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ABSTRACT

ROBUSTNESS OF TEC SPEECH WATERMARKING TO

CROPPING AND ADDITIVE NOISE

By

Aparna Gurijala

The widespread use of the intemet has created a need for technologies for the

protection of copyrighted digital information. Digital watermarking is one such

technology in which a preferably imperceptible signal (watermark) is embedded into a

copyrighted host signal. Digital watermarks are prone to a wide range of “attacks” and

other forms of distortion. In this work, the robustness of a new watermarking method

based on transform encryption coding (TEC) to cropping and additive noise is

investigated.

Experiments were conducted to test the robustness of TEC speech watermarking

to additive noise under different conditions including different SNRs and watermark

masking algorithm parameters. Although a cropping attack is easy to implement, the

resulting desynchronization severely hinders watermark detection and recovery. A

dynamic programming (DP) based algorithm for the detection of cropped speech samples

and reconstruction of the cropped stego—signal to enable watermark recovery has been

developed. Implementation details of the DP algorithm and performance under different

environmental conditions are presented. Factors influencing the robustness of TEC

speech watermarking are analyzed.



ACKNOWLEDGMENTS

I would like to acknowledge Dr. J.R. Deller, my advisor for his invaluable

guidance, encouragement and support. Special thanks to Dr.Deller for his very helpful

remarks and suggestions that greatly contributed to my learning and understanding.

Special thanks to Dr.Seadle and Dr.Radha for their consideration, patience and effort.

The time spent by Dr.Deller, Dr. Seadle and Dr.Radha to ensure the completion of my

thesis is truly appreciated.

Personally I would like to thank my parents for their love and encouragement. My

thanks to all my friends for their kindness and help.

iii



TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1

INTRODUCTION

Watermarking for the National Gallery of the Spoken Word

A typical watermarking system

Properties of digital watermarks

Classification of watermarking techniques

Attacks on watermarking systems

Document overview

CHAPTER 2

DIGITAL WATERMARKING OF SPEECH USING TEC

Watermarking algorithm

Correlation detector

Security and robustness

CHAPTER 3

ROBUSTNESS STUDY

Additive noise

Cropping

Algorithm for watermark recovery from cropped speech

Memory and computational requirements

Cropping in the presence of additive noise

Counterfeit attacks

CHAPTER 4

IMPLEMENTATION DETAILS, RESULTS AND CONCLUSIONS

Robustness testing engine

Robustness to additive noise

Robustness to cropping

Implementation details of the modified DP algorithm

Experimental results

vii

viii

0
0
0
0
m
e

11

15

16

2O

22

24

28

28

29

32

33

42

42

45



Robustness to cropping in the presence of noise

Conclusions

CHAPTER 5

FUTURE WORK

REFERENCES

48

49

50

52



LIST OF TABLES

. Quality rating

. Robustness to Gaussian noise (constant gain factor)

. Robustness to Gaussian noise (adaptive gain factor)

. Robustness to uniformly distributed noise (constant gain factor)

. Robustness to uniformly distributed noise (adaptive gain factor)

. Robustness to cropping and additive noise (adaptive gain factor)

vi

33

35

37

4O

4O

47



LIST OF FIGURES

1. A typical watermarking system

2.

3.

Watermarking process

Watermark recovery

Encryption using quasi m-arrays

. Watermarking selectively to watermarking the entire record

Encryption and decryption processes

. Noise amplitude distribution

. Cropping in speech and images

. Dynamic programming approach to recovering cropped

speech samples

10. Robustness of TEC watermarking to Gaussian noise

(constant gain factor)

11. Robustness of TEC watermarking to Gaussian noise

(adaptive gain factor)

12. Robustness of TEC watermarking to uniformly distributed noise

(constant gain factor)

13. Modified implementation of DP algorithm

14. DP algorithm for watermark recovery

vii

11

12

13

14

17

22

23

25

36

38

41

43

46



Chapter 1

INTRODUCTION

1.1 Watermarking for the National Gallery of the Spoken word

The National Gallery of the Spoken Word (NGSW) [1] project is creating an

online database of spoken word collections, spanning the 20th century. These collections

are mainly drawn from Michigan State University’s Vincent Voice Library, MSU

Museum, Chicago Historical Society and Northwestern University. They include Thomas

Edison’s first cylinder recordings to the voices of Theodore Roosevelt, Florence

Nightingale, and Babe Ruth. The aural resources for the NGSW are in the digital form.

Representation of information in digital form has many properties that make it

preferable to analog forms. An unlimited number of digital copies can be made with ease

and accuracy. This benefit, however, has been a cause of concern for intellectual property

owners and content providers. The widespread use of the Internet coupled with the

developments in compression techniques facilitates fast and efficient distribution of

digital content. However, while easy to implement, distribution of copyrighted digital

information without authorization threatens intellectual property rights. Copyright laws

protecting analog information are inapplicable to digital information. As a result, there is

a need to develop techniques for protecting the ownership of digital content and for

tracking intellectual piracy.

Digital watermarking is one such technique. Digital watermarking is the process

of embedding a permanent and preferably imperceptible signal into a copyrighted host

signal. The embedded signal may typically convey information about the owner, author



or carrier. More information about the need for watermarking in the NGSW project is

found in [7].

The concept of watermarking has its origins in the ancient Greek technique of

steganography or “covered writing” — interpreted as hiding information in other

information. Detailed information on the history of steganography and watermarking is

found in [8]. Applications of digital watermarking include copyright protection,

fingerprinting, authentication, copy control, owner identification, broadcast monitoring,

security control and tamper proofing. Watermarking can be used to protect virtually any

form of digital information including images, speech, music, and video.

Most of the digital watermarking schemes have been developed for images. Audio

watermarking schemes include the method due to Boney et al. [9] in which the

watermark is generated by filtering a PN-sequence with a filter that approximates the

frequency masking characteristics of the human auditory system, and then accounting for

temporal masking. Bassia and Pita [10] developed an audio watermarking method that

modifies the temporal characteristics of the audio signal in accordance with a seed

(watermark key) known only to the copyright owner. In [11] an audio watermarking

technique operating in the Fourier domain is presented. Bender et al. [12] use

homomorphic signal processing techniques to place information imperceptibly into audio

streams by the introduction of closely spaced echoes. Luy et al. [13] proposed a multi—

purpose audio watermarking scheme that embeds two complementary watermarks — one

for audio authentication and the other for the detection of tampered regions. The spread

spectrum watermarking technique developed by Cox et al. [14] can be applied to audio,

image, video and multimedia data.



This paper is concerned with the robustness of the digital speech watermarking

technique employing transform encryption coding (TEC) [2, 3].

1.2 A typical watermarking system

A typical watermarking system consists of a watermark generator, an embedder, a

watermark detector and possibly a component that distorts the stego-signal (defined

below).
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Figure 1. A typical watermarking system

Due to the wide variations in the watermarking techniques, it is difficult to

generalize and characterize a “typical” watermarking scheme. To account for the vast

variations in watermarking approaches, certain inputs are indicated by dotted lines in

Figure 1, meaning that they may not be present in all techniques. A signal for which

copyright protection must be provided is called a cover-signal. A watermark is a signal



that is embedded into the cover-signal for this purpose in accordance with the stego-key'.

The stego-key ensures the imperceptibility of the watermark and thus introduces

additional protection, by making the watermark location unknown. A watermark may

take different forms — an encrypted or modulated speech sequence or image, least

significant bit manipulations, a pseudo-random sequence. As a result, the inputs to

watermark generators are highly diverse. For example, in the audio watermarking

technique proposed by Bassia and Pitas [10] the input signal is the cover-signal itself, and

the key is a randomly generated constant. In the spread spectrum watermarking scheme

of Cox et al. [14], the input signal is the same as the key and comprises a pseudo-random

sequence.

Watermark embedding techniques may be additive, multiplicative or

quantization-based [15] and may operate in the space or time domain, or in some

transform domain. The output of a watermark embedder is the stego-signal. The stego-

signal should be perceptibly similar to the cover-signal, in spite of the presence of the

watermark. Watermark detectors are classified as type I or type II. Type I detectors

require knowledge of the cover-signal to extract the watermark from the stego-signal.

Type II detectors provide a yes or no answer to question of whether the watermark is

present in a distorted stego-signal. In the motivating application for this work, the TEC

speech watermarking system employs a type I detector.

Typically the term “watermark” is used to refer to the processed (modulated,

encrypted, etc.) form of the original signal to be embedded in the cover-signal as

indicated in Figure 1. However, in this document, “watermark” will refer to the

 

1 In the TEC speech watermarking technique the stego-key is the constant or adaptive gain factor of the

masking algorithm [2].



unprocessed watermark signal. The result of the processing step will be called the

encrypted watermark.

1.3 Properties of digital watermarks

Some essential properties of watermarks are as follows:

I Perceptual transparency: Inserting a watermark into the host or cover-signal will

alter the cover-signal in some way. If the amount of alteration does not introduce any

perceptual degradation then the watermark is said to be perceptually transparent

[16,17]. This ensures that the value of the original material is not reduced by the

presence of the watermark.

o Robustness: Robustness refers to the degree to which a watermark can survive an

“attack” or distortion. An attack is a deliberate attempt to remove the watermark or

hinder its recovery. The watermark should not be able to be destroyed without

simultaneous destruction of the cover-signal. A successful attack is one that removes

the watermark or obstructs the recovery process without causing perceptual

degradation of the cover-signal [16].

0 Unambiguity: A recovered watermark should unambiguously identify the owner of

the watermarked material.

0 Security: Encryption keys, if any, used in the watermarking process, and keys used

for watermark generation, should be very difficult to predict, guess, or otherwise

ascertain.

Another important property is the watermark bit rate [17]. This is determined by

the amount of information contained in the watermark (watermark payload) and the



amount of data needed to embed one unit of watermark information (watermark

granularity) while ensuring perceptual transparency.

For greater robustness it is desirable to have stronger components of the

watermark in the stego-signal. This in turn will affect the perceptual transparency of the

signal containing the watermark (stego-signal). Thus there are trade-offs among the

various watermark properties that must be considered in light of the requirements of a

particular watermarking application. Further, for an application like fragile watermarking

[19] robustness is not desirable. In such a case, fragile watermarks that get destroyed by

some or all of the transformations are used. The degree of adherence to the ideal

properties is dictated by the requirements of the particular application and the availability

of resources. More information is found in [16]-[19].

1.4 Classification of watermarking techniques

Watermarking techniques are classified according to the domain in which the

watermark is inserted, the requirements of the watermark detection process, or the

availability of the keys.

Watermarking schemes are categorized as restricted- or unrestricted-key

watermarking schemes based on the relative availability of the key(s) [20]. Schemes in

which the keys are available to all the watermark detectors are called unrestricted-key

schemes. In the case of restricted-key schemes, the knowledge of keys is confined to a

small number of detectors. The TEC-based speech watermarking scheme is a restricted

key scheme. Though such a categorization appears to be mainly based on a difference in

usage, the complexity and suitability of a watermarking algorithm differs between the

two C3868.



Schemes that require knowledge of the cover-signal to recover the watermark are

said to be non-oblivious [21]-[23]. TEC-based watermarking is non-oblivious.

Watermark recovery is effected by subtracting the cover-signal from the stego—signal.

Non-oblivious techniques generally yield more robust watermarks. However, non-

oblivious watermarking may be more prone to protocol attacks [20]-[22] due to the

availability of greater freedom for creating fake cover-signals and hence fake

watermarks. For example, a hacker may succeed in developing a suitable fake watermark

(say, a pseudo-random pattern). On subtracting it from the stego-signal, to which he or

she has access, a fake original can be created. The hacker now claims to be the owner of

this original. Of course, oblivious watermarking schemes are more prone to attacks based

on neutralizing the detector (if there is access to one as in the case of the DVD copy

control problem [20]) readings. The cover-signal is not required during the detection

process in oblivious watermarking and may be treated as noise. Oblivious watermarking

methods permit faster detection of the watermark and include bit-wise or noise-dependent

methods. These methods are sensitive to even small variations of the stego—signal and are

thus more fragile [22]

A watermarking strategy is designated as a spatial (time) or transform domain

technique according to whether the watermark is embedded into the cover-signal in the

signal or the transform domain. In the present application in which audio rather than

image data are watermarked, the term “signal,” rather than “spatial,” domain is more

appropriate.

If the same key is required in the watermark recovery or detection process as that

used for watermark embedding, the scheme is said to be symmetric. The need for



asymmetric or public key watermarking arises when the user of the copyrighted

information [23] must perform watermark detection. In this case there is a set of two keys

— a public key and a private key. The private key is required for watermark embedding

and recovery, and is known only to the owner. The public key is given to the users solely

for watermark detection. Knowledge of the public key should not provide any

information about the private key, and should not compromise the security and

robustness of the scheme. A variation on this idea occurs in the TEC strategy. A “public”

key is made available to descramble the speech signal, but this process has the effect of

further encrypting the watermark rather than detecting it.

1.5 Attacks on watermarking systems

Digital watermarks are prone to a wide range of attacks [15, 20] and other means

of distortion. As mentioned earlier, an attack is an attempt to remove the watermark or

preclude its recovery, while ensuring tolerable or no apparent damage to the stego-signal.

An attack can also be an attempt to create ambiguity of ownership. Attacks include those

due to common signal processing operations like resampling, compression, filtering, D/A

conversion, and requantization. Introduction of noise can also affect a watermark.

Deliberate manipulations of the content like cropping, rescaling and rotation can severely

hinder watermark recovery.

By using secure keys, a cryptographic attack like brute-force key search [25] can

be thwarted. In the attack by statistical averaging [18, 20, 25], a large number of

differently watermarked copies of the same stego-signal may be averaged to get the

attacked stego-signal. Collusion attack differs from an attack by statistical averaging in



the sense that only portions of the stego-signal and not the entire stego-signal are used to

create the attacked stego-signal [25, 26].

Counterfeit attacks [15, 24, 25], including inversion attack, multiple watermarks,

and copy attack, attempt to undermine the concept of watermarking itself by producing

fake originals or fake watermarked signals. Watermarking an already marked signal (the

problem of multiple watermarks) can negate the utility of any watermarking scheme. To

counteract these attacks, watermark registration with a trusted authority has been

proposed by some parties [21, 23].

Distortion is normally the result of signal processing operations or the presence of

noise. Attacks encompass the different types of distortion that may be unintentionally

introduced into the stego-signal.

Robustness against attacks is a very important aspect of a watermarking scheme.

A particular watermarking scheme may not be robust to all forms of attack. An attack on

the watermark may be directed at either removing the watermark or hindering its

recovery while causing tolerable apparent damage to the stego-signal. When the attack

hinders watermark recovery, then the general remedy is to attempt to identify the attack

and to undo the damage. Duric et al. [22] describe a method of recognizing distorted

images and recovering watermarks using identification marks, salient features of the

image invariant to transformations like cropping, scaling and rotation. In the present

paper, watermark recovery from cropped speech is accomplished using a dynamic

programming approach. Most watermarking techniques are susceptible to damage caused

by cropping due to its desynchronization of the watermark detection and recovery

process.



1.6 Document overview

Research in the field of watermarking is progressing in different directions. New

watermarking techniques are being devised [11, 13, 27], new attacks on watermarking

schemes are being identified [15, 18, 20, 25], benchmarks to evaluate the different

watermarking schemes are being developed [15, 28], and algorithms for watermark

detection and recovery after attacks and other forms of distortion are being developed

[22, 24]. This document describes work that was mainly directed at TEC-based

watermark detection and recovery after being subjected to certain attacks.

Chapter 2 presents the TEC-based speech-watermarking technique. Chapter 3

describes the robustness of this watermarking scheme to different attacks that include

additive noise, cropping, or a combination. Algorithms for watermark recovery when

subjected to these attacks are described. Chapter 4 is concerned with Matlab

implementation, experimental results and performance evaluation under different

conditions. Chapter 5 comprises a description of future work.
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Chapter 2

DIGITAL WATERMARKING OF SPEECH USING TEC

2.1 Watermarking algorithm

Transform encryption coding (TEC) was originally developed by Kuo et al. [3] as

an algorithm for image compression and efficient and secure transmission. It can be

applied to speech and other signals as well. TEC produces independent transform

coefficients by passing the signal through an all-pass filter with unity gain. TEC derives

its encryption properties, and hence security, from the use of highly random filter

coefficients. Typically, quasi m-arrays and gold code arrays [4] are used to obtain filter

coefficients with the desired property of unpredictability. The phase spectrum of the

signal to be transformed is scrambled in accordance with the phase spectrum of a quasi

m-array or gold code array [3].

The speech watermarking technique developed by Ruiz et al. [2] employs TEC in

conjunction with a masking algorithm for encrypting and watermarking speech. The one

dimensional speech signal is arranged in the form of two-dimensional arrays, each having

the same dimensions as the quasi m-arrays used for the TEC process.
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Figure 2. Watermarking process
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The watermarking process involves the application of TEC to both the cover-

signal and the watermark. Different quasi m-arrays are used for encrypting the cover-

signal and the watermark. The encrypted watermark is subjected to a masking algorithm

to ensure perceptual transparency based on the cover to watermark ratio (CWR), defined

as

E
CWRdB = ioiogmmg’vé—M—l (1)

where E‘[n] and Wm are the respective short-term energy measures for the encrypted

cover and watermark signals, and k[n] is an adaptive gain factor (stego-key) at time n.

Altemately, a constant gain factor k can be used instead of k[n]. Since the encryption

process involves passing the cover and watermark signals through all—pass filters with

unity gain [see Figure 4], the energy content of the encrypted and non-encrypted signals

are similar in each case. The encrypted cover-signal and watermark are converted into a

one-dimensional arrays. The encrypted, masked watermark is then added to the encrypted

cover-signal to obtain the encrypted stego-signal. Applying the inverse TEC operation to

decrypt the cover-signal component of the encrypted stego-signal subjects the watermark

to a second level of encryption (see Figure 6).

S
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Figure 3. Watermark recovery
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For watermark recovery, an estimate of the doubly encrypted watermark is

obtained by subtracting the cover-signal from the stego-signal,

(2)=S—CE
m

Finally the inverse TEC operations and the gain factor are applied to the estimated

twice-encrypted watermark (Figure 3):

w = k’1 ng' {'1'1 {3 B: k‘1 xTz‘l {1'1 {s — c}}

(D (6)
Figure 4. Encryption using quasi m-arrays. (a) The original “Lena” image. (b) The

original “mandrill” image. (c) Lena encrypted using quasi m-array A (key A). (d)

Mandrill encrypted using quasi m-array B (key B). (e) Amplitude distribution of the Lena



encrypted using key A. (f) Amplitude distribution of the mandrill encrypted using key B.

The amplitude distributions are different for the encrypted versions of the two images.

However, they are similar to the amplitude distributions of the respective original images

due to the all pass nature of the encryption process.

The recovery of the watermark is only possible with the knowledge of the two

quasi m-arrays (encryption keys) used in the process. The watermark may take many

forms including speech samples or images. Part of the future work of this project will be

concerned with researching pr0perties that assure quality watermarks.

  

Cover-Signal Cover-Signal

Encrypted stego-srmai Encrypted steoo-signai

  

 

(a) (b)

Figure 5. Watermarking selectively to watermarking the entire speech record. (a)

Tire entire speech record consisting of 48387 samples in watermarked. All the recovered

watermarks are shown. (b) The watermark is embedded in the first 16129 speech

samples.

Although the entire speech record is watermarked in Ruiz’s work [2], only

selected frames of speech may be watermarked depending upon the requirements of the

application (Figure 5). By watermarking selectively, a degree of unpredictability is

introduced about the exact locations of the watermarks. It is preferable to watermark the

higher intensity speech regions, since for a given CWR, the watermark intensity will be

14



greater in these regions. As a result, the embedded watermarks will be more robust

against certain attacks. The results supporting this are presented in Chapter 4. The

computational complexity and hence the amount of time required for watermarking will

be reduced on watermarking selected speech regions.

2.2 Correlation detector

A correlation detector (type II detector, see Section 1.2) can be used to detect the

presence of the watermark in the stego-signal when subjected to linear distortion. The

detector uses the normalized correlation between the original and possibly distorted

watermark recovery signals. The latter are obtained by taking differences between the

respective stego-signals and the cover-signal. Such a detector may not appear to be

necessary for the TEC strategy as the watermark recovery signal (possibly distorted) may

be fed to the recovery process in any case. However, the correlation detector is useful for

acquiring quantified information about the presence or absence of the watermark. This

information is crucial, for example, when an attack hinders the recovery process. The

correct alignment of the two watermark recovery signals (original and possibly distorted)

is an essential requirement for the correlation detector to perform correctly.

If s'is a speech signal that differs from the original cover-signal by an added

sequence 1], the correlation detector can be used to obtain information about the presence

or absence of the watermark in s’ as follows.

' = c + 7]. (4)

The normalized correlation between i? and(s' - c) is defined as,

-(s'—c)

lW|l(s'—c)l

E
m

(5) p:

15



A high value of p indicates the presence of the watermark in 5'.

If the distortion has the effect of misaligning the stego-signal and the original,

then the samples must be resynchronized before using the correlation detector. Due to

such a requirement the correlation detector can be used for studying the effectiveness of

the algorithm for watermark recovery from cropped speech as described in the next

chapter.

2.3 Security and robustness

A good watermarking technique is one for which the security relies on the key

and not on the secrecy of the algorithm. Public knowledge of the watermarking

technology must not compromise security. This holds true for TEC-based speech

watermarking. Security means that only authorized parties can decode the watermark

[26]. It entails unpredictability and non-invertibility [23]. Non-invertibility of the

watermarking technique means, for a modulated or encrypted watermark signal, it is

practically impossible to find a fake watermark that can be produced by the same process

[23].

TEC speech watermarking derives its security from the quasi m-arrays used for

cover-signal and watermark encryption. The recovery of the watermark is only possible

with the knowledge of two quasi m-arrays (encryption keys) per frame. Further,

encryption ensures secure transmission across the communication channel. It also helps

in data access control i.e., an unauthorized person cannot retrieve the information [23].

Mere encryption without watermarking cannot provide copyright protection, as the data

are unprotected and open to content tampering and c0pyright violation [23]. Hence it is

important to hookup encryption and watermarking for secure copyright protection.

16



It is generally recommended [20] that the unmarked original not be publicly

released. Enhanced security is also achieved by embedding the watermarks in random

locations of the stego-signal rather than predictably throughout the entire stego-signal.

Further, different signals being watermarked differently, copies of the same signal

similarly watermarked (alternately, better to have copies of the stego-signal rather than

the cover-signal), having more than one watermark (preferably different watermarks and

keys) in a particular stego-signal, and using keys of different dimensions, all can

contribute to security. The use of different keys avoids the obsolescence of the watermark

if a set of keys used for watermark recovery were by chance made public knowledge after

intentional tampering or copyright violation. Using quasi m-arrays and gold code arrays

(keys) of higher dimension achieves greater encryption security. This is because, the

number of available quasi m-arrays or gold code arrays increases with their dimension.

Greater security also implies increased computational complexity implying a trade-off

involved between increased security and computational burden.

TEC’s masking algorithm provides additional protection by using different

parameters (stego-keys) in a random fashion while ensuring the imperceptibility of the

watermark.

The amount of data, measured in bits, needed to embed one unit of watermark

information is termed the watermark granularity [17]. Finer granularity may result in

greater robustness against certain attacks. In the case of cropping, for example, spreading

the watermark across a large number of cover-signal samples implies greater risk of

sample loss. However, finer granularity works against higher key dimension and hence

security.

17



For the robustness of the watermarking scheme, the CWR plays a very crucial

role. Lower CWR contributes to increased robustness. However the need for a

perceptually transparent watermark places a practical lower bound on the CWR.

 

(C) (d)

Figure 6. Encryption and decryption processes. (a) Original “mandrill” image. (b)

Mandrill encrypted using key B. (c) Decryption of the encrypted mandrill in (b) using

key C. If a signal is encrypted using key A (key B), it can be decrypted only using key A

(key B). By using a different key for decryption, the mandrill gets encrypted twice. (d)

Decryption of the encrypted mandrill in (b) using key B.

The next chapter focuses on the robustness of TEC-based speech watermarking to

additive noise, cropping and protocol attacks.



Chapter 3

ROBUSTNESS STUDY

The issue of watermark robustness is introduced in Chapter 1. Robustness is the

ability of the watermark to survive attacks and other forms of distortion. A watermarking

scheme is said to be robust against a particular attack, if watermark detection and

recovery are possible. This chapter deals with the robustness of TEC-based speech

watermarking to additive noise, cropping and protocol attacks.

The encryption capabilities of TEC ensure secure transmission of stego-signal

across a communication channel and secure storage in an archive. If a hacker tries to

intercept (or download) and then attempts to decrypt a transmitted (or stored) stego-signal

without the knowledge of the encryption keys, the nominal stego—signal obtained on

decryption will be unintelligible. Hence, it is sufficient and necessary to use the

unencrypted stego-signal for robustness study. According to [3], the TEC encrypted

signal is insensitive and robust to channel noise. Due to the all pass nature of the

encryption and decryption processes, the noise strength in every sample of the decrypted

signal will be small.

The main focus of this chapter is robustness to cropping and additive noise.

Cropping results in irretrievable loss of information that causes desynchronization in the

watermark detection and recovery processes. As a consequence, the watermark fails to be

detected and recovered. A number of watermarking techniques, especially signal (spatial

or time) domain techniques are vulnerable to the damage caused by cropping. The

damage caused by cropping depends more on the watermark embedding (for example,

according to an additive rule) or detection strategy, than on the nature of the watermark.
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In order to tackle cropping, an algorithm for watermark detection and recovery from

cropped speech is presented. This algorithm can be applied to any cropped stego—signal,

even if watermarked using a different watermarking technique.

3.1 Additive noise

Addition of uncorrelated and randomly generated noise is a common attack

against a watermarked stego-signal. Techniques where the watermark is in the form of

LSB modifications, are especially prone to such an attack or distortion. To study the

robustness of TEC speech watermarking to additive noise, independent, uncorrelated and

randomly generated noise was added to every sample of the stego-signal. The noise

amplitude was either uniformly distributed or Gaussian distributed as shown in Figure 7.

If s’ is the noisy stego-signal, then

s’ = c + “2» + 77 (6)

The recovered watermark signal will now be,

\

E
m

II S
n

+ 77 (7)

As implied by equation (6), the robustness of the watermarking technique to

additive noise depends upon the watermark to noise power ratio (WNR). The significance

of a particular value of the WNR cannot be ascertained independently of the following

factors:

i) Stego-signal to noise ratio (SNR), defined as

we... =1mog.. j:
 

(8)

’7

where Ps and Pn are the signal and noise energy, averaged over the entire duration of the

speech sequence (that is the signal and noise power).
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1», $1172an (10)

s[n] and t][n] are samples of the stego-signal and noise at time n.

ii) Cover-signal to watermark ratio (CWRZ).

The CWR is influenced by whether a constant or an adaptive gain factor is used in

the masking algorithm. If a constant gain factor (k factor), is used, then the CWR varies

from samples to sample. On the other hand, when an adaptive gain factor (k[n] factor) is

used, the CWR is a constant throughout. In this case, robustness will also depend on the

temporal placement of the watermark in the cover-signal. Since the intensity of the

embedded watermark is adapted to the intensity of the cover-signal, the strength of the

watermark will be greater in the higher intensity regions of speech. Experimental results

for different CWRs, SNRs, and watermarks are presented in Chapter 4. To assess the

significance of the experimental results, a group of individuals were asked to look at or

listen to the results. The squared error (E) and normalized correlation (p) were used in

conjunction, to provide quantified information. It was inferred from the experimental

results that the damage survived by the watermark was sufficient to lower the commercial

value of the attacked stego-signal, when the embedded watermark was mildly

perceptible. A detailed discussion of the results is presented in Chapter 4.

 

C[n]2 .

defined rn(l)as, CWR =1010 ____~__

4” g” k[n]xW[n]
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Figure 7. Noise amplitude distribution

3.2 Cropping

Cropping is an attack on the content of the stego-signal wherein samples of the

signal are deleted in a random or deterministic manner. About 1 in 50 speech samples

may be cropped without introducing any perceptible difference. Cropping may be an

intentional attack or unintentionally introduced distortion. It is extremely easy to

implement, but most digital watermarking schemes are vulnerable to the damage caused

by it.

One method of identifying the attack to be cropping is by making use of the cross-

correlation between the original watermark recovery signal (obtained by taking the

difference between an undistorted stego-signal and the cover-signal) and the attacked

watermark recovery signal. If samples are indeed cropped from the stego-signal, the

normalized cross-correlation continues to sharply decrease as more and more cropped

samples are encountered.
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Cropping desynchronizes the recovery process, making watermark recovery

difficult. Hence there is a need for an algorithm to identify the cropped samples, and to

undo the damage caused by cropping, in order to make possible watermark recovery.

 

(b)

l
I

(C) (d)

  
Figure 8. Cropping in images and speech. (a) Original mandrill image. (b) Cropped

mandrill image. (c) 1000 samples from the speech “Theodore Roosevelt talks about

Wilson and Taft”. (d) A cropped version of the speech in (c). About 1 in 50 samples were

cropped. It can be observed that there is greater predictability in the manner in which

cropping manifests itself in images than in speech.

Duric et al. [22] make use of registration patterns (invariant features of an image)

to recognize and restore images that are subjected to detection—disabling affine

transformations. Typically, the registration patterns, also known as identification marks

might be groups of points that exhibit uniqueness. Watermarks are then recovered from
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the restored images. Such a methodology works for images, due to the manner in which

cropping manifests itself in images. On cropping, the aspect ratio, shape or resolution of

the image is generally affected. Hence, the effects of cropping are more predictable in the

case of images (see Figure 8). Due to the random nature of speech, the geometg does not

facilitate the derivation of registration patterns that are unique and invariant to

transformations. Even in the case of images, the registration patterns can be exploited or

attacked [20] to undermine their functionality.

Hence, in order to deal with cropping in speech, a dynamic programming based

approach to identify the cropped samples and undo the damage was favored.

3.2.1. Algorithm for watermark recovery from cropped speech

A recovery algorithm is presented which is based on the concept of dynamic

programming [5]. An attempt to temporally align the samples of the cropped stego-signal

with the original stego-signal using dynamic programming (and hence dynamic time

warping (DTW) [5]) will inherently determine the (former) time locations of the cropped

samples.

Consider the i-j plane (as shown in Figure 9) with the cropped stego-signal (test

string) along the i-axis and the stego-signal (reference string) along the j-axis.

Determination of the cropped samples is treated as the problem of finding the minimum

distance path through the grid. A path is a collection of nodes of the form (t(i), sm)

connecting the original and terminal nodes. Distances or costs are assigned to paths in the

form of nodal costs. The cost associated with the node (t(i), s0)) is defined as,

4.0.» = W) - so»? (1 1)
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Figure 9. Dynamic programming approach to recovering cropped speech

samples.

The search for the optimal path is described as follows. Let S be the length (total

number of time samples) of the uncropped stego—signal, and T be the length of the

cropped stego-signal. Assuming that no additional or duplicate samples are added to the

stego—signal, the number of samples cropped is

N=S—T. 0%

The following search constraints are imposed on the search region to limit the amount of

computation and to ensure appropriate matching between the test and reference strings:

Monotonicity. For the path to be monotonic it must advance in the upward direction, i.e.,

it should not go “south” or “west” in the grid. Further, movement of the path in the

horizontal or the vertical direction is prohibited as a single test sample cannot be

associated with more than one reference sample and vice versa.

Global path constraints. Since N samples are cropped and the path can only move in the

upward direction, element t(i) of the cropped stego-signal can be matched only with the
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(N+1) elements s(i) to s(i+N) of the stego-signal. A similar constraint is applied at the

endpoints. The result is a constrained search region in the form of a diagonal strip as

shown in Figure 9.

Local path constraints. As every sample of the cropped stego-signal is contained in the

original stego-signal, the optimal path should include all the test string elements. That is,

no skips are permitted along the i-axis. At most, N reference string samples may be

skipped in the process of finding the optimal path, as N samples were cropped. Thus, for

node (t(i), s(i)) in the search region, the possible immediate predecessor nodes include

(t(i-I), s(k)) where k ranges from (H) to (i-I).

As a consequence of the Bellman optimality principle [5], the optimal path to the

node (t(i), s(i)) can be found by considering the best paths associated with all the possible

predecessor nodes and choosing the one with the minimum cost,

Dmin (i, j) = min (i-I,k){Dmin(i-1. k) + dnU» 1.)}, k =(i-1).----,(l"1) (13)

After all the nodes in the search region are considered, a set of N+1 optimal paths

is obtained. The first path, that is the one that involves zero skips, is the same as the

cropped stego-signal. The global optimal path is the one associated with least cost among

them. If the first path is associated with the least cost, then it implies that the last N

samples of the stego-signal were cropped. It can be observed that the number of optimal

paths is one more than the number of cropped samples. This follows as a direct

consequence of the search constraints and equation (13). Although the paths might have

common nodes, they never traverse each other. At every node (t(i), s(m of a particular

optimal path, it is necessary to record the immediate predecessor node from which the
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path was extended. This way the path may be reconstructed by backtracking beginning at

the terminal node.

The overall algorithm based on the principles above involves the following steps:

i) Initialization: The original node is (0,0) and the nodal cost associated with it is zero.

(0,0) is the only predecessor associated with nodes (t(l), s(D), j = 1,. . .,(I+N).

Danae) = dn(0.0) + dn(1.1). j = 1......(1+N)

M], j) = (0,0), j= I,....,(1+N)

MI, 1') = the index of the predecessor node to (1, j).

51(1) = Dmm(1.J). J' = 1......(1+N)

ii) Recursion:

For i = 2,...,T

Forj = i,...,(i+N)

Compute Dmin(i, j) using (13).

(Dmm(i-1, j) is held in (5,0)).

(MI, j) is recorded for every (i, j)).

51(1) = Dmin(i. 1')

Nextj

Next i

iii) Termination: The best path is the one associated with the least cost.

min (Danna. 1)}. J'= T.....(T+N)

iv) Reconstruction: The best path accurately identifies samples of the cropped stego-

signal that are present in the stego-signal. The cropped samples are the ones, which are

not present in the cropped stego-signal. The reconstructed stego-signal can be obtained
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easily by reinserting the cropped samples at the appropriate places of the cropped stego-

signal.

v) Watermark recovery: The watermark recovery process is applied to the reconstructed

stego-signal.

3.2.2. Memory and computational requirements

The algorithm requires about (N+1)T nodal costs or distance measures to be

computed and approximately ((N+1)(N+2)T)/2 implementations of equation (13).

Considering the memory requirements, a matrix of size 0(TS) must be allocated for

backtracking. This requirement cannot be replaced by the use of N+1 arrays of size 0(T)

each. Such a replacement will require precise knowledge of the nodes comprising each

path and this information will not be available until the entire algorithm has been

executed. To compute Dmin(i, j) at every (i, j) within the search region, it is necessary to

have just the past Dmin(i-1, j) values for j = (i-I),...,(i-1). Therefore, at most an array of

dimension IX(N+I) is required assuming that the computation can be done in-place.

3.2.3 Cropping in the presence of additive noise

Though TEC speech watermarking is fairly robust to additive noise, the recovery

process is severely affected even if one sample is cropped. However, it was found that

the DTW algorithm for watermark detection and recovery functioned quite efficiently in

the presence of independent uncorrelated random noise. The experimental results for

different SNR and CWR values are discussed in the next chapter.
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3.3 Counterfeit attacks

Also known as protocol attacks [11, 18, 21, 24, 25], counterfeit attacks seek to

undermine the concept of watermarking itself by producing fake originals or fake

watermarked signals. Counterfeit attacks are not concerned with destroying the

' embedded watermark nor disabling the recovery process. In the context of counterfeit

attacks, robustness has a different meaning. A watermarking scheme is said to be robust

against counterfeit attacks if the attack does not succeed in creating ambiguity in the

resolution of ownership (or any other purpose for which watermarking is used).

There are different types of counterfeit attacks including inversion attacks,

multiple watermarks, and copy attacks. The basic idea behind watermark copy attack is to

copy a watermark from a stego-signal to another signal without the knowledge of the

watermarking algorithm and the key that were used to create the rightful stego-signal [15,

25]. This is achieved by estimating the embedded watermark either by direct prediction

or denoising [25]. In the case of TEC speech watermarking, the coefficients of the

embedded doubly encrypted watermark are outcomes of Gaussian random variables. For

watermark recovery, a good estimate of these coefficients and knowledge of encryption

keys will be essential. Thus, the copy attack will be extremely difficult to implement in

the case of TEC watermarking.

In an inversion attack, the attacker subtracts his or her watermark from the stego-

signal. The attacker thus obtains a fake cover-signal (original) and claims to be the owner

of the watermarked signal. This can create ambiguity in the resolution of the ownership

of the stego-signal. Craver et al. [11] show that non-invertibility of the embedded

29



watermarks is essential for robustness against inversion attack. Non-invertibility of TEC

speech watermarking is discussed in Section 2.3.

The problem of multiple watermarks arises when an attacker inserts another

watermark into the already watermarked signal and claims ownership of the signal. As a

consequence, this creates ambiguity in the resolution of ownership. The TEC speech

watermarking technique can be made robust against such a problem as discussed below.

Suppose person A is the real owner of a speech watermarked using TEC. A’s

stego—signal is,

€
1
2

s = c + (14).

Person A releases only the watermarked speech and not the cover-signal to the public.

Person B obtains a copy of s and is interested in selling illegal copies. B embeds another

watermark wB into sand circulates illegal copies of SB. It is assumed that W}; is

embedded in s in accordance with an additive rule and also that W]; is not correlated with

s. This ensures that the distortion produced as a result of watermarking the already

marked (using TEC) stego—signal is linear and uncorrelated. Robustness against distortion

that is non-linear and correlated with the stego-signal is beyond the scope of this

research.

s3 =c+uzr+w3 (15).

Person A comes across one of the illegal copies and recovers w from it. When A

tries to sue B, B claims ownership of sB . However this fails to create enough ambiguity

due to the following reasons.
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i) It will not be possible for B to show a copy of the speech that does not contain A’s

watermark.

ii) A has the cover-signal and stego-signal that do not contain B’s watermark, giving

credence to the proposition that A is the true owner.

iii) Copies of the stego-signal (if any) not circulated by B contain A’s and not B’s

watermark.
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Chapter 4

IMPLEMENTATION DETAILS, RESULTS AND

CONCLUSIONS

4.1 Robustness testing engine

In this chapter, the experimental results obtained by testing the robustness of TEC

watermarking to additive noise and to cropping are presented.

One main problem faced by the current digital watermarking technology is the

absence of common benchmarks for the evaluation of different watermarking schemes.

Petitcolas [28] proposes the establishment of a public benchmarking service. The

performance metrics to be used for evaluation are yet to be established. Software

packages StirMark [29] and unZign [30] include robustness testing engines for image

watermarks. Such services provide a common platform for the evaluation of different

watermarking techniques. Public domain software for testing the robustness of audio

watermarking techniques is not yet available.

To study the robustness of TEC speech watermarking, the robustness testing engine

developed by Ruiz et al. [35] was used. The testing engine can be used to perform 17

tests on the stego-signal. The tests include addition of random noise, cropping, filtering,

u—law compression and expansion. The robustness testing engine accommodates a high

degree of flexibility for setting the parametric values characterizing the tests. For the

evaluation of TEC speech watermarking, an error measure was determined according to

the following equation.

32



12..

— (W _ wr)2

A2

W

(16)

In (16), it indicates the original watermark recovery signal and w' indicates the

watermark recovery signal obtained from a distorted stego-signal. In addition to the error

E the normalized correlation p, defined in (5), is used to evaluate the performance. A

quality rating (see Table l) on a scale from 1 to 5 was used to quantitatively describe the

perceived results. Martin used a similar rating in [34] to rank the quality of the

watermarked image. Two individuals were asked to rate the quality of the stego—signal,

distorted stego-signal and the watermarks recovered form the distorted stego-signal in

accordance with Table 1. These ratings were obtained without providing the individuals

with the knowledge of the error and normalized correlation values. A quality rating of 3

for the recovered watermark is considered sufficient and it implies that the watermark is

 

 

 

 

 

 

 

identifiable.

Table 1 - Quality rating

Rating Quality of the Quality of the recovered Effect of distortion on the

watermarked signal watermark stego-sigpal

1 Watermark imperceptible Excellent No perceptible damfle

2 Perceptible, not annoyin Good Perceptible

3 Slighm annoying Fair Mildly degrading

4 Disturbifl Poor Degradifi

5 Very disturbing Bad Destructive    
 

4.2 Robustness to additive noise

Experiments were performed for studying the robustness of the stego-signal

against uncorrelated additive noise. Gaussian or uniformly distributed noise was used.

For all the experimental results and simulations presented in this section, a record of

48387 samples (3 seconds) of the speech “Theodore Roosevelt talks about Wilson and
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Taft” [32] was used as source material. The signal is monaural, sampled at 16kHz with

l6-bit quantization. The “Lena” image was used as the watermark.

Table 2 enumerates the experimental results obtained by adding randomly

generated Gaussian noise to the stego-signal. A set of three watermarks was embedded in

the 48387-sample speech waveform, by dividing it into three frames, each consisting of

16129 samples (Figure 10). For the last five entries in the table, a watermark was

embedded selectively in the first frame as it was associated with higher speech energy.

For all results in Table 2, the masking algorithm used of a constant gain factor. Since

every sample of the encrypted watermark was scaled by a constant, the CWR as defined

in (1) was not a constant, but a varying quantity. In Table 2 the average CWR values over

every frame and across the entire speech segment are shown. When a constant gain factor

is used, the mean CWR across the entire speech segment varies widely from the CWRs

averaged across individual frames. The SNR and the normalized correlation between the

distorted and original watermark recovery signals are tabulated.

It can be inferred from Table 2 that robustness against Gaussian additive noise

depends on the CWR and the SNR. A lower CWR and a higher SNR contribute to

increased robustness. Since the embedding process is independent of the speech intensity,

watermarking selectively does not contribute to increased robustness and all the

recovered watermarks are of the same quality. In interpreting the normalized correlation

. value, it must be noted that it is dependent on both the SNR and CWR. Even if the SNR

' is low, the normalized correlation between the original and distorted watermark recovery

signals may be high, if the CWR is low. When the embedded watermarks were very

mildly perceptible, corresponding to a mean CWR of approximately 26 dB, the mean of
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the recovered watermarks was identifiable for an SNR of 42.63dB. In this case, the noise

had the effect of just mildly degrading the stego-signal. When the mean CWR was 21.4

dB, better robustness was exhibited. However, the watermark was perceptible in the

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

speech.

Table 2 - Robustness to Gaussian noise (constant gain factor)

CWR Mean Gaussian SNR Norm. Quality Effect Recovered

(dB) CWR noise (dB) Correl of of noise watermarks

(dB) ation stego- on

p signal stego-

1 2 3 p 0 Signal 1 2 3

31.4 19.1 27.6 26.04 0 .0046 26.61 0.3491 2 4 5 5 5

31.4 19.1 27.6 26.03 0 .00092 42.63 0.8784 2 2 4 4 4

31.4 19.1 27.6 26.06 0 .00009 62.60 0.9985 2 2 2 2 2

26.4 14.2 22.6 21.06 0 .0092 22.59 0.3161 2 4 5 5 5

26.4 . 14.2 22.6 21.05 0 .0046 28.63 0.5479 2 3 5 5 5

26.4 14.2 22.1 21 .06 0 .0037 30.59 0.6302 2 3 4 4 4

26.4 14.2 22.6 21.06 0 .0023 34.67 0.7925 2 3 4 4 4

26.4 14.2 22.6 21.06 0 .00092 42.64 0.9562 2 2 2 2 2

21.4 9.2 17.6 16.06 0 .0046 28.68 0.7605 3 4 4 4 4

26.4 - - 26.38 0 .0092 22.55 0.1865 2 4 5 - -

26.4 - - 26.38 0 .0023 34.65 0.5988 2 3 4 - -

26.4 - - 26.38 0 .00092 42.58 0.8805 2 2 3 - -

21.4 - - 21.38 0 .0046 28.60 0.5531 3 4 4 - -

21.4 - - 21.38 0 .00092 42.63 0.9581 3 2 2 - -             
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Figure 10. Robustness of TEC watermarking to Gaussian noise (constant gain

factor). 48387 samples of the speech “Theodore Roosevelt talks about Wilson and Taft”

[32] was used as the cover—signal. The “Lena” image was used as the watermark. (a) The

cover-signal, encrypted stego—signal, the stego—signal distorted by the addition of

Gaussian noise and the watermarks recovered from the distorted stego-signal. The

recovered watermarks were associated with a quality rating of 4 (Table 2). (b) Mean

recovered watermark (quality rating of 3) (c) Histogram of the watermark recovery signal

before and after the addition of Gaussian noise. (d) One of the recovered watermarks.

Also shown are the histograms of the original and recovered watermarks, and the

encrypted watermark reshaped into an array.
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Table 3 - Robustness to Gaussian noise (adaptive gain factor)

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

CWR Gaussian SNR Error (E) Norm. Quality Effect Recovered

(dB) noise (dB) Correl of of noise watermarks

ation stego- on

p signal stego-

u o l 2 3 signal 1 2

23.90 .0009 42.59 .071 .6202 .203 0.9599 3 2 3 5

29.90 0 .0046 28.70 .784 1.076 .957 0.3275 1 4 5 5

29.90 0 .0009 42.66 .203 .8418 .433 0.8657 1 2 3 5

29.90 0 .0001 62.67 .002 .0754 .007 0.9983 1 l 1 3

26.91 0 .0046 28.64 .703 1.087 .869 0.4396 2 4 4 5

26.90 0 .0009 42.64 .1 15 .7401 .291 0.9253 2 2 3 5

22.04 0 .0009 42.66 .058 - - 0.9500 3 2 3 -

26.04 0 .007 25.09 .849 - - 0.2435 2 4 5 -

26.91 0 .0069 25.13 .959 - - 0.3071 2 4 5 -

26.05 0 .0046 28.65 .709 - - 0.3541 2 4 5 -

26.05 0 .0009 42.65 .135 - - 0.8873 2 2 3 -

25.05 0 .0009 42.65 .1 19 - - 0.9061 2 2 3 -

28.05 0 .0009 42.63 .179 - - 0.8364 1 3 3 -

28.04 0 .0001 62.68 .002 - - 0.9979 1 I 2 -             
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Figure 11. Robustness of TEC watermarking to Gaussian noise (adaptive gain

factor). 48387 samples of the speech “Theodore Roosevelt talks about Wilson and Taft”

[32] was used as the cover—signal. The “Lena” image was used as the watermark. (a) The

cover-signal, encrypted stego-signal, the stego-signal distorted by the addition of

Gaussian noise and the watermarks recovered from the distorted stego-signal. The

recovered watermarks were associated with a quality ratings of 3, 5 and 4 respectively

(Table 3). (b) Mean recovered watermark (quality rating of 3) (c) Histogram of the

watermark recovery signal before and after the addition of Gaussian noise. The shape of

the histogram before attack indicates the use of an adaptive gain factor for watermark

embedding ((1) One of the recovered watermarks. Also shown are the histograms of the

original and recovered watermarks, and the encrypted watermark reshaped into an array.



Table 3 shows the results obtained by testing the robustness of TEC speech

watermarking against Gaussian noise when the masking process uses an adaptive gain

factor (also see Figure 11). Hence, the CWR is a constant throughout the speech. The

error, determined according to (16) is also tabulated. In addition to the CWR and the

SNR, robustness (and the error) is influenced by the intensity of the speech. On

comparing Tables 2 and 3, it is inferred that for a given quality of the watermarking

process, better robustness is exhibited by speech watermarked using an adaptive gain

factor. This fact suggests the use of masking algorithms that exploit the perceptual

properties of human auditory system for increased robustness. The ultimate aim would be

to achieve robustness such that the quality of the recovered watermarks is better than, or

comparable to, the effect of noise on the stego-signal, even when the embedded

watermarks are imperceptible. That is, the rating in the recovered watermarks or at least

the mean recovered watermark column (see Table 2 or 3) is less than or equal to the

rating in the effect of noise on stego-signal column. At present, such results are achieved

only for CWRs that cause watermarks to be at least mildly perceptible. A similar

behavior was observed when experiments were conducted using non-zero mean Gaussian

noise.

Experiments were conducted to study the robustness of TEC watermarking to

uniformly distributed noise (see Figure 12). The results are tabulated in Tables 4 and 5.

When the embedded watermarks were mildly perceptible, at least one of the recovered

watermarks was identifiable for an SNR of approximately 30dB for the adaptive gain

factor case. When the CWR was 31.4 dB, the mean recovered watermark was identifiable
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for an SNR of 28.34 dB. Taking into account the CWR, robustness of TEC watermarking

tends to be better in the presence of uniformly distributed noise over Gaussian noise.

0

0

Table 4 - Robustness to uniformly distributed noise (constant gain factor)

 

   

 

 

 

 

 

 

               
 

 

 
 

 

 

 

 

 

 

  

CWR Mean Noise SNR Norm. Quality Effect Recovered

(dB) CWR (uniform) (dB) Correl of of noise watermarks

(dB) ation stego- on

p signal stego-

signal

1 2 3 n max. M l 2 3

3 i .4 19.1 27.6 26.0 .0046 .0092 27.40 0.8876 2 4 5 5 5 5

31.4 19.1 27.6 26.0 .0023 .0046 33.41 0.9259 2 3 4 5 5 5

31.4 19.1 27.6 26.1 .0012 .0023 39.43 0.9625 2 2 3 3 3 3

26.4 14.1 22.6 21.1 .0041 .0083 28.34 0.9251 2 3 3 4 4 4

26.4 14.1 22.6 21.0 .0023 .0046 33.39 0.9568 2 3 3 3 3 3

21.4 9.16 17.6 16.1 .0046 .0093 27.38 0.9512 3 4 3 4 4 4

21.4 9.15 17.6 16.1 .0035 .0070 29.09 0.9647 3 3 3 3 3 3

Table 5 — Robustness to uniformly distributed noise (adaptive gain factor)

CWR Noise SNR Error Norm. Quality Effect Recovered

(dB) (uniform) (dB) Correl of of noise watermarks

ation stego- on

p signal stego-

:1 max 1 2 3 5'81““ M 1 2 3

29.89 .0046 .0092 27.39 .178 .294 .233 0.8103 1 4 5 5 5 5

29.91 .0035 .0069 29.90 .141 .286 .209 0.8365 1 3 5 4 5 5

29.90 .0012 .0023 39.44 .046 .214 .099 0.9351 1 2 3 3 5 3

26.90 .0035 .0069 29.92 .1 19 .271 .172 0.8682 2 4 4 4 5 4

23.92 .0042 .0083 28.29 .1 1 l .259 .157 0.8838 3 4 4 3 5 5

23.90 .0035 .0069 29.90 .077 .248 .138 0.9006 3 3 3 3 5 4             
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Figure 12. Robustness of TEC watermarking to uniformly distributed noise

(constant gain factor). 48387 samples of the speech “Theodore Roosevelt talks about

Wilson and Taft” [32] was used as the cover-signal. The “Lena” image was used as the

watermark. (a) The cover-signal, encrypted stego-signal, the stego-signal distorted by the

addition of noise and the watermarks recovered from the distorted stego—signal. The

recovered watermarks were associated with a quality ratings of 4 (Table 4). (b) Mean

recovered watermark (quality rating of 3) (c) Histogram of the watermark recovery signal

before and after the addition of Gaussian noise. ((1) One of the recovered watermarks.

Also shOwn are the histograms of the original and recovered watermarks, and the

encrypted watermark reshaped into an array.

41



4.3 Robustness to cropping

The DP algorithm for the detection of cropped speech samples and watermark

recovery is described in Section 3.2.1. The Matlab implementation differs slightly from

the description found in 3.2.1. This deviation was necessary to account for the “out of

memory " problems encountered in Matlab when the algorithm was used for a speech

sequence consisting of more than approximately 7000 samples.

4.3.1. Implementation details of the modified DP algorithm

The algorithm described in Chapter 3 requires a matrix of size 0(TS), where T

and S are the lengths of the cropped and original stego-signals, respectively. The values

of T and S employed here result in out of memory problems when the unaltered DP

algorithm is implemented in Matlab. One simple remedy would be to break down the

long speech sequence (greater than 7000 samples) to shorter sequences and to apply the

algorithm separately to each of them. However, this would necessitate the determination

of the exact number of cropped samples in each of the shorter segments. For this, the

exact end-points may have to be determined by cross-correlation between the original

stego-signal and cropped speech segment in the appropriate region. Such an approach

may not perform optimally in the presence of noise, as noise might hinder the accurate

determination of the end points.

Hence, the implementation of the algorithm was modified to alleviate out of

memory problems or the need to determine the exact number of cropped samples in each

of the shorter speech segments. The modified form determines the global best path and

requires ‘p’ matrices, each of which comprises of m rows and m+N columns. Here, m is a
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number less than 8000 and greater than N, the number of cropped samples. The

modification involves dividing the cropped stego-signal into frames of m samples each

except the last one, which may contain less than tn samples. p is the total number of

frames, excluding the last one. The search constraints described in Section 3.2.1 are

applied here (Figure 13). The algorithm proceeds similar to the original version by

assigning costs to nodes and applying the Bellman optimality principle. During transition

from one frame to another, the costs associated with the last N+I nodes [in the case of the

first frame they include nodes (t(m), s(l)) , m S j 2 m+N] of the previous frame are taken

as the initial costs associated with the next frame. Backtracking information for each of

the m-segment frames is stored in p matrices of dimension (m, m+N). At the end of the

last (that is, p+1‘”) frame, the global best path is chosen from the N+I optimal paths, by

selecting the one with the least cost. On backtracking across the various frames, the

global best path is reconstructed.

3(3)
3

1 NH

s(T) --------------------------------------
------

 

s(2m+1+N)

s(2m+l)
 

 

s(m+1+N)

 

s(m+l)

 s(N-t-l)

  
 

~
.
\
/

(0,0 t(rn+1) t(2m+1) t(T)

Figure 13. Modified implementation of the DP algorithm
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The modified algorithm involves the following steps:

i) Initialization: The original node is (0,0) and the nodal cost associated with it is zero.

(0,0) is the only predecessor associated with nodes (t(I), s(J)), j = 1,. ..,(I +N).

Dmin(0, 0) = dn(0,0) , i = j = 0.

5107 = Dmin(0. 0)

ii) Recursion:

For k = I,...,p

For i = i+1,...,km

Forj = i,...,(i+N)

Dmm (i, J) = min (i-l.j){Dmin(i‘1, j) + dn(i, J)}, k = (i-I),....,(i-1)

(Dmg..(i-I, J) is held in 61(1)).

Record m(i, J).

t/Ik(i, J) = the index of the predecessor node to (i, J) in the kth frame.

51(1) = Dmrn(i, 1')

Nextj

Next i

Next k

iii) Termination:

Fori = km+l,...,T

Forj = i+1,...,S

Dmin (131) = min (r-r.j){Dmrn(i-1. 1') + dn(i. 1)}, k =(i-1).----.(J'-1)

(Danna-I, J) is held in 61(1)).

Record %+1(i, J).
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WPHU, j) = the index of the predecessor node to (i, j) in the last frame.

510) = Dunno} D

Next j

Next i

The best path is the one associated with the least cost.

min {Dmin(T: 1)}. J'= T,....(T+N)

iv) Reconstruction: By backtracking through the (p+1) frames, the global best path is

obtained. The best path accurately identifies samples of the cropped stego-signal that are

present in the stego-signal. The cropped samples are the ones, which are not present in

the cropped stego—signal. The reconstructed stego-signal can be obtained easily by

reinserting the cropped samples at the appropriate places of the cropped stego-signal.

v) Watermark recovery: The watermark recovery process is applied to the reconstructed

stego-signal.

Computational requirements for this modified implementation are the same as

those for the original algorithm of Section 3.2.2. Instead of a single matrix of size 0(TS),

the modified implementation requires p matrices of size 0(m2-I-mN), where m is small

compared to T. This modification solves the out of memory problems.

4.3.2. Experimental results

As an example, the DP algorithm was applied to a cropped stego-signal

watermarked using TEC. The cover-signal was obtained from the TIMIT speech database

[33] and has a male voice saying: “She had your dark suit in greasy wash water all year.”

In Figure 12, 7968 speech samples were used. Quasi m-arrays of dimension 63x63 were

used for encryption.
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Cover-Signal

 

Encrypted stage-signal

 

Cropped stage-signal

 

(a)

Cover-signal

  
Encrypted stego-signal

 

Reconstructed stego-signal

 

  

(b)

Figure 14. DP algorithm for watermark recovery (a) Cropping and watermarks

recovered from cropped speech. (b) Reconstructed stego-signal obtained after the

application of the DP algorithm. Watermarks recovered from the reconstructed stego-

signal.
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After the cover-signal was TEC watermarked, 150 samples of the stego-signal

were randomly cropped using the robustness testing engine. The watermarks recovered

from the cropped stego-signal are shown in Figure 14(a). The DP algorithm was then

applied to the cropped stego-signal to detect the cropped samples and to reconstruct the

stego—signal. The cropped samples were accurately determined and the watermarks

recovered from the reconstructed stego-signal (Figure 14(b)).

The robustness of the DP algorithm was tested with varying CWRs and varying

numbers of cropped samples. In the absence of additive noise, the cropped samples were

accurately determined under all tested conditions .

Table 6 — Robustness to cropping and additive noise (adaptive gain factor)

 

 

 

 

 

 

 

 

 

 

  

CWR Gaussian SNR Number of Error Normalized Cropped

(dB) Noise (dB) cropped (E) correlation samples

samples p accurately

1l 0 determined

Yes/No

32.2197 0 2.546x10" 44.9662 19 0.2663 0.9134 Yes

32.1 181 0.0013 30.8328 19 0.8355 0.4365 Yes

32.2246 0.0023 25.7200 19 0.9234 0.3252 Yes

31.91 15 0.0026 25.3634 19 0.9902 0.2323 Yes

32.0573 0.0025 25.2290 92 1.0290 0. 1 167 Yes

31.9341 0.0128 1 1.3201 3 1.2426 0.0391 Yes

32.2893 0.01 15 12.464 19 1.1785 0.0296 Yes

31.8826 0.01 15 12.4326 92 1.2323 0.0861 No

26.0974 0.01 15 12.2692 92 1.2043 0.0960 No       
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4.4. Robustness to cropping in the presence of noise

In the previous section, it was determined that in the absence of noise, cr0pped

samples were accurately determined. The DP algorithm was also tested for watermark

recovery from stego-signals distorted by additive noise as well as cropping. TEC speech

watermarking was found to be fairly (Section 4.3) robust to additive noise alone when the

embedded watermarks were not perfectly imperceptible. It is important for DP algorithm

to tolerate noise, at least to the extent to which TEC speech watermarking is robust

against additive noise.

Using Ruiz’s robustness testing engine, the stego-signal was randomly cropped

and subjected to additive noise. In all the experiments (Table 6), 961 samples of the

utterance, “She had your dark suit in greasy wash water all year” [33] was used. The

accuracy of the DP algorithm was verified by comparing the actual cropped samples with

the missing samples detected by the algorithm. The performance is mainly dependent on

the SNR. The algorithm is robust for a SNR of 11.3 dB or above. It was observed that

when the SNR approaches the 11.3dB threshold, the performance degrades, with an

increase in the number of cropped samples (see Table 6).

The DP algorithm is robust to additive noise well above the robustness threshold

(approximately 30dB when the embedded watermarks were mildly perceptible) of TEC

speech watermarking. Experiments have confirmed that for the range of importance, that

is when the recovered watermarks are identifiable, the algorithm is reliable.

48



4.5. Conclusions

The salient points from the experiments described above are summarized as follows:

The robustness of TEC speech watermarking to additive noise, is mainly dependent

on the SNR and CWR. Higher SNRs and lower CWRs contribute to increased

robustness. The need to maintain the perceptual transparency of the embedded

watermark imposes a lower limit on the CWR.

When the watermark masking algorithm involves the use of an adaptive gain factor,

better robustness is exhibited by watermarks embedded in the higher intensity regions

of speech.

The DP algorithm for the detection of cropped samples and subsequent watermark

recovery performs with 100% accuracy in the absence of noise. In the absence of

noise, the performance is independent of the number of samples cropped.

In the presence of cropping and uncorrelated additive noise, the performance of the

DP algorithm is mainly determined by the SNR and the number of cropped samples.

Unlike most watermarking techniques [9,10], TEC watermarking admits watermark

recovery, not just watermark detection. If the watermark contains information

supporting the owner or title, on recovery, this information will lead to greater

credence in the true ownership.
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Chapter 5

FUTURE WORK

Digital watermarking is an emerging technology and it faces problems typical of

many new signal-processing endeavors. The main problems include difficulty in dealing

with many types of attacks, a lack of standard tools with which to assess and compare

watermarking schemes, and the lack of clear definitions of watermarking requirements

[42]. As the need for the technology increases, these problems will have to be resolved if

the methods are to be effective and therefore accepted by those depending on the

technology for copyright protection. In addition to the challenges common to all

watermarking techniques, TEC speech watermarking as described in this thesis, requires

further research in a number of areas. Some areas identified for future work are as

follows:

9 Robustness of TEC watermarking to other attacks [45] must be studied. In particular,

study of the robustness to signal-processing transformations like resampling,

compression, filtering and quantization is of importance. These transformations may

be the consequence of routine and unintentional operations on the stego-signal. Some

of the other deliberate attacks to be studied include collusion attacks, cryptographic

attacks and time-scale modification. While studying the robustness, it is also

essential to test TEC watermarking against a combination of two or more attacks.

Robustness study will entail developing a more elaborate robustness testing engine.

0 The watermark-masking algorithm as described in this document, involves scaling the

watermark by a gain factor in accordance with the CWR. Future work in this area

comprises the application of masking algorithms that exploit the perceptual properties
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of the human ear. Application of perceptual model-based masking algorithms

becomes necessary for watermarking due to the rigid requirements of imperceptibility

and robustness. Such an application must be viewed in conjunction with robustness

against perceptual model-based compression algorithms like MPEG.

Not much research has been done in the field towards understanding the embedding

capacity [31] offered by the different watermarking techniques. Research must be

done to determine the best strategies for utilizing the embedding capacity so as to

fulfill watermarking and channel bandwidth requirements.

An appropriate audio transform coding strategy must be implemented to effect

compression in conjunction with watermarking. In such a scenario, it will be

important to use audio or speech rather than image watermarks.

In the context of various attacks (although this did not matter for additive noise and

cropping), some classes of watermarks may perform than others. Future work will

also pursue understanding watermark characteristics that result in optimum

watermarks in the presence of a particular attack.

TEC was initially developed as an image compression algorithm [3]. Application of

TEC watermarking to images and the performance appraisal are areas in need of

further work
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