computational methods have made

possible the numerical simulation of detailed flow and combustion problems involving

interacting flames, complicated chemistry, turbulence, and, real property variations. A

particularly difficult feature of highly turbulent flames is the destruction and subsequent

healing of flame fronts; a fraction of the flame surface per unit volume is, in all

likelihood, continually changing through this complicated process. And though some

aspects of flame destruction have been examined, like destruction through stretching, for

instance [1,2], the difficult problem of mutual flame annihilation is virtually untouched.

Our goal in this study is to examine a simplified model for the mutual annihilation

of two identical, oppositely propagating premixed laminar flames. Our intent is to

develop a sound understanding so that the appearance of such flames in larger, complex

calculations as a sub-problem does not cause unnecessary hardship in their interpretation

and eventual use.

The direct inspiration for this study is the previous work of Echekki et al. [3] on

mutual premixed flame annihilation. This work reviews the relevant, and quite scant,

previous research and provides a rather extensive DNS examination with detailed

chemistry. One of the main results was a rather clear demonstration that the dominant

simple free flame balance between reaction and diffusion is completely upended during

annihilation. Also, it was found that the light, fast hydrogen containing species had

begun a mass diffusivity- based interaction before the thermal interaction took place: in

other words, the Lewis number of the reactant was important. In particular, they

determined that the flame acceleration during the final stage of the interaction is largely
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produced by the diffusion of the hydrogen molecule (H2) into the reaction zone. This

alters the balance between reaction and diffusion in the reaction zone, and even for a

stoichiometric CH4-air flame with a Lewis number of unity based on the deficient

reactant, accelerations to as great as a factor of 20 over the unperturbed flame speeds

were obtained. We shall see that for Lewis numbers very close to unity these sorts of

accelerations do not occur in our simple model; in order to obtain such behaviors a model

employing at least two-step chemistry is needed, with one species being light and highly

diffusive. Another study with great relevance to our work is the recent study of Chen and

Sohrab [4] on substantially the same problem. Their study, which is purely numerical,

focuses on fundamental features of the interaction, using a chemical kinetic model that

simulates real flame situations (asymptotically reduced four step methane chemistry).

Influences of Lewis number were studied and flame accelerations and locally

homogeneous explosions were observed. Accelerations to flame speeds seven times

greater than free flame values were obtained. The general behaviors we shall describe

here were explained on the basis of numerical, not analytical, calculations.

There has also been much research on the related problem of premixed flame

destruction by cold walls [5-8]. This research is driven mostly by the study of

combustion and pollutant formulation in engine cylinders, wherein the quenching layer

and the various crevices are presumed to generate the bulk of the unburned hydrocarbon

emissions. The early work was simplified, qualitative and inconclusive because the

models were not examined thoroughly [5,6]. Subsequent work approached the opposite

extreme: every possible ingredient was include in the numerical simulations, like real

chemistry, thermal properties, etc.[7]. Still, these models, by their complexity, were
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exceedingly unwieldy and the problem remained unresolved: the origins of the

hydrocarbons from the quenching layer still could not be explained. Later work [8]

emphasized the thorough examination of simple models. These have the virtue of

producing describability and understanding without interjecting cluttered detail.

Nevertheless, some kind of realistic chemistry is needed to make further advances with

this approach.

The specific aim of this study is to understand and describe the details of the

interaction and ultimate annihilation of two oppositely directed planar, laminar premixed

flames. We intend both to shed light on the extinction and to produce correlations that

can describe the dominant features of the extinction. We limit ourselves to simple one

step chemistry and simple property variations (constant pk, pzDi, etc.). A good

description of the equations and methodology of our work is given in the article of Peters

[9], where he derives and explains at length the model we shall use here.

In this article we first derive the conservation equations and discuss their

limitations (sec 2.). In sec. 3 we describe the various regimes of burning, with special

emphasis on the final and most dramatic regime, the “strong interaction” stage or

“homogenous explosion” stage [4]. In sec. 4 we present our numerical results. Finally, in

sec. 5 we examine the results of sec. 4 in light of the theoretical work of sec. 3. Possible

extensions and comparisons with the more detailed models of previous investigations are

made in sec. 5.

4.3 The Model

We consider a perfect gas undergoing a one-step irreversible Arrhenius reaction at

the flame front. The limiting component is denoted as Yp, in which the reaction is of
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arbitrary order, n. The transient one-dimensional equations for conservation of mass,

limiting species, and energy are respectively

I>t+(1)U)x =0. (4.1a)

pc:,.('rt + uTx) = (213,),( + qto, (4.15)

p(YFl ‘1" UYFX ) = (pDFYFX )X — VFO) . (4.1C)

We assume that pDz, p71. and Cp are constant and we transform to a mass-based

X

coordinate, z = I pdx where the symbol -oo denotes a distant, but not necessarily

infinitely far, boundary. We define the non-dimensional variables C=zlzu (zu=p,,L.,), t=(T-

Tu)/(Tb-Tu), y=YplYpu, 6=t/tu (t=Lu2/01.,), and we put VF = 1 without loss of generality, and

define the flame temperature as Tb=Tu + quu/Cp. We note that the characteristic length

L0 is carried over from the steady flow propagation problem in which 3(0)/ at = 0 in the

above equations, although an important clarification must be made. In the steady

problem the characteristic length contains the eigenvalue mass burning rate m=puSL

which must be derived as part of the solution. In our case we are concerned only with the

unsteady evolution and an explicit eigenvalue calculation is not necessary. The non-

dimensional equations reduce to

2

i=3—3+ (4.2a)
ao agz

3y lazy_=___R 4.2b

ao Leag2 ( )

where

R =Qy"exp[—B(l—T)/{l-Ot(1—T)}] (4.3a)
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-E

Q = AYFueR_Tb (4.35)

B = (E/R..T.,)ot (4.30)

or = 1-Tu/Tb (43d)

Le = (Xu/Dfu (4.3e)

We note from equations (2) that the convective term has disappeared in the mass-

coordinate formulation.

The initial and boundary conditions for equations (2) are now specified. At the

symmetry line, §=0, the gradients of species and temperature vanish,

8y 8‘:
—=—=0 at =0 4.4

In the far field the chemical reaction has run to undisturbed completion with zero

chemical potential. Hence,

y=0, t=1 at 5: co. (4.5)

Of course, in our numerical solution, we cannot impose conditions (4.5) at C: co; we must

choose a large downstream value instead. Our initial condition amounts to specifying the

upstream distribution of species and temperature at the instant numerical integration

begins. These distributions are derived in the following section. We note that the

upstream distribution is somewhat idealized, since it obtained from the solution of the

steady problem without the reaction term. This “preheat zone” solution gives y=0,1:=1 at

the flame, resulting in a discontinuous gradient across the flame, or better, flame sheet. A

smoothing of this postulated distribution occurs in the first few instants of the numerical

integration so the y and 1: profiles soon resemble their undisturbed free stream values.

61



We observe that most of our discussion will center on the first order reaction, n=l.

For this case, the asymptotic estimate for the steady-state eigenvalue is [9],

 

2 —Q:_[i__[1+2(3.ot 2.344+Le) —2
2L6 B +0(B )]. (4.6a)

We shall assign to Q a magnitude consistent with this estimate. The flame velocity is

proportional to (I’m, giving

l/2

{ 2(3a-2.344+Le)]“2
1+ 13

 

 

suggesting that the flame speed increases with Le approximately as Le”2 for Le of the

order of unity and large B. We shall use this correlation to test our numerical integrations

in section 4.5.

4.4 Theoretical Discussion1

In this section we shall discuss the theoretical basis for some of the behaviors we

observe in the numerical solutions of section 4.5. In section 4.4.1, we discuss the

influence of Le ¢1on the expected flame behavior. In section 4.4.2, we discuss the

expected flame behavior during annihilation.

4.4.1 The Le =1 Asymmetry

We begin our discussion of the influences of Le =1, which we shall show are

profound, by examining the combination H=t+y-1, called the excess enthalpy function,

through the combination of equations (2). The physical significance of H is that it

essentially defines the global thermal plus chemical enthalpy of the gas, normalized so

 

‘ The majority of the theoretical derivations in this section is the work of the author’s major professor Dr.

I.S. Wichman, and is included in this document for sake of completeness.
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that an unchanged field produces H=0 everywhere. From the equations and boundary

conditions given below, a number of conservation properties can be easily derived (e.g.,

integrate over the spatial coordinate Q from C=O to C: «>0 , for instance). We write the

equations and boundary conditions as

Ho = HQC +(fi--1)yCC , (4.7a)

Hg = 0 at C= 0 (4.75)

H=0 at C: 00 (4.7c)

H = 0 initially . (4.7d)

The initial condition (4.7d) was obtained by requiring y=l, 1:=0 everywhere in the gas

prior to igniting the flame. We note that in equation (4.7a) the variables H and y are

obviously interdependent; therefore, the third term cannot be considered as a source or

sink term in the standard sense. However, if the third term can be shown to take a certain

Sign, then it can indeed be considered as a source or sink term and the solutions for H can

be correspondingly interpreted.

When Le=1, the source term vanishes in the differential equation, so that H=0 is

the solution everywhere for all time: there is no excess or defect of enthalpy. When

Le at 1, however, the influences of reactant diffusion produce an upset of the H field.

This upset is modified by the pre-factor Le’l-l. When we let Le=1-+8, where 5 can be

positive, zero, or negative we obtain for small 8,

Le<l: LL—1=|5|(1+|5|)+ oqol3), (4.8a)
e

Le>l: fi- — 1 = —|5|(1—|5|)+ O(|6|3) , (4.8b)
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indicating that the Le<1 case is more sensitive to a fixed change of magnitude I61 than the

Le>l case. In the extreme case Le—>0, the amplification Le'l-l becomes infinite,

whereas on the other side the limit Le —-> 00 produces merely Le'l-1—>-1. We conclude

that there is a great asymmetry between Le<l and Le>1, the former being a greatly

amplified influence, particularly as Le approaches zero.

To complicate matters further, we observe that y;; in equation (4.7a) changes Sign

at the inflection point. Upstream, ygg is negative, downstream it is positive. Hence, for

Le<1, the source term is negative upstream of the inflection point, and positive

downstream of the inflection point: we expect H<0 in front of the flame. When Le>l, we

correspondingly expect a region of enthalpy excess H>0 to precede the flame front.

We shall understand the unsteady annihilation process much more thoroughly

when we examine the enthalpy function for the steady flame. The governing equation is

equation (4.7a) with the transient term replaced by Hg. Integration subject to upstream

bounded constraints and vanishing downstream gradients gives, after a straightforward

calculation,

_ I ”Y(S) -(s-i;)
H — 1-—— l- — d 4.9(C) ( I )y(C)[ iy(§)e 8] ( )

which carries the sign of l-Le’l since the factor in square brackets is always greater than

or equal to zero. For Le<1, HS 0 everywhere; for Le>1, H20 everywhere. As the

simplest possible test case we specify y(§) as the flame sheet solution given by

y =1—exp(Le§) upstream of C=0 and y=0 downstream of §=0. Substitution into

equation (4.9) yields



H(§)=eC—eLeC, §<0 (4.10a)

H(§)=0, §>0 (4.10b)

The upstream vicinity of the flame sheet is a region of enthalpy defect when Le<1,

enthalpy excess when Le>1, whereas the downstream side of the flame is a zero-excess

enthalpy zone throughout. The gradient of H is discontinuous across the origin, with

values l-Le at §=0' and zero at (50+. This is clearly unphysical and should be resolved

easily by a standard asymptotic analysis of the flame zone. Nevertheless, we expect that

the upstream solutions for H will be extremely accurate and, for this reason, we press

ahead with our examination of the steady flame sheet.

Function H attains a local upstream extremum at the location C* where dH/dC

vanishes. From equation (4.10) we find

1
 *=— lnLe 4.11

C Le-l ( ) ( )

When Le is close to unity we let Le=1+5 to find

Le<1: §*=— iii (4.12a)

|5|
Le>l: §*=-1+—2— (4.125)

Consequently, when Le<1 the upstream influence of non-zero H extends further, for a

given increment I5] , than when Le>1. A plot of -§* versus Le is given in figure 4.1. We

obtain the extremal of H(§) from equation (4.10) by substituting for C from euqation

(4.11), viz.,

Le

-(——)
H*=Le Le-l x(Le—l) (4.13)
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The curve of H* versus Le is also shown in figure 4.1. We note that H*(Le)=-H*(l/Le),

so that H* is anti-symmetric about Le=1 under the transformation Le-—>Le". In the

vicinity of Le=1 we let Le=1+8 in equation(4. 13) to obtain.

H*(1+8) z 6(1+5)“(1+8)"’8 (4.14)

As 8 becomes small the factor (1+8)'”8 approaches e‘l. Hence,

Le<1: H*(1—|8|)=:|—5i(l+A:—l) (4.15a)

e

Le>l: wanting-(pg) (4.155)

e

For a given lo] , the trough of H for values of Le smaller than 1 is deeper than the hill of H

is high when Le is larger than 1.

The implications of this simplified steady flame analysis are that both the

streamwise extent of the enthalpy change, and the magnitude of the change itself will be

greater for an incremental decrease of Le to 1-8 than for an incremental increase to 1+8.

For our flame annihilation problem, the vicinity of the symmetry plane should be much

better informed of the arrival of a Le<1 flame than a Le>1 flame. For this reason, we

expect gradual and undramatic extinctions when Le<1, but sharp, well defined and

dramatic extinctions when Le>1.

4.4.2 Flame Annihilation Regimes

There are essentially three regimes of flame interaction, or non-interaction as the

case may be. One of these is the strong interaction when two premixed flames (PF) are

actively annihilating one another. A second is the weak interaction where thermo-

diffusive contact has just recently begun. The third, and final, regime is the free flame
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stage wherein the interaction is negligible and the two PFs behave as though their

separation were infinite.

We shall analyze these separate regimes by transforming equations (4.2) into a

more suitable coordinate system, namely one in which the peak of the reactivity R is

always located at a fixed position, 5:1. The transformation is I';=§/Cf, which yields

 

1:6 — (gig-)1: = ('33)ng 'I' R (4.1621)

Cf Ct

Cr: 1

yo Cr Ye Leg? Yer;

where {I = dCf/do is the propagation velocity, which is negative because Cf decreases as

time increases. The reactivity peak, Rm”, is located at §=1. As the annihilation process

proceeds from start to finish, the gas between the symmetry plane at =0 and the

reactivity maximum at I;=1 undergoes great changes. At first, in the free flame stage, the

temperature and species mass fraction are essentially undisturbed because R occupies an

infinitesimal volume fraction of the upstream gas. Here we use 12:0, y=1 as the respective

distributions. In the weak interaction stage, the flame is close enough to the symmetry

plane that thermodiffusive communication begins to alter the undisturbed gas. In the

final stage of strong interaction, a significant segment of the reactivity has entered the

upstream gas; here the reaction term in equations (4.16) can no longer be ignored.

We begin by analyzing the strong interaction. We postulate that the spatial

distribution of R has substantially eliminated the gradients t§,y§ and their derivatives

T§§,y§§ leaving the lowest order balance between transient and reaction terms, as in

homogeneous thermal explosions. This is reasonable because the upstream preheating,
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confined to a finite pre-flame zone, eventually heats the gas to a nearly uniform condition,

at least when the Lewis number is larger than one and the thermal layer is thicker than the

mass diffusion layer. In the latter case of Le<1 the two flames communicate via mass

diffusivity which, in effect, chokes the approaching flames by rapidly depriving them of

the needed reactant. In either case, the relevant equations are to = R , ya = -R , which

can be combined to give (7' + y)a = 0. This integrates to t+y=1+H=constant, where the

number H may be positive (Le>1 or excess enthalpy case) or negative (Le<1 or enthalpy

defect case). We substitute t=1+H—y into the equation yo=-R to obtain, in the limit

,6 —) oo , the equation (recall we use n=l presently)

yo = -r‘2ye‘By => no = 42116“ = —r‘2R(n), (4.17)

where S2 = Qexp(Hfl) and R(n)=nexp(-n) is the lowest order asymptotic representation

of the reaction rate, with n=By being the stretched species mass fraction. In the

isenthalpic case we have H=0. Qualitatively, the difference between the isenthalpic case

and the non-isenthalpic cases can be explained from the ratio

(n6)isentropic = -Qne'" ’C—HB

. _ — (4.18)

(n6)non—isentropic -QT|6 1]

 

When H is positive, the rate of change of n, in the non-isentropic case, is greater; when H

is negative, the isentropic rate of change is greater. Equation (15) integrates to

,. 11o ..

o=o“. i R(x)"dx arr-11mm) (4.19)

Ti

where no is the initial value of n. Integral I is always positive. Consequently equation

(4.19) predicts a monotonic decay of n that is hastened when Oincreases. This, of
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course, is the excess enthalpy case, H>0. When Odecreases, the decay of y is slowed.

We observe that these changes in the rate of decay of r] are extremely sensitive to small

changes in the non-isenthalpicity, H, since E2 is proportional to exp(HB) and B is large.

Once again, small changes in the excess enthalpy easily produce O(1) changes in the

reactant consumption rate.

In the weak interaction stage the reaction term R is essentially negligible in the

vicinity of the symmetry plane §<<O(1), whereby

 

To - (SC—Ur: =(i2)13§§ (4.208)

Cr Ct

_ 551 = 1 4205yo ( f )Yi; (11%,?ng ( - )

When properly normalized, i.e. with 6~O(§22§2), the transient and diffusive terms are of

the order unity and the convective term is of the order {I {f 52, which for small E is

negligible. We are left with

g(6)‘to = tfig (4.21a)

~ 1 421bg(G)yo ~EY§§ ( . )

where g(6)=Cf2. The initial and boundary conditions for equations (4.21) are zero

gradients at i=0, burned reactant at §=oo , and given initial distributions when 6:0. The

decrease of g(6) with increasing 6 will raise the effective thermal diffusivity g(6)’l and

the effective mass diffusivity (Leg(6))", thereby accelerating the rate of increase of t and

the decrease of y near the centerline. Depending on whether Le is greater than or smaller
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than unity the change in one will outweigh the other: when Le<1 the y field should begin

its’ change before the 1 field; vice-versa for Le>1.

We note that a discussion based on length scales would determine only that the

strong and weak interactions occur over the same spatial location. In the former case,

spatial gradients of t and y had become vanishingly small; in the latter case, the reaction

R was negligibly small. The spatial scales, therefore, are the same as for the ordinary

premixed flames: the standard conduction length based on flame speed; and the reaction-

zone scale, which is the former divided by B. We observe that in this problem, as

formulated, there is no characteristic physical length scale. Hence, the preceding length

scales are of a secondary, or derivative, kind.

In the free stream stage we examine equations (4.16). We begin by integrating from §=0

to §=oo to find

7844+ (5.4:

Ci =‘Cr 0 (4.22)
 

Iydé

0

Since the flame is, in real terms, infinitely distant from the symmetry axis at §=0, we

make negligible error by asserting that R=0 between §=0 and §=1. The integration of

equations (4.16), with R=0, between §=0 and §=1 leads directly to

1 . l

CigYodéi’CrCigydfi: y§(l) (423)

which, by comparison to equation (4.22) yields y§(1)= —§% ]Rd§.

o
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Thus, equation (4.22) with the upper limits changed from 00 to 1 becomes

1

I-Yg§(1)+C%(I)YOd§I

 C, = - (4.24)
1

Criydg
0

1

But Iyd§=l and y;(1)=xf dy/dx ; also since y=l—exp(x—xf) in the upstream

0

region, we obtain finally -y§(1)=x{. These results, coupled with the observation

1

[yodfi = 0 , yield from equation (4.24) the simple result

0

C, =—1 (4.25)

Since fl = (tu/zu)dz/dt = (tup(Xf)/Zu)de/dt = -(p(xf)/pu)(tu/Lu)SL, this constraint requires

that the non-dimensionalization values tn, L,l be chosen so that their ratio is given by

t./I.=p(xi)st/p. .

There are a sufficient number of degrees of freedom to allow this condition to be

fulfilled. Hence with a suitable normalization of the characteristic length and time scales,

the flame front propagates with unit negatively directed velocity. This undisturbed

propagation is altered once the two PFs begin their thermo-diffusive interaction.

One important observation has not yet been mentioned, namely the absence in our

problem of a single characteristic physical length. Our flame is laminar, which alleviates

the need for Taylor, Kolmogrov, etc. length scales. Indeed, the only length scales are

derived scales, like the characteristic thermal diffusion length (1...), mass diffusion length

(14,.) and the reaction zone thickness (14‘). The former two are combined in the Lewis

number, Le=14/Lng the latter appears only when the reaction zone is subjected to a careful
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asymptotic analysis, where we find Lr-O(L./B). Our analysis suggests the two PFs are

aware of one another when their separation is O(L,) or 0%), depending on whether Le is

greater than or less than 1. Subsequently, the extinction is determined by the amount 8 of

excess enthalpy in the region between the flames. From Eq.(16) we obtain

o = 5‘2" 1n(19-) + (no -11) +—1——(n§ —n2) +... z (“2“ 1n(-"£) +... (4.26)
11 2-2! 1]

since

xes x2

J—ds=ln(x)+x+—+.... (4.27)

0 s 2-2!

When n/no~0(10). we see that o is still 0(62'l ), indicating that the time to extinction is

governed by parameter S2 , which is proportional to exp(HB). For large B, the time to

ignition can decrease exponentially, for positive H. We suppose that the rate of change of

H is much smaller than the extinction rate, hence H is expected to be nearly constant.

When Le>1 and H is positive, the elapsed time between the substantially undisturbed

initial state and complete extinction is

o z 0(0“) = wig-96”“) (4.28)

which can become very small as B increases. The constant of proportionality should be

understood as a characteristic magnitude of the square brackets in equation (4.26); this

requires choosing the initial state as represented by the rescaled mass fraction 110 and the

initial to final state ratio, no/n. Our subsequent numerical examination will discuss the

choice of these “parameters”.
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The influence of non-unity reaction order is easily assessed. When mt 1, the

equivalents of Eq.(lS) in the strong interaction stage became ya = —Oy"e’”’ and

770 = —(O,B"")n"e‘”. Thus, (2 in our explosion equations (4.26) and (4.28) is replaced

by (2 "". We obtain, for 6, equation (4.26) with B2 replaced by 03'". Hence when n<1,

the extinction is made more abrupt by the algebraic factor B’“'"’, and when n>1 the

extinction is prolonged by the algebraic factor B“.

Some additional speculations on the nature of the annihilation sequence are

possible, especially when Le>1. Here we observe that prior to the strong interaction the

spatial distribution of R resembles a strongly peaked bell curve. As the centerline is

approached, the upstream segment of the bell begins to rise. During the weak interaction,

the qualitative nature of the bell remains unchanged: one maximum, two local minirna,

and two inflection points. During the strong interaction, a moment arrives when the

reactivity upstream of the previous maximum (at the top of the bell) exceeds the bell-top

maximum, meaning the upstream inflection point is lost. When this occurs, a distinct

qualitative change has occurred and mutual annihilation is now assured.

4.5 Numerical Results

The primary emphasis of the numerical work is directed towards discerning the Lewis

number effects on the flame propagation and annihilation. Cases of Lewis numbers

greater and less than unity, as well as equal to unity, were studied to find the effects on

the reaction term profiles and how it relates to the diffusive and convective terms, the

temperature and species profiles, and the excess enthalpy. Furthermore, relationships
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between the numerical flame speed, as well as the annihilation time, and the Lewis

number were derived and compared to theoretical results.

4.5.1 Numerical Technique

Given the non-linear nature of equations (4.2 and 4.3) and the coupling between

the energy and species equations through the reaction term, the solution of these

equations is very critical. The numerical technique used was a finite difference model

which incorporated a second order correct central differencing scheme. The non-linear

reaction term was handled by performing a quasi-linearization around the previous

iteration. This involved iterating at each time step until the new values of t and y

converged with respect to an arbitrary small positive value. This allowed larger time

steps to be taken without sacrificing stability or numerical accuracy. Furthermore, the

governing equations were solved simultaneously using Gaussian elimination and back

substitution. To test the code the elemental lengths was reduced by one half with

negligible change in the results. Hence, we are confident that the solution method used

produces accurate results.

4.5.2 The Free Stream

To examine the free stream propagation, the three terms of equation (4.2a) were

plotted along with the excess enthalpy for three cases of Lewis number equal to 1, 2, and

0.8. These plots appear as figures 4.2, 4.3, and 4.4. As can be seen the free stream term

balances look very similar. For this reason it is concluded that, although the magnitudes

of the terms are different, the primary mechanisms for flame propagation, i.e. a reactive-

diffusive balance, are unaffected by the Lewis number. The excess enthalpy, however,

has a different profile for all three cases. After the flame, the excess enthalpy is zero for
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all three cases, but does not follow the same trend before the flame. For a Lewis number

of unity H remains zero before the flame, but for a Lewis number greater than 1 the

excess enthalpy becomes positive, whereas for Lewis less than 1, H is negative. These

results support the theoretical conclusions drawn in section 4.4. We also note that the

premixed flame enthalpy defect region is larger for Le<1 than the enthalpy excess region

is for Le>1, in agreement with predictions.

To study the effect of diffusion and pro-heating, i.e. Lewis number effects, species

and temperature profiles were plotted along with the reaction term for Lewis numbers of

2 and 0.8. These appear as figures 4.5 and 4.6. Comparing figures 4.5 and 4.6, it is

evident that the species profiles are very different before the flame. For Lewis number of

2 there is very little diffusion towards the flame, whereas for Lewis number of 0.8, there

is a significant reduction of species upstream of the flame, indicating that the upstream

flame region is aware of the approaching flame front. This supports the results that the

excess enthalpy for Lewis number greater than 1 is positive and for Lewis number less

than one H is negative.

The final area of interest in the free stream is the laminar flame speed. As

discussed in section 4.4, the flame propagation speed should have a nominally square root

power dependence on the Lewis number (see the final equation of section 4.3). To

examine how well the numerical flame speed corresponded to this, the various velocities

were plotted against Le and then curve fitted. Figure 4.7 contains the plot and equation

(4.29) shows the functional relationship,

SL = 0.8926Le°'5025 (4.29)
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As can be seen, the free steam flame speed has the functional relationship expected for

free stream flow. It should be noted that the theoretical relationship is based on

propagation an infinite distance away from any boundary. This condition is impossible to

obtain in a numerical code, however, it was assumed that a non-dimensional distance of

10 would provide an adequate approximation. Furthermore, the functional relationship

becomes stronger as the flames become closer; more will be discussed on this in the next

section dealing with the annihilation process.

4.5.3 Annihilation Zone

The examination of the “strong interaction” zone is the primary concern of this

study. Examining the Lewis number effects on the reaction profiles, the temperature

profiles; and correlating the annihilation time of the two flames is the aim of this section.

To begin the analysis of the reaction profiles through extinction, we will look at

the Le=1 case. From this we will get a sense of some of the characteristics associated

with flame annihilation. Figure 4.8 illustrates the reaction term profile as the two flames

approach the symmetry line. As can be seen, the interaction of the two flames does not

occur suddenly for this case, i.e. there is a small, low-grade reaction ahead of the flame,

which is caused by the thermal upstream diffusion. For this reason, to get true free stream

propagation it is necessary to start very far from the symmetry line. Further examination

of figure 4.8 shows that there is an acceleration into the flame junction; this is indeed

expected for the Le.>_1 case. Furthermore, it is important to note that the most prominent

parts of the flames have not yet come into contact. This occurs when the concavity of the

reaction profile changes from positive to negative. After having come into contact we

0

surmise that extinction is not very far away. It is this time, from first joining to when the
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reaction term is essentially zero (0(10'2)), that we consider as the numerical annihilation

time. Obviously, the theoretical time cannot be so nicely delineated hence our approach

in comparing theory and numerics will be to scrutinize the functional dependencies.

Reaction profiles for Lewis numbers of 2, 1.25, 0.8, and 0.5 will be compared to the Le=1

case to either support or refute the analytical work of the previous section. These

additional plots appear as figures 4.9 through 4.12.

Primary examination of the various reaction profiles shows that as the Lewis

number increases, the width of the reaction zone decreases; i.e. the reactions are much

sharper and quicker with less upstream thermal and species diffusion. Furthermore, the

acceleration of the flame for Le>1 becomes greater. For the case of Le=1 the acceleration

is almost negligible, whereas for Le=2 it is clear that the reaction rate increases

tremendously. AS mentioned in the introduction, the previous work of Echekki et al.[3]

can in fact produce accelerations when the value of Le of the deficient reactant is close to

unity. However, we have not included multiple - and potentially very light - species into

our one-step chemical model. We also observe that for Le<1 there is no acceleration, but

rather a deceleration as the flame approaches the symmetry line. If one follows the time-

labeled reaction profiles of figure 4.11, it is clear that when the two flames come into

contact there is no jump in the reaction term, but conversely a slow, inevitable extinction.

This effect is more pronounced as Le—> 0. It is for this reason that we expect the flame

speed dependence on the Lewis number to become stronger as the flame becomes aware

of its counterpart. The reaction profile in figure 4.11 shows that for Le=0.5 the reaction

essentially dies out before the flames come into contact. These results support the

theoretical assertions made in section 4.4 dealing with the Lewis number asymmetry.
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Examination for the corresponding temperature profiles for Le=2 and 0.8 through

annihilation will further shed some light on this problem. These can be found in figures

4.13 and 4.14. i

The time-labeled temperature profiles for these two cases appear to have different

characteristics. The case of Le=2 shows a change of concavity in the temperature profile,

as discussed at the end of section 4.4.2. This is indeed the case for Lewis numbers greater

than 1. Additional analysis shows that this change in inflection is consistent with the

maximum reaction rate; that is, this profile change occurs immediately after the reaction

rate reaches its maximum. This change in the temperature profile conducts heat away

from the reaction and marks the beginning of the annihilation process. It should be noted

that the flame does not extinguish itself because of the heat loss but rather by a defect of

species through the burning process. However, this heat loss may add to the rate at which

the flames annihilate one another. For the Le=0.8 case, the temperature profiles retain

their positive concavity through annihilation. These profiles are consistent with all Lewis

numbers less than 1, although as the Lewis number decreases the change in each profile

becomes less dramatic. For the Le<1 case the thermal energy is being conducted into the

flame junction, as blood is pumped into a dying patient, in hopes to maintain the flame. It

is this additional energy input that may contribute to the slower annihilation times for

Lewis number less than 1.

The final area of interest is finding a correlation between the annihilation time and

the Lewis number. It is observed that the time to extinction from maximum reaction at

the junction has a strong dependence on the Lewis number. We have noted that the

criteria used in evaluating numerical annihilation times are not usable in theoretical
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evaluations. Therefore, we expect some discrepancies between the theoretical and the

numerical results. Theoretical flame quenching times can be shown, using equation

(4.28), to be proportional to Le{exp[-5(te-1)/Iew‘”"’]}, where 5 is the Zeldovich

number. The numerical results can be found graphically in figure 4.15, and give a Lewis

number dependence, based on the theoretical result, described by equation (4.30),

cam, = 0.98Le-exp[—0.416B(Le- 1)] (4.30)

If the average value of Lek/‘1‘") is taken from Le=0.l to Le=2.0, its value is

found to be 0.404. This value is very close to the factor of 0.416 found in the correlation

of equation (4.30). We can therefore surmise that the theoretical result corresponds with

the numerical result within an average error of 16 percent. That is, the 16 percent is the

average error between the correlation and the numerical results. The numerical results

can be correlated to an average error of about three percent by using the following

correlation:

om = 1.26071" (4.31)

The more accurate correlation does not remove any of the validity from the one found in

equation (4.30). Given the good agreement with the theoretical result of equation (4.30)

and the accuracy of the correlation given by the above equation, neither is to be preferred

over the other, although equaiton (4.30) does provide further support that the numerical

results are accurate.

4.6 Comparison with experimental observations

It has been suggested that this analysis could offer insight to turbulent flame

stability. Examination of the numerical and theoretical results leads to the following
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conclusions. For cases when Le>1 the annihilation times are quite small, that is the event

occurs rapidly with an associated increase in the excess enthalpy of the system. When

Le<1 the effect is quite the opposite, that is the annihilation occurs over a relatively long

period of time and is associated with an enthalpy defect. Based on these observations re-

ignition seems more possible when Le>1. Hence, it is postulated that turbulent flames in

which Le>1 will be more stable than those when Le<1.

Experimental observations for Methane/air turbulent premixed flames [10]

concluded that local flame extinction for cases when Le>1 is caused by excessive flame

stretching. That is, the local flame does not propagate in a planar nature but rather

becomes curved and essentially “stretched”. It was observed that when Le<1 flame

stretch and excessive heat losses play equally important roles. This is consistent with the

excess enthalpy defect observed in the present study.

Along similar lines as the above study, and experimental examination of

Propane/air mixtures [11] concludes that flame wrinkling is increased by as much as

thirty percent when Le<1 as compared to Le>1. This result can be explained by the rapid

annihilation and presumed quick re-ignition of Le>1 flames. An additional observation

made by the researchers is that for nearly freely propagating wave fronts, instabilities

were observed when Le<1.

A clear description of thermal-diffusive effects of propagating flame fronts is

given in reference 12. This numerical model of turbulent premixed flames uses a two-

step chemical kinetics scheme in which the Lewis number of the reactants is allowed to

vary. The conclusions reached about flame curvature support those seen experimentally,

though no comments of flame extinction were presented.
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The above references do by no means represent a complete list of available data.

However, all the results support in some way the results found by the one-dimensional

laminar flame annihilation studied in this chapter.

4.7 Conclusions

We have demonstrated that a simple model of a premixed flame can describe many, if

not most, of the principal features of mutual flame annihilation. These features can be

anticipated theoretically, without requiring a numerical analysis. However, the numerical

analysis provides a seamless connection between the disconnected theoretical submodels

while also providing direct indication of the magnitudes involved. We see, consistent

with reference 3, that the standard free flame reactive-diffusive balance is entirely upset

during annihilation; we also see that Le has perhaps the strongest influence on the

qualitative character of extinction, since Le<1 extinctions are completely different from

the Le>1 extinctions. The former involve significant pre-extinction communication,

hence the extinction is gradual, inexorable, and undramatic. By contrast, the Le>1

extinctions occur with furious rapidity, partly because the two flames are largely ignorant

of their mutual existence until they very close. Our correlation of the extinction times

with the asymptotic formula predicts a dependence on exp[-B*constant*(Le-l)], which

we in fact observe numerically (see equation [4.30]). Thus, the sensitivity of extinction to

Le is closely coupled to the magnitude of the Zeldovich number. When this is small,

extinctions will be tame regardless of Le.

We can only speculate on what occurs in the post annihilation stage when this

model is included in a larger problem of the kind discussed at the outset of this article. In

this case we have many mutually interacting flames and “flamelets” that are in continual
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relative motion due to turbulence and the other flow requirements. When the Lewis

number of the principle limiting reactant is larger than unity, we expect dramatic

annihilations accompanied by surges in the thermal enthalpy, as shown in figure 4.13.

These local pockets of excess thermal enthalpy could seemingly serve as local hot spots

for subsequent reignition of locally quenched mixtures. If the characteristic turbulent

flow time is substantially larger than the characteristic annihilation time, the subsequent

healing of the flame may occur quite rapidly; this would suggest that this flame might

remain significantly intact with only minimal permanent destruction of flame surface. If,

however, the Lewis number is small, the flames can annihilate one another while

simultaneously depressing the thermal enthalpy (see figure 4.14). In this case, the

prospects for reignition and flame healing are more remote. This is consistent with

observed experimental results. We have not conducted a detailed comparison of our

calculated annihilation times and turbulent flow time scales. Such a comparison would

be interesting indeed. In real flames, however, there are many constituents, each with its’

own characteristic Lewis number. It remains a challenge to determine the reactants

whose influences through Le, are greatest: some composite average of these Lei’s may be

used in a correlation such as equation (4.30) in order to attempt to describe these more

complicated and more realistic flames. It would be interesting to repeat our analysis with

a more realistic two- or even four-step mechanism, in order to determine, with greater

precision, the relation between annihilation time and the relevant Lewis numbers. The

previous work of Echekki et al.[3] suggests that with light, highly diffusive species like

H2, the value of Le for the deficient reactant does not control the flame behavior as

strongly as it does here. The qualitative nature of such a system should be evaluated with
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a model 2-step reaction scheme, in which one of the intermediate species is much lighter

than the others. Our findings therefore appear to be representative only for flames in

which (1) The overall chemistry can be safely reduced to a global single step; (2) The

lewis numbers of all species are close to one another and to unity; and (3) The Lewis

number of the limiting reactant (deficient species) is used in our formulae. We should

caution the reader, however, because this study was not conducted with such a practical

aim in mind. After more study, such practical questions might be completely addressed,

but given the current paucity of hard evidence, we leave such questions to future work.

In a pedagogical sense, this simple model affords us yet another chance to

examine non-trivial premixed flame propagation. That is, we are able to examine and

appreciate a premixed flame process that does not conform to the restrictions obeyed by

the steadily propagating one-dimensional laminar flame. The latter, though centrally

important, is shown in this and other works [8] to be a singular special case. Future work

may Show that the entire concept of a “flame speed” in complicated transient flows,

though useful for a preliminary understanding, is void of meaningful content.

4.8 References

1. Candel, S., and Poinsot, T., Combust. Sci. Tech., 70: l-15 (1990).

2. Poinsot, T., Veynante, D., and Candel, S., J. Fluid Mech., 228: 561-606 (1991).

3. Echekki, T., Chen, J.H., and Gran, 1., 26m Symposium (International) on Combustion,

The Combustion Institute, 323-329 (1997).

4. Chen, CL, and Sohrab, S.H., Combust. Flame, 101: 360-370 (1995)

5. Daniel, W.A., Sixth Symposium (International) on Combustion, Reinhold, New York,

(1957).

83



6. Adamczyk, A.A., and Lavoie, G.A., SAE Transactiona 87, SAE paper # 780969

(1978).
N Westbrook, C.K., Adamczyk, A.A., and Lavoie, G.A., Combust. Flame, 40:81-99

(1981).

8. Wichman, 1.5., and Bruneaux, G., Combust. Flame, 103: 296-310 (1995).

9. Peters, N., Numerical Methods in Laminar Flame Propagation, a GAMM Workshop,

Braunschweig : vieweg, (1982).

10. Yahagi,Y., Ueda, T, and Mizomoto, M., 24% Symposium (International) on

Combustion, The Combustion Institute, 537-542 (1992)

11. Lee, T., North, G, and Santavicca, D, Combustion and Flame, 93, 445-456 (1993)

12. Rutland, C., and Trouve, A., Combustion and Flame, 94, 41-57 (1993)

84



0.2 0.6 A LA

4
0

.
5
0 0 0

.
5

C .
s

.
b

.
s

a
:

 
 

Figure 4.1 Upstream extremum for H and location versus Le.

85

 

 

+H*

+§e

  



 

   

  
Figure 4.2 Le=2, free stream

86



 

 

    

 

+R

+dt/dt

‘ . ‘ d2t/dC2

m4— H

-1 ~-

-1.5 ‘L

C

Figure 4.3 Le=0.8, free stream

87



A 0
1 1 I

0.5 “
II

[Il’Ill/I III A

umIII/nunII’NI’N’H’H’I "

1Io'.r”.;.‘.*.'~1:Z~'2~‘v.'€¢'4§’4'~3'e}‘3"?"’3“f¢"r?:¢-I'X-?37555538.{333'} 5 a; ' 3:383:15

_0.04 0.68 1.32
-0.5'

-1 ~-

 
-1.5-L

Figure 4.4 Le=1.0, free stream

88

WW: : iam‘.' ; .r‘

I L

1.96 2.6 . 3.2-{.358

 

 

+d‘E/dt

+R

‘fi— d2‘t/dC2

  



4.5 "

3.5 ‘”

:3 u-

2.5 “

1.54“

0.5 “

0

0.05 0.65

 
1 .25 1.85 2.45

C

IJAIJIAIJI‘,.,""A,"

AA.
0‘.

‘a

‘3
A

A

-A

A

h?
u.a‘ D

. uh‘p'o' A \

‘ ‘ -' “,‘/DI0I'DIDIAIII‘IOI)IAII(A.

3.05 3.65 4.25 4.85

Figure 4.5 Le=2, T and Y profiles through reaction zone

89

 

 

--‘.--'FR

fi' V
  



 

+R

 ‘5' Y   

  
0.05 0.75 1.45 2.15 2.85 3.55 4.25 4.95

C

Figure 4.6 Le=0.8, T and Y profiles through reaction zone

90



 

1.4 —~

0.8 —~

F
l
a
m
e
S
p
e
e
d

0.4 +

0.2 ~»

  
Le  
 

Figure 4.7 Free stream laminar flame speed as a function of Lewis number

91



2--

1.8-

1.6 _. 2-x” .‘\
-r-“’/ \.1.4 \

1.2 4-... . \

1 4- ‘ \

R 0.8 «.-

0'6 1‘
\0.4 “

0.2 4~

0 4 -—-—— 
0.02 0.08 0.14 0.26 0.32 0.38 0.44 0.56 0.62 0.68 0.74 0.86 0.92

C

Figure 4.8 Le=1.0 Reaction profile through annihilation

92



 

 
0.02 0.06 0.18 0.22 0.26 0.34 0.38 0.42 0.46

C

Figure 4.9 Reaction profile for Le=2.0 through annihilation

93



   

94



 

0.37 4

0.35 .

0.33 4

0.31

0.29

0.27

0.25

 

0.39 4

 

 

0
.
0
5

-   —+——1

LO

0;

o

 

 

—o— R(4.92)

+R(4.94)

R(4.96)

-—-><-— R(4.98)

+R(5.0)
 

 

Figure 4.11 Reaction profiles for Le=0.8 through annihilation

95

 



1.2 -~

0.8 4r

0.4 «-    
  0AWA I: _/’.r

0.05 0.35 0.95 1 .25 1.85 2.45 3.05 3.65 4.25 4.85

C

Figure 4.12 Le=0.5 reaction profiles during Flame propagation towards junction

 
96



 

  
0.02 0.06 0.14 0.18 0.22 0.26 0.34 0.38 0.42 0.46

C

Figure 4.13 Temperature profiles for Le=2.0 through annihilation

97

 

 

+1:(0.751)

—I— T(0.752)

+1:(0.753)

“4*“ T(0.754)

+T(0.755)

+t(0.756)
  



0.9 1

0.88 4» ,, 9v

0.86» ,,.-xv

0.84 4
1....

0.82 .4.-

0.8 J-,”

.m" 
. arr” .. 1'.

ear." p

0.78

0.76

0.7411111111111111411411

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C

 

Figure 4.14 Temperature profiles for Le=0.8 through annihilation
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HEAT LOSS ANALYSIS OF A DIFFUSION

FLAME LEADING EDGE

5.1 Chapter Nomenclature

b

C?

D

Da

U,V

u,v

Reduced Damkohler number

Specific heat

Binary diffusion coefficient

Damkohler number

Excess enthalpy

Half channel width

Non—dimensional spatial coordinate

Peclet number

Heat flux

Non-dimensional spatial coordinate

Quenching distance, (§2+112)"2 in fin] coordinates of figure 5.1

Quenching distance, (u2+v2)”2 in u,v coordinates of figure 5.2

Scaling factor

Temperature

Non-dimensional coordinates (u/rq,v/rq)

Dimensional conformal mapping coordinates

Velocity

Reaction term

Non-dimensional reaction term
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x,y Dimensional Coordinates

Y, Mass fraction of species i

yi Non-dimensional mass fraction of species i

Z Mixture fraction

Greek

0L Thermal diffusivity

0t l-To/Tf

B Zel’dovich number, 01(E/RTf)

[3i Curve fit parameter

(1) Global stoichiometric index

1'] Non-dimensional spatial coordinate

0 Heat transfer parameter detailed in Equation(22.a)

9» Thermal conductivity

v Ratio of oxidizer mass to fuel mass

0 Non-dimensional spatial coordinate

p Density

T Non-dimensional temperature, (T'To)/(Tf'To)

E,§ Non-dimensional spatial coordinate

Subscripts

F Fuel

f Flame

0 Oxidizer
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0 Reference boundary value

q Quench

5.2 Introduction

Real flames interact with surfaces. These interactions may be primary, in which

case the interaction of the flame with the surface cannot be ignored in an analysis of

flame behavior, or secondary, in which case the solid surface is largely incidental to the

combustion process. The flame-surface interaction includes many physical processes:

flame chemistry; fluid flow dynamics; and conductive, convective, and radiant heat

transfer. For this reason a comprehensive theoretical model is exceedingly difficult,

perhaps impossible, to construct. On the other hand, a pure numerical study without

theoretical guidance is likely to make few novel observations. A similar statement

applies of course to experimentation, thus suggesting that a “democratic” investigation, in

which every conceivable influence is equally weighted and seriously considered will

surely fail for not making distinctions between what is important and what is

unimportant. Consequently, the development of theories for simplified limiting cases is a

necessary part of a rational examination. Although theories almost by definition involve

the suppression of some physics, this suppression ideally should have a positive, not a

negative, aspect. This is adumbrated in the following quotation: “Idealization does not

consist, as is commonly believed, in a subtracting or deducting of the petty and

secondary. A tremendous expulsion of the principal features rather is the decisive thing,

so that thereupon the others too disappear” [1]. Thus, it is the prominence of various

model (theory) features that by necessity force the remaining features into the

background. Finally, we note from practical experience that large-scale numerical
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simulations often employ simplistic “sub-models” in order to describe processes that

cannot be fully resolved by the global theory. It is imperative that such “sub-models”

faithfully represent the “sub—problem” they purport to describe. They must also be

sufficiently integrated with ease into the larger computation.

The purpose of this study is to first examine the leading edge of a flame in terms

of the heat transfer during the quenching of a flame leading edge by an adjacent, cold,

solid surface. The conductive heat transfer from a flame to a nearby surface is important

for ensuring a continued supply of fuel, as in flame spread, or for ensuring flame survival,

as in bumer-attached flames. In the former case, the transfer of heat from the spreading

flame gasifies the solid fuel beneath it, producing the fuel vapors that feed it with

reactant. In the latter case, the heating of the burner rim by the flame minimizes transient

heat losses, thereby maximizing reactant consumption while preventing possible flame

extinction. Studies have recently been completed on various features of flame-wall

interaction, in configurations reminiscent of both flame spread [2] and burner-attached

flames [2,3].

A second feature of flame-surface interaction that we wish to investigate is the

flame behavior as predicted by the relatively simple analysis of the conserved scalar

mixture fraction combined with infinitely fast-rate chemical kinetics. As will be shown

in comparisons to numerical solutions of the non-linear, finite-rate chemistry problem

(model problem “A”), the examination of the mixture fraction field can provide valuable

insight into the flame quenching mechanism. In addition, the study of model problem

“A” provides the necessary impetus for examining the quenching problem discussed
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previously. Nevertheless, certain analytical solutions obtained by these means shall

exhibit almost no correspondence with our detailed examination.

From a practical viewpoint, and in terms of material response, the most important

quantity to examine is the conductive heat flux, both to the surface and at various

locations in the gas. Radiative heat losses are ignored for two primary reasons: in small

scale combustion, conductive losses are dominant [4] and under micro-gravity conditions,

soot and gas radiation are generally diminished. Currently, we know very little about

such conductive fluxes, including their characteristic orders of magnitude or their

functional shapes. Although some progress has recently been made in this area [2], we

are far from a satisfactory understanding that might enable the use of such estimates in

any engineering capacity. Our analysis herein has features in common with reference 5,

where the nature of the opposed-flow flame spread over solid fuels was examined in

detail. The simplifications provided by employing infinite rate chemistry and an

idealized geometry for gas flow and flame spread enabled numerous deductions to be

made, which might otherwise have remained hidden in excessive detail. One of these

was the seemingly paradoxical result, long since confirmed by numerical examination [6]

that the streamwise conductivity through the solid fuel bed plays a minor, almost

negligible, role in the rate of flame spread. In addition to the heat flux into walls and

surfaces, it is also worth examining heat fluxes across various planes in the gas [5].

Of particular interest in our model problem is the flux directed from the flame leading

edge towards the nearby surface. As discussed in [2,7], this flux can change significantly

from very large values near the leading edge, where the flame quenches, to much smaller

values near the surface, where the gas loses thermal energy to the wall.
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5.3 Background

In this chapter we shall examine a greatly simplified heat transfer model problem

(model “B”) in the light of a fuller (but still simplified) model “A”. The latter includes

finite-rate chemistry. It has been shown in past work that model “A” is an often

quantitatively accurate representation of the actual, physical problem [8]. This

conclusion was reached by comparing flame behavior in model “A” with a variable

property Navier-Stokes simulation.

In this section we shall restate and examine various previous results from the analysis

of model “A”. We shall also present various analytical results from this model for the

infinite-rate chemistry limit. This examination will be conducted with the intent of

providing motivation for a detailed examination of the pure heat transfer model “B” in

sections 5.4—5.6 following.

Model “A” describes qualitatively a fuel injector problem and more rudimentarily a

general lifted triple flame resembling but different in some features than a flame-spread

problem. The model configuration is shown in figure 5 .1. The fuel flows past one side of

an impermeable, perfectly conducting divider and mixes with the oxidizer stream that

flows past its other side. Permeable walls through which fuel and oxidizer separately

diffuse are aligned with the bulk flow direction, which is vertical. Depending on the

global stoichiometry, the diffusion flame inclines either to the left, to the right, or lies

directly downstream of the divider. This model produces a triple flame configuration

with a premixed flame arc anchoring the diffusion flame to the lower boundary. The

diffusion flame extends downstream from the anchor point. Figure 5.1 shows a

schematic of the triple flame configuration, including the fuel-rich and fuel-lean premixed
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flames and the trailing downstream diffusion flame arc. The system is assumed to be

steady. All boundaries except the divider plate are porous, non-reactive walls, whose

temperature is To. The velocities, v, of the two streams are identical and specified at the

inlet boundary [9,10]. The chemical reaction between the fuel and oxidizer occurs

through a single irreversible step. It has been shown [11,12] that, although not capturing

all the quantitative characteristics of the flame, single step chemistry captures many

qualitative characteristics such as flame structure and temperature. Furthermore, even in

multi-step kinetics models, only a few reactions are responsible for a majority of the heat

released during combustion. The molecular weights of the reactants are assumed

identical, the therrnophysical properties p, 2., cp, D are assumed constant, the Lewis

numbers of the reactants are equal to unity, the influences are gravity and radiation (from

the surface and the gas) are neglected, and Soret and Dufour terms are neglected. The

diffusion velocities are given by Fick’s law, and heat conduction is described by Fourier’s

law. Under these restrictions, the equations for conservation of species and energy

become

BY
WW0: pDVzYo —vW (5.1.a)

BYF 2
pv—a—y—=pDV YF-W (5.1.b)

pvcp g} = MN2T +qW (5.1.c)

where W=pAYoYFexp(-E/RT) and the boundary conditions are

T=To, Y0=Yoo, YF=0 at (x=l/2, yZO),(0<x<l/2, y=0) (5.2.a)

T=To. Yo=o, szYpp at (x=-l/2, y20),(-I/2<x<0, y=0) (5.2.b)

106



aT/8y=BYO lay=aYFIBy =0 at y=°o (5.2.c)

Equations (5.1) and (5.2) can be written more compactly in non—dimensional form. We

rescale the independent variables with 1/2 to obtain E,=x/(l/2), n=y/(l/2) so that i=1- 1 in

the two corners of figure 5.1. The species mass fractions are normalized as yp=Yp/YFF,

yo=YolYob. Hence, both yp and yo are bounded by zero and unity. Similarly, the non-

dimensional temperature is T=(T-To)/(TrTo), whereby 1::0 on all boundaries and 2' —> 1 at

the flame sheet. Finally, the non-dimensional mass flux past the divider is Pe=pchU7t.

Additional physical quantities, which are important to our subsequent analysis, are the

global stoichiometric index

= VYFF (5.3) 

cP Yoo

where v is the ratio of mass of oxidizer to mass of fuel in the one-step reaction; the

Zel’dovich number [3, which is a measure of the temperature sensitivity of the reaction

B=a£.a=1—-T£; (5.4)

the Damkohler number, Da, as a ratio of the diffusion time to the reaction time

= LZ/Ot/pcp)

[M0O exp(-E / RTf )1“

 Da (5.5)

With the adiabatic flame temperature Tf defined as TFTo'l'QYFF/Cp(l+¢), the non-

dimensional reaction term becomes

_ 1-

W = YoyF CXP[1——[:(_l%] (5.6)

The non-dimensional conservation equations (5.1) can now be written as
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PeQE- =szO —(pDaw (5.7.a)

an

Peay—F=V2yF—Daw (5.7.b)

an

Pe§=Vzt+(l+tp)Daw (5.7.c)

with V2 = 82/13§2 +82/8r12 . The dimensionless equations (5.2) become

t=O,yo=O,yp=1 at (§=-1,n 2 O),(-1<§<0,n=0) (5.8.a)

1:030: 1 ,cho at (g: 1 ,n 2 0),(0 <C<1m=0> (5.8.b)

atlan=8yolan=ayF/&n=Oas n—)oo (5.8.c)

Equations (5.7) and (5.8) can be formulated in terms of the excess enthalpy function

H=t+yo+yr1, the mixture fraction z=(l'Zf)YF1'ZF(l-YO), and 1:. Here Zf-=(1+(1))'l is the

value of Z along the stoichiometric contour. The minimum value of Z is zero at the

oxidizer surface, where yo=1 and yF=O and its maximum value is unity at the fuel surface,

where yo=0, yp=l. For our problem, the maximum possible value of H is zero and the

minimum possible value is -1. Functions Z and H satisfy the homogeneous forms of

equations (5.7.a) and (5.7.b), which amounts to a balance between convection and

diffusion. The system of equations (5.7) become

Peg: = V2't+ (1+(p)Daw (5.9.a)

3n

82 2

Pe— = V Z (5.9.b)

811

Note that the solution for H is H=0 everywhere; the total enthalpy in the gas is constant.

The boundary conditions for equations (5.9) are
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1:0,b1 at (§=-1,n 20),(-1<§<0,n=0) (5.10.8)

t=O,Z=O at (§=1,n 2 O),(0<§<1,n=0) (5.10.b)

aZ/8n=at/8n=0at 77—)oo (5.10.c)

The simplest case is Pe=0, which produces a purely diffusive problem. The equation for

Z is easily solved to give Zzn—l ln/Z—tan—l {tan(1t§/ 2)/ tanh(1m/ 2)}J. The

stoichiometric contour is the arc along which Z=Zf, see figure 5.1. The trailing diffusion

flame lies very near this are, as shown.

These solutions for H and Z can be utilized to produce estimates for the heat flux

to the bounding surfaces. This becomes especially straightforward in the case of infinite

rate chemistry because the flame is attached to the divider, see figure 5.1. On the fuel

side, VZ = (1— ZF)V yF , whereas on the oxidizer side VZ = -ZF Vyo . From the

constancy of H we have either VyF=-Vt or VyO=-Vt, giving

V t = —(1 — Z,:)"1 V Z on the fuel side and V1: = 21:"1 V Z on the oxidizer side. From the

preceding solution for Z we find

~

A - sinh(1m/2)cosh(1m/2) A sin nfi/ 200s 1t§/ 2
Z: 2 2 + 2 2 (5.11)

~ ~ 2(sin n§/2+sinh Inn/2) 2(sin 1t§l2$inh 11:11/2)

Along the lower surface -l<§<l, 71:0 we find

A

—11

Vt: " ,

~ 2(1—ZF)tan1t§/2

 —1<§<0 (5.12.21)
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A

11

VI: " , O< <1 5.12.b

~ 2ZFtan1t§/2 C (, )

 

Along the vertical walls at §=-1 and §=+1, we find

A

C

VT: ~ , g:—

~ 2(1—ZF)tan1m/2

 1 (5.13.a)

-C

Vt: " , §=+1 (5.13.b)

~ 22,: tan 1511/2

 

From Equation (5.12.a) the heat flux to the divider is infinite because the flame is

attached to the divider. However, the fluxes to the nearby surface may possibly be

accurately represented by these equations. Part of our goal in this article is to ascertain

the accuracy of Eqs. (5.12.a) and (5.13.a) away from the divider, and thus to determine

the practical usefulness of infinite-rate Burke-Schumann heat flux calculations.

Equations (5.9) and (5.10) will serve as a benchmark for comparing the Burke-

Schumann results and the heat-transfer model results of Section 5.5. These equations will

be solved numerically using an Alternating Direction Implicit (ADD method. Because

the use of the mixture fraction and excess enthalpy functions de-couples the species

equations from the energy equation, equation (5.9.b) is solved first. Then, using the

definitions of Z and H, equation (5.9.a) is SOIVed. The non-linear reaction term in

equation (5.9.a) is handled by using the results of the previous iteration, thus linearizing

the numerical system.
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5.4 Simplified Heat Transfer Model “B”

In model “B” the flame arc becomes a constant temperature line, t=1, extending

downstream from the point rq, see figure 5.2. The boundary conditions on the surfaces

are 1:0 and at n —> 00; we have the zero gradient condition 81:an =0 as before. The

governing equation is V21 = 0 in the case of zero convection; V21 = Pea'c/an in the case

with uniform and identical convection from the fuel and oxidizer reservoirs adjacent to

the divider. The introduction of scaled coordinates E=§Irq and N=1]/rq places the flame

leading edge at the intersection of the circular arc R=\/L'.-€2 + N2 =1 and the line Z——Zf.

Here rq is the quenching distance defined as the distance from the divider plate to the

point of maximum reactivity. The flame usually quenches a very small distance upstream

of the point of maximum reactivity, hence there is no inconsistency in defining quenching

distance in this manner. In the general case this transformation offers no advantages for

solution because the scaling merely changes the separation distance between the two

vertical walls from two to 2/rq. When rq becomes small, however, the vertical walls

effectively disappear, and the flame sheet lies along the radially-directed arc 0=rth,

1<R<°°. There are no length scales remaining in this problem, leaving a universal heat

flux distribution to the lower surface given by 31(E,O)/ 3N = g(E; Zf ). Here Zr is the

sole remaining parameter in the analysis. In terms of the original coordinates we have

@4831.) (5.14)
3!] rq rq

The maximum flux occurs at the point where the derivative of 8216.0) / 377 vanishes.
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The above expression in equation (5.14) is universal to the extent that the flame

curvature can be neglected. If rq is not sufficiently small, the curvature of the flame

towards the vertical axis (see figure 5.1) becomes important and the equation loses

accuracy, producing an over-estimate for the surface heat flux. From equation (5.14) the

integrated flux along the surface is a function only of Z, i.e.,

J (ax/811mg: Ig(E;Zf)dE=Q(Zf). The function Q(Zf) is not symmetric about

Z1=1/2 because the quench radius is asymmetric with respect to Zf. It has been shown in

reference 2 that Q increases as Zf decreases, largely because of the increase in the flame

temperature. This feature, we observe, is not built into this simplified model.

As shown in previous works [2,9,10] the model configuration of figure 5.1 can be

mapped via conformal mapping methods into the configuration shown in figure 5.3. In

this latter configuration the flame is in fact a radial arc'. The heat flux to the surface is

amt/3r]: (31/ 3v)(8v/ 377). Analogous to the previous derivation, we define the scaled

coordinates U=uqu, V=v/rq, where rq=‘/u(2l + v: and U2 + V2 =1 at the semicircular

arc containing the flame leading edge. Then 81/ 811=(Bt/ 8V)(8V/av)(8v/8n), with

81(U,0)/8V-=-g(u/rq;Zf), aVlavzlqu and 8v/8n=(1t/2)costt§/2 at the surface

n=0. Thus

at sin1t l2 ncosn /2

—=g(___§:Zf)——-"—'g
(5.15.a)

an rCl 2rq

 

rq=,/u§ + v3, =\/sin2(1t§q /2)+.c.111112(1mq /2) (5.15.5)
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For small fig and 11,, we find rq=(1t/2)rq in which case equation (5.15.a) corresponds with

equation(5. 14).

Numerical solutions of this heat transfer model are generated in Section 5.5 for

the heat flux to the surface.

5.5 Results and Discussion

To begin the analysis, comparisons are made between the finite-rate chemistry

model “A”, the Burke-Schumann, and the conduction heat transfer model “B” predictions

of the heat flux distribution to the lower cold boundary. Here, it is assumed that the

diffusing reactants at 11:0 have the constant temperature, To. In figures 5.4a-b the results

from each model are presented for a vertical flame with Zf=ll2 at two different quenching

distances. Comparisons are also made for a fuel-lean and a fuel-rich flame in figures 5.5a

and 5.5b respectively. The results presented are for the Burke-Schumann (B-S) solution

for the heat flux, the heat flux obtained by solving the finite rate chemistry equations

(model “A”), and the heat flux from the simplified heat transfer model “”.B

Examination of the stoichiometric flames in figures 5.4a and 5.4b reveal two

important features. First, the Burke-Schumann solution given by equations (5.12.a,b)

offers very different results for both large and small quench distances when compared to

either the heat conduction and the finite chemistry models. Second, the simple heat

conduction model captures most of the characteristics of the finite chemistry model,

although the heat flux magnitude is slightly diminished. If a scaling factor is employed,

better agreement is achieved. These results are for a pure diffusion flame with no

convection (Pe=0).

 

‘ This is only strictly true in the zero convection case, Pe=0
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The reaction zone characteristics for model “A” differ from those used in model

“”B. The conduction model is based on a flame sheet consisting of an infinitesimally thin

reaction zone, which extinguishes a finite distance rq from the divider plate. By contrast,

the finite—rate chemistry case produces a more broadly spread reaction zone. Given this

condition,‘it is expected that the heat transfer model will under-predict the heat loss for

the pure diffusion case, as well as have a narrower peak. These characteristics are indeed

observed in figures 5.4-5. Consistent with this, the conduction model produces better

agreement with the finite rate case as the quenching distance, rq, decreases.

For the non-symmetric case Zn: 1/2 (see figure 5.1), the flame shape will be

defined by the following relation between the flame-shape coordinates E; and 11:

12111113)

2 (5.16) 

It tan(12t— '" TLZf )

Figures 5.5a and 5.5b show the results for two non-stoichiometric cases. The simplified

model follows well the trends of the finite rate case. The model produces a maximum

heat flux at a slightly different location along the lower surface than predicted by the

finite rate chemistry case. The conduction model shifts the maximum away from the

divider. This can be attributed to the wider flame tip for the finite-rate chemistry case.

Even with this shift the heat transfer model is closer to the finite rate chemistry case than

the Burke-Schumann solution. There also exists a strong asymmetry for the non-

stoichiometric flames. Departures towards the fuel rich side produce closer quench

distances, and consequently, larger heat losses to the lower boundary. The maximum heat

flux location is also closer to the divider.
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Some generalizations about the shape of the heat flux profile can be made. We

wish to provide a better approximation for the heat loss profiles than those given by the

readily available Burke-Schumann solution. We also seek to ascertain where, if at all, the

Burke-Schumann solution accurately represents the heat flux to the lower boundary.

The heat flux profiles for small quenching distances (rq<0.15) obtained from

model “B” were found to collapse to a single curve. This collapse of the heat flux

profiles is predicted theoretically in section 5.4 by equation (5.14). The correlations were

obtained for both straight flames and non—stoichiometric flames. These curve fits were

obtained by using an ordinary least squares method. The correlations are non-linear so a

Gauss iteration scheme was used.

For symmetric (ZFl/Z) flames, the heat flux profile can be described by the three

parameter relation given below

Br

’9
0.572

=—e

r9

  ( 5 +132)“ (5.17)
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Parameters B), [32, and [33 are 1.07, 1.01 and 0.8 respectively. Note that this result does

not include any scaling factor; it is solely the shape of the heat flux profile obtained from

the conduction model. Although this result is applicable only for small quenching

distances, the same shape can be applied to larger quenching distances by changing the

numerical parameters [31, [32, and 83.

It is more challenging to model the non-symmetric flames because several

quantities must be taken into account. The maximum heat loss is shifted away from the

divider, and the spatial decay rates are different on each side of the maximum. The
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inflection points of the heat flux profile are located at several different distances from the

maximum. To account for these characteristics a five parameter correction factor, C(fi), is

introduced, viz.

 

 

 
 

a a a B“
C(C)=[134(—-135)+136(——135)2:lexp('137 ‘135 ) (5-18)

rq rq rq

With this correction factor the heat flux profiles take the form

1.07

= 0572 e ’1 ( C +1.01)“8 —c(§) (5.19)

‘9 r9 

The five-parameter values are dependent on the stoichiometry parameter 0. Table 5.1

shows values of B4 to Bg for selected (11 values.

The above results can be used in conjunction with a scaling factor (see next

section) to obtain a good approximation for the heat flux profile to the lower boundary.

The case with convection is not considered in the numerical model or in the

analytical model. However, as the discussion of section 5.4 makes clear; when the

quenching distance is small, the heat flux profiles should closely resemble the zero-

convection case. This occurs because a rescaling of the independent variables in the

governing equations with rq will eliminate the convective terms as rq—9 0. Figure 5.6

shows the results when Pe=1. The quenching distance is computed for the finite rate

chemistry case used to determine the heat flux profile from the simple conduction model.

From figure 5.6 we observe first that the model predicts well the heat flux profile.

The qualitative shape of the heat flux profile is identical to the zero convection case.
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Once again, it appears all that is needed for complete agreement whenever Pe is changed

is the introduction of a different numerical scaling factor in equation (5.19).

5.5.1 Scaling Factor

In order to account for the difference in reaction zone thickness between the model and

the finite rate chemistry case a scaling factor S was introduced. Factor S scales the

maximum heat flux from the heat transfer model to the value obtained in the finite rate

chemistry case. Values of S were obtained for stoichiometric flames and then tested with

non-stoichiometric flames to determine whether these values were still valid. Factor S

was obtained as functions of the quenching distance, not the chemical parameters such as

the Zel’dovich number, for which the dependence is much weaker than quenching

distance. It is noted that the quenching distance depends on the chemical parameters.

Hence, the scaling factor was correlated with the quenching distance. The relatively

weaker B and Damkohler number dependence manifests itself implicitly through the

effects of the reaction zone thickness on the quenching distance.

It was found that for the stoichiometric flame, S had a nearly linear dependence on

rq. The relationship is shown below

S=1.72rq + 0.66 (5.20)

Equation (20) can be used as a direct multiplication factor in equation (5.19) for small

deviations from stoichiometric flames, 0.33<¢<3.0, with S values within 10 percent of the

numerical results.

5.5.2 Comparison of centerline heat losses

Examination of the temperature profile along the stoichiometric contour Zp=ll2

for vertical flames is used to verify the scaling factor as well as to identify any
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shortcomings of the proposed heat transfer model. The preliminary comparison was done

for a moderately small quenching distance, rq=0.375, and a pure diffusion flame. The

quenching distance was calculated by using the finite-rate chemistry code to solve for the

quenching location, as defined by the maximum reactivity, as well as the vertical

temperature distribution at the centerline. The resulting quench distance was employed in

the heat conduction model and the temperature profile was calculated. A graphical

comparison is shown in figure 5.7.

From figure 5.7 we observe that the heat conduction model underpredicts the heat

loss to the divider plate. This is expected in view of the relative magnitude of the heat

loss profiles to the lower boundary. Furthermore, as expected, if a ratio of the finite rate

gradient to the heat transfer model gradient is examined it will produce the scaling factor

S already examined. With this information, and noting that the scaling factor had a small

dependence on the Zel’dovich and Damkohler numbers which will be ignored here, the

gradient ratio should behave very similarly to the scaling factor with respect to rq. We

recall that S varied nearly linearly with the quenching distance. Examination of. that

relationship in equation (5.20) suggests that the heat conduction model gradient will

approach the finite rate model gradient as the quenching distance becomes small.

Another feature shown in figure 5.7 is the different flame temperatures of the two codes.

The heat conduction model assumes a flame temperature of 1.0 for the flame and uses

that elevated value as its quasi-heat source. The finite rate model temperature is

calculated from the set of partial differential equations shown in section 5.3. The finite

rate model produces a lower flame temperature, as expected, since Tflamcz l-O(B'1). This

contributes to the more gradual decline in temperature towards the lower wall, and
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consequentially the more linear gradient. This linear gradient supports the simplified

notion of assuming a linear profile from the quench location to the wall [2,10]. However,

this assumption is typically based on an adiabatic flame temperature close to unity (i.e.,

B—) 001th), and does not take into account any heat losses through the reaction zone.

The heat loss from the reaction zone in the finite-rate model “A” is evident beginning

near 11:05 and continuing to the location of the heat-transfer model flame tip at 11:0.375.

5.5.3 Comparison to Finite-Chemistry Model

A comparison of our heat transfer results may be made to the finite-rate chemistry

model examined in [2,10]. The heat transfer cold wall beneath the flame leading edge is

  

given by

_ 19 Da 4 1/2 . 2

q—‘W’ EEO-2f) Sll'l (TCZf) (5.21)

where

8 =1+{(1- 2. )[m nizf _ 50) -1]+ zf [5m ”.(Z‘ + 8F) - 1]} (5.22.11)
srn 1th srn 1th

5q = 3.752{1-cxp(-7.36621f'71)k?'36 (5.22.b)

and Oo=Zf(l-Tq), 8F=(l-Zf)(1-tq), where tq, the flame leading edge quenching temperature,

is given by l-K/B. It is shown in section 5.5 .2 of [2] that a value of K of between 1.5 and 2

is reasonable. We use 1c=1.75. For the symmetric case Zr=1l2 we find 50=5p=1cl2[3,

whereby 0=cos1n<l28 and bq=2.62, giving q=O.21¢os(1tK/28)(Da/B3)m.

The use of 1c=1.75, and [#80 gives the estimate qEO.l98(Da/B3)”2. In order to

relate this result to the quench distance, we employ equation (8) of [2], which gives
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,q = 2 q 372 /B_ (5.23)
n 42f (1-zf) Da

where we have used the factor 102 to convert the rq of equation (8) of [2] from the u-v

system of coordinates to the é—n coordinates used here, as outlined in section 5.4, see

equation (5.15.b) et sequation. The preceding numbers give rq_=_3.82([33/Da)“2 , whereby,

q50.76/rq , which compares favorably with equation (5.17), q50.57/rq, especially when we

consider that the latter must be multiplied by a scaling factor greater than unity given by

equation (5.20). Consequently, the heat transfer model prediction is functionally

consistent with the more detailed finite chemistry model. In addition, and in contrast with

reference [2], the heat transfer mode] produces an expression for the distribution of q

along the entire surface, not only its maximum value. For this reason, it is possible to

replace the factor 0.572/rq in equation (5.17) with equation (5.21), using equation

(5.22a,b) for 13 and bq respectively. The pure heat transfer formula now includes the

influences of finite-rate one-step chemistry. A similar replacement, of course, may be

made in equation (5.19) for the asymmetric case.

5.5.4 Zel’dovich number effects

As stated previously, the temperature gradients at the lower boundary produced by the

two models show better agreement as rq decreases. That is not to say that the profiles

become more similar under this criterion. The presented profiles can be divided into

three general regions: the flame tip region, the wall region, and the transition region

which connects the two aforementioned regions. As will become evident from figures

5.8a and 5.8b below, the transition region between the two models have distinctly

different shapes. The conduction model produces a much steeper gradient immediately
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after the flame tip and a much smaller gradient at the wall. Hence the transition region is

much more curved than the nearly linear temperature profile produced by finite rate

chemistry model. Having noted that the profiles agree well in the wall region when the

flame quenches very close to the lower boundary and that the transition regions will have

their own characteristics, it is of interest to find the conditions where the flame tip regions

exhibit agreement.

The finite rate model produces a flame temperature that is lower than the adiabatic

flame temperature. This suggests that for the flame tip regions to agree, the finite rate

model should produce a flame temperature closer to the adiabatic temperature assumed

for the conduction model. This can be achieved by increasing the Zel’dovich number, [3,

which also has the effect of increasing the quench distance. This produces a higher flame

temperature and lower heat losses through the flame tip, thus improving agreement in the

flame tip region of the temperature profiles. However, the gain in agreement in one

region reduces it in another, as can be seen in figures 5.8a and 5.8b. Agreement may also

require an unrealistically large value of B.

The Zel’dovich number also depends on the wall temperature T0 through the

relation B=(E/RT2)(TrTo). When all quantities other than T0 are fixed, it is possible to

examine the influences of wall temperature on heat flux and flame quenching distance.

Since q.~.0.57/1q and rqocmro)”, we find qocmroym, drq/dTooc-(TrTof’z, and

dq/dTooc(Tg-To)'5’2. Thus as To increases, rq vanishes at a successively decreasing rate

while q increases at a successively increasing rate. Under practical conditions, we expect

that the near-wall flame tip can heat the wall, raising TO and decreasing rq, while
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increasing q. It is not clear how long this incremental process can continue, for there are

upper bounds on the chemical production of heat that leads to q.

5.5.5 Characteristic Flame-Tip Width

For small rq, a practical estimate of the width of the triple-flame structure, shown

as the lowermost arc of figure 5.1, is obtained by exploiting the relationship for q(§)

given by equation (5.17). We note the closeness of [31,132, and B3 to unity and write

q(§)=Cexp(-E/rq)(l+§/rq), where C=0.572/rq. This function possesses an inflection point

at §=rq, which we interpret as a measure of the triple-flame tip structure half-width, 1,.

Thus, we write

1r = 2rq x113” exp(E/ZRTf) (5.24)

This result agrees with a previously derived estimate [3]. As the flame temperature

increases, all else remaining constant, both [3 and the exponential factor decrease. Hence,

lr decreases exponentially and algebraically as flame temperature increases. Conversely,

as the non-dimensional activation energy increases, Ir increases exponentially.

5.5.6 The q«-rq Relationship

In our study, the relation (5.17) was derived for infinite-rate chemistry and the

modifications of section 5.5.3 were appended under the approximation that the infinite-

rate chemistry limit was a reasonably accurate approximation. In this case, the essential

prediction is qrq~O(1) and constant. We expect this relation to apply in a broad middle

range but not at the extremes q—>oo (rq-—)0) and q—)0 (rq—->oo). The latter limit may be

interpreted as flame liftoff, whereas the former as flame extinction. Liftoff, followed

eventually by blowoff, occurs when heat losses to solid boundaries cannot be sustained.
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The separation distance between surface and flame increases until the flame effectively

no longer interacts with the surface. At blowoff, even gas-phase flaming becomes

impossible. Extinction, on the other hand, occurs when the flame loses too much heat to

the surface to survive. It produces enough heat that lifting is not necessary, but the losses

to the surface become excessive. Our numerical integrations have in fact produced both

limiting cases, although the detailed description is beyond the scope of this article.

Nevertheless, it appears that the extinction limit is attainable without radiant losses from

the flame tip, without thermal expansion of the gas, or without buoyancy. All that is

required for a minimalist description is chemical heat production and conductive surface

losses.

5.6 Comparison with Experimental Results

The relationships derived in section 5.5.3 allow calculations to be performed

when all pertinent information about the problem is known, such as the overall heat

release, stoichiometry, chemical rate data for a one-step global reaction, etc... Such data

data readily available for many hydrocarbon fuels such as methane (CH4) or Propane

(C3H3), thought the accuracy of one-step reaction data is suspect as will be seen below.

These two fuels are used to estimate the heat flux profiles along the nearby cold boundary

and the methane estimates for the maximum heat flux are compared to experimental data.

The information used in conjunction with the equations in 5.5.3 was found in

reference 13, and appears in table 5.2. The constants A, m, and n correspond to the rate

equation given below.

H

£11(—::lxt—y-J=—Aexp(- Ea/RuT)[C,‘Hy]m [02]" (5-25)
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where A is a pre-exponential factor, m and 11 represent independent reaction orders, and

Ea is an activation energy. All units are consistent with gmol-cm-sec.

Table 5.2 Reaction information for Methane and Propane
 

 

 

 

  

Fuel A m n EalRu (°K) HHV(KJ/Kg)

CH.I 8.3x105 -0.3 1.3 15098 55,528

(:11.2 1.111018 1 2 15100 55,528

C3Hg 8.6x10” 0.1 1.65 15098 50368      

These values were used to obtain estimates for the flame temperature and quenching

distance for various stoichiometries. Note that there are two different global reaction

schemes used for Methane/Oxygen combustion. The two are included to show the large

discrepancies in these models and how they effect the final estimates. The results appear

in figure 5.9 and 5.10 for Methane and figure 5.11 for Propane.

Examination of figure 5.9 shows that the heat flux distribution is fairly flat across

the lower boundary for fuel lean cases (¢<1) and become more defined when the fuel rich

case (¢>l) is examined. The broadness of the heat flux profile is due to a large quenching

distance of the flame. As (1) increases, the flame tends to be able to survive closer to the

lower boundary and hence produces a larger heat flux. This is a characteristic that is

witnessed for both fuels and is primarily caused by the increase in the adiabatic flame

temperature for fuel rich mixtures. The profiles for Methane combustion using the

second global reaction scheme are much more defined. This is due to the increased rate

of reaction predicted by the second scheme and hence the flame can survive closer to the

cold boundary.

Two experimental studies were used to serve as benchmarks for our model. The

first involved a bumer-attached flame burning Methane fuel [14]. In this study, the fuel
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was flowing into a quiescent oxygen environment so the present model, which assumes

zero convection, may not be entirely appropriate. Additionally, the second experimental

study involves both flowing fuel and oxidizer, in this case air [15]. The heat flux

distribution is not examined in either of the above cases but the maximum heat flux

information can be obtained. With all the above differences it is expected that the

comparisons will be able to yield an order of magnitude estimate, and help validate the

results from our study.

For both the studies examined a stoichiometric mixture is assumed, that is 11) is

taken to be unity. From reference 14 it is found that the maximum heat flux is on the

order of 1 W/cm2 while for the co-flowing reactant case [15] finds q”max to be roughly 2

W/cmz. Comparisons with figure 5.9 show that the maximum heat flux for ¢=l is on the

order of 1 W/cmz, while figure 5.10 shows a maximum heat flux of order 5 W/cmz. Both

these results show the maximum heat flux to be on the same order and agree well with

experimental results thus adding credibility to the proposed heat flux distribution for

burner attached flames.

5.7 Conclusions

The conductive heat transfer sub-model reproduces many of the global features of

the finite rate chemistry case. The profiles at the lower boundary are similar for both

models with only a scaling factor needed to produce accurate agreement. However, when

examining the temperature profiles along the centerline of the lifted flame the two models

can produce significantly different results for the transition region and the flame tip

region, especially as the quenching distance increases. This can be partially attributed to

the assumption of a flame sheet in the heat transfer model, which differs from the non-
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zero flame thickness produced by finite rate chemistry. The conduction heat transfer

mode] is unable to accurately predict the heat loss from the flame tip, even for pure

diffusion flames. For this reason the conduction model is not useful for describing

thermal phenomena close to the flame tip, but is very useful in examining events away

from this region as is generally true for other heat transfer models of detailed flame

process [5]. This limitation might be overcome by introducing a volumetric heat

generation term into the conduction model that has temperature dependence, but this is a

subject for future study.

For modeling finite rate chemistry influences on the heat flux, we recommend a

combination of equations (5.17) [or (5.19)] and (5.21), with the later being substituted for

the factor 0.572/rq appearing in the formula. This combined equation accurately predicts

the flux beneath the flame leading edge and also its distribution along the surface.

It is also noted that the results obtained herein may be limited to configurations

closely resembling the slot configuration used in this work. The heat flux profiles for

other lifted flames with different physical and flow orientations may produce different

correlations. It is a limitation of the work that the methods used here will need to be

followed for different problems. However, the usefulness of the results is not diminished

for this lack of adaptability. The general result of our research is to show that beneath the

flame tip q~0(1/rq), where rq~O([B3/Da]”2), to within a multiplicative function of global

stoichiometry. Although this result may be deduced by simple dimensional analysis and

scaling arguments, we have in addition quantified the heat flux distribution beneath the

flame tip.
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Figure 5.1 Model configuration and boundary conditions. The side and lower walls

are porous to reactants. The vertical walls admit only diffusive fluxes. In the far

field the diffusion flame is one-dimensional. The near field triple flame structure is

shown, with (I) as the diffusion flame, (II) and (III) as rich and lean premixed flame

arcs, and (IV) as the triple point or leading flame edge
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Figure 5.2 Heat transfer model for infinitesimally thin flame sheet and

isothermal boundary conditions. This model is the heat transfer

simplification of the flame in figure 5.1 because by far the greatest heat

release is along the diffusion flame arc
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Figure 5.3 Model configuration of mixture fraction Z after conformal

mapping. Note that the straight diffusion flame along Z=Zg occurs only in

the case of zero convection. In addition, lines of constant Z are radially-

directed arcs, Z=0ltt
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Figure 5.4 (a) Heat flux profiles comparison for straight flames rq=0.27. Note

the inaccuracy, generally, of the Burke-Schumann calculation of

Equation(12.a,b) and the comparative similarity of the Finite-rate and Heat

Transfer model results. A scaling factor renders the latter two visually

indistinguishable. Heat flux comparisons for straight flame rq=0.9. (b) Heat

flux profiles comparisons for straight flames rq=0.9. The comments to (a)

apply here as well
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Figure 5.5 (a) Heat flux profile comparisons for fuel lean flames phi=0.5,

rq=0.38. For this non-symmetric case the flux distribution is asymmetric.

The Burke-Schumann model is once again a poor approximation to the heat

flux. (b) Heat flux profile comparisons for fuel rich flames phi=1.5, rq=0.28.

See comments in figure 5.4a
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Table 5.1 Correction Factor Coefficients

 

 

 

 

 

 

 

 

 

 

  

9 B4 135 B6 B7 BB

0.333 1.045 -0. 179 -0.313 1.074 0.977

0.429 0.746 -0.08 -0.210 1.039 1.018

0.538 0.563 -0.096 -0. 127 1.093 1.004

0.667 0.392 -0.194 -0.046 1.170 0.974

0.818 0.204 -0.084 -0.024 1.227 0.964

1.222 -0.204 0.084 ~0.024 1.227 0.964

1.5 -0.392 0.194 -0.046 1.170 0.974

1.857 -0.563 0.096 -0.127 1.093 1.004

2.333 -0.746 0.08 -0.210 1.039 1.018

3.0 -1.045 0.179 -0.313 1.074 0.977     
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Figure 5.6 Heat flux profile comparison for straight flame with convection

Pe=1,rq=0.395
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Figure 5.7 Centerline temperature distributions for a straight flame rq=0.375.

The broadness of the actual flame moderates the temperature variation,

compared with the sharp heat transfer profile. The 1: values along the

diffusion flame (n>0.5) agree to within 0(8'1)
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Figure 5.8 (a) Centerline temperature profile for a straight

flame rq=0.525. (b) Centerline temperature distribution for

a straight flame rq=l.225. For large quench distances the

pure heat transfer temperature profile differs significantly

from the finite-rate chemistry profile
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Figure 5.9 Heat flux distribution for Methane/Oxygen combustion at various

stoichiometries
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Figure 5.10 Heat flux distribution for Methane/Oxygen combustion at various

stoichiometries. The second reaction mechanism given in table 5.2 is used
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Figure 5.11 Heat flux profile for Propane/oxygen configuration. Larger heat losses

than Methane are predicted
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NUMERICAL TECHNIQUES

6.1 Numerical Techniques

The equations examined throughout this document represent models of more complex

systems. The problems are greatly simplified by assuming the flow to be known and

uniform and the fluid properties assumed constant. This eliminates the need to solve for

the flow field through the Navier—Stokes equations. This model of uniform flow and

constant density is a simplifying assumption to be sure; but it allows the thermo-diffusive

effects, i.e. the Lewis number effects, to be examined without the complicating additions

of an unknown flow field. However, even with these simplifying assumptions, the

problem is still non-linear because of the chemical reaction that eliminates or creates

constituents within the domain and adds thermal energy to the system to drive this

transformation. Because of this non-linearity, analytical solutions become quite difficult

and thrust one into the realm of asymptotic analysis. Asymptotic solutions, although

insightful, are generally limited to “simpler” problems, i.e. those with only a single value

for Le, simplified kinetic expressions, and one dimension. To study more complex

combinations of parameters a computational solution was needed. In the text below the

techniques used to solve the various systems of equations are discussed.

6.2 Transient premixed flame propagation

The governing equations for this problem have been described in chapter 4. In

this section the solution techniques used and the issues that were addressed will be

examined by using a generic one-dimensional equation with the same form. The

following equation will be examined,

99:33:81 3x2 +f(¢), (6.1)
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where (1) represents a vector of dependant variables, and the function f is a non-linear

function of the dependant variables.

There are several concerns that arise before numerical solutions begin. Primarily,

the numerical stability of the problem as time increases. Furthermore, this stability issue

is clouded with the nonlinear reaction term. It is clear that without the non-linear source

term, a numerical scheme could be used that would be unconditionally stable, such as the

Crank-Nicholson procedure. However, the need to linearize the equation for solution

also raises stability issues. The fact that 11) may contain more than one variable and be

coupled through the reaction term is addressed by solving all the equations in the system

simultaneously.

There are two ways to linearize equation (6.1): evaluate the non-linear term at the

previous time step, thus producing a source term with a known value, or expand the

function with a truncated Taylor series around the previous time step so that the function

is represented as a linear equivalent. The discretized equations for both of these methods

will be outlined below.

Along with the time lagging technique to linearize the system we apply a forward

differencing for the time derivative and a central differencing for the spatial derivative.

This scheme is first-order accurate in time and second in space; so in order to keep the

solution reasonably accurate a small time step will be needed. An additional restriction

on the size of the time step is introduced with this method. If the non-linear reaction term

is going to be accurately represented by the value at the previous time step, then the time

step cannot be too large. The discretized equations then become

n+1 n n+1 n+1 n+1

° ‘91 ¢1+1 “291 +914 11
‘ = +f 6.2At Ax, (<1 ) < )
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where the i subscript represents the node number, while the superscript n represents the

time index. Furthermore, At and Ax are the time step and grid spacing respectfully. At

this point it should be pointed out that for problems where there are rapid changes in the

values of the variables both temporally and spatially such as combustion wave fronts or

shock waves, a non-uniform grid is usually desirable. In this way, there are more grid

points in the vicinity of the sharp changes so their characteristics are captured more

accurately. A non-uniform grid makes the discretization a bit more complex but does not

affect the solution procedure. In the schemes used in this text a uniform grid was used,

after the difference between a non-uniform and uniform mesh proved to be insignificant.

Equations (6.2) are then solved simultaneously in a block tri-diagonal format.

This system will produce a banded matrix of the form Ax=b, where the vector x

represents all the dependant variables of (1). Here A is a square matrix of order C*N,

where C is the number of dependant variables and N is the number of grid points.

The lagging method of linearization produced a stable scheme only when the time

step was very small. If the time step became too large, the non-linear term was unable to

be accurately modeled using previous time step data. As it turned out, for the flame

propagation problem, the time step using this method became so small that round off

error may have become significant. This is an unacceptable situation, both from an

accuracy standpoint as well as a practicality perspective. For this reason, the nonlinear

term was linearized to include information from both the previous and present time

indexes. This is discussed below.

The truncated Taylor series expansion of the reaction term is shown below,
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89““) - f(¢” ) +41%] (6.3)

where A¢=¢"+'-¢", and 3%¢ represents a n by n Jacobian matrix, with n being the

number of dependant variables in (1). The resulting set of algebraic equations is then

solved. By linearizing the system in this fashion and solving all n equations

simultaneously, a stable solution can be achieved by means of a much larger time step. It

is important to note that the time step must still be small to assure stability, but not as

small as the lagging technique would require.

The boundary conditions of the first kind were implemented by fixing the value at

the boundary node to equal that required by the boundary condition. The zero flux

boundary conditions, or boundary conditions of the second kind, i.e. a fixed gradient at

the boundary, were done in such a manner to ensure second order spatial accuracy. The

method of image points was used so that the following discretized equation would result.

9131' = 2 * Ax * q"+¢."_i' - (6.4)

In this case the i-l node represents the image point and is found as a function of the

interior node at i+l and q” is the heat flux at the boundary. Note that if this were to take

place at the boundary where i+l was the point outside the boundary, that would be the

image point and the exterior node would be found in terms of the interior node.

6.3 Two-dimensional steady state with co-flow reactants

The governing equations for this system have the form

39 82¢ 82¢
c D +— =1 6.5
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where C and D represent constants, andf is a non-linear reaction term. The reaction term

is handled identically to that of section 6.2.

Steady state schemes differ slightly from their transient counterparts in that there

is no temporal evolution. In steady schemes a fixed solution is desired and there is no

definite beginning and ending to the process. In this respect, the goal is to "find" the

solution via interative approaches, or in some instances a quasi-transient procedure. It

should be noted that although there is no temporal evolution, the iteration itself acts as a

pseudo-transient scheme so that numerical stability concerns can not totally be ignored.

Furthermore, with the second dimension, the set of algebraic equations will no longer

produce a block tri-diagonal form. If the set of equations is to be solved simultaneously,

then a block penta-diagonal matrix will result. Since solution methods for a penta-

diagonal scheme take significantly longer than those for a tri-diagonal matrix, it is

desirable to utilize a tri-daigonal method in solving. This is accomplished by using an

alternating direction implicit (ADI) scheme.

The ADI scheme is characterized by discretizing in one direction with an implicit

manner, and the other explicitly. This set of equations is solved and the solution

represents one half of a full iteration. The procedure is reversed and the formerly implicit

direction is then treated as implicit and visa-versa. The solution obtained then represents

one full iteration.

The discretization techniques are slightly different from those in section 6.1. The

second derivatives, i.e. the diffusion term, are still modeled by second order correct

central differences; but some care must be taken when examining the first derivative, i.e.

the convective term. If C is large enough, the convective term become dominant and a
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wave type equation exists. In this case an upwind scheme is needed to accurately model

the problem. This is accomplished by using a second order accurate backward

differencing shown below

fl = 3¢1,j -4¢i-1.j “111—2,)

By 2Ay

 

(6.6)

Here, the i subscript refers to the nodes in the x-direction and the j subscripts to those in

the y-direction. It is also noted that the backwards direction refers to the direction

relative to the convective direction.

If C is less than some critical value, a second-order correct central differencing

can be used on the convective term with no numerically instability associated with wave

phenomena. This value of Ccritical can be found by examining the sign of the ¢i+1 and (1),-)

terms in the discretized equation. If the condition below is satisfied, then a central

differencing can be used with no loss of accuracy.

|C|Ay < 2|D| (6.7)

Since this condition is satisfied for the co-flowing reactant problem, a central

differencing was used for both the convective and diffusive terms.

The ADI method employed differed slightly from that described above. It was

found that the numerical scheme was much more stable when the central differencing

schemes involved evaluating the i,j term at the current iteration. This essentially resulted

in the following discritized equations.

  

k “2 k

C¢Cj+1'¢i‘.1-1_ ijfiz‘z‘l’tilflmfigz”RH-24)"; WU“ -f(¢"-)
2A 2 2 _ "Jy Ax A)’

(6.8)

k

k /2 af

+1115” -¢Cj{§b]
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Solving with the y-direction derivatives evaluated at the (k+1) iteration step completes

the ADI. This scheme allows a block tri-diagonal scheme to be used for both directions,

and utilizes less CPU time than solving the block penta-diagonal system.

After each iteration each point is subjected to some relaxation to improve

convergence and help with numerical stability. The following equation represents how

this relaxation is done:

1).",3“ =u><1‘3‘ +(1— out, (6.9)

where, the k+l* superscript indicates the undated next guess in the iteration procedure.

The value of 0) is chosen by examination of the residuals to equation (6.5). This will be

discussed in section 6.5. This iterative procedure will continue until the differences

between the updated solution and the previous solution is small.

6.4 Two-dimensional Transient with Co-flow reactants

The governing equations are similar that those seen in section 6.3, with the exception

that there is a art/8t is added to the left-hand side.

@ _a_1>_ 32¢ 32¢
at+Cay D[ax2 +872}: 1(1)) (6.10)

Furthermore, as previously stated, a block tri-diagonal scheme is desirable due to the

computational efficiency. Hence, an ADI scheme was implemented. The solution

procedure follows that described by Shih [l] in which approximate factorization was used

with a delta formulation of the difference equations. Equation (6.10) can be discretized

into the following formulation:

n+l_ n n+1

1),.)_3_A__t¢1"1_ :Kflj 4.6—4’] :I+O(At2) (6.11)
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The right-hand side of equation( 6.11) is then re-written as

Ff Cad) 02(1) 02(1) \n -

+—-D—+D—+f(¢) +

RHs—l \Cay ax 8y 1—-§( 82 \M] (6.12)

-C-a—¢+ D3¢+Da__2¢+f(¢)

    

The source term f(¢) is non-linear and hence cannot be handled directly at the n+1 time

step. The linearization is handled as in section 6.2. In the delta formulation, the A¢“ =

¢“+‘-¢" which appears in the linearization is kept as the dependent variable and all

discretization is performed on this delta term. The variable B will represent the Jacobian

matrix of 81/31) evaluated at the nth time step. Substituting equation (6.12) into equation

(6.11) and introducing subscript notation to represent the derivatives yields

At

I+—(C¢ —D¢ -D¢ +B)]A¢" =

1 y x" W (6.13)

At(— c1), + 131),, + 151,, + foul“

Here I represent the identity matrix. The approximate factorization is introduced to

produce a directionally dependent representation of equation (6.13).

At At

[N+-2—(c¢y— D¢yy):lN[N+?(— D1),,,)]=RHS2 (6.14)

Where N = I +BAt/2, and ms; is the right-hand side of Eq(6.13). Equation (6.14) is

then solved by sweeping in the y-direction and then the x-direction via the following

procedure:

[N +5101,-D¢yy)]A¢ =RHs2 (6.15)

At ,, ..
[N+—2—(— D¢,,)]A¢ =NA¢ (6.16)
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$11.11 = 1’1".) + 4‘11) (6.17)

Equations (615,616) are solved via second order correct finite differencing subject to the

constraints listed in section 6.3.

6.5 Error analysis

Code validation is an essential component to proper numerical analysis. This

validation is commonly done by comparing experimental data to the output from the

numerical method. This approach is useful when the governing equations used simulate

the actual physical phenomena rather than model it. A simplified model used to predict

only qualitative results will have a difficult time comparing well with experimental data.

However, because of the simplicity of such models, the governing equations are generally

well understood and several techniques can be used to ensure that the correct equations

are being solved.

Initially, the finite difference equations (FDE) are examined for consistency. That

is, a Taylor series expansion for each term is done about the i,j point. These are then

substituted into the FDE and check to ensure that the original equations are obtained as

the spatial or temporal terms approach zero. This will identify if the scheme is consistent

or conditionally consistent. See reference 2 for more details.

Once the FDE has been solved, it is necessary to check and see if the correct

equations have indeed been solved. The following describes how this was done for

steady problems. The first step was to identify the optimal convergence parameter for the

over-relaxation. Optimal in the sense that the residual sum of squares is minimized.

Secondly, the errors are estimated by assuming the equation solved has the order of

magnitude of error do the finite differencing as the original FDE.

148



It has long been known that when using a successive over-relaxation (SOR)

procedure that the choice of the relaxation parameter (0 can greatly impact the numerical

schemes efficiency. However, it can also impact the accuracy of the numerical solution.

This is shown by looking at the residual sum of squares. The residual is evaluated at each

node and is effectively the imbalance between the right-hand side and the left-hand side

of the governing finite difference equations. Each residual is then squared and summed

over all interior nodes. If the numerical scheme was solving the FDE exactly, then the

residual sum of squares would be zero; however, this is not the case. So, (1) is varied over

the range 0<00<2 to find the value that minimizes the residuals.

Examination of the error behavior is also an important check to determine if the

equations are being solved correctly. To do this it is necessary to know the accuracy of

the FDE used in the model. If the problems examined are second-order accurate in both

time and space, we can now assert that the true value can be given by the following

equation:

T=Rh +Eh2 (6.18)

where T is the true value, R3. is the numerical result at grid spacing h such that Ax=Ay=h,

and E is an order one constant. Taking results for three different grid sizes to be

h,h/2,and h/4 the error term can be estimated as follows.

2

E(%) = Ehl_2_3__R_h (6.19)

The true value can now be estimated for the grid spacing NZ and h/4 since the errors are

known. If the errors behave in a second-order correct fashion, then the difference
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between the two estimated true values should be less than the error for the h/4 grid

spacing, and should be much less than order hz.

 

lTh/z‘Th/4l<iRh/4th/2I<<O(h2) (6.20)

If equation (6.20) holds true, then the numerical scheme behaves as expected and one can

have reasonable confidence that the correct equations are being solved.
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