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ABSTRACT
ANALYTICAL AND EXPERIMENTAL TECHNIQUES FOR THE
ELECTROMAGNETIC CHARACTERIZATION OF MATERIALS
By

Michael John Havrilla

Electromagnetic material characterization is the process of determining the
permittivity and permeability of matter. This process is predominantly employed in
stealth and integrated-circuit technologies with the aid of the analytical Nicolson-Ross-
Weir (NRW) formulation. The increasing demands of industry have rendered the NRW
technique invalid under certain conditions due to theoretical violations, leading to
erroneous results. In rectangular waveguide measurements, for example, it is assumed
that sample material is comprised of a single layer only, that walls are perfectly
conducting and that no gaps exist between the sample and conducting boundaries.
However, in the industry environment, samples are often multi-layered due to material
integrity and high-temperature measurements lead to sample-to-wall gaps and involve
waveguide metals that are typically poorly conducting. In addition, high-temperature
strip and microstrip field applicators also involve imperfectly-conducting boundaries,
leading to gross errors in the material characterization process. This dissertation provides
several techniques to accommodate these errors.

Chapter 2 provides two methods, the direct and deembed techniques, for
characterizing materials that are embedded in multi-layered samples. Although both

formulations utilize wave-transmission matrices, it is shown that the direct method must



be used if sample homogeneity is to be accurately monitored. Errors due to sample-to-
wall gaps are accommodated in Chapter 3 by regarding the waveguide as
inhomogeneously filled in the cross-sectional plane with LSM and LSE propagation
modes supported in the sample/gap regions. This analysis leads to corrections in the
scattering parameters and ideal TE;o propagation constant of a uniformly-filled guide.
Chapter 4 investigates the effects of waveguide wall loss by using a coupled-mode
perturbation theory which is based upon an impedance boundary condition at the
imperfectly-conducting walls. The result is a complex correction to the ideal TE,
propagation constant.

Strip and microstrip field applicators having imperfectly-conducting boundaries
are investigated in Chapters 5-7 using a spectral-domain integral-operator formulation
with the aid of electric-field dyadic Green’s functions. The resulting electric field
integral equations, which follow from enforcement of impedance boundary conditions on
the imperfect strip conductors, are solved using a non-Galerkin’s Method of Moments
technique employing Chebyshev basis functions of the first and second kind. The
analysis in Chapters 5-6 and 7 leads to a correction in the ideal principal-mode

propagation constant for the strip and microstrip transmission lines, respectively.
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Chapter 1

INTRODUCTION AND OVERVIEW

This dissertation deals with aspects of theoretical and experimental techniques in
electromagnetic material characterization, which is the process of determining the
permittivity and/or permeability of a material. Permittivity and permeability are specific
values that describe the effect that an externally applied electric and magnetic field has on
matter. Several disciplines rely heavily on the material characterization process;
including stealth, integrated circuit and agricultural technologies. For example, in stealth
technology, the permittivity and permeability describe how effectively a particular
material can absorb incoming radar signals. Due to the increasing demands on industry,
accurate characterization is vital if stringent design specifications are to be realized.

Typically, materials are first measured in the small-scale laboratory environment
prior to large-scale application. In stealth technology, it’s common for a radar absorbing
coating to encounter months or years of testing and design changes in the laboratory
before it can be applied to the structure of a vehicle. Several laboratory devices
(operating in their fundamental mode) can be exploited in the material characterization
process, including rectangular and circular waveguides, coaxial transmission lines, free-
field measurement systems, strip transmission lines, microstrip field applicators and
cavity resonators. In each case, the material must be machined to fit the particular
geometry of the given apparatus and a corresponding theory must be developed that

ultimately relates the permittivity and permeability of the sample to the experimental



measurement. Rectangular waveguides, strip transmission lines and, to a lesser extent,
microstrip field applicators are most often used in the industry environment due to the
ease of machining rectangular samples and the relative broadband nature of such devices.

As an overview, the material characterization process generally involves the
following steps. First, as mentioned above, a material sample is appropriately machined
to fit into the testing device. Next, the device is connected to a network analyzer, which
launches an incident wave towards the sample and subsequently measures the amount of
signal that is reflected from and transmitted through the material. These experimental
measurements are then correlated with suitable theoretical expressions and the
permittivity and permeability are computed using numerical algorithms. The
predominant algorithm used in industry is the Nicolson, Ross and Weir (NRW) technique
(11, [2].

The fundamental underlying assumptions in the NRW technique are as follows.
First, the material sample is assumed to be simple (i.e., linear, homogeneous and
isotropic) and have front and back interfaces that are coplanar. In addition, the sample is
assumed to be comprised of a single layer only. Furthermore, if a rectangular waveguide
is used, it is assumed that the waveguide walls are perfectly conducting and no gaps exist
between the sample and conducting boundaries. In the stripline or microstrip
environments, it is also assumed that the boundaries are perfectly conducting. However,
in the industry environment, these assumptions are often violated. Samples that are thin
and susceptible to warping must be attached to known substrates to facilitate
measurement, thus violating the single-layer assumption. Materials are frequently

inhomogeneous due to sample preparation methods. Samples that are measured at high



temperatures must involve field applicators made of special alloys that typically have
poor conductivities. Gaps can also occur in high-temperature applications due to
differing rates of thermal expansion for the sample material and metallic walls. These
NRW violations can lead to significant errors in the material characterization process and
render standard methods useless. The main objective of this thesis is to develop various
techniques to accommodate for and subsequently reduce these errors.

Chapter 2 presents two material characterization techniques for analyzing multi-
layered samples, the direct and deembed methods. Both methods utilize wave matrices
[3] for extracting the unknown layer parameters from the known substrate layer(s). It
will be shown that the direct method has a distinct advantage over the deembed method
when monitoring for sample inhomogeneity. Chapter 3 addresses the issue of sample-to-
wall gaps in rectangular waveguide-based measurements [4]-[6]. These gaps are
analyzed by regarding the waveguide as inhomogeneously filled in the cross-sectional
plane with longitudinal section magnetic (LSM) and longitudinal section electric (LSE)
propagating modes supported in the sample/gap region [3]. It will be shown that this
leads to a correction to the ideal TE;) mode propagation constant and interfacial
reflection and transmission coefficients, thus allowing for accurate determination of the
constitutive parameters for the sample material. Chapter 4 accommodates rectangular
waveguide wall loss [7]-[13] by invoking an impedance boundary condition at the
imperfect conducting boundaries, which leads to a coupled mode perturbation theory that
is subsequently specialized to single mode operation [3]. The result is a complex
correction to the ideal TE,y propagation constant. It will be demonstrated that this

complex correction is critical in the material characterization process via comparison



with the standard power-loss method [3], [14]-[19]. Therefore, Chapters 2-4 present
techniques for accommodation of NRW violations when using rectangular waveguides in
electromagnetic material characterization measurements.

The focus and intent of Chapters 5-7 are to account for imperfect conductors in
stripline and microstrip field applicators using a full-wave analysis in the Fourier
transform domain [20]-[24]. First, in Chapter 5, the Green’s function for the fields
excited by a general 3D current source immersed in a stripline background environment
is developed using two different methods. The primary method involves the use of
Hertzian potential boundary conditions [25]-[27] for a symmetric slab waveguide in
which the outer cover regions are allowed to become highly conducting. The secondary
method utilizes Hertzian potential impedance boundary conditions, which are developed
in Appendix D. Although both methods produce identical results, it will be shown that
considerably less effort is required when utilizing Hertzian potential impedance boundary
conditions.

The lossy stripline field applicator is analyzed in Chapter 6 by specializing the
general 3D current source of chapter 5 to an infinitely-long strip surface current
symmetrically located between imperfectly-conducting plates. An EFIE (electric field
integral equation) is subsequently developed [28] by satisfying an impedance boundary
condition on the strip conductor. The EFIE is solved numerically using a MoM (method
of moments) technique [29] and the principal-mode propagation constant and
corresponding surface current distribution are identified and examined. Chapter 7 is
exclusively devoted to the lossy microstrip field applicator. Similar to Chapters 5 and 6,

the electric-field dyadic Green’s function is developed for a general 3D current source



immersed within a microstrip background environment. An EFIE is formulated and
solved by confining the 3D current to a strip conductor, implementing impedance
boundary conditions on the surface of the imperfect strip and invoking the MoM
technique. A complex propagation constant, vital to the material characterization
process, is identified and investigated, along with the strip surface current density.

Chapter 8 provides conclusions and future recommendations of study.



Chapter 2

DIRECT AND DEEMBED METHODS FOR MATERIAL CHARACTERIZATION

2.1  Introduction
The well-known Nicolson-Ross-Weir (NRW) [1], [2] algorithm is predominantly
used in industry for computing the permittivity and permeability (&, 4) of an unknown

single-layered material from forward measured scattering parameters S;;,S,;.

Constitutive parameters can also be computed using the reverse S-parameters S,,,S5;,. It
is common practice to use both sets of S-parameters since a comparison between them
can provide a measure of sample isotropy and homogeneity, which are important criteria
in the NRW technique. Unknown materials which are subject to warping or bending are
frequently attached (through deposition, spraying, etc.) on a known substrate layer to
facilitate measurement. In this case, the standard NRW method cannot be employed
since it can only handle single-layered environments. Although ignoring the substrate
layer would allow application of the NRW technique, experience shows that this leads to
gross errors.

Wave transmission matrices (i.e., A-parameters) [3] can be utilized to account for
the multi-layered environment so that the constitutive parameters of the unknown layer
can be properly determined. Two schemes for extracting the material parameters of the
unknown layer will be discussed, the direct and deembed methods. It will be shown
through comparison that only the direct method is reliable for monitoring the important

property of sample homogeneity.



2.2  Material Characterization for a Single-Layered Environment
2.2.1 Overview

The overall scheme of the material measurement process is to experimentally

obtain the sample S-parameters (S{;”,S;}”) and compare them with their theoretical

expressions (Sl"l'y ,S'hy ). Mathematically, the above condition leads to the following set

of coupled equations

S (@, &, 1)~ ST (@) = 0

2.1)
S (@,&, 1) - S2P (@) =0

The constitutive parameters (&, 1) in (2.1) can be determined analytically using the NRW

technique or numerically using a two-dimensional Newton’s root search. If the sample is
non-magnetic, then the permittivity can be computed using S;; or S5, that is

S (@,6)-SEP () =0 or Sy (w,&)-SEF(0)=0 (2.2)
A one-dimensional root-search must be used in (2.2) since no closed-form solution exists.
A similar scheme applies if S,7,S|;” are measured. That is, if the material has both
dielectric and magnetic properties, then the following coupled equations must be solved

(either analytically or numerically) for the reverse direction

S (@, &, 1) - SEF (@) = 0

(2.3)
S (@, &, 1)~ S5F (@) = 0

If the material is non-magnetic, then the permittivity must be computed numerically

using either of the following relations

S (0,6)-SF (0)=0 or S (w,6)-S5P(@)=0 (2.4)

A review of the analytical NRW technique is given next for the benefit of the reader.



2.2.2 General NRW Formulation
It can be shown (see section 2.4, for example) that the theoretical (forward) S-

parameters of a single-layered planar material are

R(1-P?)
sty 77 ) 2.5
" 1-R2P? @)
gty _ PU-R?) 2.6)
21 7 _R2p?

where R = R(w,&,u) is the interfacial reflection coefficient and P = P(w, &, u) is the

one-way phase delay and attenuation through the material. Equation (2.1) suggests that

(2.5) and (2.6) can be written

R(1-P?
exp _
R =0

Sexp — P(I_Rz)
2L 7 _R2p?

(2.8)
A closed-form inverse solution exists for the above nonlinear equations. That is, R and
P can be solved in terms of S;1” and S5/”. Once these values have been determined,

the constitutive parameters (&, ) can be computed. The inverse solution can be obtained

by first solving (2.7) for P? and (2.8) for P, leading to

R-S%P
pr=——Il (2.9)
S (1- R? P?
p=Sarl ) (2.10)

1-R?

Substituting equation (2.9) into the P? term of (2.10) results in



2
exp exp
P—l‘s;ew = P2=[ SRsepr (211)

Equating (2.9) and (2.11) gives

2
Resip ((sp )RS e o
R(A-RS;HF) (1- RS”"’ R 1-RS5?
Cross-multiplying and grouping terms leads to the following quadratic equation
5 (Sexp)Z _(Sexp)Z +1
R*-20R+1=0 , 9=-"U 21 (2.13)

2577

whose solution is

R=Qi,/Q2—1 (2.14)

The proper root choice is based on the requirement that the magnitude of the

interfacial reflection coefficient must be less than unity for a passive material, that is,

|R| < 1. Equation (2.14) produces two roots. One will have a magnitude greater than

unity and the other root must have a magnitude less than unity. To see this, let

R =Q+\/Q2 -1 and R, = Q—\/Qz —1. Note the following relationship between the

two roots

1__ 1 L_ONO 1, o ~i-r, 15

R 0+J0P -1 0+Joi-10- JQ -1

therefore

—|=—=|R (2.16)
‘R.‘ ]l



Now that R and P have been related to S;;” and S3}” in equations (2.14) and (2.11),
the permittivity and permeability can be determined. The details of this calculation are

provided in the following two sections. Note, a similar analysis holds for the reverse S-

exp exp
parameters S,,” and S|," .

2.2.3 Computation of Constitutive Parameters for a TEM System

If the sample (having length () is measured using a transverse electromagnetic
(TEM) field applicator (i.e., coaxial, stripline, free-field, etc.) operating in its
fundamental mode, then the interfacial reflection coefficient R and one-way propagation
term P are related to the relative permittivity and permeability (¢, , 4, ) in the following

manner

Z-7Zy, z-1 zZ Hr

= =2 | z=== (2.17)
Z+Z, z+1 Zy £,
-yt InP . . .
P=e , 7=—T=Jﬂ=1(w/0)J€rur = jwylc (2.18)
Solving the above equations for y and z produces
o= [He J1ER (2.19)
& 1-R
y=Jou =18 JelmP (2.20)
jo !
Therefore, ¢, and u, are computed using the relations
y .clnP I—RJ ,clnP(l+R)
E, === [ , - =yz= —_— 221
" Jwé’(l+R A==l 0 1ok 221
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2.2.4 Computation of Constitutive Parameters for a Waveguide System
If the sample is measured using a rectangular waveguide operating in the principal
TE o mode, then R and P are related to &, and 4, in the following manner (assuming

no gaps exist between the sample and perfectly-conducting waveguide walls)

=221 2 _Jesmmly_ 7o 2.22)
z+1 Zy  Jjomy!yo Y
232 22 222 32 32 .2 2_ .2 ) 7
=kc -k s Y0 =kc —ko . ko =W EyHy k =k0€rﬂ,. R kc ‘—’;2" (223)
p=et | y=_IP_ k2 —kie,u, (2.24)
Solving (2.22) for u, and (2.24) for &, gives
U, = S ..l"_P(ﬂ_) (2.25)
Yo 7ot \I-R

K-y kK -(nP/e)

Wi gle (1]
7ol \1-R

g, = (2.26)

23  Geometry of Multi-Layered Environment
Figure 2.1 shows the multi-layered environment under consideration. The
system, which is assumed to be immersed in free space, is comprised of N layers and

N +1 interfaces. The thickness, effective complex permittivity and permeability of the
i layer are &, M; and {;. The terms c;,b; are the complex wave amplitudes of the
incident and reflected waves immediately to the left of the i interface. The interfacial

reflection and transmission coefficients at the i interface are R; and T, .
] 1

11
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Figure 2.1 Multi-layered environment.

2.4  A-Parameter Description of a Multi-Layered System
Wave transmission matrices or A parameters describe the relationship between
incident and reflected wave amplitudes at a prescribed input terminal plane to those at a

prescribed output terminal plane. The general A-parameter formulation is developed as

follows [3]. Consider a wave c; incident on an interface from the left and a second wave

b) incident on the interface from the right, as shown in Figure 2.2.

1)
>/N 12011) ,
Rlcl ) R2b2 } cZ

bi{ Tyb;
l{( 212k§ b'2

Ci

(SI,M) (82’“2)

Figure 2.2 Reflected and transmitted waves at a planar interface.
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If R,T}, and R,,T,; are the respective interfacial reflection and transmission

coefficients experienced by waves ¢; and b), then the following relations prevail

= L ¢y ——2 ¥,
¢y =T15¢; + Ryby U RRC RN N
P 2 e .27
by = Ric; +Tb) Ry , T -RR,
]=—C2+———'b2
12 Ty
where (using continuity of the tangential electric and magnetic fields)
VAVA
Ry=-R,=22"L T,=1+R, , T,y=1+R,=1-R 2.28
1 2 Z,vz,’ ® 15 1 2 1 (2.28)

Substitution of (2.28) into (2.27) leads to the matrix expression

=— 2.29
[bl] T, I:Rl 1 ] b 229)

Thus, (2.29) describes the relationship between the forward and reverse traveling waves
(¢1,b;) immediately to the left of the interface to the forward and reverse traveling waves
(¢c3,b5) immediately to the right of the interface.

Before considering the cascade connection of N sections, it must be shown how
the waves (cj,5)) are related to waves (c,,b,) that are located a distance ¢ from the
interface as depicted in Figure 2.3. Since the region is assumed to be linear,
homogeneous and isotropic, a simple relationship exists between the waves, namely
c; =che " and b) = bye™”?". Therefore, the relationship between (c5,55) and (c5,5,)

can be written
rc i L) C R
by =bye 7t b 0 e7t|lb

13
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Figure 2.3 Wave description for shift of distance ¢.

The A-parameter relationship between waves (c,b;) and (c;,b,) is obtained by

substituting (2.30) into (2.29), leading to

l:q]_ 1 e}'z[ Rle_J’zf [cz]_ All A|2 [(;2] 231)
bi] Ta|Ret 7' |lb2] [An Axn|lb
The overall A-parameter description of the multi-layered system of Figure 2.1 can now

be obtained by generalizing (2.31), leading to the desired result

[q]_lﬁll et R [CN+2]_ Al A [CN*Z] (2.32)
b LR el iLbvaal |43 43 |Lbns2 |

i=1

A A | M) e R Nal 4y A, (2.33)
Ay 4% | = TRl et =t |4y A |
where
R=ZZZc1 | 114, (2.34)

14



Note that the upper limit on the product is N +1 since there are N +1 interfaces and

because the relationship between (¢;,b; ) and (cy,2,by,7) is desired.

As an example, consider a single-layered sample of length ¢ immersed in free

space. Since there will be two interfaces, equation (2.32) specializes to

[cl:l____lz[l e}’,f,' R‘.e-}’if,‘ |:C3]= A” A|2 [c3:| (2 35)
bi] T Res et (B3] [An Axn|lb

where Ry =-R, =R, Ty =1+R, T, =1-R, y1 =y, y2=%y, £;=¢ and £, =0. The

wave matrix for the system is therefore
4, 4 76 Re* 1 -R
1 2| 1 |e e 1 (2.36)
AZ] Azz 1+R Re}'[ e_}'f l—R —R l
Carrying out the matrix multiplication and letting P =¢?¢ leads to the following A-

parameters for a single-layered sample

{An Al2:| 1 [1—1?21"2 -R(I—Pz)}

= (2.37)
Az An| PA-R*)|Ra-P?) P2-R?

The S-parameters of the above single-layered sample can be obtained by using the well-

known relations [3]

[Sn S12j|=L Ay ApAp-AyAp 238)
Sy Sy Ap| 1 -4,
Ay A4 1 -S
n Anp =L[ 2 i| 2.39)
Ay Axn| SulSn SuSi—SuSn

Although (2.39) is not required here, it has been given for the sake of completeness.

Substituting (2.37) into (2.38) produces the familiar result

15



R(-P?) . P(1-R?)

S =S = , = =
11 22 1—R2P2 21 12 1—R2P2

(2.40)

The direct and deembed methods will now be discussed.

2.5  Direct Method of Constitutive Parameter Extracﬁon
The direct method is one scheme for determining the constitutive parameters of an
unknown layer immersed in a multi-layered system. The overall procedure for the direct
method is as follows. First, a guess for the permittivity and permeability of the unknown
layer is provided. Next, the theoretical A-parameters of the known/unknown layers are
calculated and the overall system wave matrix is determined using (2.33), that is
N+l
et > [ 4] [AQ@&]:H[A"] .41)
i
Note that the permittivity and permeability of layers 0 and N +1 are (&j,4,) and the

length of the N +1 layer is £y, =0. The theoretical A-parameters of the system are

then converted into the theoretical S-parameters of the system using (2.38), namely
(4] > [s%] (2.42)
The theoretical S-parameters of the system are then compared to the experimentally

measured system S-parameters using the relations

S Thys (@6, )= SFE (@) =0

SSY o (@.8, 1) = S5 (@) =0

= E£5,ly (2.43)

for the forward direction and, independently,
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S5 s (@8, 1) = S35 (@) =0

= &4, (2.44)
Sllg/.vsys (w,6,14)- S]e;fgys (w)=0

for the reverse direction. The permittivity and permeability values for the forward
direction and reverse direction are numerically iterated until conditions (2.43) and (2.44)
are satisfied. If the unknown layer is non-magnetic, then the following forward and

reverse relations are used

sys 21,sys 1,sys

S{¥s (@,8)=S{, (@) =0 or S (@,6)-S57,,(@)=0] = £, (245

Slhy

e th
22.sys(w’€)_s2)2(€yys(w)=0 or S7

(@, =S @)=0] = & (246)
Comments regarding the advantage/disadvantage of the direct method will be delayed

until the deembed method has been discussed.

2.6 Deembed Method of Constitutive Parameter Extraction
2.6.1 Modification of A-Parameters for Deembedding

In the deembed method, the constitutive parameters of the unknown layer are
extracted by first mathematically removing the known layers until only the unknown
single layer is remaining. The NRW procedure is then invoked and (&,u) are
analytically computed. Since the NRW technique assumes that free space exists on either
side of the single-layered sample, the multi-layered system must be mathematically
viewed as having infinitesimal artificial air layers on either side of the unknown layer.
These zero-length air layers will be introduced between all layers, however, since this is
computationally easier to implement. Note that because the A and S-parameters are

based on tangential fields, the validity of the above procedure is provided by continuity
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of the tangential electric and magnetic field components. The artificial air layers are

shown in Figure 2.4.

01 02 I Qi 1 1 QN 0N+]:O
< N <
[ cy Gl Cull eyl cyy
O A T T Ty
A < <
b, b, bitt binir byt by
(€, 1) 11 I I
R N
(g B | k) | [y 1) 5 ::(si,ui):: ::(ﬁ\,,t\) (e o)
e g I 11 I

{

ith layer

Figure 2.4 Introduction of zero-length air layers for deembedding.

Previously, the A-parameters of the ith layer described the relationship between
the waves (c;,b;) immediately to the left of the i interface to the waves (ci1-0i41)
immediately to the left of the i+1 interface. In the deembed technique, the waves
(¢c;,b;) immediately to the left of the i interface must be related to the waves (cis1rbin1)

immediately to the right of the i+1 interface. This A-parameter modification is easily

accomplished using the result of equation (2.33), leading to

e?',[i Rie‘}’:[:’ 1 e705 _Rie‘)’oa

(2.47)

[‘Zi]ﬂim t |1-R, 5 5
6301+ R; | Reniti &7l |1=R;| _R e e 1o

where the interfacial reflection coefficient between layer i and the infinitesimally thin air

18



layer is

Z,-Z,

1

R"=
Z;+2,

(2.48)

Taking the limit in (2.47) produces the following appropriate A-parameter modification

for the deembed scheme

- 1-R?P* -R,0-P%)
[A’]=;2 : : (2.49)
P(-R))|R,0-P*) P2-R?

where
P =l (2.50)

is the one-way propagation delay and attenuation within the ith layer. This result should

have been anticipated from (2.37).

2.6.2 Deembed Procedure for Constitutive Parameter Extraction
The deembed method for material characterization is accomplished through the
following procedure. First, the A-parameters of each known layer are computed using

(2.49), that is
&1, 0 — [Ai:l BRED 251

where the tilde notation has been dropped for convenience. Note that the A-parameters
of the unknown material, which will be designated as layer », cannot be computed. The
experimentally measured S-parameters of the system are then converted into A-

parameters using (2.39), namely

[ser] - [4%2] (2.52)
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Next, the unknown layer of the system is isolated by mathematically removing the known

layers using the following inverse matrix multiplication

Lot TTa)-[ ] Lo e[

[} M1 [T s T

i=u-1 i=N

(2.53)

where N (not N +1) must be used due to the modified A-parameter formulation. The
experimental S-parameters of the unknown layer are obtained from (2.53) with the aid of

(2.38), that is
(4] > [se7] (2.54)
As a final step, the permittivity and permeability of the unknown layer can be computed

analytically (if both ¢ and u are desired) or numerically (if the unknown is non-

magnetic) using the knowledge of section 2.2.

2.7  General Comments and Experimental Results
2.7.1 General Comments

Now that both methods of parameter extraction have been discussed, several
comments are in order. First, the method of using A-parameters for layered media is
exceedingly powerful since it is valid for both TEM and TE,, field applicator systems.
Thus, the techniques discussed in sections 2.5 and 2.6 are applicable for the commonly
used coaxial, free-field, stripline and rectangular waveguide systems. The second
comment is in regards to how the A-parameters were defined and referenced for the
entire multi-layered system. In both extraction schemes, we were ultimately interested in

obtaining an overall relationship between the forward and reverse waves immediately to
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the left of the first layer and the forward and reverse waves immediately to the right of
the last layer. The reason we are interested in the wave amplitudes outside the multi-
layered structure is that this is where the S-parameters are accessible via measurement.
Another comment is that the direct method requires an initial guess for the permittivity
and permeability, whereas the deembed method does not. This can be a drawback since
numerical root-search algorithm’s are typically very sensitive to initial guesses.
However, it will be demonstrated that the direct method must be used if sample
homogeneity is to be accurately monitored. One suggestion would be to invoke the
deembed method to analytically obtain an initial guess and then utilize it for
implementation of the direct method. The final comment is that if the known and
unknown layers are perfectly homogeneous, then the two techniques should yield
identical results. In the industry environment though, samples are rarely perfectly

homogeneous and thus the direct method should be exploited.

2.7.2 [Experimental Results

One experimental result to discuss is the verification of the multi-layered analysis
using a rectangular waveguide field applicator. Consider a non-magnetic Alumina
sample having a thickness £=.25 inches. Figures 2.5 and 2.6 show the permittivity
computations (real and imaginary based on S,; only) for the sample when it is measured
independently, that is, the stand-alone measurement. Next, a multi-layered system is
formed by inserting the Alumina sample between a non-magnetic piece of Teflon and

Zirconium Oxide (Z,0,). Thus, the three-layered .system has Teflon as its first layer,

Alumina as the second layer (treated as the unknown) and Z,0, as the third layer. It will
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be assumed, from previous measurements, that the known properties for Teflon and

Z,0, are S,t.ef =2.09-,0.001, {,,, =0.126in. and a,Z' =3.81-,0.015, £, =.114in.,
respectively. Figures 2.5 and 2.6 show the extracted permittivity values for the Alumina
layer if the direct method is used (based on S,; only). In addition, the uncorrected
values for the Alumina layer are also shown when the known layers are ignored. It is
evident that the direct method does indeed accurately account for the layered
environment. The results are erroneous if the extraction method is not utilized. For
example, Figure 2.6 falsely shows that the Alumina sample is highly lossy when the
Teflon and Z,0, layers are blatantly ignored.

The other significant result to discuss is the advantage that the direct method has
over the deembed method for monitoring sample homogeneity. Suppose we construct a

two-layer system using the above mentioned Teflon, Z,0, and Alumina materials.

Layer / will consist of the Teflon and Z,0, samples and will be treated as the unknown
layer. Layer 2 is comprised of the Alumina sample and will be assumed to have the
known properties ¢, =9.65, £=.25in. Layer / has been made inhomogeneous on

purpose to see whether both techniques can detect this inhomogeneity. Figures 2.7 and

2.8 show the results of the direct method of parameter extraction for the real and
imaginary parts of the computed permittivity based on S;; (for the forward direction) and

S,, (for the reverse direction). Similarly, Figures 2.9 and 2.10 show the results of the

deembed method of parameter extraction. The direct method clearly reveals that the

unknown layer must be inhomogeneous since the S§;; (forward) and S,, (reverse)

measurements are drastically different. In comparison, the deembed method shows
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virtually no difference between forward and reverse measurements, even though it is
known that layer / was intentionally made inhomogeneous. Thus, although the direct
method requires an initial guess, it has a clear advantage over the deembed method for
detecting sample inhomogeneities. It should be noted that this issue of monitoring for
sample inhomogeneity is important in the industry environment since it frequently occurs

due to the limitations of the various methods of sample preparation.
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ALUMINA MULTI-LAYERED MEASUREMENT
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Figure 2.5 Verification of layered analysis for Re{¢,} using an Alumina sample.
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Figure 2.6 Verification of layered analysis for Im{¢,} using an Alumina sample.
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DIRECT METHOD (Forward vs. Reverse)
Teflon-Z,0,/Al,0,
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Figure 2.7 Homogeneity interrogation of Re{¢,} via direct method.
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DIRECT METHOD (Forward vs. Reverse)
Teflon-Z,0,/Al,0,

10r
—— Direct-forward (S,,)
Direct-reverse (S,,)

Im{e }

-5
25 3.0
Frequency (GHz)

Figure 2.8 Homogeneity interrogation of Im{¢, } via direct method
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DEEMBED METHOD (Forward vs. Reverse)
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Figure 2.9 Homogeneity interrogation of Re{¢,} via deembed method.
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DEEMBED METHOD (Forward vs. Reverse)
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Figure 2.10 Homogeneity interrogation of Im{¢,} via deembed method.
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Chapter 3

ANALYSIS OF SAMPLE-TO-WALL GAPS IN RECTANGULAR WAVEGUIDE

MATERIAL CHARACTERIZATION MEASUREMENTS

3.1 Introduction

In rectangular waveguide material characterization measurements, gaps
commonly occur between the sample and waveguide walls as a result of imprecise
machining of the sample. These gaps are exacerbated in high temperature measurements
due to the differing thermal rates of expansion for the waveguide and sample materials.
These gaps can influence the accuracy of measured constitutive parameters because
higher order modes are excited, resulting in a shift of the ideal TE,;, mode propagation
constant and changes in the ideal wave impedance and interfacial reflection and
transmission coefficients.

Sample-to-wall gaps will be analyzed in this chapter by regarding the waveguide
as inhomogeneously filled in the cross-sectional plane with LSM and LSE propagation
modes supported in the sample/gap region [3]. The longitudinal section magnetic
(LSM ) modes accommodate bottom/top gap geometries, whereas longitudinal section
electric (LSE) modes accommodate left/right sample-to-wall gaps. Characteristic
equations for the corresponding propagation constants will be derived and solved

numerically to determine shifts from the ideal TE,, propagation constant of a uniformly-

filled guide. A modal analysis is utilized to obtain (under small gap conditions)

approximate expressions for the wave impedance and interfacial reflection and
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transmission coefficients. This is done by considering a single TE,, mode incident upon,

and reflected from, the sample and only a single LSM or LSE mode inside the sample
region. Approximate expressions for the scattering parameters are also obtained using

wave matrices. Theoretical and experimental results will be given and discussed.

3.2  Review of a Uniformly-Filled Rectangular Waveguide

Consider a rectangular waveguide, having width a and height b, operating in its
principal TE;, mode and uniformly filled in the cross-sectional dimensions by a planar
sample having thickness ¢ (it is assumed that the sample is linear, homogeneous and
isotropic). If the scattering parameters S;;” and S3” are experimentally measured, then
the following scheme is utilized for computing the relative permittivity and permeability
(&,,4,) of the sample. First, an initial guess for ¢, and 4, is provided. Next, the

propagation constants in the free-space (7, ) and sample regions ( » ) are computed using

yo=,/k3-k§ , 7=,/k3—k2 @3.1)

where

1] /4
k0=a) Eo o =: N k=k0"€’./lr s kc =; (32)

The wave impedance in the free-space ( Z; ) and sample regions ( Z ) are determined next,

followed by the interfacial reflection coefficient (R) and one-way phase delay and

attenuation term ( P)

ZO=J_“"“2 .z =JCKH (3.3)
Yo 4
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R Z-%

= , P=e! (3.4)
Z+Z,

The final step is to calculate the theoretical S-parameters and compare them with the

experimentally measured values, that is

R(1-P?) w  P(1-R?)
Sty -2~ 2 gy 27 35
U _R2p? 2L _R2p? -3)

SIY (@8, 4,) = S{Y (@) =0

thy exp (3'6)
S2] (w’gruur)_SZ] (a)) =0

The parameters & and u, are iterated using a two-dimensional root search algorithm
(such as Newton’s method) until (3.6) is satisfied within the desired/specified accuracy.

If the sample is non-magnetic, then 4, =1 and &, can be computed using the following
S™ (0,6,)-SEP (@) =0 or S (w,6,)-SEP(0)=0 G.7)
The procedure for computing &, and x4, when gaps are accommodated is similar except

that the expressions for y, Z, R and P must be modified (as will be demonstrated).

3.3 LSM Mode Analysis for Bottom/Top Gaps
3.3.1 Geometry

The geometry for the bottom/top gap analysis is depicted in Figure 3.1. The
spacing of the bottom gap in region 1 is d; and the spacing of the top gap in region 3 is
d,. Both gap regions are assumed to have constitutive parameters (&, ). The height
of the sample in region 2 is #; and has constitutive parameters (¢,,4,). The width and

height of the rectangular waveguide are a and b, respectively. The thickness of the

sample along the z-axis is ¢{. The waveguide walls are assumed to be perfectly
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conducting.

Region3  (€,H9)

Region 1 (€0sH0) 1 d,

Figure 3.1 Cross-sectional geometry for bottom/top gap analysis.

3.3.2 Hertzian Potential Generating Function and EM Field Components
An electric-type Hertz potential having only a y-component is sufficient to
generate all EM field components (i.e., LSM modes) necessary for satisfying boundary
conditions, that is
7 = 9y (. )e o = 3, (g ()e T 38

for a forward traveling wave in the i

region, where it is assumed that propagation is
along the z-axis. Note that this particular choice is justified by the uniqueness theorem.
Also, it is common knowledge [3] that the propagation constant ., in each region must
be identical, thus having a subscript i on y,, is not required). Since it is assumed that no
sources exist in the sample or gap regions, the electric-type Hertz potential satisfies the

source-free Helmholtz wave equation

Vg +kFiE =0 (3.9)
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where k =k; =k, and k, =k. The EM field components satisfy the well-known
relations (see Appendix A for details)
H; = joeV x7? (3.10)

1
JoE;

VxH, (3.11)

E,':

Substitution of (3.8) into (3.10) and (3.11) leads to the following field components

H; = jog, [xmmf (x)+2 %ix )]gi(y)e" tom? (3.12)
E, ={£ e 6ggy ) y[a ;x(x)+rlsmf(x)]g,(y>
(3.13)

- éylsmfi (x) agi ) } e Tim?

%

Note, equation (3.12) reveals that H only has components in the longitudinal x -z
plane, hence the LSM terminology. The above wave equation and field components are
utilized in the development of the characteristic equation for propagation constant y;,, in

the next section.

3.3.3 Identification of the LSM Mode Characteristic Equation for y,,,

The LSM mode characteristic equation for y,, can be identified by solving the

wave equation in the gap and sample regions and enforcing boundary conditions at the

waveguide walls and air/dielectric interfaces. Substitution of (3.8) into (3.9) and dividing

by fi(x)g;(y)e """ leads to the familiar separation of variables result
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1 2f, 1 220)_

(2, +k? 3.14
f;(X) axz g,-(y) ayz (71sm +K; ) ( )

Equation (3.14) can only be satisfied if the first and second terms are constants, that is

2
L 9D _ e (3.15)
fi(x) ox
2
1 & 80) _ 2 (3.16)
&) oy
where the constraint equation is
ki 4k} = Vi + (3.17)

Equations (3.15) and (3.16) are ordinary differential equations which have the following

well-known solutions
fi(x)=A,sink,x+ B;cosk; x (3.18)
gi(y)=C;sinkyy+ D, cosk;,y (3.19)
It will be shown that f;(x) is identical in each region but g;(y) is not. Therefore, it is

mathematically convenient to introduce appropriate shift factors in the definition of

gi(y) as follows

g1(y)=Cisinhy+ Dycoshy ..0<y<d, (3.20)
g (¥)=Cysinl(y—dy)+ Dycosl(y—d,) ...d|<y<d)+4 (3.21)
g3(»)=Cssinh(b-y)+ Dscosh(b—y) ..dj+Hy <y<b (3.22)

where the wavenumbers along the y direction are
kly =k3y=h N kzy =] (323)

Boundary conditions on £ and H can now be implemented with the aid of (3.12)
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and (3.13). The tangential electric field at x =0,a (for all y,z ) must be zero, thus
E,0,y,2)=0, E (a,y,2)=0 ..a=y,z (3.24)
Substitution of (3.13) into (3.24) produces the following condition
fix)] o, =0 (3.25)
The tangential electric field at y =0,b (for all x,z) must be zero, that is
Ey(x,0,2)=0 , E3,(x,0,2)=0 ..a=x,z (3.26)

Substitution of (3.13) into (3.26) results in the general relations

b

ay y=0 ay y=b
The tangential electric field must be continuous at y =d,,d; +¢ (forall x,z), thus
E,(x,d\,2) = Eyp(x,d),2) , Eyp(x,dy+11,2) = B3, (x,d) +1,2) .a=x,z (3.28)

Inserting (3.13) into (3.28) produces the following

oz _9%0) %) _%0) (3.29)
oy y=d % y=dy % y=d,+ o y=di+4
fH(x) = f(x)= f3(x) = f(x) = Asink,x+ Bcos k,x (3.30)

Equation (3.30) physically requires that the phase velocity along the x direction must be

the same in the sample and gap regions for boundary conditions to be satisfied (same

applies for propagation along the z direction since ¥, is the same in each region). The
final boundary condition is that the magnetic field must be continuous at y =d,d, +,
(for all x,z), thus

H\y(x,d|,z) = Hyy(x,d),2) , Hyp(x,dy +1,2) = Hy, (x,d) +14,2) .a=x,z (3.31)

Substitution of (3.12) into (3.31) leads to
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&i(d)=¢,8:(d) , ¢&.8(d+n)=g3(d+h) (3.32)
The LSM mode characteristic equation is obtained by inserting (3.20)-(3.22) and

(3.30) into the above various relations. First, substitution of (3.30) into (3.25) produces

the result
f(x)=Asink,x = Asin(mzxx/a) .m=1273,... (3.33)
where
k=22 (3.34)
a

is the same in the sample and gap regions. If the coefficient 4 is absorbed into the
coefficients of g;(y), then f(x) can be written as

f(x)=sin(mzx/a) ..m=1,23,... (3.35)
Note that f(x) =0 when m=0 and is therefore of no interest since it leads to a trivial

solution. Substitution of (3.20) and (3.22) into (3.27) leads to

_ag‘;}(,O) =0 = G,=0 . g(y)=Dcoshy (3.36)
ag;}()b) =0 = C3=0 - 83(y)=Djcosh(b-y) (337
Inserting (3.36) and (3.21) into the first relation of (3.29) gives
20 %W _phsinkd, =Gyl (3.38)
% y=d, ay y=dy

Solving (3.38) for C, allows g,(y) to be written as

g0 =-D ?sinhd, sinl(y—d;)+ D, cosl(y-d,) (3.39)

Substitution of (3.39) and (3.37) into the second relation of (3.29) results in
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og2(») _%:(»)
oy y=d+1 % y=d,+,

=> — Dyhsin hd; coslty — Dyl sinlt; = Dyhsinhd, (3.40)

Solving (3.40) for D; and inserting this result into (3.37) leads to the following
expression for g;(y)

_ Dyhsin hd, coslty + Dyl sinlyy
hsin hd,

g3 (y)= cosh(b-y) (3.41)

Substitution of (3.36) and (3.39) into the first condition of (3.32) gives

g(d)=¢,8,(d) = Dicoshd,=gD, - Dy=D M (3.42)
Insertion of (3.42) into (3.39) and (3.41) leads to
1 h . .
g2()=D [—coshd, cosl(y—dp) —75m hd, sml(y—d,):| (3.43)
6‘I'
hsin hd, coslt) + L cos hd, sinlt
&) =-D - cosh(b-y) (3.44)

hsin hd,

As a final step, (3.43) and (3.44) are substituted into the second relation of (3.32), giving

hsin hd, coslt; + L cos hd, sinlt,
£

coshd, coslty — £ sin hd sinlt, = — % coshd, (3.45)
l hsin hd,

Multiplying (3.45) by the factor ¢.hsinhd, and using the trigonometric identity
sin hd) cos hd, + cos hd, sin hd, = sin h(d, + d,) produces the characteristic equation

£,2h2

[l cos hdj cos hd, — sin hd sin hd, ] sinlt) + &,hsin h(d, +d,)coslty =0 (3.46)

where, upon using (3.17), (3.23) and (3.34), the wavenumbers 4 and / are

h=\y2n+k3—(mula)’ , 1=\yk, +k*-(mz/a)’ (3.47)
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Since h=h(y,) and I =I(y,), equation (3.46) constitutes a transcendental
equation for y,, which must be solved numerically. An infinite number of solutions
exist for the LSM mode characteristic equation (i.e., n=1,2,3,...). The gap geometry,
dimensions of the waveguide and the frequency of operation all determine whether a
mode is propagating (¥, = jBsm) Or evanescent (¥, = Q). If the sample is lossy,

no true cutoff exists and all the modes will be propagation modes (however, the modes

that exist above the frequency of operation will decay rapidly). Note that, for the mn'

LSM mode, the indices m and n give a measure of the field variation along the x and
y directions, respectively. Also note that when d;,d, -0 (= #, —> b), equation (3.46)
simplifies to sinlb=0 = I =nx/b for 71=0,1,2,.... This, of course, is a well-known

result of guided wave theory.

3.3.4 Perturbation Theory for Lowest-Order LSM Mode Propagation Constant

It was mentioned in the previous section that an infinite number of roots exist for
the characteristic equation for y, . If the gaps between the sample and waveguide walls
are small compared to the dimensions of the waveguide (and frequency of operation),
then the lowest-order (i.e., LSM;,) mode propagation constant should be dominant (the

higher-order mode propagation constants will lead to waves that are highly evanescent).

It should also be anticipated that this propagation constant will only be slightly perturbed
from the ideal TE,, propagation constant (y) for a guide uniformly filled with the

sample material, that is

yi =y +orkn (3.48)
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where

yr=(r/a)’ -k (3.49)
Since the algorithm for finding the various roots of (3.46) is sensitive to the initial guess,

the perturbation expression in (3.48) will be utilized to obtain an accurate initial guess for
Vism- Note, the perturbation 7,%,,, ~ 72 +§y12s,,, is used instead of y, =¥ + 38y, since
the wavenumbers in (3.47) depend on y2,, and not yg,.

A perturbation formula for 5}/123,,, can be obtained by first substituting (3.48) and

(3.49) into (3.47), resulting in the following expressions for h? and /2 (for m=1)

W =k —k* + Oy =B + 2 (3.50)
?=sy2, (3.51)

where
W=ki-k* , h=0Ypy (3.52)

Next, the Taylor series expansions for sinx and cosx, that is

2
sinxx~x , cosle—x? Lxxl (3.53)

are utilized in (3.46), leading to the following simplifications (assuming that hd,, hd,

and /t; are small compared to 1)

252 2,2
I coshd) cos hd, sinlt zlzt, [1—%}[1—}1—;1] 3.54)

252 2 ;2
I coshd, cos hd, sinlty ~Céyt,, C=zl[1-5—§1—J(1-%‘-’A] (3.55)
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2,2
L hd, sin hd, sinlty ~ —d\dytye2h* ~ ~didyte? b} —2d\dytieP i (3.56)

2,2
h° . . .
- sinhd, sin hd, sinlt) ~ -4+ Déyfsm (3.57)
A=didhe2h} | D=-2d,d,ne2h}
. 2 1
g.hsinh(d| +d,)coslty =, h“(d| +d,)| 1- >
(3.58)
2 Rt o
= &,(d) +dy)h, +¢,(d) +dy) e O ism
&,hsinh(d, +d,)coslty ~—B+ ESy},,
2,2 (3.59
B=—¢,(d +d)h? , E=e,(d,+d2)[ -""%] )
Substitution of (3.55), (3.57) and (3.59) into (3.46) leads to the desired result
A+B
~(A+B)+(C+D+E)y}y =0 = Spln=—— 3.60
( ) ( )ylsm Y Ism C+D+E ( )

B = |yt + 87k (.61

The result of (3.61) is used as the initial guess in the algorithm for finding the

lowest-order root of (3.46). The reader is reminded that this perturbation result is only
valid if the gaps are small. Note that /t; is always much smaller than unity since
I =6y, thus the Taylor series expansions in (3.53) are always valid. This is not
necessarily the case for hd; and hd,. However, h can be broken into an unperturbed

and perturbed portion and the sin and cos angle formulas invoked. It can be shown

(although algebraically tedious) that this leads to a better approximation to 67,%,,,, and

hence a more accurate initial guess.
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Now that we have developed a scheme for computing the propagation constant
¥ism» WE can compute the one-way propagation term P by using the second term of (3.4)

with y replaced by y,,,. This expression is not exact, but offers a good approximation if
the gaps are small. However, experience shows that a more adequate model for the
interfacial reflection and transmission coefficient R,7 and wave impedance Z can be
developed by using mode matching, as will be discussed in the following section. Once
these expressions have been found, the general technique of section 3.2 can be invoked

for the material characterization process.

3.3.5 Approximate Expressions for Scattering Parameters Using Mode Matching
The objective of this section is to obtain expressions for the scattering parameters
Sim and S5m.  Approximate formulas can be obtained using wave matrices if the

interfacial reflection and transmission coefficients are computed at the front ( Ry, , 7}, )

and back (R,,7},,) sample interfaces. The front sample surface is comprised of an

air/dielectric interface, whereas the back sample surface is a dielectric/air interface.
Expressions for Ry,,,T, and R,,T), will be found using mode matching. An

approximate expression for the equivalent wave impedance in the region 0<z < ¢ will
also be obtained using the above analysis.

A general formulation for computing the reflection and transmission coefficients
at an air/dielectric interface is as follows. First, assume that only a single mode is
incident upon the interface and N modes are reflected and transmitted. Thus, the total

tangential fields for z <0 and z >0 can be written as
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N
Ey,=afée”" +) a,é.e"’
n=1

- z<0 (3.62)
Hy, =af e - Za;l;,,e""z
n=1
N Ism
S
n=l z>0 (3.63)

N I
7 _ +7lsm -y, "z
Hy =) byh' e

n=1

—~Ism h 1 ism

where ¢, h 1€p are the normal modes for the electric and magnetic fields in the

air and dielectric regions. Enforcing continuity at the z =0 interface leads to

a e,+Za e, —Zb+"1"" (3.64)

n=l

N _ N
m=Y ayh, =Z bk (3.65)
n=1

If the above equations are divided by a; and the operators

[e;-gas jh A{yds ..j=1,..,N (3.66)
CS

are applied to (3.64) and (3.65), respectively, then the following relations prevail

N N
(e -éds+Y R, [€-,ds=DT, [¢,-esmds ..j=1,...,N (3.67)
CcS n=l CS§ n=l CsS
- - N - N
[#-hds-3 R, [h;-hds=T, [h;-B"ds ..j=1,..,N (3.68)
CS n=l CS§ n=l Cs
where
a, b,
Rn =5 > Tn =" > Rlsm = RI ’ T;sm =Tl (369)
aq a
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It will be assumed that the normal modes are normalized in the following manner

.. l.n=j -~ - C; ..n=j
jej.e,,ds=6j,,={0 o, Ihj-hnds=Cj,,(5],,={ T (3.70)
s WhE ] Cs 0..nzj
Thus, equations (3.67) and (3.68) may be written
5,1 +R; Z L..,N (3.71)
n=l1
Ciéj1-CR; Z l,..,N (3.72)
where
— I" ~Ism _ T pilsm
= [e-&mds , N, = [h;-Bmas (3.73)
cS cs

The factors 6;; and C};6;, are the matrix forcing terms, thus (3.71) and (3.72) can be

more suitably written as

N
R, —ZM,-,,T,, ==6;
wor j=1,.,N (3.749)
C;R; +Z wTn=Cii6;

or in partitioned matrix form

[(1: _134 ]m=[§;] (3.75)

where I is the Nx N identity matrix, C isa Nx N diagonal matrix with elements C ;,

M and N are NxN matrices with elements M, ,N,, and R,T,B,B, are NxI

column vectors given by
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Ry I -1 Ci

[R]=| : | . [T)=| | . [B]=|0]| . [B]=] O (3.76)
Ry Ty : :

Note that the expected result of R,,7, =0 for n#1 when d;,d, - 0. That is, coupling
to higher-order modes disappears when the gaps are removed.

In a similar manner, a general formulation for computing R,,,,7}, can be found
by considering a dominant propagating mode incident upon a dielectric/air interface. The

total tangential fields in the dielectric (z <0) and air (z > 0) regions are

Itm

E“ =a l11.5'm y, +Z ~— ~Ismer,,

...z<0 3.77)
Ism

_a] hlsm —yimz _Z ~—hlsmey,, z
n=1

N
E. =N bte e rr*
E, = Zb,, €.e

n=1

N -~ -

_ + —¥nZ
2t — an hne "
n=1

z>0 (3.78)

Enforcing continuity at the z =0 dielectric/air interface leads to

N
a+ellsm Z«-——lsm Z :én (3.79)
n=l n=1
- N N
ar R =Y ah " =Y bih, (3.80)
n=1 n=1

Dividing the above equations by a; , and using a similar set of steps as in the previous

[A; —Cl][ﬂ{gj (3.81)
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where R, =a, /af, T,=b) /&, Ry, =R, T}, =T, and

Rl Tl Mll Nll

[R]=| : ,[f]:j c[Bl=- | [B]=] (3.82)

Ry Ty My, Ny
As a specific example, consider a single incident, reflected and transmitted wave
(ie., N=1). If the incident wave is the TE,, dominant mode, then the well known

tangential fields in the region z <0 are

&Anﬂ=dﬁuk””+déukm} <0 (3.83)

By (x,2) = af By (1) - af y()e*

where

e = y\, 2b51n— , h] —x—‘/ sin— }’1=\/(7r/a)2—k3 (3.84)

The tangential fields in the region z>0 for the lowest-order LSM mode (i.e., the

LSM,; mode), upon examination of section 3.3.2-3.3.3, are

E . y,2) = +=lsm , —yimz
_2’(”2) b‘e_‘ (x.7)e b .20 (3.85)
Hy(x,y,2) = b B (x,y)e 7
where
D, [ab| n? 2
b+=__l_ covr (. ism
1 , z[az (}’l )}
(3.86)

~1sm |2 Ism Ism 1 2 Ism
sm , M -X sm—
y,/ p ) 20 (y),/ pg:d )

Ism\2 2 .

wla & ...gap region

Zim(yy= & )(M) ,gmz{o _ (3.87)
Jjoe(y)y; £ ...sample region
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g, cosh,y ..0<y<d,

Ism

g™ =1{ coshd,cosl(y—d,

Slnll(y dl) dl <y<d| +t] (388)
1

_ & sinyd, coshity +1 cos hd, sin iy c
h] sin hld2

osh(b-y) ..dj+y<y<b

\

W=Em 2+ —(la) . L= E™ K= (n/ a)? (3.89)

The matrix equation (3.75), for this special case, reduces to

o el n ] o5
Ch My ]ln Ci

where
= - 1
Cy= [ -hds=— (3.91)
cs Z)
1t
My = [&-&™ds= jg”"' ()dy =4 (3.92)
Cs
N —- I};] i;llsmds Ism(y) 1 (3 93)
n-= ) lsm :
cs » 27k
The solution to (3.90) is
ZH -7, 1 e
R, =Ry, _Z’;'I"—Z o T =Tiom =— (4 Rpgp) z8 = Az (3.94)
ism * 40
Note that the following expected result occurs when d,,d, — 0, namely
Z-2 e
1=Z+ZZ , 1=1+R, , Z{7 =420 =1.2=Z (3.95)

It should be noted that the relations in (3.94) are approximate for several reasons.

First, the fields in the region z <0 are independent of the variable y, whereas the fields
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in the region z >0 are functions of y. Secondly, the x -directed tangential electric field

for the LSM;, mode has been ignored (i.e., assumed to be negligibly small). Finally, and
most importantly, the expressions are approximate since the modal expansion of the
reflected and transmitted fields has been truncated to a single mode.

In a similar manner, the interfacial reflection and transmission coefficients
Rigm» Ty at the dielectric/air interface are found by considering a single LSM mode

incident upon, and reflected from, the interface and a single 7E,, mode transmitted into
the air region. The result, with the aid of (3.81), is

Rlsm = _Rlsm ’ j?sm =A(l+ iélsm) =A(- Rlsm) (3.96)
If the sample region has length ¢, then an application of the wave-matrix approach of

chapter 2 leads to the desired scattering parameter expressions

2 2
Sllsm - Rlsm (1 - Bsm) Slsm — Bsm (1- Rlsm)

, (3.97)
1- R, P2, 1- R: Py

where

Ism
P, =en ! (3.98)
Of course, these scattering parameters are only approximate since R, , T, and P,

are not exact.

3.4 LSE Mode Analysis for Left/Right Gaps
34.1 Geometry
Figure 3.2 shows the cross-sectional dimensions of a sample inserted into a

rectangular waveguide having left/right gaps. The spacing of the left gap in region 1 is
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d3 and the right gap spacing in region 3 is d;. Both gap regions are assumed to have
constitutive parameters (&), 4). The width of the sample in region 2 is #, and has the
electromagnetic properties (&,,4, ). The width and height of the rectangular waveguide
are a and b. The sample has a thickness ¢ and the walls of the waveguide are assumed

to be perfectly conducting.

Ay
y=b —
Region 1 Region 3
(€0,H0) (€0,H0)
[ ——> o E—
d; d,
y=0 —; |_>X
= l t =
=) x=d; & x=d;+t, b

Figure 3.2 Cross-sectional geometry for left/right gap analysis.

3.4.2 Hertzian Potential Generating Function and EM Field Components
The following magnetic-type Hertz potential is sufficient to generate all EM field

components necessary for satisfying boundary conditions for the left/right gap geometry
Al =l (x,)e T = i (0)g (e T (3.99)
where the Hertz potential satisfies the source-free Helmholtz wave equation
Va4 k7 =0 (3.100)

with k =k3;=ky and k,=k. For magnetic-type Hertz potentials, the EM field
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components satisfy the relations

E; = —jouVxzl (3.101)

VxE, (3.102)

Substitution of (3.99) into (3.101) and (3.102) leads to the following field components

E, qu,f(x)[ynseg, () +2 géiy )} et (3.103)

— A a a
i - {_x y (x)[ :y,(y)+ ylseg‘(y)J %) gé;y)

(3.104)
71se L(_.g’ (y)} Tise

Note, the electric field only has components in the longitudinal y—z plane (i.e., the

plane parallel to the gap-sample interface) and are therefore called LSE modes.

3.4.3 Identification of the LSE Mode Characteristic Equation for y,,

The form of f;(x) and g;(y) for the magnetic-type Hertz potential, determined

by solving (3.100), is

Si(x)=A;sin px+ Bjcos px ..0<x <dj (3.105)
fo(x)=A,sing(x—d3)+ Bycosq(x—d3) ..dy <x<dj+t, (3.106)
f3(x)=Azsin p(a—x)+Bycosp(a—x) ..d;+t, <x<a (3.107)
gi(y)=C;sin k,),y+D,- coskiyy (3.108)

where the constraint equation and wavenumbers along the x direction are given by

K2+ kS =yh, +h} (3.109)
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klx =k3x =p k2x =q (3.110)

The following boundary conditions for f;(x) and g;(y) prevail

Elang(x9052)=E[ang(x’b’z)=0 = gg—ILy_) =O (3111)
ay y=0,b

Eigng(0,9,2)=E\ppe(a,,2)=0 = £(0)=0, f3(a)=0 (3.112)

Elang(di;’y’z):Etang(d;ay’z) = fi(d3)=,urf2(d3) (3113)

Etang(d3+t£’y9z)=Emng(d3+t;’y,z) = /Urf2(d3+t2)=j3(d3+t2) (3114)

3 - - afi(x of5(x
Fliang (d5,9,2) = Biang (dF,y,2) = 0D _260) (3.115)
ox x=d, Ox x=d;
07 - - of>(x af3(x
H,a,,g(d3 +t2,y,z)=H,a,,g(d3 +1,y,2) = _fz(_) =M (3.116)
ox x=dy+t, ox x=d;+t,
In addition, the relations in (3.113)-(3.116) also require that
g1(¥) = 82(y) = g3(y) = g(y) =Csink,y + Dcosk,y (3.117)

The LSE characteristic equation is identified by substituting (3.105)-(3.107) and

(3.117) into the above boundary conditions. The result is

%:(y) =0 = g(y)=coskyy=cosn”—y ..n=0,1,2,.. (3.118)
ay y=0,b b
£0)=0 = B =0 .. fi(x)=A4,sinpx (3.119)
f21(a)=0 = By;=0 .. f3(x)=A;sin p(a—x) (3.120)
. sin pd.
h(@d)=ufr(dy) = Asinpdy=uB, = By=4, #p L @321
. sin pd;

f2(x)=A,sing(x—d;3) + 4, cosqg(x—ds) (3.122)

r
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U froldy+h) = f1(d3+1;) =

i 3.123
,u,[Az singt, + A, sin pd; cosq12J=A3 sin pd, ( )
f3(x)=— Er (Az singt, + 4, sin pds cosqtstinp(a—x) (3.124)
sin pd, .
%) _BDN L, peospdy = Ayg = A = 4, ZESPB (3125
ox x=d, ox x=d,

f(x)= 4, [ﬂcos pds sin g(x — dy) + ——sin pd; cos g(x— a})} (3.126)
q H

r

f3(x) =4, i—(ﬁcos pdysingt, + Lsin pd; cos qtstin p(a—x) (3.127)
q

sin pd, ,

of(x)
ox

A

= 3.128
o ( )

X=d3+’2 X=d3+f2

pcos pdz cosqty — 4 sin pdysingt, =
u

r

(3.129)
_ DU, cos pd,

: (3 cos pd;singt, + L sin pd; cosgt, J
sin pd,

q Hy
Multiplying (3.129) by the factor gsin pd,/ pu, and using the trigonometric identity
sin p(d; +d,) = sin pd; cos pd, +cos pd; sin pd, leads to the following LSE mode

characteristic equation

2
( pcos pds cos pdy — 9 5 sin pdy sin pd4Jsin qt,
g (3.130)
+ZL sin p(d3+dy)cosqt, =0
where
p=lrR 4G —(nr b}, q=\yE.+k: -(nm/b)? (3.131)
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The above eigenvalue equation has an infinite number (m =1,2,3,...) of roots for y,, and

must be solved numerically. Note that (3.130) implies that g =mz/a when d;,d; >0,

as expected.

3.4.4 Perturbation Theory for Lowest-Order LSE Mode Propagation Constant
An initial guess for the lowest-order LSE (i.e., the LSE;;) mode propagation
constant can be obtained using the perturbation approximation
Vee=7 407k, . ri=(nla)’ -k (3.132)

Substitution of (3.132) into (3.131) leads to the following binomial approximations for p

and ¢
P=pP,*Pp » 4=q,%q, (3.133)
where
2 120172 5yl r Sy,
Pu=(r"+kg)'" , pp="%, g=— , q,=7"% (3.134)
2p, a 2q,

Steps analogous to those in section 3.3.4 lead to the result

A+B+C
PE s+ 0 Vo= (3.135)

A=-p,q,t, [ ]( ] =-Pu9.12CGC,

Co_Pau(dy+d) | qur}
U, 2

where

(3.136)

B=dyd,p,q0 1t
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2,2
D= %['&CICZ - Pug,diC +Cy [] ‘2&3‘13‘]}
q

u

2
E=—d3—d4’§i 34+ qu (3.137)
2/1,- pll

pobdurdgl( 1 LY gt
2#" pu qu 2

3.45 Approximate Expressions for Scattering Parameters Using Mode Matching
It can be shown by a set of steps similar to those in section 3.3.5, that the

approximate scattering parameters for the left/right gap geometry are (for N =1)

2 2
Slbie - R[se (l - Plse) Slse = M (3 138)
< 22 52 2 p2 )
1- Rlse Plse 1- Rlse Plse

These scattering parameters are found using the wave matrix formulation which requires

the computation of the interfacial reflection and transmission coefficients R;,,,7},, at the

front sample interface and R,,,7},, at the back sample interface. As in section 3.3.5, the

above coefficients can be computed using (3.75) and (3.81), except that M, N, are
given by
M= [&-eFds , N,= [h-h*ds (3.139)
cs CS

As a specific example, when N =1, the matrix equation for the air/dielectric
interface reduces to (3.90). The tangential fields in the region z <0 are given by (3.83)-
(3.84) and the tangential fields in the region z >0, with the aid of sections 3.4.2-3.4.3,

are
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Ey(x,3,2) = B{& (x,y)e
. B e ".z2>0
Hy (%, y.2) = b B{**(x,y)e 7
where
+ : Ise P ab
b = Ajouurr ==
q\V?2
~[se A 2 se plse A 1 2 Ise
e (x)=y.|— x) , X)=-Xx — X
¢ (x) y,/abf. ® . A z{se(x)\/abf' (x)
- 1 ...gap region
@ =@ . p(x) ={ _
M, ...sample region
r .
HIMAX o<x< dy
Pi\K,
.l,se _] cos pid;sing (x—ds) L qisin pid; coszq,(x—d3) dy<x<dy+h,
Hy PiH,
Mq——x)'(cos p|d3 sin qifx + % 51 p]d3 cos qIIZJ d3 +1, <x<a
sin pyd, PIK,

zl’”(x)=ja;ﬁ£x) s H(X) = piophy (x)
1

The factor C;, is given by (3.91) and the matrix elements M;, and N, are

a
My, = Iél efseds = 2 Isin(,;x/a)fl”"(x)dx =B
CS 29

a . lse
(7 ghsey 2 ‘sin(mx/a)fif(x) , 1
Ny = Ihl’hlseds- 7 I Ise e
s asy 0 Z] (x) ZOZ

Ise

Therefore, the solution to (3.90) is

eq _
_ lee ZO

1
= , =T, =—(+Ry,) , 7% - gz
Zle;i, + Z() 1 Ise B Ise Ise

RI = Rlse Ise
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(3.141)

(3.142)

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)



Similarly, the solution for R, and T}, at the dielectric/air interface is
Rlse =-Ry f;se =B(1+ klse) =B(1-Ry,) (3.149)
An application of the wave-matrix procedure leads to the desired result (3.138) where

P, =en" (3.150)

Note, since R, =R, and T}, T, =1- Rf,e , the wave-matrix procedure leads to

the result in (3.138). However, for the case N >1, these relations may not be valid and

the general wave-matrix result must be used, that is

R+ RP? PTT
- Syy = ——— 3.151
1+ RRP? 2 RRP? G151
R+ RP? P(1-R*)(1-R?
n=-——r7> Sz = (- )(- 5 ) (3.152)
1+ RRP TT(1+ RRP?)

where R,T,R,T are representative of the LSM or LSE interfacial reflection and
transmission coefficients at the front and back sample planes and P is equal to e 7" or

e 5. One can see that, when R=-R and TT = l—Rz, the anticipated scattering

parameters are obtained.

3.5 Experimental Results

The gap analysis measurements for an Alumina (Al,03) sample are discussed in
this section in order to verify the theoretical development in the preceding sections. In
the top/bottom gap measurements, an Alumina sample having length ¢ = 0.05 inches was
initially machined to accurately fit into an ideal X-band waveguide having a width of

a=0.9 inches and height of 5=0.4 inches. The permittivity of this sample was
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computed using the ideal procedure in section 3.2. Next, the sample was machined so
that the height was reduced by 0.0008 inches (i.e., 0.8 mils). Thus, the height of the
sample was reduced from 0.4 inches to 0.3992 inches. Note, the width of the sample (0.9
inches) was not altered. The sample was then reinserted into the waveguide and it was
noted that there was a 0.5 mil gap at the bottom and a 0.3 mil top gap. The permittivity

was then determined with and without implementing the gap correction (for N=1) of

section 3.3. Figures 3.3 (Re{e,} vs. freq.) and 3.4 (Im{¢,} vs. freq.) clearly show the
validity of the gap analysis. The sample was then removed, machined to a height of
0.3981 inches and inserted back into the waveguide. Again, the permittivity was
computed with and without gap correction and subsequently compared to the ideal case.
Figure 3.5 shows that the analysis of section 3.3 mitigates the gap error. In addition,
Figure 3.6 demonstrates the effects of a 2.9 mil gap. In this case, the gap correction
accommodates an error of approximately 5%.

Figure 3.7 reveals that left/right gaps do not significantly alter permittivity
measurements of non-magnetic materials. Although the left and right gaps were /7.5
mils, the difference between the gap and no-gap correction was negligible. This is an
anticipated result since the electric field is exceedingly small near the walls at x=0,a. It is
anticipated that the permeability profile of a magnetic material would be significantly

altered by the presence of left/right gaps.
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Figure 3.3 Experimental results of a 0.8 mil top/bottom gap for Re{¢,}.
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Figure 3.4 Experimental results of a 0.8 mil top/bottom gap for Im{g¢, }.
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Chapter 4

ACCOMMODATION OF WALL LOSS IN RECTANGULAR WAVEGUIDE

MATERIAL CHARACTERIZATION MEASUREMENTS

4.1  Introduction

Imperfectly conducting walls can influence the accuracy of measured constitutive
parameters in rectangular waveguide material characterization measurements. Wall loss
effects become significant in the presence of materials having large permittivities or
permeabilities and in high-temperature applications in which the waveguide material has
relatively poor conductivity. The finite conductivity induces mode conversion and results
in a shift of the ideal TE;p mode propagation constant.

Wall loss effects can be accounted for using a coupled-mode perturbation theory
(specialized to single-mode operation) which is based upon an impedance boundary
condition at the imperfectly-conducting waveguide walls. The result is a complex
correction to the ideal TE,( propagation constant. Experimental results will be given and
a comparison will be made with the standard power-loss method of attenuation

correction.

4.2  Review of Attenuation Correction for the Ideal TE,o Propagation Constant
An expression for the conductor loss attenuation correction a, to the ideal TEg
mode propagation constant can be obtained by considering the rate of decrease of power

propagated along a finitely conducting line [17]. If the power at z=0 is F,, thenat z it
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is P,(z) = Poe'za‘z . Consequently, the conservation of energy requires

“2,P(2) = a,=dD - AC=0 _F

p(z)=_i}_)z(_z)_ =
! dz ©T2P(z) 2P(z=0) 2P,

(4.1)

where P is the power loss/unit length at z=0 due to finite conductivity and P, is the

total axial power transport at z=0. That is, the power loss along the line is equal to the
rate of decrease of the power propagated along the line.

If the conductor loss is small, the fields will not be substantially perturbed from
their loss-free values. Thus, an approximate expression for @, can be obtained by using

the known fields of the loss-free case. Finite (i.e., good) conductors exhibit a surface

Z. =R+ jX. =1+ )), /“’i 4.2)
20,

and the tangential fields satisfy the boundary condition

impedance (see appendix D)

—

Etang = Zc’ax tang = ch ‘ (4'3)
Therefore, the power loss/unit length (i.e., the power transported normally into the

conducting surface/unit length) can be written

1
Py = _%C£ Re{ Eyng x Hig 7} dS =1 j Ojne{fz;a,,g Fix g | dzdl "
— 2 .
H

tang

dl

2 R
dI=—2£é[

P, =52C- [ d1=52£ [[7 Hiang
C C

where C is the periphery around the waveguide, 7 is the unit outward normal pointing

from the conductor into the guiding region and E,, ﬁ,ang

ng> are the unperturbed TE),

tangential fields relative to the conducting surface at location z=0. The total axial
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power transport at z =0 is

Aoz Rl

l'ru

77 3)s = K0 T, vy = R0 T
= — X = —
2 00 t 2 00

(4.5)

where E,,H, are the unperturbed TE;o transverse electromagnetic fields at z=0,

Ryo =Re{Z,y} =Re{jou/y,} is the real part of the TE,;, wave impedance with

710 = \/(n/ a)’ —k? and E, =-Z,y3x H, is the relationship between the transverse field

components.

The well-known unperturbed fields for the TE;o mode at z =0 are

E=ju45inE
a
H ——xism’—rf—zA”—/acosE

Zio a jou a

The power loss/unit length at z =0 for the TE;o mode can therefore be written

R — 2 R ~ 2
PIO = ?c _ﬂHtang dl = ?c I lHtang dl
¢ et
where
R, A4* (a n?
”Hmng| dl = _de=7 5 2710}’10*'—"
24 5 v " pp’

b . 2

2 .

di=2 [mp;|  ay-E 24 ‘(bﬂz]
2 0 x=a.z=0 2 @ /1# a

* 2
a=fe ;M [a710710+'2—
y=b,z=0 2 w #ﬂ 2

% CJ; lﬁ tang

- ” tang

a
2a=X
>
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4.7)

) (4.8)

(4.9)
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b . 2
R. 15 2 R . R, AA 4
== | |H, d=—=<|\H,H dy=—-% - b—- (4.11)
2 C” mngl 2 (')‘. 280z 20 2 0)2/-‘/1 ( a2}
Therefore, the power loss/unit length is
A4* (a . x* 7t
Po=R.———| = +—+b— 4.12
10 cwzyﬂ.[z}’lo}’lo 2y 02] (4.12)

The total axial power transport at z =0 is

0ab - oab
=—2 | ||H, fy = 22 H
O Y

Thus, the attenuation constant due to conductor loss will be

AA' ab
dxdy = RIO ( }’10710) (4.13)
o’ pu’\ 4

z_

2 2
a * /4 /4
R.| = +—+b—
Py c(zho}’lo 2a azJ

2P, ab
0 RIO( > 710}’10)

a = (4.14)

which is in agreement with Collin [17] when the material medium inside the guide is

lossless.
The overall perturbed propagation constant ¥ can therefore be written as
Y =rotQ, (4.15)
Note that the power-loss method only results in a real correction to the ideal TE;o mode
propagation constant. It will be shown in the following sections that a coupled-mode
perturbation theory can be utilized to obtain a complex correction to the ideal propagation

constant.

43  Accommodation of Wall Loss Using a Coupled-Mode Perturbation Theory

4.3.1 EM Field in Terms of the Transverse Electric Field
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A guide with lossy walls will support hybrid modes, that is, the modes of
propagation are combinations of TE and TM modes. Therefore, both A, (the generating

function for the TE modes) and e, (the generating function for the TM modes) are
involved. This combination is required to generate all field components necessary for

satisfying boundary conditions. However, it can be shown that the transverse field ¢ (or

h) alone is sufficient to generate all field components necessary for implementing
boundary conditions.

Consider the electric and magnetic fields of a hybrid mode with propagation

constant y , namely
E=&(p)e™" +2e,(p)e"* (4.16)
H=h(p)e"* +sh (p)e”* (4.17)
where &,k are transverse fields, e,,h, are longitudinal fields and p=#%x+ jy. Since
V-E=(V, +20/6z)-E=0 in a source-free simple medium, we obtain the following
longitudinal electric field component

ez=lv,-é (4.18)

where V,=x0/0x+y0/dy. Substitution of (4.16) and (4.17) into Faraday’s law,
equating transverse and longitudinal field components and using the vector identity
V,xze, =-2xV,e, in conjunction with (4.18) leads to the following result for the

magnetic field components

2x(v,v, e+ yzé) (4.19)
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ho=——1 5.V xé (4.20)

Jou
Equations (4.18)-(4.20) show that all field components can indeed be generated by €. In

addition, the field E satisfies the Helmholtz equation V2E +k’E =0, which separates

into the transverse and longitudinal wave equations given by
Vi +(t+k%)é=0 4.21)

Vie +(y% +k?)e, =0 (4.22)

43.2 Impedance Boundary Conditions on £ in Terms of Transverse Field ¢

The coupled-mode perturbation theory requires boundary conditions on the

tangential components of E at the surface of the imperfectly-conducting waveguide
walls based on € alone. If 7 is the unit normal pointing from the conductor into the
guiding region, 7 is the unit tangent in the transverse plane and Z is the unit tangent

along the axial direction (where 7xn =7 as shown in Figure 4.1), then the tangential

-

and z-E

boundary conditions can be found by investigating the relations 7-E tang -

tang
Note, of course, that 7-E,,,, =7-ée””* will have a transverse component only and
z-E

1ang =€z€ 7 will have only an axial (i.e., longitudinal) component.

The first boundary condition on € can be obtained by taking the dot product of 7

and equation (4.3), noting that 7-nx Fl,ang =7x ﬁ-ﬁ,ang = é-fl,a,,g =h.e”’* and using
the result from (4.20), leading to
~ pd ~ ~ Y ~ - Zc ~ —
T Eppg =2.7-nxHyp,, = 7-€=-—=-2-V,xe (4.23)
Jou
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The second boundary condition on € is obtained by dotting Z into (4.3). The left-hand

side of this relation, with the aid of (4.18), is

£ Epgpg =67 = lv, ée’"? (4.24)
4

The right-hand side of Z dotted into (4.3) is

Z,3 -Ax Hygpy = Z,3x 11 Hppy =—Z, %+ Hygpg =—Z,%-he"* (4.25)
Substitution of (4.19) into (4.25) gives
~Z.t-he’ =— .Zc z"'-éx(V,V, E+yle )e"z
(1)
, JeHy . (4.26)
=———7x3 (V,V, €+y e)e re= e ﬁ-(V,V, -é’+y2é')e_72
Jopy

since 7x 2 =-n. Using the identity V,V,-€ =V, xV, xé +V,2é' and (4.21) allows (4.26)

to be written as

Ze (V< V, x& - k7€ )e 7 (4.27)
Jjouy

5.5 iy - A."_yz_
Z.z2-nxHy,, =-Z.T-he”’” =

Thus, the second boundary condition on € is

5 Epppg = 2.3 AxHypy = V,-E= Ze -(V, xV, xE k%) (4.28)

Note, when the walls are perfectly conducting, Z, =0 (since o, = «) and the boundary

conditions of (4.23) and (4.28) simplify to the expected well-known result

=0 ...for o, > © (4.29)

QY

7-é=0 .
or nx

43.3 Coupled-Mode Perturbation Theory

The next step in the analysis is to expand € in terms of the normal mode
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functions for the same guide with perfectly-conducting walls, that is
é=) a,é, (4.30)
n=1

The sum is extended over all the TE and TM modes, a, is an unknown amplitude
coefficient and €, is the transverse electric field for a given mode in the lossless (i.e.,
ideal) guide which satisfies the wave equation

Vv +(T2+k%)é, =0 (4.31)
where I',, is the ideal-mode propagation constant. It will be assumed that the normal
mode functions €, have been normalized in the following manner

1 ..n=j
g2 ds=5,={ """/ 4.32)
Cs 0..n#zj

Hence, the mode functions form an orthonormal set. Note, €; satisfies a wave equation
similar to (4.31), that is

ViE, +(T2+k*)E; =0 (4.33)
The unknown amplitude coefficients are given by

a,= [é-&,ds (4.34)
CS

where € is the actual transverse electric field in the lossy guide and €, is the transverse
electric field of the n” mode in the ideal lossless guide. This result is obtained by dotting
€; into equation (4.30), integrating over the guide cross-section and using (4.32).

The coefficients a, and hybrid-mode propagation constant y can be determined

in the following manner. First, scalar multiply (4.21) by €; and (4.33) by €, subtract the
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two resulting equations and integrate over the guide cross section. This leads to

(#*-T?) [é-6,dS=(y*-T2a, = [@-Vie;-¢,-Vie)ds (4.35)
CS CcS

The surface integral on the right-hand side of (4.35) can be converted into a contour

integral using the vector relation [3]
[ (B-V}4-4-V}B)ds
cs

) ) o (4.36)
=(ﬁ[(ﬁxA)-(V,xB)+ﬁx(V,xA)-B+(r‘z-A)V,-B—(r‘z-B)V,-A]dI
C

where 7 is the unit normal pointing from the conductor boundary into the guiding region.

Letting A= €, and B=¢ in (4.36) allows (4.35) to be written as

(r*-T3)a; =36[(ﬁxéj)-(v, X&) +AxX(V,x&;)-E+(h-E,)V, & —(7-€)V,-E1dl (4.37)
C

The tangential electric field components for the lossless guide are zero on the boundary,

that is
ixé; = 1y - 4
nx j—O Y ezj—f:— ,'ej—-O (.38)
J
and equation (4.37) therefore simplifies to
r* =T, = Plax(V, xE,)-é +(#-&,)V,-&ldl (4.39)

C

An expression for the first term of the contour integral in (4.39) can be found by
using the relation V,x¢; =—2jwph;; (from Faraday’s law) and equation (4.23). This

produces, with the aid of nx Z =7, the result

Ax (Y, x,)-& =~ joph,t-&=Zhz-(, $&)= -2 (v, x&,)-(V,x&) (4.40)
Jjou

The final step involves the substitution of (4.40), (4.28) and (4.30) into (4.39), leading to
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(r*-THa; =- jic#gﬁ[(v, X&;)-(V, X&)~ (7-&;)(R-V,xV,x&~k*h-&)ld] (4.41)
C
(2 -Ta; =223 0, $I(V, xZ,)-(V, x2,)
jou o U c (4.42)
—(A-&)(A-V, xV, x&, —k*7-g)dl ...j=12,3,..
Equation (4.42) can be cast into the following matrix form
[M][a]=[0] (4.43)

where

M, = jz;cﬁ[(v, x&,)-(V, X&) = (A&, )(A-V, XV, x&, ~k*h-E)dl ...j#n (4.44)
C

Z _ o a o L o
M;=y*-T2+ ,CﬂgS[(V,xej)-(V,xej)-(n-ej)(n-v,xV,xej—kzn-ej)]dl (4.45)
C

q
[a] =|a, (4.46)
Note, when the walls become perfectly conducting (i.e., Z, =0), equation (4.42) implies

that 72 = I"f as expected.
The above result represents an infinite set of equations for the unknown
coefficients a,. An examination of (4.43) shows that a solution for the a, exists only if

the determinant vanishes. This leads to a characteristic equation that has an infinite
numbser of roots for ¥2, which corresponds with the infinite number of hybrid modes that

may exist in the lossy guide. For each root of 72, a set of coefficients a, is obtained,

and it is these coefficients that determine the field configuration of the particular hybrid
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mode.

4.3.4 Complex Correction to the Ideal TE,; Mode Propagation Constant
In practice, the expansion in (4.30) must be truncated in order to obtain a finite

number of equations. Equation (4.42) reveals that all the coefficients are small except

those for which }'2 zl"?, thus an approximate expression for 72 can be found by

including only a single mode in the expansion. Since we are interested in how the
propagation constant of the TE|, mode is perturbed, this suggests making the following

choice

G=6,=6=p %sin% , Ty=y0=y(x@/a)? -k? (4.47)

where €, and I'; are the ideal TE;o transverse electric field and propagation constant,
respectively. For this single-mode case, equation (4.43) reduces to

Mq=0 => M} =0 (4.48)
Substitution of (4.45) into (4.48) leads to the following approximate expression for the
hybrid-mode propagation constant

y2 = yd +6y° (4.49)

where the complex correction &y to the ideal TE,o propagation constant }',20 is given by

&y? =-

Ze PV, x&) (Y, x8) - (&)Y, XV, x & - k*-&)ldl  (4.50)
Jou .

If a rectangular guide having width a and height b is considered, then integration
along the bottom (contour C; where n=y, y=0 and dl = dx), right (contour C, where

n=-x, x=a and dl =dy), top (contour C; where n=-y, y=>b and dl =dx) and left
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(contour C, where n=x, x=0 and dl = dy ) boundaries leads to the following result

I[(Vg XE])'(VI xé])‘(ﬁ'él)(ﬁ'vt xV, >(é.l —kzﬁ.é.l)]|y‘0 dl
Cl )

a PRCED)
= [V, &) (Vx@) =G-85V, <V xE -K5-8)] dx =
0
[V, x&)-(V,x&) - (A-&)A-V,xV, x& - k*A-&)] _dl
C2 X=a
, L2 (4.52)
= [(v,x&) (v, x&)|,_, &y =5
0 a
k2
[V, %8)-(V, x8) - (-8)(A-V, xV, x& ~k*4-§)] O CE)
y=
G

[V, x&)- (Y, x&) - (A-& XAV, x V, x & — k*7-&))]

2
d=2=_ (454
x=0 a3
4

Substitution of (4.51)-(4.54) into (4.50) produces the final desired result

2 2
Syt =L [4”; +2’; J (4.55)
jou\ a
Z. (4n® 2k? '’
7= |rio——=| =+ . Yio=—5-k (4.56)
jou\ a b a

Note, the ideal propagation constant is recovered if the walls are lossless (i.e., Z. =0).
The coupled-mode perturbation theory has several advantages over the power-loss
method. First, the coupled-mode perturbation theory resulted in both an attenuation and
phase constant correction to the ideal TE;o mode propagation constant whereas the
power-loss method produced only an attenuation correction. The additional phase

correction is important in material characterization measurements. Secondly, it is
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observed that the attenuation correction term from the power-loss method approaches
infinity at the cut-off frequency since axial power transport ceases. The more rigorous
coupled-mode perturbation theory shows that infinite values of attenuation do not occur.
From a physical viewpoint, the presence of finite conductivity results in a coupling
between the TE and TM modes, and propagation along the guide does not stop at a
particular frequency. Hence, there is finite axial power transport, resulting in finite
attenuation. Lastly, the coupled-mode perturbation theory can easily accommodate
attenuation due to degenerate modes while the power-loss method cannot. If two or more
modes are present simultaneously, the power-loss method can be applied to each mode
individually, provided the axial power transport and power loss are the sum of those
contributed by each mode. That is, the power-loss method can be applied if the modes
are not strongly coupled. However, strong coupling does occur when the modes are
degenerate, thus the power-loss method breaks down. Mode degeneracy is inherently

accounted for in the coupled-mode perturbation theory.

44  Experimental Results
Figures 4.2 and 4.3 show a comparison between the power-loss and coupled-

mode perturbation theories for an Alumina material characterization measurement. The

Alumina sample (of thickness ¢ =0.1314 cm) was initially placed inside a silver-plated

rectangular waveguide holder having conductivity o, =6.1x 10’ [S/m] and the
permittivity was subsequently computed. This measurement constitutes the ideal case in
Figures 4.2 and 4.3. Next, the sample was removed from the ideal silver-plated sample

holder and placed into a high-temperature rectangular waveguide having a conductivity
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o, =3x 10° [S/m]. The scattering parameters were then measured and the permittivity
computed using no wall loss correction, the power-loss method of attenuation correction
and the coupled-mode theory of attenuation and phase correction. Figures 4.2 and 4.3
reveal how critical the additional phase correction can be in material characterization
measurements.

The second set of measurements in Figures 4.4 and 4.5 demonstrates the
sensitivity of the material characterization process on the conductivity of the waveguide
holder. A high dielectric resistive-card sample (having a thickness of .004 in.) was

placed into the silver-plated rectangular waveguide holder and the real and imaginary

permittivity was computed using the conductivities of o.=6.1e7, o,.=1e4 and

o, =1e3. Figures 4.4 and 4.5 show that errors on the order of 10% can occur if precise

knowledge of the waveguide conductivity is not known. Thus, wall loss correction can

be a critical factor in the material characterization process.
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Figure 4.1 Defined unit vectors for a uniform waveguide.
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Figure 4.2 Wall loss theory comparison for Re{¢,} using Alumina.
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Figure 4.3 Wall loss theory comparison for Im{¢, } using Alumina.
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Figure 4.4 Conductivity profile of Re{¢,} for a resistive-card material.
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Figure 4.5 Conductivity profile of Im{¢,} for a resistive-card material.
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Chapter 5

GREEN’S FUNCTION FOR EM FIELD WITHIN AN IMPERFECTLY-

CONDUCTING PARALLEL-PLATE ENVIRONMENT

5.1 Introduction

In this chapter, the Hertzian-potential and electric and magnetic-field dyadic
Green’s functions [30] are found for a general 3D current source immersed within an
imperfectly-conducting parallel-plate environment. This analysis will be utilized in
Chapter 6 to understand the effect of wall loss for a stripline field applicator. The above
Green’s functions will be determined using two methods. The first method consists of

analyzing a symmetric slab waveguide and investigating the limiting case where the outer
regions (having conductivity o, and permittivity £.) become good conductors
[o./wé, »1 = . =¢.(1- jo./wE,) - —jo./w, where ¢, is the effective complex
permittivity]. The second method utilizes Hertzian-potential impedance boundary

conditions.

5.2  Geometrical Configuration
Figure 5.1 shows the geometry of the parallel-plate environment. Regions 1 and 3

comprise the outer portion of the structure and region 2 the inner portion. A general 3D

electric current source J is immersed only within region 2. The structure (but not the

current) is invariant along the x and z axis. The total height of the inner region is 24

and is centered about y=0. The effective complex permittivities of the outer (i.e.,
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cover) regions are assumed to be identical, that is, & =63 =¢, =£.(1- jo,./wéE,), and
the effective complex permittivity of the inner region is ¢, =& =€(1- jo/wé). All three

regions are assumed to be non-magnetic (14 =y = 3 = 14).

y
Reflected .
g wave Region | (e.ho)
y:
Principal
wave
Reflected .
wave Region 2 (g,p) ——)x
\Y
Principal
wave
y=-h
g Reflected Region3 (e ,n,)
wave

Figure 5.1 Parallel-plate environment with general 3D current J (7).

5.3 EM Fields and Helmholtz Equation for Hertzian Potential

#) and G"(7|F")

The electric and magnetic-field dyadic Green’s functions G® (7
can be identified by using a Hertzian potential 7 as an intermediate step (see Appendix

A for further details). One reason for using a Hertzian potential is that G° and G" are

more readily determined by first solving the Hertzian potential wave equation

—

Vi 4kl e - 6.1)
Jjwe

and then computing E and H using
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E =k*7 +V(Veit) (5.2)
H = joeVx 7 (5.3)

The alternative is to identify G¢ and Gh by directly solving the wave equations for E

and H , that is
V2E +k*E = jouJ —-.I—V(Voj) (5.4)
jwe
V2H +k*H=-VxJ (5.5)

The Hertzian potential approach is easier to implement since a simpler relationship exists

between 7 and J in (5.1) than E,H and J in (5.4) and (5.5).
Another motivation for using a Hertzian potential is that 7 is less singular than

E or H. It will be shown that this leads to, in a mathematically straight-forward

manner, expressions for G® and G" that are valid both inside and outside the source

region. Thus, the electric and magnetic-field dyadic Green’s functions will be found by

first determining 7 using (5.1) and then computing £ and H from equations (5.2) and

(5.3).

S.4  Spectral Representation of Principal and Scattered Waves

5.4.1 General Formulation

As mentioned in section 5.3, the solution to equation (5.1) needs to be

determined. This solution can be found using the superposition of a principal wave 77

emanating from the source J in unbounded space (having effective complex permittivity
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¢) and waves 7' that are reflected from the introduction of boundaries at y = +h with
the source removed (see Figure 5.1). This method is often used in the solution of
differential equations, where the principal wave is called the particular solution and the
reflected wave is referred to as the homogeneous (or complementary) solution. The total

solution for 7 in each respective region will therefore be

7y =7 (5.6)
Ty =75 + 75 (5.7)
Ty =73 (5.8)

where 7 and 7 p (B =1,2,3) satisfy the respective Hertzian potential wave equations

VIR kR = a{g (5.9)
2

Vg +kpitg =0 (5.10)
where kf = kf = kc2 = wzsc;zo , k% k%= wzs,uo and &, =¢. The principal wave

contributes only in the inner region since it has been assumed that J is strictly confined

within region 2. Although the structure is symmetric about y =0, the current is generally

not, thus no mathematical simplification can be used in the analysis that follows.
Equations (5.9) and (5.10) can be decomposed into 3 scalar equations each, thus

solutions must be found for the following equations

. " JF

V2P (F)+k*nP (F)=-2222 5.11
Za( ) Za( ) ng ( )
V21 (F)+ ke (F) =0 (5.12)
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where a=x,y,z and f=1,2,3. The Fourier transform domain method will be
employed here to solve these equations. The background structure is invariant along the

x and z directions, which prompts transformation on those variables using the generic

2D Fourier transform pair
FA= [ [ 1E)e I dvds (5.13)
- 1 %1%t 705 o\ i g2
f(r)=(2”)2 —i Jo fG,y)e*Taa (5.14)

where A=%6+50 (=2 A2 =2ed =82+, F=3x+Jy+3z and d*A=déd¢ . Trans-
formation with respect to y is avoided at this point so that boundary conditions can be

enforced at y =+h. Applying the Fourier transform differentiation theorem, equations

(5.11) and (5.12) become

P A 2op iz Ja(dsy)

a7 ptE Ay)=—2"2-7 5.15
O#pe(Ly) 5., =

where p, = p; = p, =\//12—kcz s D2 =p=\/}.2-k2 with Re{pg} >0 chosen and
o 7o [ (b (e
#,(Ay)= [ [2h,(Fe* " dsdz (5.17)
#pa(A,y)= j j 7o (Fe ™4 dudz (5.18)
—o0 —0

~ - o o .
Jo(Aoyy= [ [Ja(Fre/*" drdz (5.19)
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The general form of the solution to equation (5.15) in the central region (i.e., region 2)

and equation (5.16) in regions 1, 2 and 3 will be investigated in sections 5.4.2 and 5.4.3.

5.4.2 Principal Wave Representation

The principle wave satisfies equation (5.15) for all unbounded space (i.e., in the
absence of boundaries), as dictated by the superposition method of solution. This
prompts transformation on the y -variable in equation (5.15), leading to (with the aid of

the differentiation theorem)

=~ ry ot - ,-i,
PR () - pRRL () = - “j(m’” (5.20)
where
25, (= [ 75, (A, y)e P dy (5.21)
Jo(my= [Jo(A,y)e ™ dy (5.22)
-0

Solving for 7?5’01 in equation (5.20) produces the result

ja(ﬂ_:,r])/jme _ ja(i,n)/jwa
R +p*)  m+jp)Xn-Jjp)

#L (An)= (5.23)

Since p= p(&£,4) is not a function of 77 and Re{p} >0, this implies that n=1jp are
simple poles in the upper and lower-half of the complex 7 -plane, respectively.

The inverse transform must now be taken to get back to the complex A -plane so
that the y-variable is present for implementing boundary conditions. The inverse

transform is calculated using the formula
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© 0w I = .
2 (A, y) = (%5, (L,me™dn =1 [ Ja A JOE jnyg (524
2z 2z - (n+jp)n-jp)

The Fourier representation of ja is
~ —- @© ~ —- . y -~ — . ’
JAm= [Ja(A,y)e ™ dy' = [Ty (A, e ™ dy (5.25)
-0 y
The limits of integration in (5.25) have been truncated since ja (i, ¥')=0 outside the
source region. Also, )y’ has been used in (5.25) as the dummy integration variable
instead of y so as not to confuse it with the functional y-dependence of the e/”” term in

equation (5.24). Substitution of (5.25) into (5.24) and interchanging the integral signs

(valid if the analysis accurately describes a real physical problem [31]) leads to

~ T ~ ry ’ j j’ ! [
#,(Ay)= [GFsply) 2eiiX) gy (5.26)
J Jjwe

where

1 < e/m-Y)

GP (4;y|y)=GE(A;y-y) =
7 (4] 2 2 (m+jp)n- JP)

(5.27)

is the spectral-domain principal wave Hertzian-potential Green’s function. Equation

(5.27) may be evaluated using Cauchy’s Integral Theorem. The result is (see Appendix B

for details)
- - R e PV
G Ay =G (Aiy=y)=— (5.28)
The representation of the principle wave in the complex A -plane is therefore
-ply-y'| TG
72, (Ay) = I ad:¥) 4 (5.29)
jwe
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where y is the field point, )’ is the source point and p is the spectral-domain

propagation factor.

5.4.3 Reflected Wave Representation
The spectral-domain representation of the reflected waves for each region is
obtained from (5.16). The well-known solution of this second-order partial differential

equation is
F a4, y) = Wi (A)e PP + W, (A)e?” (5.30)

where Wj‘a are the complex amplitude coefficients of the up and down-going reflected

waves, respectively.

5.4.4 Total Wave Representation
The spectral-domain representation of the total waves in each region is obtained

by superposing the results from the previous sections. This leads to the following

Ry =g =Wine P + W eP? _h<y<w (5.31)
-ply-y'| ¥
Foog =y + i = [ Ja gy Wr e s W e . —h<y<h (532)
a 2a 2a ' 2p  joe 2a 2a
y
Foyg =3y =Wige PY + Wi eP? . —w<y<-h (5.33)

where the functional dependence in the above equations has been dropped for notational

convenience. Note that

-y y>y
Iy-y'|={y, Yoy y, (5.34)
Y-y ..y<y
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thus, equation (5.32) may be written (for the purpose of implementing boundary

conditions) as
Fag=Vae P +Woe P +Wye” ..y <y<h (5.35)
Fag =Vye” +Wye P +Wye” ..—h<y<)y (5.36)

where

) 4y (5.37)

are associated with up and down-going waves launched from the source.

It is observed in equations (5.31)-(5.33) that there are 18 unknown spectral-
domain coefficients, thus 18 boundary conditions must be enforced to guarantee a unique
solution. These spectral coefficients, W}a , will be determined in the following sections

using the two methods discussed in section 5.1.

5.5 Computation of Spectral Coefficients from Limit of Highly-Conducting Case
5.5.1 Introduction
One approach that will be used to determine the spectral coefficients WEa for the

imperfectly-conducting parallel-plate environment of Figure 5.1 is to first consider the

solution to a symmetric dielectric slab waveguide and then look at the limit where the
outer dielectrics become good conductors. If ¢, =&.(1-jo./wé.) is the effective
complex permittivity of the outer (i.e., cover) regions, then the appropriate specialization
is that £, > —jo./w if o,/wé, >1 (i.e., if the conduction current dominates over the

displacement current in regions 1 and 3).
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The solution to the above symmetric slab waveguide can be found by enforcing

the following spectral-domain radiation and boundary conditions (see Appendix C)

ﬁla(j,y—)oo)=7?3a(/—1.,y—)-oo)=0 A =X,),2 (5.38)
£ g (A, h) = €y (A, h) .t =x,2 (5.39)
ERtyy (A, —h) = £,73,(A,~h) .a=x,z (5.40)
g, Stk _ 0 (AR, (5.41)

oy dy
Ptk el (5.42)

oy o
&7, (A, h) = €7t (A, h) (5.43)
&ty (A,~h) = £.753, (1, —h) (5.44)

oty (A,h) 0y, (4,h)
oy oy

=[1=(e/ e[ jau (A, )+ S (A H)]  (5.45)

0y, (A, —h) _ ot J(4,=h)
oy oy

Equation (5.38) represents the radiation conditions.  Equations (5.39)-(5.42) are

=[1-(ec /O je7sx (A=) + jG3 (A,=h) | (5.46)

tangential boundary conditions, (5.43)-(5.44) are normal boundary conditions and (5.45)-
(5.46) are mixed/coupled boundary conditions. Since (5.45) and (5.46) are coupled
bOundary conditions (i.e., contain both tangential and normal components), this suggests
©nforcing boundary conditions in a specified order. The easiest and first boundary
condition that will be implemented is (5.38). Equations (5.39)-(5.42), the tangential
boundary conditions, are enforced next, followed by the normal boundary conditions

(5.43) and (5.44). The coupled boundary conditions (5.45) and (5.46), which are the
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most difficult to implement, are enforced in the final step. Note, there are 18 boundary

conditions as required.

5.5.2 Radiation Conditions
The radiation conditions in (5.38) are the easiest to implement and lead to the

following result when applied to (5.31) and (5.33)
Fig(A,y >0)=0 = W,=0 .a=xy,z (5.47)
Fyg(A,y > —0)=0 = Wi =0 .a=x,y,z (5.48)

since Re{p.} >0 (a result of the medium being assumed to be lossy, i.e., Im{k } <0).

Therefore, the spectral representation of the Hertz potential consists of only an up-going
reflected wave in region 1 and only a down-going reflected wave in region 3 (as shown in

Figure 5.1), that is
Fig =Ty =Wige P? h<y<o (a=x,y,2) (5.49)

Fyg =iy =WieeP? .—o<y<-h (a=x,y,2) (5.50)

S.5.3 Tangential Boundary Conditions
The first tangential boundary condition (at the y =h interface) is enforced by

Substituting (5.49) and (5.35) into (5.39). This leads to the following expression
eWhe Ph = e(V;e'ph +Wse Pl 4 Wz'aeph) A =X,Z (5.51)
Solving (5.51) for W, leads to

Wi, = £ epch (V;e"’h + Wy e P +W2"ae”h) LA =X,2 (5.52)

&
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Therefore, upon substitution of (5.52) into (5.49), the spectral-domain representation for

71, becomes

~ & - - - - -
Frg =€ PO (Ve P L e P WipeP") = x,z (5.53)

&

The second tangential boundary condition (at the y=-h interface) is implemented

through the substitution of (5.36) and (5.50) into equation (5.40). The result is

Wiy, = =Pt (Va‘e"ph + W, eP" +W2_ae'ph) A =X,2 (5.54)
c

. , £ - -
gy = WigeP? = ZePO*H (Va e P e WS ePh v Wi e ph) ~a=xz (555)

&

Substitution of (5.53) and (5.35) into the third tangential boundary condition

(5.41) leads to

po(Vae P + Wge P + Wiye?" )= p(Vae P + Wipe ™ - W) . =x,2(5.56)

Solving (5.56) in terms of W, gives

Wy, =-Re " (V; + W{a) A =X,2 (5.57)
where
p.+p

is the interfacial reflection coefficient. The last tangential boundary condition is

implemented by substituting (5.36) and (5.55) into (5.42), producing the result

p(Vae ™ —Wipe" + Wipe " )= pe(Vae ™" +Wipe" + Wipe ™) a=x,z (559)

Solving (5.59) in terms of W,, gives

93



eth
Wo, ==V, -TWZ‘; @ =X,2Z (5.60)

The spectral coefficient W, can now be explicitly determined (for a =x,z) by
equating (5.57) and (5.60). The result is

2 —4ph + _ —thV—
wy, = Re Vaz ieh @ a=xz (5.61)
1-R%e”"P

The spectral coefficient W,, is found by substituting (5.61) into either (5.57) or (5.60),

leading to

2 —dphy,— ~2phy,+
R°e™™V, —Re“"V,

Woa =" oo

a=x,z (5.62)

Those familiar with guided wave theory will note that the denominator of equations
(5.61) and (5.62) can be factored into the form 1-R%e ™" =(1+ Re ")(1- Re™").

This is significant because the eigenvalue equation 1+ Re %" =0 identifies the expected
poles of the even/odd TE surface-wave modes of a symmetric slab waveguide. A more

detailed discussion will be provided later.

5.5.4 Normal Boundary Conditions
The first normal-component boundary condition is implemented by substituting

(5.49) and (5.35) into relation (5.43), leading to

Wi =££epc" (Ve P +w3yeP" + W) (5.63)
c
~ € _p.(y-h —ph -ph - ph
iy = e PO (Ve P +W3e P + WyyePt) (5.64)

c
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Similarly, substitution of (5.36) and (5.50) into the second normal boundary condition

(5.44) produces the result

- & h - —ph h - -ph
Wsy = et (Ve P W, ePt + W ") (5.65)
c
73, = WP = gie'W*") (V;e“P” +W3,eP + W{ye'ph) (5.66)

c

5.5.5 Mixed/Coupled Boundary Conditions
The final two remaining spectral coefficients, W{y and W,,, can be determined

from the coupled boundary conditions. Inserting (5.64) and (5.35) into (5.45) gives

£ - - -
-D, —(V;e P Wy e Pt + Wzyeph)+
£.C

| (5.67)
- - - £
P(V;e Ph 4 W2+ye ph —Wzye”” ) = A(l _8_)
c
where
A:ijx+j§Az= »
jé(V;.e—Ph + Wzﬂ"’xe-ph + Wz‘;eph)-}- jC(V;.e_ph + Wz';e"Ph + Wz_zeph) ( . )
Solving (5.67) for Wy, and letting N? = ¢/, leads to
2y c
— _ -ph a2 _
W3y =-Re Py —Re Py, + D 4 (5.69)
P-N“+p
where
- p N2 -p
R === (5.70)
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is the interfacial reflection coefficient. The expression in (5.70) occurs in the analysis of

a current source in the presence of a half-plane where p.N 24 p =0 identifies Zenneck
surface-wave poles. It will be shown later that Zenneck surface waves do not exist for
the parallel-plate environment.
Substitution of (5.36) and (5.66) into the second coupled boundary condition
(5.46) gives
p(Vy'e'ph —Ws,eP + Wy e Pt )—

(5.71)
De i(Vy"e_”h + Wz‘tveph +W2’ye"ph)= B(f——-l)
gC 6‘C

where

B=j¢B, +j¢B, =

5.72
j& ( Voe Ph + Wy ePt + Wy e P )+ i ( Ve Ph + Wy ePt +w; e Pk ) (5-72)
The solution of (5.71) in terms of ;,, is
2ph phe a2
Ws, =—V; -S=—W;, + e__wB (5.73)
R ch -p

The spectral coefficient W, is explicitly determined by equating (5.69) and
2y

(5.73). The result is

— 3ph 2 -ph 2
Rze“’""V; R zphV_ Re (l N )A+Re (l N )B

N>+ N?-
Wy, = : R’;c_ o P~ P (5.74)

Substitution of (5.74) into either (5.69) or (5.73) leads to the following expression for the

spectral coefficient W,
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B2y _Rerhyr - ""(IZNZ)A R e‘3""(; N?)B
- _ PN +p pPN"-p
W, = - : (5.75)

The spectral coefficient W2+y can be cast into a more physically meaningful form (as will

be shown later) via substitution of (5.61), (5.62), (5.68) and (5.72) into (5.74). The result

is, after some algebraic effort,

Wz} = W2+yx + W2‘:/y + Wz}z (5.76)
where
RePP(1-N?)jeA, Re"’"(l N?%)jEB,
—4ph - =2phy,~-
wr __ PN'+p PN -p _CReTVE-CuemVE
zyx ] _ Rze—‘fph (1 Rze—4ph )(l _ Rze—ffph) )
Eze—4phV+ _ R‘e—thV-
+ Yy Y
W, = T (5.78)
RePP1-N%)jcA, Re""’(l N?)j¢B,
~4ph — -2phy,-
wr —__ PN'+p pN'-p _CReTWI-Cre Wl oo
2yz 1— R2e~*P" - R2 e—4ph)(l_ R2 e—4ph)
ct - 513(1 ~N®(1-R)Y1-R/R)
PN +p
, (5.80)
cr - gR(l NH(1-R)Re*" -1/R)
p.N?+p
s g oo
C;;:KR(I NH ZR)(I R/R)
PN +p (5.81)
- _ . RA-N*)1-RYRe™#"-1/R)
Cyr =J¢ :
PN +p

Similarly, substitution of (5.61), (5.62), (5.68) and (5.72) into (5.75) leads to the

following expression for ¥,
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Wz_y = Wz-yx +W2-;,y +W2_yz (582)

where
e (=N 4,  R?e¥'(1-N?)j¢B, - .
Wr o PN tp PN op  Ca@ Ve mCue VL o
zyx 1 _ Eze—4ph (1 _ Rze—4ph )(l _ R‘Ze—4ph)
_ R ze'4phV; —Re™r hV;
W,y = - o (5.84)
e PMU-N?)j¢4, R ¥ (1-N?)j¢B, . .
WZ— - _ ch2 +p chz 4 = C;z—e— i VZ_ _C}_’Z+e_ P Vz+ (5 85)
yz 1 _ Eze—{vh (1 _ Rze—4ph )(l _ EZe—‘lph)
Che ==C5 , Cif =-C37 (5.86)
C,. =-C;t , C;f =-C} (5.87)

5.5.6 Limiting Case ¢, > —jo,./w
The limiting case of when the outer dielectrics become good conductors is

discussed in this section. Only the spectral coefficients W,, will be examined since we

are specifically interested in the Green’s function for the central region. If the outer

regions are good conductors, then the following relation prevails
~ NeJ .0
£ =6 —j—==-]—=< (5.88)
@ 1)
since o, > wé_ (i.e., the conduction current dominates over the displacement current).

The tangential coefficients Wzia (a =x,z) for the symmetric slab waveguide, repeated

here for convenience, are
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Wi, = ; Rz"e_M A =X,2Z (5.89)
where
R= ___ﬁc ;i (5.90)
c

If (5.88) is inserted into (5.90), then the interfacial reflection coefficient R reduces to the

following expression

=o;_.Zc—p =l—p/ach

R (5.91)
c.Z.+p l+plo.Z.
since (see Appendix D)
. . 2 2 . 2 : 2
llrnﬁc Pe = hmﬂc \//1 -kl = hm,ac \/—kc = llmac \/—a) E. My
Ec—)—j; Ec_’_./; Ec—P—j; E =] —

: @ (5.92)
: . ’ o,
hma P =+jwo .y =0, el =0.Z,
& >—j—= O
@

where it has been assumed that kc2 > A2 (when A becomes large in the inversion
integral the contribution to 7 approaches zero due to the Riemann-Lebesgue lemma
[26]). Therefore, the tangential spectral coefficients in region 2 are given by (5.89)
where the interfacial reflection coefficient R is now given by (5.91).

The normal spectral coefficients in region 2 for the symmetric slab waveguide are
given by equations (5.76)-(5.87). If &, > —jo./w then, using (5.92) and N 2=¢/ &
the following relations are established

. . & WE
lim N%= lim £/
9. £, O,
[}

-0 (5.93)

N .
E>—j—=< E.—j
)
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. WE
lim p.N’=0,Z, ]
gr—>—j& c

@

= jweZ, (5.94)

lim R= lim P-N*-p _josZ.—p __1-jwsZ./p
e»-j%c go-jle p.N +p JjweZ.+p 1+ jweZ./p
@ 0}

(5.95)

since o, > we is assumed in (5.93). Note that Z, < 1/,/0} whereas N2 « 1/o,, that is,

terms on the order of 1/,/o, are kept, while terms on the order of 1/, are neglected.
Substitution of (5.92)-(5.95) into (5.80), (5.81), (5.86) and (5.87) leads to

__ . RA-BQ-R/R
Cir =—Cy = je& (I1-R)( )

iweZ,. +
BT (5.96)
— -+ .. RA-R)Re*"-1/R)
ny =_ny =.1§ .
JwEZ .+ p
. RA-RB(1-R/R
JwEZ. + p
(5.97)

R(A-R)Re " -1/R)
JweZ . +p

Cir=-C;t = j¢

where R and R are given by (5.91) and (5.95), respectively. The second method for
determining the spectral coefficients is presented next and will be compared to the above

limiting case.

5.6 Computation of Spectral Coefficients Using Impedance Boundary Conditions
5.6.1 Introduction

The second method for computing the spectral coefficients is based on the
spectral-domain electric-type Hertzian-potential impedance boundary conditions (see

Appendix D for details)
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1 87y,(A,h)

Fno (A h) =~ a=x, 5.98
2a( ) Gch ay X,z ( )
Rng(A,—h) = L O%2q(4,=h) A=X,2Z (5.99)
oL oy

oy, (A - - -
T—=_Ja)gzc”2y(’1sh)_15”2,:('1’}7)_];”22(2"}7) (5.100)

0y, (A,—h) . . L
gy = JweLeny (A )~ e (A ~h) = jC (k) (5.101)

Equations (5.98) and (5.99) are tangential boundary conditions, equations (5.100) and
(5.101) are coupled boundary conditions and Z, =(1+ j)\/am is the intrinsic
impedance of the imperfect conductors. The radiation conditions are built into the
impedance boundary conditions and therefore do not appear here as they did in section

5.5.1. In addition, computation of the spectral coefficients in the conducting regions is

not required since the tangential coefficients are essentially accounted for through the

intrinsic impedance Z, and the normal coefficients are zero (refer to Appendix D). Thus,

there are only 6 spectral coefficients, W), for @ =x,y,z, that must be computed in

comparison with the 18 required for the more complicated method in section 5.5.

5.6.2 Geometry
The geometry that depicts the Hertzian-potential impedance boundary condition

approach is shown in Figure 5.2. The top and bottom conductors have a conductivity of

o, and permeability 4, or equivalently, an intrinsic impedance of Z.. Region 2 is the

central/material region and has an effective complex permittivity £ and permeability 1, .
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The reflected waves in the conductors are not shown since they do not need to be
computed, as previously mentioned. The unit vector n points out of the conductor and

into the material region.

y
Zc
y=h
Prmcnpal l
wave h= _9
Reflected
wave & 1o —_)x
Prmc1pal n=y
wave
y=-h
Zc

Figure 5.2 Parallel-plate environment for impedance boundary condition analysis.

5.6.3 Tangential Impedance Boundary Conditions
The first tangential impedance boundary condition (at the y=#h interface) is

enforced by substituting (5.35) into (5.98). This leads to the following expression

ViePh 1 Wi e Ph + Wy ePh = L(V;e"”' Wi P —Wief) a=x,z (5102)

c™c

Solving (5.102) in terms of W5, leads to
Wia =-RePH (V4 W) a=x.z (5.103)

where the interfacial reflection coefficient R is given by
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_ ach_p _ l_p/o-ch
cZ.+p l+plo.Z,

R

(5.104)

Substitution of (5.36) into the second impedance boundary condition (5.99) gives

Voe PR L W ePh v Wy e Pt = ”Z (Vae ™" ~Wie" + Wipe™™) a=x,z (5.105)
o-C 4

Solving (5.105) in terms of W5, leads to

eth
Wz—a =—V;—TW2+Q aA=X,2 (5106)

The spectral coefficient W,,, can now be explicitly determined (for a =x,z) by

equating (5.103) and (5.106). The result is

_— R2e™Phy _Re~Phy
2a 2_—4ph
I-Re™P

a=x,z (5.107)

The spectral coefficient #,, is found by substituting (5.107) into either (5.103) or

(5.106), leading to

Ry _Re Py}
1 _ RZe—4ph

W, = A =X,Z (5.108)

Note that (5.107), (5.108) and (5.104) are in agreement with (5.89) and (5.91).

5.6.4 Coupled Impedance Boundary Conditions
The first coupled impedance boundary condition is implemented by inserting

(5.35) into (5.100). This results in the following relation
p(Vye P + W3 P — W 6P )= josZ, (Ve " +WSye P + WreP")+4  (5.109)

where A is given by (5.68). Solving (5.109) for #;,, leads to
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Wy, =-Re™PV} —Re™Pwy, - ——"— (5.110)

where the interfacial reflection coefficient R is given by

JoeZ . —p  1-jweZ | p
JweZ, +p 1+ jweZ, /p

R= (5.111)

Substitution of (5.36) into the second coupled impedance boundary condition (5.101)

produces the result

p(Vy et Wi + Wye P )= joeZ, (Vye P + WieP" + Wy P )-B  (5.112)

where B is given by (5.72). Solving (5.112) for W,,, leads to

2ph ph
Ws, =-V;-"TW2+y+—_e—B— (5.113)
R JweZ,—p

The spectral coefficient W{y is explicitly determined by equating (5.110) and
(5.113). The result is

Re 4 LR e P'B
JweZ . +p jweZ.—-p
1- R2%e~%h

Rty —Re 'y +

Wz‘“y = (5.114)
Substitution of (5.114) into either (5.110) or (5.113) leads to the following expression for

the spectral coefficient W,

e Phg R2%e7PhB
JweZ . +p jweZ.—p
1- R2e%Ph

Rze"’pth— - Ee'z"hV; -

W,, = (5.115)

The spectral coefficient W2+y can be cast into a more physically meaningful form via

substitution of (5.107), (5.108), (5.68) and (5.72) into (5.114). The result is, after some

algebraic effort,
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Wz"y = Wz’}x + W{W + W{yz (5.116)
where

Re™j¢4, + Re™ j¢B, ~dphy,+ _ b ~2phy -
JweZ . +p  jweZ,-p _ C;;e e -Cye e

+ —
Wam = 1- R2e™" (1- R?e™#h)(1- R?e™*h) G
RZe~ Pyt _Re Py
+ Yy pd
Wy, = e (5.118)
Re?jc4, R e Phj¢B, . "
wr _ JoeZotp  jweZ,—p Cre Wy —CpreV; (5.119)
2yz 1- Rze—‘fph (1 _ R2e—4ph )(1 _ Eze—4ph) '
. RO-R(1-R/R _ _RA-R(Re™"-1/R
it = jeRUARN-RIR) - oo _ i RA=RX ) (5.120)
JwEZ .+ p JWEZ, +p
o - oh %
C;;zng(l RY1-R/R) , C;=KR(] R)Re 1/R) 5.121)

JweL, +p JwEZ . +p

Note that equations (5.120)-(5.121) are in agreement with the limiting case (5.96)-(5.97).

Similarly, substitution of (5.107), (5.108), (5.68) and (5.72) into (5.115) leads to the
following expression for W,

Wz_y = Wz_yx +W2—}y +W2_yz (5.122)

where

X
josZ, +p jwsZ,—p _Cue PV -Crre vy
1 _ Eze—lfph (l _ Rze—4ph )(1 _ R2e—4ph)

e PhjEA, .\ R%ePh jeB

Wiy = - (5.123)

R2e~%h v, - Re™%P hV;
Wiy =l (5.124)
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¢4, +ﬁ2e'3phj§Bz —— —dphy— =t —2phy+
_jesZ+p jesZ.-p _Cpe WV -Cyre
1 _ Eze—4ph (1 _ Rze—4ph )(1 _ R’ze—ifph)

Wz—yz =

-— ++ -+ +—
Cyx ==Cyx » Cx ==Cy,

- ++ -+ +-
Cyr=-Ci , Gy =-C;;

(5.125)

(5.126)

(5.127)

Equations (5.126)-(5.127) are also in agreement with the limiting case (5.96)-(5.97).

Now that the spectral coefficients have been found (using the method in section 5.5 or

5.6), the Hertzian-potential dyadic Green’s function can be identified.

5.7  Hertzian-Potential Dyadic Green’s Function

The Hertzian-potential dyadic Green’s function G(F |F') can be identified by

initially examining the tangential and normal components 7,,,7,, and 7,,.

Substitution of (5.28), (5.37), (5.61) and (5.62) into (5.32) leads to the following result

for the tangential components
~ 7 ~ 7 ’ S 7 ’ j Z’ ' ’
T2a(A,y) = I[G”(l;y—y )+Ga(4 3,y )]Mdy A =X,Z
J jowe
where the spectral-domain principal and reflected Green’s functions are

-ply-y'|

GP(Ly-y)=GP(L;y-y)=
2p

R2ePh _Re P L R2e™PH _Re P

~roc7. " —
Gaa(/l’y’y )_ 2p(1—R2e_4ph)

=X,z

h=h0,))=4h+y-y

$=60.Y)=2h+y+)y
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(5.129)

(5.130)

(5.131)

(5.132)



¢ =030,y )=4h-y+ ) (5.133)
Gy =04(y,y' )=2h-y-) : (5.134)
where ¢;(y,y’) are associated with phase-delay distances. Substitution of (5.28), (5.37),

(5.76)-(5.79) and (5.82)-(5.85) into (5.32) leads to the following result for the normal

component
- T = Py ’ ~r o7 ’ j (j:’y') ’
Z2y(A,y) = I[G”(l;y—y )+G (A3 y,y )]y.Ta& +
Y (5.135)
, r J. (4,
jG T,y 2eded) X‘ SRS s [ Ry L gy
Jjwe
y'
where

e - Clre P —Cle P 1 e WO - P
Ggh(ﬂ',y’y')— yz y 2 _4 y_z 4
2p(1- R2e™*PH(1 - R2e~ *Pp

a=xz (5136)

R2e™P% _Re PP 4 R2e7PH _R e P
2p(1- R2e~Ph)

Gy (4;3,") = (5.137)

The spectral-domain Hertzian-potential dyadic Green’s function 5(1; ¥,y') is
revealed by using the above results and writing the spectral-domain Hertzian potential for

region 2 in vector form, leading to

(4, y)—yIG(/l v,) (Ja;Z)d' (5.138)

where
G(isy,y) =GP (L;y-y)+G (A 3,5) (5.139)
GP(Asy—y')=IGP = 3GPE+ JGPy+ 5GP3 (5.140)

107



G'(A3,5') = #Gli + 3G, 3+ 3Gl 9+ 9G53 +5GL, 3 (5.141)
The Hertzian-potential dyadic Green’s function is identified by using the following

Fourier transform relations

oCc

7, (F) = 7,4, ) d2A 5.142
2P=5 i i (4 y (5.142)
JAyy= [ [IFe avdr = [ [FF)e /7 dvde (5.143)

Substitution of (5.138) into (5.142) and using (5.143) leads to the following expression

7y (F) = jé(f|7').",(—")dV'= j[éf’(?—7')+é’(F|f')]-J_(—")dV' (5.144)
e Jjawe o jwe

where the Hertzian-potential dyadic Green’s function is

1
27)°

[c <IN o) - o
j j G(A;y,y ) T)g?a (5.145)

—00 —Q0

G(F|F) =

5.8  Physical Observations and Limiting Cases
5.8.1 Introduction

In section 5.8, some observations will be made to ensure the physical
reasonableness of the above analysis. In addition, a couple limiting cases will be

investigated to see if the above theory reduces to expected (i.e., well-known) results.

First, the terms 1—- R%e™*" and 1- R%e™*" will be examined to show that they lead to
the anticipated TE and TM modes of a symmetric slab waveguide. Next, the terms like

those in equation (5.130) will be identified as waves interacting with the conducting
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boundaries. The limiting cases when the conductors become perfect (o, — «) and when

the top imperfectly-conducting plate is removed will also be investigated.

5.8.2 Symmetric-Slab Waveguide Modes

The characteristic equation 1—R%¢™ =0 can be shown to identify the TE

surface-wave modes of a symmetric slab waveguide in the following manner.
Multiplying the above equation by ¢*”" and factoring gives
e?Ph _R% P =0 = (eP'+Re PP -Re PF)=0 (5.146)

Setting each term in (5.146) equal to zero and using (5.58) leads to the following set of

characteristic equations
ePP+Re PP =0 = (p.+p)e”" +(p.—p)e P =0 (5.147)

eP"—Re P =0 = (p,+p)e”" —(p.-ple P =0 (5.148)
Equations (5.147) and (5.148), after being multiplying by 1/2 (for convenience), can be
grouped as follows

ePh e Pt +pe"’h —e Pk
2 2

P. =0 = p.coshph+psinhph=0  (5.149)

ph _ —ph ph —-ph
pce 2e +pe +2e =0 = p_.sinh ph+ pcosh ph=0 (5.150)

The eigenvalue equations in (5.149) and (5.150) are well-known [26], [32], [33]. They

identify the even and odd TE surface-wave modes since they are even and odd in p),

respectively. A similar analysis shows that 1- R 2¢™*Ph =0 leads to the well-known [26],

[32], [33] even and odd TM surface-wave mode eigenvalue equations
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p.N? cosh ph+ psinh ph=0 (5.151)

p.N?sinh ph+ pcosh ph=0 (5.152)

5.8.3 Wave Interaction Between Source and Field Points

In this section, the terms of equations (5.129) and (5.130) will be examined for
physical insight. Consider the geometry in Figure 5.3. Wave 0 travels from the source
point )’ directly to the field point y and traverses a distance y—)'. Hence, wave 0 is
associated with the principal wave of (5.129). Wave 1, which experiences two interfacial
reflections and travels a distance 4h+ y—)', is associated with the first term in (5.130).
Wave 2 is associated with the second term of (5.130) since it experiences only one
interfacial reflection and travels a distance 2h+ y+)'. A similar discussion shows that
waves 3 and 4 are associated with the third and fourth terms of (5.130). Note that
waves 1-4 experience reflection from the top (y=h) and/or bottom (y=-h)

conductors and thus are associated with the reflected Green’s function.

Figure 5.3 Wave interaction between source and field points.
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5.8.4 Limiting Case for a Perfect Conductor
If the conductors become perfect (o, — «), equations (5.130), (5.136) and
(5.137) reduce to the correct/known result [34]

_p¢| _e—p¢2 +e_p¢3 _e—p¢4

~r = e
G (Ay,y)= A =X,Z (5.153)
aa(A:2: ") P )
G;a():;y,y')=0 WA =X,Z (5.154)
S “PH 4o PP o PH | P
G (A5 =2 (5.155)
wi Py 2p(1-e~*")
since
lim R=1 , lim R=-1 (5.156)
g —® o.—®

5.8.5 Limiting Case for a Source Over an Imperfectly-Conducting Half Space
Another known case is the problem in which a current source is situated over an
imperfectly-conducting half-space [3], [25], [27]. In the parallel plate environment of
Figure 5.1 (or 5.2), the half-space geometry can be achieved if the top plate is removed.
However, if h is allowed to approach infinity in Figure 5.1, both plates would reside out
to infinity since the top plate is at 4 and the bottom plate is at —k. This difficulty can be
avoided if the structure is shifted upwards by a distance s so that the bottom plate is
located at 0 and the top plate at 2h. The geometrical shift can be accomplished
mathematically using the following change of variables
y=y+h = y=y-h (5.157)

y=y+h = y=y-h (5.158)
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Substitution of (5.157) and (5.158) into equations (5.129)-(5.134), (5.136),

(5.137) and taking the limit as & — o leads to the following known result

pr— e PV
G (Ly-y)= 27 (5.159)
Y RePU+Y)
Goa(A; Y,y )=_T =X,z (5.160)
o C+-e-P(fV'+)7)
G (Ay,y)=—L"—  a=xz (5.161)
ya 2P
- R o~ P(V+Y) 2 _ o~ PHY)
G;,,(/i;i,?’)=—Re (2N —ple (5.162)

2p 2p(p.N* + p)
Of course, the working variables y, )’ can be recovered by a second change of variables
y=y,y =y . Equation (5.159) constitutes the principal-wave contribution directly from
the source to the point of observation. Equations (5.160)-(5.162) are the reflected waves
that emanate downward from the source, experience reflection at the half-space
boundary, and travel upwards to the observation point. The reader familiar with guided
wave theory will recognize the familiar Zenneck surface-wave [26] contribution in

(5.162), for example. A Zenneck wave doesn’t exist in the parallel plate environment

since the factor p.N 2, p doesn’t explicitly occur in the denominator of (5.130), (5.136)

or (5.137).

5.9  Electric Field Dyadic Green’s Function
5.9.1 Introduction
The electric field dyadic Green’s function can be identified by examining the

following relation for the electric field, that is
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E=k*%#+VV % (5.163)

It is convenient to break (5.163) into two parts, a principal and scattered part, where

E=EP+E = [G(|7)-JF)av' = [[GPF-7)+G F|7) |- TF)av' (5.164)
-

rr

EP =k*7P +VV . 7P = j GP(F-7)-J(F)dV' (5.165)
.

E =k*# +VV.7 = jG"(F|P)-J(?’ Ydv' (5.166)
;.

It must be mentioned that no mathematical difficulties arise if the VV. operator is

applied in the computation of E” in (5.166) since the integrand of 7" is well behaved.

This is not the case in (5.165), as discussed by [35]-[38]. Recall that

PP = 7P (F) = IGP(F—?')-%dV’ (5.167)
o

where

-ey-y| L
¢ AT g2 (5.168)

- 1 % %.
GP(r—r)=(2”)2_£_;[1 2

A simple passing of the VV- (more precisely, the 8% /dy?) operator through the integral
term in (5.167) is not allowed in this case since the integral would become singular due to
the absolute value term ' y=y [ . In order to carefully handle this source point
singularity, integration over )’ must be broken into two parts as follows

y-6 h
y'=5133+[ j+ j }:PV}: (5.169)

-h  y+é
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and is known as evaluating the integral in a Cauchy Principle Value sense. However, this

can be done only if the excluded portion doesn’t contribute, that is

—00 —00

y+6 ® o —p]y— |
lim j { ! /AT Wa] J(')dy =0 (5.170)

60" o6 (2 )2 JoE

Since the integrand in (5.170) is continuous, the contribution from the excluded part is
indeed zero and the integral in (5.167) can be evaluated in the Cauchy Principle Value

sense, namely

Xz

7P =PV [GP(F -7 )J(’)dV' II[PVIGP( - Jj(')dy]tbc'dz' (5.171)
v’ .

Jwe y
Note, any differential operator involving x or z can be freely passed through the

volume integral in (5.167) since the integrand is well behaved in those variables. Also,

since the integrand is continuous, Leibnitz’s rule for differentiation guarantees that the
0/0y operator can also be freely passed through the volume integral. It will be
demonstrated (via Leibnitz’s rule) that, because the limits of integration in (5.171)

depend on y and the integrand becomes discontinuous after one differentiation with

respect to y, the 0? /ay2 operator introduces an additional term that would be absent if it

were simply passed through. Note, the PV notation will be assumed but dropped for

convenience.
5.9.2 Principal Electric Field Dyadic Green’s Function

The principal electric field dyadic Green’s function can be identified by inserting

(5.167) into (5.165), resulting in the following
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p

tru

—;1)— I( szpx+yk2pr+zk2sz) JdV' +

2~p 2~p 2~p
[GG aGy+ . 0%G )JdV,

jwe Ox0y Ox0z

2~p 2 P 2
L (1529 505895 | Jav =2 [5675-Jav'+
Jjos . Oyox ayaz joe oy” [,

1 I( o’GP . .9°GP . ;9GP

xX+z y+

Jdv'
d20x 620y o2 ]

Jjowe

Leibnitz’s rule for differentiation is [39]

b(,v) b(y)
2 ronay= [ L2 a4 11y sonZ2 - 11y,apn 222
aya(}') a(y) oy Oy

and when applied to the 8% /dy? term in (5.172) produces the following results
p ..
j' $GPy-JdV' = J' 9 [5 596" 5. Jay | av'az
; o)

3 s, . 0|’ 0GP, " aGP . -
— |y—y-Jdy' = lim — y—y-Jdy'+ | y—=—yp-Jdy
3 o away[_{ % Js %

where

oGP OGP -7 1 B
» g)" r)=_(2 )2 I Ipsgn(y Y)GP Ay —y)e TP g2,

The right-hand side of (5.175) leads to, with the aid of (5.173)

OGP . - OGP L - ol a
lim — | y—Jy-Jd'= | y y-Jdy'-y—-6(p-p")y-J(p',y)
50t 0y 57 Oy i o> 2
h h 2
.9 't .O0GP . ., 0GP . -, .1
lim — [ 3=—5-Jdy'= [ 9=——9-Jay - y56(p- £)3-J(B,y)
60 ayy+¢5 ay y+6 ay
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(5.173)
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(5.175)

(5.176)

(5.177)

(5.178)



where the generalized function identity [23], [40]

5(p-p' e/ H PP g2, 5.179
(p-p')= (2,,)2.[[ (5.179)

has been used. Therefore, it is concluded that

g ijPy Jdv'= [3 [?G—(’Z-L) 5( 7-?)}9-%11/' (5.180)
ay P oy
The principal electric field dyadic Green’s function can be deduced by combining the

results of (5.180) and (5.172), leading to

G =3GELi+3GPy+3GL + 5181

181)
VG Rx+ G Y+ IG P2 +2GRx+ Gy +2GL2
Y YU, y+y 2z

where

2-p 2~p 2~p
67 = |kGr+ 2G| Gr- 1 2G" Gw_ 1 0G4
Jjowe Ox Jjwe 0Ox0Oy Jjwe 0x0z

G L &GP g 1 PGP

Y jwe dyox T jwe dyoz

2p
G _5(;_7)}

(5.183)

G =— | K2GP +
Y ja)e[

2~p 2~p 2P
6= 2G5 o  LOG g 1 lpgr, 0G0 (5184
Jjwe 0z0x jwe 020y Jjwe oz

0’GP
n? (2;:)

5 j j EXGPeIAFTIg2, (5.185)

2°GP _ 9GP _ P
B o )2 j j jEpsgn(y -y YGPe A FT)g24 (5.186)
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o’GP  9°GP
ooz  ozdx (2 2

: j j ECGPeIM g2y (5.187)

o’GP 9GP _ 7
e = wmy ~ 2n )2 j j J¢psen(y -y YGPelHFTIg2 (5.188)

2p
aafz 3 )2 j j 2GPeIAF-F)g2, (5.189)
y/4
2~p 1
aasz = (2”)2 j j C2GPeIHFFg2, (5.190)

-ply-y|
GP =

j J'GP AEPG2) | GP =GP (Ly-y') = (5.191)

(2::)2

5.9.3 Reflected Electric Field Dyadic Green’s Function

In an analogous set of steps as in section 5.9.2, the reflected electric field dyadic

Green’s function can be identified by inserting the expression for 7" into (5.166). The

result is
G =G % +1G?, oy +XGZ+ 5.192)
VG X+ Gy y+ VG, 2+ 3G X+ G, y + 2Gy, 2 .
where
2~r 3G
G = jlz{kzc;;, + aafz-“ = a;"J (5.193)
a2Gr aZG’ 2 ~r
6o =2 e ] » 9 Gz (5.194)
jwe OxoOy jowe| Ox0y - Ox0z
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1 5*G”" 2
GZ, = ___[sz;x +—=+ 0 G ] (5.195)
Jwe oy 0Oyox

21 2r
r 1 2~r 0°G er 1 2r 0°G aZGr
G;y=—{kG + WJ : Gw=—{k Gl +—2Z+ =2 | (5.196)

joe| 7 &P jwe o® oz
2gr 8%G, °G”,
G = _1 0Gy & On , G;;’;=-,l— A (5.197)
jwe| 0zox  0z0y jwe 0z0y
2or 3G
G L sz;2+a Oz 20 (5.198)
jwe 0z 0Ozoy
2,~r @ ® -,
aafzxx =_(21)2 [ [£265e77 a2 (5.199)
4 —00 —a0

Gy 1 %% G i
ya _ £ Y& GJAF-T) 42 =
= —e d°A .a=x,y,z 5.200
oxdy  (27)° Iw i’ i g 200

0Gl,  Clie PP —Cloe P —Crre P +Crpe P
re D L ¥ =X,z (5.201)

y 2(1- R%e~*Pky(1- R2e~%h)
oG, R2. PH _R e Pb _ R2e~PH 4+ R o~ PP
Wy ____R e Re _2R4eh +Re (5.202)
oy 2(1- R%e™%")
2 r © @ .
06G, | [ [ecGre* T a% (5.203)
&0z (2m)t
aZGr 1 ® ® ) ; )
ya _ Sro JA(F-F) _
= PG e d°A ..a=x,y,z (5.204)
»  @n) L{ g
2~r %« A L
0Cy __1 [ j¢ s (/7P 424 (5.205)

yox  Qr)? L7 oy
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2,r @ @ ~r -
oz [ [ig BRI (5.206)
oz Qr)y T oy
oG RZe—p¢, —Re—p¢2 _Rze'm +Re‘P¢4
= 2 _—dph X=X,z (5.207)
oy 2(1- R%e™")
aZG;x 1 ® © . T
= G " d%a 5.208
dzox  (27)° _:[_;[54 xx (5.208)
82G” o aGr
ya _ 1 , '.‘ Ijg_ﬁejl-(r—r FLy) =X Y,2 (5.209)
0z0y  (2r)t 27T oy
0°GL, 1 5% o i
== Gre/* " d? 4 (5.210)
622 (2”_)2 _:[)_:[4 2z

5.10 Magnetic Field Dyadic Green’s Function

The principal and reflected magnetic field dyadic Green’s functions are found by

substituting 77 and #” into the expression for H , that is

AP = joeVx#P = (G (F-F)-J(F)av’ (5.211)
VI
H" = joeVx7 = j G" (F|F')-J(F)dv’ (5.212)

’/'l

The principal and reflected Green’s functions, G"™ and G" , for the magnetic field are

(the minor details are left for the enjoyment of the reader)

G" =3GEH+3GWP 2+ G %+ G 2+ 3G 5 + 2GXH (5.213)
8G? 1% o mp AGF) 12
GP-_ghh-_"L -_ jCGPeA g2, (5.214)
YoM e @ay ii
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G —_ghw 2967 ___1 T ? psgn(y -y )GPetFFIg2y  (5215)
Xz zx ay (2”)2 B
G- g 96" ___1 cj ? JEGPeIAFT) 42, (5.216)

-

G" = 3GEZ+3GE§+3Gl 5+ IG5+ IGI 5+ 3G 5+ 2G5+ 3Gl 3 (5.217)

_ 0G e oGy, w_0G, Gy,

G = , G = , G = 5.218
o oz v oz dy 0z ( )
Gl = agz“ , G =-9Gax—zz (5.219)
aGr r aGr aGI'
G = n _u i _Dw Ghr T (5.220)
x oy ox ox
aGr o0 a0 - e
o =(271r)2 [ [i¢Ge* T Pd?A .a=x,y,z (5.221)
r © O ~~p =
g __! [ Caa (il G7)g2)  g=x,2 (5.222)
y  (r)? &
—o0 —a0
agzﬂ =(2fl:)z [ [i¢Gre* a2 (5.223)
oG, 1 17 oar A7) 2
oy [ j&GLe d*A (5.224)
aGr @ o . -
axya =(271r)2 [ [i€G;ue* " PdA a=x,y.z (5.225)
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Chapter 6

ANALYSIS OF A LOSSY STRIPLINE FIELD APPLICATOR

6.1 Introduction

The analysis of an imperfectly-conducting strip transmission line [41]-[44]
symmetrically located between two imperfectly-conducting plates is considered in this
chapter. Specifically, the effect that the lossy conductors have on the principal (i.e.,
dominant) discrete-mode propagation constant and respective surface current will be
investigated. Understanding the nature of the principal mode is fundamental to the
material characterization process (as well as to many other applications), and thus
provides motivation for this study.

The first step in the analysis is to specialize the general 3D current source of
chapter 5 to an infinitely-long strip surface current symmetrically located between
imperfectly-conducting plates. Next, an EFIE (electric field integral equation) is
developed by satisfying an impedance boundary condition on the strip conductor. As a
final step, the EFIE is solved using a MoM (method of moments) technique and the
principal-mode propagation constant and corresponding surface current distribution are

subsequently identified.

6.2 Geometry

The geometry of the lossy stripline field applicator is shown in Figure 6.1. The

structure is comprised of two imperfectly-conducting plates located at y =+h and an
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imperfect strip conductor located in‘the center at y=0. The top and bottom plates are
assumed to be infinite in length along the x,z directions and have properties (o,,Z, ).
The infinitesimally-thin center strip of width 2a has properties (o,,Z,) and is assumed
to be infinite in length along the z direction. The center strip is embedded in a non-

magnetic material characterized by the material parameters (&, 4 ).

Conductor (0.,Z¢)
y=h

Conductor (04,Zs)
[ e (e, po) —

y=-h

Conductor (0¢,Z¢)

Figure 6.1 Cross-sectional geometry of the lossy stripline field applicator.

6.3  Development of the Lossy Stripline EFIE

The EFIE for the discrete-mode propagation constants of the stripline field
applicator is obtained by first introducing an excitatory current J' into the stripline
environment that maintains an electric field E'. This impressed field will induce a

surface current K on the strip conductor that subsequently maintains a scattered field

given by
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a «©
ES(F) = jée(f|F')-12(?)dV'= j j G (x,y|x, 0,2~ 2')-K(x',2)dx'dz’  (6.1)
A\ -a—o

where G° is the electric-field dyadic Green’s function developed in chapter 5. The

source K for the scattered field is confined to y'=0 and is invariant along the z

direction, thus G¢ = G*(x, y|x',y' =0;z-2"). In addition, K will only be a function of x

and z and will have no normal component (since the strip conductor is infinitesimally
thin), that is

K(F) = %K (x,2)+ 3K, (x,2) 6.2)

As a last step, the EFIE for the lossy stripline is developed by invoking the

following impedance boundary condition on the imperfect strip conductor

limi-[E=ZK] .V xzeS (6.3)
y—0

where S is the surface of the strip conductor, 7 = %, is the unit tangent vector and E is

the total field

—

E=E'+E° (6.4)
The limit as y — 0 must be used for convergence reasons and will be discussed shortly.
Substitution of (6.4) and (6.1) into (6.3) produces the EFIE result

a ®
lim?- I I G(x, y|x',0,z-2")- K(x',z)dx'dz' — Z K (x,z) = —E'(F) (6.5)

y—0 a-w

The above equation is actually a pair of coupled EFIE’s (coupled Fredholm equations of

the second kind) since it must hold for f =% and 2. Due to the form of G®, the limit

cannot be interchanged with the integral in (6.5) since this would render it divergent.
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However, the MoM technique will strengthen the convergence of the integral and the
limit can then be freely passed through, as will be shown in the next section.

Since the structure is invariant along the z-direction, it becomes computationally
advantageous (and necessary) to transform (6.5) on the z-variable invoking the following

transform pair

f(B.$)= [F(p,2)e ™ dz

””w (6.6)
F(p2)= [ f(B.&dg

”—ao

with p = xx + yy. The result, with the aid of the convolution theorem, is

x,0;0)-k(x',O)dx' - Z k(x,{)=-€'(p,¢)| ..V xeC (6.7

a
lim 7 - jge(x,y
y—0 2

where C is the periphery of the strip conductor (—a < x <a). Equation (6.7) represents
the EFIE in the axial Fourier transform domain (i.e., the complex { domain), the

solution of which, leads to the p’h discrete-mode propagation constant £,. It can be

shown [45] that near simple poles for the propagation constant ¢, the spectral-domain

current has the following behavior (for a wave traveling in the £z direction)

o P
lim k(x,{)=

6.8
¢3¢, ctg, ©®

where k p is the eigenmode current associated with the p'h discrete propagation mode.

Substitution of (6.8) into (6.7) leads to

NP I SR ¢ B A C) R
51*1»1‘54 i _{g (0300025 v (6.9)
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or equivalently

Jlim 7| 8|, 0:0) k() - 2k, () =~ £, (55| 6.10)

{o%¢, -7
The impressed field &' remains analytic near the pole singularity F¢ p» since, by its very

nature, is independent of and cannot be influenced by the guiding structure. Therefore,

near pole singularities ¢ — ¥¢,, equation (6.10) reduces to

a
sz)t . _{ge(x,y|x',0;$§p)-kp(x’)dx’—Zskp(x)=0 (6.11)

Decomposition into x and Z components leads to

j[gf,_x (x, y[x', 00k, (x") + g5, (x, y| x',0)k, (x')] a'-Zk (x)=0 (6.12)
[ 25 G 7%, 00 (6 + 85 (5, ', 00k, (1) | = Zok, (1) =0 (6.13)

where the limit and { notation, as well as the subscript on Ep, has been dropped for

convenience. Equations (6.12) and (6.13) constitute the fundamental pair of coupled

EFIE’s for determination of the p"'

discrete-mode propagation constant ¥¢, and
eigenmode current k p-
The axial-transform expressions for g;ﬂ (a,f =x,z) can be identified using

chapter 5. The result is (using the relation é‘CJi:z“L =¢C,7 and G.. =G, in the

expression for C., )
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855 (% Y] x,0) = g5 (x, y]x,0) + g5 (%, )] x,0) = [ Cppe®™Xdg  (6.14)
22 -p)y
cp-K-c"¢ (6.16)
J2rwe 2p

) 1 1 0G0y =0)
Cre =— (kK> -G (y]y =0)+ jE—= | (6.17)
J2nwe oy
-p
CP P55 ¢ (6.18)
% 2awe 2p
. 1 N 8G,(3]y'=0)
sz=sz=_ ; gé’G;z(yly =0)-j¢ ¥ | (6.19)
J2rwe oy
P = E-g? eV (6.20)
J2rwe 2p
1 = L 0G,(y|y' =0)
Cr, =- (K2 -Gy =0)+ j¢ —= | (621)
j2rwe oy

Equations (6.12) and (6.13), upon using (6.14) and interchanging the spatial and spectral

integrals, may therefore be written in the following form

[ dge’™ [[Couky(x)+Cok,(x)]e > ' - Z,k,(x) =0 (6.22)
[dge’ [[Coky(x)+C k(x> d' - Z ok, (x) =0 (6.23)

6.4  MoM Solution for the Lossy Stripline EFIE
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6.4.1 General Formulation

The dual EFIE’s in (6.22) and (6.23) can be solved using a MoM technique. The

first step is to expand the unknown currents using appropriate basis functions eg, (x)

with complex amplitude a Bn > that is

Ng
kg(x)= D apepy(x) ..f=x,z2 (6.24)
n=1

Insertion of (6.24) into (6.22)-(6.23) and interchanging the summation with the spatial

and spectral integrals leads to

N,

Z a,, I ”gx,,ejixdg VA ex,,(x)]+ Z azn[ I ngznef'f"df =0 (6.25)

n=1 n=1

Y am| | szgme"""dé]+ 3 az,,[ [ Crogane’™de - Zye,(x) |=0  (6.26)

n=1

where (since x’ is a dummy integration variable)

8pn = 8pn(&) = j epn(x)e 5 dx' = »eﬂ,.(x)e By . p=xz  (627)

-a -a
The second critical step in the MoM solution is to apply the following testing

operator to (6.25) and (6.26), namely
j n{}dx .m=1 N +N, ;a=x,z (6.28)

where t,,,(x) is an appropriate testing function and a =x,z when applied to the x,z
component equation, respectively. The result, after interchanging the testing operator

integral with the sum and spectral integrals, is
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K N, ®©
Y. Icnﬂmgxnd5+Dx";”]+ > azn{ Iszf,mgmdé]=0 (6.29)

n=1

K N, ©
Z Axn I szf;zmgxndgjl + z Azn [ I szf;?mgzndg + Dz";n:| =0 (630)
| —0 n=1 -0

n=1
or in matrix form

N N

z A;nxnaxn + z Ax";nazn = 0
" o b ..m=1,..,N +N, (6.31)
Z Agnaxn + Z Agnazn =0
n=1 n=1 )
where
a0
o5 = m [ Cap fom8 pndé + Doibap -, =x,2 (632)
—Q0
a .
fam = Fam @) = [tam(x)e/"dx ..a=x,z (6.33)
-a
Y 1..a=8
D7 =-Z [tam(®ean(®)dx . 6, ={0 oy (6.34)

-a

The choice of expansion and testing functions is usually strongly influenced by
physical and mathematical considerations. From a physical standpoint, the expansion
functions should closely model the behavior of the unknown currents so that only a few
expansion functions are required to efficiently obtain accurate results. In addition, a
prudent choice of expansion and testing functions will allow the integrals in (6.27), (6.33)
and (6.34) to be computed in closed form. Although obtaining closed-form integrals is
not absolutely necessary, it does significantly reduce computational effort and therefore

increases numerical efficiency.
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The stripline considered in this chapter can support both even and odd modes
(about the variable x) due to its symmetry. This, of course, has implications on the

choice of expansion and testing functions. Even and odd modes are typically classified
relative to the longitudinal current k,(x). If k,(x) is even(odd), then the particular
mode supported is classified as even(odd). Consequently, k,(x) must be odd(even) and

p, must be even(odd) since the axial transform continuity equation is

V-k= Z‘; + jCk, = —jop, (6.35)

Thus, when choosing testing and expansion functions for even modes, one should select

even functions to represent e,,,t,, and odd functions to represent e,,,t,,. Similarly, for

odd modes, e,,,t,, must be odd and e,,,?,, will consequently have to be even. In
addition, the axial and transverse surface currents have the following well-known

behavior [46], [47] near the edges of the infinitesimally-thin strip conductor

ko p? | ko o2 (6.36)
where p is the radial distance from the edge. Accordingly, one should select expansion
functions that closely model this edge behavior. It is known [45] that the principal mode
(which is the only mode being investigated in this chapter) is even. However, an MoM

formulation for both even and odd modes will be given below for the sake of

completeness.

6.4.2 Even-Mode MoM Formulation for Lossy Stripline
A common choice of expansion and testing functions employed when considering

lossless structures (known as Galerkin’s method [29]) for even modes is
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€en(X) = 140(x) = Typy(x/ @)1~ (x/ a)’ (637)

TZn (x/a)

e, (x)=t,,(x)= e (6.38)
zn zn {——1 ! a)2
where T, (x) are Chebyshev polynomials [48], [49] of the first kind (see Appendix E for

an overview of Chebyshev polynomials). Note that Chebyshev polynomials of odd/even

order are odd/even functions, as seen from the relation [50]

T, (x) = (-1)"T, (~x) (6.39)
Therefore, e,,(x),e,,(x) are odd/even functions and have appropriate weighting
functions, as physically required. However, there are now mathematical difficulties
encountered in the lossy case that were absent in the lossless case. Namely, the integral
in expression (6.34) becomes divergent for certain m,n. To see this, consider the case
when m =n=0, namely

¥ % T3(x/a)
DY =-Z, [1,9(x)e,o(x)dx =-Z, jl—_"(de (6.40)

-a -a

The c.o.v. (change-of-variable) X = x/a leads to the following integral expression

1
1-%2

1 n2,~ 1
DY =-az, | %di =-aZ, | di (6.41)
-1 -1

where the property 7;(x) =1 has been used. The above elementary integral is known to
be divergent. Therefore, Galerkin’s method is no longer applicable for lossy structures
and alternative expansion and testing functions must be sought.

The problem becomes tractable if Chebyshev polynomials of both the first and

second kind are used in appropriate combinations. For even modes, the following
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choices should be made for the expansion and testing functions (where m,n=0,1,2,...)

€. (¥) = Uz (x/ ap1 - (x/ a)? (6.42)

Lem(X) = Uz (x/ a) (6.43)
L, (x/a)
e, (x) = == (6.44)
\/1 ~(x/a)?
L (x)=T5,(x/a) (6.45)

It is important that the weight functions are contained in the expansion functions since
they are representing the physical currents (and are based on the required edge condition).
Then, after the expansion functions have been determined, the testing functions are
conveniently chosen so that (6.34) is easily computed using known orthogonality
relations.

Insertion of (6.42)-(6.45) into the corresponding relations (6.27), (6.33) and (6.34)

leads to (after using the c.o.v. X=x/a and the even/odd properties of the Chebyshev

polynomials)
1
fem(©) = 20 [Upp(B)sin(Eai)di = j2al %, (£a) (6.46)
0
1
fom(€) =28 [Ty, (%) cos(EaR)d = 2al%,, (¢a) (6.47)
0
1
8un(&) = =20 [Uppy (D1 - #* sin(Eak)d = - j2al 2, (£a) (6.48)
0
g.n(£) =20 ljTZ"—(’”cos(éaaz)cb%=2aI;,n(.fa) (6.49)
oV1-72
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1
DY ==aZ [Uypit (U EV-BdE=-az,1,, (6.50)
-1

1 ~ ~
Dy =z, [ 22O g az (651)

S -#

where the superscript e,0 means the resulting integral is even or odd in & (which can be
verified by trivial inspection of the above integrals). Remarkably, Appendix E shows
that the above integrals exist in closed form as desired. Thus, the above combination of
expansion and testing functions adhere to the physical and mathematical stipulations.
Substitution of (6.46)-(6.51) into (6.32) results in the following expressions for

the matrix elements

Az = ;i_rgfaojcn EP O (D (EDVIE - Z, 1, (6.52)
Vi ;i;nojtza?cxz(f,y,c)lgm<¢a)1;n(¢a)d: (6.53)
Az =~ lim jsa:jczx &P o (EDI G (EQ)dE (6.54)
A7 = ;g%saajcu(é,y,q)l;;,, (€)1, (Ea)dE ~ Z, 1 o, (655)

since C,,C,, areevenin & and C,,,C,, are odd in £. Note that one a can be dropped
because we are solving a homogeneous matrix equation. In addition, a careful

examination of Chapters 5 and 6 shows that C,, ~¢, C,, =C,, ~1 and C,, ~1/¢ as

£ > . Thus, with the aid of Appendix E, it can be shown that the magnitude of the

integrands of 4,4, that is |I (Agp )l , have the following asymptotic behaviors
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lim [I(Ax),|1(4)| =172 5 lim |[I(A4,.)|,|1(4;,)| ~1/&¥%  (6.56)
£ £

The strength of this asymptotic behavior guarantees convergence and formally allows the
limit to be brought inside the spectral integral in expressions (6.52)-(6.55). Therefore,

the above matrix elements simplify to

Ay = 30:_[Cn & pmCD) gy (Sa)ds - Z 1, (6.57)
47" = j8a;isz(é,C Wim(Ea)l gy (Sa)dE (6.58)
A5 = —j8achzx(§,§ Wiem(Ea)l g, (Sa)dE (6.59)
Az = Sa?sz & EmGa)lg,(Ea)dE - Z1 (6.60)

where, after some algebraic manipulation, the functions Cp3(5,¢) =Cpp(§,y =0,¢) are

1 A k2_ 2 2
Cu(8:8) =~ . e, ¢ p (6.61)
JjdrweD p c.Z.D
& | A 1
Cr:(8,9)=Cx(5.4) =~ —- (6.62
(9] (9] jngDe[p achDh] )
1 A k2_ 2 2
Cx(5,6) =~ , K¢, ¢ p (6.63)
JjarnaweD p c.Z.D
A =sinh ph+—2—cosh ph (6.64)
CZC
D? = cosh ph+ ”Z sinhph , D"=coshph+ 2% sinhph  (6.65)

c™c
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Note that the C,4 are all even with respect to p, hence the branch points at 4 =tk are
removable. In addition, the above matrix elements reduce to the known lossless case [34]
in the limit as o, — o, as anticipated.

As a final note, since the Chebyshev polynomials are indexed starting from zero,

the matrix equation subsequently should be written as

N,-1 N,-1 )
mn mn
Z Ax.x ayn + Z sz a;n = 0
n=0 n=0 , ..m=0,..,N_+N, -1 (6.66)
N.-1 N.-1
mn mn
Z Ay ayp + Z A a,,=0
n=0 n=0 )

This also applies to the odd-mode analysis given below.

6.43 0Odd-Mode MoM Formulation for Lossy Stripline
In the analysis of odd modes, in which &, is even and k, is odd, the following

choices should be made for the expansion and testing functions (where m,n=0,1,2,...)

e,y (x) = Uy, (x/ a1 - (x/ a)? (6.67)

tem(%) = Usp(x/ a) (6.68)
T, (x/a)

en(x) =2~ (6.69)
J1-(x/a)?

tzm(X) = Topmyi(x/ a) (6.70)

In this case, the matrix elements are

AT =80 [Co 6. fim (G n(EQ)AE - Z, T (6.71)
0
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A =-j8a [C (&) (ER)IL (Ca)dE
0

A" = j8a [Co&, O (ED)E, (a)de
0

A7 =8a [C, (.}, (Ea)Ig, (Ea)dé - 2,1,
0

where

1
Tm(£a) = [Upm(®)cos(Gat)d
0
. 1
I%,(Ea)= [Ty (B)sin(fax)d
0
1
18 n(Ea) = [Unn(BIN1 - £ cos(Eat)d
0

- Y7, . (%)
19,(£a) = [2210) sin(£at)d
& J Vi-7

1
Limn = [Usm(B)U3, FW1 - 225
-1

1 - -
io= Iszﬂ(x)T 2n41 (%) 4o

3 1-72

6.4.4 Quasi-TEM Characteristic Impedance

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)

(6.78)

(6.79)

(6.80)

A quasi-TEM (transverse electromagnetic) characteristic impedance for the even

principal mode can be identified for the imperfectly-conducting stripline by assuming
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that the transverse current k, is negligible in comparison with the longitudinal current &,

(Section 6.5 will show that this is indeed the case), or equivalently

—

k,=0 = K=zk, ..quasi—-TEM approximation (6.81)
Under these conditions, a unique characteristic impedance can be identified in the
transverse plane of the stripline field applicator (since k, =0 implies that no longitudinal

magnetic field is produced to cause an additional EMF) given by

v(2) V)

Zp=t——= ..—w0<z<0 = Z;=t—2- (6.82)

i(2) ((9
where V() and I({) are the axial transform voltage and current of a single traveling
wave (only single-traveling waves will be supported on the stripline structure since it is
assumed to be infinite in extent along the guiding axis). The plus sign should be used if
the observation point is to the right of the source point (i.e., for a forward traveling wave)
and the minus sign if the observation point is to the left of the source point (i.e., for a
reverse traveling wave). Since this impedance holds true for all z, the expressions for V'
and / can be formulated in the axial Fourier transform domain using the following

standard TEM definitions of voltage and current

V) =-[ep.o)d , 1¢)=k(x.¢)-dr (6.83)
- (&

Since voltage is independent of path in the transverse plane, the integration

contour (from the center conductor to the ground plane) for the computation of ¥ can be

conveniently chosen along x =0, thus di = ydy. The displacement vector dr equals
Zdx since current flows along the longitudinal direction and is confined within the strip

and ground planes. When the center strip is positively charged and the ground planes
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negatively charged, then V' and I take the following form
h

V)= fe,00.0d , 1Q)= [k dx (6.84)

0

Note that e, is the y component of the total electric field, that is

e,(0,5,8) =¢,(0,5,8) +¢5(0,5,) (6.85)

where ¢

y is the impressed electric field and e; is the scattered electric field given by

(with the aid of Chapters 5 and 6)

x,0,0)-k(x)dx' = [ g5,(0,5|%,0:0)-k,(x')d’  (6.86)

-a

a
e5(0,5.$)=3- [0,y
-a

Near pole singularities, as already discussed, the surface current has the following

behavior (for forward/reverse traveling waves)

o kW) . k()
;ll»rxng,,k(x’;)~ é'i{p = {ll)gl{ka(x’c)’v 4,i;p

(6.87)

Substitution of (6.84)-(6.87) into (6.82) and multiplying the resulting numerator and
denominator by ¢ +¢, produces the following expression

a

h h :
[€£¢,)6,0,7.0)ay+ [ [ £5.(0,5|%,0;¢) -k (x)ebx'dy

Zy= i{limg 0 ao‘
->F
’ [ kop(x)ax

-a

(6.88)

The incident field, in general, remains analytic at the pole singularities since it is
independent of, and cannot be influenced by, the guiding structure. Therefore, due to the

limit process above, the incident field is not implicated in the computation of

characteristic impedance for the discrete principal mode. Thus, in the limit as { > ¥¢,,
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the characteristic impedance takes on the following form

h a
[ e
4+0-a

X, 0,%,)- k, (x)d¥'dy

14
Zy=¢% =% - (6.89)
[ k. (x)dx
-a
where the p subscript on k_, has been dropped for notational convenience and
N.-1
- Tonx/a) (6.90)

kz (x) = aznezn(x) s €:zn (x) -
nz=(:) \/1 —(x/a)®

The computation of V' involves spectral integration due to the presence of gf,z

and must therefore be handled numerically. However, an analytical expression for I/
exists and can be identified as follows. First, substitution of (6.90) into the expression for
I in (6.89) leads to, with the c.0.v. X = x/a followed by the c.o.v. ¥=x,

N.-1
I=a ) a jﬁﬂ(—"ldx (6.91)

n=0 zn_] \]l—xz

The c.0.v. x=cosé and the use of the relation 75, (cosé) =cos(2nf) from Appendix E

leads to the following expression for the integral in (6.91), namely

T2n(x) ~n=0
j' \/l_xaﬁr Icos(2n0)d0 {O %0 (6.92)

Therefore, upon substitution of (6.92) into (6.91), the current reduces to the simple

expression
I=ara., (6.93)
where a,, is the leading expansion coefficient for the longitudinal current k,. In

general, the computation of ¥ will require knowledge of all the coefficients a,, .
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6.5 Numerical Results

In this section, numerical results of the MoM solution for the propagation
constant ({ = f— ja) and surface currents (k,,k,) are examined. Note, it will be

assumed that & = &;, unless specified differently. First, it is important to determine how
rapidly the solution converges. Figures 6.2-6.4 show that the Chebyshev polynomials
insure excellent convergence properties for the propagation constant and surface currents
with only a small number of expansion and testing terms. Remarkably, only a single
expansion and testing function (i.e., the Maxwellian distribution) produces very accurate

results. In order to adhere to common notational convention, the following symbols will

be used. Ground-plane and strip conductivity are represented by the symbols o, and
o,, half-width and half-height are represented by w and ¢, and exponentiation is

represented by the letter e or d (for example, 1x 10® =16 =1d6).

Next, it is important to check whether the non-Galerkin method developed here in
Chapter 6 produces the same result as the known Galerkin method [34] for the lossless
case (in which k, is identically zero and { =k ). Figure 6.5 shows that both methods
produce identical results, as anticipated. In addition, the full-wave theory developed in
Chapters 5-6 compares closely with the well-known perturbation theory result [3], [18],
as demonstrated in Figure 6.6. Note, a perturbation and full-wave theory comparison for
the phase constant S cannot be made since the perturbation theory only accommodates
for attenuation. Thus, an advantage of the full-wave theory is that it corrects for both
phase and attenuation (note, it was already shown in Chapter 4 that phase correction is

exceedingly important in material characterization measurements).
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Figures 6.7-6.10 show the effects that ground-plane and strip conductivity have

on the principal-mode propagation constant. Since the surface impedance
Zgs =1+ )), /a)yo/2ag_s , the resistance and inductance of the stripline increases as

0, s decreases. Elementary transmission line theory states that the phase constant g is
proportional to inductance and the attenuation constant is proportional to resistance, thus
one should expect an increase in the phase and attenuation constant as the conductivity
decreases. An examination of Figures 6.7-6.10 demonstrates this anticipated result. In
addition, the strip conductivity has a more pronounced effect on the propagation constant,
as one would expect, since the current flow is restricted to a smaller region. This causes
resistance and stored magnetic energy (hence inductance) to increase, resulting in an
increase of @ and f. The surface impedance model also predicts an increase in the
attenuation and phase constants as frequency increases. The increase in the attenuation

constant  at higher frequencies is clearly evident from Figures 6.8 and 6.10. The

increase in phase constant £ is not as clear due to the normalization with respect to k.

Upon multiplication of k;, the increase of £ at higher frequencies would be more
clearly evident, but is more cumbersome to present in graphical form due to the
exceedingly large values of . Note, exhaustive results for a stripline having both
ground-plane and strip conductor losses are not given here for the sake of brevity
(perturbation theory predicts that the total attenuation is simply the sum of the two cases
presented here).

Figures 6.11-6.12 reveal the effects that strip conductivity has on the surface

currents k, and k,. Figure 6.11 demonstrates that the transverse current k, increases as
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strip conductivity o, decreases. This is an expected result since lower conductivities
allow for more pronounced longitudinal fields in the conductor, which leads to larger
longitudinal field components (which are predominantly maintained by transverse

currents). Figure 6.12 shows that there is seemingly little effect on the surface current
k, , probably due to the method of surface-current normalization.

The effect that frequency has on the surface currents k, and &, is shown in
Figures 6.13 and 6.14, respectively. The surface impedance increases as frequency
increases, leading to a larger longitudinal field component, hence the increasing
transverse current density in Figure 6.13 is expected. Figure 6.14 reveals that the edge
singularity weakens for the longitudinal surface current &, as frequency decreases. This
is also an expected result since the edge condition is an induced EMF effect. As the
frequency approaches zero, the current density should become constant across the
transverse dimension of the strip.

Figures 6.15-6.16 demonstrate the effects of width/height variation. Decreasing
the width increases the magnetic field concentration (leading to higher inductance) and
also increases resistance. This manifests itself as increased phase and attenuation.
Increasing the width/height ratio has a predictable opposite effect. Figure 6.17 shows
that increasing the permittivity significantly increases the attenuation factor. This is
expected since higher dielectric materials reduce fringing (due to polarization and free-
charge annihilation at the dielectric/conductor interfaces) and consequently forces the
surface current to be more concentrated in the ground plane. The effect on the phase
constant (when normalized with respect to wavenumber k) was not so prominent and

was therefore not plotted. The last plot demonstrates the effect that conductor loss has on
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the quasi-TEM characteristic impedance of a stripline having dimensions w=25mm,
t=17.38mm at a frequency of f=1GHz. Elementary transmission line theory for a
lossless dielectric predicts that the Re{Z,} should be positive and increasing and the

Im{Z,} negative and decreasing as conductivity decreases since

z,= |REjoL _ |R+joL =\/£—ji (6.94)
G+ joC JjoC C " oC

and because the surface impedance model being utilized is

. . a,
Zgs =Ry +jlgs=(1+)) 20”" (6.95)
8,5

Figure 6.18 demonstrates this general trend.
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Figure 6.2 Convergence rate for propagation constant { = f — ja .
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Figure 6.4 Convergence rate for surface current k, .
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Figure 6.6 Full-wave and perturbation theory comparison for attenuation constant « .
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Figure 6.7 Effect of ground plane conductivity on phase constant .
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Figure 6.9 Effect of strip conductivity on phase constant £.
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Figure 6.11 Effect of strip conductivity on surface current &, .
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Chapter 7

ANALYSIS OF A LOSSY MICROSTRIP TRANSMISSION LINE

HAVING AN IMPERFECTLY-CONDUCTING GROUND PLANE

7.1  Introduction

The analysis of an imperfectly-conducting microstrip transmission line [S1]-[66]
situated over an imperfectly-conducting ground plane will be considered in this chapter.
Specifically, the effect that the lossy conductors have on the principal (i.e., dominant)
discrete-mode propagation constant and respective surface current will be investigated.
Understanding the nature of the principal mode is fundamental to the material
characterization process (as well as other applications), and thus provides motivation for
this study.

The first step in the above analysis is to (utilizing an electric-type Hertz potential)
find the electric-field dyadic Green’s function of the EM field for a general current source
embedded in a lossy microstrip background environment. Next, an EFIE (electric field
integral equation) is developed by specializing the general 3D electric current to a strip
surface current located at the cover/film interface and satisfying appropriate boundary
conditions on the strip conductor. As a final step, the EFIE is solved using a MoM
(method of moments) technique and the principal-mode propagation constant and

corresponding surface current distribution are subsequently identified.

72  Geometry
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The microstrip background environment is depicted in Figure 7.1. The structure

is comprised of two main regions located above an imperfect ground plane
(-o<y<-d) having conductivity o, and intrinsic impedance Z.. The cover
(0<y<w) and film (-d <y<0) regions have properties (&,4,) and (&;,4),
respectively. The cover/film interface is located at y=0 and the film/conductor

interface is located at y=—d. The general 3D electric current source density J is

assumed to be localized within region /.

y
Principal
wave
V
Reflected Principal §
wave wave Region1 (g,,p,)
Reflected Region2 (g,,1,) 8
wave ,

Conductor (0.,Z¢)

Figure 7.1 Background environment for the microstrip field applicator.

7.3  Electric-Field Dyadic Green’s Function
7.3.1 General Formulation

Similar to the development in Chapter 5, an electric-type Hertz potential 7 and
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the superposition method of solution can be utilized in determining the electric-field

dyadic Green’s function in region /. The total solution for 7 in each region will be
= _ =p —r
m=a +7 ..0<y<oo (7.1
Biy=73 .—d<y<0 (7.2)
where (for a =x,y,z)

Ja
Jog . .0<y<o (7.3)
Vil +kinl, =0

2_p 2_.p _ _

Vi, +kinh, =0 ..—d<y<0 (7.4)
The background structure is invariant along the x and z directions, thus Fourier

transformation on (7.3) and (7.4) leads to, with the aid of the transform pair of Chapter 5,

O#l 2., T,
) “Pi7g =T
ay Jag
> ..0<y<o (7.5)
azir
e pi, =0
2~r
aa;rg" - p3#, =0 ..—d<y<0 (7.6)

where p,, = ,’/12 —kfz with Re{p,,} >0 chosen and At =£21¢2%. The solutions of

(7.5) and (7.6) in the complex A -plane are (based on the experience of Chapter 5)

e-pnly-y’l ja A, )
2p Joe

g =2l +#, = | &) +Wie P s WieP? 0<y<wo (1.7)

yl
or

~ o~ ~r - + - - Py ,
Fig =7l + 7l =Vae PV + Wine PV + W eV Ly <y<w (7.8)
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Fig =L, + 7, =V ePY + Wipe PV + Wpe? 0<y<y (7.9)

and
Tog = Myq =Wone PP + Wy eP? .—d<y<0 (7.10)
where
0y 7 (7 v
i = [ Tat)) gy (.11)
g jog

The spectral coefficients W, ,W,, are computed in the next section using appropriate

boundary conditions.

7.3.2 Computation of Spectral Coefficients
The spectral coefficients can be computed by implementing the following
boundary conditions (note, the A dependence of the transform-domain Hertz potentials

has been dropped for notational convenience)

gy 2 0)=0 ..a=x,y,z (7.12)
#1(0) = N?7y,(0) ..a@=x,y,2 (7.13)
a0 _ 2072, . X,z (7.14)

oy oy
aigy(o) - 6”26;(0) = (1= N")[ j£72,(0) + j¢7, (0)] (7.15)
Fogg (—d) = - lz aihgy(‘d) A =X,Z (7.16)

07, (~d

___”2§ ). JWELZ T (=d) = jE7y (=d) = jCTp,(—d) (7.17)

163



where the dielectric contrast and intrinsic impedance are given by

N =22 |z —a+)) |2 (7.18)
&} 20—(:

Equation (7.12) is the radiation condition, equations (7.13)-(7.15) are the boundary
conditions at the cover/film interface and equations (7.16)-(7.17) are the impedance
boundary conditions at the surface of the imperfect (but good) conductor. As anticipated,
there are 12 boundary conditions required to uniquely compute the 12 unknown spectral
coefficients.

Enforcement of the radiation condition leads to the following result when applied

to equation (7.8)
Tg(y >0)=0 = W,=0..a=x,y,z (7.19)

since Re{p;} >0. Thus, the transform-domain Hertz potential in region / consists of a

principal wave and only an up-going reflected wave, that is
g =Vae PV +Wihe P’ Yy <y<w (7.20)
Fig =VgeP” +Wie P 0<y<y (7.21)

The tangential spectral coefficients can be computed as follows. First, insertion

of (7.10) into (7.16) leads to

Wi + Wy e P = —%—(W{aepzd Wi ) a=x,z (1.22)
omC c

and upon solving for W,', gives
Wy, =—Rye PPWy, a=x,z (7.23)

= ach-pZ _ l-pZ/JCZc

R =
? chc+p2 1+P2/0’ch

, 0.2, =(1+)) ———-“"‘3"0 (7.24)
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Next, substitution of (7.21) and (7.10) into (7.13) and (7.14) produces the result
Ve + W = N2 Wy +Wsy) @ =x,),2 (7.25)
PV ~Wie)==PyN> W3y —W3g) @ =x,2 (7.26)

Solving the above equations in terms of W,,, and using (7.23) gives

W =V, + N (1-Re P W5, ..a=x,z (7.27)
Wit =V - P2 N2 (14 Rye P W5, =,z (7.28)
P

The spectral coefficient W,, is determined by equating (7.27) and (7.28), leading to the
following expression

Woa =TV, ...a=xz (7.29)
where the tangential transmission and interfacial reflection coefficients at the cover/film

interface are

2 -
T =—; A R=H"P (7.30)
N=(p1+ p2)(1= RiRye ™) pi+p

Substitution of (7.29) into (7.23) and (7.27) or (7.28) identifies the remaining tangential

spectral coefficients, that is
Wy, =—R,Te Py _a=x,z (7.31)
Wi =RV, ..a=x,z (7.32)
where the tangential reflection coefficient is

-2p,d
Rt _ R| —Rze P2

. k. L (7.33)
1- RyRye~ %P4

It is noted in passing that the above spectral coefficients reduce to the expected perfectly-
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conducting result [45] in the limit as o, — .

The tangential components of the spectral-domain Hertz potential in region / can

now be mathematically/physically identified using (7.7), (7.19) and (7.32). The result is

-nly-y| -6 | F (T v
Frg =7+ = [| So——+ R, JalbV) gy a=xz (138)
2p 2p, Jog

The first term in (7.34) represents the principal-wave contribution that travels directly
from the source point )’ to the observation point y. The second term in (7.34)
represents the reflected-wave contribution that travels downward from the source, gets
reflected from the cover/film interface and travels upwards to the point of observation.
Note, a closer examination of R, in (7.33) reveals that the reflected-wave contribution is
actually comprised of a primary reflection from the cover/film interface and a secondary
reflection from the film/conductor interface. A similar picture holds for the normal
component of the Hertz potential.

The normal-component spectral coefficients are determined in the following

manner. First, substitution of (7.10) into (7.17) leads to

—pa(W3,eP —W; e™P) = joe,Z, (W3 e + W e P)

(7.35)
~JEW3eP? +We Py — jCWyeP + Wy emPrd)
Solving (7.35) in terms of W2+y produces the result (after some algebra)
Wy, = Cue P Wy, — Roe VW5, +C, e P W5, (7.36)
where the normal interfacial reflection and coupling coefficients are
1?2 - ]w€ZZc - D - 1 -]608220 /pZ (7.37)

jw£2Zc P 1+ ja)gZZc /p2
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C,=jéC , C,=jec , c=—fe . 1°R
Jog 2.+ py  py(1+ jweyZ, | py)

(7.38)

Next, the boundary condition result of (7.25) is used to express Wl; in terms of ny,
namely
W ==V, + N2 (W5, +Ws,) (7.39)
Substitution of (7.36) into (7.39) gives
W ==V, +C N2 P Wy, + N*(1- Rye P Wy, + C, . N2 Wy, (1.40)
The final boundary condition is enforced by substituting (7.21) and (7.10) into (7.15),
leading to

Py W)+ a3, ~W3,) = (= ND) JE3, + W3 + JE W3, +W3,) | (7.41)

Solving (7.41) for W}, and using (7.23) and (7.36) gives

PrCyee P — jE-N?)(1- Rze—z"zd)}w_

+ -
PVly =Vy +|: P 2x

(7.42)

2|

- 'p—2 (l + Eze—szd )Wz—:v + [
h

PpsCype P —j;(l—Nz)(l—Rze""zd)} _
WZz

Using (7.29) and equating (7.40) and (7.42) produces the following result for #,,, (after
a little algebraic effort)

Wy, =T Vi +T]V, +T7V; (7.43)
where the normal transmission coefficients are

(BIN? = P))Cpre™ P 4 jE(1- N?)(1- Rye™P2?)

T =-T, —
o (PIN? + py)(1 - RiRpe P%)

(7.44)
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2p
TY = — (7.45)
" (mN?+ p)(1-RiRye )

(PIN? = p2)C e P2 + jE(1- N2)(1 - Rye )
4| 2

Tz - ’ 2p2d
(7N? + p)(1- R Rpe )

n

(7.46)

R = p,_]_V_—& (7.47)
PN +p

Substitution of (7.43) into (7.36) and (7.40) or (7.42) determines, with the aid of (7.29),

the remaining normal-component spectral coefficients

W3, = (Cpul, - RT)e PV = Rye PTIV; +(C,, T, - BT )e PV (7.48)

W, = RV + RV, + RV (7.49)
where
RX =N? [nye"z”zd T, +(1- Rye 2P )T,,"] (7.50)
R} = N2(1- Rye P7)T? -1 (7.51)
RZ = N? [cyze‘zpzd T, +(1- Rye 2P )T,f] (1.52)

The normal component of Hertz potential in the spectral domain for region / can

therefore be identified using (7.7), (7.19) and (7.49). The result is

-yl -p+y)
iy, =, + 7, = || 5= +R,E J('“')d' (7.53)
; 2p 2p jwg ‘
where
R,=3RE+9RY+2R: , J=3J, +3],+3], (7.54)

The first term in (7.53) is the principal-wave contribution and the second term is the

reflected-wave contribution. Note, equations (7.34) and (7.53) state that the normal
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component of current only couples into the normal component of potential, whereas the
tangential components of current (upon interaction with the interface) couple into both

the tangential and normal components of Hertz potential.

7.3.3 Identification of the Hertz Potential Dyadic Green’s Function
The principal part of the spectral-domain Hertz potential in region / can be easily

deduced from section 7.3.1 or 7.3.2, that is

bnd ~ Py ’ j ia ' ’
iy = IG”(l,yly )Mdy A =X, Y, 2 (7.55)
' jag;
y
where
- - e Pb-vl
Gp(l,le")=G"(/Ly-y')=—-2p— (7.56)
]

The principal part of the spatial-domain Hertz-potential Green’s function immediately

follows by taking the inverse transform of (7.55), resulting in

- ; ) J,(F) .,
P (F)= 1ye*d?1= [GP AN 74 7.57
Ta (r) (2 )2 _[ I ”la( y)e I ( | a)gl ( )
where
GP(F|F') =GP (F-F) =(_217 [ [GPAy-y)e a0 (158)

Thus, the principal Hertz-potential dyadic Green’s function is identified as
~p/= ol X j(?) ' ~P sl 1 72] 26~ P
ry(r)= IG (r|r ) ——=dv' , G (r|r )=1G (r|r ) (7.59)
P Jjowg

In a similar manner, the reflected Hertz-potential dyadic Green’s function is

identified by
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7 (F) = jG’( |7)- J(’)dV' (7.60)
J &
where
G" =G +)G 2+3G), 9+ )G, 2+ 3G 2 (7.61)
, 1 © o . . ' i
Gop=— I J‘Gaﬂ(/l,y|y e AP G20  a,B=x,y,z (7.62)
2r)" %
- e—pl(ytv')
Giy=R=— ..a=xz (7.63)
2p
- e~ P+Y)
Gy =RE——— a=xy,z (7.64)
2p

The total Hertz-potential dyadic Green’s function in region [/ is therefore, by
superposition
G(F|F') =GP (F|F')+ G (F|F") (7.65)

and the total Hertz potential is

7 (F) = j’ G(F|7)- 8) dv’ (7.66)
1

7.3.4 Identification of the Electric-Field Dyadic Green’s Function
The electric-field dyadic Green’s function in region / is identified by using the

following computation

E=k#+VV-# = [GF|F)-J(F)dV" (7.67)
V'

Of course, the field will contain a principle and reflected part, that is

E=EP+E" (7.68)
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where

EP = i3l +VV -7 = [GP(F|F)-J(F)dV" (7.69)
VI

E" =k7 +VV-7 = [G7 (F|F)-J(F)av’ (1.70)
;.

The principal part of the electric-field dyadic Green’s function was previously
investigated in Chapter 5 and will therefore not be repeated here. Application of (7.70)

leads to the following expression for the reflected part of the electric-field dyadic Green’s

function
G =2Goi+3G5)+3Go 2+ a7
FGLE+ 9GS5+ HGS3 + 2G5 +3GEH+ 3G 5 '
2, r azG’
G = L K2GT + 0 G;‘ +—= (1.72)
Jjog ox Ox0dy
2 2
Gro L 96y . 1 [5G, &G a.73)
Yo jog xdy = F  jwg| oxdy oxdz
°G’, 32G"
GZ = —1— K G+ —2+ O Gy (7.74)
Jjag oy Oyox
azGr 62G" 2 ~r
G;; = _I—(klzG;y + ay—zyy] ’ G;zr = L[klzG;z + ayzyz + aay(;z; J (7.75)
ja)&'] ja)&']
2 9%G’ 0°G”,
G;’;:,l O Gy , O Oy , Gjy’=,L 2 (7.76)
jog | 0zox  Ozoy jog, 0zoy
2-~r azG"
G = L K2G! + 0 GZ +—2 (1.77)
j(l)&'l 1574 azay
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Gy, _

x: @

1 _ oj‘ aj‘gzé;xeﬂ.ﬁ—?)dzl

)" o

2 ® © ~r
%G, 1 i oG

axdy  (27)? oy

- B ,
%G ya =-p aﬂ:-ﬁe""“’”") A =X,),2
oy " 2p 2

8°G’, 1%

_ T epir JEG-P 2,
el [&6Gue d*A ..a=xz

—0

ya _ Ar JA(F-F _
6yz -(2”)2 I _[p, Gyaef d°A ..a=x,y,z
—QD —Q0

°GL, 1
oyox  (2x

o ~
. aG' iA(F=F
)2 J’ ,[jé ayxxejl( )dzl

2r ® ®© Aro L
aay(;zz _ (21) J- Ij; 666;2 T g2,
z  (2n

—00 —a0

0Gia - g 0 _Reno) g
oy ‘' 2p 2
2 ~r @ oo ~r -
0 Gya - 1 I Ijgac;_yaej,{.(F—F')dZ/l A =X, P,2
ozdy  (2n)? L
O°GL, 1t aar jiG-F) 2
2 @n) | [z as

7.4  Development of the Lossy Microstrip EFIE

J‘jé‘—y—aejj'(i_p)dzl WA =X,),2
—o0

(7.78)

(1.79)

(7.80)

(7.81)

(7.82)

(7.83)

(7.84)

(7.85)

(7.86)

(7.87)

The EFIE for the discrete-mode propagation spectrum of the microstrip field

applicator (shown in Figure 7.2) is obtained by following an analogous set of steps as in
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Chapter 6. The resulting coupled EFIE’s (upon suppressing the limit notation as was

done in Chapter 6) are
Q0 . a ) ,
j déels* j‘ [Cocs (X)) + C ik, (x) ] /4" dx' — Z,k,y (x) = 0 (7.88)
[ dge’™ [[Coke(x)+C ok, (x)] e dx' = Zk, (x) = 0 (7.89)
where
204 A k2 _g2 —
Calr ) =2 [ ki —¢ )+¢ZC] (7.90)
J2nwe, D
Py A _
sz(fay’C)=sz(§9y’4)=—é.g_e_(_h"c) (7.91)
J2nwe, \ D
“PY | Ak -2 —
Co(&,9,) = — [ (ki ,,4 )+§2C} (7.92)
J2nwe D
A(£,¢) =sinh pyd + ”; cosh p,d (7.93)
c™c
B(£,$) = plAN? —1)(cosh pyd + j 2622 sinh pzd] (7.94)
p2
= B+ lo.Z
Ce.o=222 g’?pe eZe) (7.95)
2
D"¢,¢) =( P+ ”; Jsinh pad + Py [1+ ”‘Z )cosh pod (7.96)
c™c c™c
2
D*(£.0)=(piV? + jweZ, )cosh P2d+[Pz +,-M]sinh pd  (197)
P2

Note that C,,,C,, are even in & and C,,,C,, are odd functions of £. In
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addition, examination of (7.90)-(7.97) reveals that these coefficients C,z are even with
respect to p,. Hence, the branch point k, (and associated branch cut) in p, is a
removable singularity. The branch point &, in p; is not a removable singularity since the

coefficients are not even in p;.

Conductor (04,Z;)

\ I‘ 2a )‘ Region1 (&,p,)

y=0 S >

Region 2 (&;,10)

Conductor (0¢,Z¢)

Figure 7.2 Cross-sectional geometry of the lossy microstrip field applicator.

7.5  MoM Solution for the Lossy Microstrip EFIE
The dual EFIE’s in (7.88) and (7.89) can be solved using a MoM technique.

Similar to Chapter 6, application of expansion and testing functions leads to the following

general formulation

N, N:

Z A;nxnaxn + Z A""Zmaz" =0

;;:1 r;:l s om=1,.,N_ +N, (7.98)
Z A;nxnaxn + Z Azmznaz" =0

n=1 n=1 /
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where

a,B = hm _[Caﬂfamgﬂnd§+D¢’zn¢;'50ﬂ @, ,B X,z

Jam = fam(§) = Itam(x)ejéxdx ..a=x,z

-a

a
8an = Zan(§) = [ean(xVe > ' .a=x,z

-a

1l ..a=p

DM =_Z, Itam(x)ea,,(x)dx s Oup ={0 asp

-a

(7.99)

(7.100)

(7.101)

(7.102)

Since the microstrip transmission line studied in this chapter exhibits symmetry,

the following analysis (as in Chapter 6) prevails

Z Al'a,, + Z A a,,
=0 =o
;ﬂ ' m=0,.,N +N, -1
Z A;naxn"' Z Amn a:, =0
n=0 n=0
1 A(k? f)
C ,0)= C
(€. jZﬂwel[ g

Col€.0) = CalEr0) =—.5—4(i-6)

j2nwe \ D"

2 2
Co(Esl) = [’“k‘ ¢ )+425}

J2nwe D"

where, for even modes,

AT =80 [Coo (8.0 i (E0) 5 (60)AE — Z, Ly
0
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(7.105)

(7.106)
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A7 = 8 [Co (6,0 m(Ea) G, (Ea)dE
0

AT = - j8a [C (£, m(Ea) g, (Ea)dE
0

A7 =8a [C, (&, ()G, (Sa)dE - 2,1, ,,
0

and for odd modes

A =8a [Co (&, m () gy (EQ)AE - Z,1 oy
0
AT =—j8a [C (6,0 n(a) g (Ea)dE
0
AT = j8a [Co (6. O G () Gy, (Ea)dE
0

47" =8a [C, (6. g n(Ca) g, (Ea)dE - Z ], ,,
0

(7.108)

(7.109)

(7.110)

(7.111)

(7.112)

(7.113)

(7.114)

Thus, the analytical procedure for determining the propagation constant and surface

current distribution is identical to Chapter 6, except that the factors, C,4, are different.

7.6 Numerical Results

In this section, the numerical results for the microstrip propagation constant

¢ =B - ja and surface currents k, and k, will be discussed. It will be assumed that

n = ,/s,l =1 and n, = ,/e, =3.13, unless specified differently. Since the convergence

rates for the microstrip and stripline propagation constant and surface currents are
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similar, no convergence plots will be provided. In addition, since the non-Galerkin and
Galerkin microstrip MoM techniques produced identical results for the lossless scenario,
no comparison plots will be supplied (as was done in Chapter 6 for the stripline field
applicator).

Figure 7.3 shows that the full-wave theory developed in Chapter 7 compares
reasonably well with the known perturbation theory result [3], [18]. Figures 7.4-7.7 show
the effects that ground-plane and strip conductivity have on the principal-mode
propagation constant. Similar to Chapter 6, the phase and attenuation constant for the
microstrip increase as conductivity decreases and strip losses are more prominent, as
expected. Figures 7.8-7.9 demonstrate the effects that strip conductivity has on surface
current distribution. The longitudinal current is not significantly influenced by conductor
loss and surprisingly, the transverse surface current decreases as conductivity decreases
(this is opposite to the behavior of the transverse current for the stripline device).
However, since the microstrip supports hybrid modes, this behavior may be anticipated.
Finally, Figures 7.10-7.11 reveal the effect of frequency on the transverse and

longitudinal surface current densities.
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Attenuation Constant - Theory Comparison
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Figure 7.3 Full-wave and perturbation theory comparison for attenuation constant « .
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Phase Constant - Ground Plane Conductivity Profile
c,=1.¢200 S/m, w=1.5 mm, t=.635 mm
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Figure 7.4 Effect of ground plane conductivity on phase constant .

179



Attenuation Constant a (Np/m)

Attenuation Constant - Ground Plane Conductivity Profile
0,=1.¢200 S/m, w=1.5 mm, t=.635 mm
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Figure 7.5 Effect of ground plane conductivity on attenuation constant « .
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Phase Constant - Strip Conductivity Profile
cg=1.e200 S/m, w=1.5 mm, t=.635 mm
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Figure 7.6 Effect of strip conductivity on phase constant f.
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Attenuation Constant a (Np/m)

Attenuation Constant - Strip Conductivity Profile
cg=1.e200 S/m, w=1.5 mm, t=.635 mm

L
g e

o T
(e —— 06.=1.200 S/m
.| ., .- TTT z::}:zg 2;2
A c.=1.e5 S/m

4 | K

{ —
e
e
oz

100 8.25 15.50 2275 —

Frequency (GHz)

Figure 7.7 Effect of strip conductivity on attenuation constant « .
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Surface Current Kx - Strip Conductivity Profile
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Figure 7.8 Effect of strip conductivity on surface current k, .
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Relative Amplitude of Kz
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Relative Amplitude of Kx

Surface Current Kx - Frequency Profile
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Chapter 8

CONCLUSION

This dissertation has provided several methods and schemes, beyond the NRW
technique, for accommodating errors in electromagnetic material characterization
measurements. Chapter 2 discussed two methods, the direct and deembed techniques, for
measuring and characterizing samples located within multi-layered materials.
Experimental rectangular waveguide measurements were provided to verify the
theoretical analysis. Although both methods are based on the wave-matrix approach, it
was shown that the direct method must be used if sample homogeneity is to be accurately
monitored.

Chapter 3 provided a theoretical technique for accommodating sample-to-wall
gaps in rectangular waveguide measurements. The gaps were handled by regarding the
waveguide as inhomogeneously filled in the cross-sectional plane with LSM and LSE
propagation modes supported in the sample/gap region. Characteristic equations for the

corresponding propagation constants were derived and solved numerically to determine
shifts from the ideal TE,, propagation constant of a uniformly-filled guide. A modal

analysis was utilized to obtain, under small gap conditions, approximate expressions for

the wave impedance and interfacial reflection and transmission coefficients. This was
done by considering a single TE;, mode incident upon, and reflected from, the sample

and only a single LSM or LSE mode inside the sample region. Approximate

expressions for the scattering parameters were also obtained using wave matrices. Gap
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analysis measurements for a non-magnetic Alumina (Al;03) sample were performed to
substantiate the theoretical analysis. It was shown, as expected, that top/bottom gaps had
a much more significant impact on constitutive parameter errors (5%) than left/right gaps
(<1%) due to the electric field configuration for the TE, rectangular waveguide mode.

In Chapter 4, a coupled-mode perturbation theory based on an impedance
boundary condition was used to account for wall loss due to imperfectly-conducting
boundaries in rectangular waveguide field applicators. The coupled-mode perturbation
theory was specialized to single-mode operation and a complex correction to the ideal
TE o mode propagation constant was subsequently identified. This complex correction
was compared with the standard power-loss method, which provides attenuation
correction only. Rectangular waveguide measurements showed that obtaining the
additional phase correction using the coupled-mode perturbation theory was crucial to
accurately accommodating for the imperfectly-conducting walls. In addition, a high-
dielectric resistive-card sample was measured to reveal the sensitivity that constitutive
parameter computations have when changes in conductivity occur.

The main objective of Chapter 5 was to develop the dyadic Green’s function for
the electric field maintained by a general 3D current source immersed in a lossy stripline
background environment. This goal was achieved by employing an intermediary electric-
type Hertz potential in the Fourier transform domain and satisfying appropriate boundary
conditions. The electric-field dyadic Green’s function was formulated using two
methodologies. The first method involved the analysis of a symmetric slab waveguide in
which Hertz potential boundary conditions were invoked at the dielectric interfaces, the

outer regions were allowed to become good conductors and the electric field was
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carefully calculated using relations in Appendix A. The source-point singularity was
discussed and appropriately handled using Leibnitz’s rule. Although this singularity had
no bearing on the results of Chapter 6, a clear understanding is vital for thick-strip
analysis and applications. The second method utilized Hertzian-potential impedance
boundary conditions to ultimately compute the electric-field dyadic Green’s function. It
was shown that both methods produced identical results, but the second method required
considerably less effort. The magnetic-field dyadic Green’s function, which was not
required in this dissertation, was also computed for completeness.

Chapter 6 involved the analysis and numerical solution of a lossy stripline
structure. These objectives were accomplished through the following sequence of steps.
First, the general 3D current source of chapter 5 was specialized to an infinitely-long strip
surface current symmetrically located between imperfectly-conducting plates. Next, an
EFIE was developed by satisfying an impedance boundary condition on the strip
conductor in the axial Fourier transform domain. As a final step, the EFIE was solved
using a MoM technique and the principal-mode propagation constant and corresponding
surface current distribution were subsequently identified. In regards to the MoM solution
for the lossy stripline, a non-Galerkin’s MoM technique using Chebyshev polynomials of
the first and second kind had to be devised since the well-known Galerkin’s method
produced divergent integrals. The resulting integrals from the non-Galerkin’s technique
were identified and computed in closed form with the aid of Appendix E.

The results of the full-wave lossy stripline analysis and corresponding MoM
solution revealed several expected phenomena. First, it was shown that the full-wave

analysis lead to a complex correction to the propagation constant, which is vital in the
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material characterization process. Next, it was observed that the MoM solution
converged rapidly since the chosen Chebyshev polynomials closely modeled the real
physical behavior of the surface currents. Indeed, it was shown that even one expansion
term lead to highly accurate results for the surface currents and propagation constant. It
was also demonstrated that the Galerkin and non-Galerkin MoM solutions produced
identical results under lossless conditions. The full-wave theory compared closely with
the standard power-loss perturbation method. Effects of ground and strip conductivity
and frequency on the propagation constant and surface currents were examined and
discussed. Finally, the influences of strip width and refractive index were reported.

A lossy microstrip transmission line was investigated in Chapter 7 using a
procedure similar to Chapters S and 6. First, the dyadic Green’s function was developed
for the electric field maintained by a general 3D current source immersed in a lossy
microstrip background environment. The general 3D current was then specialized to an
infinitely-long strip surface current and boundary conditions were invoked on the
imperfect strip conductor, leading to an EFIE. In the final step, the same non-Galerkin
MoM technique of Chapter 6 was employed for solution of the lossy microstrip EFIE.
The full-wave theory for the microstrip, as was the case for the stripline, compared
closely with the power-loss perturbation method. Effects of ground-plane conductivity,
strip conductivity and frequency on the principal-mode propagation constant and surface
current were also examined.

This dissertation has also provided a basis for future investigations. For example,
strip and microstrip transmission lines having thick, imperfect center conductors can now

be investigated using the general electric-field dyadic Green’s functions developed in
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Chapters 5 and 7, respectively. The edge-singularity behavior will be different than the
infinitesimally-thin conductors of Chapters 6 and 7, thus different expansion and testing
functions will be required. A detailed study of the edge singularity reveals that
Gegenbauer polynomials are the appropriate choice. Future investigations should also
include coupled lossy strip and microstrip field applicators. Finally, higher-order modes

of lossy strip and microstrip devices should be explored.
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APPENDIX A

EM FIELDS AND HERTZIAN POTENTIALS

A.l1  Introduction
Appendix A provides a brief overview of Maxwell’s equations, EM fields and

Hertzian potentials. Included in the analysis is the development of the wave equations

for both the EM fields and the Hertzian potentials.

A2  Maxwell’s Equations and the Wave Equations for £ and A
Maxwell’s equations for a simple medium (linear, homogeneous and isotropic)

and the continuity equation in spectral-domain point form are

Vx E(F) = — jouH (F) (A.1)

Vx H(F)=J(F)+0EF)+ joéE(F)=J(F)+ jocE(F) (A2)
V-E(F) = p(F)/ ¢ (A3)

VeH(F)=0 (A4)

VeJ(F) =~ jop(F) (A.5)

where J(F) is an electric source (i.e., impressed) current and & =&(1— jo/wé) is the
effective complex permittivity. In general, all the above quantities are also functions of
@ (which has been dropped for notational convenience). If the excitation is time
harmonic (i.e., sinusoidal steady state), then @ is interpreted as a frequency-domain

variable and the peak field quantities in the time domain are recovered by multiplying by
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e/ and taking the real part. For example, E (F,t) in the time domain will be

E(F,t) =Re{E(F,w)e’™} (A.6)
If the excitation is non-sinusoidal, then @ must be interpreted as a Fourier-transform

variable and the field quantities in the time domain are computed by taking the inverse

transform. For example, E(F ,1) in the time domain will be

EF.n= j EF,w)e’®dw (A7)

1
2r

The wave equation for E is determined by taking the curl of (A.1), substituting
(A.2) into the resulting relation, applying the vector identity VxVx E = V(VoE)—VZE

and using equations (A.3) and (A.5). The result is

V2E +k’E = jwyj-.LV(vJ) (A.8)
Jjowe

where k% =w?eu. The wave equation for H is found by taking the curl of (A.2),
substituting (A.1) into the resulting equation and using VxVx H = V(VeH) -V2H and
(A.4). The result is

V2H +k*H =-VxJ (A.9)

A.3  Electric Hertzian Potential
Hertzian potentials are primarily used as an intermediate and simplifying step to

determining electric and magnetic fields. An electric Hertzian potential can be identified
by observing that (A.4) implies that H can be written as

H = josV x7 (A.10)
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since VeV x7 =0 by vector identity. The electric field can be determined by substituting

(A.10) into (A.1) and using the vector identity VxV® =0. This leads to
E=kK7+V® (A.11)

The wave equation for 7 can be identified by substituting (A.10) and (A.11) into

(A.2), applying the identity VxVx7 = V(Ve#)-V?% and using the gauge ®=Ver.

The resulting Helmoltz wave equation is

—

Vi + ki = —,—J- (A.12)
Jjwe

Equation (A.12) can be decomposed into three scalar equations in Cartesian coordinates

(hence reducing mathematical complexity) as follows

Vi, +k’m, = -7‘,]5; (A.13)

where a =x, y,z. Substituting @ = Ve7 into (A.11) leads to
E =k*7 +V(Vei) (A.14)
Since (A.12) reveals that 7 is maintained by an electric current, it is called an
electric Hertzian potential (magnetic Hertzian potentials are also used, but will not be
discussed here). A comparison of (A.13) with (A.8) or (A.9) demonstrates why Hertzian
potentials are introduced into the mathematical analysis of electromagnetic problems. In

equation (A.13), each component of 7 is simply and directly related to each component

of J. The relationship between E,J in (A.8) or H,J in (A.9) is more complicated and

therefore the solution is, in general, more difficult to determine and more strongly

singular. It’s easier to solve for # first then obtain £ and H using (A.14) and (A.10).

194



APPENDIX B

EVALUATION OF THE FOURIER TRANSFORM INVERSION INTEGRAL FOR

THE SPECTRAL-DOMAIN PRINCIPAL-WAVE GREEN’S FUNCTION

B.1 Introduction
It was stated in Chapter 5 that the solution to the Fourier transform inversion

integral for the spectral-domain principal-wave Green’s function was

- GPU ) 1 S ) 4 e Py B.1)
Y)=Gf(A;y-y) == : —dn = :
2 27 2 (n+ jpXn- jp) 2p

GP(1;y

where y is the field point, )’ is the source point, p is the spectral-domain wavenumber
and 7 =7),, (areal axis integration). The purpose of this appendix is to prove the above
result using Cauchy’s integral theorem and formula. Cauchy’s integral theorem states, if
a function f(z) is analytic (differentiable at a point and a neighborhood about that point)

everywhere within and on a closed contour C, then

$ f(2)dz=0 (B.2)
C

Actually, it is sufficient to require f(z) to be differentiable strictly inside the contour and
continuous in the closed region bounded by it, including points on the boundary [67],

[68]. Cauchy’s integral formula states, if f(z) is analytic within and on a closed contour

C , then if z; is interior to C

¢ I 4y = 427 f(z) (B.3)
C

Z=2
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depending on whether C is oriented in the counterclockwise/clockwise direction.

The parameter p = p(£,4) is not a function of 7, thus equation (B.1) reveals that
n=1jp are simple poles in the complex 7-plane (they are not branch points). Also,
Re{p} > 0 has been chosen (as mentioned in Chapter 5), thus 7 =+ jp must be located in
the upper-half of the complex n-plane since Re{p}>0 = Im{jp}>0. Similarly,
n=—jp must be located in the lower-half of the complex 7-plane since
Re{p} >0 = Im{—p}<0.

The integrand, for the original real-axis integration, is a complex function of a

real variable and is therefore not an analytic function since it doesn’t satisfy the Cauchy-

Riemann equations [69]. In order to compute the integral in (B.1) using Cauchy’s
integral theorem, the integrand must be analytically continued off of the 7, -axis
(avoiding the poles tjp in the process) to establish a region of analyticity [70]. The
above analytic continuation, in this case, is easily accomplished by allowing 7 in (B.1) to
become complex [71], that is, n=7,, + jn,, . The integrand is now analytic in the entire
complex 77-plane, except at the simple pole singularities 7 == jp, thus the original
integration contour can be deformed off of the real axis and Cauchy’s integral theorem
invoked.

The specific closed-contour C chosen for application of Cauchy’s integral
theorem is motivated by an examination of the integrand, more specifically, the term
M) If y—y'>0, then e/10Y) =Y Y)e/Me(=Y) thus 5. >0 provides
exponential decay (important for mathematical convergence). This prompts closure of

the real-axis contour in the upper-half plane (making sure to circumvent the pole
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singularity 7= jp since Cauchy’s integral theorem states that no singularities can be

contained within or on the closed contour), as shown in Figure B.1. Similarly, Figure B.2
shows the proper closure and contour when y-3)'<0 since 7, <0 provides the

necessary exponential decay for convergence. The evaluation of the integral in equation
(B.1) using Cauchy’s integral theorem and formula will be carried out in detail in the

following sections.

B.2  Evaluation of G/ for y-)'>0
Figure B.1 shows the closed contour C =Cg +C,, +C;, used in Cauchy’s integral
theorem for the evaluation of G{’ when y—)'>0. The segment Cy is the real-axis

contour, C; is the portion of C that circumvents the pole singularity at = jp and C,
is the semi-circular segment that closes the contour in the upper-half plane. Since

f (77)=ej’7(y"y') /(n+ jp)(n - jp) is analytic everywhere within and on C, Cauchy’s

integral theorem can be applied, leading to

$ famdn= | fodn+$ fandn+ | fmydn=0 (B.4)
C Cr c, o
where
/My R in(y=y")
If(n) n= I dn=lim [—° (B.5)

@+ jp)n-jp)  Row o (n+jp)n- JP)

Therefore, using (B.4) and (B.S5), the following desired result is obtained

T eMY)

[ ————dn=-¢

e/n1y=y) J
= : —dn
=@+ Jp)Xn-jp) o+ (n+jp)n = jp)
P

/Ny
- j (B.6)
(n+1p)(n Jp)
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The contour integral along C; can be determined by using the parameterization

n= Re”, dn=j Re’?d6 and Jordan’s lemma [72]. The result is

/R (-y)

eINy=y) o
| ———adn=lim [—; ——jRedo >0 B)
¢+ jp)n = jp) R—o o (Re’” + jp)(Re’” - jp)
4 Im{n}
e
C+
+
Cho .
Jjp
> > >
R Cr R Re{n}
X
-Jp

Figure B.1 Evaluation contour for G’f when y-3'>0.

The term /7™ as mentioned in the previous section, has an exponentially decaying

behavior that provides the necessary convergence in (B.7). Note, the above result is also

valid for y— )’ =0 (which is not always the case). The integral along the contour C;

can be evaluated using Cauchy’s integral formula. The pole n = jp is interior to C;

while 7 =—jp is exterior to it, thus /") [(n+ jp) is analytic everywhere within and
on C; . Therefore, application of Cauchy’s integral formula leads to
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/1=y /M=y e PU-Y)
$—— —dn=—j2r——— = (B.8)
o (m+.jp)n = jp) m+ip) | _; p

4 —Jp

Combining the results of (B.6), (B.7) and (B.8) leads to the following desired result

&P i 1 5 /M-y J e PU-Y) 0 B
Y| Y)=— = Ly=y'2 .
£ 2 e | 2 7 E2

B3  Evaluation of G for y—)' <0
The closed contour used for evaluating Gé’ when y-y’'<0 is shown in Figure

B.2. In this case, /7Y) provides the necessary convergence (i.e., exponential decay)

along the C, contour due to the lower-half plane closure. An application of Cauchy’s

integral theorem leads to

A Im{n}

Figure B.2 Evaluation contour for Gf when y -y’ <0.
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/M=y /1=y e/My-y)
j dn (B.10)
- (n+ jp)(n - jp)

_J;(77+J'P)('7—J'P) B CJS(rl+1p)(77 Jp)

The contribution from C_, similar to CJ,, vanishes for y—)' <0 due to proper closure

conditions and Jordan’s lemma, that is

eM-¥) -7 /R O-Y)

= li . .
C[ (n+jp)(n1 - jp) N (! (Re”’ + jp)(Re’ - jp)

jRe%d0 - 0 (B.11)

An application of Cauchy’s integral formula produces the result

e/N=y) /Ny ePO-Y)
¢ ) ) j27z( - =-7 (B.12)
& (n+p)a-jp n-ip) |,__, p
Therefore, combining (B.10), (B.11) and (B.12) produces the result
&P (i | 1 % /1=y ep(y Y) 0 (B.13)
Ay }")—— wy=y'< .
2 @+ jp)(n—- YT

B4  General Representation of G/

The expressions for G{’ in (B.9) and (B.13) can be combined into a single result

that is valid for all values of y—)’ by recognizing that

, y=y ..y-y'>0
ly—y|={ , , (B.14)
-(y-y) .y-y'<0

This leads to the final desired expression that was to be proved in (B.1), namely

e/M=Y) -Ply-y'|

(n+ Jjp)n- JP) 2p

~ . 1 %
G V=Gl (A;y-y)=—
2 ¥)=Gy(4;y-Y) 2;:1

(B.15)
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APPENDIX C

ELECTRIC-TYPE HERTZIAN-POTENTIAL

BOUNDARY CONDITIONS AT A MATERIAL INTERFACE

C.1 Introduction
Electric-type Hertzian-potential boundary conditions at a material interface are
developed in Appendix C. These boundary conditions, which are based on the continuity
of tangential electric and magnetic field components, are valid at the interface between
two media having constitutive parameters (&, 4;) and (&,,4;). The analysis contained
in this appendix directly follows the development of Nyquist [26], which is based upon

the work of Sommerfeld [25] and Banos [27].

C.2 Geometry

Figure C.1 shows the material interface used in the development of the Hertzian-
potential boundary conditions. The medium in region 1 (y > 0) has an effective complex
permittivity and permeability of (¢&;,4) and the medium in region 2 (¥ <0) has an

effective complex permittivity and permeability of (&,, 4, ).

() y

(E,,ﬁ,) // (&1,1y)

Interface
>
X

y=0
(Ez,ﬁz) (P’Z’MZ)

Figure C.1 Material interface for Hertzian potential boundary conditions.
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C.3 Hertzian-Potential Boundary Conditions
The electric-type Hertzian-potential boundary conditions at a material interface

can be identified by invoking continuity on the tangential electric and magnetic field

components, that is (for all values of x and z along the y =0 interface)
G-E(x,y=0%,2)=¢ -Ey(x,y=0",2) ..a=x,z (C.1)

a-Hy(x,y=0"2)=a-Hy(x,y=07,2) ..a=x,z (C.2)

where (see Appendix A for details)

E =k*7+V(Ve7F) (C.3)

H = joeVx7 (C.4)

V2% + ki = -,L (C.5)
Jjowe

and k% = a)zs,u. Note that, in equation (C.2), it has been assumed that no surface current
exists at the material interface.

Substitution of (C.3) into (C.1) and (C.4) into (C.2) (and dropping the functional
dependence of the x and z variables for notational convenience) results in the following

set of relations (for a = x,z)
+ - 2 a - 2 a —-
E]x(y =0 )= sz(y=0 ) = kl Tix +'5x—'V'ﬂ'1 =k2”2x +5;V'7l'2 (C6)
+ _ 2 o . 2 0 _
E,(y=0")=E,(y=0") = k,zz,z+5V-7zl=k27r2,+5V~ﬂ2 (o))

- . (om, Om . (om,, o=
Hix(y=0")=Hp (y=07) = jos (?‘——a—}) = Jwgz(—f-%) (C3)

202



- . (0my, or . [0my orm
Hi(y=01=Hy(y=01) = ;mel(#——ay'i)wmz[—ax—y——ayﬁj (C9)

The above boundary conditions appear difficult to implement since all components of 7
and its derivatives are implicated. However, because of the uniqueness theorem, it is

found that not all components of 7 are required to represent the EM field. Individual
components of excitatory current (i.e., J,,J,,J;) are studied to deduce (using the
principle of superposition) which components of 7 are required to satisfy the above

boundary conditions on tangential £, H for a general electric current source J .

C.3.1 Horizontal Source J = %J,
An examination of (C.5) reveals that J, maintains 7, only if the current source

was immersed in unbounded space, that is, 7, alone maintains all fields (also see
Appendix B for verification of this fact). The presence of the boundary in Figure C.1

may cause J, to couple into other components of 7. However, as a starting point, the
naive conjecture that all fields can be represented by 7 =xz, only will be made.

Substituting 7 = x7, into (C.7) leads to

—0%)= —o 0 (0my ) _0(0my
E,(y=0")=E),(y=0") = az(ax) az(ax) (C.10)

Since this relation has to hold for all points x,z along the y =0 interface, it is concluded

from (C.10) that

Tyx = ox (C.11)

Similarly, substitution of 7 = Xz, into (C.6) leads to
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- oo o (or
E]x(y=0+)=E2x(y=0) = k|2ﬂ1x+5x—( ;:x)=k22ﬂ'2x+g(_ale) (C12)

Inserting (C.11) into the partial derivative terms of (C.12) produces the following result
ki, = k3, (C.13)
Equation (C.13) is in contradiction with (C.11), hence it is concluded that the conjecture
of 7 =xn, maintaining all fields was incorrect. Thus, 7 = x7, alone is not sufficient to
satisfy boundary conditions for the excitation J = £/, .
The above analysis prompts the more educated conjecture that all fields are
maintained by

T=3Xn,+ym, (C.14)
That is, the horizontal source J =%/, couples into both horizontal and vertical

components of Hertzian potential 7, and 7, due to the presence of the boundary.

Substitution of (C.14) into (C.7) results in

E,(y=0")=E,,(y=07) = %V-ﬁ,:%Voﬁz = V.7,=V.7, (C.15)

Omy om, 07y | 073y omy, 0my, _0my, _Om, (C.16)
Ox oy ox oy oy oy ox ox

Inserting (C.14) into (C.6) and using the result from (C.15) leads to
E (y=0")=E, (y=0") = kin, =kir,, (C.17)
EI T = E2Hp T4 (C.18)

Substitution of (C.14) into (C.8) gives
on or
Hi (y=0")=Hy (y=0") = §—2L=g—> (C.19)
oz oz
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817[|y = 8271'2}, (CZO)

Substitution of (C.14) into (C.9) and using the result from (C.20) produces

orn orn
H,(y=0")=Hy,(y=0") = al(—‘—y—a”'*]wz(l—é”ﬁJ (C21)

on on

o 5P _g O Ty Ty (C.22)

oy oy ox Ox
g P _ ) O (C.23)

o oy
Finally, inserting (C.18) into (C.16) establishes the result
G”J_a”i:[l_ﬂ&)% (C.24)
&y 4 ) Ox

No contradictions were encountered in the previous analysis, thus the above educated

conjecture was correct.

C.3.2 Vertical Source J = jJ,

It will be assumed that J = J , maintains only a vertical component of Hertzian
potential. Thus, it will be conjectured that all fields can be represented by
z=ym, (C.25)

Substitution of (C.25) into (C.6) and (C.7) gives the following result

E(y=0")=E(y=0") = ax(—éy ]_Gx[ > J (C.26)
oty o —a_ af[ly _9_ aﬂ'zy
E,(y=0")=E),(y=0") = 62(_@ j'az[ % ) (C.27)
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om, Omy,

C.28
5 - o (C.28)

Note, the derivatives with respect to x and z in (C.26) and (C.27) can be removed (via
integration) since these relations must hold for all values x,z. However, the derivative
with respect to y cannot be removed since it holds only at a single point, namely, y =0
(note, integration is an operation that can be performed only if an interval or some

neighborhood about a point exists). Similarly, substitution of (C.25) into (C.8) and (C.9)

gives
orn orn
Hy(y=0")=Hy (y=0") = §—2L=g—2 (C.29)
oz oz
om, omy
H =0")=H =07) = ¢ Y=g 24 C.30
1z (¥ )=H,,(y ) 15 275, (C.30)
E17T)y = 6377, (C.31)

Note, no contradictions were encountered above, thus the conjecture was correct.

C.3.3 Horizontal Source J =3/,
If the conjecture that all fields can be represented by
T=ym, +in, (C.32)
for the current excitation J = 3J , is correct, then an analogous set of steps as in section
C.3.1 can be utilized, leading to the following relations
Km, =k, = sum,=&mr, (C.33)

ETT)y, = Ex7, (C.34)
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671'1- 67[22

gl ja}-}—" = 32 —ay—- (C.35)
%_?&{1_52&]9”2_2 (C.36)
oy oy a4y ) 0z

C.3.4 General Source J = %J,_+ jJ y+2J;

Based upon the above special cases in sections C.3.1-C.3.3, the boundary

conditions for Hertzian potential can be deduced (by linear superposition) when all
components of J are active. A comparison of (C.17) with (C.33) leads to
klzﬂ'la = k227r2a = Mg = ExTtry A =X,2 (C37)
An examination of (C.20), (C.31) and (C.34) reveals, by superposition, that
ENTTyy = E9T3, (C.38)

Substitution of (C.37) into (C.6) and (C.7) gives

- 0y = Oo -
Elx(y=0+)=E2x(y=0 ) = Ex‘v'”l =av'”2 (C39)
+ - 0y -~ 0O -
E,(y=0")=E.(y=0) = —V.51=—-V.m, (C.40)
0z 0z
= V.5,=V.7, (C41)
aﬂ'ly _ aﬂzy _ aﬂ'zx _aﬂ']x + 67[22 _ 67!'12 (C42)
oy oy Ox ox 0z 0z
omyy _ oryy =[1 _&k J(a”lr + a”2:) (C.43)
¥y am )\ ox oz

since 7y, = (&5 / §144)7,, from (C.37). Finally, substitution of (C.38) into (C.8) and

(C.9) produces the result
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H, (y=0")=H, (y=0") = g om; _ & 0%y (C.44)

%y %y

67rlx _ aﬂ'zx

H,(y=0")=H,,(y=0") = ¢ y 2o

(C.45)

Note, the boundary condition in (C.43) results in coupling of 7, to 7, and r,. Also, if

the interface is along x or z, the above components may be cyclically permutated to

obtain the proper relationships.

C.4 Summary

The boundary conditions for components of electric-type Hertzian potential for a

y -interface material boundary are

or or
E Mg = ExlaTlay » E—E =g, —22 a=1x,z
%y %y
(C.46)
_ omy My _(_&atty |97 , 072,
6’]7[]}, —8272'2y , = +
&y am )\ ox oz
If 44 = y,, then the above boundary conditions simplify as follows
E\l g = €My A =X,),2Z
g e _ g %Ma oy, (C.47)
oy oy
omy Omy (| _& (%4.%)
& O g )\ o&x 0oz

As mentioned earlier, the functional variables were dropped for notational convenience.
It is therefore noted that 7, = 7, (x,y=0",z) and that 7,, =7,,(x,y=07,2).

If the boundary conditions hold for all values of x and z (-0 < x,z <), then

the above relations can be Fourier transformed. Consider the generic Fourier transform
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pair

#Ey )= [ [x(xy.20e 7 dudz (C.48)
1 © ® ) .
wwrn=os | i #(&,3,0)e* " dgd (C49)

where 1 =%£+ 3¢ and 7 = %x+ jy+ 2z. If the above boundary conditions are multiplied

by e"j'i'? and integrated over x and z from —oo to oo, then (C.46) and (C.47) become
~ ~ on on
E M Mg = E22a > &) a;)a =& a;a X=X, 2
ony, O7n (C.50)
- ~ 1 2 & oy o
a7y, =67, Fy--?y = (1 -ﬁ%)(}éﬂn +jCit, )
Elﬁla =€27‘i2a ~a=x,y,z
5 fhe g % 4oy, (C.51)
oy oy
o7y, 07y, [ P J
— = | 1= 22 (e, + Ty,
& Oy £ (&2 )

where ﬁ'la =ﬁ]a(¢5y=0+3g) and ﬁZa =7?2a(lf,y=0-,4) .
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APPENDIX D

HERTZIAN-POTENTIAL IMPEDANCE BOUNDARY CONDITIONS

D.1  Introduction

Electric-type Hertzian-potential impedance boundary conditions are developed in
Appendix D. These boundary conditions, which are based on the electric and magnetic
field impedance boundary conditions, are valid at the interface between a material and a
good conductor. The Hertzian-potential boundary conditions at the surface of a perfect

conductor will also be found as a limiting case of the impedance boundary conditions.

D.2 Geometry

Figure D.1 shows the material/conductor interface used in the development of the
Hertzian-potential impedance boundary conditions. The upper material region (y >0)
has an effective complex permittivity and permeability (&, ). Note that e =£- jo/w,
where £ and o are the permittivity and conductivity. The lower region (y <0) has a
conductivity and permittivity (o.,£.), where o, >» wé, for a good conductor, and
permeability u.. The effective complex permittivity is ¢, =&, - jo./o~—-jo./®.
The unit normal vector n =y points out of the conductor and the fields are maintained by

source excitation J .
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Figure D.1 Interface between material and good conductor.

D.3 Hertzian-Potential Impedance Boundary Conditions
The Hertzian-potential impedance boundary conditions are developed from the

approximate electric and magnetic field impedance boundary condition [73]-[76]

E

tan =

Z,=(1+)), /%‘” (D.2)

The vectors E,, and H,, represent the tangential electric and magnetic field

Z.haxH,,=2Z.K (D.1)

where

components in the material region at y=0%, Z. is the intrinsic impedance in the

imperfectly-conducting region y <0, K is the surface current and 7 is the unit normal
vector that points out from the conductor and into the material, as shown in Figure D.1.
The justification of the above boundary condition is carried out in detail by Collin
[3], but a brief overview is given here for the benefit of the reader. It is assumed that a
plane EM wave in the material region is incident upon the conductor. Due to the high
contrast between the material and conducting region, the wave penetrates normally into

the conducting region, independent of the incidence angle (as verified by Snell’s law).
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The components of the electric and magnetic field inside the conductor are thus purely

tangential to the surface and can be described by the well-known plane wave relationship

H, =4xE./Z. = H,, =txE,,./Z, or Eg,.=~Z4xH,,,. The unitvector & is
the direction of propagation and Z, =,/ H./g. is the intrinsic impedance of the

conductor. Recall that ¢, ~—jo./w for a good conductor, which implies that the

intrinsic impedance becomes Z, zm =1+ j)\/am (since the factor
\/; =1+ )/ V2 ). Note that this is in agreement with (D.2). The wave penetrates
normally into the conductor (= #=-n), thus the above relation can be written
E

ta

ne = ZAX H wanc- Since the tangential components of the electric and magnetic fields
must be continuous across the interface, the tangential fields just inside the conductor

(E,an‘c,ﬁ,an,c) can be replaced by the tangential fields just inside the material region
( E,a,,, ﬁ,an ), that is,

Epppe(y=0)=ZAxH,p (y=0") = E,,(y=0")=ZAxH,,(y=0") (D.3)
The current induced in the conductor is confined closely to the surface due to the high

conductivity, therefore ax H an = K (a well-known boundary condition), where K is the

-

surface current. Thus, the above relation is written E,,, =

Z.AxH,,,=Z.K and is the
desired result (D.1), where it is understood that ( E,,,,H,,,) are the tangential field

components at y =0". Note that an arbitrary field can always be decomposed into a sum
of plane waves at various angles, thus the above results remain valid for any general EM

field configuration. Besides, no matter what type of field exists in the material region,
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the wave penetrates normally into the conducting region and will have field components

that are planar to the interface and can therefore be described by a plane wave.

An examination of Figure D.1 shows that 7 = y, thus equation (D.1) becomes

RE, +3E,=Z,x(GH, +3H,)=Z, (3K, +3K,) = (D.4)
E,=Z.H,=ZK, (D.5)
E,=-ZH, =ZXK, (D.6)

The first parts of (D.5) and (D.6) can be arranged as follows
=-Z=-Z, (D.7)

where Z is the wave impedance in the material region. Essentially, (D.7) states that

continuity of the tangential components of £ and H is guaranteed by matching the
impedances at the boundary/interface.
Now that the origin of (D.1) has been discussed, the electric-type Hertzian

potential impedance boundary conditions are now developed. As mentioned previously,

when 7 = p, the first part of (D.1) in scalar form becomes
E(y=0"=Z.H,(y=0%) (D.8)

E,(y=0")=~ZH, (y=0") (D.9)

For electric-type Hertz potentials, the following relations prevail (see Appendix A)

E=k*%+V(V-7) (D.10)

H = joeV x7 (D.11)

V27 + k%7 =--_J— (D.12)
jwe

213



where k% = w?eu. Substitution of (D.10) and (D.11) into (D.8) and (D.9) leads to

orn
E.(y=0")=Z.H,(y=0") = kzzr,,+§V-7’i=ja).s‘Zc(—l—gzi

> o J (D.13)

or,

%%y | @.14
y a0

E,(y=0")=-ZH (y=0%) = k’x, +§V~iz‘=—jwezc(
z

The above boundary conditions appear difficult to implement since all components of 7
and its derivatives are implicated. However, because of the uniqueness theorem, it is

found that not all components of 7 are required to represent the EM field. Individual
components of excitatory current (ie., J,,J,,J;) are studied to deduce (using the

principle of superposition) which components of 7 are required to satisfy the above

boundary conditions on tangential E,H for a general electric current source J. An

examination of Appendix C may help the reader better understand the following analysis.

D.3.1 Horizontal Source J = £/,

It will be conjectured, for the horizontal source J =3/, , that all fields can be
represented by

T =3X7, + )7, (D.15)
That is, J = %J, couples into both 7, and m,, (due to the presence of the interface) and

only these components are required to satisfy boundary conditions. Substitution of

(D.15) into (D.14) results in

on
E,(y=0")=-Z H,(y=0%) = %v-hjwszc—a—zy- (D.16)
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V&= joeZr, D.17
since the relation in (D.16) must hold for all values of x,z. Inserting (D.17) into (D.13)

leads to
) on ) or, on
E(y=0")=Z.H,(y=0") = kzzrx+1meZcEy=ja)eZc[Ey—3y—"-) (D.18)

__JweZ on, _Z or,
* K oy jou oy

(D.19)

D.3.2 Vertical Source J = jJ y

It will be assumed that J = jJ , maintains only a vertical component of Hertzian
potential. Thus, it is conjectured that all fields can be represented by

i=jm, (D.20)

Substitution of (D.20) into (D.13) and (D.14) gives the following result

+ + 6 —- . a”y
E(y=0")=ZH,(y=0") = —V.7=jwsZ,— (D.21)
ox ox
+ + 0 - . aﬂ'y
E,(y=0")=-Z.H,(y=0") = —V.-7=jweZ,— (D.22)
0z oz
V-7 =jwelr, (D.23)

D.3.3 Horizontal Source J = 3/,

It will be conjectured, for the horizontal source J= 2J,, that all fields can be
represented by
(D.24)

A=ym, +im,
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Substitution of (D.24) into (D.13) results in

+ + 5 —~ R 57ty
E(y=0")=2H,(y=0") = EV%:jwaZc—g (D.25)

V-7 =joweZr, (D.26)

Inserting (D.26) into (D.14) leads to
. on . on on
E,(y=0")=-Z.H,(y=0") = kznz + jweZ, Ey =—jweZ, (?yi--a_z&] (D.27)

jweZ, orn, Z, Onm,
7'[2 = - 3 = -
k* & jou o

(D.28)

D.3.4 General Source J = %/, + Wy +2J,

Based upon the above special cases in sections D.3.1-D.3.3, the Hertzian-potential

impedance boundary conditions can be deduced (by linear superposition) when all

components of J are active. A comparison of (D.17), (D.23) and (D.26) leads to

on
V-7 =jweZ.x, = ony +—L+ om; _ JweZ x, (D.29)
ox Oy Oz
a”y_ iweZ aﬂ.'x 87:2 D.30
> Y T e (D30

Note, the boundary condition in (D.30) results in coupling of 7

y to 7, and 7.

Substitution of (D.29) into (D.13) and (D.14) produces the following results

on on
Ex(y=0+)=ZcHz(y=O+) = k27rx+jwezc—a;1=jwazc[§y—a—aﬂyf-J (D.31)

JjweZ . orn, Z. Orm,
”X = - 2 = -
k* & jou Oy

(D.32)
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or ) . on
E,(y=0")=-ZH (y=0%) = k’z,+ jweZ, E& =-jweZ, ( Y ——EZLJ (D.33)

_ JweZ On, Z. Om,

z = . (D.34)
K o jou Oy
If the permeabilities of both regions are equal (i.e., x = 4_), then
?c _ ZCZC. =a),u/0'f _ 1 (D.35)
Joup  jopZ; oujz; oz
therefore, the impedance boundary conditions can be written as
or, | 7 om, or, D.36
— = W& cﬂ'y—ax—g ( . )
x, = 0% (D.37)
GCZC @)
z, =97 (D.38)
GCZC a))

If n=-y, then a similar analysis leads to the following impedance boundary conditions

when u# u,
on
S ?C on, 7, = ?c or, , y=_ngzcﬂy_a&_a& (D.39)
Jjou oy Jou oy Oy ox Oz
and
or
po=e O L 1 Omy y=—jweZcﬂy—%—aﬂz (D.40)
UCZC a)) O-CZC a-y a.y ax az
when u=y..

D.4 Hertzian-Potential Boundary Conditions at a Perfect Conductor
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The Hertzian-potential boundary conditions at the surface of a perfect conductor

can be found by considering the limiting case as o, — «. Note that
lim Z, = lim (1+ ) /% -0 (D.41)
(o - O, 20 ¢
therefore (D.32), (D.34) and (D.30) reduce to

T T, —2=0 (D.42)

D.S Summary
The electric-type Hertzian-potential impedance boundary conditions at a

material/conductor interface are

T,=% ?" agy" a=x,z
JOU A a
or 5 5 e dE Y. n=1Yy (D.43)
— = tjweZ m, - 2x 2z
Y o oz
my=% 1 ———-a”“ a=x,z
o.Z, Oy A a
or . or e =l n=12y (D.44)
L =tjwsZn,-—*-—=
oy 0z

where it is understood that 7z, =7,(x,y=0%,z) for a=x,y,z. The boundary

conditions at the surface of a perfect conductor are

Ty Tyy—2=0 ..., >© (D.45)
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If the boundary conditions hold for all values of x and z (—w < x,z <), then
the above relations can be Fourier transformed. Consider the generic Fourier transform
pair

o ®©

#E )= [ [a(ey.20e4 dudz (D.46)
m) = _£ i #(E.3.0)e 7 d%A (DAT)

where A =3£+32(, d*A=d&d{ and F = 3x+ Jy+3z. If the above boundary conditions

are multiplied by e_j'i'; and integrated over x and z from - to oo, then (D.43),

(D.44) and (D.45) become
A,=1% .Zc % a=x,z
JOu A LA
Py e ME [ =1y (D.48)
#=ijw€zciy_j€”x ];”z
y=% 1 on, a=x,z
O.CZC a-y A +l\
Py =y, ,n=1y (D.49)
—y=ijw€Zc7?y = J&Ttx — JOT,
. . 07, _
ﬂx,ﬂz,7y—=0 «O, >0 (D.50)

where 7, =7,(&,y=0%,{). If the interface is along x or z, the above components

may be cyclically permutated to obtain the proper relationships.
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APPENDIX E

OVERVIEW OF CHEBYSHEV POLYNOMIALS

E.1 Introduction
Appendix E provides a brief overview of Chebyshev polynomials. The overview
will include fundamental expressions, relevant properties and several useful integrals that

are commonly encountered in MoM solutions of integral equations. The primary

references are [39], [50], [77]-[80].

E.2 Chebyshev Polynomial Properties
E.2.1 Fundamental Expressions

The Chebyshev polynomials of the first and second kind of order n are designated
as T,(x) and U, (x), respectively. The Chebyshev polynomials, defined on the interval

—1<x <1, can be expressed in the following power series representation

T,(x)=U,(x)=1 ..n=0 (E.1)
n[n/2]
T.(x)== 3 a,x" 2™ .n=123,.. (E.2)
2 m=0
[n/2]
Up(¥)= Y bppx™™ ..n=1,2,3,.. (E.3)
=0
— (_1\m~n-2m (n-m-NH!
amn = (172 m!(n—2m)! E4)
(n—m)!

b,, = (-1)m2""2m (E.5)

m!(n-2m)!
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where [n/2] means the greatest integer <n/2 ([-1/2]=-1, [3/2]=1, [2]=2 etc.). If
n is even, then [n/2]=n/2. If nis odd, then [n/2] can be equivalently represented by

[n/2]=(n-1)/2. Thus, equations (E.2) and (E.3) can be written

p (12072
T,()=> Y a, " ..n=135,.. (E.6)
=0
n n/2
T,(x)= > > a,,x"*" .n=2,4,6,.. (E.7)
=0
(n-1)/2
Up()= D bpx" ™ .n=135,... (E.8)
=0
n/2
Up(¥)= . bppx™2™ ..n=2,4,6,.. (E.9)
m=0

Equations (E.6)-(E.9) are in a form conducive to numerical computation via computer.
The trigonometric representations of the Chebyshev polynomials (defined on the interval

0 <8 <), using the c.o.v. (change-of-variable) x =cos@, are

T,,(cos@) = cosnf (E.10)
U (cosg) = S+ 10 (E.11)
sin@

Both the power series and trigonometric representations are useful for proving the various

integrals in section E.3.

E.2.2 Parity and Recurrence Relations
Chebyshev polynomials of even/odd order are even/odd about the origin, thus the

following parity relations prevail

T,(=x)=(=1)"T,(x) (E.12)
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Up(=x)=(=1)"U,(x) (E.13)
The Chebyshev polynomials can be generated (in computer programs, for example) using

the following recursive formulae
T, (x) = 2xT,, 1 ()~ T, () (E.14)
U,(x)=2xU,_1(x)-U,_5(x) (E.15)

A few of the Chebyshev polynomials are

To(X)=l Uo(X)=l
Li(x)=x Ui(x)=2x
Ty(x)=2x2 -1 Uy(x)=4x2 -1
3 3 (E.16)
T;(x)=4x" -3x Us(x)=8x" —4x
Ty(x) =8x* —8x2 +1 Uy(x)=16x* —12x% +1
Ii(x)= 16x° —20x3 + 5x Us(x)= 32x° —32x% +6x

E.3 Integrals Involving Chebyshev Polynomials
E.3.1 Preliminary Formulae and Well-Known Relations

The following well-known (and perhaps some not so well-known) relations are
given here for the benefit of the reader and will be used in the following sections for

proving the various integrals involving the Chebyshev polynomials, namely

e +e

= E.17
cosz > (E.17)
Jjz _ ,—Jz
sinz=2""%" (E.18)
j2
sin Asin B = —;—[cos(A — B)—cos(4+ B)] (E.19)
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1 o o
S S d#0
772" sinae)de ={ 1Slna-(l; 5 C0Sd ‘f¢0 ;n=13,5,.. (E.20)
a=
0
lJ'xn—Zm cos(@x)dx = S;sind+Sycosd ..a#0 e E21)
0 1/(n-2m+1) =0 °’ ,4,6,... .
1
Ix"_zmdx = _—1__ (E22)
0 n-2m+l1
(n-2m-1)/2 —om)! |
Sy =8S(m,n,a) = 1\ (n-2m)! £ 3
| : ) r§) =D (n—2m—2r_1)!52r+2 ( )
(n-2m-1)/2 _ |
Sy = 8y(m,n,a) = =1y (n-2m)! 1 E24
r=0 (n-2m=-2r)! 3*+!
(n-2m)/2 _ |
(n—-2m)! 1 £25)

S5 =S:(m,n,a) = -1)"
3 =5;(m,n. ) % R

(,,_2,,.-2)/2(_ v (n-2m)! 1 (E.26)
(n_2m-2r_l)!&2r+2 .

Sy =S4(m,n,a) =
r=0

J,,(&)=£?—j)i Jeos(nf)e®**dg = [cos(nf)e’**?dg =", (@) (E.27)
T 0 (=)

=D _J1.n=0
In@) == ojcos(ne)de = {0 o (E.28)
lim J,,(d) ~ ‘/”i cos[&-%(n +%H (E.29)
a—o a
(E.30)

J(Ge’™) = /™" J (&) ...m=integer

Jps @+ @ =2, @ (E31)

Note that (E.20) and (E.21) are odd and even functions of a, respectively.
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E.3.2 Orthogonality Relations

The Chebyshev polynomials, with respect to their resultant weight functions,

satisfy the following orthogonality integrals

1 0 .m=#n
ij(")T(")dx 7/2 ..m=n#0

V1-x? .m=n=0

j‘U U, (W1 - x2dx = { mEn

/2 .

(E.32)

(E.33)

The above relations can be easily proved by using the c.0.v. x =cosé, the trigonometric

definitions in equations (E.10)-(E.11) and the well-known orthogonality conditions of the

sine/cosine functions on the interval 0<8<r.

E.3.3 Integrals Involving 7, (x)

Some of the common integrals involving Chebyshev polynomials of the first kind

are given below. Proofs of the following integrals are also provided. It is noted that

these types of integrals are typically encountered in MoM solutions.

| ()72
— S;sina+S ) ...az0
IT,,(x)sin(&x)dx= ? 2 A (Sysina+S;cosa) ...a# 13,
0..a=0
EE S G e
j "()S( )dx = D 2J"(a) a* ; n=13,5,...

oV1-x2 0..a=0

! 3 sin@/a ...a#0
jT,,(x)cos(ax)dx = -

1..a=0
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fn nl2
| -2-Za,,,,,(s3 sind+ S, cosd) ...d#0
[T, (x)cos(@x)ax =4~ ™ :n=2,4,6,.. (E37)
n/2
0 BN 9w -
(2 oo —2m+1
L (~)"2(x/2)J,(G) ..a#0,n=0,2,4,..
IL")zcos(ax)du 712 .d=0,n=0 (E.38)
oVl-x 0..G=0,n=2,4,6,..

Note again, upon trivial inspection of the above integrands, that (E.34)-(E.35) are odd

functions of a and (E.36)-(E.38) are even functions of 4.

Proof: (E.34)

The proof of (E.34) follows immediately by substituting (E.6) into the integral

expression of (E.34) and using relation (E.20).

Proof: (E.35)
The relation in (E.35) can be more easily proved by examining the following

integral

1
stin(ax)dx k=0,12,.. (E.39)

o V1- x?
Note that 2k +1 is an odd integer, therefore the substitution of n=2k +1 will be made at

the end of the derivation to recover the desired result. Using the c.0.v. x=cosf and

substitution of (E.10) into (E.39) leads to (since the integrand is even due to the odd

parity of Ty;,;)
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1 1
ITZ“—'(Z) sin(ax)dx = -;— ITZ 1 (%) sin(ax)dx = Icos(2k +1)@sin(acos8)dé (E.40)
-1

o Vl—-x v1-

Equation (E.40) can be computed in closed-form by expanding sin(@cos&) with the aid

of (E.18) and then using relation (E.27), leading to

1
Dygn(x) . - n -~ -
[P sin(@x)dr = ——— 2[5 (@)~ o (-3)] (E41)
o V1-x2 4j(=7)
Since [j(—j)2"+']'l =(—1)" and J,;,(—a)=-Jy;, (@) from the analytic continuation

relation (E.30) with m =1, equation (E.41) reduces to
Toin ()
[ sin(@x)ax = (-1 —sz(a) (E.42)
0 V1- —x?
Letting n =2k +1 produces the desired result
LT (x) /4
I—”—Zsin(&x)dx = (-1)(»D72 5@ ..G#0,n=135,.. (E.43)
oNl—-x

Since n is a positive odd integer, relation (E.28) implies that

x2 sin(@)dx=0 ..a=0,n=13,5,.. (E.44)
X

1
I Tn(x)
ovVl-
Besides, if a =0, then the integrand is identically zero. Hence, integral relation (E.35)

has been proved.

Proof: (E.36)

The proof follows immediately since 7;(x) =1 and cos(ax) =1 if a = 0.

Proof: (E.37)
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Substitution of (E.7) into the integral expression of (E.37) and using (E.21) leads

to the desired result.

Proof: (E.38)

The relation in (E.38) is more easily proved by examining

1
J‘ T (xz cos(ax)dx ..k=0,1,2,... (E.45)
\ll—x

The integrand is even due to parity relation (E.12), thus using the c.0.v. x=cosf and

(E.10) gives
T (x) Ty (x) 17"
cos(ax)dx = 2k~ cos(ax)dx = — |cos(2k8)cos(@cos8)dd (E.46)
I\/ 1-x2 I\/ 1-x2 2 6[

Expanding cos(acos@) with the aid of (E.17), using (E.27) and invoking the relation

Jox (~@) = J5, (@) produces [since (—j) 2 = (-1)¥]

j \/i"(_Zcos(ax)dx (1) J2k(a) (E47)
X

Letting n =2k gives the anticipated result

1
Tn(")z cos(@)de = (-1)"2 2, (@) ..a%0,n=0,24,.. (E48)

oVl—-x
The use of equation (E.28) leads to the remaining relation, that is
1

I—M cos(ax)dx =
oVvl- x?

/2 ..n=0
{” " d=0 (E.49)

0 ..n=2,4,6,...

E.3.4 Integrals Involving U, (x)
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Some of the common integrals involving Chebyshev polynomials of the second

kind are given below. Proofs that are similar to the previous section will be omitted for

the sake of brevity.
| (n-1)/2
b . (S;sina+S a) ..az0
[U,()sin@)ar={ = mn(SySina+5;c080) a0, 5o
0..a=0
Dz
[yn-/2 (n+Dx £0
jU ()1 - x? sin(ax)dx = D 25 Jm@ - : n=13,5,...
0..a=0
! sin@/a ...a#0
IU 2 (x)cos(ax)dx = . ;n=0
0 1..a=0
(n/2
| Z mn(S3sind+ Sycosa) ...a#0
jU,,(x)cos(ax)dx_< p :n=2,4,6,...
n
3P G-
\m=0n—2m+l

D)2 (n+1)7 ) 2)J g (@) /G ...d#0,n=0,2,4,...

IU (x)x/l -x? cos(ax)dx=<n/4 ..a=0,n=0
0..a=0,n=2,4,6,..

(E.50)

(E.51)

(E.52)

(E.53)

(E.54)

Note, (E.S50)-(E.51) are odd functions of a and (E.52)-(E.54) are even functions of a.

Proof: (E.51)

The relation in (E.51) is proved by examining

1
IUZM(x)\/l —x? sin(@x)dx ..k=0,1,2,...
0
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Since Uy, is odd, substitution of (E.11) into (E.55), upon using the c.0.v. x=cosé,

leads to the following
1 1 4
[Urka (01— x? sin(éx)dx = 3 jsin{[(zk +1)+1)}sinOsin(@cosB)d6  (E.56)
0 0
Expanding sin{[(2k +1) +1]@}sin @ using (E.19) gives
1
jU2k+,(x)\/1 — x? sin(ax)dx =
0
x |7 (E.57)
" j cos[(2k +1)@]sin(acos8)do - 2 Icos{[(2k +1)+2)@} sin(acos8)do
0 0

Expansion of sin(acos@) with the aid of (E.18) and using (E.27) and (E.30) leads to

Jcos[(2k + 1)8]sin(@ cos8)d6 = (~1)* 75,1 (@)
0

i (E.58)
Icos{ [(2k +1) +2]0} sin(acos 8)dO = —(—l)" 7J 2k +1y+2(a)
0
Substitution of (E.58) into (E.57) produces
IJ‘Uzlm (x)m sin(@x)dyx = (-1)* Z‘[lem (@) +J 2k41)+2(@)] (E.59)
0
Finally, use of relation (E.31) gives the desired result
lflfz/“q(:c)JW sin@as = (-0 Ay, 0@ @60
0

Letting n=2k +1 leads to the anticipated result
1
IUn(x)~/1 — x? sin(ax)dx = (-1)"""D/2 ”—(;f—l)J,,+, (@ ..az0,n=13,5,.. (E.61)
a
0

If a=0, then (E.61) becomes indeterminate since J,,,(0)=0. Instead, one must look at
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the relation in (E.59) prior to using (E.31), which takes the following form when

n=2k+1
][U,, V1= x? sin(ax)dx = (~1)*V2 %[J,,(&) +J,,2(@)] ..n=13,5,.. (E.62)
0
Substitution of (E.28) into (E.62) leads to (since n> 0 here)
lIU,,(x)\/l—T sin(@)dx=0 ..a=0,n=13,5,.. (E.63)
0
This is anticipated, of course, since the integrand is identically zero when a=0.

Proof: (E.54)

A comparable procedure, which will be left for the reader, leads to

(n ;P” Joi(@) G#0,n=0,2,4,... (E.64)
a

1
jUn (%) v1- x2 cos(&x)dx =(- 1)’1/2
0

The following equivalent form, upon using (E.31), is best for analyzing the behavior

when a =0 (since the above is indeterminate again), namely

1
IUn(x)\/l - x? cos(ax)dx = (-1)"'2 %[J,,(a) +J,,5(@)] ..d#0,n=0,2,4,...(E.65)
0

Use of (E.28) reveals that
1 .
/4 ..a=0,n=0
[Un 1 -5 cos(ax)dx = {” a=ne (E.66)
0 0..a=0,n=2,4,6,...

Therefore, relation (E.54) has been proved (although several steps have been left for the

enjoyment of the reader).
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E3.5 Asymptotic Form of Integrals Involving 7,(x) and U ,(x)

A careful examination of the previous results reveals, with the aid of (E.29), that

the various above integrals have the following asymptotic behavior

€054 n=13,5,.

1
lim jT,,(x)sin(ax)dx~
a—o 0

1
lim T"(")2 sin(dx)dx ~

5—)000 1-x

hm IT (x)cos(ax)dx ~ Sma p= 0,2,4,..
a

X 1
) cos([ix)dx~cos[a jg“z)] n=0,2,4,..
a

lim II T,(x
a0 o \1-x?

lim j’U (x)sin(ax)dx ~

cosa
..n=135,...
a

1 x
lim U, (xV1-#> sin(&x)dx~cos[ fg“ )] .n=135,...
a—»xo 0

1 .~
lim (U, (x)cos(@x)dx ~ SMa - 1=0,2,4,...
a—®o a

cosl:fi—%("’L%)} ..n=0,24,.

1
lim jU,,(x)\/l—xz cos(@x)dx ~ ————
a—»o 0 a

where the following asymptotic behavior for S;-S, has been utilized

lim SI,S4~—I? 5 lim Sz,S3~l~
a—o a a—o a
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