_ 0 *2 ‘2 .I. P m. a... figqu u‘ sf 17,1; lémfiafig. a, . m $5 3 g» . .... .13: .MMMwfi-vw. EPM. 9 , . . V murmé. .52 .3. . hoe. La. 3.5” 33:11 .Avél. «19‘ . L. .3:u.;ufiq .flwzv... $9.17!. . . 155?: 3%....»ufuwd x as . p 3.. .3. :. . .4? . . V . . 7. t 6.3. ’31, kfua , .3 ‘7. .. Igunifi .muuk. . . . :r 62? 33...”: Z. v. if. .3 N. w.” a a»... an.» , . «.3... ”wk... 7:5 . a w. . -54.» may s7::.1. 2‘ .4. ha? 5 "mam 5 This is to certify that the thesis entitled VALIDATION OF A NUMERICAL MODEL FOR PREDICTION OF MOISTURE CONTENT FOR BINARY MIXTURES OF CORN, OATS AND WHEAT CEREALS IN SEMIPERMEABLE PACKAGING presented by CARLOS GUSTAVO CASTRO IZAGUIRRE has been accepted towards fulfillment of the requirements for MS PACKAGING degree in C/léwy/J fizofzz/ Major professor Date 0/- I? I 0/ 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 6/01 C'JCIRC/DateDuepfis—p. 15 VALIDATION OF A NUMERICAL MODEL FOR PREDICTION OF MOISTURE CONTENT FOR BINARY MIXTURES OF CORN, OATS AND WHEAT CEREALS IN SEMIPERMEABLE PACKAGING By Carlos Gustavo Castro lzaguirre A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE School of Packaging 2001 ABSTRACT VALIDATION OF A NUMERICAL MODEL FOR PREDICTION OF MOISTURE CONTENT FOR BINARY MIXTURES OF CORN, OATS AND WHEAT CEREALS IN SEMIPERMEABLE PACKAGING By Carlos G. Castro The application of mathematical modeling, which correlates the products’ moisture sorption characteristics, the packaging properties, and the storage conditions, to two-component products was used to develop a computer program. The experimental validation of the model was carried out with corn- wheat, corn-oats and oats-wheat mixtures and with individually packaged products. The mixtures were prepared at 1/2, 1/1 and 2/1 ratios and packaged in LDPE and HDPE pouches. The model estimates the components’ moisture contents with reasonable accuracy for systems where the components have similar water activities. The mixtures of components with very different water activity (corn-oats and oats- wheat) presented an initial moisture exchange. During this early stage of the storage, the moisture exchange was more important than the permeability. The determination of the components' moisture content after this'moisture exchange was critical to the successfully application of the computer model. The correlation coefficient (>90°/o), obtained from a regression analysis, shows that model can be used to determine moisture gain of binary mixtures. Copyright by Carlos Gustavo Castro lzaguirre 2001 To my encouraging father, Julio Castro and my loving mother Imelda lzaguirre for the enormous support given and the confidence provided during my stay and studies in the States. ACKNOWLEDGMENTS My gratitude to Dr. Theron Downes, my advisor, for providing the research topic, his permanent advice, generous support and encouragement. My appreciation to Dr. Ruben Hernandez, for his guidance, patience and keen observations during the development of the computer program. Thanks to Dr. Perry Ng (Department of Food Science and Human Nutrition); for his time and his comments made to this manuscript. Dr. Bruce Harte (Director of School of Packaging) for his permanent appreciation and support during my studies at the School of Packaging. Thanks also to the other professors, staff and fellow student at the School of Packaging for their friendship that helps me to the culmination of my degree. TABLE OF CONTENTS List of Tables ...................................................................................... ix List of Figures ..................................................................................... xii Introduction .......................................................................................... 1 CHAPTER I - Literature Review 1.1. Definition of water activity .................................................................. 3 1.2. Sorption Isotherms ........................................................................... 6 1.3. Use of Moisture Sorption Isotherms ..................................................... 7 1.4. Equations for Sorption Isotherms ........................................................ 8 1.5. Equations for Multicomponent Isotherms ............................................. 10 1.6. Shelf Life Definition ........................................................................ 15 1.7. Shelf Life Models ........................................................................... 15 1 .7.1 . Generalities ....................................................................... 15 1.7.2. Single Products .................................................................. 16 1.7.3. Multicomponent Products ..................................................... 17 1.8. Mathematical Model Development ..................................................... 20 CHAPTER II - Material and Methods 2.1. Product — Package System .............................................................. 23 2.1.1. Food Product Samples ........................................................ 23 2.1.2. Package ........................................................................... 23 2.2. Moisture Content Determination ........................................................ 24 2.3. Moisture Sorption lsotherrns ............................................................ 25 2.4. Permeability of Packaging Material ................................................... 29 2.5. Model Validation Experiments .......................................................... 30 CHAPTER III - Results and Discussion 3.1. Initial Moisture Content .................................................................... 31 3.2. Moisture Sorption Isotherm ............................................................... 31 3.3. Film Permeability ........................................................................... 35 3.4. Package Permeability ..................................................................... 35 3.5. Validation 1 - Moisture Change in Cereal Packaged in HDPE 1.9 mil ........ 36 3.6. Validation 2 - Moisture Change in Cereal Packaged in LDPE 1.0 mil ........ 54 Conclusions ...................................................................................... 64 Recommedations ................................................................................ 65 vi Bibliography ...................................................................................... 67 Appendices Appendix A — Determination of Shelf Life Equations Using a Linear and Non-linear Sorption lsotherrn ............................................. 72 Appendix B - Packaging Materials Characterization ................................... 79 Appendix C - Parameter Estimation of GAB Equation ................................ 82 Appendix D — Computer Program Validation ............................................ 84 Appendix E —Moisture Sorption lsotherrn Data for the Cereals ...................... 91 Appendix F — Experimental and Predicted Moisture Content ...................... 93 Appendix G - Detailed Data of Validation Experiments .............................. 103 vii LIST OF TABLES Table 1- Saturated salt solutions and their corresponding relative humidities at 23°C .................................................................. 25 Table 2 - Linear, GAB and Cubic Sorption lsotherm Equations of Com, Oats and Wheat Cereals determined at 23°C ....................... 34 Table 3 - Combinations of Cereals Used for the Experimental Validation 1 ........................................................................... 36 Table 4 - Combinations of Cereals Used for the Experimental Validation 2 ........................................................................... 54 Table 8.1 - Permeance (g/m2.day) and Permeability (g.mil/m2.day.mmHg) at 23 °C for flat LDPE samples ............................................... 79 Table 3.2 — Permeance (g/m2.day) and Permeability (g.mil/m2.day.mmHg) at 23 °C for flat HDPE samples ............................................... 80 Table 8.3 - Water Vapor Transmission Rate (g/day) and Permeability (g.millm2.day.mmHg) at 23 °C for LDPE pouches ....................... 81 Table 8.4 - Water Vapor Transmission Rate (g/day) and Permeability (g.mil/m2.day.mmHg) at 23 °C for HDPE pouches ....................... 81 Table 0.1 - aW and M (9/9) values used to obtain the cereal and raisin isotherms at 20°C for the computer simulation .............................. 85 Table 0.2 — Conditions used in the computer simulation ............................. 86 Table E.1 - Equilibrium Moisture Content (Me, 919) of Com, Oats and Wheat Cereals at Nine Different Water Activities ..................... 91 Table F1. - Experimental and Predicted Moisture Content (%) for 33/67 corn/wheat samples for validation with HDPE .............................. 93 Table F2. - Experimental and Predicted Moisture Content (%) for 50/50 corn/wheat samples for validation with HDPE .............................. 93 Table F3. - Experimental and Predicted Moisture Content (%) for 67/33 corn/wheat samples for validation with HDPE .............................. 94 Table F4. - Experimental and Predicted Moisture Content (%) for 33167 corn/oats samples for validation with HDPE .............................. 94 viii Table F5. - Experimental and Predicted Moisture Content (%) for 50/50 corn/oats samples for validation with HDPE .............................. 95 Table F6. - Experimental and Predicted Moisture Content (%) for 67I33 corn/oats samples for validation with HDPE .............................. 95 Table F7. - Experimental and Predicted Moisture Content (%) for 33l67 corn/wheat samples for validation with HDPE ........................... 96 Table F8. - Experimental and Predicted Moisture Content (%) for 50/50 corn/wheat samples for validation with HDPE ........................... 96 Table F9. - Experimental and Predicted Moisture Content (%) for 67/33 corn/wheat samples for validation with HDPE ........................... 97 Table F10 - Experimental and Predicted Moisture Content (%) of corn, oats and wheat samples for validation with HDPE ............................ 98 Table F11 - Experimental and Predicted Moisture Content (%) for 50/50 corn/wheat samples for validation with LDPE ........................... 99 Table F12 - Experimental and Predicted Moisture Content (%) for 50/50 corn/oats samples for validation with LDPE .............................. 99 Table F13. - Experimental and Predicted Moisture Content (%) for 50/50 oats/wheat samples for validation with LDPE ............................ 100 Table F14 - Experimental and Predicted Moisture Content (%) of corn, oats and wheat samples for validation with LDPE ............................. 101 Table 6.1 - Initial weight (g) of components and pouches weight (9) over time for 33l67 corn/wheat (Validation 1) ............................ 103 Table G.2 - Initial weight (g) of components and pouches weight (9) over time for 33l67 corn/oats (Validation 1) ............................... 105 Table G.3 - Initial weight (g) of components and pouches weight (9) over time for 33l67 oats/wheat (Validation 1) ............................. 107 Table 6.4 - Initial weight (g) of components and pouches weight (9) over time for 50/50 corn/wheat (Validation 1) ............................ 109 Table G.5 — Initial weight (g) of components and pouches weight (9) over time for 50/50 corn/oats (Validation 1) ............................... 111 Table G.6 — Initial weight (g) of components and pouches weight (9) over time for 50l50 oats/wheat (Validation 1) ............................. 113 Table G.7 — Initial weight (g) of components and pouches weight (9) over time for 67/33 corn/wheat (Validation 1) ............................ 115 Table G.8 - Initial weight (g) of components and pouches weight (9) over time for 67/33 corn/oats (Validation 1) .............................. 117 Table G.9 - Initial weight (g) of components and pouches weight (g) over time for 67/33 oats/wheat (Validation 1) ............................ 119 Table G.10 — Initial weight (g) of components and pouches weight (9) over time for individually packaged corn (Validation 1) ................ 121 Table G.11 — Initial weight (g) of components and pouches weight (9) over time for individually packaged oats (Validation 1) ................ 123 Table 6.12 - Initial weight (g) of components and pouches weight (9) over time for individually packaged wheat (Validation 1) .............. 125 Table G.13 - Initial weight (g) of components and pouches weight (9) over time for 50/50 corn/wheat (Validation 2) ........................... 127 Table 6.14 — Initial weight (g) of components and pouches weight (9) over time for 50/50 corn/oats (Validation 2) .............................. 129 Table G.15 — Initial weight (g) of components and pouches weight (9) over time for 50/50 oats/wheat (Validation 2) ........................... 131 Table G.16 - Initial weight (g) of components and pouches weight (9) over time for individually packaged corn (Validation 2) ............... 133 Table G.17 - Initial weight (g) of components and pouches weight (9) over time for individually packaged oats (Validation 2) ................ 135 Table 6.18 — Initial weight (g) of components and pouches weight (9) over time for individually packaged wheat (Validation 2) .............. 137 LIST OF FIGURES Figure 1 -WaterActivity- Stability Diagram ................................................ 5 Figure 2 - Schematic Representation of 3 (Moisture Sorption Hysteresis ............ 7 Figure 3 - Moisture Sorption lsothenn 'of Com Cereal at 23°C ....................... 31 Figure 4 - Moisture Sorption Isotherm of Oats Cereal at 23°C ........................ 32 Figure 5 - Moisture Sorption lsotherm of Wheat Cereal at 23‘C ..................... 32 Figure 6 - Experimental and Predicted Moisture Content Profile of 37/67 Com/Wheat Mixtures for Validation 1 ................................. 39 Figure 7 — Experimental and Predicted Moisture Content Profile of 50150 Corn/Wheat Mixtures for Validation 1 ................................. 40 Figure 8 - Experimental and Predicted Moisture Content Profile of '67/37 ComNVheat Mixtures for Validation 1 ................ p ................. 41 Figure 9 - Experimental and Predicted Moisture Content Profile of 37/67 Com/Oats Mixtures for Validation 1 ................................... 42 Figure 10 — Experimental and Predicted Moisture Content Profile of 50150 Com/Oats Mixtures for Validation 1 ................................... 43 Figure 11 - Experimental and Predicted Moisture Content Profile of 67137 Corn/Oats Mixtures for Validation 1 .................................... 44 Figure 12 - Experimental and Predicted Moisture Content Profile of 37167 OatsNVheat Mbttures for Validation 1 ................................. 45 ' Figure 13 '- Experimental and Predicted Moisture Content Profile oi 50150 OatsNVheat Mixtures for Validation 1 ................................. 46 Figure 14- Experimental and Predicted Moisture Content Profile of 67137 Oats/Wheat Mixtures for Validation 1 ................................. 47 Figure 15- -Experimental and Predicted Moisture Content Profile of Com for Validation 1 ............................................................... 48 Figure 16 - Experimental and Predicted Moisture Content Profile of Oats for Validation 1 ............................................................... 49 xi Figure 17 — Experimental and Predicted Moisture Content Profile of Wheat for Validation 1 ............................................................ 50 Figure 18 —- Experimental and Predicted Moisture Content Profile of 50150 CornNVheat Mixtures for Validation 2 ................................ 58 Figure 19 - Experimental and Predicted Moisture Content Profile of 50/50 Corn/Oats Mixtures for Validation 2 .................................. 59 Figure 20 — Experimental and Predicted Moisture Content Profile of 50150 OatsNVheat Mixtures for Validation 2 ............................ 60 Figure 21 — Experimental and Predicted Moisture Content Profile of Com for Validation 2 ............................................................. 61 Figure 22 - Experimental and Predicted Moisture Content Profile of Oats for Validation 2 .............................................................. 62 Figure 23 - Experimental and Predicted Moisture Content Profile of Wheat for Validation 2 ............................................................ 63 Figure D.1 - Moisture content profile for different components’ weight ratio 87 Figure 0.2 - Moisture content profile for different storage water activities ...... 88 Figure 0.3 - Moisture content profile for different packaging barrier properties. 89 Figure 0.4 - Moisture content profile for different total weight to packaging area ratio .............................................................................. 90 xii INTRODUCTION Packaging of multi-component products where components have different water activities has challenged food scientists and packaging engineers for years. The difference in water activities is responsible for the moisture exchange among the components and also controls the moisture transfer across the package. Mathematical models that relate these mass transfer mechanisms have been created to facilitate package-product development and to replace tedious actual testing. These shelf life models are desirable to reduce cost, diminish labor, increase versatility and shorten the time of the product development process. This thesis worked with a general shelf life model developed by Pocas (1995) who also prepared a DOS computer program with the proposed model. A new windows program based on the model develop by Pocas (1995) was produced to predict the time and moisture content of two-component products. The program was designed for single and two-component products and included linear and non-linear (GAB and Cubic) isotherms for its calculations. This new software was validated with binary mixtures of corn, oats and wheat breakfast cereals at different load ratios. The corn, oats and wheat cereals were selected for this study because cereals are an excellent example of consumers’ demand for variety, superior quality and great taste. The objectives of this study were: A) To obtain moisture sorption isotherms for corn, wheat and cat cereals at 23°C. B) To apply shelf life models; based on the linear, GAB, and cubic polynomial moisture sorption isotherm equations; to flexible packaging containing two cereals. C) To validate the shelf life model at 23°C. D) To prepare a windows-based program that performs the models' calculations for shelf life and moisture content. Chapter 1 LITERATURE REVIEW 1.1. Definition of Water Activitv Water activity is defined as the ratio of the vapor pressures of solution and solvent. In food science terms, water activity describes the availability of the water in the food to participate in reactions. Water activity is used for characterization of the state of water in foods and its availability for biological, physical and chemical changes. It is a critical factor in physical, chemical and biochemical phenomena taking place in the product. Therefore, water activity is connected to the quality or shelf life of most foods. Water plays an important part in the textural properties of several food products and also influences the activity of microorganisms during the storage of food products under various conditions. Water activity affects the rate of microbial growth, enzymatic reaction, non-enzymatic browning, lipid oxidation, textural changes, aroma retention, and it induces structural changes. (Troller and Christian, 1978; lglesias and Chirife, 1982) Three different binding mechanisms for water are found in food. Water is bound to polar sites with ionic bonds at low water activities (Le Maguer, 1986). This water is tightly bound and is unavailable to solvate reactants. The upper limit of this first binding mechanism is referred as the monolayer moisture (Le Maguer, 1986). The second mechanism observed is the adsorption at the multilayer. Hydrogen bonding governs the water adsorption in the multilayer zone. The last mechanism present is the condensed water in capillaries. The multilayer and the capillary mechanisms are observed at higher activities where the mobility of water increases (Le Maguer, 1986; Labuza, 1975 cited by Nelson and Labuza, 1994; Hernandez, 1999; and Pocas, 1995). When water availability increases, the reaction rates also increase because water acts as a reaction medium in which sufficient reactant mobility occurs to allow reactant interactions. Some reaction rates decrease as water activity increases because some reaction species are diluted in the aqueous phase. A main exception to this minimum-maximum relationship involves the oxidation of unsaturated lipids where the reaction rate increases below the monolayer due to the increased catalytic activity of metal ions when sufficient water is removed from the hydration sphere around these ions. (Nelson and Labuza,1994) Labuza (1971; cited by Nelson and Labuza, 1994) summarized in a plot the reaction rate of various reactions and the moisture content as a function of water activity. The plot is presented on the next page in Figure 1. Nelson and Labuza (1994) made a comparison between the role of water activity and the glass transition theory on physical, chemical and biochemical reactions. The researchers stated that water activity essentially considers the state of water in a food while glass transition theory generally considers the state of a food matrix. This glass transition theory suggests that chemical reactions are slower or do not occur at the glassy state, but will increase substantially at the rubbery state. Finally the researchers stated that both approaches help to understand the influence of water on rates of chemical reactions. Moisture Content / Relative Oxidation Moisture Activity Reaction isotherm Browning Reaction Microbial Reaction A Enzymatic Reaction I 0 1 .00 Water Activity (a...) Figure 1 — Water Activity - Stability Diagram Source: Le Maguer (1986) 1.2. Sorptionfilsotherms The water sorption isotherms of foods show the equilibrium relationship between the moisture content of foods and the water activity (aw) at constant temperatures and pressures (Troller and Christian, 1978; lglesias and Chirife, 1982). Water sorption isotherms are usually described as a plot of the amount of water sorbed as a function of the water activity. The plot has generally, but not in all cases, a sigmoid shape (lglesias and Chirife, 1982). An important phenomenon present in most food’s sorption isotherms is hysteresis. Kapsalis (1987) defined hysteresis as the phenomenon where two different paths exist between the adsorption and desorption isotherms. Due to hysteresis, a much lower vapor pressure is required to reach a certain amount of water by desorption than by adsorption. Hysteresis phenomenon is critical in food stability because some foods are fitted to a chosen aw by desorption while others are fitted to the desired aw by adsorption. (Labuza, 1984; Troller and Christian, 1978; Kapsalis, 1987). A representation of the hysteresis phenomenon is shown by Figure 2. Moisture Content Desorption f Adsorption Water Activity Figure 2 — Schematic Representation of a Moisture Sorption Hysteresis Source: Kapsalis, 1987 1.3. Use of Moisture Sorption lsotherrns The sorption data has numerous theoretical and practical applications in food science and technology. Among the theoretical uses of sorption isotherms are thermodynamics (sorption-desorption enthalpies and bound water), structure investigations (specific surface area, pore volume/size distribution and crystallinity). The practical applications of sorption data in food processing are in drying, mixing, packaging, and storage (Gal, 1983). In 1982, lglesias and Chirife presented a handbook of food isotherms that compiled more than a thousand ,water vapor sorption isotherms of foods and their components. The researchers also included a brief description of the techniques for the use and calculation of isotherms. Among the uses mentioned are prediction of microbial and physicochemical stability of foods, engineering purposes related to concentration and dehydration, predicting sorption values, determination of net heat of sorption and analyzing the behavior of food mixtures. 1.4. Equations for Sorption Isotherms Attempts to classify the several available sorption models have been made by various researchers (Van Den Berg and Bruin, 1981; lglesias and Chirife, 1978, Boquet et al, 1978 and Boquet et al 1979). Van Den Berg and Bruin (1981) compiled and classified sorption models in four groups according to their origins. The researchers presented the following categories: (1) Monolayer sorption models (2) Multilayer sorption and condensed film models (3) Sorption models from polymer science (4) Empirical sorption models Chirife and lglesias (1978) compiled and reviewed twenty three equations for fitting water sorption isotherms of food and food products. They used the origin, range of applicability and use of the sorption isotherms as the criteria for their analysis. The researchers not only found that some theoretical, semi-empirical and empirical models are not equivalent, but that they also were limited to specific ranges of water activity or types of food. Boquet et al (1978) and Boquet et al (1979) continued the work started by Chirife and lglesias (1978) selecting for their study eight two-parameter and four three-parameter models to describe the sorption isotherms of various foods. They grouped the food products as fruits, meats, milk products, proteins, starchy foods and vegetables. The researchers concluded, based on its versatility and excellent ability to fit the experimental data for most types of foods, that the Hailwood and Horrobin equation should be considered as the “universal” isotherm. This three-parameter equation is mathematically equivalent to the Guggenheim-Anderson-de Boer (GAB) equation and it works well on a wide range of water activity (0.10-0.80). They also mentioned that some two-parameter equations have equal or better fitting abilities than the three-parameter ones and the use of a third parameter might not be useful. The recommended two-parameter equations were the Halsey and the Oswin models. The use of the GAB equation to construct sorption isotherms has been also supported by Bizot (1991). The researcher prepared a computer program capable of fitting and plotting the isotherms from the experimental data and used the transformed GAB equation to prepare it. The researcher also emphasized that the GAB equation is the best alternative to determine primary adsorption sites and to fit an equation to experimental data. Spiess (Bizot, 1991) presented a discussion about Bizot’s article and pointed out that D'arcy- Watt developed a five-parameter equation with application over the entire water activity range (from zero to one), but for the application range, 0.2-0.8, the model will be very difficult to use and will not have any advantage over other models. Peleg (1993) took a different approach from the previous workers by proposing an empirical double power law four-parameter equation. An equal or slightly better fit than the GAB model was obtained with the model proposed when the model was validated with the following products: agar-agar, carrageenan, gelatin, low methoxyl pectin, raisins, casein, potato starch, dextrin, and coffee. Peleg used the Mean Square Error magnitudes of the GAB and his empirical model to make his comparison. It is important to remark that like the GAB model, Peleg’s model is only applicable up to an aW level about 0.90 and beyond this range (aW > 0.95) it can only be applied if aW is replaced by a transform such as -In(1-aw). The relative percent root mean square (%RMS) is widely used and accepted to evaluate the fitting goodness of the experimental data. Bizot (1991) proposed the use of this relative per cent root mean square (%RMS) to judge the quality of the fit of the experimental data. The %RMS is expressed as: 2 EN; wi —w,’ w. x 100 (1) %RMS = N Where N is the number of experimental points, W; is the experimental water content, and w: is the calculated water content. 10 1.5. Equations for Multicomponent lsotherrns When two or more products are packaged together in a permeable package, a moisture transfer from the component with a lower water activity to the component with a higher water activity is observed. A moisture flow between the package and the environment is also observed. The moisture exchange among the products continues until an equilibrium water activity is reached. This exchange causes the product with the lower water activity to gain moisture while the component with the higher activity loses moisture. (Salwin and Slawson, 1959; Gal, 1983; Labuza, 1984; Hong et al, 1986; and Kim et al, 1999). Therefore, it is critical to predict the equilibrium water activity in multicomponent products. A weighted-average hypothesis has been widely used by various researchers to predict the water sorption behavior of a mixture from the knowledge of its individual components. Mcal = 2 W1 * MI.— (2) 2 W, Where Mca. is the moisture content if the mix, M, is the moisture content of the product i before mixing and W, is the dry weight of component i. This equation based in a mass balance assumes that water is independently bounded to each product. In other words, at a given water activity the moisture content of a mixture is equal to a weighted average of the moisture content of each component at that water activity. 11 Attempts to predict water sorption behavior of a mixture from its individual components has been researched by various investigators: Salwin and Slawson (1959), Chuang and Toledo (1976), lglesias et al. (1980), Lang and Steingberg (1980), Lang and Steinberg (1981), Lang et al.(1981), Hardy and Steinberg (1984), Chinachoti and Steinberg (1985), Chinachoti and Steinberg (1988), Nieto and Toledo (1989), Chinachoti, P. (1990), Leiras and lglesias (1991), and Bakhit, RM. and Schmidt, SJ. (1992). The shelf life studies mentioned above considered that no moisture transfer occurred between the products and the environment and they used linear sorption isotherm equations or equations with limited water activity range of applicability (lglesias, et al, 1979). Lang and Steinberg (1981) studied hand-mixed mixtures of starch, casein, sucrose, salt propylene glycol, and ground beef in binary and ternary combinations. They concluded that each component sorbs water independently of the others. In other words, the predicted and measured values of moisture content have shown good agreement because there are no interactions present. The referred interactions are the ones that occurred at the molecular level (eg. modifications of molecular bonds). For multicomponent products obtained by physical mixing, it may be assumed that mixtures sorb an amount of water equal to the weighed average of the amount that components would sorb alone. This assumption implies that water is independently bound to each product (weighed average basis) as described by equation (2). 12 It has been proven that interactions among the mixture components affect the moisture sorption of mixtures, creating an increase or decrease of moisture content as compared to moisture content predicted by the weighed average basis equation (lglesias et al, 1980; Hardy and Steinberg, 1984; Chinachoti and Steinberg, 1985; Chinachoti and Steinberg, 1988; Leiras and lglesias, 1991; Bakhit and Schmidt, 1992). The interactions observed are caused by different mixing methods rather than simple physical mixing. Examples of these mixing procedures are wet mixing followed by freeze-drying and the order of the drying, before or after mixing. lglesias et al (1980) worked with mixtures of non water soluble biopolymers (proteins and carbohydrates) and found that the predicted values of the moisture content of the mixtures were higher than the measured ones for most of the samples that were run. The investigators proposed that the polymer-polymer H-bonds that compete with polymer—water H-bonds are responsible for decreasing the water sorption. Chinachoti and Steinberg (1985) found the same type of interaction in mixtures of sodium chloride and starch above water activities of 0.75. Chinachoti and Steinberg (1988) worked with sucrose-protein mixtures and found that the mixtures sorbed more water than calculated due to the water binding with the proteins. Leiras and lglesias (1991) found that at high water activities (aw>0.75) the experimental moisture contents were greater than predicted and granted this difference to the solubilization of the salt and sugar in cake mixtures. 13 Salwin and Slawson (1959) developed a model to predict moisture transfer in combinations of dehydrated foods, from the knowledge of the sorption isotherm of the individual components, dry weight of the components and the relative humidity of each component. They assumed linear isotherms between the initial and the equilibrium relative humidity. They worked over a narrow range of relative humidity and found good agreement. Lang and Steinberg (1981) reviewed and criticized Salwin and Slawson work and stated that their linear approach over a narrow aw range (aw30.1 1) is not convenient. They also emphasized that at higher relative humidities, the normal s-shaped isotherms show more curvature and the assumption of a linear isotherm is no longer valid. lglesias et al (1979) pointed out another major limitation in the work done by Salwin and Slawson (1959). It does not allow the prediction of equilibrium aW when there is simultaneous moisture exchange with the environment. lglesias et al. (1979) used the concept of additivity of isotherms. The additivity of isotherms proposes that the amount of water sorbed at any given water activity is derived by the weight percentage of each component times the amount it would sorb alone. The researchers substituted the linear equation for the BET equation and the range of work was 0.05-0.40 for the dehydrated products tested. A very good agreement was obtained between samples of the additive isotherm and the computer calculated values. 14 1.6. Shelf Life Definition Marsh (Brody and Marsh, 1997) defined shelf life as the time after the production and packaging of the product for which it remains acceptable under defined environmental conditions. He emphasized that shelf life is a function of the product, the package, and the environment through which the product is transported, stored, and sold. Product, package and environment are critical factors that affect shelf life. While companies desire a shelf life that matches the distribution and use of the company’s inventory, the consumers expect a shelf life that allows them to fully use the product. An overestimated shelf life requirement will increase costs due to overpackaging. An underestimated shelf life requirement will increase costs in wasted or discarded products, increased liability, or consumer dissatisfaction. Therefore it is critical to define a reasonable shelf life which could be met with a proper packaging design (Pocas, 1995; Marsh, 1997) 1.7. Shelf Life Models 1.7.1. Generalitifi A moisture transfer between the food product and the external environment is observed in moisture-permeable packages and its rate is controlled by the water vapor pressure difference between the package headspace and the environment. When the product exhibits moisture diffusion much faster than the diffusion across the packaging barrier, the food product 15 equilibrates with the headspace vapor pressure and the product’s moisture content may be described by its isotherm. (Pocas, 1995) An adequate shelf life can be achieved by controlling the moisture exchange between the product and the storage environment with the proper packaging material. Therefore, the shelf life determinations help to develop and to optimize the packaging-product system. (Pocas, 1995) The mathematical models connect the product’s characteristics, the package properties and the environmental conditions. When a model is validated and proven to be reliable, its use is preferred over other shelf life estimation methods. Mathematical modeling is the most preferred shelf life estimation due to its short time, low cost and as a package design tool. (Pocas, 1995; and Marsh, 1997). 1.7.2. mle Products Shelf life modeling of single products was first studied by Heiss (1958). This researcher established a relationship between moisture sorption properties of foods, the permeability of the film and the shelf life of the product. Heiss (1958) used F ick’s law of diffusion to develop his solution. Heiss (1958) introduced basic concepts that served to calculate the shelf life for moisture sensitive products. Further studies increased the complexity and applicability of the models, but these studies were still focused on packages of single products. For example, Labuza et al (1972) introduced Oswin, Kuhn and Mizrahi, non-linear isotherms, into the model. Lee (1987) and Lee et al (1996) developed a mathematical model for predicting the changes in 16 the moisture content of a packaged solid dosage form that takes into consideration the effect of fluctuating temperature and relative humidity during prolonged storage. The model combines the sorption characteristics of the product and the water vapor permeability of the package system as a function of temperature. Cardoso and Labuza (1983) worked with a single product, but they developed a dynamic model to predict moisture transfer in packaged pasta. They created a controlled unsteady state conditions (varying as sine wave) of temperature and relative humidity. 1.7.3. Multicomponent Prgducts For food mixtures, the moisture transfer from the component with the higher to the lower water activity occurs until equilibrium of water activity is reached. This equilibrium of water activity is responsible for the final moisture content of each component that directly influence the quality and shelf life of the mixture (Hong et al, 1986; Gal, 1983; Labuza, 1984 and Pocas, 1995). In consequence, predicting the equilibrium water activity of a mixture is critical to formulate a mixed product. When the diffusion coefficient of the water in the packaging material is much smaller than the diffusion of water within the product the transport through the film barrier controls the shelf life of the mixture (Pocas, 1995). It is assumed that the water transferred through the package at any water activity is distributed proportionally to each component as predicted by their respective sorption isotherms. This weighted isotherm has been combined 17 with the shelf life models for single products (lglesias, 1979 and Pocas, 1995). lglesias et al (1979) used a BET equation to describe the mixture sorption isotherm in the water activity range of 0.05-0.40. Hong et al (1986) predicted the moisture change of each component of a mixture by using finite element modeling. They considered the moisture transfer across the packaging material negligible. The researchers used the GAB equation to describe the products” isotherm. Salwin and Slawson (1959) used linear isotherm and also did not consider moisture transfer through the packaging. Shelf life studies of multicomponent moisture sensitive products in permeable packaging have been conducted primarily using linear and BET isotherms. Shelf life modeling of multicomponent foods has only focused on the prediction of mixture sorption behavior from the sorption characteristics of individual components and assumed no moisture transfer across the packaging barrier. These studies reported the use of a linear sorption isotherm equation or equations with limited range of activity. Pocas (1995) developed a mathematical model and a computer program to calculate the shelf life and to predict the change in moisture content over storage time of a two component mixture packaged in flexible packages. The model used GAB (Bizot, 1983), Oswin (Oswin, 1946 in Pocas, 1995), Halsey (Halsey, 1948 in Pocas, 1995), Henderson (Henderson, 1952 in Pocas, 1995) and Chen (Chen, 1971 in Pocas, 1995) equations to fit the experimental sorption isotherm and the computer program included them. The importance of 18 this model is the consideration of the whole isotherm and not only the linear part. The previous models mentioned considered only the linear part. Pocas (1995) validated the program with mixtures at different weight ratios of breakfast cereal and powder chocolate packaged in Oriented Polypropylene (OPP) and Polyethylene (PE). It was reported that the model tended to overestimate the component moisture content, especially the cereal after longer storage periods. It was proposed that deviations are dependent on the packaging material barrier, which affected the relative tendency of the components to absorb moisture simultaneously. It was suggested that the package introduced deviations because the model assumption of fast equilibrium between the product’s moisture content and the package’s headspace relative humidity is not met. Another proposed cause of this difference was that the equilibrium moisture content of each component may be affected by the presence of the other component (Pocas, 1995). Pocas (1995) developed a more general mathematical model to calculate the change in moisture content over storage time and the shelf life of a two-component packaged mixture, using the GAB, Halsey, Henderson, Oswin or the Chen equations, maintaining the individuality of each component and not using one “weighed sorption isotherm”. This researcher also wrote a computer program where simulation runs were carried out. 19 1.8. Mathematical Model Development Labuza (1972) expressed the rate of water transport through a permeable film with the following equation: dW P —=—A - . dt 1 (pt 13.) (3) Where: W is the weight of water transported across the film, in g. t is time, in days P is the film permeability coefficient, in g-um/mz-day-mm Hg l is the film thickness, in um po, pi are the vapor pressure of the water outside and inside of the package, respectively, in mm Hg. It is assumed that the packaging material controls the moisture exchange between the product and environment. To consider this assumption valid the condition of having a water diffusion coefficient through the packaging material much smaller than the water diffusion coefficient in the air and within the product must be met. It is also assumed the following: (1) the products’ moisture content is in equilibrium with the internal pressure, (2) there is a rapid equilibrium between water and the food, (3) the internal pressure is determined by the product equilibrium moisture content and the storage temperature. 20 For mixtures of binary products, the amount of moisture permeating through the package is equal to the sum of the moisture changes in each component. Pocas (1995) developed a general equation for mixtures of two products from the equations presented above. The researcher used the Henderson, Chen, Oswin, Halsey linear and the GAB non-linear sorption isotherm equations. A complete summary of the derivation for each component based on moisture sorption data by linear regression and by second order polynomial regression proposed by Pocas (1995) is presented in Appendix A. To determine the shelf life of mixed products using the linear isotherm, Pocas (1995) derived the following equation. IA: bB Mi dMA P.A.ps W +W — [ A Bb MLaWO-aW(MA) (4) A Mia t3 = 1 [WA EI'WB) I dMB PHApS b3 M's aW0 - aw (MB) (5) Where: MA‘ and M31 are the initial moisture content of component A and B, respectively tit, and t3 represents the time required to achieve the moisture content MA2 and M32, respectively. an, as, DA and be are coefficients of the linear equation. 21 To determine the shelf life of mixed products using the non-linear isotherm, the following equation was derivated by Pocas (1995). 1 Mi* t :_ J‘WATWB'D(MA) A . P.A.ps M}, awo ' aw (MA) dMA (6) Mia tB=——l——. j WB+WAB'D(MB) clMB <7) P.A.ps M13 awo'aw (MB) The relative percent root mean square of the difference between the experimental and the calculated moisture content (R) was used to evaluate the goodness of the fit. The equation, previously presented is written below. .. 2 " M , — M ; %RMS: 2 x 100 (8) I n where Mi is the experimental moisture content Mi* is the calculated moisture content and n is the number of experimental data points. 22 Chapter 2 MATERIALS AND METHODS 2.1. Product - Packgge Svstem 2.1.1. Food Product Samples Three common breakfast cereals were obtained from a local store. The following cereals were chosen, Corn Flakes, Shredded Wheat and Oats due to their low sugar and salt contents. The main ingredients in corn flakes cereal are milled corn, sugar, salt, malt flavoring, and high fructose corn syrup. It was packaged in a polyethylene bag which was placed into a carton. Shredded wheat has no salt or sugar added and it also was packaged in a carton with an inner plastic bag. Oats also has no salt or sugar added and it also was packaged in a carton cylinder with a plastic cap. Products were preconditioned before experiments. Products were stored in a control environment at 23°C and 50% relative humidity for 48 hours. Then a single product was stored in a glass container with nitrogen flush. 2.1.2. Package High Density Polyethylene and Low Density Polyethylene with 1.0 and 1.9 mil thickness, were supplied by a local converter. Materials were conditioned at 23°C, 50% RH for 72 hours prior to testing. The characterization of the packaging materials includes thickness and water permeability of the films. The characteristics are presented in Appendix B. 23 For the validation experiments three-side-seal pouches of these materials were sealed using an impulse sealer. The dimensions of the pouches were 17 cm x 10 cm. The integrity of the pouches was checked with a polariscope and with manual tensile test. A quality seal was obtained when a uniform and consistent color band was observed when placing the sample between two polarized lenses. In the manual tensile test, the seals were slowly pulled apart while holding the two sides of the sealed sample. Ripping of the material before the seal suggests a quality seal. 2.2. Moisture Content Determination Moisture content of cereals was determined by Gravimetric Method: 5 g of product was placed in an aluminum dish and dried in vacuum oven (Precision Scientific Model 524) at 75°C and 30 mm Hg until constant weight. The moisture content was reported on percent wet basis, Mw. The percent moisture content (dry basis), M, was determined as M = —” (9) This method was developed at School of Packaging (Michigan State University) and is used on the Permeability and Shelf Life Lab Manual. For more information see the Bibliography. 24 2.3. Moisture Sorption Isotherms Moisture sorption isotherms were determined gravimetrically at 72°C by equilibrating cereal samples (3 replicates) at nine different relative humidity values, ranging from 5% to 88% RH. The relative humidity was created inside closed containers with saturated solutions and was monitored with a calibrated hygrometer (Hydrodynamics, lnc., Silver Spring, MD) at the beginning and end of the experiment. Table 1 presents the saturated salt solutions and their corresponding measured relative humidity. Table 1: Saturated salt solutions and their corresponding relative humidities at 23°C Saturated Salt Solution Relative Source Humidity, % Lithium Bromide 5.3 Sigma, MO Lithium Chloride 11.2 J,T. Baker, NJ Potassium Acetate 25.1 J,T. Baker, NJ Magnesium Chloride 33.0 J,T. Baker, NJ Potassium Nitrite 47.8 Columbus Chemical Industries, Inc., WI Sodium Nitrate 61.5 J,T. Baker, NJ Sodium Chloride 76.0 Columbus Chemical Industries, Inc., WI Ammonium Sulfate 80.8 EM Science, NJ Potassium Nitrate 87.8 Columbus Chemical Industries, Inc., Wl 25 Water activity can be easily calculated from the relative humidity values presented on Table 1 by RH a:— 10 w 100 ( ) About 4 grams of cereal were weighed into a Petri dish (55 mm diameter). Three replicates and two controls (empty Petri dish) were placed into the closed containers (specific relative humidity). Samples were weighed on AE 160 Meter Analytical Balance at pre-determined time intervals. This procedure was performed until a constant weight was found. The equilibrium moisture content, expressed as dry basis, was calculated based on moisture change of a sample at equilibrium. The equilibrium moisture content (dry basis), M, was calculated by equation 11. M=[we(Mi_l)-1]x1oo (11) w where M = equilibrium moisture content, % dry basis M; = initial moisture content, % dry basis We = weight at equilibrium, 9 W, = initial weight, g 26 Experimental moisture sorption isotherm was fit with GAB, and cubic polynomial equations. Parameters in equation were estimated as the following: GAB Equation __M_= CKaW (12) Wm (l-kanI-kaw +Ckaw) Where: Wm = water content corresponding to saturation of all primary adsorption sites by one water molecule (formerly called the monolayer in BET theory) C = Guggenheim Constant = c’ exp[(H. - Hm)/RT] k = factor correcting properties of the multilayer molecules with respect to the bulk liquid: k =k’ exp [(H. - Hq)/RT] H. = heat of condensation of pure water vapor Hrn = total heat of sorption of the first layer on primary sites H, = total heat of sorption of the multilayer water molecules In order to estimate parameters, the equation was transformed into a quadratic form as 91 = aaf +flaw +7 (13) 27 _;_Z=1 _ fi‘wbc) wc(C 2) (15) The quadratic regression was performed by MS Excel. GAB constants C, Wm, and k were calculated by equations 17, 19, and 20, respectively. The details for obtaining these equations are presented in Appendix C. C = 6:: 62—461 2 (17) where ,62 9=4+ 18 (”)7 ( ) I w... = -—(c-2> [’C (19) k = 1 Cubic Polynomial Equation M = k1aw3 + kzaw2 + kaaw +t)c The polynomial regression was performed by Microsoft Excel 97-SR1. 28 The goodness of fit for each isotherm was evaluated based on the minimum value of percent root mean square, RMS. Zn: |:Mexp _Mcalc:| i=1 M x100 where Mexp = experimental moisture content, % dry basis, Mcaic = calculated moisture content, %dry basis, and N =number of data point. 2.4. Penitegapilitv of Packaging Material Water vapor transmission rate of packaging films was determined by an infrared sensor method (based on ASTM F1249-90), using a PERMATRAN W3/31 (Mocon Inc, Minneapolis, USA). Six replicates per material were tested at 23°C with 50% of relative humidity as the driving force. The relative humidity was obtained with water vapor in one side chamber of the cell and nitrogen flush in the other side chamber. The actual value of permeability was found by dividing the transmission rates of the material by the driving force as indicated in Appendix B. Water vapor transmission rate of the pouches was also determined by the gravimetric method (ASTM D3079). Three pouches of each material (17 cm x 10 cm) filled with desiccant, were stored at 23°C and 50%relative humidity and weighed every 4 days, until there was a constant increase of weight. Three empty pouches were also stored to evaluate the moisture sorption on the material. 29 2.5. Model Validation Experiments To validate the model, two experiments were carried out. For the first experiment, mixtures of two cereals (corn-oats, oats-wheat; and corn-wheat) were packaged in 17 cm x 10 cm pouches of HDPE and stored at 23°C and 50% relative humidity. Mixtures of different ratios of cereal to cereal were prepared: 1/2, 1/1 and 211. Pouches were weighed daily during the first week and then weekly during the following 8 weeks, two of those pouches of each mixture were tested for moisture content determination of each product. A similar procedure was employed for pouches with single product. For the second validation experiment, mixtures of cereals in a ratio of 111 were packaged in LDPE pouches (17 cm x 10 cm) and stored at the same conditions. Pouches were weighed daily during the first week and aftenNards weekly for the following 8 weeks. Pouches with a single product were also treated with same procedure. Initial moisture content was determined for each experiment with the procedure described above. 30 Chapter 3 RESULTS AND DISCUSSION 3.1. Initial Moisture Content The initial moisture content (dry basis) of corn, oats and wheat determined and used for plotting the moisture sorption isotherms were: Corn: 3.18 i 0.07 9 H20] 9 100 dry product Oats: 10.68 i 0.08 9 H20/ 9 100 dry product Wheat: 4.95 i 0.107 9 H201 g 100 dry product 3.2. Moisture Sorption lsfotherms The plot of the moisture sorption isotherms for corn, oats and wheat cereals at 23°C isotherms are presented in Figures 3, 4 and 5 respectively. ‘ 0.30 I i 0.25 .__.- . , 2’ C) ..- 0.20 f C ‘9 015 C . ~»—— . — -- O 2:, 0.10 ,_.__-‘- / 3 E 0.05 / O 2 0.00 I . , 0.00 0.25 0.50 0.75 1.00 - . wateractivity I +Corn ‘ .- Figure 3 - Moisture Sorption lsotherm of Com Cereal at 23°C. 31 l d J "3 0.15 -- E l a I § 0.10 l a i 3 J g 0.05 . 2 I 0.00 . , . 1 0.00 0.25 0.50 0.75 1.00 J wateractivity J J—g—Oats‘ l s; 0.20 ___.-__ . . _ L I g / J E _L O o J 2 3 J .2 O 2 J 0.00 , , . 0.00 0.25 0.50 0.75 1.00 wateractivity J r——————vi l {+Wheat J Figure 5 - Moisture Sorption lsotherrn of Wheat Cereal at 23°C. 32 The data used to construct the graphs are presented in Appendix E. The same data was used to calculate the Linear, GAB and Cubic Sorption lsotherm Equations. The equations for the cereals tested were calculated with MS Excel and they are presented in Table 2. 33 a nae. so: 9: aged 0 eon: Leos; 8v ”6 22¢ Soc 90 aged m. new: ado Q ”a 23 so: mi 858 m new: :80 E .wEBQ _mEoEEono 05 __m 8: Lo: 2o “was; new mfimo .500 L8 8:960 80:: or; C 886 u am Name u «m. 58.0 H mm 25.0 + 388.? E86 + 3831? #86. £88.? «seamen? ”£986 n s. “.6886 l ”328.0 u s_ N385? ”£886 u s. 225 Bad u um 83.0 u E 88.0 n E I 3.: 43+ 8.~+ 33.3.. «some? n s: so 352+ «58.0- u 2:6 :83: NERD- u s: so m5 886 u «m 83o u mm 886 H mm Q E E 55.0 + 382.0 n s. 88.0 + gnome; u s. 28.0 + 2333 u _2 C .85.. «mos; 9.3 500 .5395 .008 6 852.560 50:2, ocm mLmO _Eoo Lo mcozmscm E558. cozeom 05:0 cam 95 .89.: l N 2an 34 3.3. Film Permeabilitv The permeability of four HDPE and four LDPE film samples was determined with ASTM F-1249-90. The conditions were set at: 50%RH and 23 °C. Permeability results, obtained from 4 repetitions, are presented below and the details are presented in Appendix B. LDPE Film: 9.54E-05 :t 7.85E-06 g.millin2.day.mmHg HDPE Film: 5.31 E-05 : 4.91 E-07 g.mil/in2.day.mmHg 3.4. Package Permeability Package permeability was also measured to see the effect of the seals. The permeability values obtained from the LDPE and HDPE samples’ transmission rates by the Gravimetric Method are presented below. LDPE Film: 5345-05 i 5.05505 g.millin2.day.mmHg HDPE Film: 4.20E-05 i 1.16E-06 g.mil/in2.day.mmHg The package permeability values of LDPE and HDPE were approximately 33% and 21% lower than the ones obtained from the film samples. This difference between the film-sample and pouch permeability is within reasonable range. An explanation for this difference lies on a higher film permeability determination due to a higher vapor pressure differential, a higher temperature or a miscalibrated sensor in the Permatran. A lower storage relative humidity or a lower storage temperature could be responsible for the lower pouch-permeability values reported. The storage relative humidity and temperature were monitored and they were in the range i 3%. The Moisture Gain vs Time plot for the pouches (Appendix B) showed straight lines, 35 indicating good agreement. The pouch-permeability values also indicate that good seals were achieved because the pouches’ permeability values were always lower than the film samples. Due to this difference in permeability value between the film (also known as flat-film) and gravimetric method, the latter value was selected and used in the calculation carried by the computer program. 3.5. filidation 1 - Moisture Charge in Cereal Pa_cfllged in HDPE 1.9 mil The experimental validation for the computer model was carried out by monitoring the change in moisture content over time of each component of the packaged mixtures. Table 3 summarizes the combinations used for the Experimental Validation 1. Table 3 - Combinations of cereals used for the Experimental Validation 1 Experiment 33167 50150 67/33 100 1 corn/wheat corn/wheat corn/wheat corn 2 corn/oats corn/oats corn/oats cats 3 oats/wheat oats/wheat oats/wheat wheat Because oats presented an initial water activity of approximately 0.47- 0.49 and the values for corn and wheat ranged near 0.17-0.20; it was expected that moisture exchange between oats and corn or cats and wheat would be more important than the permeability through the package during the early phase of he experiment. Therefore, in addition to the mixtures described in the table above, a 30-gram mixture (ratio 1:1) of com (14.63 g dry product) and oats (13.50 g dry product) was placed in a glass jar to determine the time required until moisture equilibrium is reached in the absence of permeability. 36 Equilibrium, the time when the hygrometer sensor attached to the metal lid did not report any further change, was reached in 48 hours. The readings of this closed environment were performed every 12 hours. After forty-eight hours the sensor showed a constant reading (38.5 :I: 1.0 %RH). Corn at an initial moisture content of 0.0284 9 H2019 dry product and oats at 0.1206 9 H2019 were placed in the glass jar. The glass jar was opened after 192 hours (8 days), and corn and oats were separated. Then their moisture content was determined. The final moisture content of corn and cats were 0.0491 9 H2019 dry product and 0.1027 g H2Olg dry product respectively. A mass balance was performed to corroborate the numbers obtained. The mass balance was as follows: Initial Water Mass: 0.0284 9 H2019 dry corn * 14.63 g dry corn + 0.1206 g H2O/g dry oats * 13.50 g dry oats = 2.04 9 H2O Final Water Mass: 0.0491 g H2O/g dry corn * 14.63 g dry corn + 0.1027 9 H2019 dry oats * 13.50 g dry oats = 2.10 9 H2O The most important conclusion from this ancillary experiment is that in closed systems moisture exchange takes approximately 48 hours. This consideration will be helpful to support the discussion of the following experiments and in the application of the computer model. Figures 6, 7 and 8 show the percent moisture change profile of 33167, 50150 and 67/33 corn/wheat samples. Figures 9, 10 and 11 present the percent moisture change profile of 33167, 50/50 and 67133 corn/oats pouches. Figures 12, 13 and 14 plot the percent moisture change profile of 33167, 50/50 and 37 67133 oats/wheat samples. Finally, the percent moisture change profile for corn, oats and wheat is presented in Figures 15, 16 and 17. The experimental and predicted values of the percent moisture content as a function of storage time for the cereal combinations (Table 3) are presented in Appendix F. Detailed tables of the individual pouches’ weight gain values for all these combinations are presented in Appendix G. 38 R. Arm—Ream . E: m._. man: . OenN 3:035:00. _. :o_umu__m> .5“— «3.5335. $951.30 s23 Co 0E2: EoEoo 2:565. tongue...“— ocm _mEoEtoExm no 9.sz «>2. .25... on we on we we mm mu 3 3 A p p p In — ~ _ omfiomillr _mEoEtmaxm O _ScmEtmaxm X 500 «was; - OH 06 °/. “tuaiuoo aimsrow 39 R .Azmeeom . E: m... man... - OenN "0:050:00. —. :0_uou__u> 00* 00:555. 50:25:60 86» Co 0E2: E360 23365. 03069.: ucm _eucoEtonm K. 2:9“. 2. mm on av £60 .05: wv . mm b mm 5 3 y. o._. umfinmil _mEmEtoaxm 0 _mEmEtoaxm X :80 sec; - o.N 9m % ‘iuawoo mntSlow 40 2. Ease... - :5 mun: . PR 65:550. F :o_.eo__n> 5.. 852.2 fie:>>.Eo0 n25 ho 0E2: E350 23322 03202: ocu _oEoEtooxm no 230E «>2. .25... on mm 8 me we mm mm 3 3 A t— _ P h p h b _ umfiooil _mEoEtoaxm O _ScmEtoaxm X .eo;>> oé i ON o.» % “iuaiuoo amiSlow 41 AIM—$0» . __E m... mmD... .. OenN "0:050:00. P :0_u00._0> .0.— 00.355. $0O.Eo0 5.00 .o 0E2: 50qu0 0.30.2... 020.02: 0:0 _0acoEtooxm "m 050.". «>00 .25... R on me on 9. we mm mm rm 3 o p . h b If . P h . p . oeP 0N 02200qu 05050098 0 X. od 0.00500qu X - 0.... X X . o.m :80 X X - od X - o... E . o.» O o o 008 .5... ll 0 o o o 3: $00 - o o c . Q: o.N_. % ‘waiuoo sinisrow 42 Arm—$0.0. .. _._: m.—. mun—I .. UenN ”0:050:00. _. :0_u00__0> .0.— 00:35.2 300.:30 020.». .o 0E2: E0Eo0 0.30.22 020.00.: 0:0 00:05:33 ”0.. 050.“. «>00 .05... on no 00 we we mm 0w 5 3 n 0 . p p . . b L . p . . ou—e 00.0.00LQII 0N 0.005099 0 . - 0 0 0.005003 X Von x x - o e . 0.0 500 - 0.0 - 0... %HB - 0 0 O i - m D 0 0 0.00 - 0.0? c - 0.: adv % ‘waiuoo 91015!0W 43 AIM—$0..” . :2. m6 man: . 0onN "0:050:00. F 00300__0> .50 00.355 300.0000 025 00 2:05 0:00:00 9.3035. 08302.“. 000 300050003 u: 059“. m>00 .0EF on no 00 0v Ne mm 0w 5 3 n 0 p p _ n — p _ — n b b on F 00§0mill 0.~ _Bcoetmaxm O . _ScmEtmaxm X I 0 m Eco 300 r 0.2 -9: odr °/o ‘Iuaauoa aJmsgow 44 Aim—$0.» . =5 m.—. man—_._ . Donn "0:050:03 v :0_u00__0> :8 09:50:5— 000£S.mu0o $30 00 2:2...— EwEOO 23085. 03200:: 0:0 00:08:0an “NF 2:9". m>00 .06; R on 00 mm 0v Nv mm mm N 3 0 _ _ . _ _ _ _ _ _ 0.0 , 0+ 022005| X _0EoE000xm X - 0.m _0_:0E_:00xm O #00:; £00 - 0.2. -o.: o.N_. % ‘1ua;uoo mmsgow 45 0.00.00 . =8 0.. 000: . 0.00 ”0:00.008. 0 00002.; .8 09.355. 000:3.0000 00.00 00 0:00.“. 0:00:00 0.30.0.2 0000.000: 0:0 .00:0Et0axm "up 050.". 0>00 .05.... 05 00 00 00. we mm mm H 3 n 0 u h p p _ p _ p L . p o.” 0.0 00020000| 00050090 x - 0.0 00005025 0 , 0.0 X . 0 .. 0000>> . 0 0 X 00 O . 0 0 l1 01......1C C O 0.00 O T 0.00 c - 0.: oNF % ‘wazuoo almsww 46 £00.00 . __E 0.. 000... - 0.0m "0:00.008. 0 02.02.; .8 85.52 000030000 00:0 00 0.020 002000 230.22 020.020 0:0 EEEcmaxm "3 £00.“. 00.00 .0E.... t. 0.. 00 on av N0 mm mm H 3 x. 0 r . _ _ _ _ . . _ . . 0.0 BEBEII 0... _0.:0E:00xm. X 0.005000%. 0 - 0.0 - 0.0 x - 0 h .0002, . 11 x - 0.0 x\mun\500 - 0.0 O O 0.00 .11 O O O - 0.00 O O O O C - 0.: odr % ‘luawoa unzsgow 47 on 411300 - _.E 0... man... .. oonN U0:050:00. .. :o.000..0> .0.— E00 0.00.. 00 0:00... 0:00:00 0500.05. 0000.00... 0:0 00:08:00.3 2.0.. 0.50....— 0>00 .05... 00 mm 00 N0 mm mm N 3 .0. b p p — p p . — — 00.0.000n.lll _0E0Et00xm X o... .04 - 0N - m6 0.0 % ‘wazuoo amusow 48 Arm—000m .. _.E m.—. man... - UonN “0:830:00. .. :0..00..0> .0. 0000 0.000 .0 0.50.0 0:00:00 0.30.0.2 00.0.00... 0:0 .00:0E..00xm ”up 0.00.”. 000 .05.... 0... 00 00 0.. NV mm mm 3 3 n 0 b p p p h p p P . cum BEBEI - 0.0 _0.:0E..00xm X . 0.00 x .022 ,2. x x x X X X X - 0.: - 0.: QNF % ‘wawoo mmsww 49 on Arm—$00 . _.E 0.0 m00... - Dona n0:00.050. .. :0..00._0> .0. 00...? 0.03 .0 0.00.0 0:00:00 0.30.0.2 0000.020 0:0 .00:0:._..00xm c... 0.50.0 0>00 .0E.... 00 00 0.. 0... mm mm E 3 .. F _ b L — L — r . 008.00.0' .0000Et00xm X - 0.0 . mé - oh - m.m T 00 - m6 o... % 5031000 “NSK’W 50 In the corn and wheat mixtures, it was observed that both cereals started to pick up moisture immediately because the cereals had lower initial water activity (0.17-0.20) in comparison with storage relative humidity (50%RH). The moisture transfer between corn and wheat was expected to be small because their initial water activities taken from their respective isotherms were close (corn = 0.17, oats = 0.20). The experimental and predicted values showed good agreement for the corn and wheat mixtures (Figures 6-8). The percent difference between these values was lower than 10% with the exception of mixture of 33167 corn-wheat (Figure 6). A difference in the order of 10-26% was noticed from the third week. It is important to mention that the difference was above 20% (20-26%) only during weeks 5-7 (Figure 6). The experimental values for the 33l67 corn/wheat samples were slightly lower than the predicted ones for most of the samples. The 50/50 and 67l33 corn/wheat samples also show this behavior. In the individually packaged products (Figures 15-17), single packaged corn (Figure 15) showed a difference between the experimental and predicted values greater than 10% from the sixth week of storage. The difference range for weeks 6-9 was 10-23%. Again, the experimental values were lower than the predicted ones. The difference in the single packaged oats and wheat (Figures 16 and 17) was lower than 4% and 12%, respectively. 51 The difference (greater than 10%) found in the samples of corn-wheat (33l67) and corn could be caused by errors in the moisture content determination of those samples. The com samples were mixed in a large plastic bag and then immediately nitrogen-flush packaged in glass jars. The initial moisture content was determined from samples before placing the cereal in the jars and perhaps the batch did not have homogenous moisture content. The lower rate on the moisture transfer could possibly attributed to a lower storage relative humidity, to the pouches’ lower transmission rate or to the pouches’ lower surface available for moisture transfer. It is proposed that samples of individually packaged corn and 33l67 com-wheat showed the deviation because of a lower storage relative humidity or lower temperature during the storage. Experimental errors associated with the weighing, component separation, moisture determination or modification of the corn (e.g. oxidation) could also be responsible for the higher values of moisture content predicted by the model as compared to the values that were experimentally determined. Pocas (1995) pointed out that the relative resistance to moisture transfer within the food components to the packaging material plays an important role to the effectiveness of the model. The researcher used corn cereal and chocolate powder and found that com alone or packaged (in PP and PE) with the powder presented similar deviations in the order of 20—30%. The researcher remarked that the corn moisture content when packaged together with the powder chocolate reached equilibrium at lower values than the predicted at longer 52 storage periods. Individually packaged corn as well as the powder chocolate did not reach equilibrium during the storage period. In the corn-oats and oats-wheat, oats was selected because it had a much higher initial water activity (about 0.45-0.48), which was close to the storage relative humidity. It was expected that oats would gain moisture from the storage environment very slowly as shown by the oats isotherm (Figure 4) and the individually packaged oats samples (Figure 16). Oats would also transfer moisture to the other component (corn or wheat) much faster during the first days as demonstrated in the glass-jar experiment. After this time of dramatic moisture exchange, a temporal equilibrium will be reached and oats will present lower moisture contents while the other cereal (corn or wheat) will have higher moisture content values. For most of the cases the transitory equilibrium was reached in one or two days. To account for this moisture exchange event (“temporal equilibrium”), the lowest experimental moisture content (from oats) was used to define the initial point where permeation through the package became more important than the components’ moisture exchange. After making the corrections, it was observed that the predicted and experimental moisture content values for corn-oats and oats-wheat presented a good agreement. The difference between these values was less than 13% for all the combinations of corn-oats and oats-wheat. 53 In addition to the percent difference between the experimental and predicted values, a regression analysis was performed to determine the positive relationship between the predicted and experimental values. The regression analysis was selected because it is the most suitable statistical method to compare observed and predicted values. The regression analysis was done by plotting the experimental values in the X-axis and the predicted values in the Y- axis. If the model predicts perfectly the experimental data a straight line should be expected and its correlation coefficient will be 1, but this hypothetical condition does not occur. Therefore, the correlation coefficient is a good indicator of the relationship between the experimental and predicted values. All combinations used on the validation with HDPE, with the exception of the oats individually packaged (84%), presented correlation values greater than 90%. This indicates that the model described accurately the systems used. 3.6. Validation 2 — Moisture Change in Cereals Packaged in LDPE 1 mil An additional experimental validation for the computer model was carried out with a lower barrier packaging material. Monitoring the moisture content change of each component of the packaged mixtures over time was performed similarly to Validation 1. Table 4 summarizes the combinations used for the Experimental Validation 2. Table 4 - Cereal combinations used for the Validation 2 Experiment 50/50 0/1 00 1 corn/wheat /corn 2 corn/oats loats 3 oats/wheat /wheat 54 Figures 18, 19 and 20 show the percent moisture change profile of 50l50 corn/wheat, corn/oats and oats/wheat samples. The percent moisture change profile for corn, oats and wheat is presented in Figures 21, 22 and 23. The experimental and predicted values of the percent moisture content as a function of storage time for the cereal combinations (Table 4) are presented in Appendix F. Detailed tables of the individual pouches’ weight gain values for all these combinations are presented in Appendix G. For the validation with LDPE, the predicted and experimental moisture content values for individually packaged cereals present good agreement. All the samples showed a difference smaller than 10% with the exception of individually packaged wheat where the difference range was 6-1 3%. The combinations of corn-oats and oats-wheat also present good agreement between the experimental and predicted values. The samples also showed the initial moisture exchange. Therefore, a similar treatment was applied to determine the initial moisture content to be entered into the computer program. A regression analysis was also performed to determine the relationship between the predicted and experimental values. All combinations used on the validation with LDPE, with the exception of the oats individually packaged, presented correlation values greater than 90%. This indicates that the model has a high and significant relationship with what is observed in the experiments. A correlation value was not available for oats because the predicted moisture 55 content value was constant during the storage. This reflect that the software did not account for the relative humidity variation in the storage room. Both sets (validation with HDPE and LDPE) clearly indicate the importance of the consideration of initial moisture exchange in the application of the model. The time required for moisture exchange seems to be less important than the internal moisture equilibrium reached. The moisture content can be calculated from the products’ isotherms or determined experimentally in a glass jar. The resulting moisture content (from the above experiment) for the component with the lower water activity will be the lowest moisture content to be used in the computer program. For the component with the higher water activity, the outcoming moisture content will be the lowest moisture content to be entered in the computer program. To find the resulting moisture content after the internal moisture exchange from the components’ isotherms, the isotherms need to be expressed as water activity as a function of moisture content. The resulting water activity range is defined by the water activities of the components. The components also reach an equilibrium condition where the water activity is the same for each component. Therefore, selecting a moisture content for each component and replacing in its isotherms. This procedure is done until the moisture content values give the same water activity value. 56 Another way to find the resulting moisture content is to place the components in a glass jar and monitor the moisture headspace until equilibrium is reached. Then open the jara determined the moisture content of each component. This procedure was used and described earlier in this chapter. Permeation through the package is present at all times, but the approximation discussed in the above paragraph could be used as a good approximation. Defining what is the minimum water activity difference between the components that will make the moisture exchange between products predominant over the permeation through the package is important. In multicomponent products packaged in low-permeability packaging, the moisture exchange between the products is more noticeable than if they were packaged in high-permeability materials. This is because a low permeability packaging material will simulate glass. 57 Aim—$0..“ .. =E —. mun... .. Dona 3:056:00. N :o_umv__u> .8 «2355— .mo:>>.Eoo 33m ho 0E2“. «:3on c.5335. “.3235 oca _ScoEtoaxm ”up 0.59". gnu .oEt. K S. no om av NV mm mm _.N 3 n o — _ p _ _ _ b _ p b _ onN 88505 ..| o...” _EcmEtoaxm O _mEoEtoaxm X r o4. :80 «was; 0 - o.m odw % 'IUSWOO mmsww 58 fuse... - =5 F mun... - 9.8 "22:28. N 528:; .2 «2352 mung—too 33m no 2:2; 23:00 2:33: U233... new _macoEtonxm "3 832.... 2.2. .25... R 2. mm mm me we mm mm 5 3 n o _ _ p _ — p p h _ p h o-N 9.... 22 2 ill a o n. - ad .2555qu O _EcoEtmaxm X - Qm X - ob x r O N :50 X X f x x S - ed 0 0 - S: mamo O O O O C Q: o.N_. % ‘WGJUOO NNSWIN 59 fuse... . __E F man... . 0.8 "22:28. N =o_.uu__a> .8 $522 $23.38 83.» co 2:9... 23:8 23%: 3869:. new _scaetaxm 5N 2.6m mama .25... K on no on 9. Ne mm mm _.N 3 n o p p p _ h _ p _ p b h on? 8662a ll 3. _mEoEtmaxm X _scmetmaxm o . Qo . cs - o.» X X 89:5 . X x fl 0 m - 3: £0 0 o O G - 0.: o.N_. % 31131000 amasiow 60 .AIonom - :5. r man.— - Comm 6:035:00. N zeta—33> .8 :30 22: »o 2:95 23:00 23305. 33:55 can _BcoEton—xm "Pu 232.... $8.. 6E? mm mm m... we mm mm H E. n _ p — P p — _ — b BEBEII _ScmEtmaxm X 0N - mN - od - 9m - oé . mé - o.m o. m. c‘». «3. N (D (O I!) (%) 1031000 amisgow ‘0. [s q no 61 ...._m.\.8 . __E 9 man: . 0.8 ”22:28. N 582.; .8 memo 22:. ho 2:2... 2.8.30 23mg... .3852... new .EcoEtoaxm "Nu 2:2“. «.5. 6E... on no on av Nv mm mm 5 3 x. o . p _ . _ — r p h Dom umbfifldl - m.m _mEmEtmaxw X - 0.3 . man: x x x x x x X X 1 0.: . Q: GNP °/. ‘wazuoo ejmsgow 62 0... 21:26.: . =E F man; . 0.3 3:220:00. N 330...; .6: .355 0.03 :0 2:2: 23:00 23222 3:23... :3 3.35303 EN 230.". «>2. .22... cm on ow on on or _ F . l—r — _ 3.23:: I _mEmEEme X - 0.0.. - 0.... 0dr % ‘luatuog aJntsgow 63 CONCLUSIONS 1. A model developed using the GAB (Guggenheim-Anderson-deBoer) equation to predict moisture content in binary mixtures was validated 2. For products with a large difference in water activity, the internal moisture exchange is more important than the permeability during the first days of storage. 3. The model accuracy was greatly improved when the initial moisture exchange is accounted. 64 RECOMENDATIONS Further refinement of the model should focus on the following: 1. Determining the minimum water activity difference between components that makes the moisture exchange between products predominant over the permeation through the package 2. Incorporating the moisture exchange between the components in the model for a more accurate prediction when they present very different water activity, 3. Studying the effect of the temperature on the moisture exchange as well as the moisture permeated during the storage. 65 BIBLIOGRAPHY Bibliography (1) Bakhit, RM. and Schmidt, S.J. 1992. Sorption Behavior of Mechanically Mixed and Freeze-Dried NaCI/Casein Mixtures. Journal of Food Science. Vol 57. No 2. pp. 493-496 and 502. (2) Berens, A. R. 1989. Transport of Plasticizing Penetrants in Glassy Polymers. Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, Dallas. 30 (1):5. (3) Bizot, H. 1991. “Using the “G.A.B.” Model to Construct Sorption Isotherms” in Physical Properties of Food. Applied Science Publishers. 42-53. (4) Brody, A. L. and Marsh, K. S. 1997. The Wiley Encyclopedia of Packaging Technology. Second Edition. “Shelf Life” p. 638- 642 and “Metrication in Packaging” p.830-835. (5) Cardoso, G. and Labuza, T. P. 1983. Prediction of moisture gain and loss for packaged pasta subjected to a sine wave temperature/humidity environment. Journal of Food Technology. 18, 587-606. (6) Chinachoti, P. 1990. lsotherrn Equations for Starch, Sucrose and Salt for Calculation of High System Water Activities. Research Note. Journal of Food Science. Vol 55. N01 pp265-266. (7) Chinachoti, P. and Steinberg, M. P. 1985. Interaction of Sodium Chloride with Raw Starch in Freeze-Dried Mixtures as Shown by Water Sorption. Journal of Food Science. Vol 50. pp 825-828. (8) Chinachoti, P. and Steinberg, MP. 1988. Interaction of Sucrose with Gelatin, Egg Albumin, and Gluten in Freeze-Dried Mixtures as Shown by Water Aorption. Journal of Food Science. Vol. 53. N03, pp 932-934 and 939. (9) Chuang, L. and Toledo, RT. 1976. Predicting the Water Activity of Multicomponent Systems from Water Sorption lsotherrns of Individual Components. Journal of Food Science. Vol 41. pp 922-927. 67 (10) Gal, S. 1983. “The Need for, and Practical Applications of, Sorption Data” in Physical Properties of Foods. Applied Science Publishers. 13-25. (11) Hardy, J.J. and Steinberg, MP. 1984. Interaction Between Sodium Chloride and Paracasein as Determined by Water Sorption. Journal of Food Science. Vol 49. pp 127-131 and 136. (12) Hernadez, R.J. 1999. Shelf Life and Permebility, Class Material. School of Packaging. Michigan State University. (13) Heiss, R. 1958. Shelf Life Determinations. Modern Packaging. Vol 31. No 12.pp119-124, 172,173, and 176. (14) Hong, Y.C., Bakshi, AS. and Labuza, T.P. 1986. Finite Element Modeling of Moisture Transfer during storage of mixed multicomponent dried foods. Journal of Food Science. Vol 51, No 3, pp 554-558. (15) lglesias, H.A. Chirife, J. and Boquet, R. 1980. Prediction of Water Sorption Isotherms of Food Models from the Knowledge of Components Sorption Behavior. Journal of Food Science. Vol 45. pp 450-452 and 457. (16) lglesias, H.A. and Chirife, J. 1982. Handbook of Food Isotherms: Water Sorption parameters for food and food components. Academic Press. (17) Kapsalis, JG. 1987. “Influences of Hysteresis and Temperature on Moisture Sorption Isotherms” in Water Activity: Theory and Applications to Food by Rockland, LB. and Beuchat, L.R. Marcel Dekker, Inc. (18) Kim, 8.8., Kim, S.Y., Kim, D.W., Shin, 8G. and Chang, KS. 1999. Moisture Sorption Characteristics of Composite Foods filled with chocolate. Journal of Food Science. Vol 64, No 2, pp 300-302. (19) Labuza, T. P. 1982. Moisture Gain and Loss in Packaged Food. Food Technology. April 1982. (20) Labuza, T.P. 1984. Moisture Sorption: Practical Aspects of lsotherm Measurement and Use. American Association of Cereal Chemists. 68 (21) Labuza, T.P., Mizrahi, S. and Karel, M. 1972. Mathematical Models for Optimization of Flexible Film Packaging of Foods for Storage. Transactions of the ASAE. Vol 15, pp150-155. (22) Lang, K.W. and Steinberg, MP. 1980. Calculation of Moisture Content of a formulated Food System to any given Water Activity. Journal of Food Science. Vol 45. pp.1228-230. (23) Lang, K.W. and Steinberg, MP. 1981. Predicting Water Activity from 0.30 to 0.95 of a Multicomponent Food Formulation. Journal of Food Science. Vol 46. pp 670-672. (24) Lang, K.W., Whitnay, R. McL., and Steinberg, MP. 1981. Mass Balance Model for Enthalpy of Water Binding by a Mixture. Journal of Food Science. Vol 47. pp110-113. (25) Le Maguer, Marc. 1986. “Mechanics and Influence of Water Binding on Water Acivity” in Water Activity: Theory and Applications to Food by Rockland, LB. and Beuchat, LR. 1986. Marcel Dekker, Inc. (26) Lee, CH. 1987. Temperature Dependency of the Equilibrium Sorption Isotherm and its utility in Shelf Life Simulation of a Packaged Moisture Sensitive Pharmaceutical Tablet. MS Thesis. Michigan State University. (27) Lee, C.H.; Hernandez, R.H.; Giacin, JR. and Lee, M. 1996. Modeling the Temperature Dependency of the Shelf Life of a Packaged Moisture Sensitive Product. Foods and Biotechnology. Vol 5, N02, pp 112-118. (28) Leiras, M. C. and lglesias, H. A. 1991. Water vapour sorption isotherms of two cake mixes and their components. International Journal of Food Science and Technology. 26, 91-97. (29) Mannheim, C. M.; Liu, J. X. and Gilbert, G. S. 1994. Control of Water in Foods During Storage. Journal of Food Engineering. 22. 509-531. (30) Nelson, K.A. and Labuza, T.P. 1994. Water Activity and Food Polymer Science: Implications of State on Arrhenius and WLF Models in Predicting Shelf Life. Journal of Food Engineering. 22. 271-289 69 (31) Nieto, MB. and Toledo, RT. 1989. A Factorial Approach to Modeling aW of a Multicomponent Food in the High Moisture Range (aw 0.90-1.00). Journal of Food Science. Vol 54, No. 4. pp 925-930. (32) Pfeiffer, C. et al. 1999. Optimizing Food Packaging and Shelf Life. Food Technology. June, 1999. (33) Pocas, M. F. 1995. Modeling the Moisture Transfer of Two-component food products in a flexible packaging. MS. Thesis. Michigan State University. (34) Salwin, H. and Slawson, V. 1959. Moisture Transfer in Combinations of Dehydrated Foods. Food Technology. December, 1959. (35) School of Packaging. 1999. Permeability and Shelf Life - Lab Manual. Michigan State University (36) Troller, J.A. and Christian, J.H.B., 1978. Water Activity and Food. Academic Press. 70 APPENDICES APPENDIX A DETERMINATION OF SHELF LIFE EQUATIONS USING A LINEAR AND NON-LINEAR SORPTION ISOTHERM Pocas (1995) presented the following procedure to deduce the shelf life equation for mixed products packaged in permeable packages using linear and non-linear isotherms. Moisture exchange is governed by the following equation. %zli'A(Po'Pi) (I) Where: W: is the weight of water transported across the film t: is time P is the film permeability coefficient I is the film thickness p0, pi are the vapor pressure of the water outside and inside of the package, respectively Moisture distribution in two products is controlled by the following equafion. dW = WA dMA + W3 dMB (II) Where: WA, We are the dry weights of components A and B, respectively 72 dMA, dMB are the change in moisture content of component A and B respectively, in g/g dry weight. Combining the equations (I) and (II) WA dMA + W3 dMB = E A ps (awo — aw) dt (III) | Where: ps is the water vapor pressure at the storage temperature awe, aW are the external and internal water activity, respectively MA and M3 are products’ equilibrium moisture content at aW MA and M; are related to the aW through the sorption isotherm equations. Integrating equation (III) gives a relationship between time and moisture content of each component. Linear sorption isotherms The simplified case is when the moisture sorption isotherms of the components are represented by a linear equation within the water activity range under consideration: MA = aA + bx aW (IV) M3 = a3 + b3 aW (V) Where aA, a3, bA and be are coefficients if the linear equation. Derivating dMA = daW .bA (VI) dMB = daW . b3 (VII) Dividing equations (7) and (8) and rearranging the terms: dMA . be = dMB. bA (VIII) 73 Combining equation (8) with equation (3) and integrating gives: _ 1 bB M3: dMA t"'PA [WA+WB—] I - (M ) (IX) - ’ps A M; awo aw A 1 b Mi* dM tB = [WA —A + WE] I B (X) P-A-Ps b3 M}, awo "aw (MB) Where: MA‘ and MB1 are the initial moisture content of component A and B, respectively tA, and t3 represents the time required to achieve the moisture content MA2 and M32, respectively. The analytical integration of equations 9 and 10 gives: l tA= (W .b +w,,.bB)1n[awo aW(M;):| (XI) Rips awo'aw( MA) a a (M‘) t = W .b W .b 1n “’0 W B (X") B P.A.ps( A A+ B B) [awo: -aw( (M3)] Where: aw(MA) and aw(MB) represent the head-space water activity, in equilibrium with the components’ moisture content. Superscripts 1 and 2 refer respectively for initial and final moisture content conditions. 74 Non-linear sorption isotherm When the linear equation does not represent accurately the sorption isotherm, the whole isotherm needs to be considered in the model and a numerical integration of equation (3) will be necessary. Assuming that the sorption isotherm equations of components A and B are described by, MA = f(aw) (XIII) M3 = f(aw) (XIV) Where f(aw) and g(aw) are the sorption equations for component A and B, respectively. Considering the inverse functions of the isotherms, aW can be expressed as a function of the components’ equilibrium moisture content, MA and MB, respectively: aw = f‘ (MA) (XV) aw = 9" (Me) (XVI) It is assumed that the moisture content between the two products is in equilibrium and therefore: MA = fl 9" (M3)] (XVII) and Me = g I r‘ (MAM (XVII) Therefore dMB can be expressed as a function of dMA: dMB = D dMA (XIX) 75 Where the function D is defined as: ___ dMB = dlglf "(Mull [KM A) “ dMA dMA (XX) The expression of dMA as a function of dMB gives: dMA d "MB D(MB)EdM = [figd 1x: )1] (XXI) The function D can be obtained analytically or numerically. Equation (Ill) rearranged can then be integrated to calculate the shelf life or to predict the moisture content over storage time. 1 ”A wA + WB.D(MA) t = . dM (xxn) A P-A-Ps M; awo 'aw (MA) A t _ I M wB +WA.D(MB) (N B - P A - _ (M ) a (XXIII) - ~Ps M13 awo aw B where: P = film permeability coefficient I = film thickness A = package surface area available for the moisture transfer p3 = water vapor pressure at the storage temperature 76 WA, W3 = dry weights of components A and B dMA, dMB = change in moisture content of component A and B respectively awo = external water activity aw(MA), aw(MB) = head-space water activity, in equilibrium with the moisture content of component A and B, respectively MA‘, ME, M31 and M32 = initial and final moisture content of component A and B respectively tm t3 = time required to component A and B to achieve the moisture content MAZ, M32 respectively D(MA), D(MB) = functions of MA ,MB relating the slopes of the components isotherms at each aw. Pocas stated also the following assumptions for the model that she developed: (1) The shelf life of the mixture depends solely on the moisture content change of the components (2) The storage temperature and relative humidity are constant (3) The amount of water vapor in the package head-space is negligible compared with the products’ moisture content (4) Both components of the mixture reach fast equilibrium with the package’s head space relative humidity (5) The components do not show hysterisis behavior on moisture sorption isotherms 77 (6) The transfer of water through the package is always at a steady state (7) The packaging material controls the rate of water transfer (8) Moisture is independently bonded to each component according to its sorption isotherm. 78 APPENDIX B PACKAGING MATERIALS CHARACTERIZATION 1. Film Thickness Ten measurements of film thickness were performed to verify the value provided by the manufacturer. The average values are presented below. LDPE Film: 1.15 i 0.09 mil HDPE Film: 1.85 i 0.09 mil 2. Materials water vapor transmission rate (g/m2.day) and permeability (g.miI/m2.day.mmHg) at 23°C. Infrared Sensor Method. Four flat samples were tested to determine the penneance and permeability of the films. Results are compiled below. Table B1 — Permeance (g/m2.day ) and Permeability (g.millm2.day.mmHg) at 23°C for flat LDPE samples. Sample Permeance, g/mz.day Permeability, g.millmz.day.mmHg 1 1 .350 8.80E-05 2 1.531 1.02E-04 3 1 .536 . 9.80E-05 4 1.395 9.29E-05 Average 1.453 9.52E-05 Std. Dev. 9.48E-02 6.08E-06 79 Table 32 — Permeance (g/m2.day ) and Permeability (g.miI/m2.day.mmHg) at 23°C for flat HDPE samples. Sample Permeance, g/m2.day Permeability, g.miI/mz.day.mmHg 1 1.350 8.80E-O5 2 1.531 1.02E-04 3 1.536 9.80E-05 4 1.395 9.29E-05 Average 1 .453 9.52E-05 Std. Dev. 9.48E-02 6.08E-06 3. Materials water vapor transmission rate (g/m2.day) and permeability (g.mil/m2.day.mmHg) at 23°C. Gravimetric Method. Four pouch samples were tested to determine the transmission rate and permeability of the films. The results are compiled in the next page. 80 Table B3 - Water Vapor Transmission Rate (g/day) and Permeability (g.mil/m2.day.mmHg) at 23°C for LDPE pouches. Sample Transmission Rate, 9/ day Permeability, g.mi|/mz.day.mmHg 1 0.0324 6.15E-05 2 0.0286 5.44E-05 3 0.0370 6.64E-05 4 0.0396 7.13E-05 Average 0.0327 6.34E-05 Std. Dev. 0.0042 6.05E-06 Table 84 - Water Vapor Transmission Rate (g/day) and Permeability (g.millm2.day.mmHg) at 23°C for HDPE pouches. Sample Permeance, glm7.day Permeability, g.mi|/mz.day.mmHg 1 0.0115 4.15E-05 2 0.0120 4.34E-05 3 0.0121 4.13E—05 4 0.0119 3.87E-05 Average 0.01 1 9 4.20E-05 Std. Dev. 0.0003 1.16E-06 Experimental data for packaging permeance determination by the gravimetric method. 81 APPENDIX C PARAMETER ESTIMATION OF GAB EQUATION The Guggenheim-Anderson-deBoer (GAB) equation (Eq. C1) was transformed into quadratic form to easily estimate GAB parameters. M = CKaw (C1) W (l-kaw)(1—kaw+Ckaw) m W CKa 2 2 —'“———“’=1-k +Ck —k ,+k2 -Cl(2 M aw aw a“ aw aw (02) 3w— : i[l—1)aw2+—1—(1—3]aw+ 1 (03) M Wm C Wm C Wka Assigning k 1 1 = — ——1 = l-C C4 a “(C ) Wmc( ) ( ) 1 2 1 = — 1—— = — C—2 C5 5 W..[ C] Wmc( ) ( ) — 1 (06) Y Wka Eq. C3 is rewritten as: aw 2 — = ora w + a w+y 07 M r3 < > Eq. C7 was plotted as aW vs awlM (X vs Y) and from the quadratic regression the constants a, [3 and 7 were obtained. The value of these 82 constants is used to calculate the GAB constants: C, Wm, and k. The calculations are presented below. Substituting Eq C4 into Eq C5 gives ___a(C-2) (CB) fi(C-1) Substituting Eq CB into Eq CS gives L = _ay (C-2)C (C9) Wm B (C -1) Substituting Eq 09 into Eq C5 gives 2 2 t3 = (C -4C +4) (C10) (-a);' (C -1) P 2 Assigning: X = Ga)r Eq C10 can be rewritten as c2 — (4+X) c + (4+X) = 0 (C11) ‘3 2 Assigning: 6 =4+X=4+ (-a) 7 Eq. C11 can be solved as: 6:46-46 2 C: This quadratic solution presented gives two mathematical solutions for C, but the solution of C that gives positive values for all GAB constants is correct. Parameter Wm and k can be obtained by subsitution of C into Eq CS and C6 83 APPENDIX D COMPUTER PROGRAM VALIDATION 1. Model Development The model used to create the computer program was developed by Pocas (1995). The researcher worked with the Henderson, Chen, Oswin, Halsey and GAB moisture sorption isotherms for modeling the moisture of two component food products. The researcher also prepared a DOS computer program where immediate calculations were done. The model prepared by Pocas (1995) was discussed in Chapter 2 and is explained in detail in Appendix A. A windows-based program was prepared to calculate the shelf life of two-component food products using the model developed by Pocas (1995) for linear and non-linear isotherms. In addition, the computer program prepared in this research has the option to work with a single product. 2. Model Validation The data used to verify the operational characteristics of the computer program were taken from Pocas’ (1995) work. The results obtained with the new computer program were compared with the ones reported by Pocas (1995) and a difference of :t 1.25% was found. Therefore, it was concluded that the computer program was accurate in its calculations. 84 The Halsey and GAB equations for cracker and raisin at 20°C, respectively, included in the literature by Pocas (1995), were used to generate the data that were entered in the computer program. The data entered to build the moisture sorption isotherm are presented in the next page. Cracker Raisin aw M aw M 0.10 0.0510 0.10 0.0260 0.18 0.0600 0.18 0.0466 0.28 0.0700 0.28 0.0712 0.37 0.0800 0.37 0.0964 0.45 0.0900 0.45 0.1222 0.52 0.1000 0.52 0.1489 0.58 0.1100 0.58 0.1765 0.63 0.1200 0.63 0.2050 0.68 0.1300 0.68 0.2344 0.71 0.1400 0.71 0.2645 0.74 0.1500 0.74 0.2953 0.77 0.1600 0.77 0.3265 0.79 0.1700 0.79 0.3582 0.81 0.1800 0.81 0.3901 0.83 0.1900 0.83 0.4222 0.84 0.2000 0.84 0.4543 0.89 0.2500 0.89 0.6123 0.92 0.3000 0.92 0.7597 Table D1 — aw and M (9/9) values used to obtain the cereal and raisin isotherms at 20°C The program was run with the same four sets of data presented by Pocas (1995). The runs were designed to understand how the program can facilitate the analysis of the components’ weight ratio, storage water activity, packaging barrier properties and total weight to the packaging area ratio in the storage stability curves prediction. The conditions used for the computer simulation are presented in Table D2. 85 Run cracker raisin total aw l, mil P, Area, wt, 9 wt, 9 wt, 9 g.millin2.day.mmHg in2 Set A: To evaluate the influence of components weight ratio 10 20 30 0.80 0.985 3.81E-05 69.75 15 15 30 0.80 0.985 3.81E-05 69.75 20 10 30 0.80 0.985 3.81E-05 69.75 Set B: To evaluate the influence of Storage water actvity 15 15 30 0.80 0.985 3.81E-05 69.75 15 15 30 0.75 0.985 3.81E-05 69.75 15 15 30 0.70 0.985 3.81E-05 69.75 Set C: To evaluate the influence of packaging barrier properties 15 15 30 0.80 0.985 6.35E-05 69.75 15 15 30 0.80 0.985 3.81E-05 69.75 15 15 30 0.80 1.182 3.81E-05 69.75 Set D: To evaluate the influence of total weight to packaging area ratio 15 15 30 0.80 0.985 3.81E-05 69.75 20 20 40 0.80 0.985 3.81E-05 69.75 3 25 25 50 0.80 0.985 3.81 E-05 77.50 Table D2 - Conditions used in the computer simulation The initial moisture content of the cracker and raisin are 0.077 gig and 0.090 g/g respectively and the temperature selected was 20°C. The isotherms were obtained at the same temperature. 86 Figures 01 - D.3 show the moisture content profile generated by the computer model for the conditions presented in Table D2. Values in Table D2 and Figures 0.1 — 0.3 are equivalent to the ones presented by Pocas (1995). l 0.30 "T _' f —‘ ' ‘ ‘7 ' Run 3 (10 g) i 0'25 Raisin RU" 2 (15 9) 3, Run 1 (20 g) E: 0.20 . 3 ’A’ R 3 (20 ) = ‘ Cracker U0 3 o 15 / / g a - /.g—=‘/"‘" Run1(109) ,9 0.10 _ / / " o /_, - 2 t 0.05 . _ 1 SET A- components weight ratio ? 0.00 , . , 0 50 100 150 200 250 300 350 400 1 time, dew Figure 0.1 - Moisture content profile for different components weight ratio. Note: Predicted values using set data A from Table D2. From Figure 0.1, it is observed that increasing the ratio of the lower moisture component (Run 3) causes a higher moisture uptake of the mixture. This information would be useful to study the influence of mixture formulation in shelf life. 87 0.30 Run 1 (80%) l 0.25 .. Raisin Run 2 (75%) ‘3 0.20 Run 3 (70%) C 3 v" 5 0.15 . /;é* Cracker Run 1 (80%) 2’, / Run 2 (75%) 3?; 0.10 - ’ , .5; 5:: =5 "— Run3(70%) '5 s . 0-05 SETB-Storage relative humidity l . I . l 0.00 , . T I I I I . l o 50 100 150 200 250 300 350 400 time, days i... ._ l Figure 02 - Moisture content profile for different storage water activities. Note: Predicted values using set data B from Table 0.2. From Figure D.2, it is observed that higher relative humidity storage conditions (Run 1) increase the moisture uptake. Knowing the highest and lowest expected storage relative humidity, the upper and lower limits of moisture uptake could be predicted and then the selection of the necessary package barrier can be made. 88 9 w o “‘—l . . Run 1 (15512) Raism 0.25 Run 2 (25853) ‘5) Run 3 (31024) .7 0.20 5 E Cracker Run 1 (15512) 0 0.15 - . 0 Run 2 (25853) l o " "‘ Run 3 31024 3?, 0.10 , ( ) n5 1 5 I 0.05 . . , SET C - Packaging barrier properties (l/P) 0.00 ‘ 0 50 100 150 200 250 300 time, days Figure D.3 - Moisture content profile for different packaging barrier properties(l/P). Note: Predicted values using set data C from Table 0.2. 400 From Figure D.3, it is observed that the lower the packaging resistance to moisture transfer (Run 1); defined as the ration thickness/Permeability (l/P), the higher the moisture uptake. This information could be used to define the lower and the upper limits of packaging barrier properties when selecting film material or film thickness. 89 ‘ 0.30 0.25 . . ' Run 1 (0.43) . Raism Run 2 (0.57) g 0.20 , - '. Run 3 (0.65) a ‘I c ’ 3 / Run 1 (0.43) 5 0.15 / C k 0 / / '30 9’ Run 2 (0.57) “I / —‘ 5 egg"!!! Run 3 (0.65) g 0.10 a / / I ’2' a!!! ' E 0.05 - SET D - Total weight to packaging area ratio (g/sq.in) 0.00 , , , , , . . 0 50 100 150 200 250 300 350 400 5 time, days J' Figjre D.4 - Moisture content profile for different total weight to packaging area ratio. Note: Predicted values using set data D from Table D2. From Figure D.4, it is noticed that increasing the ratio total weight to the packaging area (Run 3) would reduce moisture pickup of each component for a selected time. It is important to mention that the model assumes that the mixed products are in equilibrium at all times and it also assumes that moisture is independently bonded to each product because there are no interactions among the products. The validity of the model assumptions would make the predictions accurate and the computer program a useful tool for packaging design and optimization. The computer program validation was performed with the data presented in tables D1 and 0.2. 90 MOISTURE SORPTION ISOTHERM DATA FOR THE CEREALS APPENDIX E Point Water Activity Corn Oats Wheat 1 0.053 0.0153 0.0268 0.0293 2 0.112 0.0268 0.0488 0.0388 3 0.251 0.0401 0.0720 0.0548 4 0.330 0.0516 0.0851 0.0673 5 0.478 0.0801 0.1042 0.0954 6 0.615 0.1135 0.1228 0.1171 7 0.760 0.1645 0.1357 0.1420 8 0.808 0.2046 0.1503 0.1654 9 0.878 0.2819 0.1810 0.2166 Table E.1: Equilibrium Moisture Content (Me, gig) of Corn, Oats and Wheat at Nine Different Water Activities. 91 APPENDIX F MOISTURE PROFILE FOR THE EXPERIMENTAL AND PREDICTED CERAL MIXTURES Table F1 - Experimental and Predicted Moisture Content (%) of 33l67 corn-wheat samples for validation with HDPE (Each table value is the average of two determinations) Day Ex mental Predicted % Difference Corn Corn Wheat 2.25 .38 2.25 .38 0 2.33 4.43 2. 4. 1 2.1 4.38 2.40 4.53 3 4.56 2.45 4.58 1 2.49 4.68 2.50 4.63 1 2.57 4.85 2.55 4.68 2.58 4.79 2.60 4.78 0 60 4.85 2. 4.83 0 . 3. . 8 1 . 3. . .33 . .80 .83 3. . 4.10 6.1 3. . 4.40 6.38 3.74 . 4.70 6.58 4.24 . 4. 6.83 4.58 . 5.20 6.98 Corn Wheat Correlation Coefficient 0.9821 0.9810 Significance <0.0001 <0.0001 Table F2 - Experimental and Predicted Moisture Content (%) of 50l50 corn-wheat samples for validation with HDPE (Each table value is the average of two determinations) Day Ex mental Predicted % Difference Corn Wheat Corn 2.67 4. 1 2.67 .71 0 0 2.80 4. 2. 4.8 1 2.87 4.98 2.82 4.86 2 2 91 4. 2. 4.91 1 1 .18 .96 3.10 . . 3. . 3. .06 3.34 5.40 3.12 5.16 3.68 5. 3. .51 3. 4 5. 3.87 .8 4.20 6.27 4.22 6.11 4.34 6.41 4.52 6.41 4. 6. 4.82 6.61 4.68 6.89 .07 6.86 4.89 6. 5 7.01 .20 .22 .52 .21 Corn Wheat Correlation Coefficient 0.9913 0.9895 Significance <0.0001 <0.0001 93 Table F3 - Experimental and Predicted Moisture Content (%) of 67/33 corn-wheat samples for validation with HDPE (Each table value is the average of two determinations) Day Experimental Predicted % Difference Corn Wheat Corn Wheat Corn Wheat 0 2.77 4.49 2.77 4.49 0 0 1 2.93 4.63 2.87 4.59 2 1 2 2.91 4.74 2.92 4.64 0 2 3 3.10 4.68 2.97 4.69 4 0 4 3.20 4.76 3.02 4.79 6 1 5 3.32 4.81 3.12 4.84 6 1 6 3.34 4.95 3.17 4.89 5 1 7 3.40 5.08 3.22 4.94 5 3 14 3.58 5.30 3.62 5.34 1 1 21 3.87 5.60 3.97 5.69 2 2 28 4.18 5.74 4.32 5.99 3 4 35 4.39 6.02 4.62 6.29 5 5 42 4.48 6.11 4.87 6.54 9 7 49 4.68 6.41 5.12 6.74 9 5 56 4.93 6.35 5.37 6.94 9 9 63 5.37 6.56 5.57 7.14 4 9 Corn Wheat Correlation Coefficient 0.9912 0.9942 Significance <0.0001 <0.0001 Table F4 - Experimental and Predicted Moisture Content (%) of 33l67 corn-oats samples for validation with HDPE (Each table value is the average of two determinations) Day Experimental Predicted % Difference Cor_r_I Oats Corn Oats Corn Oats 0 2.67 10.50 1 3.11 8.61 2 3.59 8.23 3.59 8.23 0 0 3 3.92 8.33 3.64 8.28 7 1 4 4.13 8.68 3.69 8.33 11 4 5 4.19 8.69 3.74 8.33 11 4 6 4.27 8.88 3.79 8.38 11 6 7 4.36 9.04 3.84 8.43 12 7 14 4.52 9.16 4.14 8.58 8 6 21 4.67 9.33 4.44 8.78 5 6 28 4.90 9.58 4.69 8.93 4 7 35 5.18 9.77 4.94 9.08 5 L 42 5.46 9.92 5.14 9.18 6 7 49 5.77 10.04 5.39 9.33 7 7 56 5.95 10.31 5.59 9.43 6 9 63 6.44 10.45 5.79 9.53 10 9 Corn Oats Correlation Coefficient 0.9827 0.9812 Significance <0.0001 <0.0001 94 Table F5 - Experimental and Predicted Moisture Content (%) of 50/50 corn-oats samples for validation with HDPE (Each table value is the average of two determinations) Ex mental Predicted % Difference Corn Oats Corn Oats Corn Oats 0 2.77 10.50 1 3.31 8.08 2 3.28 8.09 3 3.43 8.32 4 3.56 8.04 5 3.65 .98 6 3.65 8 7 3.76 .92 3.76 .92 0 14 3.80 8.20 4.11 8.1 8 21 3.98 8. 4.41 .42 11 28 4.77 8.51 4.66 8.62 2 4.71 .59 4.91 8. 4 5.21 8. 5.16 8.92 1 5.40 8.88 5.36 9. 1 .63 9.06 5.56 9.1 1 5. 9 .66 9 3 Corn Oats Correlation Coefficient 0.9759 0.9884 Significance <0.0001 <0.0001 Table F6 - Experimental and Predicted Moisture Content (%) of 67l33 corn-oats samples for validation with HDPE (Each table value is the average of two determinations) Day Experimental Predicted % Difference Corn Oats Corn Oats Corn Oats 0 2.77 10.50 1 3.28 6.70 2 3.32 5.71 3.32 5.71 0 0 3 3.36 6.15 3.42 5.81 2 6 4 3.41 6.48 3.47 5.86 2 10 5 3.45 6.69 3.47 5.96 1 11 6 3.49 6.68 3.52 6.01 1 10 7 3.60 7.02 3.57 6.11 1 13 14 3.96 7.04 3.92 6.51 1 7 21 3.99 7.20 4.22 6.91 6 4 28 4.06 7.58 4.52 7.26 11 4 35 4.43 7.42 4.77 7.61 8 3 42 4.66 7.77 5.02 7.86 8 1 49 5.32 8.22 5.22 8.11 2 1 56 5.22 7.75 5.47 8.36 5 8 63 5.66 7.92 5.62 8.51 1 7 Corn Oats Correlation Coefficient 0.9774 0.9169 Significance <0.0001 <0.0001 95 Table F7 - Experimental and Predicted Moisture Content (%) of 33l67 oats-wheat samples for validation with HDPE (Each table value is the average of two determinations) Day Experimental Predicted % Difference Oats Wheat Oats Wheat Oats Wheat 0 10.62 4.49 1 7.35 5.46 2 6.39 5.52 6.39 5.52 0 0 3 6.90 5.58 6.49 5.57 6 0 4 6.88 5.77 6.54 5.62 5 3 5 6.86 5.82 6.59 5.67 4 2 6 7.03 5.75 6.64 5.72 6 1 7 7.02 5.80 6.69 5.77 5 1 14 7.35 6.11 7.09 6.07 3 1 21 7.50 6.51 7.44 6.32 1 3 28 7.62 6.84 7.74 6.57 2 4 35 7.80 7.10 7.99 6.77 2 5 42 7.83 7.36 8.24 6.97 5 5 49 7.98 7.71 8.44 7.17 6 7 56 8.15 7.85 8.64 7.32 6 7 63 8.34 8.10 8.84 7.47 6 8 Oats Wheat Correlation Coefficient 0.9756 0.9975 Significance <0.0001 <0.0001 Table F8 - Experimental and Predicted Moisture Content (%) of 50l50 oats-wheat samples for validation with HDPE (Each table value is the average of two determinations) Day Experimental Predicted % Difference Oats Wheat Oats Wheat Oats Wheat 0 10.62 4.60 1 8.38 6.52 2 8.11 6.46 3 7.85 6.54 7.85 6.54 0 0 4 8.19 6.52 7.90 6.59 4 1 5 8.04 6.56 7.95 6.64 1 1 6 7.95 6.60 8.00 6.64 1 1 7 7.99 6.56 8.05 6.69 1 2 14 8.37 6.74 8.30 6.89 1 2 21 8.74 6.88 8.50 7.09 3 3 28 8.83 6.95 8.70 7.29 1 5 35 9.05 7.28 8.85 7.44 2 2 42 9.17 7.67 9.05 7.59 1 1 49 9.25 7.79 9.15 7.74 1 1 56 9.35 7.91 9.30 7.84 1 1 63 9.59 8.26 9.40 7.99 2 3 Oats Wheat Correlation Coefficient 0.9857 0.9751 Significance <0.0001 <0.0001 96 Table F9 - Experimental and Predicted Moisture Content (%) of 67/33 oats-wheat samples for validation with HDPE (Each table value is the average of two determinations) Day Experimental Predicted % Difference Oats Wheat Oats Wheat Oats Wheat 0 10.62 4.49 1 9.13 6.32 2 8.53 6.41 8.53 6.41 0 0 3 8.85 6.57 8.58 6.46 3 2 4 8.81 6.65 8.63 6.51 2 2 5 9.13 6.55 8.63 6.51 5 1 6 9.07 6.58 8.68 6.56 4 0 7 9.39 6.88 8.68 6.61 8 4 14 9.80 7.06 8.88 6.81 9 4 21 9.55 7.11 9.03 7.01 5 1 28 9.66 7.14 9.13 7.21 5 1 35 9.82 7.24 9.28 7.36 6 2 42 10.07 7.59 9.38 7.51 7 1 49 10.26 7.83 9.48 7.66 8 2 56 10.21 7.80 9.58 7.76 6 1 63 10.66 8.04 9.68 7.91 9 2 Oats Wheat Correlation Coefficient 0.9472 0.9793 Significance <0.0001 <0.0001 97 98 58.9 38.9 38.8 8:85:35 £85 885 883 E8580 88.8.8 $2.2, v.80 Eoo N 8.0 New 3 3.2 8.2 2 8.3 8.3 8 N 88 83 3 3.2 8.2 2 2.3 3." 8 F 88 83 3 3.2 3.2 mm 8.3 8...” 2. F 82". 38 3 3.2 8.2 2 8.3 8.” 3 N 25 86. 3 8.2 2.2 a 8.3 8.». 8 o 8.3 8.3 m 8.2 2.2 o 8.8 8.» 8 2 8.3 22.. n 8.2 8.2 N 3.8 New 3 3 8.3 3.3 m 8.2 8.2 m 2.” t.” 3 m 8.» 8.... F 8.2 8.2 5 8d 8.» e m 8.8 2.3 m 8.2 8.2 m 8d 8d o m 8.» 2.3 m 8.2 8.2 e 2a 5a m w 8.8 2.... m 8.2 8.2 m 8.~ New 3 L. 8.8 8.3 F 8.2 8.2 o 8.~ Rd 8 m 2..» 8...” o 8.2 3.2 m 8.~ 8.~ m N 8.» 2.8 o 8.2 3.2 F 8d 8d 2 o 88 8.8 o 8.2 8.2 o 28 SN c 85550 8 88605 _mEmEtoaxm 8.8550 8 88621 _mEoEcmaxm 8.8550 8 88695 _ScoEtmaxm 855 l .80 i 58 .l 50': AmcoszEBou oz: .5 2385 05 m. m2? 532 commv man: 5;) 828:? L2 manmm Eon; new mac ES 8 at 52.50 8586.2 3662a new _mEmEEmaxm .. of. came Table F11 - Experimental and Predicted Moisture Content (%) of 50/50 corn-wheat samples for validation with LDPE (Each table value is the average of two determinations) Day Experimental Predicted % Difference Corn Wheat Corn Wheat Corn Wheat 0 3.43 5.70 3.43 5.70 0 0 1 3.49 5.79 3.63 5.85 4 1 2 3.63 5.88 3.78 6.00 4 2 3 3.80 6.06 3.93 6.10 3 1 4 3.89 ' 6.26 4.08 6.20 5 1 5 3.98 6.40 4.18 6.35 5 1 6 4.07 6.54 4.33 6.45 6 1 7 4.17 6.66 4.48 6.55 8 2 14 5.19 7.51 5.23 7.15 1 5 21 5.57 7.66 5.83 7.55 5 1 28 6.21 8.24 6.28 7.90 1 4 35 6.36 8.24 6.63 8.15 4 1 42 6.79 8.38 6.88 8.35 1 0 49 7.10 8.58 7.13 8.55 0 0 56 7.32 9.05 7.28 8.65 0 4 63 7.68 9.12 7.43 8.75 3 4 Corn Wheat Correlation Coefficient 0.9966 0.9945 Significance <0.0001 <0.0001 Table F 12 - Experimental and Predicted Moisture Content (%) of 50/50 corn-oats samples for validation with LDPE (Each table value is the average of two determinations) Day % Difference Corn Oats Corn Oats Corn Oats 0 3.31 10.86 1 4.50 9.59 2 4.82 9.49 3 4.97 9.42 4 5.03 9.36 5 5.08 9.29 6 5.13 9.19 7 5.16 9.06 5.16 9.06 0 0 14 6.09 9.76 5.76 9.41 5 4 21 6.28 9.84 6.21 9.66 1 2 28 6.77 10.03 6.61 9.86 2 2 35 7.21 10.20 6.86 10.01 5 2 42 7.45 10.41 7.11 10.11 5 3 49 7.74 10.55 7.26 10.21 6 3 56 7.95 10.52 7.41 10.26 7 3 63 8.15 10.58 7.56 10.31 7 3 Corn Oats Correlation Coefficient 0.9934 0.9845 Significance <0.0001 <0.0001 99 Table F13 - Experimental and Predicted Moisture Content (%) of 50/50 oats-wheat samples for validation with LDPE (Each table value is the average of two determinations) Day Experimental Predicted % Difference Oats Wheat Oats Wheat Corn Oats 0 10.74 5.04 1 9.27 7.21 9.27 7.21 0 0 2 9.53 7.34 9.32 7.31 2 0 3 9.61 7.42 9.37 7.36 3 1 4 9.52 7.39 9.42 7.46 1 1 5 9.64 7.67 9.47 7.51 2 2 6 9.70 7.71 9.52 7.56 2 2 7 9.58 7.44 9.57 7.61 0 2 14 9.95 8.26 9.77 7.96 2 4 21 10.13 8.53 9.97 8.26 2 3 28 10.39 8.98 10.07 8.46 3 6 35 10.50 9.11 10.17 8.61 3 5 42 10.56 9.35 10.27 8.76 3 6 49 10.42 9.31 10.32 8.81 1 5 56 10.62 9.50 10.37 8.91 2 6 63 10.66 9.68 10.42 8.96 2 7 Oats Wheat Correlation Coefficient 0.9838 0.9940 Significance <0.0001 <0.0001 100 38.9 58.9 8:85:90 0000.0 0000.0 «00.05000 00.00.0000 .0055 $00 E00 NF 0% N00 0 3.0.. 30.3 3 00.0 00.0 00 03 00.0 30.0 0 3.3 30.3 F 3.0 00.0 00 3 03.0 03.0 0 3.3 00.3 0 00.0 N0.» 03 3 3.0 3.0 0 3.3 00.3 3 00.0 00.0 N3 0 00.0 00.0 0 3.3 00.3 0 00.0 00.0 00 0 0:. 00.0 0 3.3 00.3 v 03.0 00.0 0N 3 3.x. 00.0 v 3.3 00.3 0 00.0 .00 N 3 00.0 30.0 v 3.3 3.3 v 00.0 3.0 3 0 00.0 00.0 N 3.3 00.3 N 00.3 3.3 n 0 00.0 3.0 N 3.3 N0.3 3 0:. 3.3 0 0 00.0 00.0 N 3.3 3.3 0 00.3 00.0 0 0 00.0 00.0 F 3.3 00.3 P 00.0 30.0 v 0 03.0 00.0 0 3.3 3.3 0 00.0 03.0 0 0 30 N00 0 3.3 3.0.. F 00.0 N00 N 0 03.0 00.0 P 3.3 3.3 0 03.0 3.0 3 0 00.3 00.3 0 3.3 3.3 0 3.0 3.0 0 0000.005 8 006.000.“. 000080098 000000.50 8 008.0000 .0000E000xm 0000.005 0.. 008.020 0000.0000me «00:2. 200 E00 .00 600.000.0550 020 00 00000>0 05 0. 0:_0> 0.000 0000.0 man: 5.; 00:00:? .2 00.9000 002.; 000 300 .E00 00 $00 E00000 0.30.0.2 008.005 000 .0000E000xm - 3“. 0.00... 101 APPENDIX G DETAILED DATA OF VALIDATION EXPERIMENTS N000.3 300.3 N000.3 0050.3 350.3 0300.3 0500.3 0000.3 N030.3 N300.3 5030.0 N0 0300.3 300.3 3030.3 0000.3 030.3 030.3 0330.3 3500.3 305.3 0000.3 300.0 30 3000.3 3030.3 300.3 030.3 0530.3 0000.3 300.3 N305.3 0005.3 0300.3 350.0 00 ..5.000.0N N30N.0N 303.3 00MN.0N 0NmN.0N 003.3 003.3 33.3 333.3 0J30.3 K300 0N 33.3 003.3 33.3 033.3 553.3 503.3 0003.3 003.3 003.3 0.50[N 3 0000.0 0N 003.3 N050.0N 0000.3 N000.0N 0000.3 0030.3 0000.3 300.3 030.3 003.3 03.0.0 5N 3N0.0N 00mN.0N 003.3 33.3 003.3 003N.0N 303.3 33.3 303.3 033.3 N300.0 0N M0003 33.3 303.3 003.3 N000.0N N000.0N 300.3 E93 N000.0N 003.3 530.0 0N 0000.3 5000.3 030.3 030.3 030.3 0000.3 5000.3 0500.3 330.3 503.3 300.0 3N .NI05N.0N 33.3 003.3 003.3 003.3 33.3 303.3 303.3 0053.3 030.3 003.0 0N 0000.3 0030.3 5000.3 030.3 030.3 030.3 0000.3 3000.3 300.3 3000.3 0M00.0 NN 030.3 3000.3 300.3 0300.3 0500.3 3000.3 0330.3 3000.3 030.3 003.3 0000.0 3 0000.3 0m00.3 00m0.3 NNm0.3 .5.000.3 3000.3 mN00.3 0030.3 N000.3 0000.3 0K00 0N .NI500.0N 003.3 33.3 303.3 33.3 003.3 003.3 003.3 003.3 303.3 0050.0 3 0000.3 0000.3 030.3 030.3 N3..0.3 0000.3 0000.3 300.3 0300.3 003.3 330.0 3 0000.3 3000.3 0030.3 0000.3 300.3 330.3 030.3 030.3 0300.3 0E0 5F000.0 J5rv 303.3 003.3 003.3 0033.3 003.3 033.3 003.3 003.3 003.3 030.3 3030.0 3 E0.3 3030.3 5000.3 0000.3 030.3 030.3 33.3 0000.3 053.3 0000.3 0000.0 3 0KNON 303.3 003.3 33.3 033.3 $3.3 003.3 33.3 033.3 503.0 33 300.3 N300.0N Ni550.3 0000.3 300.3 0300.3 N030.0N 0500.3 003.3 0000.0 3 333.3 03mN.0N 303.3 003.3 33.3 0m3N.0N 303.3 003.3 005N.0 NF 300.3 5300.3 05F00.3 00J50.3 300.3 0300.3 0000.3 0030.3 003.0 3 303.3 003.3 33.3 003N.0N 303.3 33.3 333.3 N030 3 003.3 33.3 033.3 3533.3 0033.3 33.3 NO0N.3 0000.0 0 303.3 003.3 003.3 003.3 333.3 305PN.3 003.0 0 033.3 00F3 35.3.3 003.3 003.3 330.3 030.0 5 0003.3 303.3 033.3 033.3 3030.3 030.0 0 300.3 F0m0.0N 0000.3 300.3 2K3? 030.0 0 3003.3 30M30N 0003.3 Nm00.3 0000.0 3 033.3 033.3 .5.303.0N N003.3 003.0 0 300W3 05l05.3 0033.3 5000.0 N 0000.3 N000.0N 300.3 053.0 P 33 5 0 0 3 0 N F 0000a. >00 >00 >00 >00 >00 >00 >00 >00 + 00.0 00003 500' 0000.”. 3 00:00:02 000027500 5000 .0.— 0E0 .05 A00 £0.03 0000000 000 0000000500 00 A00 30.03 .050. - 30 0.00.0 103 0050003000 - _.0 0.00... 003.3 003.3 3N3.0N 5350.3 330.3 0000.3 0050.3 N0 003.3 0000.3 0000.3 0000.3 0000.3 3000.3 0000.3 30 33.3 0000.3 0000.3 300.3 0000.3 300.3 330.3 00 N000.0N 3300.3 300.3 0053.3 N033.0N 0003.3 N350.0N 0N 0003.3 033.3 3300.3 3300.3 030.3 33.3 0N 030.3 003.3 33.3 003.3 503.3 353.3 5N 0003.3 3003.3 0003.3 0003.3 300.3 0N 0000.3 03N0.0N 003.3 33.3 003.3 0N 033N.0N 003.3 0003.3 303.3 3N 033.3 N000.0N 0000.3 030.3 0N 033.3 0000.3 300.3 NN 335.3 3005.3 0300.3 3 $3.3 0000.3 0N 0000.3 300.3 3 330.3 3 0000.3 5.. 3 3 33 3 3 3 3 0 0 m 0 w 3 0 N 3 00 00 03 N3 00 0N 3 >00 >00 >00 >00 >00 >00 >00 00000 104 3 00002.02 0000-500 5900 .00 0E: .05 A00 000.02, 0000000 000 00000000000 .0 A00 £0.03 .050. - N0 0.00.0 3005.3 3555.3 3355.3 5055.3 3005.3 5005.3 305.3 305.3 3005.3 350.3 NON0.0 N0 0005.3 300.3 0000.3 3000.3 3050.3 0050.3 0500.3 N000.3 300.3 330.3 330.0 30 305.3 0005.3 305.3 3000.3 N51050— 0305.3 305.3 305.3 0035.3 N000.3 0300.0 00 0305.3 005|w5.3 0050.3 005|5.3 F0503 0305.3 3|05.3 5000.3 330.3 030.3 0550.0 0N 330.3 300.3 N000.0N 0500.3 0300.3 300.3 0000.3 0000.3 0000.3 300.3 0030.0 0N 0000.3 0000.3 0000.3 0000.3 0000.3 300.3 3030.3 0530.3 0330.3 0000.3 0000.0 0N [0000.3 N030.3 0000.3 0300.3 300.3 33.3 N0rN0.3 030.3 030.3 0000.3 N000.0 0N 3000.3 300.3 5050.3 3000.3 N350.3 0000.3 0000.3 0000.3 0000.3 0000.3 3050.0 0N 0000.3 0330.3 030.3 5500.3 0000.3 300.3 0535.3 3005.3 305.3 3000.3 5300.0 3N 0300.3 3030.3 0030.3 3000.3 N000.3 030.3 030.3 330.3 030.3 5FN00.3 0300.0 0N 3000.3 3000.3 0000.3 300.3 3000.3 0000.3 3000.3 300.3 0000.3 003.3 0000.0 3 3000.3 N030.3 0030.3 0000.3 0000.3 0000.3 30rN0.3 030.3 N30.3 300.3 0000.0 3 533.3 353.3 003.3 N33.0N 33.3 053.3 033.3 303.3 N03.0N 003.3 0300.0 0N 0300.3 0000.3 0000.3 N5F00.3 N300.3 5000.3 330.3 0030.3 3030.3 300.3 0000.0 3 305.3 30m.3 0030.3 0000.3 0005!. 0.. 300.3 030.3 030.3 NON0.3 3000.3 5000.0 0.. 330.3 5005.3 035.3 300.3 3000.3 0000.3 305.3 05I00..3 35|5n.3 3050.3 3300.0 53 0000.3 0000.3 0000.3 05I00.3 5|000.3 0000.3 0000.3 3000.3 0000.3 003.3 3000.0 3 003.3 003.3 0000.3 0300.3 0000.3 N000.0N 0000.3 0000.3 0000.3 33.3 030.0 3 330.3 330.3 NON0.3 0530.3 030.3 030.3 0000.3 0000.3 3300.3 0000.0 3.. 300.3 330.3 030.3 330.3 N030.3 0330.3 030.3 0000.3 503.3 3000.0 3 030.3 030.3 0000.3 3000.3 0300.3 0000.3 300.3 5000.3 0300.0 3 3500.3 0000.3 5350.3 05|50.3 0300.3 0000.3 0000.3 303.3 3300.0 3 305|5.3 05k.3 3300.3 300.3 53.3.3 0305.3 030.3 030.0 3 0300.3 0000.3 030.3 030.3 030.3 330.3 333.3 N300 0 3000.3 0005.F3 000W3 330.3 030.3 330.3 0000.0 0 335.3 0005.3 3335.3 0000.3 00053.3 030.3 0330.0 0 0005.3 3.05.3 0005.3 0000.3 030.3 N000.0 0 330.3 030.3 030.3 030.3 N000.3 0330.0 0 300.3 53000.03 330.03 030.3 N300.0 3 3030.3 330.3 0000.3 300.3 030.0 0 030.3 N3_.0.3 0000.3 0000.0 N @3003 N0..0.3 0000.3 030.0 3 33 5 0 0 3 0 N 3 00000 >00 >00 >00 >00 >00 >00 >00 >00 + 0000 0000 0000 00000 105 0300.3 350.3 0000.3 0030.3 0000.3 030.3 0000.3 N0 305.3 N055.3 000E 000m3 0N3J5.3 035.3 00|w0.3 30 E003 0000.3 0030.3 0500.3 03N0.3 030.3 5505.3 00 0000.3 300.3 0000.3 3030.3 5000.3 030.3 ..000.3 0N 0000.3 0300.3 3N50.0N 0000.3 0030.3 0000.3 0N 0000.3 0030.3 0000.3 030.3 3000.3 0300.3 0N 030.3 0300.3 N000.3 0000.3 5000.3 0N 3300.3 300.3 330.3 _.0N0.3 3330.3 0N 0000.3 0000.3 0000.3 3000.3 3N 030.3 0330.3 0000.3 300.3 0N 0000.3 030.3 $00.3 NN 030.3 3000.3 0000.3 3N 033.3 003.3 3 030.3 300.3 3 0000.3 3 0030.3 0.. 0.. 3 3.. 3 N.. 3 3 0 0 r 0 Pl 3 0 N .. 00 00 03 N3 00 0N 3N >00. >00 >00 >00 >00 >00. >00 00:00 0000000000 - N0 0.00... 106 88.8 88.8 88.8 ?8.8 88.8 ?8.8 88.8 ?8.8 88.8 8?.? ?Fo.m 8 3.8.8. W808 88.8 88.8 88.8 88.8 88.8 88.8 88.8 83.? v88 8 88.? 88.? 88.? 88.? .88.? 88.? 88.? 88.? 88.? 88.8 #88 8 8?.8 8?.8 83.8 83.8 83.8 8?.8 8?.8 8?.8 83.8 ?8.? 888 8 828.? 88.? 88.? 880.? 88.? #8.? 88.? 8.8.? 88.? 88.? ?8.m 8 88.? 88.? 88.? $8.? 88.? 8F8.? 88.? 88.? ?mm.? 88.8 «Rod 'me 3.8.? 38W? 8%? «8%.? 88.? 88W? 8%? ?mm.? 88.? 88.? 888 8 88.? 88.? 88.? 38.? N89? 3.8.? 88.? 88.? $8.? 88.? $.88 8 88.? ?om.? 88.? N815? 08W? ?vm.? 08%? 88.? 8.8.? 88.? 8.88 8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 85.8 88.8 88.? 888 8 88.? 88.? 88.? 88.? 88.? 88.? 88.? 88.? 28.? 88.? 888 mm 88.? 88%.? 38%.? 28%? mama? 88.? 83W? 82...? 88.? mv?.? 888 8 88.? 88.? 88.? 88.? 88.? 88.? 818.? 88.? 88.? 88.? 388 8 88.? 88.? $8.? 88.? 88.? 88.? 88.? 88.? 88.? mvofi? 888 ? 88.8 ?8.8 88.? 88.? 88.? 88.? 8%.? 8%.? 88.? momma? ?8.m ? 88.? 88.? 88.? 88W? 853.? 88.? mmmlh? 8pm.? 82.5? 8%.? 3.88 2 #838 88.8 85.8 ?S.8 38.8 Eodw 88.? ?8.? 88.? 88.? E8 ? 9.8.? 88.? 818.? 88.? 88.? 88.? 88.? 3%.? «$8.? 8?.? 888 m? 88.? 88.? 88.? 88.? 3.8.? 88.? 88.? g8? 38.? 886. 3 88.? 88.? 88.? 88.? «8%? 88%? 8.8.? 8815? 88.? 888 ? 88.? 88.? 88.? 88.? 88.? 88.? 88.? 8?.? ?No.m ? 88.8 88.8 38.8 3.8.8 88.8 88.8 88.8 88.? 888 E. 88.? 88.? 88.? 88.? 88.? 88.? 85.? 88.0 ? 88.8 88.8 88.8 88.8 88.8 88.8 88.? 888 m 88.? 88.? 88.? ?8.? 88.? 88.8 888 8 88.? 88.? 88.? 88.? ~85? 38.? 88.m n 88.? 88.? 88.? 88.? 88.? 88.8. 8 ~85? 885.? 88.? 88.? 83.? ?8.m m 88.? 88.? 88.? 38.? 88.8. v 88.? 38.? 88.? 88.8 886. m 88.? 8%.? 88.8 888 N 898 88.8 85.? 888 F 3 n m m w m N F canon 80 80 >8 80 80 >8 80 80 + no.1 89:5 85 canon C 88283 ummzzéfio 888 .2 8.5 85 By 2995 8:033 new flcmcanou n6 3 29¢; .28: - 80 2an 107 mwmmdm mmmmdm Smmdm omrmdm vmwfiom oomfiom Empdw mm ommmdm 358 33.3. BEN omvvdm 93.8 38.8 5 38.3 93.3 33.3 mwomdv omnmdv «2:29 SF? on know vmvmdm Emmdm ovomdm Emmom onemdm mmfidm mm 38.3 9.3.? $3.3 «$5.3 vmfip 32.3 mm «Ed? 3%.? vmmndr mmmndv Semi mFHnodF mm owmmdw 85.2 33.3 33.9 3%.? mm $8.8 $8.8 onmodm mmoodm F3.? mm 38.3 8%.? 83.2 83.9 «N $3.8 $9.8 Emfiom 83.8 mm $3.8 «$0.8 33.3 mm 53.3 53.3 055.9 E Ermmdr 3.8.? cm 53.2 WNW? mp Rmodm or 85.9 t or m_. 3 my 3. S or m m n o m e m N P mm mm me 9 mm mm _‘N $0 .60 $0 30 >8 $0 50 coaom cozmsczcoo - m0 2%... 108 ?mw? $8.? 88.? Emma? 33.? 33...? 32...? mina? 33.? 33> m3v.> Nm 2%.? 83.? $3.? 53.? m39? 3%.? 3N9? 38.? 33.? mm>m> Neam Fm N?m.? 8%.? >51? 33.? $3.? $3.? $3.? $9.? 83.? 38> 35K on 88.? 3%.? 83.? 33.? Nag? ?ow.? Pmmfi? 33.? ?>F>.? ovovs ovmmw mN wN?.oN 88.8 88.8 vmnodN EodN ovmodN 83.8 83.8 ommodN FNNmN 33> wN ommNdN 5?.oN 8?.ON mowfiON mmth 8?.oN m5...oN 3%de mnmfioN 3.5.? 3mg. PIMN mefioN EN_..oN 83.8 33.8 omofioN oNoPdN $8.8 $8.8 oomodN 333 N32. oN mNm>.? 33.? ono.? «#0.? 35.? 88.? ommm? 33.? Nmmo.? 8mm 3mm. mN mmmNdN vmmFdN 8?.oN meEN EFCN 8th omoSN wo?.oN moidN 25mg ommm VN 3.3.8 02%.? 38.? 38.? mmmm? 88.? omvm? N>mm.? 38.? 38> mmwms «N 33.? 88.? Nmmo.? 88.? NNoo.? 2R9? $8.? 58.? $3.? mwmmwl 23> NN 32.? mNmm.? nmNfi? m?m.? vam? amen? mE? 3%.? 8%.? 3va mmmvs FN NSde wwwmdN mNmmdN vadN moEoN >NomdN vmmmdN mwvmdN mommdN amok mom>.m ON $3.? 9.5.? $3.? ?mw.? $3.? 33.? Nva? $8.? 83.? 33> wmmmW ? Nw?.oN $3.8 3?.oN omEdN 3?.0N mo?.oN mmedN mEdN mwmodN 53k. 332m ? 82.? E? N85? 05%? mmNW? 92%? Naom? ?om.? 33.? 38> 3me 5 ENE? 88.? 3.3.? 33.? 969? 8%.? wao? 98.? momma? 8va 8va ? Kmmdp 08%? Nab? momfi? N56? 3%.? mmofi? ?mm.? mmEnW? 38$ 35: ? NNONdN 8?.0N mm?.oN 95de mmth 8?.oN 5?.0N 33.8 .8an vaosf 3 8?.ON wmmFdN EEK wFEdN NvadN meFdN 8:.oN ??.oN ENF otms ? ?5.? 38.? 88.? 38.? $8.? 3%.? 9.3.8.? 83> 69; NF 58.8 88.8 68.8 330.8 armodN ovwodN mnvodN 8an 83:. 3 080.? 88.? 3%.? 88.? $3.? 83.? mpmnm 8va or 88.? 38.? 83.? E4? 3%.? 33.? 8%: $8M m 88.? 38.? 88.? 38.? 53.? 23> 2.9: w 315.? mmMmdF 8mm? ENQ? n38.? wNENF mama:h Hn 38.? mpg? 33.? 38.? N5”; 53W m 23.8 33.8 28.8 mmodN 58> 61:. m 88.? $3.? 3.8.? mwmvs 33> v mmedN ?NF.oN No?.oN Emmm 83> m memb? haw? 33>? Fvomk N :mNdN moFNdN 33$ 8va P 3 > w m v m N F canon. >3 >3 >3 >3 >3 >3 >3 >3 + ten. .853 :50 coaom C cosmEEZ $23.58 35m .2 0E: 33 av 29m; 3538 new £55588 .0 BV 2995 BEE - v0 2an 109 bib? ?8.? 85.? 88.? 88.? ENE? 88.? Nm 8?.8 8?.8 88.8 88.8 88.8 88.? 88.? S 88.? 88.? 8%.? ?8.? 88.? $8.? 88.? on 88.8 88.8 88.8 #8.? 3%.? 88.? $8.? 8 $8.8 38.8 NENdN 88.8 3.8.8 vmmFdN 8 88.8 83.8 $8.8 38.8 85.8 88.8 J8 88.8 88.8 88.8 88.8 $8.8 8 88.? 88.? 88.? 88.? PEN? 8 8% 8 88.8 3.8.8 mkNdN VN 83.8 89.8 m8.8 58.8 8 88.? 88.? 85%.? NN 88.? 88.? 85.? FN 85.8 3&de 8 88.? 88.? ? NodeN 2. 88.? m? ? m? 3 ? N? E ? m w m m n v m N F 8 8 8 Nv 8 8 FN >3 >3 >3 >.3 >.3 >.3 >.3 canon. cozmaczcoo - *0 $30... 110 88.? 88.? 38.? 388.? 88.? 88.? 88.? 88.? 88.? 888 88.x. mm , 88.? 88.? %8.? 888.? 88.? 88.? ?8.? 8%8.? 88.? 888 080m 8 .88.? 38W? 88!.? NE.? 88.? 88.? 88W? 88.? 83.? 88M 88K! 8 88.? 88.? 88W? 88%? 88W? 85? 8%.? 83%? 88%? {8.5 888 8 88.? 88.? 8%.? 3%.? 88.? 88.? 38.? 88.? 38.? 8E 88m 8 88%? 03%? _.E? 88%? 88W? 88.? 3.8%.? 88.? 83%.? 88k 8E. mm 88.? 88%? 88's.? 88%.? 83W? 88.? om..m.? 895? 88.? 88s 88M 8 88.? 38.? fibfi? 88.? 88.? 88W? 88W? 88.? 83$? 88M. 88¢ 88 88.? 888.? 888.? 88.? 88.? %8.? $8.? $8.? 88.? 88W 88W 8 mwvm.? 83%.?! >35? 88%.? 88%.? 88.? 88.? 88.? 888.? 8va 88am 8 88.? ?8.? £08.? 88.? 8%.? «8%? 38.? 2.8.? 88.? 88M 8va 8 88%? 3'88? 88.8.. 88%? 8E? 88.? F8.? 88.? 3E8? 888 v8: 8 88.? 89W? 88W? 88%? 88W? 8m.? 88.? 88%? En? Nmomk 88M. 8 ~85? 38%? «Ed? ~?m.? 88.? 88.? 8P5? 88.? $8.? 8me 888 ? 88.? 88.? 88.? $8.? 88.? 388.? 88.? >ImI%.? 88.? 88m 8an 3 88.? 88W? 88%? 38de 88.? org? 83W? 88%.? $55? 88.1.. 88w hf? 88.? ?%.? 88.? 88.? 88.? %8.? $8.? $8.? 88.? ooomrkmomm 3 88.? 38.? 88.? 88.? 38.? 88.? 988.? 88.? E0? 838M 88M ? 88.? 88.? 88.? 088.? $8.? 88.? .88.? 88.? 88K 88M 3 88.? 88.? 38.? 888.? 88.? 88.? 888.? 8%.? $08K 88M 3 Ebb? 88? V86? 88%.? M85? 88.? 38mm? 838.» Swim 83 E9? 88.? 88.? 8%.? 8%.? 8%.? 88.? 88..» 88m 3 38.? 88%? 88.? 8E? 88.? 38.? $88 88.x. 3 88%? 88W? %8.? 88.? 38.? 88.? 88K. 88K. 8 %8.? 88.? 38.? 88.? 8.8.? 38W 8va 8 K!8.? 88.? 88.? 3.8.? 88%? 8~m.>l 888 m 88%.? 88W? 83...? 38.? 8cm.m 8va 8 88W? 888.? 38.? 88.? 88m 83am 8 88.? $8.? 88.? 88M 8va v 88%? 89“.? 88%? 88M 8~m.m m 8E8? 888%? «momrkimw N 88.? 888.? 8me 8882. F 3 x. 8 m c m N F 225.”. >80 >80 >80 >mo >8 >80 >80 >80 + 35 $80 :80 canon C 582.82 £8.58 8.58 .2 9:: 8>o A9 5995 wocoaoa new flcmcanoo 8o 3 29m; .855 - 80 28h 111 88.3 93.3 $3.3 $8.2 55.9 83.3 38.9 mm momodm mmmmdr mmmm.2 mmomdé 33.3 35.3 38.9 5 93.3 38.3 $5.9 38.3 3%.? 0:..de 83.3 on 38.3 86.3 3.8.9 3.3.3 3.8.3 83.2 35.3 mm omvodm 88.8 33.8 83.2 Pmmmdp 38.3 mm 5%.? 88.3 88.3 93.3 mm—wdp «mam? ism 8.8.? 33.9 2.9.? @899 8an mm 88.3 8%.? 38.9 33.3 33.3 mm mamm.3 vmmndp 8K6; vnwodp vm $8.3 $5.3 gamm— rmofimp mm 35.2 mmmodp 98.3 mm 83.3 3%.? «25.9 K #5.? ommdw om 3mm: «RN? 9 333? 3 33.3 12. or 2‘ 3 9 NF _.F or m m m. o m v m N F 8 mm 3 N... mm mm 5 >3 >mo >wo >8 >mo >mo >8 canon. :ozmaczcoo - m0 2an 112 83.3 >N3.3 83.3 83.3 83.3 3.3.3 83.3 33.3 83.3 38> 35> 8 85.3 38.3 N8.>..3 83.3 3|>>.3 33.3 83.3 83.3 83.3 38> 88M 5 83.3 88.3 .>.38.3 88.3 88.3 38.3 83.3 83.3 83.3 vamwllmvom> 8 88.3 33.3 38.3 88.3 88.3 88.3 38.3 83.3 83.3 88> 88> 8 38.3 88.3 38.3 38.3 38.3 35.3 3.5.3 35.3 58.3 38> 3.5.3.. 8 53.3 3>m.3 33.3 80% 3 33.3 85W3 83.3 83.3 83.3 38> 88>! >N 38.3 mN8.3 38.3 88.3 83.3 83.3 88.3 385.3 88.3 85> 85> 8 88.3 83.3 Nm8.3 3.8.3 3363 83.3 83.3 33.3 3>|>.3 38> 85> 8 83.3 38.3 38.3 88.3 5.8.3 3% 3 88.3 388.3 88.3 88K 803 VN 83.3 85.3 538.3 85.3 88.3 38.3 33.3 03>..3 33.3 88>! 83 8 r..>8.3 88.3 88.3 85.3 38.3 88.3 38.3 88.3 83.3 33> 35> NN 3333 88.3 88.3 88.3 38.3 38.3 58.3 88.3 83.3 8va NN8.m 3N 33.3 88.3 88.3 38.3 38.3 8mm.3 38.3 3.8.3 88.3 >F55.m 35> 8 88.3 88.3 88.3 88.3 38.3 333.3 88.3 38.3 3.8.3 38k. 88>! 3 38.3 318.3 ~1.8.3 831.3 83.3 5E3 83.3 >N3.3 33.3 3&3 88> 3 I353 38.3 88.3 38.3 88.3 3.8.3 88.3 3.3.3 38.3 i>5v.m 38> F 38.3 58.3 88.3 88.3 83.3 32.3 38.3 88.3 88.3 88> 883 3 38.3 88.3 38.3 mN8.3 83.3 83.3 88.3 88.3 38.3 >o>¢> 88>. 3 mmmmdlf 33.3 33.3 8333 83.3 83.3 88%. 3 03.3 o3v> v35>| 3 3.8.3 38.3 88.3 88.3 38.3 33.3 33.3 88.3 3933»..va 3 88.3 88.3 88.3 33.3 83.3 33.3 88.3 33> 85> NP 33.8 88.8 88.8 38.8 88.8 88.8 83.8 88> 85> 3 33.3 38.3 88.3 88.3 3.8.3 38.3 88> 88> 3 5.3.3 33.3 88.3 58.3 88.3 58.3 88> 85> m 83.3 33.3 33.3 83.3 83.3 35> 38> 8 8.3.3 83.3 33.3 33.3 83.3 88> 85> > 83.3 53.3 33.3 33.3 38> 88> m 88.3 38.3 88.3 N393 88> 38> m 83.3 33.3 33.3 88> 38> v 3.3.3 33.3 83.3 35> 88> m 88.3 >393 o3v.m 88>| N 83.3 33.3 38> 35> F 3 > o 5 v m N 3 53¢ >mo >mo >mo >mo >mo >mo >3 >3 + not... “mo—ts mamo zoaom 3 58282 «8:23.80 885 .2 9:: B>o :3 29m; 8538 can Ecmcanoo .6 >9 29¢; .38. - me 228. 113 3.5.3 88.3 38.3 88.3 83.3 88.3 38.3 8 53.3 88.3 85.3 38.3 535.3 88.3 £83 5 38.3 535.3 88.3 83.3 85.3 88.3 3.8.3 8 330.8 88.8 88.8 380.8 38.8 88.8 38.3 8 53Im.3 33.3 53.3 3N.>...3 83.3 55.3 8 88.3 3.8.3 535.3 .>.N8.3 33.3 38.3 JmN 88.3 38.3 88.3 38.3 85.3 8 3F3.3 88.3 88.3 88.3 88.3 8 88.3 8% 83.3 5m.3 VN 58.3 38.3 58.3 88.3 8 85.3 8.8.3 34>M3 NN 3|mh..3 3.3 33.3 5 338.3 83.3 ON $8.3 88.3 3 88.3 3 33b. 3 m3 3 3 3 3 3 3 3 o. 5 > m 5 v m N F 8 8 8 NV 8 8 FN >mo >mo >mo >mo >mo >mo >mo Luzon. 8835200 - m0 mfimk 114 003.00 0050.9 0050.9 .0I000.9 0000.9 9000.9 0000.9 0000.9 0000.9 0050.0 950.9 00 950.9 300.9 0500.9 0000.9 003.9 300.9 E009 5000.9 0000.9 0000.0 0050.9 90 900.9 0000.9 090.9 0000.9 0000.9 5000.9 0000.9 0000.9 5F050.9 0000.0 0000.0 00 0000.9 0000.9 0505.9 0005.9 0000.9 0550.9 0055.9 000E 905.9 0000.0 93.9 00 E009 5000.9 0000.9 0000.9 090.9 590.9 0000.9 0000.9 0000.9 0000.0 _.000.0 00 300.9 5000.9 0000.9 P5F00.9 0000.9 0000.9 090.9 003.9 300.9 003.0 0000.9 50 0000.9 0095.9 90E 5055.9 0055.9 0000.9 {@009 900.9 000009 9000.0 00001.19 00 $00.9 900.9 0000.9 0000.9 0000.9 0000.9 0500.9 0000.9 0000.9 0000.0 0000.9 00 [5000.9 0005.9 0000.9 50|05..9 0000.9 0.5I00.9 0005.9 0000.9 0005.9 0000.0 0000.9 00 .5F050.9 5000.9 0000.9 900.9 090.9 0000.9 9000.9 00%? 0000.9 005h0 0000.9 00 1580.9 0000.9 0000.9 0000.9 0900.9 0000.9 0000.9 0000.9 0000.9 0000.0 0000.9 00 0000.9 090.9 0000.9 9505.9 5005.9 000h9 8&9 005|5r. 9 0005.9 .9580 090.9 90 0005.9 305.9 0000.9 0005.9 05I05F.9 00R9 009% 9 000W9 080.9 0000.0 5000.9 00 0050.9 0000.9 008.9 900.9 003.9 33.9 @009 0005.9 00J05..9 0000.0 005r0.9 9 r05f05.9 0000.9 0050.9 0000.9 0000.9 0000.9 300.9 0000.9 0000.9 5000.0 0000.0 9 b0r00.00 0000.9 0000.9 0000.9 W5fi00.9 0000.9 0000.9 0000.9 0000.9 009.0 0050.9 0.. 0000.00 080.00 009.00 909.00 059.00 009.00 00F. 00 £9.00 509.00 0000.0 0000.9 9 0000.00 0000.9 0000.9 9000.9 080.9 900.9 0000.9 0000.9 903.9 0000.0 0000.9 9 0000.9 0000.9 0000.9 900.9 0000.9 5500.9 900.9 0000.9 0000.0 0000.9 09 90001.9 0000.9 0000.9 0000.9 0000.9 900.9 0000.9 0000.9 053.0 5000.9 9 0505.9 5005.9 0005.9 0005.9 0005.9 0005.9 05.9 008.0 9580.9 9 900.9 003.9 0000.9 0000.9 0000.9 000E 0055.9 0000.0 5000.9 9 300.9 $50.9 0P00.9 0000.9 9000.9 0000.9 0550.0 0000.9 9 0000.9 00099 0095.9 05|55.9 0055.9 0005.9 0000.0 900.9 0 05|00.9 0000.9 000589 0005.9 000.5...9 0000.0 0000.9 0 0000.9 0000.9 0000.9 5F000.9 0000.9 $00.0 9000.9 5 900.9 5005.9 000% 9 $05.9 0050.0 0000.9 0 0000.9 _.000.9 0505.9 50.5I5..9 0000.0 0550.9 0 5|050.9 0000.9 0000.9 0000.0 0000.9 0 8&9 0005F.9 305?.9 05L0.0 0000.9 0 93.00 0000.00 909.0 0000.9 0 0505.9 0005.9 0050.0 0000.9 9 0w 5 0 0 0 0 0 9 canon. >00 >00 >00 >00 >00 >00 >00 >00 + 02¢ 002$) :30 canon. 3 00002.02 00003.58 00\50 .2 00.5 .05 A00 £032, 020on 000 20000088 00 A00 203; .020. - 50 0.00... 115 8:85.80 - 50 %S 0000.00 0000.00 0059.00 009.00 009.00 0000.00 0000.00 00 059.00 0959.00 059.00 009.00 0050.00 0000.00 93.00 3 009.00 009.00 0009.00 _.30.00 0500.00 0000.00 030.00 00 0000.00 300.00 0000.00 0050.9 0000.9 090.9 0000.9 00 300.9 0000.9 003.9 0000.9 0000.9 095.9 00 5000.00 0000.00 5000.00 0000.9 0000.9 900.9 50 0050.9 9000.9 0000.9 0000.9 030.9 00 0000.00 0000.00 M00000 0000.00 5000.9 00 0000.9 0000.9 0000.9 900.9 00 5F000.00 0000.9 0000.9 053.9 00 030.00 00h0.9 0000.9 00 5F000.9 300.9 030.9 ..0 9000.9 0000.9 00 00m0.9 003.9 9 0005fl.9 9 0000.00 L59 9 9 09 9 0.. S. 9 0 0 5F 0 0 0 0 0 9 00 00 00 00 00 00 90 >00 >00 >00 >00 >00 >00 >00 soson. 116 3 00002.02 306-58 00\50 .2 9:0 .o>o .00 0.0.0; 09.280 000 flcmcoafioo .0 A0. 20.0? .00.... - 00 0.00... 0005.9 0005.9 0005.9 095.9 9.5.9 0005.9 535.9 0500.9 0000.9 503.0 900.9 00 003.9 0005.9 0050.9 0050.9 300.9 0000.9 0500.9 0000.9 0085.9 0000.0 0000.9 3 000509 0005.9 0000b9 0005B9 0005?. 9 0005.9 0005.9 0000.9 305.9 0000.0 300.9 00 030.9 0005.9 0005.9 00|00.9 000E 0005.9 0505.9 900.9 0000.9 0000.0 0000.9 00 0050.9 0000.9 0000.9 0000.9 0000.9 5000.9 33.9 003.9 5000.9 0500.0 0000.9 00 0000.9 0000.9 0005.9 0005.9 0005.9 0055.9 0055.9 0055.9 0005.9 0000.0 0500.9 50 0005.9 0505.9 0R0.9 090.9 095.9 0000.9 0000.9 300.9 0000.9 900.0 0000.9 00 0050.9 0000.9 0900.9 0000.9 0000.9 0000.9 0000.9 090.9 003.9 003.0 090.9 00 300.9 9000.9 0r000.9 0500.9 0000.9 0000.9 9000.9 0000.9 0000.9 590.0 0000.9 00 0000.9 9000.9 0500.9 0000.9 0000.9 900.9 9000.9 0000.9 0000.9 0000.0 0000.9 00 93.9 0005.9 305r.9 0000.9 05|0l5.9 9000.9 0500.9 0000.9 0000.9 090.0 0000.9 00 0005.9 0000.9 030.9 0005.9 0000.9 095.9 090.9 0000.9 305.9 0000.0 0000.9 90 0000.9 900.9 0000.9 $00.9 300.9 0000.9 0000.9 0000.9 0000.9 0000.0 0000.9 00 003.9 0000.9 0000.9 0.0.00.9 0000.9 0000.9 0000.9 0000.9 0000.9 0000.0 0000.9 0.. 0000.9 0005.9 9000.9 0505.9 300.9 00.5.0.9 0E9 0005.9 0E.9 003.0 0000.9 9 105,000.. 05%.9 0000.9 0500.9 0000.9 0000.9 900.9 0000.9 9000.9 0000.0 0000.9 0— 030.9 0000.9 33.9 003.9 0000.9 0000.9 0000.9 0000.9 900.9 0000.0 030.9 9 0000.9 900.9 0500.9 900.9 05fl00.9 900.9 0500.9 0000.9 003.9 900.0 0000.9 9 0950.9 0500.9 900.9 0500.9 900.9 0500.9 0000.9 0000.9 003.0 0000.9 09 003.9 003.9 0000.9 0000.9 0000.9 0000.9 0000.9 0000.9 090.0 0000.9 9 0000.9 0000.9 0000.9 0000.9 090.9 93.9 5500.9 090.0 009.9 09 0000.9 0000.9 0000.9 003.9 003.9 0000.9 0000.9 0000.0 0550.9 9 0000.9 0000.9 900.9 0000.9 0000.9 003.9 0000.0 0550.9 9 0000.9 0000.9 0000.9 0000.9 0000.9 0000.9 0000.0 0000.9 0 00%.. 5000.9 0000.9 900.9 00M0.9 0000.0 0000.9 0 0095.9 0005.9 0005.9 9000.9 0595.9 0000.0 0000.9 0 0500.9 0000.9 0000.9 9000.9 0000.0 0000.9 0 0000.9 0000.9 0000.9 0000.9 0000.0 0000.9 0 090.9 003.9 0000.9 0000.0 5F000.9 0 900.9 5500.9 0000.9 0000.0 0000.9 0 09E 095.9 0000.0 5000.9 0 0000.9 053.9 053.0 .5F—00.9 9 09 5 0 0 0 0 0 .. canon. >00 >00 >00 >00 >00 >00 >00 >00 + ten. $00 :30 canon. 117 8.635250 - 00 .209 0000.9 503.9 9000.9 0000.9 0900.09 003.9 0005.9 00 9000.09 0000.09 0000.09 0900.9 0000.9 0000.9 0900.9 90 0000.09 0900.9 0000.9 0518.9 950.9 0000.09 003.09 00 0000.9 0000.9 0000.9 0000.09 0000.9 0000.9 0000.9 00 0500.00 0500.00 0000.9 0000.9 0900.09 0000.09 00 080.9 0000.9 0000.9 090.9 9000.9 0000.9 00 0000.9 0000.9 0000.9 003.9 50051.9 00 0000.00 0000.9 0000.9 9000.9 0000.9 00 0000.9 0000.9 0000.9 003.9 00 0000.9 8510.9 0000.9 003.9 00 0000.9 0000.9 5000.9 00 0000.9 0000.9 0000.9 90 0000.09 9000.09 00 0900.9 0000.9 9 0000.9 09 0500.00 59 9 09 09 9 09 99 09 0 0 0 0 mll. 0 0 0 9 00 00 00 00 00 00 90 >00 >00 >00 >00 >00 >00 >00 canon. 00.909.599.00 - 00 0.00... 118 0000.09 5090.9 0090.9 0090.09 9000.09 0000.09 0005.09 0505.9 0005.9 0000.0 0500.9 00 0000.9 0000.09 9000.09 0000.09 0500.09 0000.09 0000.09 0000.9 0000.9 9000.0 0000.9 90 0000.09 0050.09 000m9 0000.9 0000.9 5000.09 0000.09 0500.09 0000.9 0059.0 0000.9 00 0900.09 0000.09 0900.09 0000.09 0000.09 0000.09 003.09 003.9 9090.9 0000.0 0000.9 00 0009.00 0009.00 0009.00 0009.00 0909.00 0009.09 9009.00 0009.00 0009.00 3000 0090.09 00 0050.9 0000.9 0000.09 0000.09 0000.09 0000.09 9000.09 9900.09 0000.9 0009.0 0000.9 15.0 0000.09 5000.09 0000.09 0500.9 0000.9 9000.09 5000.09 008.09 0000.9 5109.0 0090.9 00 0000.09 0000.09 9000.09 0000.09 0005.09 5005.9 0005.9 0005.9 0005.9 5000.0 5000.9 00 300.09 093.09 0000.09 0000.09 0000.09 5000.09 5000.9 0000.9 0000.9 0599.0 0000.9 00 300.09 0900.09 0000.09 0050.09 0000.09 9000.09 0000.09 5000.09 0000.9 0000.0 0000.9 00 003.00 0000.09 900.09 9000.09 0000.09 0900.09 0050.09 0050.09 0050.9 009.0 903.09 00 0000.09 0000.09 9000.09 0000.9 0000.9 0000.9 0000.9 0900.9 0500.9 0000.0 0090.9 90 0000.09 9000.09 003.09 003.9 003.09 0000.09 0000.09 0000.09 5005.9 0009.0 0000.9 00 0900.09 0900.09 0000.09 9000.09 9000.09 053.09 9090.09 9090.9 0000.9 0909.0 0090.9 09 0050.9 0000.9 0000.09 0000.09 0000.09 0000.09 0000.09 0000.09 0500.9 0009.0 0090.9 09 0000.09 0000.09 0000.09 0900.09 0000.09 9000.09 0000.09 9000.09 9090.9 0000.0 0000.9 09 0000.09 9000.09 0000.09 0000.9 053.9 003.09 993.09 0000.09 0000.9 0000.0 003.9 09 903.00 300.9 0000.09 0000.09 0000.09 0000.09 5900.9 0000.9 0000.9 0900.0 0000.9 09 0009.00 0009.00 0009.00 0009.00 0009.00 0009.00 0909.00 0099.00 05100.0 993.09 09 0000.09 9000.09 9005.09 9090.09 0090.09 0000.09 0000.09 0000.9 0000.0 0090.9 09 0090.09 0090.09 0990.09 0500.9 0000.9 0900.09 0000.9 0000.0 0000.9 09 0000.09 0900.09 0590.09 090.09 0090.09 0500.9 0000.9 0500.0 9000.9 99 0005.9 0005.09 0905.09 0005.09 0005.09 0005.9 0909.0 0000.9 09 5005.9 0005.09 5005.9 0005.9 0005.9 0005.9 0900.0 0000.9 0 0000.09 0000.09 0000.9 0000.9 0590.9 5599.0 0090.9 0 008.09 0000.09 0000.09 003.09 5090.9 0000.0 9900.9 5 0000.09 0000.09 5500.9 0000.9 0509.0 0000.9 0 0005.9 0005.9 0005.9 0505.9 0000.0 0000.9 0 0000.00 0000.00 0000.9 0000.0 9900.9 0 0995.09 0005.09 0005.9 0050.0 903.09 0 0000.09 0900.9 0000.0 0000.9 0 0095.9 0095.9 0000.0 003.9 9 09 5 0 0 0 0 0 9 _.oson. >00 >00 >00 >00 >00 >00 >00 >00 + ten. 0009.2. 200 zozoa .9 00002.02 000030000 00\50 .2 00... .05 A0. £0.03 009.0on 000 0900:0068 .0 A00 £0.03 .00.... - 00 0.00... 119 0000000000 - 00 0.00... 0000.9 0000.9 0090.09 0000.9 5000.9 9000.09 900.09 00 0000.9 5.00.09 0000.09 0000.09 5000.9 0513.9 0900.9 90 0000.09 0000.09 0550.9 0000.9 0500.9 0000.9 0090.9 00 0000.00 0000.00 0000.00 0000.00 0000.09 9000.09 0000.09 00 9000.00 0000.00 0900.00 0090.00 0900.00 5009.00 00 0000.9 300.09 0000.9 0000.9 503.09 0000.09 50 0900.00 090.00 0000.00 0900.09 0050.09 00 0000.9 0000.09 0000.09 0000.9 0000.9 00 030.09 0550.9 0000.9 0500.9 00 0000.00 0000.00 9900.00 003.00 00 9000.00 0000.00 0000.00 00 099~W9 0000.09 0000.09 90 0900.9 0000.9 00 0000.09 0000.09 09 5000.09 09 0900.09 591 09 09 09 09 09 99 09 0 0 5 0 0 0 0 0 9 00 00 00 00 00 00 90 >00 >00 >00 >00 >00 >00 >00 00:00 120 5000.9 003.9 0500.09 0900.09 0500.09 0000.09 0000.09 0050.09 350.09 0050.09 00 0000.00 003.00 0090.00 0000.00 900.00 0000.9 0000.9 0000.9 0550.09 0000.09 90 003.9 0000.9 0000.9 9000.9 0000.9 0000.09 5000.9 300.9 0000.9 0009.9 00 0000.9 0000.9 0000.9 0000.9 0900.9 0000.9 0000.9 0900.09 0000.09 0009.09 00 0000.09 0000.09 9500.09 0900.09 0000.09 0950.09 0000.9 0000.9 0000.09 0009.09 00 9000.00 0090.00 0500.00 9000.00 0000.9 0900.9 0000.9 #5009 0039 £0.09 50 0009.00 0000.00 0000.00 5000.00 0000.00 9000.00 300.00 0900.00 0000.00 0000.09 00 0000.00 0000.09 0050.09 5|0I50.9 5000.09 0000.9 0000.9 0000.9 0000.09 0009.09 00 0000.00 390.00 0000.00 0000.09 0000.09 0000.09 030.09 0050.09 0000.09 0009.09 00 0000.9 9000.9 0500.9 9000.9 0000.9 0900.09 0000.09 008.09 003.9 0500.9 00 r95150.09 0000.09 0000.09 0000.9 008.9 003.09 903.09 0000.09 0000.09 0090.09 00 0900.00 0000.00 0000.00 0000.00 0000.00 003.00 0090.00 0000.00 0000.09 0000.09 90 0000.09 0950.09 0000.09 0000.9 0000.9 0000.09 0000.09 0000.09 0000.09 5095.09 00 0000.00 0000.00 0090.00 0090.00 0990.00 0000.00 0000.00 0000.00 0000.00 E09 0.. 0000.09 0050.9 0000.9 0900.09 0000.09 0000.09 0000.09 0000.09 0900.09 0000.09 09 0000.00 0000.00 0000.00 903.00 0090.00 993.00 0500.00 030.00 0000.9 0000.9 59 0000.09 0000.09 0000.09 300.09 0000.09 @009 5050.09 0000.09 0000.09 0000.09 09 E009 9900.9 0090.09 0990.09 0000.09 0000.09 9000.09 030.09 0000.09 0000.09 09 0000.00 0000.00 01000.00 0000.00 0900.00 00010.00 030.00 0550.00 0900.09 09 0000.09 0000.09 0900.9 300.9 0000.09 300.09 0000.09 0000.09 0000.09 09 0000.00 0000.00 00150.00 00510.00 0000.00 0000.00 0500.00 0000.09 09 0000.09 0000.9 0000.9 0000.09 0000.9 0000.9 003.9 05100.09 99 9000.9 0000.9 0000.9 0000.9 0000.9 0000.09 9000.09 09 0000.09 0000.09 0900.09 05510.9 0000.9 0000.9 0900.9 0 0000.9 0059.9 0000.09 0900.09 0000.09 0000.09 0 003.9 0090.09 0000.09 0000.9 0500.9 0900.9 5 000E 5055.09 0E9 0000.09 0000.09 0 0000.9 0000.9 0000.9 0000.9 0000.09 0 0000.9 0000.9 0000.9 3E9 0 0099.00 0009.00 0009.00 0000.09 0 9900.09 0000.09 0009.09 0 9000.9 0000.9 0009.9 9 09 5 0 0 0 0 0 9 00:00 >00 >00 >00 >00 >00 >00 >00 >00 + 00.0 00k. 00:00 .9 00002.0). 0.00 0000x000 2.000.000. .00 0E: .0>0 A0. 0.0.03 0000000 000 .050. - 090 0.00... 121 0059.00 0009.00 0009.00 0000.00 0000.00 0000.00 0000.09 00 0000.00 0090.00 0009.00 0009.00 0009.00 0099.00 0000.00 90 @900 0000.00 9000.00 0000.00 0000.00 0000.09 0000.09 00 [509.00 309.00 0000.00 0000.00 0000.00 0000.00 0000.09 00 5000.00 0000.00 0000.00 003.00 0000.09 0000.09 00 090.00 009.00 0009.00 0909.00 0099.00 0000.00 00 0000.00 0000.00 9000.00 0009.00 0009.00 00 0009.00 $9.00 9009.00 030.00 0000.00 00 009.00 0009.00 0099.00 0000.00 00 0000.00 0$009 300.9 0900.9 00 0900.00 0900.00 0990.00 00 0009.00 0009.00 0099.00 90 0000.09 0000.09 00 9000.00 0000.00 09 0000.00 09 0000.00 09 09 09 09 09 09 99 09 0 0 0 0 0 0 0 0 9 00 00 00 00 00 00 90 >00 >00 >00 >00 >00 >00 >00 0000.". 5.02.080 - 090 0309 122 0005.09 0005.09 5005.09 0005.9 0005.9 0005.9 0005.09 0905.09 0905.09 0009.09 00 0000.9 0000.9 0000.9 0000.9 0000.09 0000.09 0000.9 0000.9 0000.09 0909.09 90 5005.9 0505.9 9005.9 000519 0000.109 50100.09 0005.9 0000.9 0005.9 B51009 00 030.9 0000.9 0000.9 9000.09 930.09 300.09 0000.09 0000.9 0000.9 9009.9 00 0505.09 00051.09 00015.09 8015.9 0005.09 0005.09 0000.9 0005.9 0005.09 0000.09 00 0000.09 0000.09 00M0.09 0500.9 05100.9 0000.09 0000.09 0000.9 0000.9 0509.09 15% 5005.09 0505.9 0005.9 0005.9 000909 0000.09 0E09 0005.9 0000.09 0090.09 00 9505.09 0505.9 5005.9 0005.9 5005.9 0000.9 0005.09 9000.9 0000.9 5009.9 m0 0000.09 0000.09 9500.9 0500.9 @009 0000.09 0000.09 0000.9 0000.9 0000.9 00 0000.9 0000.9 0900.9 0000.9 0000.9 0000.9 0000.9 0000.9 5000.09 0000.09 00 0000.09 9000.09 0000.09 0050.09 00150.09 0000.09 E09 05150.9 0000.9 030.9 00 10000.9 0000.9 0000.9 0000.9 0000.9 0000.9 0000.9 9000.09 9000.09 0500.09 90 I0lm.00.09 00150.9 0050.09 0000.09 0050.09 B009 @0009 0900.9 0000.9 0000.9 00 0055.09 005I0.9 0050.9 0055.09 0955.09 0955.9 0000.9 005l5w9 0505.9 0000.9 9 9000.00 5000.00 0000.00 0000.00 0000.00 9000.00 0000.00 0000.00 0000.00 0000.09 09 9900.00 5000.00 0000.00 0000.00 0000.00 0000.00 0000.00 0000.00 0000.00 0900.09 159 9005.9 0005.9 0005.9 0000.9 0000.9 0000.9 0000.9 0005.19 0000.09 0000.09 09 0005.9 805.09 00.00.09 0505.9 0505.9 0505.09 0000.9 0000.9 00009 800.9 09 0000.9 0005.9 0000.9 0005.9 0005.9 0005.9 0000.9 0000.9 0000.9 09 0000.09 0000.9 0000.9 0000.9 0000.09 0000.9 0000.9 0000.9 0000.9 09 5000.09 0000.9 0000.9 300.09 0000.09 5500.09 9000.09 0009.09 09 90k09 009089 000.9 0090.9 0090.9 5095.09 0090.09 0000.09 99 0005.09 0000.09 9000.09 E09 0000.09 0000.9 0000.9 09 0.0.9.00 0009.00 0009.00 0009.00 0009.00 0909.00 0000.09 0 0000.09 0000.9 0000.9 0000.9 0000.9 9000.9 0 0000.9 0000.9 0000.9 0000.9 0000.09 5000.09 0 0000.9 0000.9 0000.09 0000.09 0000.09 0 05109.00 009.00 0009.00 0009.00 0090.09 0 0000.9 0000.9 0500.9 0900.9 0 0000.9 0000.9 9000.09 0000.09 0 0000.00 0000.00 0055.09 0 0505.9 0005.09 003.09 9 09 5 0 0 0 0 0 9 0000.". >00 >00. >00 >00 >00 >00 >00 >00 + 00.0 00k. 9.0000 A9 00002.02 0000 0008.000 2.000.200. .00 0.00 .03 A00 £0.02, 0000000 000 .00.0_ - 990 0.00... 123 0000.09 0005.09 9005.09 0005.09 0500.09 0505.09 9505.09 00 [51090.9 0090.09 0000.09 9000.09 0%0009 0000.09 5|500.09 90 0005.09 0005.09 0000.09 0005.9 0005.9 0005.9 5005.9 00 0000.9 0000.9 0000.09 0000.09 0000.09 0000.09 0000.09 00 0955.09 005|5.09 0050.9 000W9 0E09 005|5.9 00 0900.09 0900.09 0000.09 9000.09 0000.09 0000.09 00 00J00.09 0005.9 0005.9 0000.09 0005.09 00 0000.09 0000.09 0005.09 9000.09 0&69 00 0000.9 9900.09 9900.09 0000.09 00 5F000.09 0000.09 0000.09 0000.09 00 0900.09 0000.09 0900.09 00 0000.09 0000.09 0000.09 90 0E9 050r009 00 005|5.09 005|5M09 09 0000.00 09 0000.00 09 09 09 09 09 09 99 09 0 0 0 0 . 0 0 0 0 9 00 00 00 00 00 00 90 >00 >00 >00 >00 >00 >00 >00 coaoa 8002580 - 990 030.9 124 0000.9 0500.09 5900.09 0050.09 0950.09 0000.09 0900.09 9000.09 0000.09 0000.09 00 0000.09 0000.09 0500.09 0000.09 0000.09 5000.09 0000.09 0090.09 0090.09 0000.09 90 E000 0900.00 0000.00 9900.00 9000.00 090.00 9090.00 0000.00 0900.00 0000.09 00 9000.00 0090.00 0000.00 0000.00 0000.00 0000.00 0000.00 0%.00 0050.00 0000.09 00 0000.09 0500.09 0900.09 9500.09 0900.09 0050.09 005M9 0000.09 0000.09 0000.09 00 I0000.00 0900.00 0090.00 0990.00 0000.00 0000.00 0009.00 0009.00 0009.00 0000.09 L0 0090.00 9000.00 0000.00 0000.00 0000.00 0900.00 9000.00 0000.00 0000.00 0000.09 00 0900.00 0000.00 0000.00 0000.00 9050.00 0000.00 9000.00 0900.00 0000.00 0000.09 00 0000.00 0000.00 0000.00 0000.00 0000.00 0590.00 0990.00 0000.00 9000.00 0000.09 00 .5F000.00 9090.00 0090.00 0000.00 0000.00 0009.00 0009.00 0009.00 0059.00 0000.09 00 0000.09 0000.09 0000.09 0090.09 0090.09 9000.09 5000.9 0000.9 9000.09 0009.09 00 0000.00 0090.00 0090.00 0000.00 9000.00 0509.00 0009.00 0009.00 0009.00 0000.09 90 0005.09 009h09 0000.09 0000.9 0000.9 0000.09 0000.09 0050.09 0050.09 0000.09 00 5055.09 0000.09 000l5.09 0000.9 0000.09 0905.09 0095.09 0005.09 0900.09 0090.09 09 0000.00 0000.00 0000.00 0090.00 0990.00 0000.00 0000.00 0000.00 0000.00 0000.09 09 0005.09 0000.09 0000.09 0000.09 0900.09 0000.09 0000.09 0000.09 0000.09 0000.09 09 E9000 0000.00 0050.00 0000.00 0000.00 0900.00 0000.00 0000.00 0900.00 0000.09 09 0000.09 0000.09 0000.09 0000.09 0000.09 E009 0000.09 9000.09 0000.09 0000.09 09 0900.09 0090.09 0990.09 0000.09 0000.09 0000.09 0000.09 0000.09 0000.09 09 0000.00 0000.00 0000.00 000r0.00 0900.00 0000.00 0000.00 0000.00 0000.09 09 0000.09 0900.09 0050.09 0000.09 5000.09 0000.9 0000.9 0000.09 09 . 0050.00 0000.00 0000.00 0000.00 0000.00 0500.00 0000.00 0000.09 99 0900.00 0000.00 9000.00 0000.00 5590.00 5090.00 0900.09 09 0000.00 0000.09 0000.09 9000.9 0050.9 0000.09 0000.09 0 0000.00 0000.00 0000.00 0000.00 0900.00 0500.09 0 5000.09 0000.09 0000.09 5050.09 0950.09 0900.09 5 0050.09 0000.09 9000.09 0000.09 0500.09 0 9000.00 0000.00 0000.00 0000.00 0000.09 0 0050.9 0000.9 0500.09 0009.09 0 0000.09 9590.09 0000.09 0059.09 0 0090.00 0090.00 0000.09 0 0000.9 5000.09 0000.09 9 09 5 0 0 0 0 0 9 00:00 >00 >00 >00 >00 >00. >00 >00 >00 + 00.0 09.0 9.0000 A9 00:00:02 0000; 0000x000 2.000.200. .00 0E0 .05 A00 £0.03 0000000 000 .020. - 090 0.000. 125 0090.09 5005.09 0505.09 0905.09 0095.09 0000.09 0000.09 00 0999.00 0000.00 0000.00 0500.00 0000.9 0000.9 0900.9 90 0000.00 0000.00 0900.00 0000.00 0059.00 0009.00 0099.00 00 0000.00 0050.00 0000.00 0990.00 0500.00 0900.00 5000.00 00 0000.09 00m09 9005.09 0005.09 0000.09 9000.09 00 @000 0000.00 0000.00 5000.00 5900.00 0900.00 50 9550.00 0500.00 0090.00 0000.00 0000.00 00 5000.00 0000.00 0000.00 0000.00 0000.00 00 000%0 9050.00 E000 9090.00 00 9000.00 0000.00 5090.00 9500.00 00 05W00.00 9000.00 0500.09 00 51000.00 0000.00 0900.00 90 5090.09 9000.09 00 0M00.09 0090.09 09 0000.00 09 0005.09 59 09 09 09 09 09 99 09 0 0 5 0 0 0 0 0 9 00 00 00 00 00 00 90 , >00 >00 >00 >00 >00 >00 >00 00:00 8.002.080 - 090 030» 126 0900.09 0000.59 0000.59 0050.59 5500.59 0000.59 0590.59 0900.59 0005.59 0900.5 0090.5 00 bm0009 9000.09 0000091000009 5000.09 0900.59 0000.59 5000.00 0000.09 5000.0 0000.0 90 0000.59 0900.59 005E0910009 0000.09 050E 0000.59 0000.09 090009 0000.5! 00E. 00 5900.59 0005.59 5095.59 0000.00 0050|.59 0000.09 9000.59 0090.09 950.59 0900 0500.5 00 0000.09 905.59 0000.59 900m9 000% 5500.59 000009 0000.09 0000.09 0000.5 0000.5 00 0000.09 0090.09 0000.09 000009 0000.59 0000.59 000009 0000.09 0000.59 0000.0 0000.0 00 0000.09 0090.59 0000.09 0000.09 0000.09 0000.09 0000.59 0500.09 0000.59 0000.5 0000.5 00 9000.59 000m09 0900.09 090%; 0000.559 000009 005009 0000.09 0090.09 0500.5 00000 00 0990.09 0000.59 0000.50 00E9 0000.09 0000.09 0090.59 0000.59 0000.59 0000.5L 5000.0 00 9095.59 0990.09 0000.09 905|009 0000.09 0000.59 0900.59 5000.09 9000.59 0050.5I 0500.5 00 0000.09 0000019000050 0900.09 9000.09 0000.09 0000.09 0090.59 9055||.59 0000.0 0000.0 00 0900.09 0000.09 0000.59 0050.59 5000.59 0000.09 0090.09 0900.09 000509 0005.5 9900.5 90 0000.¢ 0005.09 9005.59 00E9 0090.0r9 0000.09 9050.59 0900.59 0090.09 0000.0 0000.0 00 0050.59 0000.09 0000.09 5000p 0590.59 0900.09 00500.9 0900.09 9090.59 050% 0000.5! 09 0000.09 0000.09 0000.50 0000.59 5500.09 0900.09 0090.09 0009 0000.59 0000.0 0000.0 09 0005.09 0050.59 0000.09 0000.09 0000.59 5090.09 9000J.59 0050.59 0000.59 050m 0000.5? 09 0000.09 0000.59 09.50009 0000.09 0000.59 0090.00 0500.59 0000.09 0000.59 00000 0000.0 09 0900.09 0000.59 0050.59 9000.09 0500.59 090m9 0000.09 000509 000509 0000.5 0050.5? 09 0000.09 0900.019 0050.09 0000.00 0000.59 0090.09 0900.5F9 0000.59 0000.5 5050.5 09 0000.59 0000.019! 0500.59 0000.09 00E: 0000.09 0000.59 0000.09 05090 0000.5 09 0900.59 000009 9500.59 0000.59 0000.09 9000.09 0000.59 95F 50% 09 0000.5L. 0050I|.5.9 900009 0000.09 0000.09 0900.09 0000.59 0000.0 0090.0 99 0000.09 000E; 0005|.09 0000.09 0900.09 0090.09 0000.5 0000.5 09 5F000.09 0090.09 0900.09 0050|.59 0000.5F9 0000.59 0050|.5 000m 0 0090.09 0000.0.9: 5055.59 000509 £5.59 000m 0090.0 0 0000.50 0000.F 0000.09 0000.59 0000.09 0000J.5 0900.0 0 0090.59 0900.09 0000.09 0000.09 0000.5 0500.5 0 0000.09 0050.59 0500.59 0090.09 0000.0 0000.0 0 0050.59 0000.59 5090.59 0050.5 0000.0 0 0000.09 0000.09 5900.09 0000.0 0900.0 0 0000.09 9009.09 0050.5 0000.0 0 0000.0I9. 0959.59 0050.5 0000.5 9 09 5 0 0 0 0 0 9 00000 >00 >00 >00 >00 >00 >00 >00 >00 + 0000 000005 500' 00000 0 00000003 000030000 0050 000 0900 .03 A00 000.02, 0000000 000 00000009000 00 A00 000.03 .020. - 090 0.00.0 127 0500.09 9050.09 0000.09 0000.09 0000.09 0009.09 0999.09 00 0900.09 0000.09 0000.09 0000.09 0000.09 0000.09 0009.09 90 0000.09 0000.09 0000.09 0000.0r9 0500.09 0500.59 0005.59 00 0000.09 0009.09 9909.09 0009.09 0000.09 0000.09 0900.09 00 0000.09 0009.09 0909.09 0000.09 0000.09 0500.09 00 5000.09 0000.09 0000.00 5000.09 0005.09 0090.09 50 0090.09 0900.09 0000.09 0055.59 000k: 00 5000.09 0050.09 0090.09 5F000.59 00E9 00 0500.59 0900.09 0055.59 0000.59 00 090909 0500.59 055I0I.09 0000.09 00 0009.09 0009.09 0050.09 00 0000.09 0009.09 0000.09 90 9000.09 0000.09 00 0005.59 0000.59 09 0900.09 09 0000.59 09 09 09 09 09 09 99 09 0 0 0 0 0 0 0 0 9 00 00 00 00 00 00 90 >00 >00 >00 >00 >00 >00 >00 xenon. 8:25.80 - 090 030» 128 0 500302 $00.58 0050 .8 060 .03 A00 E083 009.0000 0:0 2:008:80 00 A00 £053 .050. - 090 0.00... 0005.59 9005.59 0000.59 0000.59 0050.59 9900.59 0900.59 0900.59 0090.59 0990.5 0000.5 00 0005.59 0000.09 00E9 000000090009 0000.59 0000.59 0000..5F9 0000.59 0500.5 95001.0 90 0005b 5005.09 009E 000.509 0000.09 0000.09 0050I.5.9 0000.09 0000.09 0000 0000.0. 00 5995.59 0000.59 0000.09 0000.59 0090.5I9 0000.59 000E 0000.09 0000.09 0500.5I 0000.5 00 0905.59 990005kkm009 09309 0900.09 0090.09 0000.09 0000.59 0050I.59 0000.0F 0000.5 00 0900.09 9000.59 000009 905I5.09 0005.59 0000.5I9 0005.59 5005.59 0990009 0900.0n 90E. 00 0900.59 05009 0005I.5I9. 0505.59 0005I.59 09009 999509 0905.59 5050.59 0090.0 0000.5 00 0090.09 0005I.59 000509 0005.59 0000.|r59 000509 0000.5I9 5000.59 9000.09 0090.5 0000.5I 00 0005.59 0000.59 0000.59 0050.59 0000.09 0000.59 000009 0000.59 0000.59 0900.5 0090.5 00 0005.59 0000.59 0500.59 0000.09 0500.59 0000.59 0090.59 000E 5050.59 0000 9090.5 00 0000.09 0505.09 0505.59 0095.59 0505.59 0000.09 0000.59 005P5I9 9000.59 05E 0090.0 00 0005.59 0500.59 0500.59 9050.59 0500.59 9000 59 9000.09 0000.09 0090.09 9090.0 9000.5I 90 9005.59 009509 90209 0000 F 0500.59 5050 59 0000.59 0000.59 0000.59 0000.5 0090.5 00 0095.59 0000.09 9000.09 0000.59 000009 0090.5I9 0000E 0000.59 0000.09 0000.5 0000.0 09 0005.59 0005I.59 009509 000|I .59 900009 0000.5I9 995|0|.59 000009 0000.09 0090.5 0900.0 09 0090.09 900509 000509 000N0I9 0595.59 0005.59 0000.09 0000.59 0000.5F9 0090.01 5500.5 I59 0000.59 0000.09 0000.09 0050.59 0000.09 0000.09 00E: 0000.09 00000I9 0000.5 0000I.0 09 5005.59 9900.09 0000.09 0900.09 0090.00 0500.59 0500.59 9000.59 0000.09 0500.5 0090.5 09 9090.09 0000.5I9 0000.59 005009 0000.09 000009 0000.59 0090.59 0900.5 0000.5 09 0900.09 0905.09 0090.59 0000.09 0000.t 9900.09 9000.59 0500.59 5900.5 00E 09 0990.09 0000.5I9 0000.00 0550.59 9500.59 0000.59 0500.59 0090.0 0000.0 09 0000.59 0090.09 0000. 0500.59 9050.59 0000.09 500009 0090.5 0090.5! 99 0090.59 0900.09l 0500.59 E059 9000.59 0000.09 0000.0 0000.5 09 0000.5I9 009E 0000.09 090% 0000.59 090009 00900 0000.0 0 9000.09 0090.09 0000.09 9000.09 0000.09 0000.0 0000.0 0 0500.59 0000.09 0090.09 0900.09 005I0|.59 00900 00000 0 000009 0900.09 9950.59 0000.0r9 0000.0 00900 0 0000.59 0900.09 0900.09 000W? 0000.0 0000.5 0 @009 0000.5I9 9500.09 00000 0000.5 0 0550.59 0000.09 0900.09 0000.5] 0050.5 0 0000.09 9900.09 0990.5I 00000 0 0000.F 0500.59 0000.5 0000.5 9 09 5 0 0 0 0 0 9 5:00 >00 >00 >00 >00 >00 >00 >00 >00 + 020 0000 500 5:00 129 0050.59 0050.59 5900.59 0900.59 0000.59 0000.59 0090.59 00 0000.59 0000.09 0000091009009 0000.00 0000.59 000009 90 9000.59 0000.09 0000.59 0500.59 0900.5I9000009 0000.59 00 0090.59 9990.09 000009 0050.09 0000.59 0000.5I9 0500.59 00 9090.09 0000.09 0900.09 0000.09 0090.09 0055.09 00 0000.09 9000.09 0000.09 0000.F 0500.59 0090.59 00 0000.09 0000.09 09500. 5900.59 0000.09 00 0000.09 0000.09 0000.09 0090.09 0050.59 00 . 0500.09 0000.09 000009 0090.09 00 0000.09 0000.09 050009 00% 00 0000.59 9000.59 0000.59 00 9000.09 0000.5I9 0590.59 90 0000.59 0000.59 00 909009 0005|.09 09 0000.09 09 0050.59 09 09 m9 09 09 09 99 09 0 0 0 0 m 0 0 0 9 00 00 00 00 00 00 90 >00 >00 >00 >00 >00 >00 >00 00:00 0000005000 - 000 0.000. 130 0.80.: 800.: 020.: 0000.: .02.: 080.: SR: 0359 8059 0000.0 0000.0 00 0000: 009:. 0800: 08000 $8.00 0000.09 8000. 008.: 0.80.: :0: 020.0 90 05.0.: 05...: 0000.: 200.: £00.: 0000.: 0000.: 020.: 0000.: 28.0 080.0 00 890.00 00000? 800.: 28.09 85.0. 008.: 002.: 00000? 002.th 00000 28.0 00 800.09 080.0. 800.: SF: 200.00 90000? 050.: $0000 008.: :0: $00.0 00 800.: 83.: E05 050.: 2:20 3.8.: 0000.: 050.: $00.: Rams 050.0 R 050.: 080.: 000000 Sgt 030005000 88.00 0200. «000.09 20.3 050.» 00 300.: 030.00 88.09 0000.09 85.: 300.: 000.: 008.0. 0000.: :80 0:3 mm 030.: 23.: 88.: $8.: 00500 008.: 800.: 800.: 0000.: 022 0300.. 00 006.: 080.: 800.09 03009 800.00 300.: 02009 080.: 800.: 000: 0000.» 00 88.09 080m. 020.: .83.: 800.09 080.0? 0000.: 00:00 8me 06: 0000.0 00 83.: 005.: 88.: 980.: 28.: 88.: :3: 0000.: 86F Bk.“ 003.0 E 23.: 005.: {8.2 0000.00 0000.0? 8000.9 005.: 38.: 05009 080.0 080.» 00 0000.: 2%.: 33.: 200.: 0000.09 $00.09 .3000 0:009 0000.? 0:2 8E 2 908.00 :50? 080.0? 8.8.00 0000.0. 800.00 00509 008.0. 000:9 0000.0 00:: 09 88.: 0.0009 080.00 003.09 200.0. 800.09 020.: 0000.: 02:9 082 023 t 008.: 800: 80000 8:00 3.20. 0000.: :Ek_ 008.09 300.: 800.0 85.0 09 300.: 0000.: 0.80.09 080.00 0000.00 $00.00 800.00.080.09 2% NE 800.0 2 80000 0000.: 200.: 002.0. 020.: 00%.: 000:9 2029 0000.0 0000.0 1 300.: «~00.F0P~0.09 9:000 200.09 08.0.0.0. 1300.09 8.3.00 0002 093 2 0000.F 2.3.: 0000.0. 008.00 0000.09 800.0. 800.00 00$.» $00 NP 0000.: 300.: 0000.: REF 8E0 80000 82.: 0:00 88.0 : 290.0. 09800000009 0000.00 3%.: 09.2000] $000 033 2 0000.: 080.00 0090? 300.00 800.: 200.0? «80.0.0200 0 080.00 800.: 23.: 0000.: 0000.09 082 080.0I 0 008.2 «081% 0000.2 0000.2 008.2 008.0 00.0.00 0 00.0.00. $8.: 0890p 000009 090: 000K 0 008.0, 300.00 3000. 002.: 000.0 00000 F 0000.0, 050.: $00.: 50: 890.5 0 000:9 ~0000r 50:9 9080 880 0 080.09 0E0? 880 020.0 0 800.... 800.: 08: 0000.» 9 3 n 0 0 0 0 0 9 0250 >00 >00 >00 >00 >00 >00 >00 >00 + 0000 .0003 000p| 00:00 0 00002.03 000030000 0080 000 00.0 005 A00 .0903 0000000 000 00000000000 00 A00 .0903 .050. - 090 0.00... 131 83.3 03.00 003.3 38.0.. 95.3 $00.00 33.0.. mm $3.00 003.00 2.8.0IFI000000 0.08.00 0.00.00 9.00.00 3 080.00 nvomw Emfiw «000.00 000.000 «0000.. 800.00 on 88.00 3.8.3 008.00 00%.? 9.3.3 3.3.0.. 38.? mm 090.0IF 0000.00 300.00 300.00 005%: 030.: mm 9.00.? 36.0.. «05.00 030.00 N000.0? 050.0— k mmmmfi— 800.00 0000.00 mommMFIISNmMF cm 005.? 55.00 0000.0l0l000000 003.0!0 mm 300.? 3.00.00 080.00 901%? v0 Imkw «80.0.. 0~o0..l00 080.00 mm 0.000.? 080.00 «05.00 mm 258.00 .0003: $3.3 00 008.00 800.0. cm 0000.00 300.01.? 9 300.00 3 0000K; m0 9 m0 3 2 NF 3 or m 0 m m m e m N P 8 mm av N¢ mm mm ..~ >00 >00 >00 >00 >00 >00 >00 coaon. 8002008 - 06 0500 132 N000.0F 0000.00 0000.00 030.00 0000.00 0000.00 N000.0? 030.00 0000.00 N0 @0000 0000.00 0000.00 00.00.00 000000 080.00 000.000 000m? 0000.00 00 00N0.0F 0.0.0.00 SFKF 0000.00 0000.00 0000.00 0000.00 030WF 00N0.00 00 0000.00 0000.00 900.00 00N0..0.F N000.m.. 0.000.. 000.00 00.00.00 N300? 0N [0000.00 000E VO0K0 00N0.00 300.00 .000000 0000pl00N000 >00 >00 >00 >00 >00 >00 000 + wen. 500 0.0300 AN 00:02.02 500 0008.03 2.000.200. .8 0E: .0>o 60 20.02. 000.0000 000 .00.... - 000 0.00... 133 003.00 003.00 00000.. 00N0.0F 050.00 0000.00 0000.00 N0 . 0000.00 N000.3 000000 00NO0F 0000.00 NNFO0F 000000 00 3.000.. 33.00 009.00 0N00.0F 00000.. $00.00 000000 00 39.00 0000.00 00.00.00 0N00.0F 0030.. F0000? FN000F 0N 000.00 N000.0? 0000.00 0000.00 NN000F 3.3.0.. 0N 000N.0F 00vN.0F .0r00fi00 0.03.00 0000.00 00N0.0F J0N 000N.00 00000.. 0000.00 0000.00 00000.. 0N 0000.00 33.0.. 0000.00 00000.. 00|000F 0N 003.00 NN00.0F {No.00 000000 .N 003.00 0000.00 @000 0000.00 0N 0000.0? 0.0000 09000 N 00000 000000 00NO0F 0N N000.0F 3.00.00 0N 000000 00000.. 00 000000 0.. 0000.$ 40W 00 0.. 3 00 NP 2. 00 0 0 0 0 0 v 0 N F 00 00 00 N0. 00 0N ..N >00 >00 >00 >00 >00 >00 000 0.0000 Gown—4:39.00 a CFC 209—. 134 AN 00002.02 0.00 0009.03 2.000.200. .8 we: .03 A00 50.03 09.0on new .00.... - 000 0.00... 0000200 00002.0 0000200 0000.00 0000.00 £00.00 0000.00 0000.00 00N0.00 N0 E0100 N00v..~r0 N000.00 003.00 000.1..0 0000.00 0000.00 0000.00 0000.00 00 $000+? SNYK 0NNvJN0 NNNv.m0 00Nv.fi 00Nm0 00.N¢.~....0|..00Nv.p 0000.00 00 0000200 0E0 000E 000W? 000vw0 0000.00 0N0v.\.0 N000.00 0000.00 0N 0000.010 0000h N000.00 0000.00 0N00.00 00.00.00 0000.00 0N00.00 0N00.00 0N N000.00 0000200 00.00%: 00.00.00 000m0 0000.00 0000.00 0N00.00 @000 {N 00N0.00 ENE 0000.00 0000.00 0000.400 80% 00.00.00 0000.00 0000.00 0N 0000.00 0000J.m0 0000.00 0000.00 0000.030 00N0.00 NON0.~.0 0000.00 00N0.00 0N vav.m0 00N0.00 00N0.00 00N0.00 00Nv.m0 003.0% 0N0vs0 00N0.00 0000.00 vN 0Nv0.m0 0000.00 N000.00 0000.00 0000.00 0000.00 0N00.$ 0000.00 0K000 0N 0N00.00 0000200 00.3.00 003.00 0000.00 0000p: 00010'0 0000200 NN00.00 N 000400 003.00 003.00 T000600 030.00 33.0% 0031.0 000.0200 0.00000 0N 0.03.00 000E 0000K0 0000.00 0000.00 003.0% 0000.00 0N00.0r0 0000.00 0N 0000.00 0000.00 0000.00 000¢m0 0000..PR000.W0 000100 00E0 N000.00 00 0000.00 000:0 NOE0 00E0 NNEO 00E 0000.00 0000.00 [0000.00 00 0000.00 N000.00 000.000 0000.00 003.00 000v.J0 000100 0000.00 00N0.00 00 000.000 00.00.00 0000K0 0000.00 0000.00 0001.00 000...: 0000.00 0000.00 00 0000.00 N000.00 3E0 0000.00 0000.00 0000.0I0. 0000.00 0000.00 030k 00 00N0.00 00N0.00 NNNO.\|.0 00N0.0F0 00NOEMNNON0 0000.0} N000.00 0.0 0000.00 0.00100 N000.00 000050 No0vwm0 000100 N000.00 0000.00 00 0000.00 0000.00 0000.00 00E0 SSE 0000.00 0N00.00 N0 000w: 0000+: 0000.F.m000.m0 0.000.0P0 0000.00 00N0.00 00 0000.00 ”3&0 0NOE 0000.m0 0000.00 0000.00 00 0N00.00 0000.00 0000.00 0NO0K.0 00N0.00 0000.00 0 0000.00 0000.00 000000 300.00 0000.00 N000.00 0 0000.000 0N00.00 0000.00 000.000 00.0.00 0.00000 0 0000.00 0000.00 N000.00 0N00.00 0N00.00 0 EQF 00.00.00 030.00 N000.00 0000.00 0 0000.00 0N00.00 0000.00 .0000.00 0 0000..F 300.00 00.00.00 00N0.00 0 N000.00 0000.00 0000.00 N 33.00 003.00 0000.00 0 0.0 0 0 0 v 0 N 0 5:00 .60 >00 >00 >00 >00 >00 >00 >00 + ten. $00 canon. 135 0000.00 0000.00 0000.00 0000.00 0000.00 0000.00 0N0v.00 N0 0000.00 0000.00 030.00 0000.00 0000.00 0000.00 00.00.00 00 0000.00 0000.00 00N0.00 00N0.00 NONv.00 003.01.. 0000.00 00 0000.00 0000.00 000v.FM00v.m0 0000.00 0N00.00 0000.00 0N N000.00 0000.00 0000.00 0000.00 0000.00 0000.00 0N 0N00.00 0000.00 0v0vJ.00 0000.00 000wfi. 0000.00 mN 00.00.00 0N00.0I0 00N0.00 00NOM0 00N0.00 0N 00N0.00 0000.00 N000.00 0000.00 0000.00 0N 00N0.00 0N¢000 00N0.00 NVNv.00 «N 0000.00 00N0.00 000.1000 00.00.00 0N 0N0v.00 0000.00 0000.00 NN 0N00.00 0000.00 0.000.100 0N 0E0 003.00 0N 003.00 003E 00 00000.0 00 0000.00 00 00 00 0.0 00 N0 00 00 0 0 m 0 0 0. 0 N 0 00 00 00 Ne 00 0N 0N >00 >00 >00 >00 >00 >00 >00 cozon. 00.00.40.050 - 000 0.00.0 136 AN 00...00..0>v .0002. 0000x000 2.000.200. .8 00... .0>o 000 £0.03 000000.. 000 .0...0. - 000 0.00.0 TmW0000 0000.00 0000.00 0000.00 0000.00 0000.00 0000.00 0000.00 0000.00 N0 0000.00 0000.00 0000....00 0000.00 0000.00 NON0.00 0000.00 0000.00 0000.00 00 0000.00 00N0.00 0000.00 0000L00 00N0.00 0000.00 0000.00 0000bm0 0NON.00 00 0N00.0fl0 0N00.00 0000.00 0000.00 0000.00 0000.00 0000.00 0N00..P0000.00 0N 000N.00 0000.00 0N00.00 0000.00 0000.00 0000.00 0N00.00 0080.0 0N00.00 0N b0N0.00 0000.00 0000.00 0000.00 0000.00 0000..P0000.00 0000.00 0&00 0N 0000.00 000N.00 0NON.00 0NON.00 0000.00 0N00.00 0000.00 0000.00 0N00.00 0N 00N0.00 000000 0000.00 00.0.00 NN00..|00 0N00.0W0 0000.00 0000.00 0000.00 0N 000N.00 00N0.00 0000.00 0000.00 00N0.00 0000.00 0000.00 0N00.Pl0k0.00 0N N000.00 0N00.00 0N00.00 0000.00 0000.00 0N00.00 0000.00 #0000 0000.00 0N 0000W0 N000I.00 0NOE 000000 0000|.00 0000.00 00NOW0 0N00.0F0 0000.00 NN 00N0.00 0000.00 0000.00 0000.00 N000.00 0000.0I0110u000ku0 0000.00 0000.00 0N 0000.00 0000.00 0000.00 0100000 0N00.00 00N0.00 0000.00 NE; 000fi0.00 0N 0000.00 08E 0000.00 N000.00 0000.00 0000.00 0000.00 0000.00 0000.00 00 0000.00 0000.00 0000.00 0000.00 00N0.00 0000.030 0N00.00 000000 0000.00 00 N000.010 0000.00 0000.00 0000.00 0NEO 0000|.00 00NN.00 0000.00 0000.00 H00 @0000 0000.|00 N000.00 0000.00 0000.00 N000.00 000000 0000.00 0000.00 00 0000.00 0000.00 0N00.00 N000.00 0000.00 0000.00 0000.00 00N0.00 00%.? 00 0000.00 N000.....0.0 00000.0 00100.00 0000.00 0000.00 0000.00 0000.00 00 00NN.00 000N.00 0N00.00 0000.00 0000.00 0000.00 0000.00 0000.00 00 0000.P 0000.00 0000.00 0000.010 0000.00 0000.00 0000.00 N0 0000.00 N000k0 00N0.00 0000.00 0000.00 0000.00 N000.00 00 N000.00 0000.00 0000.00 0000.00 0000.00 0000.00 00 0000.00 0000.00 000?: 0N00.00 0000.00 0000.00 0 N000.00 0000.00 0000.00 0000.00 00N0.00 0000.00 0 000000 0000.00 0000.I00 000E; 0000.00 0000.00 0 0000.00 0000.00 0000.00 0000.00 0000.00 0 N000.00 0000.00 0000.00 0N0.000 NO0N.00 0 0000.00 0000.00 0000.00 NO0N.00 0 00NN.00 000N.00 0W00.00 0N00.00 0 0NON.00 00NN.00 00N0.00 N 0000.00 00N0.00 0000.00 0 00 0 0 0 0 0 N 0 canon. >00 >00 >00 >00 >00 >00 >00 >00 + 00.0 00002. canon. 137 N000.00 0000.00 00N0.00 000N.00 NNON.00 000N.00 0000.00 N0 000N.00 0000.00 0000.00 N000.00 0000.00 0000.00 0000.00 00 0000.00 0F000.00 0000.00 000N.00 000N.00 0NON.00 0000.00 00 01000.00 0000.00 0000.00 00F00.00 0000.00 0000.00 0000.00 0N 0000.00 0N00.00 0000.00 N000.00 0000.00 N000.00 0N 0000.00 0000.00 000r0.00 0N00.00 000N.00 000N.00 0N 0000.00 0000.00 0000.00 0000.00 0000.00 0N 00NN.00 0000.00 N000.00 0000.00 00N0.00 0N 00N0.00 00.00.00 00N0.00 0000.00 0N 0000.00 0000.00 N0F00.00 0N00.00 0N 0000.00 0000.00 0N00.00 NN NON0.¢ 0N00.00 0N00.00 0N 0.0r00.00 NNON.00 0N 0000.00 00N0.00 00 0|00N.00 00 N000.00 00 00 00 00 00 N0 00 00 0 0 0 0 0 0 0 N 0 00 00 00 N0 00 0N 0N >00 >00 >00 >00 >00 >00 >00 00:00 8.02.08 - So 2000 138 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII \IlllMlNWMljuljflllflkwfllufl