

:
4

3
.

.

.
m
a
m
e
Q
M
-
u
g

«
r
.
.
.
k
;

1
v
.

3

«
I
t

I
.

H
.
»

a

.
.

x
3
1
3
;
!

1
.
.
.
.

:
5

3
?
!

1
&
1
.
.
.

I
)
:
{
:
3
}

h
i

4
5
.
5
3
:
:

3
h

‘
.

a
:

a
5
0
.

u
{
I

u
‘

’
.
h
“
.

s
.

I
"
!
(
I
5
1
9

f
i
g
h
t
)

1
1
.
!

1
.

5
$
v
_
I
I
B
P
\
I

.
5
.

)
l
1
3
.
1
.
1
2
1
3
.

1
5
9
.
.
.
!

$
0
5
.
.

‘
‘

.
.

l
5
‘

a
n
t
i
?

.
.
l
a
t

.
p
L

‘
.

11-16513

41' ' {(0

This is to certify that the

dissertation entitled

CANDIDATE SUBCIRCUIT ENUMERATION

FOR MODULE IDENTIFICATION IN DIGITAL

CIRCUITS

presented by

Jennifer Lynn White

has been accepted towards fulfillment

ofthe requirements for

Doctoral degree in Computer Science

& Engineering

1 (f) '
9

Majyprofessor

Date .5, 050

MSU i: an Affirmatiw Action/Equal Opportunity Institution
0-12771

. UBRARY

M'Chigan State
University

PLACE IN RETURN Box to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 chIRC/DatoDuepSS—ats

CANDIDATE SUBCIRCUIT ENUMERATION

FOR MODULE IDENTIFICATION IN DIGITAL

CIRCUITS

By

Jennifer Lynn White

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2000

ABSTRACT

CANDIDATE SUBCIRCUIT ENUMERATION FOR

MODULE IDENTIFICATION IN DIGITAL CIRCUITS

By

Jennifer Lynn White

Reverse engineering involves the transformation of system specifications to a de-

scription that contains fewer details but presents a more abstract view of the system.

Within design automation, reverse engineering can be applied to low-level circuit de-

scriptions, such as the geometric description of a chip, to recover a higher level of

abstraction, such as transistor- or gate-level specifications.

Transforming a circuit specification from a lower-level specification (gates) to a

higher-level specification (modules) is the focus of the Module Identification Problem.

Transforming a specification from the gate to module level provides a conceptual

description of the circuit, facilitating the reverse engineering effort. The Module

Identification Problem has two subproblems: Candidate Subcircuit Enumeration and

Subcircuit Identification. Candidate Subcircuit Enumeration locates clusters of gates

within the target circuit that may be equivalent to a known high-level module, and

Subcircuit Identification tests them for equivalence.

All gate clusters within the target circuit that may be functionally equivalent

to a known high-level module must be enumerated to effectively allow Subcircuit

Indentification. This thesis presents a technique for enumerating all candidate sub-

circuits. Each subcircuit is enumerated exactly once, to ensure complete coverage,

and only subcircuits that perform a viable function in the context of digital logic are

enumerated.

The number of subcircuits in a circuit can be exponential with respect to the

number of devices in the circuit, so a technique is presented to partition the subcircuits

into structural equivalence classes by generating an identifier for each subcircuit that

describes the subcircuit structure. Only one instance of each structural equivalence

class must be tested for semantic equivalence to known high-level modules; all other

members of the class inherit the equivalence results. This classification reduces the

number of times that semantic subcircuit identification must be applied, and thus

improves the performance of module identification without loss of efficacy.

Copyright by

Jennifer Lynn White

2000

TO EVERYONE WHO BELIEVED THAT I WOULD CREATE THIS THESIS,

ESPECIALLY MY FAMILY,

WHO RAISED ME TO BELIEVE THAT I COULD.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Anthony S. Wojcik, for his guidance, en-

couragement, and patience throughout the process of researching and writing this

dissertation. I would also like to thank my committee members, who provided ex-

cellent suggestions to improve this work, particularly Dr. Moon-Jung Chung for

spending so much time considering the theoretical aspects, and Dr. Betty Cheng for

thoroughly editing the dissertation itself.

This work was first conceived at Argonne National Laboratory under the advise-

ment of Gregory Chisholm. I would like to extend my appreciation to him and the

other members of the Reverse Engineering Team: Ken Dritz, Steve Eckmann, Chris

Lain, and Bob Veroff.

My family has believed in me through all of my endeavors, and for that I thank

them. They have always been willing to expend any effort necessary to help me during

this educational process. I received encouragement, emotional support, and technical

assistance from my dissertation support group: Mark Brehob, Scott Connell, 'Iiravis

Doom, Dave Paoletti, Delia Raymer, and Mike Raymer. I would especially like to

thank Mike and Delia, who happily welcomed me into their home for my frequent

visits to Michigan State University during the completion of this dissertation.

Most importantly, I would like to thank Travis Doom, who encouraged me to begin

work on a doctoral degree, applauded as each theory was formed, and supported me

through each step of the process. His personal and professional support made it

possible for me to travel this path.

vi

TABLE OF CONTENTS

LIST OF TABLES xiii

LIST OF FIGURES xiv

1 Introduction 1

1.1 Background 3

1.1.1 Conceptual Circuit Representation 3

1.1.2 The Forward Engineering Process 6

1.1.3 Relevance 7

1.2 Motivation 7

1.2.1 Information Retrieval 8

1.2.2 Reengineering 8

1.2.3 Alternatives to Reverse Engineering 13

1.2.4 Reverse Engineering Focus 14

1.3 Problem Description 14

1.3.1 Syntactic and Semantic Matching 15

1.3.2 The Module Identification Problem 21

1.4 Problem Scope 24

vii

1.4.1 Reverse Engineering Focus 24

1.4.2 Approach Requirements and Limitations 26

1.5 Contributions 27

1.5.1 Overview 27

1.5.2 Details 28

1.5.3 Summary 31

1.6 Dissertation Outline 32

2 Background and Related Work 33

2.1 Terminology 34

2.1.1 Design Automation and Digital Circuits 35

2.1.2 Graph Theory 36

2.2 Transistor- to Gate-Level Transformation 39

2.3 Reverse Engineering 42

2.3.1 Module Identification 43

2.3.2 FINES 45

2.3.3 Hybrid Module Identification 47

2.4 Application Areas 49

2.4.1 Regularity Extraction 49

2.4.2 Formal Verification 52

2.4.3 Technology Mapping 54

2.5 Candidate Enumeration 56

2.5.1 Partitioning 57

viii

2.5.2 Subgraph Clustering 59

2.6 Circuit Representations for Structural Comparison 60

2.6.1 Structural Labeling 61

2.6.2 K-Formulas 62

2.6.3 Circuit Matrix Manipulation 63

2.7 Syntactic Matching 64

2.7.1 Graph Isomorphism 65

2.7.2 Subgraph Isomorphism 68

2.7.3 Discussion 71

2.8 Semantic Matching 72

2.8.1 Functional Canonical Form 72

2.8.2 Cones of Logic 75

2.8.3 Hierarchical Semantic Matching 76

2.8.4 Pseudo-Semantic Matching 77

2.8.5 Discussion 78

2.9 Software Reverse Engineering 78

2.9.1 Functional Module Identification 80

2.9.2 Discussion 82

2.10 Summary 83

3 Candidate Subcircuit Enumeration 85

3.0.1 Uniqueness 87

3.0.2 Focused Enumeration 87

ix

3.0.3 Overview of Technique 89

3.0.4 Heuristics 90

3.0.5 Chapter Outline 91

3.1 Background 92

3.1.1 Representation 92

3.2 Enumeration of Candidate Subcircuits 100

3.2.1 Rules 103

3.2.2 Correctness of Rules 124

3.2.3 The Algorithm 129

3.3 Results 135

3.3.1 Implementation 136

3.4 Summary 138

4 Subcircuit Equivalence Classes 140

4.0.1 Overview of Technique 141

4.0.2 Chapter Outline 143

4.1 Structural Identifiers 144

4.2 Vertex Weighting 145

4.2.1 Vertex Functionality Labels 146

4.2.2 Vertex Precedence 147

4.2.3 Correctness of Vertex Weighting 162

4.2.4 Algorithm 166

4.3 Structural Identifier Generation 172

4.3.1 Example Algorithm 174

4.3.2 Structural Identifier Example 174

4.4 Subcircuit Equivalence Classes 182

4.4.1 Local Information 183

4.4.2 Correctness of Structural Equivalence Classes 184

4.5 Results 187

4.5.1 Implementation 188

4.6 Summary 189

5 Practical Application of Techniques 191

5.1 Parallel Implementation 192

5.2 Circuit Graph Order Reduction 193

5.2.1 Preliminary Partitioning 194

5.2.2 Preliminary Syntactic Matching 195

5.3 Subgraph Order Limiting 196

5.4 Hierarchical Module Identification 199

5.4.1 Module Replacement 199

5.4.2 Primitive Functional Modules 200

5.5 Subgraph Fitness Evaluation 201

5.6 Summary 202

6 Contributions and Future Directions 203

6.1 Contributions 206

6.1.1 Module Identification Problem 206

xi

6.1.2 Unique Subgraph Enumeration 206

6.1.3 Restricted Subgraph Types 207

6.1.4 Circuit Structural Identifier 209

6.1.5 Heuristics for Practical Application of Candidate Enumeration 210

6.2 Future Directions 211

6.2.1 Candidate Subcircuit Enumeration 211

6.2.2 Module Identification Problem 212

6.2.3 System Integration 213

6.3 Conclusion 214

BIBLIOGRAPHY 216

xii

1.1

2.1

3.1

4.1

4.2

4.3

5.1

5.2

LIST OF TABLES

Hardware Specification Levels [48] 5

Reverse engineering technologies and challenges, 1998 40

Focused Enumeration Results Demonstrating Reduction of Interesting

Subgraphs.................................. 136

Vertex Functionality and Precedence Example 147

Vertex Identifiers for Circuit Graph in Figure 4.10 182

Structural Equivalence Classes Applied to Subcircuits and

Contained Subcircuits 187

Focused Enumeration Results of Parallel Implementation 193

Order Limited Focused Enumeration Results 198

xiii

LIST OF FIGURES

1.1 Gate-level 2—bit Full Adder. 16

1.2 Gate-level 2-bit Adder with Two l-bit Full Adders Identified. 17

1.3 2-bit Adder as Two 1—bit Full Adder Modules................ 18

1.4 2-bit Adder as One 2-bit Full Adder Module................. 19

1.5 Overview of Gate Level to Register Level Transformation 25

3.1 Circuit to Circuit Graph Transformation Example 94

3.2 Circuit Graph G 96

3.3 Examples of Subcircuits and Fully Specified Vertices 98

3.4 Examples of Contained Subcircuits and Vertices 100

3.5 Algorithm for Naive Subgraph Enumeration................. 103

3.6 Algorithm for Nai've Subgraph Enumeration (Diagram)........... 104

3.7 Subgraph containing vertices [5, 3, 2] created by P(H) = {3, 2, 5}. . . . 106

3.8 Subgraph containing vertices [5, 3, 2] created by P(H) = {5, 2, 3}. . . . 106

3.9 Subgraph containing vertices [5, 3, 2] created by P(H) = {5, 3, 2}. . . . 107

3.10 Frontier and Reachable Frontier 109

3.11 Algorithm for Unique Subgraph Enumeration. 110

xiv

3.12 Algorithm for Unique Subgraph Enumeration (Diagram)..........

3.13 Rule 1 (Example 1).

3.14 Rule 1 (Example 2).

3.15 Algorithm for Unique Focused Enumeration.................

3.16 Algorithm for Focused Subgraph Enumeration (Diagram).

3.17 Rule 2 (Example 1).

3.18 Rule 2 (Example 2).

3.19 Rule 3 (Example 1).

3.20 Rule 3 (Example 2).

3.21 Algorithm for Unique Focused Enumeration.................

4.1 Conceptual Description of Input Cone

4.2 Conceptual Description of Output Cone

4.3 Example 1: First Pass Weighting with Local Vertex Information

Consideration

4.4 Example 2: Second Pass Weighting With Input Weight Consideration . .

4.5 Example 3: Second Pass Weighting with Output Weight Consideration. .

4.6 Example 4: Second Pass Weighting with Arbitrary Vertex Ordering

Required

4.7 Example 5: Second Pass Weighting with Arbitrary Ordering of

Distinguishable Vertices

4.8 Algorithm for Circuit Graph Vertex Weighting.

4.9 Example of a Canonical Identifier Generation Algorithm for Weighted

Circuit Graphs.

4.10 Full Equivalence Class Example: 2-bit adder

XV

111

114

116

117

130

153

155

157

159

175

176

4.11 Vertex weighting for the circuit graph of the 2—bit full adder in

Figure 4.10. 178

4.12 Vertex weighting for the circuit graph of the 2-bit full adder in

Figure 4.10. 179

4.13 Vertex weighting for the circuit graph of the 2-bit full adder in

Figure 4.10. 180

5.1 Algorithm for Order Limited Focused Enumeration............. 197

xvi

Chapter 1

Introduction

“Reverse engineering is considered as the process of developing a set of

specifications for a complex hardware system by an orderly examination

of specimens of that system.” [97]

Design automation iS concerned with the computer-aided transformation of a cir-

cuit design from one level to another. The usual focus of design automation is forward

engineering or synthesis, that is, the transformation of high-level design specifications

to a geometric layout which realizes the design. The inverse of this process, reverse

engineering, is a less extensively explored topic.

Reverse engineering involves the transformation of a lower-level specification to

a higher-level specification. Simply put, reverse engineering is the investigation of

the component parts of a system to discern the nature of the whole. This technique

has been applied in environments such as computer software [24, 30, 46, 49], mechan-

ical parts [101,107, 108], and digital circuits [32, 77, 97, 105], and may be motivated

by reeengineering for the purposes of modifying functionality or implementation, in-

1

formation retrieval, or replication of a component to extend the lifetime of a sys-

tem. Reverse engineering is typically applied to an existing specification to recover

a higher-level description of a system, but in the extreme case it may require the

transformation of the physical implementation into a high-level specification of the

system’s behavior. These varied applications have led to many approaches to reverse

engineering.

The research presented herein is directed toward developing an approach to re-

verse engineering in Situations in which no design information is available about the

component under study. The main focus of the research is the transformation from

a description at the logic gate level to a functional specification, comprised of imple-

mentation independent functional modules.

Several techniques are presented in this dissertation to facilitate understanding

of digital circuits by abstracting away from the details (gate-level description) and

providing a more general overview (module-level description).

Section 1.1 discusses conceptual representations of circuits, including levels of ab-

straction, and the forward engineering process. Section 1.2 discusses why reverse

engineering is currently an important topic in design automation. The formal defini-

tion of the Module Identification Problem is defined in Section 1.3. The sc0pe of this

research into the problem solution is discussed in Section 1.4. Section 1.5 presents

the contributions made by this research. Finally, Section 1.6 presents an outline of

this dissertation.

1 . 1 Background

Design automation is primarily concerned with developing techniques to facilitate

the synthesis of an implementation that realizes a design specification. The synthesis

process consists of several steps, each of which defines the circuit at an increasingly

detailed level. These levels of abstraction are described in more detail in Section 1.1.1.

An integral part of developing a method for reverse engineering is understanding

the forward engineering process. Section 1.1.2 describes the process of designing a

hardware component, from the initial concept to the implementation specifications.

1.1.1 Conceptual Circuit Representation

Levels of Abstraction

A circuit may be described at many different levels by increasing or decreasing the

amount of detail in the description. For instance, an arithmetic logic unit may contain

several functional modules, such as adders and comparators, which are built of logic

gates, and each logic gate is built of transistors. Each step in the progression is an

example of one of the levels of abstraction [48] that may be used to describe digital

circuits.

0 Processor Level. The processor level is the highest tangible level of abstraction

for circuits. It consists of microchip components such as processors, memo-

ries, controllers, and interfaces, as well as application-specific integrated circuits

(ASICS).

0 Register Level. The register level contains modules that are used to build the

processor components, such as adders, registers, comparators, counters, etc.

0 Gate Level. The gate level describes how the register level components are built

from primitive logic elements. Only gates and flip-fl0ps are present at the gate

level.

0 Transistor Level. The transistor level is the lowest level of abstraction, de-

scribing all gates and flip-flops of the gate level by the transistors necessary to

implement them.

Design automation focuses on transformations between levels of abstraction. For

example, from the register level, technology mapping (Section 2.4.3) may be used to

locate appropriate gate-level implementations of necessary functionality. The research

in this dissertation focuses on transforming a gate-level specification to an equivalent

register-level specification.

Views

There are three major views that are encountered during the engineering or reverse

engineering of a digital circuit: behavioral, structural, and physical [48,84].

0 Behavioral View. The behavioral view describes the functionality of the circuit

to be engineered without considering the implementation. The behavior may

be described as a function of the input values and elapsed time.

0 Structural View. The structural view breaks the behavioral design into inter-

connected components. This view specifies the organization of the circuit and

4

some of its implementation.

0 Physical View. The physical view includes the physical specifications of the

components defined in the structural view, such as dimension and location.

The physical view is generated for the purpose of manufacturing the design.

View

Level Behavioral Structural Physical

Forms Components Objects

Transistor Differential equations, Transistors Analog and digital

current-voltage resistors, cells

diagrams capacitors

Gate Boolean equations Gates, Modules,

finite-state flip-flops units

machines

Register Algorithms, Adders, comparators, Microchips

flowcharts, registers, counters,

instruction sets, register files, queues

generalized FSM datapaths

Processor Executable Processors, controllers, Printed-circuit boards,

specification, memories, ASICS multichip modules

programs

Table 1.1: Hardware Specification Levels [48]

Each view may be described at any of the four levels of abstraction, as summa-

rized in Table 1.1. By locating functional modules, datapath and control units may

become clearly delineated, allowing an architectural-level description of the device to

be recovered.

1.1.2 The Forward Engineering Process

The engineering process begins with a concept which is translated into a behavioral

specification. This specification provides details about the interface of the circuit with

the environment and the functionality that the circuit will perform. Behavioral-level

Specifications are often written in natural language, although executable specifications

are becoming more common because they may be verified, analyzed, and synthesized

more easily. Executable specifications include some hardware description languages

(HDLS), such as VHSIC Hardware Description Language (VHDL) [6] and Verilog

[15]. These HDLS may be used to describe the circuit at various levels, as well as

perform simulation and synthesis.

This overview of the Circuit’s functionality is then partitioned into blocks, each of

which has a well—understood functionality that can be described by a mathematical

formula or an algorithm, or possibly still in natural language, to be refined later.

This represents the first layer (processor) in the structural view of the circuit. The

processor level representation is then refined to include more information about im-

plementation by determining which register-level modules will be used to provide the

functionality for the processor-level modules. In a Similar step, the register-level mod-

ules are replaced by equivalent gate-level implementations. This task is often auto-

mated, and focuses on determining the implementation of each register-level module

that optimizes the circuit for quality measures such as area, cost, or performance.

The gates are then replaced by their transistor representation, and the design may

be verified for correctness against the original behavioral design. The design is finally

6

manufactured by replacing the structural components in the specifications by their

physical counterparts.

1.1.3 Relevance

The overall goal of reverse engineering is to raise the level of abstraction of the circuit

specification to recover a conceptual understanding of the circuit, based on functional

modules. The levels described in Section 1.1.1 (processor, register, gate, transistor)

are the four levels at which the circuit may be represented. The objective of the

Module Identification Problem (Section 1.3) is to transform a gate-level specification

to a register- or processor-level Specification.

It is apparent by examining the process of forward engineering that module identi-

fication is a useful tool for reverse engineering. This top-down methodology in which

large modules are implemented by connecting smaller modules or gates results in

clusters of gates that perform interesting and identifiable functions.

Further, when synthesizing gate-level Specifications from the register transfer level

description, the engineer may use implementations from a standard cell library, or

create new implementations for the register modules. In either case, it is likely that

the circuit will contain gate clusters that may be identified as functional modules.

1.2 Motivation

Reverse engineering was defined in 1985 by MC. Rekoff as “the act of creating a

set of specifications for a piece of hardware by someone other than the original de-

7

signers, primarily based upon analyzing and dimensioning a Specimen or collection

of specimens.” [97]. This landmark paper was the first to formally discuss reverse

engineering of hardware, its difficulties, and to present a methodology for performing

reverse engineering of complex hardware systems. Rekoff identified two primary mo-

tivations for reverse engineering: the gaining of information and the reproduction of

a part.

1.2.1 Information Retrieval

Reverse engineering of a part to gain information has many applications. Large

corporations apply reverse engineering to the products of their competitors to main-

tain a competitive edge. With the development of design watermarking techniques

[25,63, 64], a chip manufacturer can determine via reverse engineering whether its

intellectual property has been stolen. It is likely that military powers apply reverse

engineering to captured weapons and military equipment. When correct and current

specifications of a component are not available, information retrieval becomes the

first step in the process toward Rekoff’s second motivation for reverse engineering:

the reproduction of parts.

1.2.2 Reengineering

“An electronic product may need reengineering for a number of reasons re-

lated explicitly or implicitly to the passage of time. It needs reengineering

if its requirements (what it does) change over time or if its Specifications

8

(how it does it) change.” [77]

Reengineering or redesign is the modification of a component to extend or modify

its functionality or implementation. This activity requires that an accurate specifi-

cation of the component is available so that appropriate changes can be made and

subsequently re-implemented in hardware.

The reproduction of a part by reengineering often drives reverse engineering of

a device. Technology improvements may allow a faster, smaller, cheaper, or more

efficient implementation to be designed. Unexpected design flaws may be detected

after the unit is in service, requiring the implementation of an error-free replacement.

A device in a large system may degrade and require replacement. If no spares are

available, then the device may be reverse engineered and reproduced, forestalling the

replacement of the entire system.

There are two basic types of replacement parts [97]. A clone is an exact repro-

duction of the original device, including details such as the location and material of

each internal primitive element. A surrogate is a re-implementation of the device,

with identical functionality and input/output performance, but the internal design

and implementation may be completely different. Clones of digital logic devices are

seldom possible because the rate at which fabrication technology advances obviates a

design within 18 months. Fabrication facilities may cease to exist for older technolo—

gies within a Short span of time, causing cloning to be financially infeasible. For most

reverse engineering motivations, clones are not necessary; the identical functionality

provided by surrogates is sufficient.

EPOI [21, 105]

The United States Air Force is currently develOping a solution to their inability to

obtain needed parts. Just 20 years ago, before integrated circuits became ubiquitous

in the consumer market, the military accounted for over 15% of integrated circuit

purchases. Since integrated circuits began appearing in personal computers and other

household devices, the military has lost its influence over the market, and can no

longer expect manufacturers to maintain obsolete technology fabrication facilities to

provide parts indefinitely. Consequently, the Air Force has developed the Electronic

Parts Obsolescence Initiative (EPOI) to explore other Options.

EPOI has identified four alternatives to handle parts obsolescence: life-of-time

buys, complete system upgrade, part substitution, and board redesign. Life-of-time

buys involve purchasing sufficient stock to support replacement throughout a sys-

tem’s expected lifetime. A complete system upgrade is so expensive that it is seldom

warranted. Part substitution and board redesign have been determined to be the

most cost-effective solution to parts obsolescence. Both of these alternatives involve

reverse engineering of the existing components.

The current cost of a replacement that has the same interface and functionality of

the original part can range from $10,000 to $30,000, primarily due to the fact that the

engineers must manually recover the design from incomplete original specifications.

This situation has lead the Air Force to investigate automated tools for reverse engi-

neering, with the help of commercial and research companies such as Litton—TASC,

TRW, Raytheon, Northrop Grumman and Aspect Development Inc.

10

Obtaining Specifications

Reengineering frequently requires information retrieval. The amount of effort that

is necessary to reengineer a component is directly related to the amount of design

information that is available. It is obvious that when a specification that has been

proven to be accurate is available, then no reverse engineering is necessary and the

redesign process can begin immediately. All too frequently, however, the original

specifications for the component are not available. The original Specifications may

have been lost or damaged. A more common problem, particularly when dealing

with older (legacy) systems, is that the company originally contracted to design and

manufacture the device is no longer in business. Design knowledge and specifications

have disappeared as well. Such situations require extensive effort to recover the design

from the hardware.

If a complete and provably accurate design is available or can be obtained, then

it is possible to re-implement the hardware from that specification. If some original

design information is available, then it can be used to guide the reverse engineering

process, thereby greatly simplifying the effort.

Even when specifications are available, it iS unlikely that they represent a reliable

description of the device. Changes made further along during the design or imple-

mentation process may not be accurately reflected in the documentation. For this

reason, it is prudent to treat information gathered from design documents carefully.

The only completely accurate information is contained within the device itself.

There are two types of specifications that are necessary to completely describe

11

complex hardware products: functional and dimensional [97]. The functional Spec-

ification describes how the hardware works and what capabilities it performs. Di-

mensional specifications describe the details about the fabrication of the component,

including materials, dimensions, distances between constituent components, coeffi-

cients of friction, etc.

Depending on the goal of the reverse engineering, it is likely that only the func-

tional specification is required. If the intention is to redesign to take advantage of new

manufacturing technology, then it is not necessary to have the obsolete dimensional

specifications. Only the functional information is required, and the redesign engi-

neers or computer aided design (CAD) utilities can create apprOpriate dimensional

specifications.

Dimensional specifications may be helpful, however, if the goal is to correct a

design error. Rather than re-implement the entire component, only the erroneous

section must be repaired and re—implemented. Dimensional information from the

faulty component can reduce reengineering time.

Legacy Systems

The most frequent candidates for reverse engineering and reengineering are not sys-

tems that were designed last month or last year, but rather those that were designed

many years ago with now obsolete design tools and technology. These are referred to

as legacy systems.

As the number and age of existing legacy systems increases, so does the demand for

automated methods of design recovery. The problem of extracting design information

12

from hardware is gaining importance as many of these existing systems are reaching

a state at which they need to be reengineered to meet changing design specifications,

overcome defects, or replace failing parts.

Legacy systems are particularly likely to require reverse engineering. Original

design information is seldom available [39], and the designers or manufacturers of

these older systems no longer exist, so the specifications are no longer available or are

obsolete.

Legacy systems are often complex systems that perform a very specific task. De-

signing a new system to take over the functionality is usually prohibitively expensive.

The most practical way to maintain a legacy system is in an evolutionary manner,

incrementally redesigning and replacing portions of the system as necessary [78].

1.2.3 Alternatives to Reverse Engineering

The reverse engineering of hardware is a difficult task, and it is worthwhile to consider

other Options before initiating the reverse engineering process. An obvious alternative

is to simply design the circuit again. If some of the original design specifications are

available, then this may be an appropriate solution. An expenditure of sufficient man-

hours could result in an acceptable circuit. This approach may not be cost-effective

if original design information is not available.

Additionally, if the component to be redesigned interacts with other components

within the system, it is necessary to have a comprehensive understanding of the inter-

faces with those other components. Interface information is frequently not available,

13

rendering this approach difficult or impossible. In this case, the entire system may

need to be replaced.

1.2.4 Reverse Engineering Focus

The research presented in this dissertation focuses upon the reverse engineering of

digital hardware in the absence of design information toward the goal of redesign or

replacement of the hardware component. The resulting specification will contain a

functional register-level description of the component. The techniques presented in

this thesis utilize only the information that can be derived from the component itself,

such as a transistor—level netlist, transistor position information, circuit power lines,

and clock lines.

1.3 Problem Description

Reverse engineering can be described as abstracting away details to obtain a more

general understanding. In digital circuits, the details involve low-level components

such as transistors, resistors, logic gates, and buffers. To create a more easily un-

derstood description of the circuit, those components are subsumed into functional

modules such as arithmetic logic units, multiplexors, and adders.

The recovery of a gate-level specification (netlist) from a physical piece of hardware

involves physically examining each layer of silicon composing the device to create a

low-level geometric description [31, 107], which can then be converted into a transistor-

level netlist by pattern matching or visual inspection [31]. Transistor implementations

14

of logic gates are generally small in number and can be easily identified by graph

isomorphism and pattern matching techniques [17, 72,91]. Techniques to perform

these three steps toward abstraction have been developed, and recovering a design

to the gate-level is considered to be an achievable step in the process. Section 2.2

presents more detailed descriptions of the applicable techniques.

The same cannot be said of a subsequent transformation from that netlist to a

functional module-level netlist. The transformation of a gate-level netlist describing a

combinational logic circuit into a modular-level representation of the circuit in terms

of functional components and glue logic is the focus of the general Reverse Engineering

Project, first proposed at Argonne National Laboratory by Eckmann and Chisholm

[43].

To illustrate the difference between a gate-level description and a module-level

description, a 2—bit adder is shown in Figures 1.1, 1.2, 1.3 and 1.4. Figure 1.1 shows

the adder described at the gate-level, which is divided into two 1-bit full adders in

Figure 1.2. Those two l-bit full adders are functional modules, so the same 2-bit

adder can also be described by the modular description in Figure 1.3. Moving to

a higher level of abstraction within the modular description describes the 2-bit full

adder as a single module in Figure 1.4.

1.3.1 Syntactic and Semantic Matching

Many existing approaches to the transformation between gate-level and register-level

specifications use specialized solutions to the classic graph-theoretic subgraph iso—

15

cin

aO .

b0

\

l

7

 1E}

 \

a1

b1

I

 1:):

_D—— cout

43

Figure 1.1: Gate-level 2-bit Full Adder.

16

cm I , D : 80

: ’ '. ' I

a0 \. , _’ I
I .

b0 7) ~ :

: I

tun—ID-___________.

i 2 Si) ' J . 31

I l . . I

I. . I

a1 + x A. o—D__ :

l LW ‘DJ— '00“

Figure 1.2: Gate-level 2-bit Adder with Two 1-bit Full Adders Identified.

17

cin—

,_ so

30 " 1-blt Full Adder

b0 ~

——s1

31 ~ 1-bit Full Adder

b1 ~

— COUt
Figure 1.3: 2-bit Adder as Two l-bit Full Adder Modules.

18

cin -—

— so

.30 ..

b0 _

2-bit Full Adder

—— 81

a1 ._

b1 .

_ cout
Figure 1.4: 2-bit Adder as One 2-bit Full Adder Module.

19

morphism problem [110]. Given a Specific implementation of a functional module,

these approaches can locate all instances of that circuit structure within the cir-

cuit under examination, the target circuit. This is referred to as syntactic matching

[17, 72, 76, 91, 93] because it matches circuit structure (syntax) rather than meaning.

Systems employing syntactic matching are usually very fast, capable of locating

all instances within linear time with respect to the Size of the target circuit [91].

Unfortunately, not all functionally equivalent circuits are structurally equivalent. AS

described above, a 2—bit adder may be built by connecting two I-bit adders imple—

mented by NAND gates, but it may also be implemented completely differently, in

XOR-AND format, for example. These two implementations will perform exactly the

same function, but will bear no resemblance to one another.

Therefore, the drawback of the syntactic approach is that it is only capable of

locating known implementations of the functional modules. To locate all instances

of 2-bit adders in a circuit by applying a syntactic matching technique, it would

be necessary to create a library of all possible implementations of a 2-bit adder.

Even with extensive libraries, it is unlikely that all needed implementations of a

functional module will be present. In addition, the matching time to search for all

implementations would be prohibitive.

Syntactic matching approaches can provide valuable information, particularly

when the circuit contains many stock implementations from a known library. This is

likely in circuits that were designed by using glue logic to connect modules from a

library to implement the desired functionality. However, reverse engineering is often

applied to obsolete circuits or circuits designed by someone other than the reverse

20

engineer, so it is unlikely that the original implementation library used to design the

circuit is known and available.

A more powerful matching technique is semantic matching [32, 75, 92]. Semantic

matching compares the logical functionality of the circuits rather than their struc-

ture. When applying semantic matching, the module library need only contain one

implementation of each functional module. All gate clusters in the target circuit that

perform the same function, regardless of their structure, will be identified by semantic

matching.

In an effort to provide a general solution for reverse engineering, the research in

this dissertation focuses upon a problem formulation for module identification that

applies semantic matching instead of syntactic matching.

1.3.2 The Module Identification Problem

The following formal description has been developed to describe the gate-level to

module-level transformation of a digital circuit specification.

Module Identification Problem [37,38,114]. Given a gate-level logic descrip-

tion (netlist) of a target circuit, efficiently identify all gate clusters (subcircuits) that

perform the function of a known library module.

0 Candidate Subcircuit Enumeration Problem. Identification of gate clus-

ters (candidate subcircuits) within the netlist that may comprise a functional

module.

21

o Subcircuit Identification Problem. Proving functional equivalence between

a candidate subcircuit and a known standard library module.

The research presented in this dissertation provides an approach to the first half

of the Module Identification Problem: Candidate Subcircuit Enumeration.

Subcircuit Identification The second part of the Module Identification Problem

is determining whether the subcircuits produced by candidate subcircuit enumeration

are equivalent to a functional module. Several solutions to this problem have been

proposed in the literature, and are discussed in detail in Section 2.8.

Candidate Subcircuit Enumeration A candidate subcircuit is defined as a clus-

ter of gates that possesses a well-defined functionality in the context of digital sys-

tems. To provide the most complete coverage of a circuit with functional modules,

all candidate subcircuits should be enumerated.

If the circuit is viewed as a graph, in which vertices represent gates and edges

represent wires, enumerating all subgraphs is a very complex problem because the

number of subgraphs is not polynomially bound [50]. Even in a graph that conforms

to the structure of a planar binary tree, the number of subtrees of height n that

contain the root vertex is described by the doubly exponential recurrence relation:

xn+1=xi+1,n20;xo =1 (1.1)

which generates the sequence 1, 2, 5, 26, 677, 458330, 210066388901, [1].

The structure of a circuit is not as well-defined as that of a binary tree, so it is not

22

possible to develop a simple equation to obtain an exact count of the subgraphs in an

arbitrary circuit. It is obvious that enumeration of all subgraphs is a computationally

difficult problem. However, for the purpose of reverse engineering, not all subgraphs

need to be enumerated. Only those subgraphs that represent viable circuits need

to be considered. A viable subcircuit is represented by a subgraph in which each

gate represented is fully-specified with respect to the subgraph. If the subgraph

contains a 2-input AND gate, the subgraph may not contain only one of the gate’s

inputs. Either both or neither of the inputs must be present to fully-specify the

gate. Limiting enumeration to subcircuits reduces the subgraphs to be enumerated

considerably. For instance, in a 1—bit adder composed of eight logic gates, there are

114 subgraphs, but only 18 subgraphs that represent subcircuits. Only those 18 need

to be enumerated.

To further limit the number of subgraphs that must be enumerated, the class

of subcircuits may be restricted to include only those subcircuits that do not share

any functionality with neighboring subcircuits. These subcircuits are known as self-

contained subcircuits. Of the 18 subcircuits in the 1-bit adder, only 6 of those are

self-contained.

In addition to defining the types of subgraphs to enumerate, it is important to

ensure that each of the subgraphs is enumerated exactly once. A naive algorithm

for subgraph enumeration, which iteratively adds neighboring vertices to an existing

subgraph, will produce each subgraph many times, an unnecessary expenditure of

computational effort. If each subgraph produced, including duplicates, is then tested

for semantic equivalence, module identification becomes completely impractical.

23

Even when only a restricted class of subgraphs, subcircuits, is enumerated, the

number of subcircuits in the original circuit may still be unwieldy. Several heuristics

have been developed in this research to guide the enumeration without interfering

with the effectiveness of the overall technique.

1.4 Problem Scope

1.4.1 Reverse Engineering Focus

The process of reverse engineering for the purpose of transformation between gate-

level and register-level circuit specifications is presented in Figure 1.5. The process

begins with a gate-level netlist, which is partitioned into smaller segments to im-

prove performance. The current solution to the Module Identification Problem does

not apply to sequential circuits (because current semantic matching approaches are

limited to combinational logic), so the combinational logic is extracted from these

segments and passed to the Candidate Subcircuit Enumeration module. All of the

subcircuits generated are placed into Structural Equivalence Classes, then matched

to known modules. A circuit covering technique may then be applied to produce a

register-level description of the circuit.

The work presented in this dissertation focuses on the steps outlined in bold,

Candidate Subcircuit Enumeration and Structural Equivalence classes.

24

circuit

partitions

A Circuit to be /93t.¢'le"el . . netlist

A reverse engineered/ netlist '2 partitioning

 Combinational I

logic extraction ~

eqmvalence classes , enumeration ' circuit partition-s-

structural

instance

Semantic I matched . Circuit , ~ Module-level

Matching I subcircuits covering ‘ circuit netlist ’

Figure 1.5: Overview of Gate Level to Register Level Transformation

25

1.4.2 Approach Requirements and Limitations

The approach to the Module Identification Problem (Section 1.3) described in this

dissertation focuses on performing gate—level to register-level transformations on com-

binational logic circuits. The solution to Candidate Subcircuit Enumeration presented

in Chapter 3 has been designed to work on general directed graphs, including those

with cycles. The current solutions [32,36] available for Subcircuit Identification per-

form combinational logic matching only, and cannot operate effectively on sequential

circuits.

Thus, this approach may depend upon the following information:

1. The circuit represents combinational logic only.

2. The functionality of the candidate subcircuit is assumed to have the same num-

ber of inputs and outputs as that of the library module. No output can be

“ignored”; every output of any library entity must either be a primary output

or be used as the input at some other point in the circuit.

3. The functional modules to be located are expected to be a single connected

subcircuit, not several disjoint subcircuits. If a module is built of disjoint sub-

circuits then each subcircuit should be defined as a module.

4. The functionality of the candidate subcircuit and the library module must match

exactly; don’t care sets are not considered at this time.

AS research progresses in semantic matching of sequential circuits, new approaches

to subcircuit identification can easily be incorporated into the module identification

26

r
-
r
u
m
-
q

system. It is also possible to perform preliminary partitioning into combinational

blocks [23], thus allowing reverse engineering of the combinational portions of the

design.

In addition, it is currently necessary that a library of functional modules be avail-

able. The technique presented in this thesis applies semantic matching to the Module

Identification Problem, so only one implementation of each module need be included

in the library. The library modules may be represented in any format, including cir-

cuit netlist, circuit graph, or in a pure functional format, described by Binary Decision

Diagrams [19].

1.5 Contributions

The research presented in this dissertation provides both theoretical and practical

contributions to the field of design automation. Techniques have been developed to

allow the reverse engineering of a gate-level circuit specification to a more conceptual

module-level specification. This module-level specification can be more easily utilized

for the purposes of reengineering, reuse, replacement, and repair.

1.5.1 Overview

0 Problem formulation: The Module Identification Problem, as discussed above,

has been developed to provide a framework for this research. Details presented

in Chapter 1.

27

?

0 Unique Subgraph Enumeration: A technique for uniquely enumerating each sub-

graph of a general graph has been developed by indexing the vertices and

subgraphs and applying ordering rules to guide subgraph expansion. Details

presented in Chapter 3.

o Restrictive Subgraph Types: Two types of subgraphs that are interesting within

the Module Identification Problem have been defined: subcircuits and contained

subcircuits. The enumeration of subgraphs can be focused solely on these sub—

graphs to reduce the effort required to enumerate candidate subcircuits. Details

presented in Chapter 3.

0 Structural Circuit Identifiers: A technique for developing structural circuit iden-

tifiers to place subcircuits into structural equivalence classes has been defined.

This reduces applications of semantic matching. Details presented in Chapter

4.

o Heuristics for Practical Application: The techniques cannot be applied ‘as is’

to circuits of arbitrary size, so a set of heuristics has been defined to allow effec-

tive candidate subcircuit enumeration to be performed for any circuit. Details

presented in Chapter 5.

1.5.2 Details

Module Identification Problem A formal problem, the Module Identification

Problem, has been defined to describe the reverse engineering of digital circuits. The

Module Identification Problem consists of two subproblems: Candidate Subcircuit

28

Enumeration and Subcircuit Identification. The research in this dissertation focuses

on the problem of Candidate Subcircuit Enumeration.

Unique Subgraph Enumeration The unique and comprehensive enumeration of

subgraphs of an arbitrary graph is a theoretical result that has many applications

within design automation and graph theory. The most important contribution is

vertex indexing and associated rules that ensure that each subgraph will be created

exactly once. This indexing prevents unnecessary computation and improves execu-

tion time.

Unique enumeration may be applied within both syntactic and semantic solutions

to the Candidate Enumeration part of the Module Identification Problem. When

coupled with standard partitioning heuristics, it can be used to improve bottom-up

partitioning methods. The vertex ordering that prevents duplication of subgraphs

may easily and efficiently be applied to netlist clustering and vertex clustering. Clus-

tering appears in the solution to many problems, so widespread benefits can result

from improving its execution.

Restricted Subgraph Types The enumeration of all subgraphs of a graph is

intractable because the number of subgraphs is not polynomially bound. To focus

enumeration upon subgraphs that may be functionally equivalent to a module, and

to reduce enumeration complexity, two classes of subgraphs have been defined.

A subcircuit is a subgraph that possesses well-defined functionality. It is necessary

that all gates in the subcircuit are accompanied by either all or none of its inputs.

29

1
-

Gates that are only partially specified are not allowed. Restricting enumeration to

subcircuits provides considerable reduction of effort without reducing effectiveness.

Further, a contained subcircuit is a subcircuit that does not share functionality

with neighboring subcircuits. These subcircuits are likely to represent a complete

functional module, and thus their enumeration and identification represent an efficient

step in the reverse engineering process.

Structural Circuit Identifiers A structural representation of circuits was de-

veloped to implement the concept of subcircuit equivalence classes. This structural

identifier completely describes the structure of the circuit, so the subcircuits may

be partitioned into structural equivalence classes. Structurally equivalent subcircuits

are necessarily functionally equivalent, so only one instance of each equivalence class

must be tested for equivalence to register-level modules.

Although several other string representations for graphs and circuits are available

(see Section 2.6), they require extensive processing to determine equivalence of graphs

and circuits. The method presented in Chapter 4 is based on efficiently determining

a vertex ordering that can be used to generate a structural identifier. This technique

allows fast and effective partitioning of the subcircuits into structural equivalence

classes. Although the application is Simplified by the vertex labels, indicating gate

type or functionality, it also may be applied to unlabeled directed graphs.

Heuristics for Practical Application The number of candidate subcircuits in a

circuit can grow exponentially with the number of devices in the circuit. Therefore,

30

the practicality of performing candidate subcircuit enumeration decreases as the size

of the circuit grows. Therefore, several heuristics have been defined that allow module

identification to be performed on circuits of any size. These heuristics include reduc-

tion of the circuit size by preliminary partitioning, limitation of candidate subcircuit

order, and hierarchical module replacement.

1.5.3 Summary

To solve the Module Identification Problem for a digital circuit, each cluster of gates

in a circuit that may be equivalent to a known module must be enumerated. An

algorithm is presented in this dissertation that uniquely enumerates each and every

subcircuit that may be functionally equivalent to a known module. The number of

these subcircuits may be inherently intractable, so several guidelines have been de-

signed to effectively reduce the number of subcircuits enumerated. Properly applied,

these heuristics will permit circuits of arbitrary Size to be analyzed, without reducing

the accuracy of the module identification.

In addition, the concept of structural equivalence classes and a technique for deter-

mining a efficient representation for comparison of subcircuit structure are discussed

to further improve the efficiency of the solution to the Module Identification Problem.

The combination of unique enumeration of subcircuits and structural circuit rep-

resentation provides an effective solution to the first part of the Module Identifica-

tion Problem, Candidate Subcircuit Enumeration. When combined with a semantic

matching approach to Subcircuit Identification, the basis for a powerful reverse engi-

31

neering tool is created.

1.6 Dissertation Outline

Chapter 1 has discussed motivations for reverse engineering, presented the Specific

formulation that is the focus of this dissertation, and stated the scope of the problem.

Chapter 2 reviews the current literature on reverse engineering methods and solutions

to related problems. Concepts, terminology and notation that will be used throughout

this dissertation are also presented.

Chapter 3 discusses the Subcircuit Enumeration Problem and presents an algo-

rithm that enumerates each and every candidate subcircuit of a circuit exactly once.

Chapter 4 introduces the idea of subcircuit equivalence classes, which serves as an

effective method of reducing the number of necessary semantic comparisons. The

application of these theoretical techniques is discussed in Chapter 5, with several

methods to extend their application to circuits of any size. Chapter 6 contains a

summary of the contributions of this research as well as future work in this area.

32

Chapter 2

Background and Related Work

As the need for reverse engineering increases, so does the motivation for research into

better methods and techniques to accomplish reverse engineering tasks. Previous

work has provided important background to the topics discussed in this dissertation,

and many of these techniques may be applied in conjunction with the algorithm and

heuristics presented here to achieve improved results and useful contributions to the

reverse engineering effort.

The formulation of the Module Identification Problem in Section 1.3 emphasizes its

relation to problems such as technology mapping, design validation, circuit clustering,

and regularity extraction. These problems are described and contrasted to the Module

Identification Problem, and current research into their solutions is presented in this

chapter.

This research represents digital circuits as directed graphs. Section 2.1 presents the

general concepts and terminology of digital logic and graph theory that are necessary

to understand the discussions in the remainder of this dissertation. The techniques

33

presented in this dissertation focus on the transformation of a gate-level netlist to a

module-level netlist, where the module level may contain register- or processor-level

modules. Techniques developed by others that perform the transformation from the

physical-level to a gate-level netlist are discussed in Section 2.2.

Related work is described in the remainder of the chapter, beginning with a dis-

cussion of other approaches to reverse engineering in Section 2.3. There are several

application areas in which similar problems are being researched. These application

areas are presented in Section 2.4. Discussion of techniques used to solve candidate

enumeration within these domains follows in Section 2.5, including circuit partitioning

in Section 2.5.1 and netlist clustering in Section 2.5.2.

Techniques for representing circuits for comparison are presented in Section 2.6.

The two approaches to Subcircuit Identification, syntactic and semantic matching,

are discussed in Sections 2.7 and 2.8, respectively. The reverse engineering of soft-

ware shares many goals with reverse engineering, such as the abstraction away from

details and location of functional modules. Section 2.9 discusses several approaches

to software reverse engineering. Section 2.10 summarizes this chapter.

2.1 Terminology

The following section provides background for understanding the Module Identifi-

cation Problem and its subproblems, as well as the related work discussed in the

following sections.

34

2.1.1 Design Automation and Digital Circuits

Design automation is the study of the computer-aided transformation of a digital

design from one level of abstraction to another, ending with the final synthesis of a

digital circuit. The research described here provides an approach to reverse engineer a

low—level (gate-level netlist) description of a circuit to a high-level (functional-module

netlist) specification. The following terms are from digital logic and are used through-

out this dissertation [111].

Definition 2.1 A gate or logic gate is an electrical component that has one or

more inputs and produces an output that is a function of the current input values.

Examples: AND, XOR, NOT.

Definition 2.2 A module (functional module or high-level module) is a col-

lection of interconnected gates that perform a known and well-defined functionality.

Examples: AL U, multiplexor, adder (Figure 1.3).

Definition 2.3 A circuit is an arrangement of logic gates that are interconnected

to perform a specified function. A circuit may include many modules.

Definition 2.4 The depth of a device g in a circuit C is the length of the maximum

path between g and any input of C.

Definition 2.5 A specification is a description of a circuit or a digital design.

Specifications may exist in many different levels of abstraction (Section 1.1.1). Spec-

ifications are written in hardware description languages, such as VHDL and Verilog.

35

'
fi
g
m
fl

Definition 2.6 A gate-level netlist is a circuit specification containing only logic

gates.

Definition 2.7 A module-level netlist is a circuit specification containing high-

level modules and glue logic (gates).

Definition 2.8 A flip-flop is a device that stores either a 0 or a 1. The value of a

flip-flop may change only at times determined by a clock input. Examples: D flip—flop,

S-R flip-flap.

Definition 2.9 A combinational logic circuit is a circuit that contains no storage

or memory capability.

Definition 2.10 A sequential logic circuit is a circuit that contains storage or mem—

ory capabilities. Sequential logic circuits include flip-flops.

Definition 2.11 A synchronous logic circuit is a sequential circuit whose state

changes only at a specified point on a triggering input called the clock.

Definition 2.12 A library is a collection of high-level modules. Details are in Sec-

tion 1.4.

Definition 2.13 A partition of a circuit is a contiguous portion of the circuit.

2.1.2 Graph Theory

The technique of subcircuit enumeration presented in this dissertation represents

circuits as directed graphs. This section presents graph theory terminology [28,34]

that will be used during the discussion of the techniques develOped in this research.

36

I
'
-

Graphs

Definition 2.14 A graph G is a finite nonempty set V(G) of objects called vertices

and a (possibly empty) set E(G) of two element subsets of V(G) called edges. The

set V(G) is called the vertex set of G and E(G) its edge set.

Definition 2.15 The number of vertices in a graph G is called its order, denoted

|V(G)|, and the number of edges is its size, denoted |E(G)|.

Definition 2.16 A trivial graph is a graph consisting of a single vertex and no

edges.

Definition 2.17 Vertices u and v are adjacent to each other in a graph G if uv E

E(G). If u and v are adjacent, then u is a neighbor of v and v is a neighbor of u.

Definition 2.18 For a vertex v in a graph G, its neighborhood is defined by

N(v) 2: {u E V(G) | vu E E(G)}. The degree of a vertex v is the number of

vertices adjacent to v, that is, IN(v)|

Definition 2.19 A graph H is a subgraph of a graph G if V(H) Q V(G) and

E(H) g E(G).

Definition 2.20 A subgraph H ofG is an induced subgraph ofG ifE(H) contains

precisely those edges joining two vertices in V(G).

Definition 2.21 A walk in a graph G is an alternating sequence of vertices and

edges, v0,e1,v1,e2,v2, ...,emvn for n 2 0, beginning and ending with vertices, such

that e,- = v,-_1v,- fori = 1, 2, ..., n.

37

Definition 2.22 A path in a graph G is a walk in which no vertex is repeated.

Definition 2.23 A graph G is connected if there exists a path between u and v for

every pair u, v of vertices of G. Otherwise, it is disconnected.

Definition 2.24 A vertex v is a cut-vertex of G if G — v is disconnected.

Directed Graphs

Definition 2.25 A directed graph or digraph D is a finite, nonempty set V(D)

of vertices and a (possibly empty) set E(D) of ordered pairs of distinct vertices. The

elements of E(D) are called arcs.

Definition 2.26 If uv is an arc of D, then u is said to be adjacent to or a parent

of v, and v is said to be incident to or a child of u.

Definition 2.27 The outdegree of a vertex v in a digraph D is the number of

vertices incident to v. The indegree of v is the number of vertices adjacent to v.

The degree of v is outdegree(v) + indegree{v).

Definition 2.28 A semiwalk in a directed graph D is an alternating sequence of

vertices and arcs, v0,e1,v1,e2,v2, ...,emvn for n 2 0, such that either e,- = {v,-_1,v,-}

or e,- = {v,~,v,-_1} for each i(1 _<_ i g n).

Definition 2.29 A digraph D is connected if there exists a semiwalk between u and

v for every pair u, v of vertices of D.

38

[

2.2 Transistor- to Gate-Level Transformation

Beginning the reverse engineering process with a digital device and no external infor-

mation is the most difficult type of reverse engineering. However, the hardware itself

is the most reliable information that is available, because specifications often become

incorrect as changes are made during the implementation process (Section 1.2.1).

The research presented in this thesis assumes that the hardware has already been

reverse engineered to a gate—level specification. This section gives an overview of

the steps necessary to recover the gate-level netlist from a physical circuit. Table

2.1 presents the steps of design recovery for digital circuits, as developed at the

1998 Reverse Engineering Workshop [103] and presented in [36]. The well-defined

techniques for transforming a circuit from the physical device implementation to the

gate-level implementation (Levels 0 - 4) are described in the following paragraphs.

Sample Preparation (Level 0) The first step involves extraction of the design

layout of the device. A destructive technique (chemical etching or mechanical slicing)

is used to expose each layer of the device [31].

Image Acquisition (Level 1) High-resolution images of each level are obtained

by a scanning electron microscope. Many images are necessary to capture the entire

layer at a high enough resolution to allow further recovery. These images are then

assembled to present an image of the entire layer [31].

The problem inherent in these steps is the destructive nature of this etching pro-

cess. Care must be taken to ensure that the images are collected accurately. If only

39

] Level Technologies] Technical Challenges |

0 Sample Preparation

Etching f Etching

1 Image Acquisition

SEM Accuracy

Image processing Geometry

BMP to GDS-II Staging

Unconventional technology

2 Geometric Description

Postprocessing Process information

Design rule checkers

3 Transistor Netlist

Syntactic matching Exact models of gates

Semantic matching Unconventional technology

Semantic matching

4 Gate Netlist

4a Layout

Pattern matching Combinatorics

Syntactic matching Optimizations

Semantic matching Library support

Contextual matching Incomplete information

Optimization tools Clustering

Function-centric naming

4b Timing

Simulation and modeling Unconventional technology

Technology-specific information

5 Register Transfer

Model generation Complexity

Sequential functionality Validation

Timing Automating process

% Domain-specific information

6 Behavioral

Table 2.1: Reverse engineering technologies and challenges, 1998. [36]

40

one instance of the device to be reverse engineered exists, then the images will be the

only information remaining about the device after image acquisition.

Geometric Description (Level 2) The high-resolution images obtained from the

Image Acquisition stage must be converted into a geometric data stream, a descrip-

tion of the elements on each layer including position information. This can be accom-

plished by standard pattern recognition techniques, provided that knowledge about

the implementation technology is available [8, 47, 55].

'Ii'ansistor-Level Description (Level 3) The transformation from the geometric

description to a transistor-level description can be performed by commercially avail-

able CAD tools that recognize physical structures in the geometric description such

as transistors, wires, and resistors [31].

Gate-Level Description (Level 4) The final step to bring the design to a gate—

level description uses isomorphism techniques to locate transistor implementation of

logic gates. This step requires an extensive library of gate implementations. Because

the number of transistor implementations of gates is relatively small, syntactic library

matching is usually sufficient for this purpose. Many tools are available to perform

this transformation, such as SubGemini [91], LOGEX [17], GateMaker [72], and BLEX

[76], among others.

41

2.3 Reverse Engineering

“Reverse engineering is the inverse of the design process. The design

process begins with an abstract description of a target device and, through

a succession of refinements, produces an implementable design. Reverse

engineering begins with the disassembly of a manufactured device and

ends with an abstract description of its functionality.” [32]

The reverse engineering of a digital design has many purposes. It may be nec-

essary to change the specifications of the product to add new features or to meet

changing client needs. Portions of an existing system may be reverse engineered so

they may be used within another system [99]. With improvements in available tech-

nology, hardware may be re-implemented to improve power, size, or speed constraints.

The availability of cheaper technology or materials may drive reverse engineering for

redesign of a functionally equivalent but more cost effective part.

Technology is improving at such a fast rate that it is necessary to perform reverse

engineering and redesign quickly so the new part is not obsolete before it is released.

Thus, reverse engineering techniques must produce results quickly and effectively so

that the redesign process may begin.

The most practical way to implement recovery of the gate-level netlist is to incor-

porate recovery within the design process itself. A system that allows simple transi-

tions between design levels (higher or lower) produces designs that can be redesigned

within the system. Unfortunately, most hardware was not designed in such an inter-

active system, so reverse engineering is a “blind” process. Some design information

42

-
3
1
.
v
i
i
-
q

may be available, but it is not guaranteed to be current.

The following sections describe several approaches to reverse engineering. The first

two, Module Identification and FINES, are the techniques described in the literature

that are the most similar to the approach described in this dissertation. The last

approach, Hybrid Reverse Engineering, describes a general methodology for module

identification that provides many interesting techniques for simplifying reverse engi-

neering. These techniques span both automated and manual identification techniques.

2.3.1 Module Identification

The technique that is most similar to the research presented in this dissertation is

proposed by Chisholm et al [32]. Two parts of the module identification problem are

identified:

0 Partitioning - generate candidate subcircuits by partitioning the subject netlist.

0 Matching - determine matchings between candidate subcircuits and library

modules.

This technique considers both syntactic and semantic matching. The syntactic ap-

proach is used initially to locate subcircuits whose functionality is already understood.

Assuming that module identification is for the purposes of verification of one’s own

design, the library modules for this step can be built from the design documentation.

The syntactic matching technique used for this approach is the SubGemini algo—

rithm [91]. Details on this algorithm can be found in Section 2.7.2. Recognizing that

syntactic matching has limitations, such as requiring a large module library and an

43

u
n
s
u
n
g
-
_
—

inability to match optimized modules, the researchers now apply a semantic technique

to locate all implementations of the library modules.

The semantic equivalence problem is solved by using Binary Decision Diagrams

(Section 2.8.1) as a canonical form for the circuits, then comparing those canonical

representations as necessary. The difficulty with using Binary Decision Diagrams as

a canonical form is that it is necessary to determine a correspondence between the

inputs and outputs of the pattern circuit and those of the target circuit.

The candidate subcircuits are identified by applying partitioning to the circuit.

Details on this technique are given in Section 2.5.1. Once the candidate subcircuits

have been determined, the canonical BDD description of their logic is generated for

each output. These canonical forms for the candidate outputs are compared to the

canonical forms for the outputs of the library elements. If all outputs of the candidate

match all outputs of a library element, a match has been found.

Discussion

The focus for the technique presented by Chisholm et al [32] is on reducing the com-

plexity of the second step of the Module Identification Problem (Matching or Sub-

circuit Identification) by identifying possible outputs of modules in the target circuit

and attempting to match those with outputs of library modules. This ensures that

the matching is done between smaller circuits with only one output, which simplifies

each individual matching test considerably, though it requires a greater number of

equivalence tests because each output must be matched.

The approach to the Module Identification Problem described in this thesis per-

44

forms matching between full subcircuits with multiple inputs and outputs. Candidate

Subcircuit Enumeration (Chapter 3) concentrates on reducing the complexity of the

first step (Candidate Enumeration). By combining these improvements to each of

the Module Identification steps, a powerful tool for module identification may be

developed.

2.3.2 FINES

FINES (Functional INformation Extraction System) [92] is a prototype system de-

signed to extract logic functions from combinational systems for the purpose of de-

sign verification and developing functional simulation models and test patterns. The

eventual goal of the project is to enable automated development of design documents

and manuals for logic circuits.

The interesting feature of FINES is that it focuses on extracting arithmetic func-

tions instead of logic formulas because they are sufficient for the purposes of design

verification and functional simulation and are generally simpler and more compact

than logic formulas.

The goal of FINES is to represent a circuit with a function table, which is an

intermediate form between logic formulas and truth tables. A function table is a

desirable representation because it is compact and is frequently used to describe

commercial integrated circuits in data books, so it is a familiar representation to

many engineers. Binary Decision Diagrams (presented in Section 2.8.1) are used to

create the function table, because they allow well-defined manipulation to determine

45

I

l
i

a reduced BDD, which translates into a smaller but equivalent function table.

FINES operates under the assumption that additional information is available

from an engineer to guide the extraction process. This additional information can

take the form of inputs, outputs, and control data of important modules.

The input to FINES is a logic circuit description, a library of arithmetic functions,

and some additional information. The output is a function table that describes the

functionality of the logic circuit. The additional information is used to determine

the ordering of BDD variables that results in the most compact function table. The

authors determined by experimentation that by ordering the control inputs first, the

resulting ROBDD (and thus the function table) was smaller.

Once the function table has been determined for a logic circuit, the known arith-

metic functions are extracted. FINES compares the BDDs of the library entities

(arithmetic functions) with the function table created for the circuit. The method

of determining correct input correspondences between the library entity BDD and a

possible match BDD is not discussed in [92].

Discussion

The interesting feature of this approach is that it describes the entire target circuit by

a table describing its functionality in logic formulas, then attempts to locate library

entities in this function table so that an algebraic function table may be created.

The function table is a more easily understood representation of a circuit, but its

readability and compactness is dependent upon additional information provided by

an engineer. Without this additional information, the function table is equivalent to

46

a truth table, which would be quite large for circuits with realistic functionality.

A limitation of this system is that it is designed to locate only arithmetic functions.

However, this approach can be easily extended by expanding the library to contain

more complex modules. The real difficulty with FINES is that the entire circuit

must be transformed into a BDD, which can quickly become prohibitively large. This

requirement severely limits the size of circuits to which FINES may be applied.

2.3.3 Hybrid Module Identification

Hansen, Yalcin and Hayes [53] describe the reverse engineering of several of the

ISCAS-85 benchmark circuits to illustrate a hybrid module identification technique

as well as the hierarchical nature of the ISCAS benchmarks.

The technique applied in this case study uses many different module identification

techniques to identify all meaningful modules in the target circuit. These techniques

are as follows:

0 Library modules. Location of known library modules, such as multiplexors,

decoders and adders. These modules can be found in integrated circuit manu-

facturers data books and common cell libraries.

0 Repeated modules. Multiple instances of a subcircuit (with or without identified

functionality) may occur in the target circuit. These repeated elements are

most common in datapath circuits, and are the focus of regularity extraction

techniques (discussed in Section 2.4.1.

0 Expected global structures. After identifying several modules, a reverse engineer

47

can use that information as a guide to locate larger modules that may use the

known modules.

0 Computed functions. For small subcircuits (no more than four or five signals),

the logic function may be computed and aid in identification of local modules.

0 Control Functions. Key control Signals may be identified that partition the

functionality of a subcircuit into simpler subcircuits on various control line E

values.

0 Bus structures. After repeated modules have been identified, their outputs may

be grouped together into buses, allowing circuit partitioning based upon that

information.

0 Common names. If names are known for elements in the netlists, elements with

similar or identical names can be grouped together, in hope of sparking further

structural insight.

0 Black boxes. If a group of gates cannot be identified by any of the above

techniques, they may be encapsulated within a black box.

Discussion

This method requires a high-level of engineer input. It does apply a syntactic match-

ing technique to locate the library modules and repeated modules identified by the

engineer. This paper provides an excellent overview of module identification tech-

niques, many of which may be applied by an engineer at any stage of the module

48

identification process to guide an automated system.

A significant drawback to the methodology is that the library module identifica-

tion applies syntactic matching. However, the approach assumes that an engineer is

guiding the entire process, which provides a large degree of flexibility. Once a module

has been identified by any of the methods listed above, it may be placed in the library

so other instances may be identified.

2.4 Application Areas

Although reverse engineering or design recovery is the stated application of Module

Identification in this dissertation, there are several other problems in the digital logic

domain to which this technique may be applied. Three of these applications are

described here. Although the problem description may differ, the underlying focus is

the same. All of these problems can be solved by the location of functional modules

within a circuit netlist.

2.4.1 Regularity Extraction

Circuits are commonly designed to optimize a set of features, such as footprint, perfor-

mance, power consumption, etc. One of the powerful tools available for this optimiza-

tion is regularity extraction [5, 33, 95]. Regularity extraction involves the identification

of templates: gate clusters within the circuit that may re-occur multiple times. By

identifying these templates, designers may be able to redesign the system to exploit

the duplication, rather than replicating the technology many times. In addition, the

49

designers can optimize a template for a specific factor (speed, size, etc), and that op-

timization effort applies to all instances of the template. Thus, regularity extraction

can improve the efficiency of the layout as well as reduce the necessary design effort.

The process of regularity extraction can be described by three steps:

1. Template Library Identification: Identify a set of templates, the template library.

Many of the techniques currently available assume that the template library

was designed and provided by engineers [96]. Several techniques provide a

template library identification step [33]. Essentially, this problem involves the

enumeration of subcircuit equivalence classes under isomorphism. However,

due to the potentially exponential number of subcircuit equivalence classes,

restrictions are placed on the type of subcircuit that qualifies as a template.

For instance, one might only consider subcircuits that occur more than once

within the circuit, or subcircuits with only one output, or subcircuits that are

not subcircuits of another template.

2. Template Location: Locate all instances of each of the templates.

Using the templates provided by Step 1, locate all instances of each template.

This problem is equivalent to the subgraph isomorphism problem. The identi-

fication of the subcircuits for comparison to the templates is accomplished by

applying clustering methods [96] or by a syntactic matching technique [33].

3. Determine Template Cover. Position templates to cover circuit.

The goal of this step is to identify the templates that cover the largest portion of

the circuit. The problem of determining the optimal cover is difficult, so many

50

regularity extraction techniques rely on designer input to facilitate the process.

Common heuristics used are Largest-Fit—First, in which the largest templates

are applied first, then smaller templates are applied to cover the remaining area,

and Most~Frequent-Fit-First, in which the template with the largest number of

instances is applied first. The remaining logic components comprise a module

that must be custom designed.

Relation to Module Identification Problem

This problem is directly related to the Module Identification Problem, except that

regularity extraction is commonly performed to locate syntactic matches. There are

many techniques that can be used to locate these syntactic matches that are more

efficient for this purpose than the technique presented in this dissertation.

However, the generation of the template library and identification of isomorphisms

could be performed by the techniques presented in this thesis. Regularity extraction

methods require that the template subcircuit occur at least once, and in fact attempt

to locate the templates with the most occurrences in the graph. This count can easily

be maintained while the structural equivalence classes (Chapter 4), which represent

templates, are developed by Candidate Subcircuit Enumeration (Chapter 3). The

result would be an exhaustive listing of the templates in the circuit, as well as a

count and identification of their instances, which could then be used as an input to

the template covering step.

51

2.4.2 Formal Verification

An important step in circuit synthesis is design verification. Once the circuit has

been implemented from its specifications, it is necessary to prove that the intended

functionality was correctly realized. It is common for the verification process to

consume 70% of the design time [2].

In the past, simulation has provided the basis of design verification for digital

circuits [44]. Due to increasing circuit complexity, performing extensive simulation

tests of the implementation is no longer a reasonable approach. Exhaustive simulation

of a design requires a test set that represents all possible inputs to a system along

with expected outputs. This verification technique is infeasible for most circuits, so

determining a set of input vectors to be tested is a possible approach, but may leave

some input vectors untested so cannot guarantee equivalence.

Consequently, many current verification strategies take advantage of formal veri-

fication methods [61]. By applying formal verification to the designs, it is no longer

necessary to exhaustively test all input vectors because the implementation can be

proved to be correct for all possibilities.

In a survey of current formal verification methods for combinational circuits, Jain

et al [61] describe the available approaches as belonging to either functional or struc-

tural approaches to verification:

0 functional: Circuits are represented by a functional canonical form and are

considered to be equivalent if their canonical forms are equivalent. Lai, Pedry,

and Sastry [74] use BDDs, which are a very common canonical representation

52

in verification, to represent the circuits to be compared.

0 structural: Key equivalent vertices are located within the Boolean network ex-

tracted from the implementation and in the Boolean network representing the

original design. These starting points are used to simplify and focus the equiva-

lence checking process. The Gemini [42] and GeminiII [41] systems both follow

structural approaches to verification.

Pelz and Roettcher [93] and Batra and Cooke [9] both present hierarchical struc-

tural techniques for formal verification that successively match library modules

to higher and higher levels of abstraction. Many structural circuit equivalence

techniques have been derived for transistor-level implementations [60, 100,106].

The two types of formal verification, structural and functional, correlate directly

to the syntactic and semantic reverse engineering techniques identified in this disser-

tation. The design recovery technique applied by SubGemini [91] to identify high-level

modules is based directly on the structural formal verification techniques first used

in Gemini.

Relation to Module Identification Problem

There is one primary difference between formal verification of circuit designs and

reverse engineering of circuits. In formal verification, the modules being matched, the

mapping between devices, and the overall functionality of the circuit are all known a

priori or can be easily derived.

The equivalence checking process can be efl'ectively guided with this information.

53

In addition, the correspondences between input and output variables are generally

available (unlike reverse engineering), which simplifies the semantic comparison pro-

cess. Therefore, formal verification of circuits is a much simpler task than reverse

engineering an unknown device.

The solution to the Module Identification Problem presented in this thesis is

similar to the functional approaches to logic verification. However, formal verification,

because it is working with two essentially known circuits, does not need to perform the

first step of the Module Identification Problem, Candidate Subcircuit Enumeration.

Therefore, the unique enumeration of subgraphs is not a technique that should be

applied within formal verification. However, the structural identifier presented in

Chapter 4 could prove very useful within structural verification techniques for proving

structural equivalence.

2.4.3 Technology Mapping

After the design for a new digital device is complete, it is transformed into a tech-

nology independent logic description and optimized. That specification is commonly

stored as a Boolean network. The next step in the design process is to identify logical

modules (standard cells) that provide the best cover (based on design goals such as

footprint, power, and speed) of the functionality represented by the Boolean network.

This step is called technology mapping.

Technology mapping is a particularly important step in the design of a circuit

because the quality of the design is greatly afl'ected by the choice of cells. The cell

54

selection can optimize the realized circuit in many ways, including area, speed, and

power.

There are two steps inherent in technology mapping:

0 Step 1 - matching: locating logical modules that perform the necessary func-

tionality.

0 Step 2 - covering: identifying an optimal cover of the Boolean network with the

logical modules.

The matching step in technology mapping has typically been handled by Boolean

matching [115], although pattern matching of logic functions has also been applied

[81]. Many older techniques used tree matching, restricting matched modules to those

with only one output [91].

A typical technique for solving the technology mapping problem is to represent

the logic function to be performed in a canonical form, such as NAND2 and NOTI

gates exclusively. The cells are also represented by a canonical form, and the goal is

to determine an optimized cover of the canonical function graph with the canonical

primitive cells.

Tree covering approaches are capable of operating in linear time when both the

target graph and the subject graph are trees, by applying dynamic program tech-

niques. When the functions are not restricted to representation by trees, directed

acyclic graph covering techniques [71] may be applied.

Wu, Chen, and Acken present an interesting alternative to NAND2-NOTI canon-

ical form that involves manipulation of a function’s truth table to develop an input

55

ordering that permits a canonical description [115]. This approach, although designed

for application to single-output functions, has possible applications to multiple-output

functions as well.

Relation to Module Identification Problem

Technology mapping involves determining an optimal cell cover of an optimized logic

function. The cells available are generally small (20 logic gates) and have only

one output. This simplicity allow the application of more focused techniques to

be applied to solve technology mapping problems. The matching applied within

the Module Identification Problem must be able to determine equivalence between

complex modules with multiple inputs and outputs.

2.5 Candidate Enumeration

The first part of the Module Identification Problem, Candidate Subcircuit Enumera-

tion, can be approached in several ways. The first method involves partitioning the

netlist into the candidate subcircuits. This approach to subcircuit enumeration and

details of some research in this area are discussed in Section 2.5.1. The other common

approach is to build clusters of vertices. The details of netlist clustering and some

related approaches are given in Section 2.5.2.

56

2.5.1 Partitioning

Many graph partitioning algorithms have been modified specifically to operate on

circuit netlists [3]. The goal of these general algorithms is typically to divide a sys-

tem Specification into clusters such that the number of inter—cluster connections is

minimized for use in circuit board layout design. This section will discuss several

partitioning techniques that have been applied within module identification to iden-

tify candidate subcircuits.

Although they appear similar, there are several factors which distinguish the Mod-

ule Identification Problem from the partitioning problem. Partitioning implies that

the clusters are disjoint, but that assumption cannot be made for the Module Identi-

fication Problem. Functionality may be shared among several modules, so they may

overlap and share gates. Relying on a strict partitioning algorithm could result in

unidentified modules.

In solving the Module Identification Problem, it is necessary to identify all sub-

circuits that are semantically identical to the high-level module. An approximate

partition will not suflice. If a NOT gate is appended to the end of a subcircuit that is

equivalent to a functional module, the function that that subcircuit performs is dras-

tically altered. The subcircuit will no longer be able to be identified as the functional

module.

Several approaches to the Module Identification Problem use partitioning to iden-

tify candidate subcircuits for comparison. Details on the heuristics and techniques

used to guide the partitioning are described in the following sections.

57

Partitioning Heuristics

The design recovery approach by Chisholm et al (Section 2.3) [32] uses three heuristics

to guide the partitioning of the circuit into candidate subcircuits:

0 Logic signal analysis. Two devices that have equivalent signals at their control

ports are more likely to be part of the same module. Clock trees of flip—flops

are developed, and the constituent gates are correlated to determine whether

or not they are likely to belong to the same module.

0 Relative position analysis. Devices that lie close to each other are more likely

to be part of the same module. Designer input can also be used to define an

area of the netlist that looks (to the human eye) like it may be a module.

0 Graph analysis. Identification of articulation points, path length between ver-

tices, and cycles all provide hints regarding functional modules. For example,

two vertices separated by only a few edges are more likely to be a part of a

module than if they were separated by hundreds of edges.

Key Vertex Location

The SubGemini [91] algorithm identifies a key vertex in the library module, then

locates all of the instances of that vertex within the circuit. This set of vertices

is called the candidate vector, and each represents a possible partition of the circuit.

Each of the vertices in the candidate vector are then investigated to determine whether

or not they may match the key vertex.

58

2.5.2 Subgraph Clustering

The goal of netlist clustering in this application is to locate the subcircuits of the gate-

level netlist that may be equivalent to library modules. Netlist clustering has been

applied to many areas of digital design, particularly module placement in physical

design [59, 65, 98].

Typically, the goal of clustering a netlist is to group cells into disjoint clusters.

By clustering a netlist, the complexity of the netlist can be reduced, thus improving

the execution time of partitioning and searching algorithms.

The two basic approaches to clustering are top—down and bottom-up. Top-down

approaches recursively partition the netlist into subclusters by considering global

information about the netlist. When applied to the Module Identification Problem,

this paradigm is similar to the partitioning discussed in Section 2.5.1. Top-down

approaches, although they are unlikely to make bad decisions, are computationally

complex and are seldom applied alone.

The bottom-up approach is more similar to the candidate subcircuit enumeration

research presented in this dissertation. Initially, each cell (gate) is assigned to a trivial

cluster. The clusters are then merged together by considering local information about

neighboring clusters, until a satisfactory clustering of the netlist has been achieved

[4, 52, 65, 96, 98].

59

Discussion

Standard clustering approaches develop clusters that are disjoint. In module identi-

fication, it is possible for the modules to share gates, a situation that often occurs

when the circuit is optimized. The Candidate Subcircuit Enumeration approach pre-

sented in Chapter 3 will produce all gate clusters, so that overlapping modules may

be identified.

Many clustering concepts may be applied to subcircuit enumeration, such as

heuristics to determine whether or not a gate may be added to a subcircuit. If a

gate is physically located “far” from the current cluster, it is unlikely that it is part

of the same functional module. If a gate is connected to a subcircuit by a single wire,

it is less likely (though obviously not impossible) that it is a part of the module.

These heuristics may be added to the implementation of the general solution to the

candidate subcircuit enumeration problem to improve execution time in real-world

applications.

Similarly, clustering approaches may be improved by applying the vertex indexing

technique and rules described in Chapter 3 to avoid duplication of gate clusters.

2.6 Circuit Representations for Structural Com-

parison

There are several approaches described in the literature that develop a label for the

circuit or graph and then compare these labels via string matching [13,58]. This

60

approach was first applied to representing the molecular structure of chemical com-

pounds, which are very similar to circuit graphs in that each vertex has additional

information (atom type, gate type) that may be used to simplify equivalence com-

parisons.

This technique has several advantages. String comparison is much more efficient

than comparing graphs vertex by vertex, and strings serve as an excellent hash index,

allowing isomorphic graphs to be quickly located. The disadvantage of this technique

is that it is often difficult to develop the label itself. However, for module identification

via structural isomorphism, circuit labeling can be very useful, because the labels for

the circuits in the library may be calculated before execution begins.

A circuit labeling technique, applying a vertex weighting approach similar to that

described in Section 2.6.1 is applied in Chapter 4 to partition the subgraphs into

equivalence classes.

2.6.1 Structural Labeling

Benecke, Kerber, and Laue present a technique for canonically numbering chemical

molecules to facilitate searches in an on—line chemical identification system (MolGen

[51]) [11]. This approach considers structural properties of the molecules to develop

classes to define the order in which a nested structure can be built to describe the

molecule.

This technique does not elegantly perform canonical element ordering. If two

elements cannot be simply ordered, a backtracking procedure is required to evaluate

61

the resulting nested structures to determine the correct canonical one. Developing a

technique for canonical element ordering is possible, though computationally costly.

2.6.2 K-Formulas

A K-formula is a representation of directed graphs that is defined by a set of linear

formulas. This string preserves the structure of the graph, and the graph may be

recreated from its K-formula representation [10].

K-formulas were first proposed by Krider [69] and further explored by Berztiss

[13,14], and have been applied to the problem of graph isomorphism [14]. The K-

formulas for two graphs may be evaluated for equivalence by attempting to determine

a matching between the vertices in the two graphs.

K-formulas are based on representing arcs of the directed graphs as the K-operator

(‘*’) followed by the arc’s endpoints. An arc connecting vertex u to vertex v is

represented as *uv. A K-formula for a vertex v is written with a K-operator for

each arc, then the vertex name, followed by the endpoints of all arcs leaving v. The

K—formula for a vertex u that has neighbors u, x, and y is * * *vuxy. The symbols

for the endpoints of the arcs may be written in any order, so v's K-formula may also

be written * * *vxyu or * * *vyux, for example.

The K-formula for a directed graph may be derived by combining the formulas

of the vertices. Vertex labels for endpoints in the K-formula for the vertex u may

be replaced by the endpoint’s K-formula. Details on this substitution process are

available in [13].

62

The problem with using K—formulas to represent directed graphs is that there may

be more than one K-formula for a single graph, because the K-formula is dependent on

the order in which the graph was traversed during the K—formula creation. Multiple

K-formulas for a single graph structure means that determining isomorphism of two

graphs is a complicated process, involving determining the correct matching between

vertices in the graphs.

The technique presented in Chapter 4 provides a method of ordering the vertices of

a directed graph to allow a particular set of K-formulas to be created for a structure.

Thus, each graph structure will result in only a few K-formulas, allowing more efficient

comparison for determining graph isomorphism results.

2.6.3 Circuit Matrix Manipulation

Huang and Overhauser [58] present a circuit labeling technique that uses manipulation

of a circuit matrix to develop a unique circuit label for each subcircuit structure. This

technique was designed to operate on bipolar junction transistors, which have three

different vertex terminals. A circuit matrix is an adjacency matrix for the circuit

graph that also represents the type of terminal connecting the vertices.

Once the circuit matrix is built, it is arranged via partitioning to develop a final

fully partitioned matrix. This matrix defines a unique ordering of the subcircuit

vertices and elements. The partitioning involves four steps:

1. Partition by vertex size of partitioning groups.

2. Partition by types of vertices and elements.

63

3. Partition by connection numbers in the matrix.

4. Arrange the unpartitioned portion to determine maximum matrix code.

The matrix code is generated by concatenating the integer value of each row in

the partitioned circuit matrix. The value of a row is the binary number created when

each element in the row is considered to be 0 if the element value is 0 and 1 otherwise.

The circuit code itself is generated by concatenating the matrix code, the numbers

in the matrix, the ordered list of element types, and the ordered list of vertex types.

This code uniquely defines each subcircuit, allowing comparison of the codes, rather

than the subcircuits. This technique is designed to operate on graph vertices with

exactly three neighbors (transistors). The research presented in Chapter 4 derives a

similar result for circuits containing vertices with an arbitrary number of neighbors.

2.7 Syntactic Matching

The problem of locating gate clusters syntactically equivalent to a given circuit has

been addressed in several different domains, including reverse engineering [17,72,

91], technology mapping [68,94], regularity extraction [33, 87, 88,96], and validation

[41]. The problem itself is related to the classic graph theoretic problem, subgraph

isomorphism, which is known to be NP-complete [50].

There are two structural isomorphism problems that play a part in this research.

0 graph isomorphism: Given two graphs G1 and G2, determine whether or not

they are structurally identical. In the research presented in this dissertation,

64

this problem arises when the subcircuits are divided into equivalence classes.

0 subgraph isomorphism: Given two graphs G1 and G2, determine whether or

not there is a subgraph within G2 that is structurally identical to G1. This

problem is equivalent to locating a subcircuit within a circuit that is structurally

equivalent to a template subcircuit (structural matching).

Both the graph isomorphism and subgraph isomorphism problems also have ap-

plications in other fields, most notably pattern recognition [22, 29, 83] and chemical

analysis [12,40,104, 109]. Accordingly, much effort has been expended to develop

eflicient techniques for solving these diflicult problems.

Although graph and subgraph isomorphism are difficult problems, their applica-

tion in other domains is frequently simplified by additional information. In digital

circuits, vertices represent logic devices with specific functionality, which can be used

to facilitate these techniques.

2.7.1 Graph Isomorphism

“Two finite graphs are isomorphic if there exists a bijective map between

the vertex sets of the two graphs that preserves adjacency.” [57]

Graph isomorphism has been a standing problem for many years because it holds

interest both for the theory and applications communities. This problem has not

been proven to be NP-Complete, nor has it been proven not NP-Complete [7,57].

Assuming that P 75 NP, it can be considered to be NP — intermediate [57], along

65

with factorization of integers and computing discrete logarithms [7]. This ambigu-

ous status appeals to theoreticians. Graph isomorphism has been solved for many

restricted types of graphs, such as planar graphs, which are linear in the graph size,

and trivalent graphs, which require 0(n4) steps to test isomorphism [57].

There are three primary approaches to graph isomorphism represented in the

current literature: topological, group-theoretic, and algorithmic.

o Topological Approach: The topological approach involves embedding the graphs

to be compared onto a surface of minimum genus 1. Each graph is drawn onto

a surface without any edges crossing. For example, a sphere allows only planar

graphs to be embedded onto it. For non-planar graph, a surface with more

Sides is necessary, such as a torus, so all edges may be drawn without crossing.

Once the graphs are embedded, they may be dissected into planar components,

and those planar components may be compared in time linear to the number of

vertices in one of the graphs.

However, the problem with this approach is that determining the genus of a

graph is a difficult problem in itself, as is the dissection into planar components

[57].

0 Group- Theoretic Approach: The group theoretic approach involves determining

the group of all automorphisms for the graph. An automorphism is any mapping

or function that, when applied to a graph G, produces an identical graph G’.

1A surface is a sphere in which a certain (finite) number of holes have been inserted. Equivalently,

a surface is a sphere on which a number of handles have been placed. The number of holes or handles

is called the genus of the surface. The surface of genus 0 is, therefore, the sphere (or plane) [28].

66

By determining the automorphisms of the two graphs to be compared, the

automorphism groups may instead be compared.

The difficulty with group-theoretic approaches is that there is large overhead

associated with them and therefore they usually have a large constant factor

within their complexity [83].

o Algorithmic Approach: A more practically oriented approach to graph and sub-

graph isomorphism is the algorithmic approach, in which algorithms are de-

signed to investigate the search space, generally applying depth first search and

backtracking techniques.

There are several approaches presented in the literature to solve the graph isomor-

phism problem within the specific domain of circuit netlists, including partitioning,

and canonical circuit labeling (discussed in Section 2.6). Chapter 4 presents a solution

to the circuit isomorphism problem that uses canonical structural circuit identifiers.

Partitioning

The circuit validation approaches SubGemini [91], Gemini [42] and GeminiII [41] use

a partitioning approach to solve the circuit isomorphism problem.

Given two circuits C1 and C2, the goal is to prove them isomorphic or non-

isomorphic. The two circuits are partitioned by vertex invariants such as gate type

and degree with the intention of develOping partitions that contain equivalent ver-

tices. Once an initial partitioning has been accomplished, the partitions for each

vertex are refined based on information about neighboring vertices. If the circuits are

67

isomorphic, the partitions developed through this partitioning will be identical.

The partitioning in the Gemini algorithms is done by applying a label to each

vertex that classifies the vertex into a partition. Initially, the label represents the

vertex invariants (device type, net degree). For example, a likely partition after the

first partitioning of a gate-level netlist would contain all NAND gates that have 2

inputs and 1 output. As the partitions are refined, the vertices are relabeled with the

previous vertex label and with the labels of the neighboring vertices. An isomorphism

has been found when a matching of singleton partitions has been identified for the

circuits.

2.7.2 Subgraph Isomorphism

Subgraph isomorphism is an NP-Complete problem [7, 50] consisting of two subprob-

lems: locating subgraphs that may be equivalent to the pattern subgraph and de-

termining structural equivalence. As with graph isomorphism, the additional infor-

mation obtained from the circuit graph can be used to derive practical solutions to

locating isomorphic subgraphs.

Backtracking

A successful algorithm for determining subgraph isomorphism was proposed by Ull-

man [110], and is still considered to be one of the most efficient approaches to the

problem. It improved upon the original backtracking procedure for graph isomor-

phism presented by Corneil and Gotleib [35]. The algorithm is based on the fact

that subgraph isomorphism may be determined by applying a brute force enumera-

68

tion algorithm to perform a tree search simultaneously on the pattern subgraph and

the target graph, in the same way as [14].

The difficulty with this technique, in general, is the large number of vertices that

must be searched to identify an isomorphism. Ullman prunes the number of vertices

that must be considered by applying a refinement step after each vertex has been

added to the potentially isomorphic subgraph. This step eliminates successor nodes

that will not lead to discovery of an isomorphism, improving the average execution

time to a time proportional to n3, where n is the number of vertices in the pattern

graph.

Decision Trees for Multiple Pattern Graphs

Bunke and Messmer [83] present an approach to subgraph isomorphism that can

simultaneously search for multiple pattern graphs within the target graphs. Multiple

pattern graphs arise in many applications, including syntactic matching for gate- to

register- level transformation, so this technique has practical appeal.

The technique involves the generation of all permutations of the adjacency matrix

of a pattern graph, and then a decision tree representing these permutations is built.

The adjacency matrix permutations for any number of pattern graphs may be added

to the decision tree. The decision tree is applied to the adjacency matrix of the target

graph to identify all pattern graphs within.

69

Multi—place Graph Weighting

Within the field of verification, Luellau, Hoepken, and Barke [76] present BLEX,

a tool that employs syntactic matching to identify components in a transistor-level

netlist. As defined in this context, multi—place graphs have an additional vertex type:

multi—nets. Edges represent device pins (base, collector, emitter, cathode, anode) and

are distinguishable as such. Multi-nets represent intersections between edges in the

graph.

Each edge in the graph is weighted with a primary number representing its pin

type. To obtain the weight of a vertex or multi—net, the weights of its adjacent edges

are multiplied together. A weighted incidence matrix can be built to Show adjacency

of multi-net vertices and device vertices. The values in the matrix product of all edges

connecting the device with the multi-net. Two circuits are identical if their weighted

incidence matrices are identical.

It would be possible to interchange rows and columns of the adjacency matrix

until they proved to be identical or all possibilities had been tested. However, with

n vertices and m multi-nets, there are n! x m! permutations to test. Instead, BLEX

partitions the incidence matrix by sorting devices and multi-nets by their weights,

and then gradually matching the circuits by locating a starting vertex and growing

from there. It matches pins and vertices adjacent to the subcircuit and gradually

exploring the matrix until a match has been found.

70

2.7.3 Discussion

The disadvantage of all syntactic techniques is that they can identify only the set of

specific implementations of a functional component that are contained in its library.

Nonstandard or intentionally obfuscated implementations will never be recognized.

Furthermore, any optimization that modifies the implementation of the entity (such

as optimizations for don’t care conditions) renders the entity unfit for recognition by

structural techniques. Structural matching cannot reliably recognize all functional

components that exist in a circuit.

Although syntactic techniques are useful in applications such as converting a

transistor-level netlist into a gate-level netlist, techniques that rely on exact struc-

tural matching have limited application to higher levels of design, because high-level

functional components generally have many valid implementations. The execution

and memory costs associated with maintaining a library of many implementations

for each module are not reasonable, so this method is not general enough to reliably

solve the Module Identification problem.

Any solution to the general Module Identification Problem should include the use

of structural matching to recognize standard implementations of functional compo-

nents within the circuit. When the technique of syntactic matching is applied first,

the effective complexity of a circuit can be significantly reduced before more complex

approaches are applied.

71

2.8 Semantic Matching

In contrast to syntactic matching, semantic matching bases equivalence on function-

ality rather than structure. Two subcircuits may have completely different structures,

yet perform identical functions. This is a powerful matching technique.

A general solution to the Subcircuit Identification Problem requires the identifica-

tion of high-level components that are more complex then those dealt with in Boolean

matching but that lack the input/output correspondences between the logic design

and the library components that verification techniques require. Because the func-

tionality of the high-level component may be represented in any number of structural

forms, it is necessary to identify the subcircuit by proving semantic equivalence [43].

Semantic matching provides a structurally independent solution to the problem

of identifying meaningful subcircuits. By using a semantic technique, it is possible to

identify subcircuits that are equivalent to a high-level component in many situations

for which syntactic techniques fail. The structural changes imposed by new imple-

mentations, design optimizations for area and power, and many other complicating

factors cause purely syntactic techniques to fail, but they are amenable to semantic

matching techniques. Details about the semantic matching approach are presented

in [36, 38].

2.8.1 Functional Canonical Form

Canonical representation is a technique that ensures that equivalent instances of a

circuit are represented identically. A canonical semantic representation of a circuit

72

describes the circuit’s functionality in a set of logical formulas. Any functionally

equivalent implementation of that circuit produces an identical set of logical formulas.

Semantic matching can be reduced to a two-step algorithm if canonical represen-

tations of the circuits are used:

0 Convert each of the circuits to be compared to a canonical form.

0 Compare the canonical forms of the circuits.

The difficulty, of course, is developing a canonical representation. Binary Decision

Diagrams are the most effective option [32, 115], but they still require that input and

output names of the circuits are matched, which requires trying all permutations of

the input and output ordering.

Binary Decision Diagrams

Since their initial presentation in 1986 [19], Binary Decision Diagrams (BDDS) have

become a widely used representation of Boolean functions. The advantage of BDDS is

that they can be manipulated and generated by efficient graph algorithms. A variant

of BDDS, Reduced Ordered Binary Decision Diagrams (ROBDDS) [20] can represent

Boolean functions in canonical form. A further extension of ROBDDS, partitioned

ROBDDS, can be exponentially more compact than ROBBDS and are more easily

manipulated [85, 86].

BDDS represent functions as directed, acyclic graphs, in which each nonterminal

vertex is labeled by a function variable. Each vertex has two outgoing edges, one

corresponding to the case in which the variable evaluates to 0 (generally represented

73

by a dashed line), the other corresponding to the case in which the variable evaluates

to 1 (generally represented by a solid line). The terminal vertices in the graph are

labeled either 0 or 1, representing the value of the entire function. For any variable

assignment, the function value can be determined by following a path through the

graph, following the appropriate branch for the value of the variable.

Each decision variable must appear at most once on a path from the root vertex

to a terminal vertex. The order in which the variables are visited is determined by a

total ordering on the variables. When this total ordering is applied, a BDD becomes

an ordered binary decision diagram (OBDD). By eliminating and sharing isomorphic

subgraphs within the OBDD, the BDD may be reduced to a compact form, a reduced

ordered binary decision diagram (ROBDD), and can present a canonical form of the

function.

The difficulty in deriving this canonical form is the ordering of the decision vari—

ables. Two identical functions will present two different ROBDDs if their variables are

given different orderings. So, when attempting to use this canonical representation

to compare the functionality of two circuits, it is necessary to determine the correct

variable ordering for each so that the OBDD representations of identical circuits are

also identical.

ROBDDS are a valuable tool for function comparison. The representation is com-

pact for the majority of functions that appear in logic circuits, and manipulation and

comparison is simple and fast. The focus, therefore, must be on reducing the variable

ordering permutations that must be tested to determine equivalence.

The difficulty when attempting to determine equivalence of two ROBDDS is that

74

the ordering of the variables can result in vastly different ROBDDS. To reduce the

Situations in which all ordering permutations must be tested, it is useful to imme-

diately disregard functions that cannot be equivalent. This non-equivalence can be

determined by deriving and comparing Boolean signatures [36,79].

Boolean Signatures

A Signature of a Boolean function is a representation of a property of the function [36].

Signature functions are applied to a function and return a characteristic signature for

that function. The signature function must be dependent on just the behavior of the

function; variable orders and labels may not be considered by the signature function.

Functions with equivalent signatures are said to belong to the same signature

class. For two functions to be equivalent, they must share a signature class. Typical

signature functions are designed to be very quick to return signatures, so they may

be efficiently applied to reduce the possible correspondences that must be tested.

2.8.2 Cones of Logic

Rather than performing multiple-output semantic matching, outputs may be consid-

ered individually by building a logic cone for each output of a subcircuit [32]. This

technique has also been applied in partitioning techniques to improve the mapping of

partitions to FPGAS [18].

A logic cone is built by starting at one of the outputs of the subcircuit and adding

gates that are inputs to gates already within the cone until the primary inputs to the

subcircuit are reached. This cone will contain all of the gates that contribute to the

75

determination of that output value.

The current technique to solve the Module Identification Problem with logic cones

involves locating a Single output of a known library module (the target output). Logic

cones are built from gates within the circuit. Each of these cones is semantically

compared to the function of the target output.

Expansion stops when the logic cone is semantically equivalent to the function of

the target output or the primary inputs to the circuit have been reached. Once the

target output has been located in the circuit, an attempt is made to expand the cone

to locate the functionality to produce the other outputs of the known module.

The advantage of this technique is that single-output semantic matching is less

intensive than matching with multiple-outputs. The disadvantage is that the number

of matches that must be performed is larger. The candidate subcircuit enumeration

technique presented in Chapter 3 can enumerate just these logic cones, so logic cone

matching can be performed within module identification by providing an appropriate

output functionality library.

2.8.3 Hierarchical Semantic Matching

In an approach to regularity extraction, Chowdhary et al [33] perform tree subgraph

matching. Each tree, or template, is stored as a root node and a set of templates

that represent its children. To view an entire tree, the template for each child may

be expanded.

The technique simultaneously builds a list of templates, and it is against these

76

that the expanding subtrees are matched. The result is a list of logic functions. For

each logic function, there is a list of the subcircuits of the circuit that perform that

function. The details of the logic function matching were not discussed in [33].

The obvious drawback to this technique is that it operates on only a small sub-

set of the subcircuits, subtrees. Subtrees represent single output functions with no

reconvergent fan-in. Some extensions for multiple outputs have been researched, but

the focus is primarily on single-output functions.

2.8.4 Pseudo-Semantic Matching

Methods that fall between the strict definitions of syntactic and semantic matching

are permutation matching and rule-based structure manipulation.

The approaches that have applied permutation matching effectively have oper-

ated exclusively on transistor-level netlists, which have a Simpler structure and fewer

reorganization options than gate-level netlists. For instance, YNCC [100] uses per-

mutation to iteratively gather information about possible bindings until a match can

be located.

A circuit comparison system presented by Takashima et al [106] uses a rule-based

system to identify small subcircuits corresponding to any of the implementations that

occur in the rule base. That subcircuit may then be replaced by a block or element

representing the appropriate module.

There are several systems that perform “functional matching” of components but

rely upon an extensive library and syntactic techniques to perform matching [93], or

77

use rules or permutations to manipulate simple structures until a match is found [100,

106]. These systems are useful and efficient in circuits for which high-level modules are

known or can be easily identified, but they do not perform true semantic matching.

2.8.5 Discussion

The techniques discussed in this section are approaches to performing the most diffi-

cult type of matching: semantic matching. For module identification, it is much more

powerful than syntactic matching because it can locate all instances of a functional

module, regardless of implementation. However, it is a more complex technique,

requiring more computation than syntactic matching. The goal of the research in

this thesis is to reduce the number of applications of semantic matching to make the

Module Identification Problem more tractable.

2.9 Software Reverse Engineering

Unlike in hardware, in which a digital design is synthesized, implemented, and man-

ufactured, then left static until it is replaced, software is often subject to constant

extension and modification. In fact, the majority of effort applied to software devel-

Opment is not in creation and implementation, but in the extension and modification

of existing software systems [112]. This is not surprising, because the reengineering of

software systems is frequently driven by outside influences. As the available technol-

Ogy of digital hardware improves and drives replacement of the underlying computer

systems, the software must be modified to operate on the new platform. The ac-

78

cessibility of software leads to greater user expectations with regard to functionality,

performance, and ease of use.

Legacy systems exist in the software domain as well as the hardware domain, and

their reverse engineering is desirable for the same reasons: complete replacement is

too expensive or infeasible due to complex features and the lack of accurate original

specifications. In some cases, a “wrapper” may be developed that runs on the new

hardware platform, but interfaces with the legacy system on its original platform.

An example of this is developing a front-end client application to allow access to

a mainframe software system. This solution is safe because no change has been

made to the underlying functionality, and can be implemented cheaply and quickly.

The disadvantage is that the system does not take advantage of the performance

improvements gained by the new platform [90].

Support and evolution of systems programmed in older languages like COBOL

are suffering from a lack of knowledgeable software engineers to upgrade, modify, and

troubleshoot these systems. Transforming useful systems that are implemented in

a obsolete language into more current language not only increases the chances that

they can be modified as needs change, but also allows them to be more easily ported

to newer hardware and operating platforms.

A compromise between replacement of the legacy system and continuing to use

obsolete technology is to reengineer the system by extracting and reusing critical por-

tions of the code. In this way, complex business rules, for instance, can be ported

“as is”, without requiring an in-depth understanding of their operation. This tech-

nique of reengineering incorporates functional module identification, also referred to

79

as reusable component recovery [89].

2.9.1 Functional Module Identification

Just as in reverse engineering of hardware, one of the focuses of software reverse

engineering is the identification of logical blocks of code that perform a well-defined

and potential useful piece of functionality. Once these modules have been identified,

they may be reused or redesigned.

Modularization

A functional module identification technique called modularization [80] was devel-

Oped by a team of engineers at Boeing to improve the maintainability of large payroll

systems implemented in COBOL. A large compilation unit, the source, may be bro-

ken up into a collection of smaller units targets, each containing functionally related

subroutines. In effect, this develops an object-oriented realization of the program,

and the targets represent self-contained libraries of subroutines that are more easily

modified and may be easily applied within other systems.

The critical tasks of this modularization process include:

o Splitting: the partitioning of the procedure source into the targets according to

a plan designed by a project leader. After modularization, the source contains

calls to the subroutines in the targets.

0 Linkage determination: the determination of how the targets interact with each

other, as well as the proper handling of their data elements.

80

The splitting step is the most similar to the module identification problem pre-

sented in this thesis. The library modules correspond to the targets defined by the

project leader. The source must be searched to locate potential subroutines and deter-

mine their proper target placement. This functional identification can be determined

by analyzing the control flow graph, call graphs (which represent the subroutine in-

teraction and parameter information), and abstract syntax trees.

Concept Assignment

The concept assignment problem [16] is a formulation of the transformation between

levels of abstraction in software. It is the study of how to abstract away from variables

and keywords to realize a human-level understanding of the software functionality.

The goal is to recognize concepts implemented by the portions of the code and relate

them to each other to understand the system.

Several techniques are combined to develop an approach to this problem. Syntax-

based approaches, which formally consider the structure of the code, are necessary

but not sufficient to perform effective concept recovery. These approaches look for

patterns of features within the code that can be used to form a signature to identify

the function of the code. These approaches may employ a bottom-up approach,

locating elemental concepts and gradually subsuming them within coarser grained

concepts.

The Concept Assignment Problem bears a strong resemblance to the Module Iden-

tification Problem presented in this thesis. It uses a semantic module identification

approach to identify elemental concepts within the code and then abstracts away from

81

the details by identifying larger modules that include those simple concepts.

Formal Methods

Formal methods provide techniques for specifying software by representing the soft-

ware by a well—defined specification language [56]. Inference rules can be applied to

this specification to provide correctness and consistency, and also to extract informa-

tion about the software functionality. By defining and applying formal transforma-

tions to the source code, the code may be transformed into a higher-level description

of the code, hiding the programming details to reveal the intent of the program.

2.9.2 Discussion

The conceptual approach to reverse engineering of software and hardware is very

similar. Both involve the abstraction away from the details (e.g., low-level netlist,

source code) to derive a higher-level understanding of the system. However, the

difficulty of software reverse engineering surpasses hardware engineering due to the

difficulty of accurately representing the concepts implemented in software. Formal

methods may be applied to develop descriptions of the concepts, but the syntax

of software is not as rigidly defined as is that of hardware, which complicates the

reduction and transformation into a syntactic or semantic representation that may

be applied within module identification.

Reverse engineering in both the software and hardware domains applies syntactic

and semantic matching techniques to perform transformation between levels of ab-

straction. Syntactic approaches in software involve parsing of source code to extract

82

patterns for comparison and identification. In hardware, syntactic approaches involve

pattern matching of structures in a netlist representation of the circuit.

However, although the goals and abstract approaches of reverse engineering of

hardware and software reverse engineering are nearly identical, the methods of per-

forming tasks toward these goals must be guided by the environment in which they

are applied. In software, a semantic technique capable of comparing complex software

routines is necessary, possibly by representation in a theoretical framework, exhaus-

tive simulation, or bottom-up functional extraction. Hardware can more easily be

represented by a canonical functional representation, such as ROBDDS or a logical

formula.

Therefore, the focus of reverse engineering in these two fields should concentrate on

solving the problems specific to the domain. This dissertation presents techniques for

approaching the two parts of the Module Identification Problem with regard to hard-

ware: candidate subcircuit enumeration (Chapter 3) and semantic matching (Section

2.8).

2.10 Summary

This chapter has presented background information on reverse engineering and cur-

rent approaches to reverse engineering. In addition, an overview was presented of

areas in which the research presented here may also be applied. Each of these appli-

cation areas can be reduced to the same problem: the Module Identification Problem.

Due to the disparity of the application areas, many different approaches have been

83

proposed for the solution of this problem. Those techniques have been categorized

and presented, along with their relation to the solutions proposed in this dissertation.

The next chapter, Chapter 3, presents a solution to the first half of the Module

Identification Problem: Candidate Subcircuit Enumeration.

84

Chapter 3

Candidate Subcircuit Enumeration

Raising the level of abstraction of a circuit specification by identifying all of the high-

level modules within the circuit requires that all of the potential high—level modules

within the circuit are identified. This is a challenging task because a section of the

circuit that functionally corresponds to a library module will not necessarily appear

to be similar in structure, as measured by size, order, gate types, connectivity ratio,

or physical layout. Additionally, a cluster of gates that is functionally “close to” being

equivalent to a library module may not exhibit any traits that would indicate this

near-equivalence. This lack of a relation between structural features and functionality

impedes any attempt to guide the search for library modules with simple heuristics.

A straightforward approach to the Module Identification Problem enumerates all

of the gate clusters within the circuit, then checks each for functional equivalence

to known functional modules. This chapter presents a technique to enumerate all

interesting gate clusters to ensure that all library modules can be located within the

target circuit. Interesting gate clusters are those that perform a well-defined function;

85

enumerating only these gate clusters reduces the number of clusters to be enumerated.

The netlist of the target circuit can be represented by a directed graph; subgraphs

of this graph represent the gate clusters. Each vertex represents a gate, and each arc

represents a wire. The gate clusters are represented by induced, connected, subgraphs.

Within the context of the Module Identification Problem, each of the gates within a

gate cluster must be reachable from every other gate. Put simply, the gate cluster

is represented by a connected subgraph. This is a reasonable restriction on the gate

clusters to be enumerated because each library module is represented by a single

subcircuit, not several disjoint subcircuits (discussed in Section 1.4). Further, the

subgraphs are induced because all of the arcs connecting the vertices in a subgraph

are also considered to be included within that subgraph. All subgraphs referred to

within this thesis are assumed to be induced and connected.

In a completely connected graph 1 of order n, there are n cliques 2 of order 1, C3

cliques of order 2, C; cliques of order 3, and so on. Therefore, the formula 2;, C,” =

2" can be derived to describe the number of (not necessarily disjoint) subgraphs, where

'n. is the order of the graph. Digital circuits are seldom (if ever) completely connected,

so the number of subgraphs in a circuit graph will be significantly smaller. However,

the above formula does give an upper bound and succinctly characterizes the enormity

of this problem.

1a graph in which there is an edge from every vertex to every other vertex

23. subgraph in which there is an edge from every vertex to every other vertex

86

3.0.1 Uniqueness

When developing subgraphs for enumeration, it is possible to derive a single subgraph

in several different ways, depending on the order in which the vertices are grouped

together. This results in unnecessary duplication of effort. When applied within

the Module Identification Problem, not only is extraneous computation expended

to produce duplicate subgraphs, but also in unnecessary applications of Subcircuit

Identification or the detection and pruning of duplicate subgraphs. The enumeration

technique presented in this chapter guarantees that each subgraph is produced exactly

ODCB.

3.0.2 Focused Enumeration

Subcircuits

Not all of the subgraphs represent interesting gate clusters within the target circuit.

It is important that the subgraph represent a functional subcircuit of the circuit. No

gate in the subcircuit may be accompanied by some but not all of its inputs; that

Situation leaves the functionality of the gate undefined. For example, a 2-input AND

gate in a subcircuit must be accompanied in the subcircuit by both of its inputs.

A subgraph containing a gate with undefined functionality does not have functional

meaning, so the subgraph does not represent a meaningful subcircuit.

In a subcircuit, any vertex with an input are connecting it to another vertex

in the subcircuit may not have an input arc connecting it to a vertex outside of

the subcircuit. In graph theory terminology, no vertex in the subgraph may be

87

accompanied in the subgraph by a proper subset of its parents.

Contained Subcircuits

To further optimize performance of Module Identification, a subset of the subcircuits,

contained subcircuits, may be enumerated. A contained subcircuit is the most likely

subgraph type to match a library module because its logic is entirely self-contained.

Circuit designers often use a library of modules, connecting them together with glue

logic to create the final circuit. Each of the modules in a circuit designed in this

manner will be represented by a contained subcircuit.

For example, each of the 1-bit full adders that comprise the 2—bit full adder in

Figure 1.1 on page 16 are contained. No logic is shared with other modules. One of

the outputs from the first adder is an input to the second adder, but the two adders

themselves are disjoint.

In a contained subcircuit, any vertex with an are that exits the subcircuit may

not have another arc that is an input to a vertex in the subcircuit. All outputs

from a contained subcircuit are primary outputs of that subcircuit. In graph theory

terminology, no vertex in the subgraph may be accompanied in the subgraph by a

proper subset of its children vertices.

It is not sufficient to enumerate only the contained subcircuits of the target cir-

cuit, but contained subcircuit enumeration can be performed much more quickly than

subcircuit enumeration. Therefore, it can be applied as a preliminary module identi-

fication step to reduce the complexity of the target circuit, thus improving the overall

performance of module identification.

88

Candidate Subcircuits

With regard to the Module Identification Problem, a candidate subcircuit may refer

to either a subcircuit or a contained subcircuit, depending on the application. The

candidate subcircuits enumerated by the technique presented in this chapter must be

subcircuits. However, by applying an additional restriction, only contained subcir-

cuits may be enumerated as candidate subcircuits. Enumerating and identifying only

the contained subcircuits is useful as an initial technique for reducing the complexity

of the target circuit. For a more detailed description of subcircuits and contained

subcircuits, see Section 3.1.1.

3.0.3 Overview of Technique

The naive solution to candidate subcircuit enumeration enumerates all subgraphs

of the graph representing the circuit, then simply discard all duplicate subgraphs

and subgraphs that are not subcircuits. A more efficient technique enumerates each

Subgraph exactly once. However, the number of subgraphs in an arbitrary circuit

can be prohibitive (0(2") where n is the number of primitive devices in the circuit

netlist), so a more restrictive technique is necessary. The focused enumeration algo-

rithm presented and discussed in Section 3.2.3 generates unique candidate subcircuits

only, eliminating excess computation effort spent on the enumeration of unnecessary

subgraphs. This algorithm also enumerates each candidate subcircuit exactly once,

guaranteeing that all interesting subcircuits are available for examination while wast-

ing as little effort as possible.

89

Although the effort to generate only the subcircuits or contained subcircuits re-

quires some overhead, the benefit of solely enumerating these subsets far outweighs

this cost. For example, there are 98,922 unique subgraphs in a 3-bit adder, but only

522 subcircuits, and only 66 contained subcircuits. Only the subcircuits need to be

considered for equivalence to a known module during module identification, so focus-

ing the enumeration effort on this class of subgraphs provides significant reduction of

computational effort. The improvement gained by enumerating just these subsets of

the possible subgraphs is presented in Section 3.3.

Generating all of the subgraphs of a graph cannot be accomplished in polynomial

time because the number of subgraphs within an arbitrary directed graph is exponen-

tial, as described on page 3. However, the algorithms presented here enumerate only

a. specific subset of the subgraphs, and can generate all of these candidate subcircuits

quickly for small circuits (< 100 gates) by taking advantage of the fact that the target

circuit is represented by a labeled, directed, graph. This information can be used to

focus the efforts on subcircuits that are likely to match library modules.

3.0.4 Heuristics

Due to the inherent difficulty of subgraph enumeration, it is necessary to provide

heuristics to allow this technique to be effectively applied to larger circuits (> 100

gates). The most important of these is preliminary partitioning. The number of po-

tential subcircuits may increase exponentially with each additional logic device, so by

intelligently reducing the size of the circuit to be explored, significant computational

90

improvement may be gained.

Additionally, within the Specific domain of the Module Identification Problem, it

is reasonable to limit the order of the subgraphs that are created. Although a func-

tional module may be realized by any number of logic devices, design constraints such

as minimization of area and power consumption make it unlikely that the number of

gates in a specific implementation will greatly exceed that of a standard implementa-

tion of that module. Therefore, the order of the subcircuits that must be enumerated

may be bounded, providing great improvement in the computational complexity of

subgraph enumeration.

There are several other computation reducing techniques that may be applied

within candidate subcircuit enumeration along with preliminary partitioning and sub-

graph order limiting. These heuristics are discussed in Chapter 5.

3.0.5 Chapter Outline

Section 3.1 presents background information necessary for understanding the subcir-

cuit enumeration technique presented in this chapter. The technique itself, including

the algorithm, explanatory examples, proof of correctness, and complexity analysis,

is presented in Section 3.2. Proof of concept results and discussion appear in Section

3.3, and Section 3.4 summarizes and considers the ramifications of this research.

91

3.1 Background

3. 1.1 Representation

The first step in formalizing our approach to the Subcircuit Enumeration Problem is

the representation of the circuit as a directed graph. Graph theory is a well-explored

area, and by working with graphs rather than circuits, advantage can be taken of

previously derived results, algorithms, and tools. These graphs, transformed in a

well-defined manner from target circuits, are referred to as circuit graphs.

There are several graphical representations of digital circuits, including a method

that represents both connections and gates as vertices, resulting in a bipartite graph

[41, 42,91]. A vertex representing a connection contains information about each of its

endpoints as well as any additional information that is available, such as length and

the physical position of its endpoints. The vertex representing a gate includes a list

of the connection vertices that are adjacent to it. An extension of this technique is

multiplace graphs or hypergraphs, in which the edge vertices may connect more than

two gate vertices [26, 27, 66, 76]. This method provides flexibility in the implementa-

tion of procedures on the converted graph. For the purpose of subcircuit enumeration

a Simpler type of circuit graph is suflicient.

The circuit graphs used in this thesis represent connections as arcs and gates as

vertices, resulting in a directed graph [33, 58, 71,81,95]. In the elementary case, an

arc begins at the vertex that has a lower depth (distance from the circuit inputs)

and terminates at the vertex that has a higher depth. When sequential logic is

encountered, arcs can connect vertices in either direction. Primary inputs to the

92

circuit are represented as vertices as well. Primary outputs are considered to be

represented by the logic gate that produces them.

A 1-bit adder is shown in Figure 3.1a. To transform this circuit into a circuit

graph, each gate and circuit input is replaced by a vertex. Wires connecting gate

inputs to gates are replaced by arcs pointing from the vertex representing the input

to the vertex representing the gate. The transformed circuit is presented as the circuit

graph in Figure 3.1b. Dashed vertices represent input and output vertices.

Definition 3.1 A circuit graph G representing a digital circuit C is a directed

graph with V(G) containing a vertex for each logic gate in G. E(G) contains an arc

for each connection within G. A parent of a vertex v is a vertex that represents an

input of the gate represented by v. The child of a vertex is a vertex that represents

an output of the gate represented by v.

To facilitate the development and application of rules and algorithms applied to

the graph, a unique numerical index is applied to each vertex in the circuit graph.

Similarly, each subgraph also has an index associated with it. By exploiting the

Uniqueness of the index, a total ordering is defined for the set of vertices. This

ordering is the key to the technique to enumerate each subgraph exactly once.

Definition 3.2 The index of a vertex v, vindex, is a unique integer assigned to a

vertex. The index of a subgraph H, H.index, is equivalent to the highest index of its

constituent vertices.

An induced, connected subgraph H may be enumerated by creating a trivial

subgraph H’ containing one of H’s vertices and iteratively adding a vertex adjacent to

93

chi ___;[::> 30

a0

b0

 cout

Figure 3.1: Circuit to Circuit Graph Transformation Example

94

H’ until H’ is identical to H. The order of the vertices added to create the subgraph

is known as its creation path. Each vertex in H occupies a specific position within the

creation path. Theorem 3.3 proves that when each vertex has a unique integer index

and the rules described in Section 3.2.1 are applied, there is exactly one creation path

for each subgraph.

Definition 3.3 The creation path P(H) of a subgraph H of order n is a list of the

vertices of H in the order in which they were added to create H. It consists of the

vertices P0, P1, ..., Pn_1, where P0 is the initial vertex of H and Pn_1 is the final

vertex of H. The intermediate subgraphs are denoted Hm, where x is the position

within the creation path of the most recently added vertex.

For a given subgraph H, the vertices that are adjacent to H are the vertices that

may be considered for addition to the subgraph during subgraph expansion. Each

of these vertices must be no more than one arc away from some vertex within H.

Formally, these vertices are referred to as the subgraph’s neighborhood.

Definition 3.4 The neighborhood N(H) of a subgraph H within a graph G con-

sists of all vertices of G adjacent to at least one member of H. Formally, N(H) =

{v | v e? V(H) /\ Elu E V(G) such that uv E E(G) Vvu E E(G)}.

We will be using a simple circuit graph C (Figure 3.2) to clarify the definitions,

theorems, and rules presented here. Vertices with a bold outline are constituent ver-

tices of the subgraph being displayed and dashed vertices represent vertices available

for expansion; all other vertices and edges represent vertices of the underlying circuit

95

Figure 3.2: Circuit Graph G

graph and are not part of the subgraph (e.g., Figure 3.3). The number in the vertex

is the index of the vertex, which for simplicity will also serve as its name. If a vertex

belongs to the subgraph, its position x on the creation path is displayed under the

vertex name as PX.

Focused Enumeration

The naive solution to the subcircuit enumeration problem is subject to exponential

explosion depending on the connectivity of the graph. However, the complexity of

the enumeration can be significantly reduced by exploiting the fact that only some

subgraphs are of interest in the domain of reverse engineering. Consider a subgraph

H composed of a gate vertex v and two vertices representing two of its three inputs

(either gates or primary inputs). The vertex v does not represent a complete gate in

the context of the subcircuit represented by the subgraph H because it is missing an

input. The functionality that it performs is therefore undefined because it is not fully

96

specified.

For the purposes of module identification the enumeration expense is greatly re-

duced by enumerating only those subgraphs that exclusively contain vertices repre-

senting fully Specified gates. These subgraphs are referred to as subcircuits. This

definition has also been independently developed and presented as feasible subgraphs

[33].

A fully specified vertex represents a gate that is joined within the subgraph by

either all of the vertices representing its inputs or none of those vertices.

Definition 3.5 In a subgraph H of a circuit graph G, a vertex v E V(H) is a fully

specified vertex if (Vu | u E V(G) A uv E E(G) ——> u E V(H)) V (Vu | u E

V(G) /\ uv E E(G) —> u ¢ V(H)).

Definition 3.6 A subgraph H of a circuit graph G is a subcircuit of G if and only

if it is connected and each vertex in H is fully specified.

In Figure 3.3, the tables below the subgraphs present lists of the vertices in the

subgraph (V), and the neighborhood of the subgraph (N). In Subgraph Ho, Vertex 5

is not fully specified because one of its two inputs, Vertex 2, is not a member of H0,

so H0 is not a subcircuit. In Subgraph H1, Vertex 5 is fully specified by the addition

of Vertex 2. However, Vertex 2 is not fully specified, so H1 is not a subcircuit. In

Subgraph H2, the addition of Vertex 1 has made all four vertices in V(Hg) fully

specified, so H2 is a subcircuit of the circuit graph G.

A further refinement of this process takes into consideration the fact that most

hardware is designed using CAD synthesis tools that utilize a library of ready-made

97

Subgraph Ho

Ho Properties

Subgraph H1

V 5,3

H1 Properties

Subgraph H2

 N
2

V 5,3,2

H2 Properties

(a)

N

1,4

V 5, 3, 2,1

(b)

N

4

(C)

Figure 3.3: Examples of Subcircuits and Fully Specified Vertices

98

modules. To reduce the synthesis effort, these modules are often simply connected

together to provide the desired functionality. In these cases, the gate clusters repre-

senting these modules will be completely contained, with no arcs leaving or entering

the subgraph except for the primary inputs and outputs to the module. The vertices

in these subgraphs represent gates with fully-specified inputs and contained outputs.

A contained vertex represents a gate that is fully specified and joined within the

subgraph by either all of the vertices representing its outputs or none of those vertices.

Definition 3.7 In a subgraph H of a circuit graph G, a vertex v E V(H) is a con-

tained vertex if v is fully specified and ((Vu | u E V(G) /\ vu E E(G) ——) u 6

V(H)) v (Vu I u e V(G) A vu e E(G) —> u g; V(H))).

Definition 3.8 A subcircuit H of a circuit graph G is a contained subcircuit of

G if and only if each vertex in H is contained.

The first subgraph in Figure 3.4, H0, containing only Vertex 5, is 3 contained

subcircuit. None of the inputs of Vertex 5 are in the subgraph, so it is fully specified,

and it does not have any outputs, so it is contained. The subgraph H1 is created by

adding Vertices 3, 2, and 1 to H0. It is not a contained subcircuit because although

all of the vertices are fully specified, Vertex 2 is not a contained vertex because only

one of its two children is present in the subgraph. The only contained subgraph of

the original circuit graph G is the subgraph H2, because after Vertex 4 is added to

contain Vertex 2, Vertex 4 is not fully-specified, so Vertex 0 must also be added.

There are considerably fewer contained subcircuits than subcircuits. To improve

the module identification process, a preliminary search to locate and match only

99

Subgraph Ho Subgraph H1 Subgraph H2

"

.I. I \ .. 3

0 -. I x: ‘x 3 " 0 a p]
o.E.- .'.. wI/ v.:.

,L(' i 3

I .

, 2 I l ;

\ A’ ' : e

T \ : f /

V ,' \ L(/ l

r

\ s I’ i

(a) (b) (C)

Figure 3.4: Examples of Contained Subcircuits and Vertices

contained modules can provide a considerable reduction in computation, because

any vertices within identified modules would no longer be considered for inclusion in

another module, thus reducing the order of the circuit graph being explored.

3.2 Enumeration of Candidate Subcircuits

Developing a naive technique to enumerate the candidate subcircuits is straightfor-

ward. By enumerating all of the subgraphs of the circuit graph, all candidate subcir-

cuits must be enumerated. A simple recursive algorithm can accomplish this, but the

complexity of such an approach makes it applicable to only the smallest circuits (< 20

gates). It is more difficult to enumerate only the candidate subcircuits, but even this

task is relatively easy. Following a few simple rules will focus the recursive algorithm

on the enumeration of only the candidate subcircuits. A challenging problem is to

100

generate only the candidate subcircuits and generate each exactly once.

The unique generation of each subcircuit is very important. Computation time

is wasted by generating duplicate subcircuits. More importantly, this enumeration

technique is designed to solve the Module Identification Problem in partnership with a

solution to Subcircuit Identification. The current techniques to perform the necessary

semantic matching evaluation are computationally intensive. Performing a semantic

match between two subcircuits is complex and requires significant processing time.

Therefore, by enumerating each subcircuit only once, unnecessary semantic matching

can be avoided.

There are three ways to handle the duplicate subcircuit problem within the Mod-

ule Identification Problem. First, perform semantic matching for each subcircuit

that is created. This approach is computationally undesirable because the amount

of processing time needed to perform each semantic match is considerable and can

significantly impact the overall execution time. Second, maintain a hash table of

subcircuits. This approach allows a preliminary check to be performed to determine

whether or not the current subcircuit has already been generated and evaluated for

equivalence. This approach is highly inefficient because the memory consumption

of such a hash table can be prohibitive, and the time to search it for an identical

subcircuit can be considerable.

The third approach is to avoid the problem entirely. Generation and enumeration

of duplicate subcircuits can be avoided by applying the rules presented in Section

3.2.1. These rules impose a strict ordering on the addition of vertices to subgraphs,

thus guaranteeing that each subgraph will be generated once and only once. This is

101

.
,
,
_
_
_
.
_
.
,
_
,

the solution described in Section 3.2.1.

It is possible to enumerate all subgraphs of a graph by creating a subgraph to

contain a single gate of the original graph, recursively adding neighboring vertices

until it is equivalent to the original circuit, and then doing the same for every other

vertex of the original graph. Each intermediate subgraph would be enumerated by

this process. This naive algorithm for subcircuit enumeration is described in Figure

3.5 and diagrammed in Figure 3.6. With this method there are many paths to the

creation of each subgraph, and each will be explored in the procedure. In a com-

pletely connected graph, which contains 2" subgraphs, this algorithm would produce

12.! subgraphs, though only 2" of them would be unique. This naive algorithm provides

a framework for refinement. By applying slight modifications to the naive algorithm,

unique focused enumeration of candidate subcircuits may be performed.

The research presented in this chapter provides a technique to enumerate each

SUbgraph of a graph exactly once. A set of well-defined rules that govern the addition

0f vertices to subgraphs has been developed. Using these rules, it is possible to

ensure that there is exactly one path to the creation of each subgraph. To permit the

application of these rules, each vertex is assigned a unique integer index (Definition

3-2). This index provides an ordering between each pair of vertices in relation to the

Subgraph being created. This ordering results in exactly one path of vertex addition

to the creation of any subgraph and, consequently each subgraph is enumerated once

and only once.

In addition, within module identification, this enumeration may be focused on

a specific subset of the subgraphs. Only subgraphs with functional meaning are

102

Naive Subgraph Enumeration Algorithm

0. Transform circuit into circuit C.

1. foreach v E V(G):

2. Create a subgraph H0 with V(Ho) <— v.

3. Determine N(H0).

4. expandSubgraph(Ho).

5. End foreach.

subroutine expandSubgraph(graph H,)

O. foreach vertex vv+1 E N(H,):

1. Create a subgraph H,“ such that V(H,+1 (— H, + v,+1.

2. Determine N(H,+1).

3. Output Hi“.

4. expandSubgraph(H,-+1) .

5. End foreach.

1
F

L
—
_
-
A
.
n
-
q

 Lg

Figure 3.5: Algorithm for Naive Subgraph Enumeration.

interesting, so only these subcircuits (Definition 3.6) are enumerated. The candidate

Slibcircuits enumerated may be further reduced to the subset including only contained

SchircuitS. The next section presents the definition and rules that are applied to focus

the naive algorithm on unique enumeration of candidate subcircuits.

3.2.1 Rules

The following rules are applied in the algorithm presented in Section 3.2.3 and serve

Several purposes within the enumeration process. Rule 1 prevents any subgraph from

being created more than once. Rule 2 and Rule 3 focus subgraph generation on specific

tb’pes of subgraphs, subcircuits (Definition 3.6) and contained subcircuits (Definition

3.8), respectively.

103

Circuit. Foreach Create ~ Determine

graph G mm a“; ‘ subgraph neighborhood

For each

New subgraph vertex vin

neighborhood

Output Add v to

new subgraph , new subgraph

(a)

Figure 3.6: Algorithm for Naive Subgraph Enumeration (Diagram).

104

Unique Enumeration

T0 ensure that there is only one creation path for each subgraph created, an order

must be defined for each pair of vertices with respect to their addition to a specific

subgraph. The naive algorithm in Figure 3.5 iteratively adds each vertex in the neigh-

borhood of a subgraph H,- to Hi, creating H,+1 (Steps 0 and 1 of expandSubgraph),

then expands Hi+1~

The first step toward unique enumeration is recognizing that all of the vertices of

the subgraph’s neighborhood are not necessarily viable candidates for expansion. A

Simple step toward eliminating duplicate subgraph generation is to disallow addition

0f vertices that have an index higher than that of the subgraph. This subset of the

neighborhood is referred to as the frontier of the subgraph.

Definition 3.9 The frontier of a subgraph H, .7(H), consists of all v such that

'U 6 N(H) and v.index < H.index.

In Figures 3.7, 3.8, and 3.9, the final subgraphs are identical, containing vertices

[5, 3, 2], but the creation paths are different. In Figure 3.7, the creation path is {3,

2, 5}. In Figure 3.8, the creation path is {5, 2, 3}. By restricting viable expansion

Vertices to those on the frontier of a subgraph, the former creation path is disallowed.

Restricting expansion of a subgraph H to members of .77(H) does not enforce a

Single creation path for each subgraph. The creation paths in Figures 3.8 and 3.9

both create the subgraph containing vertices [5, 3, 2] when the frontier is considered.

It is therefore necessary to further specify the ordering of vertex addition to ensure

that no duplicate creation paths may exist. This is accomplished by limiting the

105

Subgraph Subgraph Subgraph

3 3,2 5,3,2

(a) (b) (C)

Figure 3.7: Subgraph containing vertices [5, 3, 2] created by P(H) = {3, 2, 5}.

\

Subgraph Subgraph Subgraph

5 5, 2 5, 3, 2

(a) (b) (C)

Figure 3.8: Subgraph containing vertices [5, 3, 2] created by P(H) = {5, 2, 3}.

g

106

Subgraph Subgraph Subgraph

5 5, 3 5, 3, 2

0 l 3 0 I r31 0

(a) (b) (C)

Figure 3.9: Subgraph containing vertices [5, 3, 2] created by P(H) = {5, 3, 2}.

‘

Viable expansion vertices to a subset of the frontier, called the reachable frontier.

The reachable frontier of a subgraph H consists of each vertex of the frontier whose

addition has not yet been forbidden by the addition of some vertex already on the

Creation path for H. There are two reasons why a vertex v may be on the reachable

frontier. First, it may have just become a member of the frontier due to the addition

Of an intermediate vertex that put it into the neighborhood of H. Every vertex on

the frontier is considered for addition to the reachable frontier exactly once. Second,

it may have been on the reachable frontier for a subgraph earlier in the creation path,

but has always had an index lower than the vertices added so has not been removed.

When a vertex v is a member of the reachable frontier of a subgraph Ho, it may

be added to create a new subgraph H1. At that point, the reachable frontier of H1

will contain any vertices that are new to the frontier of H1, as well as any vertices

107

from the reachable frontier of H0 that have an index less than v.index. Thus, a local

ordering for addition with respect to the subgraph H1 exists for each pair of vertices.

The ordering between vertices iS only with respect to the subgraph currently being

expanded. The ordering is affected by the order in which vertices are encountered and

added to the neighborhood. Until a vertex enters the neighborhood of a subgraph,

its ordering with respect to other vertices is not yet defined.

Definition 3.10 The reachable frontier of a subgraph H, fR(H), consists of all

of the vertices v that may be added to H. For a subgraph H,- = H + H, fR(H,-)

Consists of all v such that:

v E .7:(H,-) and either (v ¢ .7:(H,-_1)) or (v E fR(H,-_1) and v.index < H.index).

In Figure 3.10a, the only vertex in the subgraph is Vertex 4. The vertices in

tIle neighborhood are Vertices 0 and 2, and those also comprise the frontier and the

reachable frontier of H0. In H1, Vertex 2 has been added. All of the vertices in H1’s

neighborhood are on the frontier and reachable frontier except Vertex 5, because it

violates the v.index < H.index property of the definition of the frontier, because

5.index > H1.index. Because it is not a member of the frontier, it cannot be a

member of the reachable frontier. When Vertex 0 is added to the subgraph, all of the

Vertices in .FR(H1) with indices greater than the index of Vertex 0 are removed from

the reachable frontier and will never again appear on it.

The first rule of vertex addition prevents the creation of any duplicate subgraphs.

It requires that any vertex added to a subgraph H must be a member of fR(H), the

reachable frontier of H.

108

Subgraph H1Subgraph Ho Subgraph H2

I 0 ‘ I .2 3 0 I: I .2 :. 3 .2

\ l .' P2 '. .‘ ’. ..

‘l’

' i : ..' I

I ,L (' '
I

l ‘ 2 \

| I

I > ~ I...

| I

/ '.

’ ' ”I
. 5 ”

Ho Properties H1 Properties H2 Properties

V 4 V 4, 2 V 4, 2, 0

N 0,2 N 0,1,3,5 N 1,3,5

F 0, 2 F 0, 1, 3 F 1, 3

FR 0, 2 FR 0, 1, 3 F“ O

(a) (b) (C)

Figure 3.10: Frontier and Reachable Frontier

109

Definition 3.11

Rule 1: Only add vertices to H that are members of fR(H).

Unique Subgraph Enumeration Algorithm

0. Transform circuit into circuit C with unique vertex indices.

1. foreach v E V(G):

2. Create a subgraph Hg with V(Ho) (— v.

3. Determine fR(Ho).

4. expandSubgraph(Ho).

5. End foreach.

subroutine expandSubgraph(graph Hg)

0. foreach vertex vv+1 E fR(H,) (Rule 1):

1. Create a subgraph H,-+1 such that V(H,+1 (— V(H,-) + v,-+1.

2. Determine fR(H,-+1).

3. Output Hi“.

4. expandSubgraph(H,+1).

5. End foreach.

Figure 3.11: Algorithm for Unique Subgraph Enumeration.

Figure 3.11 shows the algorithm for unique subgraph enumeration, modified from

the naive algorithm in Figure 3.5 on page 103 by the application of Rule 1 in Step 0 of

the subgraphExpand subroutine. Figure 3.12 presents a graphical representation

0f the algorithm.

Examples of Rule 1 Application To illustrate the application of Rule 1, consider

the example circuit graph C (Figure 3.2).

Example 1 The subgraphs discussed in this example are shown in Figure 3.13.

110

-
7 9’3th vertexofG SUDgraph frontier

For each

vertex vln

reachable frontier

New subgraph

Add v to

new subgraph

Output 2

new subgraph

Figure 3.12: Algorithm for Unique Subgraph Enumeration (Diagram).

111

Subgraph H0

0

I
\

Ho Properties

V 5

N 2, 3

F 2, 3

FR 2, 3

(a)

Subgraph H1 Subgraph H2

’~

H1 Properties

V 5, 2

N 1,

F 1,

FR 1

,4

4
,
 A
0
3
0
0

3

(b) (C)

Figure 3.13: Rule 1 (Example 1).

112

Subgraph H0 is composed of a single vertex, Vertex 5. The frontier of Ho, .7-"(H0)

(Definition 3.9), contains all of the vertices that are no more than one arc away and

have an index less than that of the subgraph, in this case, Vertices 2 and 3. The

reachable frontier of H0, .7-‘R(Ho) (Definition 3.10), is simple to calculate in this case,

because there are no previous subgraphs in the path; the reachable frontier is equal

to the frontier.

Rule 1 states that any vertex v E FR(H0) may be added. The addition of Vertex

2 to Ho creates the subgraph H1. Vertices 1, 3, and 4 are all members of f(H1) now,

but Vertex 3 is no longer reachable because its index is greater than that of the final

vertex of .7(H1), Vertex 2. The index of Vertex 1 is less than that of Vertex 2, but

Vertex 1 is newly reachable (by the addition of Vertex 2), so it is currently reachable.

Thus, .7-"R(H1) contains Vertices 1 and 4.

Vertex 1 is added to H1 to create the subgraph H3. fR(H2) is empty, so this path

has been exhausted. The creation path (Definition 3.3) for this subgraph, P(H3), is

{5,2,1}.

Example 2 The subgraphs discussed in this example are shown in Figure 3.14.

The example above illustrates that there is an ordering between the vertices with

respect to the current subgraph. The addition of Vertex 2 before Vertex 3 prevented

Vertex 3 from ever appearing in a subgraph based on the expansion of H1 (Figure

3.13b).

H1 (Figure 3.14b) is the result of adding Vertex 3 to Ho, instead of Vertex 2.

Vertex 2 is the only vertex on the reachable frontier of H1, so it is added next to

113

"
l

Subgraph H0 Subgraph H1 Subgraph H2

"

0 1 ' ‘ 3 \ o 1 . Pl

,.'\‘|’/ ’

,L(i ’L('

1 2 l ' : 1’ 2 l
I l /

~ /\\ | - ~ /\\

' \ ' \

' I ..--' r l

4 to

Ho Properties H1 Properties H2 Properties

V 5 V 5, 3 V 5, 3, 2

N 2, 3 N 2 N 1, 4

F 2, 3 F 2 F l, 4

FR 2, 3 15'R 2 FR 1, 4

(a) (b) (C)

Subgraph H3 Subgraph H4 Subgraph H5

H3 Properties H4 Properties H5 Properties

V 5,3,2,4 V 5,3,2,4,1 V 5,3,2,4,1,0

N O, 1 N O N 0

F O, 1 F 0 F 0

FT 1 FR 0 7‘“ Q)

(d) (e) (f)

Figure 3.14: Rule 1 (Example 2).

114

create H2. Either of the two vertices on the reachable frontier of H2 may be added

next. If Vertex 1 is added then the expansion will end immediately because the only

remaining neighbor, Vertex 4, would not be reachable. Vertex 4 can be added before

Vertex 1 to create H3, allowing the addition of Vertices 1 and 0 in that order. This

effectively creates a subgraph equivalent to the original graph. That creation path,

P(H5) = {5, 3, 2, 4, 1, 0}, is the only path that will reproduce circuit graph G.

Additional rules are needed to ensure that only subcircuits or contained subcircuits

are enumerated. Rule 2 will cause only subcircuits to be produced, while Rule 3 will

cause only contained subcircuits to be generated. Note that Rule 3 requires the

simultaneous application of Rule 2.

Subcircuits

Rule 2 is designed to ensure that only subcircuits (Definition 3.6) are enumerated.

Each vertex in the subgraph is tested to ensure that it is fully specified. If a vertex

is only partially specified, then the vertices necessary to make it fully specified are

added to the subgraph (if they are members of the reachable frontier).

When all of the vertices are fully-specified, then the subgraph is a subcircuit. If the

necessary vertices may not be added because they are not members of the reachable

frontier of the subgraph (Rule 1), then the subgraph is discarded.

Definition 3.12

Rule 2: Output only subcircuits

while (31) I v E V(G)/\(Elu luv 6 E(G) /\ u E V(H)) /\ (310 l mu 6 E(G) A 11) ¢

115

V(H)»

o Ifw E FR(H) then V(H) = V(H) +112.

0 Else discard H.

end while

Unique Focused Enumeration Algorithm

0. Transform circuit into circuit G with unique vertex indices.

1. foreach v 6 V(G):

2. Create a subgraph H0 with V(Ho) (— v.

3. Determine fR(Ho).

4. expandSubgraph(Ho).

5. End foreach.

subroutine expandSubgraph(graph H,)

0. foreach vertex vv+1 E .7-"R(H.-) (Rule 1):

1. Create a subgraph H,“ such that V(HiH (— V(H,-) + 1),-+1.

2. Determine fR(H,-+1).

3. Add vertices necessary to make H,“ into a subcircuit (Rule 2).

4. Output Hi“.

5. expandSubgraph(H,+1).

6. End foreach.

Figure 3.15: Algorithm for Unique Focused Enumeration.

The algorithm in Figure 3.15 presents the unique subgraph enumeration algorithm

of Figure 3.11 on page 110 modified by the addition of Rule 2 in Step 3 within

the subgraphExpand subroutine. A graphical representation of the algorithm is

presented in Figure 3.16.

116

Determine A

Circuit Far each Create ,
. reachable

graph G “'19" 0’3 frontier

. I For each
New subcircuit vertex v in

reachable frontier

Add v to

new Subgraph

Output Make new subgraph ‘

new subgraph into a subcircuit

(a)

Figure 3.16: Algorithm for Focused Subgraph Enumeration (Diagram).

117

0
"
-

Examples of Rule 2 Application To illustrate the application of Rule 2, its

application will be demonstrated on the example circuit graph G (Figure 3.2).

/‘

Subgraph H0

Ho Properties

V 4

N 0, 2

F 0, 2

FR 0, 2

(a)

Subgraph H1

Subgraph H2

Figure 3.17: Rule 2 (Example 1).

H1 Properties

V 4, 2

N 0, 1, 3, 5

F O, 1, 3

FR 0, 1, 3

(b)

H2 Properties

V 4, 2, O

N 1, 3, 5

F 1, 3

FR 1, 3

(C)

Example 1 The subgraphs discussed in this example are shown in Figure 3.17.

The trivial subgraph Ho may be expanded by adding either of its neighbors, Vertex

2 or Vertex O. The addition of Vertex 2 results in H1, in which Vertex 4 is not fully

specified. Rule 2 requires that any vertices necessary to fully specify each partially

specified vertex are added immediately. Therefore, Vertex 0 is added, making Vertex

4 fully-specified and H2 3 subcircuit.

118

Subgraph Ho Subgraph H1

(5’2)
0

pg 1

s .\

5 s a: 5

Ho Properties H1 Properties

V 4,2,0 V 4,2,0,1

N 1, 3, 5 N 3, 5

F 1, 3 F 3

FR 1, 3 FR Q

(a) (b)

Figure 3.18: Rule 2 (Example 2).

119

Example 2 The subgraphs discussed in this example are shown in Figure 3.18.

Beginning with H0, either Vertex 1 or Vertex 3 may be added. H1 is the result of

adding Vertex 1. Vertex 2 is only partially specified in H1 because Vertex 3 is not a

member. Rule 2 dictates that Vertex 3 must be added immediately, but it is not on

the reachable frontier. Therefore, this subgraph is not a subcircuit and is discarded.

Contained Subcircuits

Rule 3 guarantees that only contained subcircuits (Definition 3.8) are created. It

operates similarly to Rule 2, except that as a vertex is added, Rule 2 is applied, then

the subcircuit is evaluated to ensure that it is contained. If not, the vertices necessary

to fulfill that condition are added to the subgraph, if possible.

When all of the vertices are fully specified and contained, then the subcircuit is

marked as contained. If the necessary vertices may not be added because they are

not members of the reachable frontier of the subgraph (Rule 1), then the subgraph is

discarded.

Definition 3.13

Rule 3: Output only contained subcircuits.

while (31) I u E V(G) /\ (Elu I uu E E(G) Au 6 V(H)) /\ (3w | uw E E(G) Aw ¢

V(H)»

o Ifw E fR(H) then V(H) = V(H) + w.

o Else discard H.

end while

120

Example of Rule 3 Application

Example 1 This example again illustrates the creation of the subgraph that covers

the entire circuit graph, but within the context of Rule 3 application. Subgraphs Ho

- H5 are shown in Figure 3.19

When Vertex 3 is added to the initial subgraph H0, Vertex 2 must be added

immediately, both to fully specify Vertex 5 and to contain Vertex 3. The result is H2,

in which Vertex 2 is only partially specified and non-contained. Rule 2 applies first,

so Vertex 1 is added to H2 to fully specify Vertex 3 and create H3. The reachable

frontier of H3 is not affected by the addition of Vertex 1 because all of the input

vertices of a vertex are treated as a single unit if the highest non-member vertex is in

the reachable frontier when Rule 2 is applied. Expansion proceeds from H3 by adding

Vertex 4 to create H4. Vertex 0 is added last to reproduce the entire circuit graph as

H5. All vertices are fully specified and contained, so H5 is a contained subcircuit.

The application of Rule 3 guided the generation along this creation path to most

efficiently create the contained subcircuit.

Example 2 The subgraphs for this example are displayed in Figure 3.20. When

Vertex 2 is added to trivial subgraph H0, it is non-contained, because its second

parent (Vertex 5) is not a member of H1. Furthermore, Vertex 5 is not a member of

the frontier or reachable frontier of H1, so Vertex 2 could never become contained.

H1 is therefore discarded.

If contained subcircuit enumeration is desired, Rule 3 may be added to the focused

121

Subgraph Ho Subgraph H1 Subgraph H2

"

1 , 3 l 0

>"/

s s '
' I

l I L (|

l 2 l : ; l

.-\ ~ "I I :

‘\ l f

,' v ,

o 4

Ho Properties H1 Properties H2 Properties

V 5 V 5, 3 V 5, 3, 2

N 2, 3 N 2 N 1, 4

F 2, 3 F 2 F 1, 4

F 2, 3 7R 2 F 1, 4

(a) (b) (C)

Subgraph H3 Subgraph H4 Subgraph H5

,L (ll

4 [l P50

H3 Properties H4 Properties H5 Properties

V 5,3,2,1 V 5,3,2,1,4 V 5,3,2, 1,4,0

N 4 N 0 N 0

F 4 F 0 F C

FR 4 FR 0 FR 0

(d) (8) (f)

Figure 3.19: Rule 3 (Example 1).

122

/‘

Subgraph H0 Subgraph H1

, o l

, .

,L ‘

i ' 2‘, ;

l >~ i
I , _ 3

23,1...

Ho Properties H1 Properties

V 4 V 4, 2

N 0, 2 N O, 1, 3, 5

F 0, 2 F 0, 1, 3

FR 0, 2 FR 0, 1, 3

(a) (b)

Figure 3.20: Rule 3 (Example 2).

123

enumeration algorithm in Figure 3.15 by changing Step 3 of the subgraphExpand

subroutine to apply both Rule 2 and Rule 3.

3.2.2 Correctness of Rules

To establish the correctness of the rules presented in Section 3.2.1, several lemmas

are presented to establish that the following three major objectives have been accom-

plished correctly [113].

0 When Rule 1 is applied, each subgraph has precisely one creation path.

0 When Rule 2 is applied, only subcircuits are enumerated.

c When Rule 3 is applied, only contained subcircuits are enumerated.

1. Poinderr is the highest index in the subgraph H. To begin with, it is

necessary to establish that the initial vertex of a subgraph is the vertex with the

highest index. Rule 1 requires that each vertex 1) added to a subgraph H must be

a member of fR(H). From that, its membership in .77(H) may be assumed, which

requires that v.index < H.index. Because no vertex may be added that has an index

higher than that of the subgraph, the initial subgraph must contain the initial vertex

by Definition 3.3. Therefore the initial vertex must be the vertex with the highest

index. This discussion establishes:

2. 1),-+1 E .7:(H,-). Next, the membership of each vertex v on the creation path of H

must be established. If v is the next vertex to be added to the subgraph, it must be

124

in the neighborhood, because otherwise there is no are between 1) and H and it could

not be accessed. Further, if u will ever be a member of H, it must have an index less

than that of H. v’s membership in the subgraph is known, so v.index < H.index,

and therefore it must be in the frontier of H.

Lemma 3.1 Given a subgraph of H, H,, containing the vertices of P(H),

P0, P1, ..., R, then the next vertex to be added, Pm, is a member of .7-"(H,).

Proof: Assume 1),-+1 ¢ f(H,-). P,“ is a member of V(H) so it must be a member

of fR(Hz) at some position x (by Rule 1). Therefore, Pm E f(Hx) (Definition 3.10).

So, the vertices between P,- and P3 must be added before 1),-+1 may be added. However,

1),-+1 is by definition the next vertex added, which contradicts the assumption that

there are additional vertices between P,- and P; that must be added. Because no

other vertices may be added before 1),-+1 and Pi+1 E 77(Hz), a: = i, contradicting the

assumption that 1),-+1 ¢ f(H,-).

3. P,“ E fR(H,-). Lastly, it must be established that when a vertex u was added

along the creation path of the subgraph H, it was a member of 1"”(H). Lemma 3.1

asserted that v E .7:(H), so either it must be newly reachable or it must not have

been excluded from the reachable frontier by the previous addition of a vertex with

a higher index.

The first part is clear: if a vertex is newly reachable, then it must have at least one

opportunity to become a member of the graph, so it is automatically on the reachable

frontier.

125

The second part is more complicated. If a vertex is not newly reachable, then it

must have been on the reachable frontier of the previous subgraph, Hixl. Therefore,

the addition of the vertex that was added to create H,- may have invalidated v’s

membership on fR(H) if its index was less than v’s. However, if that occurred,

then v would never be able to become a member of H. Its membership is already

established, so it must be a member of fR(H,-_1).

Lemma 3.2 Given a subgraph of H, H,, containing the vertices of P(H),

P0, P1, ..., P,, then the next vertex to be added, Pm, is a member of 7R(H,-).

Proof: P,“ E .7:(H,-) by Lemma 3.1

0 Suppose 1),-+1 ¢ f(H.-_1), meaning that 1),-+1 is newly reachable and has not yet

been considered for addition.

Because PHI 6 .7:(H.-) and P,“ ¢ f(H,_1), then 1),-+1 need not meet any criteria

to be a part of fR(H,-) because it has not had a chance to be considered for

addition yet, so therefore P,“ E FR(H,-).

0 Suppose P,“ E f(H,-_1).

— i-l-l 6 fR(Hi—1)

Proof: Assume 1),-+1 ¢ fR(H,-_1). Because 1),-+1 E .7:(H,-_1) and P,“ ¢

fR(H,-_1), P,“ will not appear on .7-‘R(Hx) for anyi 5 x g n (by Definition

3.10), and will never become a member of V(H). However, P,“ is a

member of V(H), so therefore P,“ e FR(H,_1).

126

— ,-+1.index < H.index

Proof: Assume P,+1.index Z H.index. We have already proven that

P,“ E fR(H,-_1). Hence, when P,- is added to create the subgraph Hi, 1),-+1

will not be a member of fR(H,-), and therefore will never become a member

of V(H). However, 1),-+1 is a member of V(H), so 1),-H.index < H.index.

Therefore, by Definition 3.10, 1),-+1 E fR(H,-).

Rule 1: Unique Creation Paths

Theorem 3.1 Rule 1 implies that for any induced, connected subgraph H of a circuit

graph G, there is a creation path P(H) that results in the subgraph H.

Proof: Assume that there is no creation path P(H). Therefore, for some Pm,

Rule 2 must forbid its addition to P34, so P; ¢ .7-‘R(Hx_1). Lemma 3.2 states

that P,- E fR(H,-_1), which contradicts the assumption, thus proving that there is a

creation path to H.

Theorem 3.2 Rule 1 guarantees that for any induced, connected subgraph H of a

circuit graph G, there is no more than one creation path P(H).

Proof: Assume that there are two or more creation paths for an arbitrary subgraph

H. Denote the subgraph created along one of these paths as H1, and the vertices

along H1’s path as u1,u2, ..., u"; denote the subgraph created along the other path

as H2 and the vertices along H2’s path as v1, v2, ..., vn. Let x be the first position in

which at 5:5 v3. By Lemma 3.2, at E fR(H;_1) and v1, 6 fR(H3_1). .7-‘R(H;_1) must

be equivalent to .FR(H§_1) because u.- = v,- for O S i < x.

127

All indices are unique, and the labels u and v were assigned arbitrarily, so let

ux.index < vx.index. If Pa, = um, then v1. 9E .7-‘R(H§), by Definition 3.10, and therefore

could not become a member of H. However, we know that v; E V(H), so PI 95 ux.

If P; = vx, then um E fR(H,1,) and it could become a member of H.

Therefore, for any two vertices, there is only one order in which they may be

added to H. u; = v, for 0 S x S n. This contradicts our assumption, thus proving

that there is a single unique creation path P(H) to the subgraph H.

Rule 2: Only Subcircuits Created

When Rule 2 is applied to a subgraph, each vertex in the subcircuit is examined

to determine whether or not it is fully specified. If a vertex v is found to be only

partially specified, that is, at least one but not all of v’s input vertices are present,

then the vertices necessary to fully specify v are added to the subgraph if they are

on the reachable frontier.

If all of the input vertices may not be added because they are not members of

the reachable frontier, then the subgraph is discarded. Therefore, the only subgraphs

that may be enumerated when Rule 2 is applied are subcircuits.

Rule 3: Only Contained Subcircuits Created

When Rule 3 is applied to a subgraph, each vertex in the subcircuit is examined to

determine whether or not it is contained. If a vertex v is found to be not contained,

that is, at least one but not all of v’s output vertices are present, then the vertices

necessary to fully specify v are added to the subgraph if they are on the reachable

128

frontier.

If all of the output vertices may not be added because they are not members of

the reachable frontier, then the subgraph is discarded. Therefore, the only subgraphs

that may be enumerated when Rule 3 is applied are contained subcircuits.

3.2.3 The Algorithm

The algorithm in Figure 3.21 (repeated from page 116) performs candidate subcircuit

enumeration and guarantees the three objectives stated at the beginning of Section

3.2.2. Vertex ordering is implemented so that the algorithm may apply the rules

described in Section 3.2.1. Rule 1 prevents the generation of duplicate subgraphs

by ensuring that there is only one expansion path that creates each subgraph. The

application of Rule 2 guarantees that each of the subgraphs created by the algorithm

is a functional subcircuit. Rule 3 may also be applied to guarantee that each of the

subgraphs is also a contained subgraph.

Algorithm Details

0 Step 0: Transform circuit into circuit graph G with vertex indices.

Create a vertex to represent each logic element in the circuit. These vertices

contain necessary information about the logic element, including number of

inputs and outputs, distance from primary inputs, and function performed.

Each vertex is assigned a unique integer index as it is visited.

This operation is 0(n), and will halt because the number of logic elements in

129

Unique Focused Enumeration Algorithm

0. Transform circuit into circuit G with unique vertex indices.

1. foreach v E V(G):

2. Create a subgraph H0 with V(Ho) (— v.

3. Determine fR(H0).

4. expandSubgraph(Ho).

5. End foreach.

subroutine expandSubgraph(graph H.)

O. foreach vertex vv+1 E fR(H,-) (Rule 1):

1. Create a subgraph H,“ such that V(H,+1 +- H, + v,+1.

2. Determine .7-‘R(H,+1).

3. Add vertices necessary to make H,“ into a subcircuit (Rule 2).

4. Output Hi“.

5. expandSubgraph(H,+1).

6. End foreach.

Figure 3.21: Algorithm for Unique Focused Enumeration.

any circuit is finite.

0 Step 1: foreach v E V(G):

This loop is performed n times, once for each vertex in the circuit graph, so the

complexity is O(n).

0 Step 2: Create a subgraph H0 with V(Ho) (— v.

Creating a subgraph containing v is an 0(1) operation. The subgraph informa-

tion (index, order, depth, etc.) is initialized.

0 Step 3: Determine fR(H0).

The reachable frontier of a trivial subgraph is equivalent to the frontier, which

consists of all of the neighboring vertices with index less than that of the sub-

130

graph. All vertices may be neighbors of the subgraph, so this step is 0(a).

0 Step 4: expandSubgraph(Ho).

Send the newly created subgraph H0 to the expandSubgraph subroutine.

0 Step 5: end foreach.

This outer loop is performed exactly n times, once for each vertex in the circuit

graph.

subroutine expandSubgraph(subgraph Hi)

0 Step 0: Rule 1: foreach vertex v,-+1 E fR(H,-):

a Step 1: Create a subgraph H,“ <— H, + v,+1.

The subgraph H,- is copied. All information is copied to the new subgraph,

including the list of vertices, the order, the depth, the index, etc. Copying

the subgraph H,- and adding a vertex to the new subgraph H,“ is an 0(a)

operation because it is possible that all vertices of the circuit graph belong to

the new subgraph.

0 Step 2: Determine fR(H,-+1).

For each vertex x adjacent to H,- + 1: if x is not a member of V(H) or FR(H,-

and has an index less than H.index and has not been previously explored, then

add 3: to fR(H,-+1).

For each vertex x in .7-"R(H,-): if x.index < vi+1.index then add 3: to fR(H).

131

Each vertex in V(G) may be a neighbor of v,-+1, so this step is 0(n) and will

halt when each vertex adjacent to x has been considered.

0 Step 3: Rule 2: Add vertices necessary to make H,+1 a subcircuit or

discard.

The addition of vertex vi+1 can only affect vertices adjacent to it. For each of

those vertices, if a proper subset of its parent vertices are members of V(H,+1),

then add necessary vertices until H,“ is a contained subcircuit. If a necessary

vertex is not a member of fR(H,+1) then discard the subgraph.

Because this step requires a nested loop to check all (possibly 72. — 1) inputs of

internal vertices (possibly n) to determine if they are fully specified each time

a vertex is added, its complexity is 0(n3).

This step is performed more efficiently by sorting the inputs of each vertex to

ensure that the expansion proceeds with the fewest subcircuits discarded due

to Rule 1 enforcement.

0 Step 4. Output Hi“.

Output the newly created subgraph.

0 Step 5. expandSubgraph(H,+1).

Send the newly created subgraph H,“ to be expanded.

0 Step 6. End foreach.

132

Algorithm Complexity

The creation of each unique candidate subcircuit as described in Figure 3.21 has a

worst-case complexity of 0(n3). The algorithm was presented in this manner for

clarity of presentation, though an actual implementation of this technique can com-

bine the determination of the reachable frontier and the application of Rule 2 (and

Rule 3, if desired) and reduce the complexity to 0(n2). Therefore, the computational

complexity of the focused enumeration algorithm is 0(kn2), where k is the number

of candidate subcircuits in the circuit graph (see Section 3.3).

Correctness of Algorithm

To address the correctness of the focused enumeration algorithm, several theorems

are needed. It must be demonstrated that the three rules developed to restrict the

enumeration of subgraphs provide the desired results when applied within the focused

enumeration algorithm (Figure 3.21).

Rule 1: Unique Subgraphs

Theorem 3.3 When Rule 1 is applied, the focused enumeration algorithm produces

each induced, connected subgraph H of a circuit graph G exactly once.

Proof: Theorems 3.1 and 3.2 state that there is one and only one creation path

P(H) for any induced, connected, subgraph H of a connected graph G. Therefore,

by applying Rule 1, for each induced, connected, subgraph H, the enumeration may

follow P(H) to the unique creation of H.

133

Rule 2: Subcircuits

Theorem 3.4 When Rule 2 is applied, all subcircuits are produced by the focused

enumeration algorithm exactly once.

Proof: Based on Rule 1, Theorem 3.3 states that each induced, connected, sub-

graph of a connected graph G will be produced by the algorithm exactly once. Rule

2 does not interfere with the application of Rule 1, so Theorem 3.3 remains true for

focused enumeration with application of Rule 2.

Theorem 3.5 When Rule 2 is applied, only subcircuits are produced by the focused

enumeration algorithm.

Proof: When Rule 2 is applied to a subgraph H, the subgraph is discarded if it

cannot be made into a subcircuit. When the algorithm terminates, only the sub-

circuits have been produced. Therefore, the application of Rule 2 ensures that only

subcircuits are produced by the focused enumeration algorithm.

In essence, these two theorems ensure that when focused enumeration is executed

with the application of Rule 2, it will produce all and only subcircuits.

Rule 3: Contained Subgraphs

Theorem 3.6 When Rule 3 is applied, all contained subcircuits are produced by the

focused enumeration algorithm exactly once.

Proof: Based on Rule 1, Theorem 3.3 states that each induced, connected, sub-

graph of a connected graph G will be produced by the algorithm exactly once. Rule

134

3 does not interfere with the application of Rule 1, so Theorem 3.3 remains true for

focused subcircuit enumeration with the application of Rule 3.

Theorem 3.7 When Rule 3 is applied, only contained subcircuits are produced by the

focused enumeration exactly once.

Proof: When Rule 3 is applied to a subgraph H, the subgraph is discarded if it

cannot be made into a contained subcircuit. When the algorithm terminates, only

the contained subcircuits have been produced. Therefore, the application of Rule

3 ensures that only contained subcircuits are produced by the focused enumeration

algorithm.

In essence, these two theorems ensure that when focused enumeration is executed

with the application of Rule 3, it will produce all and only contained subcircuits.

3.3 Results

Experiments were run on a Sun Ultra 2 Model 2300 (dual 300mhz processors) with

1024MB of memory. As a proof of concept, results are shown in Table 3.1 for several

small circuits from the LogicSynth93 benchmark suite [82]. Times are given in CPU

seconds. “N/A” indicates that the enumeration results could not be obtained in a

reasonable amount of time. To perform subcircuit enumeration on larger circuits, the

techniques discussed in Chapter 5 must be applied. Results for a parallel implemen-

tation are presented in Section 5.1, and results for an implementation that enforces

an order limit are presented in Section 5.3.

135

Original Unique Candidate Contained

Circuit Gates Subgraphs Subcircuits Subcircuits

number time number I time number time

1-bit Adder 8 114 0.01 18 <0.01 6 <0.01

2-bit Adder 15 3,408 0.14 114 <0.01 24 <0.01

3-bit Adder 22 98,922 4.79 522 0.04 66 <0.01

C17 24 40,729 1.79 3,951 0.16 1,199 0.05

majority 24 147,366 7.41 12,171 0.45 993 0.05

b1 25 1,066,434 56.60 19,980 0.75 143 0.01

cm138a 33 N/A - 726,032 27.64 26,652 1.05

cm152a 35 N/A - 59,962 2.27 6,158 0.24

z4ml3 40 N/A - 185,196 14.64 281 0.07

x2 54 N/A - 104,178,928 4282.80 98,322 3.93

rd53 89 N/A - N/A - 207,149 23.88

Table 3.1: Focused Enumeration Results Demonstrating Reduction of Interesting

Subgraphs.

These results clearly illustrate the advantage of using the focused subcircuit algo-

rithm. The effort spent on enumeration and the number of subgraphs that must be

tested for semantic equivalence is greatly reduced, resulting in significant improve-

ments to overall execution time for solutions to the Module Identification Problem.

3.3.1 Implementation

The algorithm described in Section 3.2.3 has been implemented in C. Code to read a

circuit from a BLIF file and produce a network of gates is derived from the Colorado

University Decision Diagram package [102].

Correctness

To evaluate the correctness of the focused enumeration algorithm and the rules pre-

sented as the solution to the Candidate Subcircuit Enumeration Problem, the naive

136

algorithm for subgraph enumeration (Figure 3.5) was implemented.

Uniqueness Each subgraph H produced by the implementation of the naive al-

gorithm was placed in a hash table with a hash index defined by a lexicographical

ordering of the names of the constituent vertices. If a collision occurred, a vertex

by vertex comparison was performed for H and each subgraph in that hash table

location. If any were found to be identical, H was discarded. If H was found to be

unique, it was inserted into the hash table at that location.

The subgraphs in the hash table after a full exploration of the circuit graph cor-

respond exactly to the subgraphs produced by the algorithm that included the appli-

cation of Rule 1. The results for the implementations of the naive and the focused

enumeration algorithms were compared for a range of circuit graphs to evaluate the

correctness of the implementation of the unique enumeration algorithm (Rule 1).

Subcircuits and Contained Subcircuits After enumerating all of the unique

subgraphs as described above, each subgraph was tested for membership in the sub-

circuit and contained subcircuit classes of subgraphs. Each vertex in the subgraph

was tested to determine whether or not it was fully specified. If all vertices were fully

specified, then the subgraph was marked as a subcircuit and saved. If not, the sub-

graph was discarded. Each vertex in the subcircuit was then tested for containment.

If all vertices were contained, then the subgraph was also marked as a contained

subcircuit.

The saved subcircuits of this trivial solution were compared to the results of the

137

implementation of the focused enumeration algorithm. The subcircuits produced by

the two solutions were identical. This provides a great deal of confidence in the

correctness of the implementation of the focused enumeration algorithm.

3.4 Summary

This chapter has presented a technique for uniquely enumerating all of the subgraphs

of a graph. By applying this approach within the domain of digital circuits, the sub-

graphs that must be enumerated can focus on specific classes of subgraphs, reducing

the computation cost considerably.

The problem of enumerating each subgraph exactly once was addressed. By as-

signing an index to each vertex in the circuit graph, a local ordering may be enforced

between each pair of vertices with respect to the subgraph currently under expansion

(Rule 1). This ordering ensures that each subgraph is created and enumerated exactly

once.

The enumerated subgraphs were restricted to those subgraphs whose underlying

circuit represented a functional subcircuit of the circuit. Rule 2 guides the creation

of each subgraph so fewer non-subcircuits are explored, and none are produced. The

subcircuits were restricted yet further to those subcircuits that are self-contained.

These contained subcircuits are more likely to match library entities, so they pro-

vide a valuable starting place for module identification. Rule 3 produces contained

subcircuits.

The results show the improvement that focused enumeration achieves over the

138

naive enumeration of subgraphs. Only the subcircuits and contained subcircuits need

to be considered for functional equivalence to library modules. This reduces the over-

all execution time of the solution to the Module Identification Problem significantly.

Chapter 4 describes a technique to avoid performing costly semantic matching on

more than one instance of subgraphs that represent subcircuits that are structurally

identical. Structurally identical subcircuits are functionally identical, so it is only

necessary to perform semantic matching on one member of each of these structural

equivalence classes.

139

Chapter 4

Subcircuit Equivalence Classes

The overall goal of the research presented in this dissertation is to facilitate the

reverse engineering process by identifying all of the subcircuits of a circuit that may

be equivalent to a library module. These subcircuits undergo a semantic matching

process, Subcircuit Identification, to determine this equivalence. Currently available

semantic matching techniques [36] are computationally intensive, so reducing the

number of times that subcircuit identification must be performed is desirable.

Many of the candidate subcircuits generated by the focused enumeration algo-

rithm described in Chapter 3 are likely to be structurally identical to other candidate

subcircuits. Structurally identical subcircuits are necessarily functionally equivalent,

so the number of subcircuits to which Subcircuit Identification must be applied may

be significantly reduced by applying it to only a few instances of each unique subcir-

cuit structure.

Despite the large number of uniquely labeled candidate subcircuits, there is a much

smaller number of structurally unique subcircuits. In other words, if arbitrary labels

140

on the vertices, such as names, are removed and replaced with a label that identifies

the type of gate they represent in the original circuit, many of the subcircuits become

equivalent.

Each unique subcircuit structure defines a structural equivalence class. Each class

contains only subcircuits whose structures, with respect to gates, modules, and inter-

connects, are identical. Because the subcircuits in an equivalence class are identical,

both structurally and functionally, any matching information gained about one in-

stance of that class provides the same information for all other subcircuits in the

class.

To facilitate the partitioning of subcircuits into equivalence classes, a technique

for generating structural identifiers has been developed. These identifiers describe the

structure of a circuit with respect to structural invariants such as the functionality of

the individual vertices and the interconnection of the vertices.

Each structural identifier represents a single structural equivalence class. The

identifier is created for each subcircuit generated by subcircuit enumeration. All

subcircuits with the same identifier are members of the same equivalence class, and

all subcircuits within an equivalence class are structurally identical. This chapter

focuses on the presentation of the structural identifier generation technique.

4.0.1 Overview of Technique

As with the approach to Candidate Subcircuit Enumeration presented in Chapter

3, structural identifiers and subcircuit equivalence classes apply to circuit graphs,

141

graphical representations of logic circuits.

An identifier that uniquely describes the structure of a circuit may be generated

by first determining an ordering for the vertices, determined by structural invariants

such as distance from circuit inputs, functionality of the vertex, number of inputs and

outputs, etc. Once the vertices have been sorted, a unique integer label, a weight,

may be assigned to them to represent their position in the ordering.

Information local to the vertices and their neighbors is not always sufficient to

resolve ordering of all vertices. In this case, a second pass through the circuit graph

may be necessary to resolve these conflicts. This pass efficiently utilizes information

about the surrounding circuit graph to sort the remaining vertices.

Occasionally, two vertices represent identical functionality in identical positions

within the circuit. These vertices are indistinguishable. This situation can occur, for

example, when two circuit inputs are both inputs to a single gate, or when the circuit

is structurally symmetrical. In that case, the vertices are completely interchangeable

and may be ordered arbitrarily. All other vertices are distinguishable, because they

are different with respect to functionality or position within the circuit.

It may not be possible to order two distinguishable vertices based solely on the

information that can be efficiently obtained during two passes through the circuit

graph. These vertices will also be arbitrarily ordered, and this allows the possibility

of multiple identifiers that describe the same circuit structure. However, the number

of identifiers for a single structure will generally be small (one or two).

The identifier is built after the vertex ordering has been determined. The vertex

ordering is applied during identifier construction to ensure that there are only a few

142

identifiers for any circuit graph structure. Many forms of identifiers may be derived

for a circuit graph in which the vertices have been labeled in this way. The method

presented in this thesis produces logic functions because logic formulae are familiar

to most engineers and provide an easily comprehended representation.

Vertices with more than one output are will appear more than once in the logic

formula identifier, so they must be handled differently than vertices with only one

output if all structural information is to be accurately represented. These vertices

are called nets because they are the interface to a network of gates within the circuit.

To ensure that the interconnection described by the vertex is represented correctly

in the identifier, nets are assigned special labels. When applied within Candidate

Subcircuit Enumeration, these structural identifiers provide an equivalence relation

to partition the circuit into structural equivalence classes.

4.0.2 Chapter Outline

Section 4.1 describes the structural identifiers and their generation. Vertex weighting

is the first step in the process, and it is discussed in Section 4.2 along with related

topics such as vertex functionality labeling, vertex weighting, and nets. The algorithm

for vertex weighting is presented and discussed in Section 4.2.4. The next step is the

generation of the identifier for the weighted circuit graph, which is described along

with an example algorithm in Section 4.3.

Section 4.4 discusses how these structural identifiers are used within candidate

subcircuit enumeration to partition the subcircuits into structural equivalence classes.

143

'
f
-
‘

“
m
u
-
3
,
!

Section 4.5 shows experimental results justifying the application of these equivalence

classes to candidate subcircuit enumeration, and also covers implementation details

and complexity. Section 4.6 summarizes the chapter.

4.1 Structural Identifiers

Structural identifiers describing the structure of a circuit can be built by relying

only on gate function and interconnects. Labels given to devices or wires are not

considered, because they will not be the same between two different circuits, though

the underlying structure may be identical.

A structural identifier may take many forms; the only requirement is that the

identifier represent the interconnects between the devices and accurately describe the

device functionality. The underlying form of the structural identifier can be viewed

as an augmented adjacency matrix.

Definition 4.1 An augmented adjacency matrix is an adjacency matrix for a cir-

cuit graph with an additional column whose row elements are the functionality label

assigned to the vertex represented by that row.

The generation of a circuit identifier is a two-step process. First, a weighting of

the vertices in the circuit graph is performed, based upon structural invariants such

as functionality, level (distance from inputs), number of inputs and outputs, etc. To

allow effective definition of structural equivalence classes, the weighting algorithm

must be designed such that any two identical subcircuits result in as few vertex

weightings as possible.

144

The second step is the generation of the identifier. Once the vertex ordering has

been correctly performed, this step may be designed to produce many types of struc-

tural identifiers, such as an augmented adjacency matrix, a K-formula representation,

or a logic function representation. The algorithm described in Section 4.3 produces

the latter.

The technique presented in this dissertation for vertex weighting may result in

more than one identifier for a single circuit graph structure, though the number

of identifiers is typically very small (one or two). It would be possible to extend

the technique to ensure that each circuit graph structure produced a single unique

ordering, but the complexity of that task (which is equivalent to graph isomorphism)

outweighs the computational improvement to the Module Identification Problem that

would result from that extension.

4.2 Vertex Weighting

There are two steps necessary to determine an ordering of the vertices so that an

applicable structural identifier may be developed.

1. Establish vertex functionality labels: determine a unique description for each of

the functionalities that are performed by vertices in the circuit graph.

2. Weight vertices: assign a unique weight to each vertex based upon its function-

ality and other structural invariants. Weight values range from 0 to n— 1, where

n is the number of vertices in the circuit graph.

145

4.2.1 Vertex Functionality Labels

To ensure that the identifier accurately describes the structure of the circuit, each

vertex functionality must have a canonical description. Considering that a vertex

in the circuit graph may describe a simple logic gate or a complex library module,

the vertices are described and identified based on the functionality that they per-

form, rather than logic gate name or label. The function may be represented by any

canonical functional representation, such as ROBDDS or truth tables that have been

manipulated by a well-defined procedure to become canonical.

Once canonical descriptions of the vertex functions are available, a unique integer

may be assigned to each function. These integer representations induce an ordering

on the vertex functionalities. This ordering applies to the entire circuit and may be

arbitrarily assigned such that each integer represents exactly one function, and each

function is represented by exactly one integer. By using integers instead of the truth

table or the BDD itself, vertex function comparison is simple and the size of the

eventual identifier is more compact, without loss of structural information.

For the purpose of clarity, gate types will be described in this thesis by natural

language labels, such as “AND2” (2-input AND gate), “adderl” (1-bit adder), etc.

The vertex function ordering that applies throughout this thesis is alphabetical by the

natural language label. For example, “AND3” has higher precedence than “AND2”

and “0R3”. Table 4.1 shows the precedence of all vertex functions appearing in the

examples in this chapter.

146

”
M
i
—
‘
1

I Gate Type Label I Precedence

AND3 6 highest

ANDZ 5

NOR2 4

NOTl 3

0R2 2

XOR? 1

inputs 0 lowest

Table 4.1: Vertex Functionality and Precedence Example

4.2.2 Vertex Precedence

To develop an effective structural description of a circuit, each vertex of the circuit

graph must be given an order of precedence, a weight, that is dependent solely upon

the structure (including vertex functionality) of the circuit.

There are three steps to weight assignment:

1. Level assignment: Determine the level (maximum path length from circuit in-

puts) of each vertex.

2. First pass (inputs to outputs): sort the vertices at each level based on structural

invariants of the circuit graph and assign each vertex an integer weight based

on that ordering.

3. Second pass (outputs to inputs): resolve conflicts between vertices that could

not be ordered based on local information alone by considering global structural

information.

147

P
h
i
-
m
a

Level assignment is accomplished by starting at the inputs and assigning them to

Level 0. The procedure traverses up from the inputs in a breadth-first manner and

assigns each vertex the level value one higher than the maximum level of its inputs.

If a cycle is encountered, Le, a vertex has already been assigned a weight, then the

weight is not modified.

During the first pass, weight assignment begins at the circuit graph inputs, and

proceeds up through the levels until all vertices have been weighted. By weighting the

levels in ascending order, information about the vertices closer to the circuit inputs

can be used during sorting of vertices on higher levels.

Vertices that cannot be sorted by the first pass because not enough information

was available are assigned the same weight, and the weights that must be assigned

to those vertices to ensure a unique weighting are saved. The second pass resolves

these conflicts by beginning at the outputs of the circuit graph, and proceeding down

through the levels until all vertices have been assigned a unique weight.

With regard to vertex ordering, each vertex considers only those vertices that

are directly adjacent to it. These vertices are the inputs and outputs to the gate

that the vertex represents. By restricting the ordering comparisons to this local

information, the sorting can be performed quickly and efficiently. Considering only

adjacent vertices does not exclude other information about the rest of the circuit,

because the weights assigned to those vertices encapsulate relevant information about

the surrounding circuit structure. This encapsulated information is referred to as a

vertex’s input cone or output cone.

148

.
{
F
a
-
.
1
:
E
S
T
-
I
i
i
,
“

Input Cones

The input cone of a vertex v represents information about the circuit structure from

the Circuit’s primary inputs to v. As vertices are ordered during the first pass, if two

vertices have the same functionality, number of inputs, and number of outputs, then

their input weight lists are sorted and compared. In this way, the information about

the circuit between the inputs and the current vertex may be efficiently taken into

consideration.

In digital circuits, the input cone is equivalent to the logic cone described in

Section 2.8.2 of this dissertation, so the input cone of a vertex includes all of the

vertices that represent gates that affect the output value of the gate. Figure 4.1

presents a conceptual diagram of an input cone.

Figure 4.1: Conceptual Description of Input Cone

149

Output Cones

The output cone of a vertex v is defined by all of the vertices between v and the

Circuit’s primary outputs. By ordering vertices based on their sorted output weight

lists, the output cone is efficiently considered when ordering two vertices. If the

output cones of the vertices differ in any way, that will be reflected in the weight that

is assigned to the vertices.

Figure 4.2 presents a conceptual diagram of an output cone. Note that the output

cone actually considers the input cones of each of the vertices in the output cone.

This provides extensive information for ordering vertices.

Figure 4.2: Conceptual Description of Output Cone

The following ordering measures are applied to determine sorting precedence.

150

First Pass Vertex Precedence Rules:

1. vertex information: local information about the vertex, considered in the fol-

lowing order:

(a) vertex functionality

(b) number of inputs

(c) number of outputs

2. input weights: the weights of the inputs to the vertices under comparison. This

information succinctly considers all vertices between the circuit inputs and the

current vertex (the input cone), because all lower-level information is encapsu-

lated in the weight of a vertex.

After the first pass of vertex weighting, each vertex has a weight that represents

its place in the circuit. Example 1 demonstrates the weighting of a circuit graph

in which only vertex information is necessary to order and weight all vertices in the

circuit graph. Example 2 involves a circuit graph that requires that input weights

be considered to accomplish the weighting. In cases in which the local information is

not sufficient to sort a set of vertices, they are all assigned the same weight, and the

other weights that need to be assigned to those vertices are “saved” until the second

pass.

Second Pass Vertex Precedence Rules:

1. output weights: the weights that were assigned in the first pass are now used to

resolve sorting conflicts. This comparison encapsulates the comparison of the

151

output cones of the vertices.

2. arbitrary ordering: vertices that are indistinguishable with respect to global

circuit structure are arbitrarily sorted and weighted.

The two situations that are resolved during the second pass are examined in two

examples. Example 3 illustrates resolving conflicts by investigating the output weights

of the unsorted vertices. Example 4 includes two vertices that are precisely identical

within the circuit, so it is necessary to arbitrarily order them to ensure that each

vertex has a unique weight.

Example 5 demonstrates a situation in which two vertices are indistinguishable by

only two passes through the circuit graph, though the vertices are actually different

within the circuit graph. This situation can result in more than one identifier for the

same structure, as discussed in Section 4.1.

Example 1: First Pass Weighting with Local Vertex Information Consid-

eration

The circuit graph in Figure 4.3a has a simple structure with an easily defined vertex

ordering. This example demonstrates the use of vertex functionality to sort the

vertices and the use of the number of outputs to resolve conflicts between gates of

the same functionality.

Level 0 First, the inputs (all vertices at Level 0) are assigned weights. The three

vertices, a, b, and c, perform identical functionality; they are all inputs to the circuit.

Therefore, they cannot be sorted by functionality but are instead sorted in ascending

152

Figure 4.3: Example 1: First Pass Weighting with Local Vertex Information Consid-

eration

153

order by number of outputs. Weights are assigned to the sorted list of vertices, so

Vertex a is given weight 0, Vertex b weight 1, and Vertex c weight 2. Figure 4.3b

shows the circuit graph after Level 0 weight assignment.

Level 1 At Level 1 of the circuit graph, the three vertices have three different

functionalities, so sorting them is trivial. Table 4.1 shows the vertex functionality

precedence ordering. Vertex or2a has the lowest precedence so it is assigned weight

3. Vertex not] a has the next highest precedence and is assigned weight 4, and Vertex

and2a is given weight 5 because it has the highest precedence. Figure 4.3c shows the

circuit graph after assigning weights to the vertices at Level 1.

Level 2 The top level of the circuit graph contains only one vertex, so sorting is

not necessary. Vertex and3a is assigned the last weight, weight 6. Figure 4.3d shows

the weighting of all of the vertices in the circuit graph.

Example 2: First Pass Weighting with Input Weight Consideration

If the circuit graph in Figure 4.3a is modified slightly so that two of the Level 1

gates are “0R2” gates, then it is necessary to consider input weights to sort those

vertices. The modified circuit graph is presented in Figure 4.4a. The vertices on Level

0 are assigned the same weighting as in the previous example, so the result of that

weighting is shown in Figure 4.4b.

Level 1 The functionality of Vertex notIa has a lower precedence than either Vertex

or2a or Vertex or2b, so it is given weight 3.

154

 ((1)

Figure 4.4: Example 2: Second Pass Weighting With Input Weight Consideration

155

When Vertex or2a and Vertex or2b are compared by vertex functionality (includ-

ing number of inputs) and number of outputs, no difference is found that can guide

the sorting of one over the other. The second vertex ordering criterion, input weights,

must be applied.

The inputs of each vertex are sorted by weight, giving Vertex or2a the weight list

[0, 1] and Vertex or2b the weight list [1, 2]. An iterative comparison of these lists

terminates on the first element because 1 > 0, so or2a is assigned the next weight,

4, and or2b is assigned weight 5. The result of Level 1 weighting is shown in Figure

4.4c.

Level 2 Again, with only one vertex on Level 2, no sorting is necessary, so Vertex

and3a is assigned weight 6. Figure 4.4d shows the final weighting of the circuit graph.

Example 3: Second Pass Weighting with Output Weight Consideration

When the information local to the vertices is not sufficient to order them, it is nec-

essary to consider the structure of the surrounding circuit graph. Starting at the

outputs, unsorted vertices are ordered by sorting and comparing their output weights.

The circuit graph in Figure 4.5a is an example of a graph which requires the

application of this precedence criterion. Figure 4.5b shows the vertex weights after

the first pass through the circuit graph. There are two sets of vertices that have

identical weights: a and c, and xor2a and xor2b.

Second Pass: Output Weight Consideration Resolution of conflicts begins at

the outputs of the circuit graph, and all conflicts at each level are resolved before

156

notla andZa

6 7

nor2a

9 (d)

Figure 4.5: Example 3: Second Pass Weighting with Output Weight Consideration.

157

proceeding any further toward the inputs. In Figure 4.5b, all vertices on Levels 3 and

2 have been sorted by the first pass, so the second pass proceeds to Level 1, where

xor2a and xor2b have both been assigned weight 3.

Level 1 Vertices xor2a and xor2b can be ordered by sorting and comparing the

weights of their outputs. xor2a’s sorted output weights are [6, 7] and xor2b’s sorted

output weights are [5, 7], so xor2a is assigned the higher weight of 4. Figure 4.5c

shows the circuit graph with the new Level 1 weights.

' Level 0 The next set of identically-weighted vertices to resolve is on Level 0: a

and c. The weights of the vertices at Level 1 now allow an unambiguous sorting and

vertex weighting, assigning a the higher weight of 1. Figure 4.5d shows the completely

weighted circuit graph after the second pass.

Example 4: Second Pass Weighting with Arbitrary Ordering of Identical

Vertices

Occasionally, it is not possible to sort vertices deterministically because they perform

identical functionality in isomorphic locations within the circuit graph. For instance,

the circuit graph in Figure 4.6a has identical halves connected in the center at xor2b.

As a result of this symmetry, there are several sets of vertices that will have identical

weights after the first pass. The weights after the first pass can be seen in Figure

4.6b.

158

1
T
L
“
.

2

Figure 4.6: Example 4: Second Pass Weighting with Arbitrary Vertex Ordering Re-

quired

159

Second Pass: Arbitrary Ordering

Resolution of identically weighted vertices begins at the outputs (Level 2) and pro-

ceeds toward the inputs.

Level 2 The two vertices on Level 2 cannot be sorted because they perform identical

functionality and occupy equivalent locations within the circuit graph. Therefore, the

order in which their weights are applied is not significant. Arbitrarily, Vertex and2a

may be assigned the higher weight of 8 (Figure 4.6c).

Level 1 and 0 Sorting the vertices at Levels 1 and 0 proceeds as it did in Example

3, because now the vertices may be sorted based on output weight. In this way, the

arbitrary decision made at the highest level of the circuit graph propagates throughout

to maintain consistency. The weighted circuit graphs after the weighting of Levels 1

and 0 are shown in Figures 4.6d and 4.6e, respectively.

Example 5: Second Pass Weighting with Arbitrary Ordering of Distinct

Vertices

The two passes encompass only the information that is “visible” from each of the

vertices, which includes the input cone and the output cone for each of them. If the

circuit graph is very shallow, it may be necessary to arbitrarily order two distinguish-

able vertices.

For instance, the circuit graph in Figure 4.7a demonstrates this difficulty. Figure

4.7b shows the circuit graph after weighting by the first pass. There are two vertices

160

“
v
.

0
:
.

0
,
.

0
e

A

9
9

v

‘ I I

9 g
o

9 O

A
v

v

‘ I I

6 g
o

9 0

A

O

V

G

‘
0

:
0

)
0 0

A

0
.
.
v

Figure 4.7: Example 5: Second Pass Weighting with Arbitrary Ordering of Distin-

guishable Vertices

161

(i, j) that currently have the same weight, so those must be resolved during the second

pass.

Second Pass: Arbitrary Ordering

Resolution of identically weighted vertices begins at the outputs (Level 1) and pro-

ceeds toward the inputs.

Level 1 The two unordered vertices on Level 2 cannot be deterministically sorted

because they perform the same functionality. Although the surrounding circuit graph

distinguishes them, the difference cannot be detected by only two passes through the

circuit graph. Therefore, the arbitrary decision will result in one of the weightings

presented in Figure 4.7c or Figure 4.7d.

This will result in two difi'erent identifiers that represent the same circuit graph

structure, as discussed in Section 4.1.

4.2.3 Correctness of Vertex Weighting

Case Analysis for Vertex Weighting

If two arbitrary vertices u and v on a level i are distinguished by local (vertex)

or surrounding (circuit) structure, then they may be ordered by the feature that

distinguishes them. This ordering is the basis for the vertex weighting technique for

developing a structural identifier for circuits or unlabeled directed acyclic graphs.

162

First Pass The following five cases are sufficient to order two arbitrary vertices u

and v on a level i for the purpose of weight assignment during the first pass. The

relationships between u and v are based on local information about u and v, such

as functionality, number of inputs, number of outputs, and global information about

the structure of the circuit between the inputs to the circuit and Level i.

When two arbitrary vertices u and v are distinguishable by the first or second pass,

let u indicate the vertex that is ordered less significantly without loss of generality.

The following cases can be seen applied in the vertex weighting Examples 1, 2, 3, 4,

and 5.

First Pass Case Analysis:

Case 1.1: Vertices u and v have different functionality labels and may be sorted

in ascending order by functionality labels. u.weight < v.weight.

Case 1.2: Case 1.1 is false and vertices u and v do not have the same number

of inputs, then they may be sorted in ascending order by number of inputs.

u.weight < v.weight.

Case 1.3: Cases 1.1 and 1.2 are both false and vertices u and v have unequal

numbers of outputs then they may be sorted in ascending order by number of

outputs. u.weight < u.weight.

Case 1.4: Cases 1.1, 1.2, and 1.3 are all false and u and v have difl'erent sorted

input weight lists then they may be sorted in ascending order by the first unequal

input weight. u.weight < u.weight.

163

0 Case 1.5: Cases 1.1, 1.2, 1.3, and 1.4 are all false. u.weight = v.weight.

If local information (Cases 1.1, 1.2, and 1.3) is not sufficient to order u and v, then

more comprehensive information about the circuit structure must be applied (Case

1.4). The input cone describes all structural information between the inputs (Level

0) of the circuit and the vertex v. Input cones are efficiently compared by comparing

the sorted input weight lists of u and v. If the structure of the input cone differs,

then the sorted input weight lists will differ and the vertices will be weighted in Case

1.4. If the input cones are not sufficient to order the vertices (Case 1.5), then they

are assigned the same weight and will be resolved during the second pass.

Second Pass Resolution of vertex weights during the second pass begins at the

vertices of the circuit at the highest level. Case 2.1 considers vertices that have

already been deterministically assigned an order by the first pass. Case 2.2 considers

the ordering of the vertices by considering their output cones. The output cone

represents global circuit structure that affects vertex v because the input cone of v is

necessarily included in the input cone of every vertex to which v is an input.

When Level i is being considered during the second pass, all vertices on Level

i+1 have been assigned a unique weight that considers their input and output cones.

Thus, any structural information that affects the vertex v has been encapsulated and

can be used to resolve identical weights remaining after the first pass. The following

cases can be seen applied in Examples 3, 4, and 5.

Second Pass Case Analysis:

0 Case 2.1: u.weight < v.weight.

164

0 Case 2.2: Case 2.1 is false and u and v have different sorted output weight lists.

u.weight < v.weight. Consider Figure 4.5.

0 Case 2.3: Cases 2.1 and 2.2 are both false. u.weight < u.weight (arbitrarily).

Consider Figure 4.6.

Unique Vertex Weighting

Theorem 4.1 Each vertex in the circuit graph G is assigned a unique weight based

on the structure of the circuit graph.

Proof by induction:

Base case: the vertices at Level n whose local information and input cones are

identical are indistinguishable. Therefore, their weights are interchangeable without

loss of uniqueness. Thus an arbitrary assignment provides each vertex with a unique

weight.

Inductive Hypothesis: For Level i assume that every vertex from Level i + 1 to

Level n has been assigned a unique weight.

Inductive Step: Each vertex at Level i can be assigned a unique weight based upon

the structure of the circuit.

For any two vertices at Level i which are not already ordered (by the first pass),

if the sorted output weight lists are different then the vertices are distinguishable and

their weighting is deterministic. Otherwise, the vertices are indistinguishable with

respect to local information, input cones, and output cones, and are arbitrarily ordered.

Thus, a unique weight is assigned to each vertex.

165

Each vertex in the circuit graph is assigned a unique weight based on the struc-

ture of the circuit graph.

4.2.4 Algorithm

Figure 4.8 describes the vertex weighting algorithm.

Details and Complexity

First Pass for Vertex Weighting

0 Step 0: weight <— 0, curWeight (— 0

Initialize the weight counter (weight) and the current weight counter

(curWeight). The current weight counter allows “saving” of weights for as-

signment during the second pass of the algorithm.

0 Step 1: foreach level i of the circuit graph G

Comparison of vertices is performed on a level-by-level basis to reduce the size

of the set to be ordered. There are at most n levels, so this step is 0(n).

0 Step 2: sort inputs of each vertex on Level i by weight

The second sorting criterion requires that the inputs must be sorted by weight

so the comparison may be done. There may be it inputs to each vertex, so this

step is order O(n log n) using the Quicksort algorithm.

0 Step 3: sort vertices in Level i in increasing order by the following

criteria:

166

Algorithm for Circuit Graph Vertex Weighting

First Pass for Vertex Weighting

0. weight (— 0, curWeight +— 0

1. foreach level i of the circuit graph G (increasing i):

2.

3.

9

sort inputs of each vertex on level i by weight.

sort vertices in level i in increasing order by the following criteria:

local vertex information (functionality, number of inputs/outputs)

input weights

. level [i].vertex[0].weight (— weight

. for (j = 1;j < level]i].order;j++)

6. if (level[i].vertex[j] 76 level]i].vertex[j — 1]) then curWeight (— weight

7. levelIi].vertex[j].weight (— curWeight

8. weight (— weight + 1

End for j.

10. curWeight (— weight

11. End foreach level.

Second Pass for Identical Vertex Weighting

0. foreach level i of the circuit graph G (decreasing i):

1.

2.

3.

4.

8.

9. E

sort outputs of each vertex on level i by weight.

weight (— net[0].weight

sort vertices with identical weight in increasing order by the following criterion:

output weights

for (j = 1;j < levelIi].order;j++)

5. if (level[i].vertex[j].weight S level]i].vertex[j — 1].weight)

6. (level[i].verteij].weight (— levelIi].verteij — 1].weight) + 1

7. End if.

End for j.

nd foreach level.

Figure 4.8: Algorithm for Circuit Graph Vertex Weighting.

167

1. vertex information: functionality, number of inputs/outputs

2. input weights

An encoding of this information can be derived such that a sorting of that

encoding may occur. To prevent excess computation, these criteria may be

applied in order and comparison may stop when the vertices have been ordered.

Therefore, the complexity of this step is O(n log it) using the Quicksort algo-

rithm.

0 Step 4: levelIi].vertex[0].weight (— weight

Set the weight of the vertex with lowest precedence to be value of weight.

0 Step 5: for (j = 1;j < level[i].order;j + +)

Assign a weight to each vertex on the level. A vertex may only belong to one

level, so on average, this step will apply to n/i vertices, but worst case analysis

is 0(n).

0 Step 6: if (levelIi].verteij] 94 levelIi].vertex[j— 1]) then curWeight (— weight

If the vertices are not equivalent (based on the criteria in Step 2), then the

curWeight variable is set to the weight variable, which has been incremented

as each vertex has been visited. If they are equivalent, then curWeight is not

changed, thus saving the weight value for assignment during the second pass.

0 Step 7: levelIi].verteij].weight (— curWeight

Assign the weight of the vertex to be the value of curWeight.

168

0 Step 8: weight (— weight + 1

Increment the value of weight.

0 Step 9: End for loop of vertices on Level i.

The possible number of vertices on any level is bounded by the number of

vertices in the circuit graph, n. The operation performed within this 100p was

0(n), so the complexity of this step is 0(n).

0 Step 10: curWeight (— weight

Reassign curWeight to the current value of weight, so vertices are assigned

the correct weight. At the beginning of each level, curWeight and weight are

always equivalent.

0 Step 11: End foreach level.

The vertices on each level were sorted only within that level. The worst case

situation would occur if all of the vertices were on a single level, so the com-

plexity of each level (possibly 77.) is the same as the complexity of the sorting

step, O(n log n). Overall, the complexity of the first pass is (’)(n2 log n).

Second Pass for Identical Vertex Weighting

0 Step 0: foreach level i of the circuit graph G (decreasing i):

To resolve the conflicts between vertices that appear to be identical when in-

formation is only available about the vertex itself and its neighbors (during

the first pass), it is now possible to resolve these conflicts with the weighting

information of the outputs.

169

F
‘
M
‘
m
‘
fi

0 Step 1: sort outputs of each vertex on Level i by weight

To compare the output weights of two vertices, the weights must be sorted. The

possible number of outputs to be considered is potentially n, and their sorting

is O(n log n) using the Quicksort algorithm.

 0 Step 2: weight 4— net[0].weight

Set the current weight to be the same as the weight of all of the vertices in the

I
P
5
4
.
m
a
m
-
1
’
1

set.

0 Step 3: sort vertices with identical weight in increasing order by the

following criterion:

— output weights

The output weights have already been sorted for each vertex, so a sorting of

the vertices by considering these weights is O(n log n) using the Quicksort al-

gorithm.
0 Step 4: for (j = 1;j < levelIi].order;j++)

Each vertex v on the level must be assigned a unique weight, according to the

sorted order.

0 Step 5: if (level[i].vertex[j].weight S level[i].vertex[j — 1].weight)

Step 6: (levelIiI.verteij].weight <— levelIi].verteij — 1].weight) + 1

Step 7: End if

If the current vertex has a weight that is less than that of the previous vertex,

then set the weight of the current vertex to be one higher than the previous

170

vertex. This ensures that every vertex has a unique weight. The weight values

that will be assigned were “saved” during the first pass, so no duplicate weights

may occur.

0 Step 8: End for j

The for loop started in Step 5 assigns a weight to each vertex on the level (if

necessary). There may be no more than n vertices on the level, so the complexity

of this simple comparison and assignment loop is O(n).

0 Step 9: End foreach level.

The sorting step (Step 3) is the most complex, requiring 0(n log n) time for the

sorting. There may be at most n levels, so the overall complexity is O(n2 log n).

Overall, the complexity of determining an appropriate ordering and weighting the

vertices in a circuit graph is dominated by the cost of sorting the vertices on each

level which must be done one for each of possibly n levels. The complexity of the first

and second pass is equivalent and additive, so the overall complexity of the algorithm

is 0(n2 log n).

Correctness This algorithm considers each of the five distinguishable cases dis-

cussed in the case analysis performed in Section 4.2.3. Step 3 of the first pass con-

siders each of Cases 1.1, 1.2, and 1.3, ensuring that vertices are ordered based on the

first pass precedence criteria. Step 3 of the second pass sorts the vertices based on

the second pass precedence criteria, Cases 2.1, 2.2, and 2.3. Because this algorithm

implements the cases exactly, it correctly performs vertex weighting.

171

F
M
“
n
u
t
-
q

4.3 Structural Identifier Generation

The generation of the actual structural identifier is the final step in the process. This

step is relatively straightforward because the ordering of the vertices has already

been established. All that is necessary is to recursively build the string identifier. For

the purposes of this dissertation, a prefix-form logic formula structural identifier is

defined.

Nets

Unless the circuit graph is described by a pure tree structure, in which each vertex has

only a single output, there are structures whose functionality feeds into two separate

vertices in the circuit graph. These are referred to as nets in this thesis. For instance,

in Figure 4.3a on page 153, the vertices labeled b and c are examples of nets.

To preserve the overall structure of the circuit, it is important that nets are iden-

tified and represented appropriately. Simply reproducing the entire structure of a net

each time it occurs in the representation ignores the interconnection information and

results in an inaccurate description.

Nets are represented within the identifier as nX, where X is the number of the net.

Nets are weighted as are all other vertices, so their numbering and location in the

identifier are well-defined. Nets are numbered during the second step of structural

identifier generation: the identifier generation stage.

Figure 4.10 on page 176 presents an implementation of a 2-bit full adder. The

structural identifier generated by the example algorithm in Section 4.3.1 for that

172

particular implementation of a 2-bit adder is:

(or2(and2(n0, n5), and(n6, n7)), xor2(n0, n5), xor2(n1, n4))

n0:or2(and2(n1, n4), and2(n2, n3)) n1:xor2(n2, n3) n2:X n3:X n4zx

n5:xor2(n6, n7) n6zx n7:X

Vertex Identifiers

The identifiers for the three types of circuit graph vertices and the circuit graph itself

are described below.

0 Nets: If the vertex has more than one output, then it is assigned a label “nX”,

where X is the current net number. Each net is assigned a unique, strictly

increasing net number starting with 0.

Input Identifiers: The identifier of a single-output input is simply “X”. That

identifier carries all necessary information about the input vertex v, including

that v is an input and that v has only one output. If an input has more than

a single output, then the vertex is treated as a net and will be assigned the

appropriate net number.

Internal Vertex and Output Identifiers: The first part of an identifier for a

vertex is the vertex functionality label. If the vertex has any inputs, then the

functionality label is followed by a left parenthesis, then by the identifiers from

each of its input vertices (in order of weight), and finally by a right parenthesis.

Circuit Graph Identifiers: The entire circuit graph may be described by deter-

mining the identifier for a null-functionality vertex that has all outputs of the

173

circuit graph as inputs. This identifier is followed by the description of each of

the nets in the following format: “nX: [identifier of nX]”.

4.3.1 Example Algorithm

The algorithm in Figure 4.9 is an example of a simple algorithm that could be used

to generate structural identifiers for weighted circuit graphs. The identifier generated

is in the form of a prefix-order logic formula.

4.3.2 Structural Identifier Example

This example demonstrates the application of vertex weighting and identifier genera-

tion together on an actual circuit, the 2-bit adder shown in Figure 4.10. The circuit,

transformed into circuit graph form, is presented in Figure 4.11a. The circuit graph

is displayed with the vertices clearly separated by level to clarify the vertex weighting

procedure.

Level 0 The weighting of the Level 0 vertices is complicated by the fact that none

of the vertices may be immediately sorted. These five inputs (A0, B0, A1, B1, C0)

are all weighted 0, and the weights 1, 2, 3, and 4 are saved to be assigned during the

second pass. Figure 4.11b shows the result of Level 0 weighting.

Level 1 At Level 1, the vertices may be sorted by considering functionality and

output information. There are two XOR2 gates and two AND2 gates, so the vertices

of each pair is assigned the same weight (5 and 7) appropriately. Figure 4.12a shows

174

r'l

I

Example of a Canonical Identifier Generation Algorithm for

Weighted Circuit Graphs

0. nNets (— 0

1. foreach output vertex i of G:

2. G.output[i].ident <— getVertexIdent(G.output[i])

3. End foreach.

4. G.ident +—“(G.output[0].ident, G.output[1].ident, , G.output[n].ident)

n0 : n0.modIdent n1 : n1.modIdent nx : nx.modIdent”

subroutine getVertexIdent(vertex v):

0. if vertex v.ident 74 NULL then return v.ident.

1. if vertex v has no inputs then

2. v.ident (— “X”

3. else

4. v.ident (— v.function + “(“

5. sort inputs of v in decreasing order by weight

6. v.ident (— v.ident+ getVertexIdent(v.inputI0]) + “,”

7. foreach input i of v:

8. v.ident (— v.ident+ getVertexIdent(n.input[i])

9. End foreach input i.

10. v.ident (— v.ident + ”)”

11. End else.

12. if vertex v has one output then

13. return v.ident.

14. else

15. v.modIdent (— v.ident

16. v.ident (— “n” + nNets

17. nNets (— nNets +1

18. End else.
Figure 4.9: Example of a Canonical Identifier Generation Algorithm for Weighted

Circuit Graphs.

175

\

°'" 1 so

7

:3 CD “

L—\
_/

l .
II 31

g:)1) "D—

———‘} "D— cout

Figure 4.10: Full Equivalence Class Example: 2-bit adder

the result of this weighting.

Level 2 Only vertex functionality is necessary to order the vertices on Level 2 for

weighting. AND2 has higher precedence than XOR2 (Table 4.1).

Level 3 Level 3 has only one vertex, so no ordering is necessary before the weight

of 11 is assigned to the OR2 gate.

Level 4 The sorting of the vertices of Level 4 is accomplished by simple functionality

precedence.

Level 5 The single vertex at Level 5 is assigned the highest weight, and the complete

weighting after the first pass through the circuit graph is given in Figure 4.12b.

176

"i

r
"

Second Pass It is necessary to make a second pass through the circuit graph to

resolve the conflicts between any vertices that had been assigned the same vertex.

After the first pass, all vertices have a weight, so that weight may be used to determine

an ordering for the conflicting vertices.

All vertices down to Level 1 have a unique weight assigned to them, so the second

pass begins vertex weighting at Level 1.

Level 1 The vertices on Level 1 consists of two pairs of vertices with equal weights.

Within the AND2 pair, the vertex on the left has a higher output weight than the

vertex on the right, so they are assigned weights 8 and 7, respectively. Similarly with

the XOR2 pair, the output of the vertex on the left has a higher weight than the

output of the vertex on the right, so they are assigned weights 6 and 5, respectively

(Figure 4.13a).

Level 0 The vertex C0 has the highest sorted output weight lists, so is assigned the

highest weight on the level, 4.

It is clear that the vertices A0 and B0 have lower sorted output weights ([5,7])

than the vertices A1 and B1 ([6,8]), so A1 and B1 may both assigned the weight value

2. However, A1 and B1 are identical within the structure of the circuit, so they are

arbitrarily ordered, with A1 assigned the value 3, and B1 assigned the value 2. A0

and B0 are also identical, so they are also arbitrarily ordered. The final weighting of

the circuit graph is presented in Figure 4.13b.

177

29:9“ 393°
...2 ...,. “3° ...2 ...2 “3°

9 ...2 G ...a

(a) (b)

Figure 4.11: Vertex weighting for the circuit graph of the 2-bit full adder in Figure

4.10.

178

BO C0 BO (1)

0 0 0 0

and2 xon 30112 and2 xor2 and2

7 5 7 7 5 7

. I ' ll

and2 x012

""2 IO 9

(a) (b)

Figure 4.12: Vertex weighting for the circuit graph of the 2-bit full adder in Figure

4.10.

179

BO (1) C0

0 0 4

and2 xor’Z and2 and2 xor’z and2

8 6 7 8 6 7

' ‘I ' w

and2 xorz and2 1:012

10 9 10 9

(a) (b)

Figure 4.13: Vertex weighting for the circuit graph of the 2-bit full adder in Figure

4.10.

180

Identifier Generation

Identifier generation for this example is performed by the example algorithm in Figure

4.9. The results of this generation are displayed in Table 4.2.

Outputs The 2-bit full adder in Figure 4.10 has three outputs, represented by the

vertices weighted 14, 12, and 9. Determination of the identifier begins with these

vertices, in descending order of weight. These vertices will be referred to by their

weight to allow them to be indicated clearly.

Vertex 14 has two input vertices, so those are sorted by weight, giving the result of

[13, 8]. The identifier for Vertex 13 must be generated first. The recursive procedure

considers the inputs of Vertex 13 and orders those [11, 6]. Vertex 11 is a net, so it is

assigned the first net number, 0, and given the identifier “n0”.

The module identifier for net n0 must be generated, so the traversal continues

through the circuit graph. Vertex 10 is considered next, and the identifier “and2(n1,

n2)” is generated for Vertex 10. Vertex 5 was given the net label “n1”, and Vertex 4

was given the net label “n2” because that is the order in which they were encountered.

The identifier eventually created for net n0 is “or2(and2(n1, n4), and2(n1, n2))”.

During the consideration of the output Vertex 14, Vertices 11, 5, B0, A0, and C0

are all identified as nets, and assigned identifiers n0, n1, n2, n3, and n4, respectively.

This depth-first procedure continues until each vertex has been assigned an iden-

tifier. Each of the outputs is processed in this way. If a vertex is encountered that

already has an identifier assigned, the identifier does not need to be recalculated and

is simply returned. The results of the vertex identifier generation are presented in

181

I Weight I Vertex rLevel II Inputs I Identifier I Net Label I

0 A0 0 X n3

1 B0 0 X n2

2 B1 0 X n7

3 A1 0 X n6

4 C0 0 X n4

5 xor2 1 1, 0 xor2(n2, n3) n1

6 xor2 1 3, 2 xor2(n6, n7) n5

7 and2 1 1, 0 and2(n2, n3)

8 and2 1 3, 2 and2(n6, n7)

9 xor2 2 5, 4 xor2(n1, n4)

10 and2 2 5, 4 and2(n1, n4)

11 or2 3 10, 7 or2(and2(n1, n4), and2(n2, n3)) n0

12 xor2 4 11, 6 xor2(n0, n5)

13 and2 4 11, 6 and2(n0, n5)

14 or2 5 13, 8 or2(and2(n0, n5), and2(n6, n7))

top 6 14, 12, 9 (or2(and2(n0, n5), and2(n6, n7)),

xor2(n0, n5), xor2(n1, n4))

Table 4.2: Vertex Identifiers for Circuit Graph in Figure 4.10

Table 4.2.

4.4 Subcircuit Equivalence Classes

The structural identifier can be used to determine an equivalence relation to parti-

tion the subcircuits generated by candidate subcircuit enumeration into structural

equivalence classes. There are several reasons why finding these equivalence classes

is desirable.

Equivalence classes allow syntactic matching to be performed transparently as part

of the candidate subcircuit enumeration process. Each time a subcircuit is identified

as belonging to a structural equivalence class, it is identified to be syntactically, and

therefore semantically, equivalent to every other subcircuit in that equivalence class.

182

5
"
“
?

A subcircuit inherits all matching information from its equivalence class. Only

one member of each equivalence class must be tested for functional equivalence to

library modules. This saves time during module identification. After one instance

has been tested, whenever another member of that equivalence class is located in the

circuit, its equivalence to a functional module is already known.

The set of structural equivalence classes generated by the structural identifiers

created using the ordering presented in this chapter is not necessarily minimal. There

may be more than one identifier that represents a single circuit structure. However,

all of the subcircuits within an equivalence class will be identical, and the number of

equivalence classes that hold a single circuit structure is generally small (one or two),

so equivalence classes provide a useful technique for improving the performance of

module identification.

4.4.1 Local Information

To apply structural identifiers to the subcircuits generated by candidate subcircuit

enumeration, a few preliminary steps are necessary to prepare the subcircuit for

identifier generation. The information used to build the identifier is derived entirely

from the structure of the circuit being examined, so the information 'in a subcircuit

must be local with respect to that subcircuit, not the entire circuit graph.

If the circuit to be explored, H, is a subcircuit of another circuit G, only the

information local to the subcircuit is considered. For instance, if a gate has two

outputs in G, but only one of those outputs appears in H, then the gate is considered

183

to be a single output gate for the purpose of vertex weighting and identifier generation

Vertex level is an example of local circuit information. Although a vertex may be

Level 5 in the original circuit, it may only be Level 4 in a subcircuit that does not

include the inputs to the original circuit. It is necessary to determine the local level

for each vertex, to ensure that two structurally identical subcircuits are represented

identically as circuit graphs.

In addition, the inputs and outputs of the circuit must be specified as such. Inputs,

outputs, and levels can be determined by iterating through the constituent vertices

and declaring vertices with no local inputs as inputs and those with no local outputs

as outputs. Level can be determined by labeling the local inputs as Level 0, the levels

of their outputs as 1, and so on, labeling each vertex with the highest level at which

it is encountered during this traversal.

All circuits considered for identifier generation are expected to contain only fully-

specified vertices. That is, all inputs of internal gates must be present. The set of

outputs considered during vertex weighting contains only those outputs that are also

within the subgraph.

4.4.2 Correctness of Structural Equivalence Classes

Two graphs G1 and G2 with adjacency matrices A1 and A2 are isomorphic if there

exists some permutation P for which P(Al) = A2.

Two circuits Cl and C2 with augmented adjacency matrices (Definition 4.1) A1

and A2 are structurally identical (isomorphic) if there exists some permutation P for

184

which P(Al) = A2.

For clarity, consider the structural identifier of a circuit to be an augmented ad-

jacency matrix that describes the graph. The unique weights assigned to each vertex

during vertex weighting define a specific permutation of the vertex ordering for the

augmented adjacency matrix. Any legal permutation of an adjacency matrix still

represents the same graph; a single adjacency matrix can only describe a single graph

structure, by definition.

Non-isomorphic Circuits Must Have Different Identifiers

Theorem 4.2 If two augmented adjacency matrices A1 and A2 are identical then

the circuits CI and C] that they represent are structurally identical.

Proof: Assume that two circuits CI and 02 that are not structurally identical exist

for which the corresponding augmented adjacency matrices A1 and A2 are identical.

As O] and C2 are not structurally identical, there exists no permutation P of A2 such

that P(AI) = A2. Thus, A1 cannot be equal to A2, which contradicts the assumption

that A1 and A2 are identical. Hence, by contradiction, if two augmented adjacency

matrices are identical then the circuits that they represent are structurally identical.

For the purpose of defining subcircuit equivalence classes, it is vital that each

equivalence class contain only those graphs whose structure is isomorphic. Theorem

4.2 states that if the identifiers (adjacency matrices) are identical, then the graphs

must be identical. Therefore, two non-isomorphic graphs cannot be placed in the

same equivalence class (have the same identifier).

185

It is not possible for two non-isomorphic graphs to be represented by the same

adjacency matrix, so they may not be placed in the same equivalence class. This

is important, because it is necessary that no subcircuit be placed into an incorrect

equivalence class. That situation would result in incorrect identification of that sub-

circuit.

Each Subcircuit Structure is Generally Represented by Exactly One Iden-

tifier

Although not strictly necessary for the reverse engineering of digital circuits, it is

interesting to note that the vertex weighting assigned by the weighting algorithm

usually identifies a particular permutation of the vertices based on the structure of

the graph, allowing fast isomorphism testing.

The weighting proposed in this chapter restricts the number of vertex permuta-

tions represent isomorphic graphs, so the process provides a significant improvement

in the context of module identification. The number of vertex permutations that may

be defined for a subcircuit is less than or equal to the number of arbitrary decisions

that are made. Although arbitrary decisions may arise frequently in general directed

acyclic graphs, they are uncommon in this domain due to vertex functionality labels

and the irregular nature of subcircuits.

186

Original Candidate Contained

Circuit Gates Subcircuits Subcircuits

number I classes time number [classes I time

1-1m Adder 8 18 15 0.01 6 6 <0.01

2-bit Adder 15 114 79 0.04 24 17 0.01

3-bit Adder 22 522 339 0.20 66 41 0.04

z4ml3 39 185,196 164,172 177.11 281 275 0.24

C17 24 3,951 2,937 1.4 1199 1021 0.47

majority 24 12,171 12,171 5.25 993 463 0.61

b1 25 19,980 10,290 8.90 143 105 0.08

cm138a 33 726,032 124,174 516.56 26,652 6402 25.66

cm152a 35 59,962 15,692 44.90 6,484 6158 6.49

Table 4.3: Structural Equivalence Classes Applied to Subcircuits and Contained Sub-

circuits

4.5 Results

Experiments were run on a Sun Sparc Ultra-2 server with 1024MB of memory. Results

are shown in Table 4.3 for several small circuits from the LogicSynth93 benchmark

suite [82] (see Chapter 5 for discussion application on larger circuits). Times are

given in CPU seconds. Refer to Table 3.1 on page 136 to see the execution effort of

performing subcircuit enumeration without structural equivalence classes.

 These results demonstrate the reduction in the number of subcircuits that must

be tested for semantic equivalence to known modules. By applying a solution to

the Subcircuit Identification problem to only one instance of each structural equiv-

alence class, the overall performance of the Module Identification can be improved

significantly, depending on the degree of regularity present in the circuit.

187

4.5.1 Implementation

To investigate the application of the structural equivalence classes within the Module

Identification Problem, the two steps of the structural identifier generation, vertex

weighting and identifier generation, have been implemented in the C programming

language. The implementation of the vertex weighting procedure follows the algo-

rithm presented in Section 4.2.4, and the identifier generation implements the example

algorithm in 4.3.

The vertex weighting and structural identifier generation techniques are applied

to the subcircuits generated by the code that implements the candidate subcircuit

enumeration technique described in Chapter 3. This allows the subcircuits to be

placed into equivalence classes, which are stored in a hash table with the structural

identifier as the key value.

Correctness

Vertex Weighting A case analysis of the vertex weighting technique has been per-

formed in Section 4.2.3. The implementation of the algorithm performs the sorting

based on the precedence criteria described in Section 4.2.2 by using case statements

to implement each individual criterion. Vertex weighting, based on the technique pre-

sented in Section 4.2 was performed by hand for many small circuits and these results

were determined to be equivalent to the results of executing the implementation on

the same circuits.

188

Structural Identifier Generation Again, many small experiments were per-

formed by hand to ensure that correct structural identifiers were generated for the

subcircuits.

A testing phase was conducted after the implementation of the two algorithms.

Once a subcircuit had been placed into an equivalence class, it was compared via a

backtracking breadth-first traversal, against all other members of the equivalence class

to ensure that they are all structurally equivalent. No subcircuits were incorrectly

placed.

Summary Although formal methods were not applied to ensure equivalence be-

tween the implementations and the algorithms performing the tasks necessary for

subcircuit equivalence classes, comparison of results with hand-determined results

and testing and verification within the implementations offer a great level of con-

fidence in the correctness of the implementations. These implementations provide

validation of the theory of structural equivalence classes.

4.6 Summary

This chapter has presented a technique for developing a structural identifier for a

digital circuit. By employing a strict precedence framework, the vertices within the

circuit graph that represents the circuit can be sorted so that each may be assigned

a unique weight. With the exception of vertices that perform identical functionality

with respect to the global structure of the circuit, this weighting will usually generate

189

identical weightings for structurally isomorphic circuits.

This weighting may then be applied within an identifier generation method to

develop a structural identifier. An identifier represents exactly one circuit structure.

Within the context of the Module Identification Problem, these structural identifiers

allow the candidate subcircuits generated by the technique in Chapter 3 to be parti-

tioned into structural equivalence classes so semantic matching may be performed on

only one instance of each equivalence class. This process simultaneously performs syn-

tactic matching and allows subcircuits to inherit information from their equivalence

class.

Although structural identifiers can become quite large, their application within

Module Identification is possible because the subcircuits to which they are applied

are generally small. Both vertex weighting and identifier generation are easily applied

to these subcircuits.

In addition, structural equivalence classes are equivalent to the template libraries

used within regularity extraction, and the members of the classes describe instances

of that template within the target circuit. Thus, by develOping these equivalence

classes, the first two steps of regularity extraction (Section 2.4.1) are solved.

190

Chapter 5

Practical Application of Techniques

It is apparent from considering the results presented in Sections 3.3 and 4.5 that

applying these techniques unmodified to the circuit to be reverse engineered is not a

feasible approach. Circuits of interest may be millions of gates in size, and considering

that the number of subcircuits can potentially suffer from exponential growth with

each additional vertex, circuits of this size cannot be handled by the techniques as

they have been presented thus far. However, this does not preclude the use of these

techniques in practical application. The techniques and guidelines presented in this

chapter make it possible to effectively apply subcircuit enumeration within Module

Identification of any size of circuit.

Details of a parallel implementation of the techniques are presented in Section

5.1. Section 5.2 discusses two methods of reducing the circuit graph order: prelimi-

nary partitioning and preliminary syntactic matching. A technique for reducing the

theoretical complexity and execution time of subcircuit enumeration is presented in

Section 5.3. Hierarchical module identification is presented in Section 5.4, and heuris-

191

tics for reducing the applications of Subcircuit Identification are discussed in Section

5.5. Section 5.6 summarizes the chapter.

5.1 Parallel Implementation

The solution to the subcircuit enumeration problem is “embarrassingly parallel”.

Each vertex of the circuit graph may be expanded individually, and this expansion

proceeds without interaction with any other expansion processes. By developing

a parallel implementation, the execution time required by subcircuit enumeration

technique can be vastly improved.

The computation effort can be divided into many smaller parts by expanding

each vertex of the circuit graph on individual processors to enumerate all candidate

subcircuits derived from that vertex. After each subcircuit is created and labeled

with a structural identifier, it can be returned to the server to be placed into the

proper subcircuit equivalence class for subcircuit identification.

The results of performing candidate subcircuit enumeration with a parallel im-

plementation of the Focused Enumeration Algorithm (Figure 3.15 on page 116) on

circuits in the LogicSynth Benchmark Suite [82] are presented in Figure 5.1. The

algorithm was implemented in C and uses the parallel capabilities of Parallel Virtual

Machine (PVM) 3.3 [73]. The experiments were run with a Sun Ultra 2 Model 2300

(dual 300mhz processors) with 1024MB of memory. The client machines included

Sun Ultra 103 and Sun Ultra 53.

The CPU execution times are in seconds, and represent the maximum time nec-

192

Original Candidate Contained

Circuit Gates Subcircuits Subcircuits

single parallel single parallel

number time max time number time max time

1-bit Adder 8 18 <0.01 <0.01 6 <0.01

2—bit Adder 15 114 <0.01 0.01 24 <0.01 0.01

3-bit Adder 22 522 0.04 0.03 66 <0.01 0.01

C17 24 3,951 0.16 0.08 1,199 0.05 0.02

majority 24 12,171 0.45 0.21 993 0.05 0.01

b1 25 19,980 0.75 0.57 143 0.01 0.01

cm138a 33 726,032 27.64 11.14 26,652 1.05 0.41

cm152a 35 59,962 2.27 1.78 6,158 0.24 0.11

z4ml3 40 185,196 14.64 6.89 281 0.07 0.05

x2 54 104,178,928 4282.80 2118.66 98,322 3.93 2.15

Table 5.1: Focused Enumeration Results of Parallel Implementation

essary to enumerate all of the subcircuits from any vertex. The execution time for

the smaller circuits suffered slightly due to the message passing overhead, but in the

larger circuits, execution time was significantly improved.

Most of the processing time for enumeration of subcircuits is confined to the

expansion of the vertices with the highest indices; these vertices are the ones which

have the most possible vertices to add because of Rule 1 (page 110). By performing

their expansion in parallel, overall execution time can be significantly reduced.

5.2 Circuit Graph Order Reduction

Candidate Subcircuit Enumeration performs an exhaustive generation of the interest-

ing subcircuits within the circuit. Therefore, as the order of the circuit graph grows,

the number of potentially interesting subcircuits can grow eXponentially. To allow

193

subcircuit enumeration to be applied in practice, the order of the circuit graphs to

be considered must be kept small (< 100 gates).

The following two techniques provide excellent methods for reducing the order of

the circuit graph without interfering with the effectiveness of the Module Identification

effort.

5.2.1 Preliminary Partitioning

Circuit partitioning is absolutely vital to applying candidate subcircuit enumeration

to real circuits. Partitioning allows divide—and-conquer approaches to be applied to

otherwise intractably large circuits, and allows many techniques to be applied more

swiftly to any circuit. Partitioning has been used to achieve higher quality results in

smaller time for standard cell placement, or to determine the appropriate partitions

to be designed as custom ASICs.

A considerable amount of research has focused on the develOpment of algorithms

to perform effective circuit partitioning. Most current algorithms are based on one

of three original circuit partitioning algorithms: Kernigan and Lin [67], Fiduccia and

Mattheyses [45], or Krishnamurthy [70] and have resulted in many useful partitioning

techniques that may be applied to reduce the complexity of module identification.

Several surveys are available [3,62]. Current research in partitioning techniques for

VLSI focuses on the partitioning of hypergraphs [26, 27,66], so to take advantage of

current techniques it would be necessary to describe the circuit as a hypergraph for

the purpose of preliminary partitioning.

194

Partitioning techniques for digital circuits focus on decomposing a complex sys-

tem into smaller parts, while minimizing the communication between partitions. The

result of this particular optimization is that functional modules, which are gener-

ally more strongly connected within themselves than to other modules, generally are

completely contained within a partition.

The advantage of partitioning the circuit previous to performing Module Identi-

fication is that it reduces the order of the circuit graph, thus greatly reducing the

number of candidate subcircuits that can exist within the circuit graph, yet it is not

likely to make partitions that would render functional modules unidentifiable.

5.2.2 Preliminary Syntactic Matching

It is possible that stock implementations of some basic modules exist within the

circuit. Syntactic matching techniques are very fast, so examining the circuit for

likely implementations of modules that may exist in the circuit is a reasonable first

step. Vertices that have been identified as being a part of a functional module need not

be considered for inclusion in other modules, thus reducing the number of remaining

subcircuits.

This technique may pose a difficulty if the circuit has been optimized so that the

functionality of a cluster of gates is shared by two modules. If the cluster has been

identified as being part of one of them, the second will not be located because those

vertices are not free to be part of a subcircuit. This situation could be detected by

an unreasonably high percentage of unmatched gates after module identification, and

195

would require intelligent conflict resolution techniques, most likely the consideration

of a human engineer.

5.3 Subgraph Order Limiting

Basic functional modules are rarely large; the largest modules are generally composed

of smaller modules. It is reasonable, therefore, to limit the order of enumerated

subgraphs to allow faster exploration of the circuit graph. Effort spent building

subcircuits with hundreds of gates is essentially wasted.

Allowing enumeration to include excessively large subcircuits precludes the appli-

cation of this technique to large circuits because the number of potential subcircuits

may grow exponentially with the size of the circuit. A better solution is to restrict

the number of vertices that may be part of a subcircuit.

When the module library is designed, an order limiting guideline may be deter-

mined for each, based on common implementations and designer input. This is a

preprocessing step that can make use of external knowledge. At runtime, the order

limit for the module identification may be set to be the highest suggested order limit

of the library modules of interest.

It is certainly possible that a module could have been designed with an excessive

number of gates to achieve obfuscation, redundancy, or some other design goal. In

this case, the module may not be identified as a functional module if the order limit

is imposed. The system or an engineer may make a decision to raise the order limit

after an exploration of the circuit based on the number of unmatched logic devices

196

remaining.

This heuristic is applied during steps 1 and 3 of the subgraphExpand subroutine

of the subcircuit enumeration algorithm described in Section 3.2.3. Before a vertex is

added to a subgraph, the subgraph is tested to determine whether the subgraph has

already reached the order or depth limit. These values are calculated as vertices are

added and stored within the subgraph, so only a simple equivalence test is necessary.

The algorithm with order limiting enforced is presented in Figure 5.1.

Order Limited Focused Enumeration Algorithm

0. Transform circuit into circuit G with unique vertex indices.

1. foreach v E V(G):

2. Create a subgraph H0 with V(Ho) (— v.

3. Determine f'R(H0).

4. expandSubgraph(Ho).

5. End foreach.

subroutine expandSubgraph(graph H,)

0. foreach vertex v,-+1 E TR(H,-) (Rule 1):

1. Create a subgraph H,“ such that V(H,+1 (— V(H,) + v,+1.

If order of H,“ exceeds order limit, discard H,“ and return.

2. Determine .FR(H,-+1).

3. Add vertices necessary to make H,“ into a subcircuit (Rule 2).

If order of H,“ exceeds order limit at any time, discard H,“ and return.

4. Output Hi“.

5. expandSubgraph(H’).

6. End foreach.
Figure 5.1: Algorithm for Order Limited Focused Enumeration.

Theoretical Complexity Improvement By enforcing an order limit on the sub-

circuits that may be produced, the number of possible subcircuits can be significantly

197

Original Candidate Order Candidate

Circuit Gates Subcircuits Limit Subcircuits

- number time number I time

3-bit Adder 22 522 0.04 10 28 0.01

C17 24 3,951 0.16 10 509 0.02

majority 24 12,171 0.45 10 1492 0.10

b1 25 19,980 0.75 10 4078 0.32

cm138a 33 726,032 27.64 10 2098 0.17

cm152a 35 59,962 2.27 10 1015 0.15

z4m13 40 185,196 14.64 10 823 0.07

decod 48 N/A - 10 7,450 0.97

decod 48 N/A - 20 30,584,750 1230.68

x2 54 104,178,928 4282.80 10 3826 0.71

rd53 89 N/A - 10 55,354 14.44

4b-alu 79 N/A - 10 4,722 0.97

4b-alu 79 N/A - 20 12,261,533 1926.01

cmb 86 N/A - 20 3,616,868 431.79

Table 5.2: Order Limited Focused Enumeration Results

reduced. In fact, the complexity of the subcircuit enumeration algorithm is no longer

exponential, because the size of the subgraphs is a constant value independent of the

number of vertices in the circuit graph. The complexity of the algorithm in Figure

5.1 is 0(2"), where c represents the order limit imposed on subgraph expansion.

The results of executing an implementation of the limited order focused enumer-

ation algorithm (Figure 5.1) on circuits in the LogicSynth Benchmark Suite [82] are

presented in Figure 5.2. The algorithm was implemented in C. The experiments

were run with a Sun Ultra 2 Model 2300 (dual 300mhz processors) with 1024MB of

memory.

198

r
-
T
fi
i

5.4 Hierarchical Module Identification

The execution effort to enumerate subcircuits can be greatly reduced by restricting

the order of the subcircuits to be enumerated. Bottom-up module identification can

provide a very effective and fast solution to Candidate Subcircuit Enumeration within

the Module Identification Problem.

5.4.1 Module Replacement

To dynamically reduce the order of the circuit graph, as subcircuits are identified as

equivalent to a library module, they may be replaced by a single vertex that encom-

passes all of the functionality contained in the subcircuit. This module replacement

technique would allow hierarchical module identification. For instance, two appro-

priately connected vertices representing 1-bit full adders could be subsumed into a

single vertex representing a 2-bit full adder. Replacing a cluster of vertices with a

single vertex representing that cluster is a common technique in clustering [54].

It would be necessary to develop a method of differentiating between the outputs

of a vertex, because they will not all represent the same function, as do multiple

outputs from a logic gate. The outputs of the modules would need to be represented

by vertices that are implicitly connected to the module vertex.

The difficulty with this technique is the possibility of premature subsumption

of vertices that should be shared with another library module. When a module is

replaced by a single vertex representing the functionality of the entire module, then

its component vertices are no longer available to be members of another module. This

199

means that no shared functionality is permitted with other vertices. For this reason,

it is best to replace only modules that are represented by contained subcircuits, or to

perform fitness evaluation (discussed in Section 5.5 before replacement.

5.4.2 Primitive Functional Modules

The execution of subcircuit enumeration is greatly afl'ected by the order of the subcir-

cuits to be enumerated, which is dependent on the size of the modules to be located.

To perform module identification hierarchically, a set of primitive modules should be

developed. These modules would perform common functionalities that could be used

to build larger functional modules. These primitive modules could reasonably be im-

plemented by fewer than 10 gates and have simple functionality to enhance subcircuit

identification performance.

By locating these primitive functional modules, gate clusters could be replaced by

a single vertex representing the primitive functionality they perform. Each identifi-

cation and replacement of a primitive module reduces the complexity of the circuit

graph, and thus the performance of the module identification process.

This technique would suffer from the same problem that bottom-up clustering

techniques encounter: covering the circuit correctly, so consideration would need to

be given to that problem during the development and application of primitive mod-

ules. The identification of a comprehensive and effective set of functional primitives

provides an interesting focus for future research into solutions to the Module Identi-

fication Problem, and would be an interesting theoretical study as well.

200

5.5 Subgraph Fitness Evaluation

It is possible to evaluate how likely a subcircuit is to be a functional module by taking

the following information [32,53] into consideration:

0 the gates comprising a module are likely to be physically close together

— Euclidean distance between gates

— number of edges between gates

o modules are generally contained completely within a power/ground bounding

box

0 all components of a module are generally driven by the same branch of the clock

tree

0 two gates within a module are likely to be connected less strongly than two

gates outside of a module

By using this additional information, a fitness value can be assigned to each sub-

circuit. If it is unlikely that the subcircuit will be a module or a part of a module,

then the expansion of that subcircuit may halt. This prevents the enumeration of

all of the descendent subcircuits that are also unlikely to represent a module. This

approach can provide a significant reduction of efi'ort, because only likely subcircuits

will be tested for equivalence with functional modules.

201

5.6 Summary

Despite the inherently difficult problem of enumerating all of the subcircuits of a

circuit so that their equivalence to a known module may be considered, the techniques

presented in this chapter provide sufficient reduction and focus of the enumeration

effort to allow practical use of the theoretical approaches presented in Chapters 3 and

4.

The benefit of using semantic matching and subcircuit enumeration to solve the

module identification problem is that all modules in the library may be located,

regardless of their implementation. This provides the most comprehensive covering

of an unknown circuit and thus solves the Module Identification Problem.

202

Chapter 6

Contributions and Future

Directions

Reverse engineering performs the reverse of the synthesis process to obtain a high-level

description of a digital circuit from a low-level specification. For instance, a circuit

may be reverse engineered from the transistor level to the gate level, or from the gate

level to the register transfer level. In each case, the details of the specification are

encapsulated to produce a more abstract, but still accurate, description of the circuit.

Reverse engineering is necessary for many reasons, including obtaining information

to maintain a competitive edge, or to ensure that one’s intellectual pr0perty has

not been stolen. Reverse engineering is frequently the first step in the redesign or

reengineering process, which is very important for replacement of parts to forestall

obsolescence, or to allow reimplementation exploiting improved technology, or to allow

fault repair and replacement.

One of the major focuses of reverse engineering is to raise the level of abstraction

203

I
F
S
—
"
’
3

from a lower— to higher-level specification. We have formulated this problem as follows:

Module Identification Problem [37,38,114]. Given a gate-level logic descrip-

tion (netlist) of a target circuit, efficiently identify all gate clusters (subcircuits) that

perform the function of a known library module.

0 Candidate Subcircuit Enumeration Problem. Identification of gate clus-

ters (candidate subcircuits) within the netlist that may comprise a functional

module.

0 Subcircuit Identification Problem. Proving functional equivalence between

a candidate subcircuit and a known standard library module.

Most existing techniques to perform the transformation from lower to higher lev-

els rely on syntactic matching techniques to locate functional modules by identifying

clusters of gates with identical structure to a known modules. Syntactic matching is

a very rigid matching technique because it will only identify subcircuits as equiva-

lent whose implementation is identical. Within the Module Identification Problem,

syntactic matching requires that an extensive library of module implementations is

available. The computation and memory cost of applying syntactic techniques is

frequently prohibitive.

The approach to Module Identification presented in this thesis applies semantic

matching instead, a more general matching technique that determines equivalence of

subcircuits based on functionality, regardless of implementation. To locate all gate

clusters that may be equivalent to a known module, it is necessary to enumerate

all subcircuits of the circuit to be reverse engineered. The enumeration of these

204

candidate subcircuits for the purpose of module identification is the focus of the work

in this thesis. The enumeration of all subcircuit of a circuit is a complex process. By

ensuring that the enumeration is done efficiently, with no duplication of effort, the

task is possible. By focusing the enumeration effort on only the gate clusters that

represent functional segments of the circuit, the enumeration effort is further reduced.

Semantic matching can be computationally expensive, so it is beneficial to re-

strict the number of times that it must be applied. Subcircuits that are syntactically

equivalent are necessarily semantically equivalent. Therefore, syntactically equiva-

lent subcircuits may be grouped into structural equivalence classes, so that semantic

matching must only be applied to a single instance of each subcircuit structure. To

partition the enumerated subcircuits into structural equivalence classes, a structural

identifier can be created for each subcircuit. This identifier provides the equivalence

relation to identify the correct equivalence class. To allow the creation of an effective

identifier, the vertices in the subcircuit are ordered based on structural invariants.

Overall, this work has provided several steps within the reverse engineering process

presented in Figure 1.5. Focused subcircuit enumeration allows the application of

semantic techniques to locate modules and raise the level of abstraction. Structural

equivalence classes ensure that each subcircuit structure must only be considered once

by semantic equivalence identification. Thus, the necessary applications of semantic

matching to perform subcircuit identification are significant reduced without lack of

efficacy.

205

6.1 Contributions

6.1.1 Module Identification Problem

We have developed a well-defined formulation of a specific step in the reverse en-

gineering process: the location of modules to facilitate the transformation from a

gate-level specification to a module-level specification (Section 1.3). This formulation

defines two subproblems: Candidate Subcircuit Enumeration and Subcircuit Identi-

fication. The work presented in this thesis focuses on developing techniques to solve

the Candidate Subcircuit Enumeration problem and reduce the number of necessary

applications of the solution to the Subcircuit Identification Problem.

6.1.2 Unique Subgraph Enumeration

We have represented circuits by a circuit graph, a directed graph in which vertices

represent gates or flip—flops and arcs represent wires and interconnects (Section 3.1). A

naive algorithm for subgraph enumeration was presented in Figure 3.5. This algorithm

produces many identical subgraphs and is therefore very inefficient, but it provides

a framework for developing a more focused algorithm. One of the focuses of the

work described in Chapter 3 is on refinement of the algorithm to avoid duplication of

subcircuits.

The duplicate subgraphs created by the naive algorithm were eliminated by de-

veloping a rule to ensure that each subgraph was created exactly once (Section 3.2.1).

A subset of the subgraph neighborhood, the reachable frontier (Definition 3.10) is

defined. Instead of allowing any neighboring vertex to be added to the subgraph

206

during subgraph expansion, only vertices on the reachable frontier may be added.

The reachable frontier is dependent on the index of the subgraph and the vertices

that have already been added, and thus enforces an ordering in which vertices may be

added to create subgraphs. The unique subgraph enumeration algorithm is presented

in Figure 3.11 and the proof that this algorithm enumerates each subgraph exactly

once is presented in Section 3.2.3.

6.1.3 Restricted Subgraph Types

The number of subgraphs in any directed graph can be prohibitively large. Even

efficient unique enumeration of subgraphs is not an acceptable solution to the Can-

didate Subcircuit Enumeration Problem. Because candidate subcircuit enumeration

is applied within a specific domain, in which subgraphs represent gate clusters in a

digital circuit, enumeration may be focused on subsets within the class of subgraphs:

subcircuits and contained subcircuits.

Subcircuits

A significant restriction on the number of subgraphs that must be enumerated can

be obtained by focusing the enumeration only on subgraphs that may possibly be

equivalent to a known module. A subgraph representing a non-functional cluster

of gates is not interesting with regard to the Module Identification Problem. Only

functional gate clusters, subcircuits (Definition 3.6), need to be enumerated.

A subcircuit is a subgraph in which none of the vertices include a proper subset of

the vertices representing its input gates. It is important to consider these subgraphs

207

because only they have functional meaning. If only one input of a 2-input AND

gate is known, then the functionality of the AND gate is ambiguous. Therefore, the

functionality of the circuit represented by any subgraph that contains one of these

ambiguous vertices is also ambiguous.

We have modified the unique subgraph enumeration algorithm to focus on enu-

merating only subcircuits; this algorithm is presented in Figure 3.15. As soon as

a vertex is added to a subgraph, all of the vertices that are necessary to make the

subgraph a subcircuit are added (provided that they are on the reachable frontier).

Subgraphs that cannot have functional meaning are not investigated or enumerated.

This provides a significant reduction in computational effort, as evidenced by the

results in Section 3.3.

Contained Subcircuits

When circuits are designed using standard cell libraries, each cell or module is placed

into the circuit and connected together with glue logic. The logic gates that comprise

these modules are connected exclusively to each other, without sharing their func-

tionality with other modules. The modules are represented within a circuit graph by

a contained subcircuit (Definition 3.8).

With regard to the Module Identification Problem, a standard cell or module is

represented by a contained subcircuit. A contained subcircuit is a subcircuit in which

none of the vertices have only a partial set of their outputs also in the subcircuit. If

a vertex has an output are that leaves the subcircuit, then all of its output arcs must

also leave the subcircuit, which defines the vertex as an output of the subcircuit. If

208

all of the output arcs lead to vertices within the subcircuit, then the vertex represents

an internal gate. If all of the output arcs lead to vertices outside of the subcircuit,

then the vertex represents an output of the subcircuit.

The number of contained subcircuits is significantly smaller than the number of

subcircuits, so the enumeration of this set can be performed more quickly than the

entire set of subcircuits. Although contained subcircuit enumeration is not sufficient

to locate all modules in a circuit, it provides a useful preliminary matching technique

for reducing the order of the entire circuit graph, thus reducing the execution effort

necessary to locate all remaining modules by applying subcircuit enumeration.

6.1.4 Circuit Structural Identifier

Another objective of the work presented in this thesis is to reduce the number of

times that the solution to the Subcircuit Identification subproblem must be applied.

Many of the subcircuits enumerated by Candidate Subcircuit Enumeration will be

structurally identical, and are therefore semantically identical. It is only necessary to

determine equivalence of a single instance of each set of structures. These are called

structural equivalence classes, presented in Chapter 4.

We have developed a method for determining an effective structural identifier

for the structure of a circuit, which defines an equivalence relation to partition the

subcircuits into a set of structural equivalence classes. To allow the creation of these

identifiers, a well-defined vertex ordering based on structural invariants of the vertices

within the circuit graph was developed. The set of equivalence classes is not minimal,

209

because more than one identifier may represent a single structure, but it is an efl'ective

reduction technique for module identification.

This ordering is develOped by sorting the vertices at each level of the circuit graph

using information about the vertices themselves, their input vertices, and their output

vertices, then applying a unique weight that represents the vertex ordering. If that

information is not enough to induce a total ordering on the vertices, then a second

pass through the circuit graph is performed, taking advantage of the information

developed during the first pass. After the vertices have been sorted and weighted by

the algorithm presented in Figure 4.2.4, a total ordering has been defined for the set

of vertices in the circuit graph.

An example of a structural identifier generation technique is provided that creates

a prefix logic formula that uniquely describes the circuit structure. Interconnection

information must be preserved correctly, so nets are used to represent networks that

appear more than once within the structural identifier. These identifiers can be

used to determine appropriate structural equivalence classes for the subcircuits, thus

reducing the required applications of subcircuit identification.

6.1.5 Heuristics for Practical Application of Candidate Enu-

meration

The enumeration and structural classification of candidate subcircuits provides signif-

icant improvement to the application of module identification, but to handle realistic

circuits containing thousands or millions of gates, several heuristic techniques must

210

be applied.

The limiting element of candidate subcircuit enumeration is the order of the cir-

cuit graph that represents the target circuit. In Section 5.2, we described several

techniques for reducing target circuit order, such as preliminary partitioning, prelim-

inary syntactic matching coupled with module replacement, and hierarchical module

replacement throughout the module identification process. Another factor that af-

fects the complexity of the enumeration process is the order of the subcircuits that

must be enumerated. We described and justify an order limiting heuristic in Section

5.3 that is based on a reasonable order derived from the size of the library modules.

The process of candidate subcircuit enumeration is embarrassingly parallel be-

cause expansion of a vertex into its descendent candidate subcircuits is a discrete

operation for each vertex in the circuit graph, so employing a parallel implementa-

tion of the enumeration algorithm reduces overall execution time for larger circuit

graphs (Section 5.1) without duplication of effort.

6.2 Future Directions

6.2.1 Candidate Subcircuit Enumeration

Future work within the Candidate Subcircuit Enumeration solution includes a possi-

ble improvement to the implementation of the focused enumeration algorithm.

Rules 1 and 2, when producing subcircuits or contained subcircuits, respectively,

occasionally must discard a subgraph because Rule 1 prohibits the addition of a ver-

211

tex or vertices necessary to make constituent vertices fully specified or contained.

Although the number of subgraphs discarded is small, and the computation improve-

ment provided by Rules 2 and 3 far outweighs this cost, an ideal solution would

proceed without any discarded subcircuits. This may be possible by implementing a

look-ahead algorithm to investigate the validity of a creation path before the actual

subgraph duplication and expansion is performed.

6.2.2 Module Identification Problem

The techniques described in this thesis have been designed to be applied within the

solution to the Module Identification Problem. There are several improvements that

may be developed that would allow module identification to be applied to circuits of

any size. The limitation at this time is the order of the circuit graphs that may un-

dergo candidate subcircuit enumeration because the number of subcircuits increases

rapidly with the order of the graphs. By implementing the following techniques de-

scribed in Chapter 5, circuits of any size may be reverse engineered by the application

of Module Identification.

0 Preliminary partitioning (Section 5.2.1): The application of a partitioning tech-

nique to effectively reduce the order of the circuit graphs to be explored may

be applied. If effective partitioning techniques are applied, each partition may

be considered individually without interfering with module identification.

0 Module replacement (Section 5.4.1): Subcircuits that have been found to repre-

sent functional modules in the circuit may be replaced by a single vertex that

212

represents the functionality of the subcircuit. This reduces the order of the

overall circuit graph, and thus decreases the number of candidate subcircuits in

the circuit.

0 Hierarchical module identification (Section 5.4): The efficiency of enumerating

candidate subcircuits is strongly dependent on the size of the subcircuits that

must be enumerated. By locating smaller modules first, and replacing them

with a single vertex, and then considering larger modules that may contain those

modules, module identification can be performed hierarchically. This allows the

order limit of the enumerated subcircuits to be kept small, thus allowing faster

identification of modules.

0 Subgraph fitness evaluation (Section 5.5): Development of an effective fitness

function to determine the likelihood that a subcircuit could comprise a func-

tional module is a future focus for improving the module identification process.

6.2.3 System Integration

To allow these techniques to be applied easily to real circuits, many techniques would

need to be integrated to create an effective reverse engineering tool. The following

systems, presented in Figure 1.5 on page 25 need to be designed and implemented

around the solution to Candidate Subcircuit Enumeration presented in this thesis.

0 Netlist partitioning: There are existing partitioning systems that can be applied

at the beginning of the reverse engineering process to allow a divide-and-conquer

approach to module identification.

213

o Combinational logic extraction: The current solutions available for semantic

matching are unable to perform equivalence comparisons for sequential circuits.

To allow module identification to be performed, the combinational logic should

be extracted from the circuit.

0 Subcircuit enumeration: Enumeration of candidate subcircuits that may be

equivalent to a higher-level functional module.

0 Structural equivalence classes: Syntactically equivalent subcircuits are also se-

mantically equivalent. This step places the candidate subcircuits into structural

equivalence classes to eliminate extraneous applications of semantic matching

to syntactically equivalent subcircuits.

0 Semantic matching: Functional equivalence comparison of an instance of a sub-

circuit equivalence class with known functional modules.

0 Circuit covering: If desired, an engineer can view the high-level modules and

determine which ones comprise the best covering of the circuit. In general,

modules are likely to share logic, so this step is not necessary. Modules may

overlap in the module-level representation of the circuit and still present a useful

and accurate view of the circuit.

6.3 Conclusion

The work presented in this thesis provides techniques to solve the Candidate Sub-

circuit Enumeration Problem within the Module Identification Problem. Efficient

214

enumeration of only those subgraphs of the circuit graph that may be equivalent to

a known module, candidate subcircuits, is the focus of this work. To provide further

improvement, the candidate subcircuits are placed into structural equivalence classes

by creation of a structural identifier. One instance of each class must be tested for

equivalence to known modules. All other members of the class inherit matching re-

sults.

These techniques, when applied in conjunction with a semantic matching solution

to the Subcircuit Identification Problem, provide the basis of a tool to perform the

reverse engineering of digital circuits.

215

BIBLIOGRAPHY

216

Bibliography

[1] Alfred V. Aho and Neil J. A. Sloane. Some doubly exponential sequences.

Fibonacci Quarterly, 11:429—437, 1973.

[2] Sherri Al-Ashari. System verification from the ground up. Integrated System

Design, January 1999.

[3] Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partition-

ing: A survey. Integration: The VLSI Journal (1.995), 19:1—81, 1995.

[4] Charles J. Alpert and Andrew B. Kahng. A general framework for vertex

orderings with applications to netlist clustering. IEEE Transactions of VLSI

Systems, 4(2):240 — 246, 1996.

[5] Srinivasa R. Arikati and Ravi Varadarajan. A signature based approach to

regularity extraction. In Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 542 — 545, 1997.

[6] Peter J. Ashenden. The Designers Guide to VHDL. Morgan Kauffman Pub-

lishers, 1995.

[7] Mikhail J. Atallah. Algorithms and Theory of Computation. CRC Press LLC,

1998.

[8] E. Augustus. VLSI circuit layer determination by reflectance for use in reverse

engineering. Master’s thesis, Air Force Institute of Technology, 1990.

[9] Pradeep Batra and David Cooke. Hcompare: A hierarchical netlist comparison

program. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 299 - 304, 1992.

[10] Carter Bays. A non-recursive technique for recreating a digraph from its K-

formula representation. The Computer Journal, 19(4):326 — 329, 1976.

[11] C. Benecke, Adalbert Kerber, and Reinhard Laue. Canonical numbering of

3D-molecules. In Proceedings of the International Electronic Conference on

Computational Chemistry, November 1995.

217

[12] J. D. Benstock, D. J. Berndt, and K. K. Agarwal. Graph embedding in

synchem2, an expert system for organic synthesis discovery. Discrete Applied

Mathematics, 19:45 — 63, 1988.

[13] Alfs T. Berztiss. Data Structures: Theory and Practice. Academic Press, Inc.,

second edition, 1972.

[14] Alfs T. Berztiss. A backtrack procedure for isomorphism of directed graphs.

Journal of the ACM, 20(3):365 - 372, July 1973.

[15] J. Bhasker. A Verilog HDL Primer. Star Galaxy Publishers, second edition,

1999.

[16] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Program

assignment and the concept assignment problem. Communications of the ACM,

37(5):72 — 82, May 1994.

[17] Michael Boehner. LOGEX — an automatic logic extractor from transistor to

gate level for CMOS technology. In Proceedings of the 25th ACM/IEEE Design

Automation Conference, pages 517 — 522, June 1988.

[18] Daniel R. Brasen and Gabriele Saucier. Using cone structures for circuit par-

titioning into fpga packages. In Proceedings of the Computer Aided Design of

Integrated Circuits and Systems, pages 592 - 600, July 1998.

[19] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677 — 691, August 1986.

[20] Randal E. Bryant. Binary decision diagrams and beyond: Enabling technologies

for formal verification. In Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 236 — 243, 1995.

[21] Anthony Bumbalough. Electronic parts obsolescence initiative workshop. Tech-

nical report, Department of the Air Force, Air Force Research Laboratory,

Wright-Patterson Air Force Base, Dayton, OH., April 2000.

[22] H. Bunke and Messmer. Recent advances in graph matching. International

Journal of Pattern Recognition and Artificial Intelligence, 11(1):169 — 203, 1997.

[23] Jerry R. Burch and Vigyan Singhal. Robust latch mapping for combinational

equivalence checking. In Proceedings of theIEEE International Conference on

Computer-Aided Design, pages 563 — 569, 1998.

[24] Eric J. Byrne. A conceptual foundation for software re—engineering. In Proceed-

ings of the Conference on Software Maintenance, pages 226 — 235, November

1992.

218

[25] Andrew E. Caldwell, Hyun-Jin Choi, Andrew B. Kahng, Stefanus Mantik, Mio-

drag Potkonjak, Gang Qu, and Jennifer L. Wong. Effective iterative techniques

for fingerprinting design IP. In Proceedings of the ACM/IEEE Design Automa-

tion Conference, pages 843 - 848, June 1999.

[26] Andrew E. Caldwell, Andrew B. Kahng, Andrew A. Kennings, and Igor L.

Markov. Hypergraph partitioning for VLSI cad: Methodology for heuristic

development, experimentation and reporting. In Proceedings of the ACM/IEEE

Design Automation Conference, pages 349 - 354, June 1999.

[27] Andrew E. Caldwell, Andrew B. Kahng, and Igor L. Markov. Hypergraph

partitioning with fixed vertices. In Proceedings of the ACM/IEEE Design Au-

tomation Conference, pages 355 — 359, June 1999.

[28] Gary Chartrand and Ortrud R. Oellermann. Applied and Algorithmic Graph

Theory. McGraw-Hill, 1993.

[29] J. K. Cheng and T. S. Huang. A subgraph isomorphism algorithm using reso-

lution. Pattern Recognition, 13:371 — 379, 1981.

I30] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recov-

ery: A taxonomy. IEEE Software, pages 13 — 17, January 1990.

[31] Chipworks. Circuit analysis. Available on the world wide web at

http://www.chipworks.com/ .

[32] Gregory H. Chisholm, Steven T. Eckmann, Christopher M. Lain, and Robert L.

Veroff. Understanding integrated circuits. IEEE Design 62 Test of Computers,

16(2):26 - 37, April - June 1999.

[33] Amit Chowdhary, Sudhakar Kale, Naresh Sehgal, and Rajesh Gupta. A general

approach for regularity extraction in datapath circuits. In Proceedings of the

19.98 International Conference on Computer Aided Design, pages 332 — 340,

November 1998.

[34] Nicos Christofides. Graph Theory: An Algorithmic Approach. Academic Press

Inc, 1975.

[35] D. G. Corneil and C. C. Gotlieb. An eflicient algorithm for graph isomorphism.

Journal of the ACM, 17(1):51 — 64, January 1970.

[36] Travis E. Doom. Design Recovery for Combinational Logic Exploiting Boolean

Relationships. PhD thesis, Michigan State University, East Lansing, MI, May

1998.

[37] "Davis E. Doom, Jennifer L. White, Gregory Chisholm, and Anthony S. Wojcik.

Identification of functional components in combinational circuits. Technical

Report ANL/DIS/TM—47, Argonne National Laboratory, January 1998.

219

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Travis E. Doom, Jennifer L. White, Anthony S. Wojcik, and Gregory H.

Chisholm. Identifying high—level components in combinational circuits. In Pro-

ceedings of the 19.98 Great Lakes Symposium on VLSI, pages 313—318, February

1998.

M. A. Dukes. A generalized extraction system for VHDL. In Proceedings of the

Conference on Advances in Modeling and Simulation, pages 165 - 171, 1994.

Paul J. Durand, Rohit Pasari, Johnnie W. Baker, and Chun che Tsai. An effi-

cient algorithm for similarity analysis of molecules. Internet Journal of Chem-

istry, 2, June 1999.

Carl Ebeling. GeminiII: A second generation layout validation tool. In Proceed-

ings of the IEEE International Conference on Computer-Aided Design, pages

322—325, 1988.

Carl Ebeling and Ofer Zajicek. Validating VLSI circuit layout by wirelist com-

parison. In Proceedings of the IEEE International Conference on Computer-

Aided Design, pages 172 — 173, September 1983.

Steven T. Eckmann and Gregory H. Chisholm. Assigning functional mean-

ing to digital circuits. Technical Report ANL/DIS/TM-43, Argonne National

Laboratory, July 1997.

Adrian Evans, Allan Silburt, Gary Vrckovnik, Thane Brown, Mario Dufresne,

Geoffrey Hall, Tung Ho, and Ying Liu. Functional verification of large ASICs.

In Proceedings of the ACM/IEEE Design Automation Conference, pages 650 —

655, June 1998.

C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network

partitions. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 175 — 181, 1982.

The Center for Software Maintenance. The maintainer’s assistant: A tool for

reverse engineering and re—engineering code using formal methods. Available

on the world wide web at http://www.dur.ac.uk/CSM/projects/ma/.

E. Fretheim. Reverse engineering VLSI using pattern recognition techniques.

Master’s thesis, Air Force Institute of Technology, 1988.

Daniel D. Gajski. Principles of Digital Design. Prentice-Hall, Inc., 1997.

Gerald G. Gannod and Betty H.C. Cheng. Strongest postcondition semantics

as the formal basis for reverse engineering. The Journal of Automated Software

Engineering, 3(1), 1996.

Michael R. Garey and David S. Johnson. Computers and Intractability. W. H.

Freeman and Company, 1979.

220

[51] Thomas Griiner, Adalbert Kerber, Reinhard Laue, and Andri Ruckde-

schel. MOLGEN. Available on the web at http://www.mathe2.uni-

bayreuth.de/molgen/ .

[52] Lars Hagen and Andrew B. Kahng. A new approach to effective circuit cluster-

ing. In Proceedings of the IEEE International Conference on Computer-Aided

Design, pages 422 — 427, 1992.

[53] Mark C. Hansen, Hakan Yalcin, and John P. Hayes. Unveiling the ISCAS-

85 benchmarks: A case study in reverse engineering. IEEE Design 6'2 Test of

Computers, 16(3):72-80, July - September 1999.

[54] Scott Hauck and Gaetano Borriello. An evaluation of bipartitioning techniques.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 16(8):849 - 866, 1997.

[55] R.’ Hayden. Analysis system for reverse engineering VLSI circuits. Master’s

thesis, Air Force Institute of Technology, 1989.

[56] M. G. Hinchey and J. P. Bowen. High-Integrity System Specification and Design.

Springer-Verlag, 1999.

[57] Christoph M. Hofl'man. Group Theoretic Algorithms and Graph Isomorphism.

Springer-Verlag, 1982.

[58] Kai-Ti Huang and David Overhauser. A novel graph algorithm for circuit recog-

nition. In Proceedings of the International Symposium on Circuits and Systems,

pages 1695 — 1698, 1995.

[59] Sung-Woo Hur and John Lillis. Relaxation and clustering in a local search

framework: Application to linear placement. In Proceedings of the ACM/IEEE

Design Automation Conference, pages 360 — 366, June 1999.

[60] Masayasu Ito and Yasuhiro Nikaido. Recognition of pattern defects of printed

circuit board using topological information. In Proceedings of the 11th Inter-

national Electronics Manufacturing Technology Symposium, pages 202 — 206,

1991. -

[61] Jawahar Jain, Amit Narayan, M. Fujita, and A. Sangiovanni-Vincentelli. A sur-

vey of techniques of formal verification of combinational circuits. In Proceedings

of the IEEE International Conference on Computer Design, pages 445 - 454,

October 1997.

[62] Frank W. Johannes. Partitioning of VLSI circuits and systems. In Proceedings

of the 33rd ACM/IEEE Design Automation Conference, pages 83 - 87, June

1996.

221

[63]

[64]

[651

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Andrew B. Kahng, J. Lach, W.H. Mangione-Smith, Stefanus Mantik, Igor L.

Markov, Miodrag Potkonjak, Paul Tucker, Huijuan Wang, and Gregory Wolfe.

Watermarking techniques for intellectual property protection. In Proceedings of

the ACM/IEEE Design Automation Conference, pages 776 - 781, June 1998.

Andrew B. Kahng, Stefanus Mantik, Igor L. Markov, Miodrag Potkonjak, Paul

Tucker, Huijuan Wang, and Gregory Wolfe. Robust IP watermarking method-

ologies for physical design. In Proceedings of the ACM/IEEE Design Automa-

tion Conference, pages 782 — 787, June 1998.

Andrew B. Kahng and Rahul Sharma. Studies of clustering

objectives and heuristics for improved standard cell placement.

http://nexus6.cs.ucla.edu/ abk/papers/report/clu10dist.pdf, January 1997.

George Karypis and Vipin Kumar. Multi-way k-way hypergraph partitioning.

In Proceedings of the ACM/IEEE Design Automation Conference, pages 343 -

348, June 1999.

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning of

electrical circuits. Bell System Technical Journal, 49(2):291 — 307, January

1970.

Kurt Keutzer. DAGON: Technology binding and local optimization by DAG

matching. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 341 — 347, 1987.

L. Krider. A flow analysis algorithm. Journal of the ACM, 11(4):429 — 436,

October 1964.

B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI net-

works. IEEE Transactions of Computers, pages 438 — 446, 1984.

Yuji Kukimoto, Robert K. Brayton, and Prashant Sawkar. Delay-Optimal tech-

nology mapping by DAG covering. In Proceedings of the ACM/IEEE Design

Automation Conference, pages 348 — 351, June 1998.

Sandip Kundu. GateMaker: A transistor to gate level model extractor for

simulation, automatic test pattern generation and verification. In Proceedings

of the IEEE International Test Conference, pages 372—381, 1998.

Oak Ridge National Laboratory. PVM: Parallel virtual machine.

http://www.csm.ornl.gov/pvm/, 1993.

Yung-Te Lai, Sarma Sastry, and Massoud Pedram. Boolean matching using

binary decision diagrams with applications to logic synthesis and verification. In

Proceedings of the IEEE International Conference on Computer Design, pages

452—458, October 1992.

222

[75] Richard H. Lathrop, Robert J. Hall, and Robert S. Kirk. Functional abstraction

from structure in VLSI simulation models. In Proceedings of the ACM/IEEE

Design Automation Conference, pages 822 — 828, 1987.

[76] F. Luellau, T. Hoepken, and E. Barke. A technology independent block ex-

traction algorithm. In Proceedings of the 2Ist ACM/IEEE Design Automation

Conference, pages 610 — 615, 1984.

[77] Vijay K. Madisetti. Reengineering digital systems. IEEE Design 82 Test of

Computers, 16(2):15 — 16, April - June 1999.

[78] Vijay K. Madisetti, Yong-Kyu Jung, Moinul H. Khan, Jeongwook Kim, and

Theodore Finnessy. Reengineering legacy embedded systems. IEEE Design 6'2

Test of Computers, 16(2):38 — 47, April - June 1999.

[79] F. Mailhot and Giovanni De Micheli. Algorithms for technology mapping based

on binary decision diagrams and on boolean operations. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 12(5):599 - 620,

1993.

[80] Lawrence Markosian, Philip Newcomb, Russell Brand, Scott Burson, and Ted

Kitzmiller. Using an enabling technology. Communications of the ACM,

37(5):58 — 70, May 1994.

[81] Yusuke Matsunaga. On accelerating pattern matching for technology mapping.

In Proceedings of the IEEE International Conference on Computer-Aided De-

sign, pages 118 — 123, 1998.

[82] Ken McElvain. Lgsynth93 benchmark set. Available on the World Wide Web

at http://www.cbl.ncsu.edu/CBL-Docs/lgs93.html, 1993.

[83] RT. Messmer and H. Bunke. Subgraph isomorphism in polynomial time. Tech-

nical Report IAM 95—003, Institut fiir Informatik, 1995.

[84] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill, Inc., 1994.

[85] Amit Narayan, Adrian J. Isles, Jawahar Jain, and Robert K. Brayton. Reach-

ability analysis using partitioned ROBDDS. In Proceedings of the IEEE Inter-

national Conference on Computer-Aided Design, pages 388 - 393, 1997.

[86] Amit Narayan, Jawahar Jain, M. Fujita, and A. Sangiovanni-Vincentelli. Parti-

tioned ROBDDS - a compact, canonical and efficiently manipulable representa-

tion for boolean functions. In Proceedings of theIEEE International Conference

on Computer-Aided Design, pages 547 — 544, 1996.

[87] Raymond X.T. Nijssen and Jochen A.G. Jess. Two-dimensional datapath regu-

larity extraction. In Proceedings of the 5th ACM/IEEE Physical Design Work-

shop, April 1996.

223

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Raymond X.T. Nijssen and C.A.J. van Eijk. Regular layout generation of logi-

cally optimized datapaths. In Proceedings of the 1.997 ACM/IEEE International

Symposium on Physical Design, pages 42 — 47, April 1997.

Jim Q. Ning, Andre Engberts, and Wojtek Kozaczynski. Recovering reusable

components from legacy systems by program segmentation. In The Working

Conference on Reverse Engineering, 1993.

Jim Q. Ning, Andre Engberts, and \-'\!"ojtek Kozaczynski. Automated support

for legacy code understanding. Connnunications of the ACM, 37(5):50 — 57,

May 1994.

Miles Ohlrich, Carl Ebeling, Eka Ginting, and Lisa Sather. SubGemini: Identi-

fying subcircuits using a fast subgraph isomorphism algorithm. In Proceedings

of the ACM/IEEE Design Automation Conference, pages 31—37, 1993.

Masahiko Ohmura, Hiroto Yasuura, and Keikichi Tamaru. Extraction of func-

tional information from combinational circuits. In Proceedings of the IEEE In-

ternational Conference on Computer-Aided Design, pages 176—179, November

1990.

George Pelz and Uli Roettcher. Circuit comparison by hierarchical pattern

matching. In Proceedings of the IEEE International Conference on Computer-

Aided Design, pages 290 — 293, 1991.

Marek A. Perkowski, Malgorzata Chrzanowska-Jeske, Alan Coppola, and Ed-

mund Pierzchala. An exact algorithm for the technology fitting problem in the

application specific state machine device. In Proceedings of the International

Symposium on Circuits and Systems, pages 1977 — 1980, 1992.

D. Sreenivasa Rao and Fadi J. Kurdahi. Partitioning by regularity extraction.

In Proceedings of the ACM/IEEE Design Automation Conference, pages 235 —

238, 1992.

D. Srinivasa Rao. On clustering for maximal regularity extraction. IEEE Trans-

actions on Computer Aided Design, 12(8):1198 — 1208, 1993.

M. G. Rekofl, Jr. On reverse engineering. IEEE Transactions on Systems, Man,

and Cybernetics, SMC-15(2):244 — 252, March/April 1985.

Kenneth Rose and David Miller. Constrained clustering for data assignment

problems with examples of module placement. pages 1937 - 1940, 1992.

Patrick Schaumont, Radim Cmar, Serge Vernalde, Marc Engels, and Ivo

Bolsens. Hardware reuse at the behavioral level. In Proceedings of the

ACM/IEEE Design Automation Conference, pages 784 — 789, June 1998.

224

[100] Yehuda Shiran. YNCC: A new algorithm for device-level comparison between

two functionally isomorphic VLSI circuits. In Proceedings of theIEEE Interna-

tional Conference on Computer-Aided Design, pages 298-301, 1986.

[101] T. M. Sobh and J.C. Owen. A sensing strategy for the reverse engineering

of machined parts. Journal of Intelligent and Robotic Systems, pages 1 — 18,

August 1995.

[102] Fabio Somenzi. CUDD: Colm'arlo university decision diagram package.

http://www.bessie.colorado.edu/ f'ahio/CUDD/, 1997.

[103] Sponsored by Argonne National Laboratory. Record of the Argonne/DOD Work-

shop on Reverse Engineering of Digital Systems, Del Mar, California, January

1998.

[104] Ruth V. Spriggs. Identification of ,3-sheet motifs in three-dimensional protein

structures, using a subgraph isomorphism algorithm: an update of a 1992 study.

Master’s thesis, University of Sheffield, 1999.

[105] Ronald C. Stogdill. Dealing with obsolete parts. IEEE Design 62 Test of Com-

puters, 16(2):17 — 25, April — June 1999.

[106] Makoto Takashima, Atsuhiko Ikenrhi, Shoichi Kojima, Toshikazu Tanaka,

Tamaki Saitou, and Jun ichi Sakata. A circuit comparison system with rule-

based functional isomorphism checking. In Proceedings of the 25th ACM/IEEE

Design Automation Conference, pages 512 — 516, 1988.

[107] Armistead Techologies. Armistead technologies reverse engineering. Available

on the world wide web at http://\\'\\'w.armtec.net.

[108] W.B. Thompson, S.R. Stark J.C. Owen, H.J. de St. Germain, and TC. Hender-

son. Feature—based reverse engineering of mechanical parts. IEEE Transactions

on Robotics and Automation, February 1999.

[109] Donald G. Truhlar, W. Jeffrey Howe, Anthony J. Hopfinger, Jeff Blaney, and

Richard A. Dammkoehler, editors. Rational Drug Design, volume 108 of The

IMA Volumes in Mathematics and its Applications. Springer-Verlag, 1999.

[110] J. R. Ullman. An algorithm for subgraph isomorphism. Journal of the ACM,

23(1):31—42, January 1976.

[111] John F. Wakerly. Digital Design: Principles and Practices. Prentice-Hall, Inc.,

third edition, 2000.

[112] Richard C. Waters and Elliot Chikofsky. Reverse engineering: Progress along

many dimensions. Communications of the ACM, 37(5):23 — 24, May 1994.

[113] Jennifer L. White and Anthony S. \\'ojcik. A technique for unique subgraph

enumeration. Technical Report hlSlT-CSE—99-35, Computer Science and Engi-

neering, Michigan State University. liast Lansing, h'lichigan, October 99.

2'25

[114] Jennifer L. White, Anthony S. \V'ojrik, Moon-Jung Chung, and Travis Doom.

Candidate subcircuits for functional module identification in logic circuits. In

Proceedings of the 10th Great Lakes Symposium on VLSI, March 2000.

[115] Qinghong Wu, C. Y. Roger Chen, and John M. Acken. Efficient boolean match-

ing algorithm for cell libraries. In Proceedings of the IEEE International Con-

ference on Computer Design, pages 30 - 39, October 1994.

