
1
‘

,
.

fi
g
fi
fi
y
f

A
‘

I:
“
3
1
9
%
"
.

L
.

5
%

_
V'

u
n
fl
i
g
fl
.

‘
‘

'
6
.

m
a
r
)
.

..
.

-
v

.
M

“
a
t
:

‘
a
;
k
a
g
j
‘
,

g
d
‘
a
’
m
’
fi
fi
f
u

.A
.
A
'

.
5
5
2
2
-
.
-
“
a
?
?
?
“
i
fi

fi
g
r
‘
m
u
a
w

‘
4
2
2
2
.
5
9
3

.
.

L
a
w
-

..
.-
.
4

.
9
A
.
"
-

w
;

..
.,
'.
‘.
".
J

a
.
‘

C
o
r

a
.

“
5
3
¢
“

'
.
2
;

 

m
y
"
?

2
"
»

”
n
o
:

r)
?

5,
5,

.

‘
3
”

a
“

.

H
m

2

.
m
.
.
.
“

m
a
i
n
.
)

“
n
u

.m
-

-
3'
.
“

.1

M
i
k
a
-  



THESlS

2.

20L. 1

This is to certify that the

dissertation entitled

MAGNETCXZONDUCTIVITY OF TWO—DIMENSIONAL

ELECTRON SYSTEMS

presented by

Frank Oliver Kuehnel

has been accepted towards fulfillment

of the requirements for

Ph . D degree in Physics
  

H.15Y’Lmt (2M
 

I

Major professor

Date 12/05/619 

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771



 

 

LIBRARY

Michigan State

University

 
 

PLACE IN RETURN BOX to remove this checkout fromyour record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

L112“? 1 3 2::

 

 

 

 

 

 

 

 

    
 

6/01 c-JCIRC/DateDue.p65—p.15

 

 

  



ABSTRACT

MAGNETOCONDUCTIVITY OF TWO-DIMENSIONAL ELECTRON

SYSTEMS

By

Frank Oliver Kuehnel

The conductivity 03$(w) of a low-density nondegenerate 2D electron gas is inves-

tigated under conditions where hwc >> kBT >> fry (a)C is the cyclotron frequency and

try is the disorder—induced width of the Landau level). Such conditions have been

met for electrons on helium surface, and can also be achieved in ultra high quality

heterostructures. Because of the random potential of defects, single-electron states of

the lowest Landau level form a band of a width h'y << hwc. Almost all of these states

are localized. Therefore, for hwc >> kBT >> fly, the static single-electron conductivity

0mm) may be expected to be equal to zero. Since for w >> 7 the conductivity should

decay, on the whole 013W) has a peak at a finite frequency.

From scaling arguments, we show that in the single-electron approximation

0m(w) o< w“ for w —> 0, with the exponent n in the range from 0.21 to 0.22, whereas

the frequency dependence of the cyclotron resonance absorption peak is non-critical.

The far tails of the conductivity peaks are obtained using the method of optimal



fluctuation and are shown to be Gaussian.

In order to investigate the shape of the low frequency peak and cyclotron resonace

absorption peak, we use the method of moments (MOM). In MOM, the low-frequency

conductivity is restored from its 14 spectral moments, whereas the cyclotron resonance

absorption is restored from the calculated 10 spectral moments using the continuous

fraction expansion. In combination with the analytical asymptotics, both expansions

converge rapidly with increasing number of included moments, and give numerically

accurate results throughout the region of interest.

The effect of electron-electron interaction (EEI) on the low frequency conductivity

is also investigated. EEI makes the static conductivity finite. For a low-density

system, the effect can be described using the notion of a fluctuational field EH which

drives an electron because of electron density fluctuations. Due to this field, spatial

diffusion of electrons in a (comparatively strong) random potential of defects gives

rise to energy diffusion of each individual electron, with a diffusion coefficient D6 =

762(E§)h/mwc. In combination with the known power-law asymptotic of the single-

electron conductivity 058(w) for w —-> 0, this allows us to find the static many-electron

conductivity ame.
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Chapter 1

Introduction

One of the most interesting problems in physics of low-dimensional systems is the

effect of the electron-electron interaction (EEI) on electron transport. In some cases

the EEI is the strongest interaction which leads to a change of the energy spectrum,

as in the fractional quantum Hall effect (QHE). In other cases the EEI can be in

some sense weaker than the disorder potential. But even then its effect is extremely

important, as it gives rise to electron energy relaxation and dephasing. In its turn, de-

phasing partly suppresses localization effects arising from the interaction of electrons

with a static disorder potential.

On the other hand, the problem of the single-electron localization in a disorder

potential is of highest interest itself, the integer quantum Hall effect being an example

where essentially all states except those at the Landau level band centers are localized.

The Simplest model which contains the essential physics of the QHE is the localization

of electrons in the lowest Landau level by a random potential of defects. Much effort

had been spent to understand the structure of electron states and even exact results



for the density of states had been obtained [5]. However, the transport dynamics of

such a model remained largely unsolved and more heuristic arguments were used to

interpret the experimental evidence of a localization-delocalization transition [6].

It is only humble to state that the intricate interplay between the localization

properties of a static disorder potential and the delocalization through EEI are of

uttermost importance in understanding the rich physics of low-dimensional electron

systems.

Much work on the EEI refers to high-density systems, where the EEI is in some

sense a perturbation. The role of the EEI should be even more important for low-

density systems, as indicated by the recent remarkable results on transport and

metal-insulator transitions in low-density two-dimensional electron system (2DES)

in semiconductors and semiconductor heterostructures [7].

A well-understood effect in low-density systems is Wigner crystallization. It occurs

provided the ratio of the characteristic Coulomb energy of the EEI e2(7rn)1/2 (n is the

electron density) to the electron kinetic energy Ekin

[‘2 62(7rn)1/2/Ek,n (1.1)

exceeds certain critical value I‘w. In Eq. (1.1), Ekin is equal to the biggest of the

Fermi energy 612‘ and kBT. For F > I‘w, static disorder pins the Wigner crystal,

leading to thermally activated static conductivity.

The critical value I‘w is numerically large. For low temperatures (Ekin 2 6p >>

kBT), in which case I‘w z 37 [8], whereas for a nondegenerate 2DES (617 << kBT)

2



I‘W z 130 [9]. For I‘W > F >> 1, a 2DES is still strongly correlated. It forms an elec-

tron liquid, which in contrast to the crystalline phase, displays self-diffusion, at least

for a nondegenerate 2DES, as seen in various numerical simulations [4, 10, 11]. Under—

standing transport of such a liquid is a challenging problem, in particular because it is

hard to find elementary excitations in contrast to the much better understood Fermi

liquid. The problem of transport in a correlated electron liquid had been formulated

in an early work by Dykman and Khazan [12], the results clearly demonstrate that

transport in such a system is dominated by many-electron effects.

In this present thesis the conductivity OHM) of a nondegenerate 2D electron liquid

in a quantizing magnetic field B transverse to the electron layer will be considered.

In the limit where the force from the random potential is stronger than that from

other electrons, the static conductivity in quantizing magnetic fields was described

[13, 14, 15] in terms of the single-electron theory based on the self-consistent Born

approximation (SCBA) [16]. This theory does not take into account the interference

effects that lead to electron localization in the random potential of scatterers. Such a

description appears to contradict the phenomenology of the integer QHE, where all

but a finite number of single-particle states in the random potential are localized [17].

We will develop a consistent approach to the analysis of the conductivity which will

take into account, in a non-perturbative way, both the effects of the electron-electron

interaction and the effect of electron localization in a static disorder potential. The

new physics emerges from the interplay of strong electron correlations and strong dis-

order. This interplay has not been explored. It leads to new effects, which are readily

accessible to experimental observation. Their analysis requires new techniques, which

3



combine the ideas from very different areas of modern theoretical physics.

After having reviewed aspects of the QHE in chapter 2 and having briefly sur-

veyed the many-electron effects in a nondegenerate 2D electron liquid in chapter 3,

the calculation of the Single-electron magnetoconductivty of a high temperature (non—

degenerate) 2D electron system will be presented. The calculations will go beyond the

standard perturbation approach and the numerical exact magnetoconductivity will

be obtained in chapter 4 (low-frequency conductivity) and in chapter 5 (cyclotron

resonance absorption). Many-electron effects strongly affect the low-frequency con-

ductivity, and will be discussed in chapter 6, whereupon a suggestion for a new ex-

periment and the conclusion are given in chapter 7 and 8 respectively. A compilation

of more intricate calculations can be found in the appendices.



Chapter 2

Single-electron magnetotransport,

Quantum Hall effect

The Quantum Hall effect (QHE) was discovered on about the hundredth anniversary

of Hall’s original work, and the finding was announced in 1980 by von Klitzing, Dorda

and Pepper [18]. Klaus von Klitzing was awarded the 1985 Nobel prize in physics for

this discovery. In brief, it is found that under certain conditions in an effectively two-

dimensional system of electrons subjected to a strong magnetic field, the conductivity

tensor takes the form

0 —iez/h

Here h is Planck’s constant, —e is the electron charge and i > 0 is an integer. In

other words, the current density j is directed precisely perpendicular to the electric

5



field E according to

ja = ZOOBEB (2.2)

I6

and it has the quantized magnitude j/E = ory = ie2/h. The diagonal conductivity

vanishes to any measurable accuracy. At the same time its longitudinal resistance

pm, also vanishes according to

an: ory

p12: : . a ,01: =
2 2 y

on: + Oxy

——0§x+ agy, (2.3)

rendering the system as completely dissipation-less. In fact the conductivities are not

the fundamental quantities. The Hall and longitudional resistance, By 2 VH/I = pry

and RL = VL/I = pm are directly measured in the experiment. The finiteness of

the off—diagonal conductivity 61.3, which is given by a combination of fundamental

constants leads to the peculiar situation where the longitudinal resistivity and con-

ductivity vanishes at the same time.

Astonishingly, the measured Hall resistance

RH = h/e2 z 25812.807572 :1: 0.0000959 (2.4)

is independent of the geometry, material, and persists over a broad range of physical

parameters like magnetic field, temperature and electron density. With its repro-

ducible precision of at least 3.7 parts in 109 (3.7ppb) the QHE is practically applied

as an Ohm standard [19] and may be used as another way to measure the QED

6



fine-structure constant a = noc/2RH, where the permeability of vacuum no is by

definition exactly 47r X 10‘7Hm_l and the Speed of light c has been defined to be

exactly 299792458ms‘1.

In the following sections the physical aspects of such a system will be outlined.

Firstly, a physical realization of a two-dimensional electron system will be presented

and simple conclusions will be drawn from this model. Secondly, in subsequent sec-

tions the focus shifts to more intricate details and implications.

2.1 Experimental evidence

The notion of a two-dimensional system (2D) is briefly illustrated in Fig. 2.1. A

confining potential V(z) introduces a discrete spectrum with a large but finite energy

separation. In the independent electron approximation, and assuming translational

invariance along the interface, the electron states are of the form 7/)(1E, y)Z,,(z) where

Z,, satisfies a Schrédinger equation

h2 62
__ __ V Zn z : EnZn , 2.5,m 3,. + (z) ( > (z) < >

The ground state energy gap AE 2 E1 — E0 typically exceeds the thermal energy

kBT by an order of magnitude, and thus renders thermal transition to excited states

as irrelevant. The electron system is trapped in the ground state Z0(z), thus any

dynamical evolution in the z-direction is frozen.

Hall measurements on 2D systems are performed in the standard Hall bar ge-
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Figure 2.1: The confining potential V(z) with a high, effectively infinite barrier at the

interface representing the large band gap of the insulator. The gap AB 2 E1 — E0

can be several meV large, for semiconductors (SiOg-inversion layer) typically 20meV

(200 K), much greater than the temperature at which the QHE is observed. A typical

realization of a two-dimensional (2D) electron system is formed within the 25A thick

inversion layer (dashed line) of the MOSFET structure (right).

ometry. The electrons are confined in the plane with the Hall bar shape, a strong

magnetic field B penetrates this plane transverse to it. The inset of Fig. 2.2 illustrates

the Hall bar geometry. Measurements were conducted with a constant source-drain

current of 25.5uA, the voltage drops VH and V, were recorded as a function of the

magnetic field. At certain values of B the longitudinal resistance R, : VI/I vanishes.

The plateau values of RH = V”/I coincide with the region of vanishing RI.

Attempting to interpret the quantum Hall transport, a single—electron picture is

often used. In the simplest case the electron dispersion is determined by a single

parabolic band with an effective electron mass m. Starting with the single electron
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Figure 2.2: Chart recordings of V” and V,,. vs. magnetic field for a GaAs-AlGaAs het-

erostructure cooled to 1.2K. The source-drain current is 25.5nA and electron density

ne 2 5.6 x 10“cm“2, Cage et al. [2].

Hamiltonian

H — 1( 'hV+eA) (26)
0 _ 2m 2 m’ '

where —e is the electron charge and A is the vector potential for the magnetic field,

B = V x A. Here, it is assumed that B points along the positive 2 axis, B =

(0,0, B), B = [B]. The cyclotron frequency is defined as we 2 eB/m.

In strong magnetic fields at low temperatures kT << fiwc it is also fair to assume

that all electron spins are aligned with the magnetic field. The Zeeman splitting,

H5 = g“ [1.3/2 6B depends on the effective Landé factor 9“ of the carriers, n3 = eh/2m

is the Bohr magneton and 6 the Pauli matrix operator. In general 9" depends on the
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spin-orbit coupling and on exchange effects. For electrons in the vacuum 9“ = 2,

thus the Zeeman splitting equals the cyclotron resonance gap have. For electrons on

a liquid helium surface, it is safe to neglect electron spin effects.

As will be derived later, the energy spectrum of the Hamiltonian (2.6) is discrete,

Em = hwc(m + 1/2), m = 0, 1,. . .. The density of states (DOS) for this ideal system

consists of a sum of 6-functions located at the energy values Em,

eB

p<E> = 7,-— gm: — Em). (2.7)

This idealized picture of a 2D system with given translational gauge symmetry

is rather contrived and does not capture the essential physics to interpret transport

experiments. In “real” 2D systems such as electrons on a liquid helium surface (to

be discussed in the next chapter) or electrons confined in a semiconductor inversion

layer the electrons are influenced by a random scattering potential which may come

from impurities, interface roughness etc. Scattering of electrons is the source of a

finite broadening of the energy spectrum, see Fig. 2.3.

A more realistic model will explicitly include the effects of a static disorder po-

tential

H 2 H0 + V(r). (2.8)

The role of the disorder potential V(r) is essential in the case of the QHE. That the

effects of a disorder potential on electrons in a strong magnetic field is not perturba-
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Landau level

  

 

 
 

ii m=0 m=1 m=2

DOS

9(5) “5) """
‘ 9(5) --—

1/2 hm, 3/2 hm, 5/2 hm, Energy E

Figure 2.3: The density of state of a 2DES with scattering (solid line). Each degen-

erate Landau level (dash-dotted lines) m = 0,1,... of the free electron Hamiltonian

(2.6) will be broadened by a I‘m. Superimposed is the Fermi-Dirac distribution (fat

dashed line). Spin splitting is not considered.

tionally small, can be seen from a simple argument. Electrons in a strong magnetic

field do not have a finite group velocity. Therefore any perturbation techniques based

on the premises of weak interaction between electron and scatterer will fail to describe

the basic phenomenon of the QHE, namely the localization of states.

The concept of localized states in disordered systems was pioneered by Ander-

son [20]. He showed that if a quantum-mechanical system is sufficiently disordered,

states have a finite probability of returning to a given site in the long-time limit.

This absence of diffusion implies that these states are localized in a finite region of

space. The transmission probability decays exponentially on a length scale, which

is called the localization length. For localized states the static conductivity vanishes

at zero temperature which would deliver a reasonable explanation for the vanishing

longitudinal resistance regions at the QH plateaus in Fig. 2.2. The current then is

due to edge states where the conduction is dissipation-less.
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Usually an explanation of the QHE is based on gauge arguments, a first insight

came from Laughlin [21] and consecutively, a more complete line of arguments is due

to Halperin [22]. Indeed, the first idea is that the QHE is basically a bulk effect.

There is no evidence whatsoever that changes in size, shape and connectivity or edge

conditions of a sample lead to any changes in the basic QHE results.

Following the key ideas in [22], extended states do only exist at the exact energy

values of the Landau levels (critical energy) of the unperturbed system (2.6). These

extended states constitute the channels of conduction through which electrons are

transferred dissipation-less pm = 0 whenever the Fermi level is far from those critical

energies. In combination with the gauge argument [21, 22] the conductivity tensor

obtains its form as in (2.1), the longitudinal conductivity 6,, vanishes and the Hall

conductivity 0,3, is locked onto the plateau value ieZ/h. The electron interaction with

a disorder potential is the cause for the finite broadening of the density of states.

However from the experimental point of view, all of those new states have to be

localized, such that they will not contribute to the conductivity.

To summarize the findings, gauge arguments make the QHE theoretically a pre-

cise effect which only depends on fundamental constants and therefore one should

obtain remarkably accurate measurement data. It is even more stunning that the

localization properties of a two-dimensional electron system stemming from an ar-

bitrary randomness of a disorder does indeed support the 0.0037ppm reproducible

exactness of a macroscopic quantum phenomenon, the Quantum Hall effect, instead

of wiping it out.

In the following sections a more detailed investigation of the nature of free electron

12



states, the influence of the disorder potential and the phenomenon of localization will

be given.

2.2 Electrons in lowest Landau level

2.2.1 Free electron Hamiltonian in magnetic field

The Hamiltonian (2.6) is of a simple quadratic form. Techniques for solving the har-

monic oscillator fully apply and the kinetic energy creation and annihilation operators

dl, d are defined

 

— 'hV + eA

dl=d,+'d,d=d,-'d, d: ’ . 2.9
i y 1 y 2Wch ( )

In terms of those operators, (2.6) has the simple form

H, = hw, <de + g) , [d, d*] = 1. (2.10)

The “Landau level quantum number” operator did commutes with H0, i. e.the Landau

level nL is a good quantum number for wavefunctions of the free electron Hamiltonian

in a magnetic field of which the energy spectrum is equidistantly Spaced by AE = 67.0,.

The set of operators (2.9) is not a full description for the original Hamiltonian H0,

since the representation algebra of a two-dimensional electron system (2DES) has four

Operators, 6,, By, :13, y. The magnetic translation creation and annihilation operators
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cl, c are the remaining ones,

“’(cx — icy), c = e‘w’(cx + icy), c = _2hv + 6A — 6B x r. (2.11)

2mw,h

 

61:6

This set of operators satisfies the commutation relation

[c,cl] = 1, [c,dl] = 0.

Each Landau level nL is infinitely degenerate. As can be Shown, the degeneracy stems

from the translational gauge invariance of a 2DES subject to a homogeneous magnetic

field, see Appendix A.

Wavefunctions in symmetric gauge

In the symmetric gauge, A = B(—y/2, 23/2, 0), the operator c is

—ih8, + 6A,, + eBy c _ -—ih6y + 6.43, — eBx

\/2mw,h ’ y — 2mw,h ’

  
CI:

which can be associated with the center of cyclotron orbit motion R = (X, Y),

D X B X = —I\/2c, = 113/2 + 2126,,
 , (2.12)

C 2 [flex = y/2—il26,

where the commutation relation [X, Y] 2 il2 holds, 1 = (Ni/e3 being the magnetic

length. As conjugate operators the orbit center coordinates (X, Y) obey the uncer-

tainty principle (AX)(AY) 2 [2/2.
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It is noted that all eigenstates in the lowest Landau level (LLL) of (2.6) are

generated by

 

|0;m)= (c*)’"lo;0>, 0=c10;0>, me. (213)

1

M

In order to obtain the real space representation ¢m(r) = (rlm), the operators c, cl

have to acquire such a representation too,

1 Z 26 f 1 z 26)
=— — —- :__ _- — u

’4
c l\/§(2+2162)’C l\/2(2 2162 (21)

Here we have chosen eff” = i, such that z = a: — iy and with the rules

i

a, = gm, + as), a, = 5(4), + 6,).

From (2.13), (2.14) it is readily seen, that

(1212/42?

ml (2.15) 

E 2_‘9_ _ _
(2+216z)¢0—0=> (Do—

is the normalized ground state (to = (r]0). Similarly, this result is also obtained by

applying the Landau level operators,

t:_i_ §_ 23 :1 E 29.d “5(2 zlaz),d 1&(2+2182)' (2.16)

All the remaining states InL; m) are generated by repeated application of (1", cl, par-
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ticularly for the LLL it is obtained,

 

1 '2 2
_ , _ m —|z] /4l

¢m(r) — (r|0, m) — 1m“ 2m+17r !z e , m 2 0. (2.17)

The important structure of any LLL state is equivalently expressed by the statement,

that any LLL wavefunction is represented by a C—analytic function. The analytic

structure of any such state is emphasized by writing

i/J oc f(z)e"z|2/‘”2, z = :1: — iy, (2.18)

where f (z) is an arbitrary Canalytic function. This notation will be frequently

employed in later chapters. For more detailed discussion, see Appendix A.

2.2.2 Models of disorder

The idealized picture Of a 2DES with given translational gauge symmetry described in

the previous section is rather contrived and does not allow to interpret properly 2DES

transport measurements. “Real” 2D-systems such as electrons on a liquid helium

surface or electrons confined in the a semiconductor inversion layer are subjected to

the influence of a scattering potential which in the case of a helium surface comes

from He—vapor atoms and surface ripplons. In the semiconductor case ionized dopants

& impurities and interface roughness constitute the source of scattering. Therefore,

the properties of the amended model with Hamiltonian (2.8), will be the scope of the

subsequent sections.
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It is evident that the immobile source of scattering in semiconductors is described

by a static scattering potential, i.e.originating from long-range Coulomb forces be-

tween the fixed impurity locations and the electrons. As will be discussed in more

detail in chapter 3, neutral He-vapor atoms are the dominant source of scattering on

liquid helium for relatively high temperatures. Despite their volatility, on relevant

times scales for a certain range of physical parameters, their presence is fairly well

captured by the description of a static Short range potential,

V(r) = 212,6(1' — r,-), (2.19)

where N is the number of vapor-atoms, 1),- their effective strength and r,- their location.

Introducing randomness

For any given realization of a disorder potential (2.19) all properties of the system

(2.8) may in principle be derived. Certainly, different realizations of V(r) may result

in different derived properties.

Nevertheless, the underlying assumption for all treatments of disorder is, that

for the vast majority of realizations of the disorder potential V(r) the predictions

will be negligibly different from each other. Certainly, the configuration Space of the

realizations of V(r) as defined in (2.19) increases factorially with the number N of

impurity sites. In almost all cases it is justified to assume, that in the limit N —+ 00

the width of the distribution of predictions from different realizations of the random

potential shrinks to a sharp peak which is solely characterized by its position (the
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mean value).

Consequently, in this limit it seems to be feasible to substitute the predictions

from one certain realization V (r), by the averaging over all realizations of the disorder

potential. This is the paradigm of physics of disordered systems!

Gaussian random potential

The statistical properties of the disorder potential are fully described by the set of

k-point correlation functions. In the model (2.19), the scattering strength 11,- describes

the effective repulsive force resulting from the interaction of an electron with a neutral

4He-atom. In the simplest model, i),- is considered as a scatterer independent constant.

Without lack of generality it is assumed1

(V(r)) : 0. (2.20)

Then, the 2-point correlation function is

N

(V(r)V(r')) 2 Emma — r,)(5(r' — r,)) = n,v36(r — r'), (2.21)

M

where averaging takes place for the independent random variables r,- which are uni-

formly distributed over the area S. Here, n, is the impurity density and if, = 22,2

the Site independent scattering strength. Higher correlation functions are most easily

 

1an overall nonzero mean potential V = (V(r)) causes only a shift in the ground energy.
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evaluated by Fourier transform

(V(r)V<r')V(r"IV(r)>=Z Z v3><

i,j,k,n QIIQ2IQ2aq4

(exp[iq1(r — r,-) + z92(1" — U) + 1930‘" " r,,) + 2945" — Full), (232)

where a nonzero contribution in (2.22) is Obtained only for paired summation indices

({i =j,k = n},... ), leading to

(V(r)V(r')l”(r")V(i")) = (V(r)V(r')><V(r”)V(T)> +

(V(r)V(r")><V(r')V(i")> + (V(r)V(f)><V(r')V(r”)> + 002,23). (2-23)

Any 4-p0int correlation can be decomposed into a product of two-point correlations

up to a term of the order 0(nsv3) which originates from the configuration {2' = j =

k = m}. In the high density, weak coupling limit n, ——> 00, 120 —+ 0 with the combined

property \/n_,v0 = const., any even k-point correlation function can be decomposed

into a product of 2-point correlation functions. This is essentially Wick’s theorem.

It is explicitly noted, that any correlation function with an odd number of con-

stituents has to vanish. Either the grouping of constituents into classes larger than

2-point correlation functions will give a zero result by virtue of the high density and

weak coupling limit, or the only remaining unpaired part will have a zero mean value

(2.20).

Then the statistical properties of this disorder potential are completely determined

by the 2-point correlation function alone (V(r)V(r’)) = K‘1(r — r’) and its joint
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probability distribution

79[V] = exp {-é- // dr’dr V(r)K(r - r')V(r')

constitutes a gaussian distributed random potential. In the case of a short-correlated

random potential (2.19) it is K = v‘26(r — r’) with v = (#73220, then

PW] = exp [3% / dr V2(r)] . (2.24)

This distribution (2.24) will be the essential starting point for most analytical calcu-

lations.

2.2.3 Density of states of broadened Landau levels

Valuable thermodynamic information, like specific heat and magnetization, is con-

tained in the density of states

ME) = -7r‘1<1m G(r. r. 13)). (225)

where (G) is the disorder averaged Greens function of the full Hamiltonian (2.8). In

contrast to the oversimplified picture of a system with translational gauge symmetry

(2.6), it is expected that the 6-peaked density of states (DOS) profile

p(E) = 1-2 Z 6(E — (n + gym) (2.26)
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will be broadened by a parameter 7 which itself is determined by the scattering

potential V(r) and can be associated with a scattering time 7 oc r‘l. In principle the

averaged Greens function is easily written

(G) = G, + (Got/Go) + (GOVGOVGO) + . .. , (2.27)

here GO is the bare Greens function of the “unperturbed” Hamiltonian (2.6). AS it

turns out (2.27) is hard to evaluate and a reasonable approximation has to be free

from divergences.

General consideration

A crude estimate of the Landau level broadening in the presence of a Short range

interaction potential can be given in the following Simple picture. In a high magnetic

field an electron completes w,7' rotations on the cyclotron orbit before it is scattered.

The nature of its trajectory forces an electron to encounter a possible impurity many

times, thus the magnetic field effectively increases the probability of the single-Site

scattering by w,r,

1 1 e
T— oc(w,r)ro’, It: To (2.28) 

m"

where To is the scattering relaxation time and u the mobility in the absence of a

magnetic field. The level broadening 7 simply follows then from the uncertainty

relation 7 ~ T_1 oc w,/r0.
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It is interesting to note that the condition wgro = 1 allows a fundamental dis-

tinction between high and low magnetic fields. For w,ro << 1 the broadening of the

Landau levels is much bigger than the separation fiw, between two adjacent levels

7 >> w, and the DOS becomes a smooth function of the energy, whereas in the oppo-

site case 62,70 >> 1 the Landau levels are well separated, 7 << w,. Therefore we can

distinguish between the following cases [9, 15]:

Table 2.1: Simple classification of different regimes in magnetotransport.

 

 

w,ro s 1 classically weak magnetic field

w,r0 >> 1, fiw,/k3T S 1 classically strong magnetic field

w,ro >> 1, fiw,/kBT >> 1 quantum limit
 

SCBA density of states

The early work by Ando and Uemura [23, 24, 25, 26] belongs to the best known and

most established ones. Using the self-consistent Born approximation (SCBA) where

impurity scattering was taken into account in a self-consistent way and to avoid

divergences in (2.27), Ando and Uemura obtained for the density of states (DOS) in

the high-field limit w, >> 7

1/2

1 2 1 1 2
= —— — . — — C , 2.29

ME) 27rl2 7rh7 [1 W72 (E 2%) j ( )

 

where h7 = (2/7r)1/2v/l is the broadening parameter. The Singular behavior Of the

semi-elliptic DOS is the result of an oversimplified single-site approximation. Correc-

tions from multiple-site scattering have also been considered [25].

22



I \

l

>‘<

Figure 2.4: A diagrammatic representation of the self—consistent Born approximation.

The crosses denote scatterers and the dotted lines represent interactions with them.

Since our interaction potential is such that (V) = 0, the interaction with only one

scatterer vanishes in the self- energy 2.

 

The perturbation expansion of the disorder averaged Greens function (G) in (2.27)

can be diagrammatically written Fig. 2.4. In terms of the self energy E, the set of

irreducible diagrams, it is expressed as

G(E) = G,(E) + G,(E)E(E)G(E). (2.30)

However, the complete expression for the self energy is not easily obtained.

In the Born approximation only non-intersecting diagrams are included. The

dashed line in Fig. 2.4 connects two scattering events. It is easy to see that the de-

picted rules only lead to a sequence of diagrams with non-intersecting dashed lines

which is synonymous for non—intersecting diagrams. Then a closed form for the SCBA

self—energy is easily obtained 2 = G(E) /4I’2, where I‘ = ’17 is the broadening param—

eter. Hence, (2.30) is a quadratic equation in G(E). With G0 = (E — yum)”1 and

relation (2.25) for the density of states, p or (ImG), one readily obtains the SCBA den-

sity of states (2.29) which is of semielliptic form of width I‘ exhibiting an unphysical
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cut-off at the edges. In the case of a short range random potential the broadening pa-

rameter F is independent of the Landau level number. In this approximation scheme,

each broadened Landau level has the same shape.

Exact result for the lowest Landau level

Astonishingly, with an elaborate diagram technique, Wegner [5] showed that for the

white noise distribution (2.24) the exact density of states of the lowest Landau level

could be calculated,

1 4 exp(w2)
 

ME =
...

,
2.31)

) 27d? wit/2117 1+ (27r-1/2 f0 dxexpwz»? (

where

2
1

= _ __ C .
2.32

w m (E 2%)
( )

Brézin et al. [27] were able to rederive this result avoiding the intricate difficulties

of Wegners diagrammatic approach by using a supersymmetric formalism. The tail

distribution of (2.31) is gaussian and had been obtained in an earlier work by Ioffe

and Larkin [28]. In their work, they used an optimal fluctuation method to determine

the shape of the optimal potential as well as the asymptotic tail distribution for

h7<<E<<fiw,

 p(E) o< exp [712472 (E — 1%,)2] . (2.33)
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Figure 2.5: The normalized density of states for the lowest Landau level is plotted

against the reduced energy 5 = (E — E0)/h7. Here E0 = 1/2fiw, iS the ground

state energy and F = 717 the SCBA bandwidth. The SCBA approximation shows

unphysically Sharp edges at e = 2E1.

Generalization for potential with finite correlation length

Wegners result (2.31) is valid only for an uncorrelated random potential (2.21). No

exact formula is known for gaussian random potentials with a finite correlation length

(V(r)V(r’)) = (27r)\212)‘l exp [(r — r')2/2/\212] . (2.34)

A possible technique to obtain the line shape in this case is the method of moments.

BOhm et al. [29] calculated a finite number of moments of the DOS and restored it

for the range 0 g A < 00 by an efficient continued fraction approach. For the short

range correlated potential /\ —> 0, their result agrees with (2.31). The width of the

distribution is a function of the correlation length A. In a similar way, but using a

cumulant expansion technique, Kristofferson et al. [30] also restored the density of
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states for a finite correlation length (2.34).

In all cases the DOS is a smooth function of the reduced energy 5 = E/57 which

lacks any signature of a mobility gap or other Singular features, see Fig. 2.5, to indicate

a drastic change in the transport pr0perties whenever the Fermi-energy passes a

critical value. The even more arduous task of calculating the conductivity, a two-

particle Greens function, in the presence of disorder has to be undertaken.

2.3 SCBA conductivity

The fact that the exact density of states had been obtained [5] almost ten years after

the work of Ando and Uemura [23, 24, 25, 26] in 1974, did not render the use of

the SCBA as obsolete, in fact much of the transport data from experiments in 2DES

are still interpreted on the basis of the SCBA Single-electron theory [13, 14, 15]. For

electrons on helium and strong quantizing magnetic fields the experimental data is

reasonably well described by this single-electron theory. The reason for its persistence

is easily explained. The successful application of the diagram technique used by

Wegner and its reformulation in a supersymmetric quantum field theory for obtaining

the density of states, a one-particle Greens function, could not be easily extended to

calculate the conductivity which is a two—particle Greens function. The longitudinal

conductivity 6,, is calculated with a Kubo-formula [31],

0,, oc (XImG(E + i0)XImG(E + 20)), (2.35)
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GSCBA
 

 

GSCBA

Figure 2.6: SCBA diagrams for the conductivity on. To be consistent with the

diagram rules, Fig 2.4, introduced for the single-particle Greens function, no in-

terconnecting and intersecting diagrams are allowed, from which follows that both

SCBA-Greens functions are decoupled (mean field).

where X is the operator of the cyclotron orbit center (2.12) and X = (ifi)”1[X, H]

describes the nontrivial time evolution of the orbit centers. Similarly to the density of

states the Greens function perturbation technique is used to obtain an infinite series

of diagrams. The SCBA-scheme with diagram rules shown in Fig.2.6 allows to sum up

an infinite part of the perturbation series. The SCBA diagrams for the conductivity

do not contain diagrams which interconnect the two single-particle Greens functions

nor do they include any intersecting diagrams of each single strand. This is consistent

with the diagram rules, Fig 2.4, for the single-particle SCBA Greens function.

In the case where coupling between Landau levels may be neglected (strong mag-

netic fields), the magnetoconductivity is obtained for short range interactions [23, 16]

01$(B):;§é%/dE(_g—):0(](+1/2)1[_l}'—2(E_Ej)2], (2.36)
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Figure 2.7: The calculated inverse magnetoconductivity in the SCBA approximation

(2.37) (solid curve) and for the Drude-Lorentz model (dashed curve).

where E, = hw,(j + 1 /2) and f (E) is the distribution function. For a non-degenerate

electron system, f (E) obeys the classical Maxwell-Boltzmann distribution and one

obtains for the static magnetoconductivity

  

e cosh l— — ELT-Sinh (4;) ho),

om(B) 2 n7; (“”311 (1%) kBT coth (2k3T) . (2.37)

Here 11 is the modified Bessel function of first order, n is the electron density. Figure

2.7 shows the calculated ratio o,,(0)/6,I(B), where 6,,(0) = nne is the zero field

conductivity, as a function of the magnetic field for typical parameters of the system

of electrons on liquid helium. At low fields, the curve Shows the Lorentz-Drude

like behavior 6,,(B) o< 3‘2, but (2.37) diverges at B —+ 0. At higher fields the

conductivity shows a reduced field dependence 6,,(B) oc B'l/Q, in the high field
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limit

(2.38)

which clearly shows that the static magnetoconductivity in the SCBA approximation

is nonzero for any finite magnetic field.

The characteristic features of the magnetoconductivity (2.37) can also be under-

stood by a Simple diffusion picture [14, 23]. The conductivity can be derived from

the Einstein relation )1 = eD/kBT

o = —— (2.39)

’1 is the diffusion constant with characteristic length scale 1, andwhere D = 127

time for the diffusion process T. In a magnetic field with w,’r >> 1 the cyclotron

radius becomes the characteristic length. In classically strong fields 71w, 3 kBT, the

cyclotron radius is given by l, = mv/eB o< mGBT/eB. Then, from (2.39) one

obtains the Drude-Lorentz behaviour

n,e2 1 0'0 1

6,,(3) = m wfiro = (“W2 oc 52-. (2.40)   

In the quantum limit all electrons are barred onto the lowest Landau level, the char-

—1/2
acteristic length scale is the magnetic length l = (h/eB) and the characteristic
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time is the scattering time 7—1. Then one obtains

n,e R7 1

0163(3): B—kBT 0C \/—§ (2.41)

which reproduces the dependence and order of magnitude of the SCBA conductivity

(2.38).

In summary, the rather simple perturbational calculation of the dissipative con-

ductivity 0,, does not provide any insight into the transport dynamics of the QHE.

The experimental observation of the essential role of a localization-delocalization tran-

sition cannot be based on a perturbational approach.

2.4 Localization

The concept of localized states in disordered systems was deveIOped by Anderson

[20]. He showed that if a quantum-mechanical system is sufficiently disordered, states

have a finite probability of returning to a given site in the long-time limit. This

absence of diffusion implies that these states are localized in a finite region of Space.

The transmission probability decays exponentially on a length scale, which is called

the localization length. For localized states the static conductivity vanishes at zero

temperature. On the other hand, if the disorder is weak enough, extended states might

exist that do not decay exponentially and fill the whole system. Their contribution

to the conductivity is finite even at zero temperature. The energy that separates

extended from localized states is called the mobility edge. At the mobility edge the
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character of eigenstates can be described by fractal measures [32, 33].

The observation that an explanation of the QHE involves both extended and

localized states was the more unanticipated, as the scaling theory of localization in

zero magnetic fields [34, 35, 36] predicted the absence of extended states in two—

dimensional systems. It is the presence of a strong magnetic field that leads to the

emergence of nonlocalized states in two dimensions [37, 38]. Chalker [39] showed

that these states exist only at a single energy in the limit where scattering between

Landau levels can be neglected. At zero temperature the Hall conductivity is thus

expected to exhibit sharp steps whenever the Fermi energy passes the critical energy.

The longitudinal conductivity vanishes for all energies except at the critical ones.

It is this aspect of localization which constitutes the basic difficulty when one at-

tempts to base the transport properties of such a system on a microscopic theory. The

standard machinery, like the SCBA, for dealing perturbationally (diagrammatically)

with electron-impurity scattering does not lead to an explanation of the phenomenon

of the QHE [40, 41, 42, 43].

2.4. 1 Scaling theory

Most what is known about critical properties of the localization-delocalzation tran-

sition stems from experiments [6] and numerical Simulations [17]. The localization-

delocalization transition is understood in terms of the scaling behavior of electron

states near the Landau level band centers. For short range scatterers it has been
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confirmed numerically that the spatial extent of electron states of the LLL scales as

6(8) ~ 1 |€|"". (2-42)

where e = E/h7 and 1/ = 2.33 :i: 0.03 is the localization exponent [17, 44].

To understand the origin of this scaling one can treat the electron motion semi-

classically for a sufficiently small value of the reduced energy 70 < e < 7. In a strong

magnetic field, the guiding center R = (X, Y) of the electron drifts along equipoten-

tial lines of the potential V(X, Y), which is also the Hamiltonian of the system,

- i [2 6V - i [2

X_g[H,X]_—E ay’ X—E[H,Y]_E5—$—. (2.43)

The problem of finding the wave function of largest extent is similar to the problem of

finding the largest connected cluster in a continuum percolation problem [45], which

gives the critical exponent, up = 4/3. Tunneling between nearby states at the saddle

points modify the critical exponent giving 1! = 1 + up = 7/3 [46]. Even closer at

the percolation threshold 5 g 70, where tunneling between states becomes strong

the semiclassical approximation is not applicable. Numerical simulations with an

appropriate random-Landau-matrix model for this regime confirms the persistence

of the critical exponent V = 2.33 d: 0.03 even out of the range of the semiclassical

approach.
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Chapter 3

Non-degenerate 2D electron

system

3.1 Electrons on 4He: the best conductor

Electrons above the surface of liquid helium provide an example of a nearly ideal

two-dimensional (2D) electron system, with mobilities higher than in any solid state

conductor have been obtained [16, 47, 48]. For characteristic electron densities n, ~

107 — 108 cm‘2 and temperatures 0.1 K < T < 2 K the interelectron distance n,- 1/2

1/2, and therefore thegreatly exceeds the de Broglie wavelength KT 2 h/(2mk3T)

electron system is nondegenerate, see Tab. 3.1. At the same time, the ratio of

the characteristic Coulomb energy of the electron-electron interaction to the kinetic

33



energy, the plasma parameter

r, = 62(7rn,)1/2/k3T (3.1)

is usually large, I‘ple. Therefore the electron-electron interaction is by no means

weak. The system is a strongly correlated normal fluid. For I‘pzl27 (lower T),

the Coulomb energy dominates and the system undergoes a phase transition to the

Wigner crystal [49, 50, 51, 52].

Table 3.1: A comparison of some typical physical parameters of two-dimensional

electron systems realized by different methods (from [1]). In this table n, is the

electron density, m“ /m the effective to vacuum electron mass ratio, TF 2 Ep/kg the

Fermi temperature with E1: = Ithn,/m“ and r the relaxation time with p = er/m‘

the zero magnetic field mobility.

 

 

 

electrons on He, Si-MOS GaAs-GaAlAs

n,(cm-2) 105 — 109 1011-1013 10II — 1012

m"/m 1.0 0.19 0.067

Tp(K) 10‘6—10‘2 10 — 500 200 — 1000

r(sec) 10’10-10‘7 . 10‘12 10"12 — 10"11

14(ch/Vs) 103 — 108 104 105 — 107    
 

The normal electron fluid is a special type of many-electron system, which is very

different from the much better understood Fermi liquid (and other quantum electron

liquids) or low-density electron gas. Analysis of this fluid is complicated by the

absence of “good” quasiparticles — the same problem encountered in the physics of

liquids. In contrast to atomic or molecular liquids, in an electron fluid the interparticle

forces are the long-range Coulomb forces. Another difference from 3D liquids is that

relaxation of the total momentum is due to scattering (by ripplons and helium vapor
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atoms) of electrons which are inside the electron fluid, not on its boundary. Analysis

of electron dynamics and transport phenomena in a normal electron fluid is necessary

for understanding a large amount of experimental data on transport accumulated over

the last few years [52, 53, 54, 55, 56, 57, 58, 14, 59, 60, 61, 62, 63, 64, 65, 66, 3, 67].

3.1 . 1 Experimental consideration

Surface State Electrons

Electrons on a surface of dielectric 4He (6 = 1.0572 [68]) are trapped by image charges

in the helium film. Additional electric fields from gate electrodes further confine

the electron Sheet in the experimental area, see Fig.3.1. The confining potential is

described by V(z) = Vimag,(z) + eELz, z > 0, where

, Q62 8 — l

Yima e = - a 2 1 32

g (2) 47reoz Q 4(5 + 1) << ( )

  

where the dielectric constant of the gaseous 4He-phase is assumed to be unity. Helium

is an inert gas, its filled electron shells prevent the electrons from the sheet to pene-

trate into the liquid bulk material. The steep potential barrier on the interface side,

compare Fig.2.1, is a consequence of the Pauli exclusion principle which requires the

wavefunction of the electron to be orthogonal to the core electrons of the dielectric.

The ground state wave function Z0(z) (2.5) can be written as

Zo(Z) = 271/22 exp(-712) (3-3)
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with an variational parameter 71- In the absence of the external pressing field EL,

7]?) is the effective inverse Bohr radius 710) = Q/ao where a0 = 47reofi2/m62 == 0.53A

is the Bohr radius. The electron remains far from the liquid helium surface, (z)0 =

3/2a >> r0, 4He (1/7?’ = 76A) where r0 is the interatomic average spacing. The

energy gap is determined as AE 2 E1 — E0 = 0.49meV 2 5.72K.

Experimental set-up

One of the problems in measuring transport properties of electrons on a surface of a

dielectric is that one cannot attach electrical leads directly to the electron sheet and

therefore it is not possible to perform simple dc-current experiments on this system.

In common two types of experiments give insight into the electron dynamics. One

type of experiments is based on the application of high frequency electro-magnetic

fields (radio frequency or microwaves) leading to resonant power absorption by the

electron system (plasmon modes, cyclotron resonance). The second type of experi-

ments measures the impedance of an array of electrodes which couple capacitively to

the electron sheet, see Fig.3.1.

3.2 Scattering mechanisms

3.2.1 Vapor scattering

. . . . . 2
The cross-sectlon for scattering of electrons w1th a helium atom 1S bfie 2 5A , and so

helium vapor atoms create a nearly ideal 6-correlated potential V(r) = 2 11,6 (r — r,)

(2.19) arising from the Pauli principle. The explicit form of the squared matrix
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Figure 3.1: Schematic drawing of the experimental liquid helium cell. Capacitors

couple to the electron sheet. The mobility p of the electron system can be determined

from the impedance measurement. Gate electrodes supplied by the voltage V, further

confine the electron sheet in the experimental area.

elements of the coupling to the vapor atoms is [69]

 

“(yams-1, (3.4) 
37rfi.4

8

[Vqlfi 2 /dr K(r)e‘qr = m2

where K(r) = (V(r)V(0)) is the correlation function (2.21), N, is the (3D) vapor

density, S the surface area and 7i as given in (3.3). It is noted that N, depends on

the temperature exponentially,

Mka 3” Q
[V1, 2 ( 27rfi,2 ) exp (—mj) . (3.5)

In this expression M denotes the 4He atom mass and Q the vaporization energy of

 

4He (Q/kB : 7.17K [69]).
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3.2.2 Ripplon scattering

The free surface of a liquid at a finite temperature always oscillates. The surface

oscillations of a liquid of depth d are called capillary gravity waves. For a classical

incompressible, non-viscous liquid they are characterized by the dispersion relation

[70]

2 (1‘13
62,, = gq + 7— tanh qd, (3.6)

where q is the wave vector of the excitation, g = 9.81m/s2 the gravity acceleration,

a z 0.35dyn/cm the surface tension and p = 0.145g/cm3 the density of the liquid

phase.

The excitations of the free surface can be quantized by elementary excitations

which are called ripplons [71, 72]. Any arbitrary surface displacement u(r) can be

expanded into a series of ripplons

hq tanh qd)

mg (3.7)
1 .

u(r) = E 21:62,, exp(zqr)(aq + alq), Qq = (

where [a,,, air] = 6q_.qr are the ripplon creation and annihilation Operators. The energy

associated with such a surface excitation is easily described by a system of surface

bound quasi-particles of Bose type with occupation number Nq

1 hw ‘1
HR = Zfiwqwgaq + 5), Nq = (exp fig — 1) . (3.8)

q
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Various coupling mechanisms between ripplons and the electron sheet have been

proposed, a detailed discussion can be found in Ref. [73]. The following cou-

pling mechanism is experimentally confirmed and generally accepted. The electron

wave function adiabatically follows the surface movement. The interaction energy

is brought about mainly by two effects. One contribution results from the change

in the polarization of the helium as the surface profile is altered by the presence of

ripplons. At large interparticle separation R between an electron and a helium atom

the polarization potential is proportional to 1/R". The change in polarization energy

Vp can be obtained by an integration over the change in the helium volume which as a

weakly polarizable medium, P cc (6 — 1)E, where P is the polarization, P or (c — 1)E,

interacts with the electric field E of an electron

  

2 u(r’) d I

I’},(r,z) = — Q8 /dr'/ Z ‘ .2. (3.9)

4.2,, o [0' — .)2 + (z' — 2H

The second contribution AEPO, = eEiu(r) is due to the vertical motion of an electron

in the presence of an external electric field E1 perpendicular to the unperturbed

helium surface as it follows adiabatically the fluctuations of the interface. Since one-

ripplon processes are dominating higher order processes by orders of magnitude [74],

the interaction between electrons and ripplons can be compactly written as [69]

H,_R = 3% Z QqVq(z) exp(iqr)(al_q + aq)c[(+qck (3.10)

q
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with Qq as defined in (3.7) and

  Wig—2637632- 1471'50 qz (QZ)2] + 6E]. (3.11)

Here K1 is the modified Bessel function of the second kind, Q is given by (3.2), and

{ck, CL} 2 6),“, are the anticommuting electron creation and annihilation operators

for the electronic ground state $14132) = S‘1/2Z0(z)exp(ikr) with a wave vector

k parallel to the surface. The electron-ripplon interaction will be strong only for

comparable wave length. Energy and momentum conservation restrict the ripplon

wave vectors to values q S 2XT ~ 105 — 106 cm.1 which are of the order of the de

Broglie wavelength AT [75]. With the electron energy exceeding the ripplon energy

fiwq << (5X7)?/2m the scattering process is quasi-elastic.

It is noteworthy that the electron-ripplon interaction (3.11) depends explicitly on

the external pressing field E1, therefore one can easily vary its interaction strength.

For low enough temperatures T < 2K, the electron will remain in its ground state

20, the effective ripplon potential is obtained by the projection of (3.11)

Vq = /000 Zo(z)Vq(z)Zo(z) dz . (3.12)

Therefore the effective intensity of the random field of short wavelength ripplons is
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of the form [69]

 

 

lvqlr = s aq, [E, + 2E,E,,,l + EM] , (3.13)

h2’)’(0) (I

E O E E 0 = L 2" up l p 1(0) 27% q «.9 (771)

Here, 71 and 7]?) are the variational parameters of the electron wave function trans-

verse to the layer Z0(z) or zexp(—7)z), in the presence and absence of the electric

field Ej that presses the electrons against the helium surface, 710) = (me2/452)(e —

1)/(e + 1). In Eq. (3.13), a is the surface tension and the function 99(5):) is given by

99(33) z ln(2/:r) for :1: << 1, [69].

3.3 Magnetoconductivity: current status in the-

ory and experiment

Over the past three decades a huge amount of experimental data on electrons on liquid

helium has been amassed and with an equally vast amount of theoretical work a very

detailed understanding of the involved scattering processes and transport phenomena

has been reached. A comprehensive theory of magnetotransport in the semiclassical

regime is given by Mark Dykman [9]. It is the subject of this section to provide

a current survey on the theoretical understanding of magnetotransport of electrons

on helium with emphasis on the many-electron transport processes. It also will be

pointed out the context in which the subject of this Ph. D. thesis has to be placed

and where studies have been conducted to reach new insights.
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Table 3.2: Regimes for magnetoconductivity theories. The regimes are Shown for the

values of the given parameters. The last column shows the magnetic field at which

the parameter in the first column equals one, for the electron density n, = 1012m-2

at 1K.

 

 

 

 

 

 

Parameter Regime Conductivity behavior B [T]

B = 0 zero field Drude 0

,uB 2 60,7 < 1 : Classically weak field Drude 0.01

> 1 : Classically strong field Drude

w,/wp < 1 : eEfXTz fiwp > hw, z Drude 0.23

> 1 : eEfXTz fiwp < M,

fw,/kBT < 1 : Classical limit Non-Drude (Many electron classical) 0.74

> 1 : Quantum limit Non-Drude (Many electron quantum)
 

Magnetoconductivity requires consideration of a multidimensional parameter

space, magnetic field, temperature, electron density and particular parameters which

are inherent to the scattering mechanisms. Therefore it is natural to specify parame-

ter ranges for which particular effective models can be used to describe the transport

phenomena within that range.

Table 3.2 shows a collection of parameter spaces which will be discussed in more

detail in the following subsections. In particular one has a very good understanding

of the transport processes at relatively low magnetic fields kBT > 6.0,. Recent ex-

periments utterly confirm the theoretical picture presented in this section, see Fig.3.2

and Ref. [3].
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Figure 3.2: The magnetoconductivity 6(B) versus B for electrons on bulk liq-

uid helium at (a) 1.3K, n, = 2.32 x 108cm’2, a = 24m2/Vs and (b) 0.7K,

n, = 0.55 x 108cm’2, a = 980m2/Vs. Line (I shows the Drude model, line 8 the

SCBA single electron theory, line In the many-electron theory and line t the total

magnetoconductivity (from Lea et al., 1996) [3].

3.3.1 Single-electron explanation

Drude magnetoconductivity, low magnetic field

The Simplest theory for the magnetoconductivity is the Drude model which treats

the electron-scatterer interaction as well separated in time. The static conductivity

is simply derived from the classical equation of motion

m—v = —ev x B — eE — mrgiov, (3.14)

dt

1
where 7;:0 is the scattering rate in the absence of the magnetic field calculated in the

approximation where the effect of the electron-electron interaction on collisions with
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scatterers is ignored, yielding to

e2n, 73:0

m 1 + 603722320.

 (3.15)6,,(61 = 0) =

This Simple picture accounts much for the explanation of the experimental data in

Fig. 3.2. Certainly, the Drude theory is valid in the weak field limit, 01,7 < 1, the

broadened Landau levels overlap and thus the scattering will be field independent

7 : 73:0. As will be discussed in the many-electron section, the Drude theory

continues to describe the system even in classically strong magnetic fields 61,7 >> 1

for a certain parameter range (3.26). A conceptual picture can be drawn that in

classically strong fields 01,7 >> 1, an orbiting electron repeatedly encounters the same

scattering center giving enhanced scattering, therefore 7 is expected to be B-field

dependent. However, Coulomb interactions with its manifestation of an internal many

electron field Efl “blows away” the electron during the orbit cycle, and restores the

Drude picture of orbiting electrons in which orbit center motion is effectively described

by diffusion. In the range of classically strong fields the Drude model is entirely

maintained by many-electron effects.

SCBA magnetoconductivity, high magnetic field

Single-electron magnetotransport is usually analyzed using the self-consistent Born

approximation (SCBA) [14, 16, 59, 60, 61, 62, 63]. In this approximation the re-

laxation rate 75-613,,(B) is given by the relaxation rate 7310 multiplied by the factor

of the increase of the density of states that results from “squeezing” of the energy
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spectrum into (broadened) Landau levels. This factor, in turn, is given by the ra-

tio between the interlevel distance and the level broadening which is itself due to

scattering, w,/75’(178A(B). The result for the relaxation rate is of the form

TS-CI‘BA(B) : fisceawclflTgifv ‘9
5,8,, ~ 1, to, >> 75:58,,(8). (3.16)

A simplified derivation for the SCBA conductivity was already given in Section 2.3.

Detailed analysis of the SCBA for a nondegenerate 2D system can be found in [14,

61, 62]; an alternative approach to the single-electron theory is based on the method

of moments for the frequency-dependent conductivity 013(0)) [76]. If one thinks of

0,,(01) as a function which has a Gaussian-type peak at the frequency w = 0, then

the method of moments gives a result Similar to the SCBA.

If 75,33,4(8) is used instead of 7,9:0 in Eq. (3.15), the magnetoconductivity in

classically strong fields, 02,75ch >> 1, is or B‘3/2; it differs from the result (3.15) by

a large factor (w,73=0)1/2 >> 1. The experiments also Show a big discrepancy between

observed data and the single-electron SCBA explanation for the regime of classically

strong fields, Fig. 3.2.

However, in the limit of very strong quantizing magnetic fields w,7 >>

1,hw,/kBT > 1, the SCBA conductivity oSCBA oc B‘l/2 (2.41) seems to deliver a

reasonably good picture which qualitatively agrees with experiments [15, 61, 62]. It

is the subject of this thesis to show that even in the strong-field limit the

static magnetotransport is entirely due to many-electron effects. The co-

incidence of having a single-electron theory to describe this regime is only
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fortuitous.

3.3.2 Fluctuational electric field

To a large extent, transport is determined by the momentum exchange between elec-

trons and scatterers. When the electron-electron interaction is strong, as in the fluid

or Wigner crystal, it controls the collisions with the scatterers. The effect is expected

to be particularly strong when a 2D electron system is placed into a transverse mag-

netic field B [77, 78, 76]. In the single-electron approximation the electron energy

Spectrum in the magnetic field is a set of discrete Landau levels with separation 51.0,,

and electrons do not have a finite group velocity. Therefore the standard picture of

a moving electron with independent elastic or quasielastic collisions does not apply.

AS a consequence, the scattering is always strong, irrespective of the strength of the

electron-scatterer coupling, and the random potential of the scatterers is the only

reason for the centers of cyclotron orbits to move.

On the contrary, the energy Spectrum of the system of interacting electrons is con-

tinuous even in the absence of scatterers. Therefore, although the electron-electron

interaction does not change the total momentum of the electron system, it may me-

diate the momentum transfer to the scatterers and thus strongly affect the transport.

Classical and semiclassical many-electron dynamics

A theory of the dynamics and transport of a normal electron fluid can be formulated

for not too low temperatures and/or for small enough electron densities or high mag-

netic fields, where the major effect of the electron-electron interaction on the electron
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dynamics may be described in terms of an electric field Ef [78] that drives each elec—

tron. Unlike the long—wavelength fluctuational field known in plasma physics [79],

the field Er, although also of fluctuational origin, determines the Coulomb force on

an individual electron. This force affects the electron motion during collisions with

scatterers, and ultimately the momentum transfer from the many-electron system to

the scatterers. A Special significance of the field Ef for a 2D electron system in a

magnetic field stems from the fact that a cyclotron orbit center drifts transverse to

the fields Efand B. A drifting electron occasionally collides with scatterers, as would

a single electron in the absence of a magnetic field, and thus the field Ef may “restore”

the Simple Drude picture of electron relaxation that results from collisions which are

well separated in time. Clearly, in this case E; determines the collision probabilities

and thus the transport coefficients.

The field Ef is particularly useful for characterizing the electron dynamics in a

many-electron system provided this field is uniform over the electron wavelength X

(otherwise the nonuniformity of the field would be as important as the field itself).

A simple estimate of the field Ef and of the parameter range where it is uniform

can be obtained if one assumes that there is short-range order in the electron system

in the interesting range sz 10, as has been established by Monte Carlo calculations

[80, 81, 82, 10, 83, 11, 84, 4]. In this case the electrons are affected by fields due

to electron displacements from their (quasi)equilibrium positions (see Fig. 3.3). The

characteristic thermal displacement 6 and Ef can be estimated by linearizing electron

equations of motion and by setting the potential energy of a displaced electron equal
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to kBT (cf.[78]):

eEfd ~ 62 (52 N kBT, (3.17)

eq
 

‘92 2’).- .- ,-.
81.121 m n 771

 

(the derivative is evaluated for the equilibrium electron positions; clearly, the charac-

teristic values of Ef, 6 are independent of n). This gives

(E?) z FkBTn3/2 6 ~ (kBT)1/2ne_3/4e'l (3.18)
e 7

Figure 3.3: Fluctuational electron displacement in a strongly correlated system.

(the coefficient F in (3.18) is discussed below).

It is clear from Fig. 3.3 that the characteristic distance over which the field Er

varies is given by 6. The field is uniform over the wavelength A provided that X << 6.

In the absence of the magnetic field the characteristic X is given by the thermal de

Broglie wavelength KT: h(2mk3T)‘1/2, whereas in a strong magnetic field it is given

by the quantum magnetic length 13 = (h/mw,)1/2. Therefore, with account taken of
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(3.17), the condition A << 6 can be written in the form

 

1/2

kBT ”2 _ _1/2 27re2n2/2

X << (W3) ,X :13 (271+1) , CUP: T , (3.19)

where

[B = (h/mw,)1/2, L0, = eB/m, n = [exp (hw,/kBT) - 1]_1. (3.20)

The condition (3.19) means that the electron motion is classical or, in a strong

magnetic field, semiclassical. In the absence of the magnetic field ((0, = 0) (3.19)

reduces to the inequality kBT >> 620,. It is clear from Fig. 3.3 that 60,, is the frequency

of electron vibrations about (quasi)equilibrium positions, and (3.19) is the condition

for these vibrations to be classical. It is noted that for kBT < 21.0,, quantum effects

come into play and the normal electron fluid becomes nonclassical. These quantum

effects are not related to overlapping of the wave functions of different electrons; it is

the motion of an electron in the field of other electrons that gets quantized.

In the presence of the magnetic field the fluid is classical provided

kBT >> 510,, 7120,. (3.21)

For fiw, > kBT the fluid may be semiclassical. The motion of an electron in

the field Ef is then a superposition of a quantum cyclotron motion with frequencies

~ 10, and a semiclassical drift of the center of the cyclotron orbit. The frequency Q

that characterizes the drift can be estimated from Fig. 3.3 if one assumes that the
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field Ef is pointing towards the equilibrium position. Then the “displaced” electron

drifts transverse to this field with a velocity eEf/mw, along a circle of radius 6. The

frequency 0 is the reciprocal period of the drift. For

kBT >> hf), Q = wig/00,, (3.22)

the drift is classical. The inequality (3.22) follows from (3.17) for fiw,zk3T. It is

noted that (3.22) may be fulfilled in a sufficiently strong magnetic field, 60, >> L0,,

even if kBT < ’20,, i.e., even if the fluid is non-classical for B = 0.

The conditions (3.21) and (3.22) Show also where the dynamics of a Wigner crystal

are classical and semiclassical, respectively. The spectrum of phonons of a crystal

was analyzed in [85]; 60,, is a characteristic Debye frequency of the crystal for B : 0,

whereas for 00, >> 60,, the Spectrum consists of the optical branch (that starts at

60,) and a low frequency branch; the widths of the branches are ~ Q. It is noted

that the melting temperature of the crystal Tm as given by the condition I‘ z 127

[51, 52] may be greater than or less than hi0, depending on the electron density

(Tm or ni/z , 60,, cc nil/4; for electrons on helium mop/Tm z 1.3 when n, = 108 an”).

From this perspective it is particularly important that the magnetic field can be used

to “switch” the 2D system, whether a fluid or a crystal, from the domain of quantum

dynamics, 75.10,, > kBT, to the semiclassical domain, kBT >> MI.
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Distribution of the fluctuational electric field

For classical and semiclassical electron systems the statistical averaging over the elec-

tron coordinates (or the positions of the centers of cyclotron orbits, in quantizing

magnetic fields) may be performed independently from the averaging over the elec-

tron momenta (the occupation numbers of the Landau levels, for fun, > kBT) [78, 4].

In particular, averaging a function taking into account the distribution of Coulomb

fields affecting an electron may be obtained by integrating the over the electron co-

ordinates with the weight exp(—H,,/kBT), where

l _

H,e = §e2 lern — rnr 1 (3.23)

1/2
By changing to dimensionless coordinates ernnSMT‘ it is straightforward to Show,

that the distribution of the dimensionless field Ef/ng/4T1/2 is determined by the single

parameter I}, and in particular the coefficient F in Eq. (3.18) is a function of I“, only.

It shall be noted that (E?) can be expressed in terms of the two-particle distribution

function of the electron system P(r1, r2):

62k3T p(l‘1,l‘2)
2 2 =

2 : -—
E

e (Ef) _ ((VnHee) > ekBT<VnEn> n85 [1‘1 — 1'2l3

dl‘ldrg (3.24)

(S is the area of the system).

The function F in (3.18) and the distribution of the field Ef can be easily found

for large Pp (low T) where electrons form a Wigner crystal and electron vibrations

about equilibrium positions can be described in the harmonic approximation [86].
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Figure 3.4: The scaled mean square fluctuational field F(Pp) = (E;")/kBTng/2 from

Monte Carlo calculations [4]. The asymptotic value of F for a harmonic Wigner

crystal is shown dashed.

Both transverse and longitudinal modes of the crystal contribute to the field, and the

numerical value of F is z 8.91. The distribution of the field is Gaussian, which is a

standard result for the distribution of the force per particle in a classical solid.

In the opposite limit of small I‘p the major contribution to the field Ef comes from

pair collisions, and

F(1“,,) z 2w3/2r‘;1, 1“,, << 1.

In the most interesting range of the electron fluid and the melting transition,

the function F and the distribution of the field were obtained from Monte Carlo

simulations [4].
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The results for the scaled mean square fluctuational field F(1),) are shown in

Fig. 3.4. For 1“,,210, the function F decreases monotonically with increasing Pp.

Quite remarkably (but in qualitative agreement with the above small-F,D estimate

which, when extrapolated to 1“,, ~ 1, gives F(1) z 11), the variation of F is small

in this range, although the structure of the system changes dramatically, from a

liquid where correlations in electron positions decay within twice the mean electron

separation, to a crystal. The behavior of F is a consequence of (E?) being determined

primarily by the short-range order in the system, according to Eq. (3.24).

It is noted that, with account taken of Eqs. (3.17), (3.24) and the above data

for (E3), the criterion for the fluctuational field to be uniform over the electron

wavelength

X |<VnEn>l = 8(Ef2)2( (kBT)—1 <<<Ef2>1/2

takes on a form that coincides with the inequality (3.19).

The shape of the distribution of the field in its central part is close to Gaussian

for I‘p >10.

ME) = [MEN-16m) [-E?/(E?)] , (3-25)

As I}, decreases, the deviation of the field distribution from the Gaussian shape be-

comes more substantial. However, the difference between the mean reciprocal field

(E; 1), which is of interest for transport (see next sections), and its value for a Gaus-
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sian distribution 7r1/2(E?)‘1/2 is less than 10% for I‘pz20.

3.3.3 Qualitative Picture of Many-Electron Transport

Weak to moderately strong magnetic fields

For several types of 2D electron systems, and for electrons on helium in particular,

electron scattering is due to collisions with short-range scatterers, and the scattering

is elastic or quasielastic. Clearly, in a strongly correlated electron fluid at most one

electron at a time collides with a given short-range scatterer. If the characteristic

duration of a collision icon is small compared to the characteristic time over which the

field Ef varies in order of magnitude (the correlation time in the electron system),

the effect of the electron-electron interaction on the collisions may be fully described

in terms of Ef. Indeed, in this case the field Ef is all that an electron “knows” about

other electrons during a collision.

Firstly, the effect of the field Ef on the collisions with short-range scatterers will

be analyzed for not too strong magnetic fields where

kBT >> e<E§)1/2xT ~ in, >> fiwc, M = h(2kaT)-1/2. (3.26)

It is noted that (3.26) does not mean that the magnetic field is weak. The field

may well be classically strong, i.e., there may hold the inequality wCT >> 1, where

7’1 is the scattering rate. In what follows the term “moderately strong fields” for

classically strong magnetic fields that satisfy condition (3.26) will be used.

In the range (3.26) the electron motion is classical (cf. (3.21)), and an electron
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has a well-defined kinetic energy p2/2m ~ kBT and a well-defined potential energy

in the field of other electrons. Uncertainty of each of these energies is determined

by smearing XT of the electron wave packet. For an electron in an electric field

Ef this uncertainty is given by eEfXT and is small compared to kBT. This means

that, in spite of the electron system being strongly correlated, the electron-electron

interaction has little effect on collisions with short-range scatterers in the absence of

a magnetic field. One can also see this from the following arguments. The duration

of a collision is determined by the time it takes an electron to fly past the scatterer.

For short-range scatterers and for electrons with thermal velocities ’UT 2 (2kBT/m)”2

this time is too” ~ XT/UT ~ h/kBT. The acceleration of the electron in the field Ef

over this time is ~ eEfXTvT/kBT << ”07*. The condition IcBT >> fiwp guarantees that

tcoll = h/kBT is small compared to the velocity correlation time w;1 [10].

 
 

(E - r) /E——->

Figure 3.5: Single-electron energy levels WV in the electric field E and transverse mag-

netic field (tilted Landau levels). Uncertainty of the electron kinetic energy exceeds

hwc for the shown size of the electron wave packet WT .

The role of the field Ef becomes very different in the presence of the magnetic

field, since the field Ef tilts Landau levels and makes the electron energy spectrum
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continuous. It is clear from Fig. 3.5 that for an electron wave packet of size KT,

the discreteness of the one-electron energy spectrum due to Landau quantization is

washed out by many-electron effects if eEfXT >> hue. One would therefore expect

that even in classically strong magnetic fields, wcT >> 1, collisions with scatterers will

occur nearly as if there were no magnetic field at all [64, 65]. Then the many-electron

system should not display magnetoresistance, and in the whole range (3.26) the static

conductivity 0 is given by a simple expression

e271, 7'
 ”=0 , e<E3)1/2XT >>hwc,hr;=1

2 2
m l + LUCTB=O

(3.27)aEaIx(w=0)= 0

where 7:0 is the scattering rate in the absence of the magnetic field calculated in the

approximation where the effect of the electron-electron interaction on collisions with

scatterers is ignored.

It is emphasized that the absence of magnetoresistance in the range (3.26) for

classically strong magnetic fields, known experimentally since [53], is a purely many-

electron effect. In the single-electron approximation, the character of electron scatter-

ing for over >> 1 is qualitatively different from that in the absence of the magnetic field

even in the range of high temperatures kBT >> hwc, where there applies the notion

of a classical electron orbit. For an electron colliding with a short-range scatterer the

orbit has the shape of a rosette [87]. It is a nearly closed circle, with the characteristic

cyclotron radius RB ~ (kBT/m)1/2a)c‘l and with the center slowly rotating around

the scatterer. The electron is coming back to the scatterer, over and over again.
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Therefore it experiences multiple collisions with the same scatterer, in contrast to a

single collision in the absence of the magnetic field. In fact, in the single—electron ap-

proximation the number of collisions is determined by the probability to find another

scatterer while spinning around the given scatterer.

“STRONG” Strong magnetic fields

Onset of magnetoresistance in classically strong magnetic fields, kBT > have >

e(Ef2)1/2XT, can be qualitatively understood in the following way [64, 65]. If there were

no fluctuational electric field, an electron in the magnetic field would be moving along

a rosette described above, coming back to the scatterer with period 27r/wc. In the

presence of the field Ef the center of the electron cyclotron orbit drifts with a velocity

ad 2 Ef/B. Therefore the number of times the scatterer is encountered is finite. It is

clear from Fig. 3.6 that in order of magnitude, this number is C = XT(27rEf/ch)_1

(here, KT stands for the characteristic “size” of the scatterer; if scatterers are not

point-like and their size exceeds KT, the above expression should be appropriately

modified). One would expect classical magnetoresistance to arise in the many-electron

system for C > 1 which means that the single-site scattering probability is effectively

enhanced.

The magnetoconductivity a can be estimated using the Einstein relation between

the conductivity and the diffusion coefficient D, a = e2n5D/T. It is seen from

Fig. 3.6 that scattering results in a shift of the electron orbit by the cyclotron radius

RB. Therefore 1228/2 may be associated with the squared diffusion length, and then

D 2 1223/27. The scattering rate 7‘1 is proportional to the encountering factor C [88],
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and the expression for 0 takes on the form

 

 

o = 2T R237”, T_1~ (71:0, C = X ch/27r(Ef2)l/2. (3.28)

7;T

a (7m

21rEf/Bmc

Figure 3.6: Classical electron trajectory in the fluctuational electric field Ef and

transverse magnetic field B. The radius of the spiral RB ~ (kBT/hwcfiYT.

A distinctive feature of the many-electron magnetoconductivity (3.28) is its indepen-

dence of the field B for classically strong fields where RB ~ (kBT/fiwC)XT oc B"1 and

(0:82 (X2XT forfiwc<<T).

The arguments used to obtain an estimate of 0 apply also if the electron system is

in a quantizing magnetic field. For strongly quantizing fields, hwc >> kBT, an electron

is a “hard disk” with characteristic size l3 = (h/mwc)1/2. It drifts transverse to the

magnetic field with a velocity Ef/B, and the characteristic duration of a collision is

[78, 76]

te = [BB(Ef_l).
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The scattering rate is increased compared to T120 by the encountering factor Q ~

wcte oc B3/2 (the same estimate can be obtained using density-of-states arguments:

the kinetic energy uncertainty of an electron wave packet of a size l3 in the field Ef is

N eEle, and therefore the density of states into which the electron may be scattered

is increased by a factor Q ~ th/eEle).

In the whole domain thszT, the value of RB in Eq. (3.28) is given by the

characteristic radius of the electron wave function, whereas tcoll is given by the time-

of-flight over the wavelength X (3.26),

R3 = my. +1)1/2, t...“ = we +1)“/2B<E;1>. (3.29)

It follows from (3.27), (3.28), (3.29) that the magnetoconductivity a is nonmono-

tonic as a function of B. It decreases as B‘2 in the range (3.27), reaches a minimum

for “strong” classically strong fields where C > 1, and then increases as B”2 for

fiwc >> kBT.

Eq. (3.28) for 7'1 gives also the characteristic value of the halfwidth 'y of the peak

of cyclotron resonance of a many-electron system in a strong magnetic field. We note

that in the classical range kBT >> fiwc the expressions for 'y and for the relaxation

rate in Eqs. (3.27), (3.28) for the static conductivity coincide with each other. This

is no longer true in the quantum range, although still 7 ~ T—1 [4].
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Interelectron momentum exchange

The exchange of momentum between electrons does not affect the long-wavelength

conductivity directly [89], since it does not change the total momentum of the electron

system. However, its role in the transport may be substantial. This is well-known in

the theory of low-density electron plasma in semiconductors [90, 91] from the analysis

of the case where the single-electron rate of collisions with scatterers Ts‘1(c) depends

on the electron energy 6. In the single-electron approximation the static conductivity

0 (for B = O) is a sum of the conductivities of electrons with different energies and

therefore different scattering rates; it is given by the averaged (over 6) reciprocal

271.373“) /m. The interelectron momentum exchange occurs viascattering rate, a = e

pair electron-electron collisions. If the frequency of these collisions greatly exceeds

—1
r (T), then a = €2n, /m7'a,"1 (6). These results were applied to 2D electrons on helium
s

in [57, 58].

Based on the discussion in Sec. 3.1 one would expect that similar arguments apply

to the static conductivity of a strongly correlated classical electron fluid for weak

magnetic fields. Here, an electron exchanges its momentum with other electrons not

via pair collisions but by being accelerated by the Coulomb force from these electrons.

The rate of interelectron momentum exchange r811 is given by the frequency of the

electron vibrations (up, as it is clear from Fig. 3.3. If pr >> 1, as it was assumed in

Eq. (10), the conductivity is determined by the relaxation rate of the total momentum

of the many-electron system, i.e., by the average rate Ts_1(€).

The role of interelectron momentum exchange in strong fields B, where collisions
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with scatterers are mediated by the electron-electron interaction, is clear from the

analysis of cyclotron resonance. Resonant absorption at frequency wc is due to tran-

sitions between neighboring tilted Landau levels in Fig. 3.5, IV) —> |u + 1). “Partial

spectra” which correspond to different transitions are broadened because of collisions

with scatterers. Prior to averaging over the many-electron ensemble the broadening

of a spectrum 7,,(Ef) depends both on the level number l/ and Ef. Even if all partial

spectra are Lorentzian, but with different widths, the total spectrum may be non-

Lorentzian (see [92] for a review of the theory of systems with equidistant or nearly

equidistant energy levels).

 

     
Figure 3.7: Reduced high-frequency conductivity (14) near the cyclotron resonance

peak as a function of the reduced frequency 6w = (w — wc)/7o for Gaussian distribu-

tion of Ef (solid line); 6(a)) = 2m700m(w)/7re2n, (70 E 70((E?)1/2)). A Lorentzian

distribution with the same area and with the halfwidth 7r1/270 is shown with a dashed

line (from [4]).

Electron-electron interaction gives rise to transitions between the Landau levels

61



of individual electrons and to drift of the cyclotron orbit centers. Electron motion

results also in averaging of the widths 7,,(Ef). The characteristic frequency of the

corresponding interelectron momentum exchange is seen from Fig. reffigzdisplacement

to be 7911 = Q = (of, /wC for wp << we. For fast momentum exchange, ”re? >> 7‘1, this is

relaxation of the total momentum of the electron system that determines the shape of

the cyclotron resonance spectrum, and the spectrum is Lorentzian with a width given

by the appropriately averaged 7,,(Ef) oc E{1 [4] In the opposite case 7811 << 7"“1

the spectrum is non-Lorentzian. For kBT << wac the conductivity is given by the

expression

  
~ 82771.9 fYOCEf)

0““) "’ 2m <73<Ea + (w — wc>2>' “'30)

The shape of the peak of oxx(w) depends on the shape of the distribution of the

fluctuational field. For the case of Gaussian distribution it is shown in Fig. 3.7.

3.3.4 Summary

For a broad range of electron densities and relatively low temperatures, the electron

system is a strongly correlated electron liquid, I}, >> 1. The analysis of the fluid is a

complicated problem by the absence of “good” quasiparticles, which is in contrast to

the much better understood Fermi liquid. Therefore the analysis of electron transport

requires a nontraditional approach.

Although the EEI does not change the total momentum of the 2DES, and thus
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does not directly affect the long-wavelength conductivity on(w) (the Kohn theorem),

momentum transfer from electrons to defects depends, of course, on electron motion,

and so 03$(w) is ultimately determined by the EEI.

The concept of the fluctuational electric field is an important picture in the de-

scription of the many-electron system [9]. The restoration of the Drude-model in the

range of weak to moderately strong magnetic fields is entirely maintained by many-

electron effects. The onset of magnetoresistance in classically strong magnetic fields,

kBT > hwc > e(Ef2)1/2XT, is also a signature of the many-electron magnetoconduc-

tivity [9, 93] Much of the features of the many-electron magnetoconductivty relate to

the range where the characteristic force on an electron from the random potential is

weaker than the force from other electrons. Then the corresponding results could be

explained, qualitatively and quantitatively, using lowest order perturbation theory in

the random potential [12, 93].

In the opposite limit where the force from the random potential is stronger than

that from other electrons, the static conductivity in quantizing magnetic fields could

be reasonably well described [13, 14, 15] by the single-electron theory based on the

self-consistent Born approximation (SCBA) [16].
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Chapter 4

Single-electron conductivity

In this chapter, we calculate the low-frequency (w < we) conductivity of a non-

interacting non-degenerate (kBT >> rm and nl2 << 1) two-dimensional electron system

in a weak delta-correlated disorder potential, meaning the lowest Landau level (LLL)

width is l'w << hue. To be specific, all results are written for the LLL, i.e., they apply

directly only for quantizing magnetic fields, kBT << hue. At higher temperatures one

has to add the contribution of higher Landau levels weighted with the corresponding

Boltzmann occupation factors.

The outline of this chapter is as follows. In Sec. 4.1 calculations of the low-

frequency conductivity will be given, the moment technique will be applied to this

problem in Sec. 4.2 and Sec. 4.3. From the tail asymptotic and the scaling for small

frequencies in Sec. 4.4, 4.5 the conductivity will be reconstructed in Sec. 4.6.
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4. 1 Kubo-conductivity

The most important advantage of restricting the calculations to a single Landau level

in this temperature range is that such states are nearly equally occupied. As a result,

the usual Kubo formula for the dissipative conductivity of the system can be written

as a simple trace, without the Boltzmann factor,

 

 

n _ —Bw oo ‘

0xx(w) : (1 h: ) fRGA dt ezwt <jx(t) Jx(0)> (4'1)

3 % _°°dte‘w‘Tr0{jI(t)j,(0)}, 5w << 1. (4.2)

Here jx E epI/m is the one-electron current operator, B E h/kBT, the angular

brackets () denote statistical averaging over the states followed by an averaging over

quenched disorder, while the horizontal line denotes only the disorder averaging. The

trace Tro in Eq. (4.2) is performed over all single-particle states of the lowest Landau

level; the energies are measured with respect to its center. Eq. (4.1) is written for

the case of strongly quantizing magnetic fields, exp(fiwc) >> 1, so that only the lowest

Landau level is occupied. However, the calculation is readily generalized to the case

of arbitrary 6% by replacing Tro by the sum of traces over the states of each Landau

level n weighted with exp(—nfiwc)[1 — exp(—fiwc)].

The trace over the broadened Landau level is conveniently done using the formal-

ism of guiding center coordinates R E (X, Y). The dynamics of a particle restricted to

a given Landau level is mapped to that of a 1D quantum particle with the generalized
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momentum and coordinate X and Y, and with the Hamiltonian

H = mZq 17., exp(iqR), [X, Y] = 412. (4.3)

The dimensionless coefficients

17., E (Vq/’17) exp(-l2qz/4) (4-4)

are proportional to Fourier components of the disorder potential,

Vq E .5"1 der V(r)e"“", (4.5)

where S is the overall area of the system. For higher Landau levels the momentum

dependence of F2, is more complicated, see Appendix B [see Eq. (B.16)]. We will

assume that V(r) is Gaussian and delta-correlated,

(V(r) V(r')) = v26(r — r’), (4.6)

in which case [16] in = (2/7r)1/2v/l.

After the Landau level projection, the cyclotron energy hwc is no longer relevant

for low-frequency dynamics, and the only remaining quantities with the dimension

of energy are the Landau level width fly and the temperature. In the simplified

Kubo formula (4.2) the temperature dependence is factorized, and we can rewrite the
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low-frequency conductivity in the form of the generalized Einstein relation

 

where D 2 l2) is the characteristic diffusion coefficient and

6(w) s Z227 f: dteiw‘TrO{R(t) -R(0)} (4.8)

is the reduced conductivity. It depends on the ratio w/y of the only two quantities

with the dimension of frequency that remain after projection on one Landau level.

The expression (4.8) for the reduced conductivity at a given Landau level can be

written more explicitly after evaluating the guiding center velocity with the help of

the Hamiltonian (4.3),

R = il2'y e‘wqu l7 eiqR, (4.9)
p q

q

where a,1/ = x, y and 6“” is the usual unit antisymmetric tensor. We obtain

~ : _2[2 dt iwt I

0(w) 7/ e Zq’qqu)
-00

 

xTr0{l~/ql~/ql exp [iq R(t)] exp [iq’ R(O)]}. (4.10)

This form is particularly convenient for calculating the frequency moments of the

reduced conductivity (4.10), see below in Sec. 4.2.
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4.2 Method of spectral moments

Because of the Landau level degeneracy in the absence of a random potential, the

problem of dissipative conductivity is to some extent similar to the problem of the

absorption spectra of Jahn-Teller centers in solids [94], which are often analyzed

using the method of spectral moments (MOM). This method can be applied to the

conductivity (4.10) as well [95]. It allows, at least in principle, to restore om(w). In

addition, the moments

_ 1 00 16"
Ill,c —— 27W we dw(w/'y) 0(w) (4.11)

can be directly found from measured om,(w), and therefore are of interest by them-

selves.

For (.0, 7 << kBT/h, the states within the broadened lowest Landau level are equally

populated and the reduced conductivity is symmetric, 6(a)) = 6(—w). Then odd

moments vanish, M2k+1 = 0. For even moments, we obtain from Eq. (4.10), (4.11)

Aime = —2[2 2(q1 Q2k+2) (VQI . . . VQ2k+2> (4.12)

X ll .. [eiqllv eiqu] ...] , enema] eiQ2k+2R,

where the sum is taken over all q1,. . . ,q2k+2. The commutators (4.12) can be eval-
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Table 4.1: The number of diagrams to calculate M2,c increases factorially, (2k + 2)!!,

among which the disconnected diagrams Fig. 4.1b, and diagrams of type Fig. 4.1c,

also factorially increasing in number, can be discarded. Symmetric diagrams remain

small in number, allowing us to use the diagram symmetry to reduce the number of

diagrams to be calculated by a factor of roughly one-half. The sum of diagrams with

paired endpoints, q1 = —q2k+2 is overall positive and gives the leading contribution to

M2,“ the approximate values are given in the column denoted by the prefactor —q1q1.

All other add up to a ~ 12% negative correction, as shown in the last column.

 

 

 

k total symmetric disconnected —q1q1 q1q2k+2

0 1 1 0 1 0

1 3 3 1 0.375 0

2 15 7 5 0.415 -0.0304

3 105 25 31 0.731 -0.0797

4 945 81 239 1.735 -0.2131

5 10395 331 2233 5.124 -0.6459

6 135135 1303 24725 17.964 -2.239

7 2027035 5937 318631 72.559 -8.809

uated recursively using

[eiqR, eiq’R] 2 2i sin(-;-l2q /\ q’) e“q+q’)R, (4.13)

where pAq = pqu —pyq1.. Indeed, in MOM the time dependent problem of the electron

motion in a random field (4.10) is translated into the evaluation of the correlator (4.12)

fort: 0.

4.3 Diagram technique

From Eq. (4.6) it is, (qu/qr) = (7rl2/2S)exp(—l2q2/2)6q+qt, where S is the area.

The evaluation of the 2k th moment comes then to choosing pairs (q,n : —an) for
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in ¢ jn, n = 1 . .. ,k + 1 and integrating over k + 1 independent q,-. Then,

_lg k+l

Mzk = (E?) l2/2 2 [dQI'”dQZk+2

C({q})

l

C({Q})(Q1Q2k+2) (”ml-31201? + - - - + qgk+2ll x

, 1

sm(§l2 (11A Q2) X

, l

Sln('2'l2((11 + Q2) A Q3) X

, 1

s1n(§l2(q1+ Q2 + - - - + (12k)/\ Q2k+1) (4-14)

where the sum is taken over all (2k + 2)!! ways to choose pairs out of the set of

{q1, . .. ,q2k+2} variables. C({q}) = (5(q,‘1 + qjl) . . . c5(q,-k+1 + qul) is the contraction

function. It is convenient to depict the contraction procedure graphically in terms of

diagrams, Fig. 4.1. These diagrams merely represent the contraction function C and

are not to be confused with ordinary diagrams within the Greens-function technique!

Not all diagrams contribute to the sum in (4.14). We find that any disconnected

diagram, Fig. 4.1b, has zero value since one of the sine terms in (4.14) has to vanish.

Additionally, diagrams of the type Fig. 4.1c are zero for parity reasons, amounting to

less than (2k — 2)”, k > 0 (to avoid double counting with the former case diagrams).

This comes about a special structure of the function in (4.14) which contains a factor

. 1 . 1

(Q1Q2k+2)31n(§l2Q2k+1 A (12/c+2)2 8111(512‘1m /\ Q2k+2)2
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Figure 4.1: a) shows an example of a symmetric diagram for the calculation of M4, its

value is zero. Graphically the symmetry manifests itself as a reflection symmetry with

respect to the dotted line. The dashed lines indicate which variables are to be paired.

b) the value of any disconnected diagram is zero, double lines indicate an arbitrary

internal pairing structure. c) this particular type of diagrams is zero because the

associated function is odd in q2k+2, therefore it vanishes after the integration.
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and apparently vanishes after integration over q2k+2. Excluding both types of dia-

grams in the summation process, reduces the amount of computing time to evaluate

Mgk, Table 4.2. The more, a symmetry readily seen from (4.12) may be exploited.

The arrangement of all q,- may be reversed without changing the overall value. This

implies that diagrams which can be transformed into each other by simply reversing

its sequence of variables q,- are equivalent, Fig 4.1a.

In principle high dimensional gaussian integrals as in (4.14) can be calculated

algebraically, however, the associated computational cost is high. The number of

diagrams increases factorially, Table 4.2, thus we have devised a fast combinatoric-

numeric classification scheme, which allows us to sort diagrams inexpensively into

bins. Then a representative diagram is evaluated algebraically for each bin and finally

summed up with its proper multiplicity, giving exact numbers for the moments.

Equation (4.14) can easily be represented by a sum of matrix exponentials,

kl

___2 [‘1 + _a<m)M2,c _ 21 87r 2 2(1) x

C({q}){1'1.---.j2k}

fd‘h ‘ ' ' dQ2k+2 C({Q})(Q1Q2k+2) X

l2 2 2k+2 A

exp {—wa + . . . + q§k+2) + i-4— Z B,{,{,},qm A qn ,

m,n.=l

(4.15)

where the inner sum is taken over all binary sequences of length 2k, j = (0,1,...)

and o({j}) = 21.3}. The antisymmetric (2k + 2)2-dimensional square matrix BU} has
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the following structure:

K 0 Cl 62 . . . 62k 0 \

—Cl 0 C2 C21,; 0

- . -02 —C2 0

BO} = , (4.16)

. ' 02k '

—62k —Cgk . . . -C32k 0

  (0 0)

C,” 2 (-1)j‘.

Choosing pairs, i. e. {(qlz—qg), (q3=—q4),...}, results in the reduction of the

matrix B to a (k+1)2-dimensional square matrix by means of the following procedure:

The pairing procedure reduces the number of variables by one-half. The results are

unaltered by the choice of the independet variables. For the given example, we decide

to keep the independent variables q1, q3, etc. Then, in the matrix representation of

the exponential, row 2 is subtracted from row 1, further row 4 from row 3 and so

on. Now, the subtrahend rows (2,4, ) are discarded, saying that those associated

variables don’t exist any more. The same subtraction and reduction scheme is applied

to the columns of the intermediate rectangular matrix, giving the (weighted with

q1q2k+2) exponential of the quadratic form (IQ/2) Z: q,/i,-jqj, where i,j = 1,. . . ,k+1.

The matrix elements 14,-j are themselves 2 x 2 matrices, AU- : —f6,~, + aija'y, where

6,, is the Pauli matrix, and a,,- = —a,-,- = 0, i1.

Given any diagram, its value may be calculated by generating the matrices B for all
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binary sequences j, then contracting the matrices according to the rules of its diagram

and finally counting the occurrences of the contracted matrices A summing up with

the proper sign, (—l)”({j}). In order to evaluate the multidimensional gaussian integral

(4.15) for a specific contracted matrix And we use the diagonalization technique, see

Appendix C, and obtain the value

k+1 k+1 a 121*

—4"c H0 + A?)“/2 Z ———1+/\"§“ . (4.17)

i=1 m=l m

where UAUl = diag(/\1, . . . ,Ak+1), (0),,- = uij. Additionally we have assumed that ql

and q2k+2 were kept as independent variables in the pairing procedure, then a: = k+l,

else if they are paired and dependent, q1= -—q2k+2, then we have to take a: = 1 and

(4.17) has to be multiplied by (-1).

Different matrices A may result in the same value after the integration in (4.15).

Therefore (4.17) serves as an equivalence relation and divides the whole set of matrices

A into equivalence classes. Each equivalence class is assigned its own bin in which

the integer multiplicity (positive or negative) of equivalent matrices A is stored.

The exact value for My, is obtained by simply taking a representative contracted

matrix A for each equivalence class and calculating the gaussian integral (4.15) al-

gebraically. The result is a rational number which has to be multiplied with its

bin content. Calculating algebraically only non-equivalent (4.17) gaussian integrals

tremendously reduces computing time which allowed us to obtain moments up to

M14. The outline of the program to calculate these moments is given in App. G.
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Summing up all bins gives the moment Mgk. For k = 0, 1, . . . ,7 we obtain

3 443 25003 13608949709 298681273551508807

8 1152 38400 8941363200 66698308912435200

566602308094143977186611746328323669809.

36033364452669289726755567308636160000 ’

2589008911677049308284617052653287524724669331093372792412270459939701

40611974008223423608381355617240666314144290787406293503186042880000

(4.18)

.Mgk=1;- 

 

 

and the approximate values,

A421,; 2 1; g; 0.385; 0.651; 1.522; 4.478; 15.72; 63.75.

4.4 Method of Optimal fluctuation, w >> 7 asymp-

totic

To restore the conductivity 6(a)) from the calculated finite number of moments, we

need its asymptotic form for w > '7. It can be found from the method of optimal fluc-

tuation [28], by calculating the thermal average in Eq. (4.10) on the exact eigenstates

In) of the lowest Landau band of the disordered system,

 

~ 247d2—26((E —E,,, — fiw) [(n]VV|m)]2, (4.19)

where En are the energies of the LLL states |n) in the potential V(r) (again, gener-

alization to the case of several occupied Landau levels is straightforward).
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In the neglect of inter-band mixing, the energies E, are symmetrically distributed

around the Landau band center (E = 0). The tails of the density of states p(E)

are known to be Gaussian, p(E) or exp(—4E2/h272). They are determined by the

probability of the optimal (least improbable) potential fluctuation VE(r) in which the

lowest or highest bound state has energy E (IE I >> 7) [28, 5, 96].

If we ignore the matrix element in Eq. (4.19) altogether (as we show below, this

only affects the prefactor), the tail of the conductivity will be proportional to the

probability to find two states En, Em such that En—Em 2 ha). The major contribution

comes from states at the opposite ends of the energy band with energies close to

E, = —Em = lilo/2, giving

6(w) 0< [WW/2)]2 0< exp(-2w2/72). (420)

To check this approximation, we will apply the method of Optimal fluctuation

[97, 28]. The averaging over disorder in Eq. (4.19) will be done using the path integral

representation

W2 /Dvm five->1 exp{421mm. (4.21)

where, for a delta-correlated Gaussian potential with the correlator (4.6),

R[V] — i / dr V2(r). (4.22)
_ 202

For large w, the leading contribution to the sum (4.19) comes from transitions between
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the states Wit) and libb) with energies E, and E, at the top and bottom of the Landau

band, respectively,

Eu, 2 / drV(r) [43,,b(r)|2. (4.23)

To logarithmic accuracy, the conductivity is given by the solution of the variational

problem of finding the optimal potential V(r) which minimizes the functional ’R[V]

and maximizes the matrix element of the transition subject to the constraint E, —‘Eb =

fiw, i.e.,

6(a)) o< m‘ax {exp [—R[V] + /\ (E, — Eb — hw)]

><I<4.Ivv14b>12}, (4.24)

where /\ is a Lagrange multiplier. Variation with respect to V(r) gives the equation

WP)

422 = A (ll/(4|2 41%|?) + 1n |<114|VV|wb)|2. (4.25)  

6V(r)

We have analyzed the variational problem using a simple and tractable direct vari-

ational method, and also by finding the maximum in Eq. (4.24) numerically. To see

the qualitative features of the solution, we first discuss it ignoring the contribution of

the matrix element. In this case the Lagrange multiplier A is given by the consistency

77



equation,

I... = E. — E. = 424 f 4r (It/4|? — 144.12)? (4.26)

and then the conductivity (4.24) is

-l

|1n6(w)| = 42.2 [242/4 (14.12 — W)? . (4.27)

The solution (4.25) corresponds to a potential of the form of a well and a hump, far

away from each other (cf. Fig. 4.5). The potential is antisymmetric, the well and

the hump have the same Gaussian shape [oc exp(—r2/2l2), with r counted off from

the corresponding extremum] and opposite signs. The wave functions wt and 212,, are

localized at the hump and the well of V(r), respectively, and are given just by the

most “localized” wave function of the lowest Landau level, namely that with zero

angular momentum, ’l/)00(I‘) o< exp(—r2/4l2), centered at the appropriate potential

extremum. The overlap of these wave functions is negligibly small, and Eqs. (4.26),

(4.27) give

hzw2 wz
_ 2 " _. ___ :—

fiw—Zv AA, |lno(w)|— 4112A 27r’7212/l,

with A E f dr WWI“ = (47rl2)‘1. In this way we recover the expression (4.20) for

the conductivity tail. For higher Landau levels (N Z 1), the wave functions have

the form [96] cm, oc rN exp(—iN¢)exp(—r2/4l2), in which case the corresponding

constant AN 2 (47rl2)‘1(2N)!/22N(N!)2.

The prefactor in Eq. (4.24) prevents the well and the hump of V(r) from being
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too far away from each other. Nevertheless, the full variational equation (4.25) has

a solution with an antisymmetric optimal potential V(r) = —V(—r) and symmetric

wave functions ¢t(r) = i/Jb(—r); respectively, Et 2 —Eb = fiw/2. To estimate the role

of the overlap integral we used the direct variational method in which we sought the

potential in the form V(r) = V([r — l‘ol) — V([r + rol) with V(r) 2 V0 exp(—r2/2l2).

The distance 2r0 separating the hump and the well was used as a variational param-

eter. Given the potential, one has to solve the Schrodinger equation, looking for the

wave functions projected on the lowest Landau level. We took the functions 1,1)“, in

the simplest form of orthogonal combinations of the zero-momentum wave functions

centered close to in, (the positions were found using a variational procedure). The

distance r0 scales with frequency logarithmically. The overall asymptotic expression

for the exponent in 6 was the same as in Eq. (4.20); the overlap integral gave only a

prefactor,

|<i0t|VV|¢b>l2 ~ (hvz/lw)2ln(w/v)-

To further check the accuracy of the asymptotic behavior of 6(w), we maximized

(see App. D) the functional in Eq. (4.24) numerically. We used the variational

equation (D4) to represent the optimal potential as a bilinear combination of the LLL

wave functions '1/20,,,(r) oc rm exp(im¢) exp(—r2/4l2) with different magnetic quantum

numbers m 2 0,

V(r) : Z umm’ diam“) WOW“)-

m,m’

The corresponding eigenfunctions ll)”, were written as linear combinations of the same

functions w0m(r).
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Both the exponent and the prefactor of the variational functional (4.24) calculated

numerically become close to the result of the direct variational method for LU/723.

The shape of the optimal potential found numerically for two values of III/'7 is illus-

trated in Fig. 4.2.

 

 
Figure 4.2: Density plot of the optimal potential for w = 37 (a) and w = 87 (b). The

distances are measured in units of the magnetic length l.
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4.5 Single electron scaling for w ——> 0

An entirely different set of states defines the conductivity for very small frequencies,

w << 7. In this regime the constraint imposed by conservation of energy is not very

restrictive, and it is the matrix element that determines relative contributions of

different pairs of states.

Close to the static limit the contribution to the conductivity increases dramati-

cally with the typical size of a wavefunction. As a result, 5 [Eq. (4.2)] is primarily

determined by a narrow energy interval at the center of the Landau band where the

states are nearly delocalized. The energy of the band center (E = 0) is a critical

energy, similar to the critical value of the control parameter in the theory of classical

percolation transition. At small deviations from the critical energy (parametrized

by the dimensionless energy 5 E E/fry) the correlation length diverges, {5 ~ l |e|"’,

where 1/ = 2.33 :l: 0.03 is the localization exponent [98, 17, 44].

Were it not for localization, propagation of a wavepacket in a random potential

would be diffusive,

(AR2(t)) ~ Dt. (4.28)

Localization corrections are least important near the critical energy, but even there

they modify the form of a wavepacket at very large times [99].

However, for not too large times the r.m.s. displacement, which is primarily de-

termined by small momenta, retains the diffusive form. This can be used to find the
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conductivity at small frequencies. TO this end, let us rewrite Eq. (4.8)

6(a)) = —— lim ille/ dt emf—‘StTro AR2(t), (4.29)

127 6—++0 0

in terms of the squared displacement AR2(t) E [R(t) —R(0)]2, where R(t) E

eiH‘R e‘im is the Heisenberg Operator of the guiding center. For an eigenstate

In) of the Hamiltonian (4.3) randomly chosen not too far from the critical energy,

(nlAR2(t)|n) has the diffusive form (4.28) at small enough t, but it eventually satu-

rates at the distance of the order of the localization length fen.

Replacing the trace by the integral Over energy weighted with the (non-critical)

density of states, we Obtain the overall long-time (7t >> 1) r.m.s. displacement

TroAR2(t) N hry/dg p(hye) min(Dt,€§)

oc (2 (7t)1"1/(2"). (4.30)

This average is determined by the states with energies [5| _<_ ('yt)‘1/2"; the integral

rapidly converges outside this region.

With asymptote (4.30), time integration in Eq. (4.29) gives:

5(w) = C (ca/7)”, II E (214“ (4-31)

The same result can be Obtained from the scaling form [100, 101] of the zero-

temperature conductivity of the non-interacting system at a given chemical potential,
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which can be written as

 

2 2

oMmfi=%%Cfi), am)

where the dimensionless scaling function 90(X) rapidly vanishes for X —> 0 and

approaches a constant value for large X. Indeed, the conductivity for 6w << 1 can

be written as a convolution of the scaling function (4.32) with the derivative of the

Fermi distribution function

 (3(a)) = 8kBT [d5 (~d—g—E)om(5,w) (4.33)

ne2127

[of Eq. (4.7)]. For kBT >> fry, all energies within the stripe Of width 65 ~ (co/7)“

contribute equally, and in the limit w —> 0 we Obtain Eq. (4.31) with the coefficient

Clep/m “X QMX) ash

wLWH“

Here we have assumed that 5%,, —-> const for 5 —> 0, and Q0(X) E

limHO g0(X 5253/12). The integration converges both at zero and infinity.

Therefore with U z 2.33 we conclude,

annawwwam,p=wm4zama mm)
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4.6 Reconstruction technique

4.6.1 Hermite polynomial reconstruction

Since the conductivity is asymptotically Gaussian, one is tempted to restore 6(a)) from

the moments Mn in a standard way, writing an expansion in Hermite polynomials

6(733) = Zn B" Hn(\/2:c) exp(——2a:2). The coefficients 3,, can be easily expressed in

terms of higher-order moments. However, for the moments (4.18), this expansion does

not converge rapidly, which indicates a possible nonanalyticity Of the conductivity at

w = 0, see Fig. 4.3.

4.6.2 Laguerre polynomial reconstruction

The arguments given in Sec. 4.5 strongly suggest that a scaling relation 0(a)) o< w“

for w —> 0 exists. The attempted reconstruction by Hermite polynomial supports

the indication of a nonanalyticity at w = 0. Given the exponent u, the conductivity

5(a)) can be restored from the moments (4.18) by using an expansion in terms Of

appropriate orthogonal polynomials. With Eqs. (4.20), (4.35), the conductivity can

be written as

6(a)) = 12:“G(:c) exp(—2a:2), :1: = [col/”y. (4.36)

The function G(1:) (a: 2 0) can be expanded in Laguerre polynomials L5.“—1)/2(2:132),

which are orthogonal for the weighting factor in Eq. (4.36). We have restored the

corresponding expansion coefficients from the moments (4.18). The resulting con-
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ductivity calculated with p = 0.215 is shown in Fig. 4.5. The estimated deviation

from the exact value due to a finite number of terms we preserved in the expansion

is smaller then the width Of the line. The expansion for 6 converges rapidly for

p between 0.19 and 0.28, whereas outside this region the convergence deteriorates,

Fig. 4.4.

4.7 Summary

In summary, the low-frequency single-electron magnetoconductivity of a nondegen-

erate 2D electron liquid in a quantizing magnetic field has been studied well beyond

the known SCBA results. The universal shape of the reduced magnetoconductivity

6(a)) has been obtained with good accuracy, see Fig.4.6, using the above asymptotic

expressions and the method of moments [95]. It follows from those results that for

strong coupling to short-range scatterers the conductivity om(w) is nonmonotonic.

The static conductivity is found to be zero which is in contrast to the SCBA re-

sult. In the limit Of small frequencies, w —+ 0, the single-electron conductivity can

be found from scaling arguments described with QHE critical exponents known from

localization properties of a 2DES.
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Figure 4.3: Approximating 6 with Hermite polynomials. With increasing number of

moments M2,c the tail, w 2 'y, converges rapidly. Interestingly enough, the overall

conductivity 6 is nonmonotonic for small w. At the bottom, the magnification shows

a rather slow convergence at w = 0, which indicates a possible nonanalyticity of the

conductivity.
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Figure 4.4: The expansion Of the prefactor G (4.36) in Laguerre polynomials

Ll,“"1)”(2222), in dependence of the exponent ,a. The expansion converges rapidly

for 11 between 0.19 and 0.28 and deteriorates significantly outside of this interval.

 

  
 

 
Figure 4.5: Reduced microwave conductivity (4.10) of a non-interacting 2DES in

a short-range disorder potential for kBT >> 57 (solid line). For small frequencies,

6) << 7, the singular part of the conductivity on ~ w" is determined by spatially

large, nearly delocalized states. For large frequencies, (.0 >> 7, the conductivity is

determined by large optimal fluctuations of the disorder potential as illustrated in

the inset. The corresponding Optimal potential Vop,(r) should be such that hw be

equal to the energy difference E, - Eb between the top and bottom bound states

|t), |b), and at the same time these states be maximally overlapping.
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Figure 4.6: Comparison of the reduced conductivity 6(w) for different values of p =

0.23,0.215 (solid line), 0.20. The curves dependence is only sensitive against the

scaling exponent a for a narrow frequency region 6) < 0.57.
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Chapter 5

Cyclotron Resonance

The single electron conductivity at cyclotron frequency is determined by the correla-

tion function of the Landau level raising and lowering operator

ne2 '°°

00(4)) — % _ dtei‘“ (P-(t)P+(0)>a (5-1)

where we used Eq. (4.1) and assumed that exp(hwc/kBT) >> 1, in which case only the

lowest Landau level is occupied for small densities. If the disorder is weak, 7 << we,

it only weakly mixes different Landau levels, the primary effect being lifting the

degeneracy of each level. Then, the problem of Optically-induced transitions between

different Landau levels resembles that Of transitions between degenerate electronic

terms of impurities in solids in the presence of the electron-phonon coupling which

gives rise to Jahn-Teller effect [94]. One Of the effective methods of the theory of

absorption spectra of Jahn-Teller centers is the method of moments.

The MOM formalism can be transferred to the case of inter-Landau-level tran-
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sitions [76]. For fly << kBT, quenched disorder can be described in the same way

as scattering by thermally excited phonons. The major difference is infinite level

degeneracy.

In the neglect of disorder-induced scattering between Landau levels, one should

keep only the part H, of the disorder potential V(r), which is diagonal in the Landau

level representation,

H, = Z 415%,. = 67: 17,53“: LN(32—21—2) PN, (5.2)

N q N

where 17,, is defined by Eq. (4.4) and PN 2 PE, is the operator Of projection to the

Nth Landau level, as in Eq. (B.15). With the Hamiltonian (5.2), oscillations at the

cyclotron frequency can be singled out in Eq. (5.1),

pi“) = eiiwcteifldt/hpie_iH“t/h. (53)

Then, from Eq. (5.1), we can write

 

 

ne

C : ~C 3
5.44(4) 2mm) ( >

where

66(0)) 2 7/ dt eiA‘” Tr0[ei”d‘/"p_e“”d‘/hp+] (5.5)

is the reduced conductivity, and Aw E w — we is the frequency detuning, [Aw] << we.
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5. 1 Cyclotron moments

The major difference of Eq. (5.5) from its counterpart (4.8) for the low-frequency

conductivity is that the Hamiltonians for direct and inverse time propagation (cor—

responding to the factors eiin‘) are now different, which is again familiar from the

theory of impurity absorption spectra. The reduced cyclotron conductivity can be

conveniently written in a form conventional for this theory by introducing the “per-

turbation” Hamiltonian

(1) (0) (1212
6HdEHd —Hd 2"}?sz

q

~

Vq eiqR. (5.6)

In the interaction representation, 6C can be then simply expressed in terms Of a time-

ordered exponential,

 

56(0)) = 7/_00 dt eiAW‘Tro [T7 exp ( — %/0th 6Hd(r))]. (5.7)

00

Here, time dependence of the operator 6H,),

5Hd(T) a emf/h 6Hde“‘”’/h, H 2 H50), (5.8)

is generated by the disorder Hamiltonian projected on the LLL, which is given by

Eq. (4.3) of the previous chapter.
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We can now define the spectral moments of the cyclotron peak as

 

1 °° w — w k

MC = —— dw C ~c - -
k 27m _00 < 'y ) o (w) (5 9)

Using Eq. (5.7) we write

 

(5.10)
 

0 id k 2' ‘
Mk—Tl‘0(; a) TTBXp(—E/O 6Hd(7') d7)

t:0

We note that, similar to the case of the peak of low-frequency conductivity discussed in

the previous chapter, we are calculating here the moments of the cyclotron peak only,

whereas the small (oc 'y/wc) background from the correlators neglected in Obtaining

Eq. (5.1) is projected away, as are also the peaks of on (w) at w z nwC with n 76 1.

We will now calculate the spectral moments. Because all states of the lowest

Landau level are equally populated, the reduced conductivity (5.7) is symmetric with

respect to we, i.e., 6,;(wC + Aw) = 6C(wc — Aw). Therefore all odd moments vanish,

M2ck+1 = 0. We Obtain the general structure of the expression for even moments which

follows from Eq. (5.10) and shows a similar structure to that of Eq. (4.15). The main

difference is that the prefactor now is a complicated polynomial, a combination Of

products Of terms which are linear in the squared wave numbers qg,

5k = :07,“ . . . V‘hk) (aqu + . . . + amqfqg. . 42k) x

{q}

2

exp [242((11 /\ (12 + . . . +(q1+. . .+QQk_1) /\ q2k) ,

(5.11)
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where the sum is taken over the quasicontinuous spectrum of all wavenumbers

Q1, - -~ 7(12Ic-

Unlike in the case for the low-frequency conductivity 6(w) we couldn’t find any

easy diagram rules to reduce the computational overhead resulting from diagram

symmetries. Secondly the resulting high dimensional oscillating gaussian integrals

could not easily be computed numerically by a diagonalization technique. This is

because of the nontrivial prefactor in (5.11). To Obtain exact values for those integrals

we developed the computer algebra package GaussInt [102] for Mathematica, which

is capable of handling the integration of highly dimensional gaussian integrals in a

manageable time frame. For k = 0, 1,. . . ,5 we obtain for Mg,

_1_37.52043_4750893001499.

’2’64’55296’2488320000000’

29694054188353275207831950716496054687

6480696333914117611721116876800000000

Ar§,== 1  

@112) 

and their approximate values

1

Mg, m l; 2; 0.578; 0.941; 1.909; 4.582.

5.2 Asymptotic behavior

TO restore the conductivity 6c(w) from its moments (5.12) we also need its asymp-

totic form. The method Of Optimal fluctuation provides the asymptotic gaussian

w-dependence. If we introduce the exact eigenstates of the Hamiltonian (5.2) for the
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lowest |0, m) and the first excited [1,m) Landau levels, with energies E53) and E53),

respectively, the expression (5.5) for the reduced conductivity can be written in the

form

 

5,65) = 245728551) — ESP) — hw)|(1, mlp+|0, n)|2. (5.13)

As for the low-frequency conductivity considered in the previous chapter, the conduc-

tivity tail is determined by large optimal fluctuations Of the disorder potential. The

problem of finding the optimal potential for the cyclotron resonance had already been

considered by Ioffe and Larkin [28]. They found the optimal potential was realized

by a rotational-symmetric potential

V‘mki" = 27rV0|<I>0|2 + 27rV1|<I>1|2 (5.14)
Opt

where

(P0 = 1,00,0(1') Z (27fl2)—1/2 €Xp[—T2/4l2],

(D1 = w1,_1(r) = (47rl4)’1/2re“p exp[—r2/4l2].

are the functions Of the lowest and first excited Landau levels centered at the same

origin, with magnetic quantum numbers 0 and —1 respectively. This resulted in the

asymptotic form of the cyclotron resonance absorption peak 6C oc exp(—8 Aw2/72),

for the range h'y << kBT.
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We argue that the transition probability between the states with energy separation

ES) — 5.0) = Aw +wc is exponentially increased if the cyclotron orbit centers of these

states are permitted to shift with respect to each other. This happens despite the

associated decrease of the overlap integral.

The calculation Of the tails of the cyclotron resonance absorption peak is very

similar to that in Sec. 4.4. We begin by writing the averaging in terms of a functional

integral (4.21), with the energy conservation taken into account using a Lagrange

multiplier [as in Eq. (4.24) but with different Hamiltonians for E, and Eb]. If we

neglect the dependence of the transition matrix element on V(r), then for the Opti-

mal potential we Obtain an equation similar to Eq. (5.14). However, in contrast to

Ref. [28], we permit the centers of the wave functions (Po and <1), to be shifted with

respect to each other.

A remarkable feature of this simplified variational problem is that, in the neglect

of overlapping Of the displaced wave functions, the same value of the variational

functional [except for the overlap term] is obtained for the trial wave functions of the

first Landau level with the magnetic quantum numbers -1 or 0, i.e., 2/21,_1 or 151,0, or

for any of their linear combinations.

For a displacement R between the centers of the hump and well of the optimal

potential, the transition matrix element is [(r/)1|p+|ybo)| ~ exp(—R2/4l2). The optimal

distance R2 z 4121n[(w — wC)2/72] is found by maximizing the expression with the

matrix element present. As in the case of the low-frequency conductivity, this distance

increases as the frequency is tuned away from resonance.
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The variational result for the conductivity tail is

60(w) o< exp ( — —:—(w — wc)2). (5.15)

This tail is much broader, with the exponent reduced by a factor Of 3, compared to

the result of Ref. [28].

5.3 Restoration

5.3.1 Reconstruction with Hermite polynomials

The result of the standard reconstruction of 6C from its moments (5.12) by 6C(7:c) =

Zn 3,, Hn(\/8—/3:r) exp(—8/3a:2) is shown in Fig. 5.1. The coefficients 8,, can be easily

expressed in terms of higher-order moments. Although the tail Of the conductivity

converges rapidly, it is noticeably slower close to the center [it is emphasized, however,

that convergence is reached, in contrast to the similar expansion for the low-frequency

conductivity in Fig. 4.3, where the convergence was not reached for 14 moments].

Within this approach, the number of calculated moments is apparently insufficient

for restoring the entire function 6,; with desired accuracy.

5.3.2 Continued fraction reconstruction

Continued fraction expansions are known to be reliable source for powerful and fast

approximations. Analogous to the reconstruction of the density of states for an arbi-

trary correlated random potential [29], we employ this powerful technique to restore
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Figure 5.1: Approximating 60 with Hermite polynomials. With increasing number of

moments M5“), the tail, w _>_ 7, converges rapidly. Interestingly enough, this approxi-

mation scheme doesn’t show fast convergence.
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6C from its moments (5.12). In the following we give a brief summary of the important

steps involved in this process.

The Stieltjes transform of the conductivity 6C

1 °° ‘. c

m.) = _ f .4... ML) 44. z > 0, (5.16)
2W7 _00 z — zw/y

with its inverse transformation

6C(w + w.) = 2 lim ERe [R(5 + iw/7)], (5.17)

5—>0+

is related to the moments,

R(z) = Z 2'ka z—k—l. (5.18)

k=0

We now construct an approximation to (5.16) which applies for an even function

6(w + we) 2 6(—w + we), allows for the Gaussian asymptotics (5.15)

lim ”’21n~( +4..) 1 a 3 (519)
__— OC OJ C : ___—7 = __a '

waioo (4)2 26! 16

and requires only a finite number of moments.

According to Stieltjes classic theory [103, 104], R can be expanded into a Jacobi-

type continued fraction. For normalized even moments we can write

R(z) 2 f2 (Aj

1:1 Z

). A,- 2 0. (5.20)

98



where we use the notation

 

 

00 A]. 1

1131(7) ._ (5.21)

A1

z +

42

z +

z + "

for the continued fraction with coefficients A,- and variable 2. The first J

continued-fraction coefficients A1, . . . , AJ are obtained from the normalized moments

Mg, . . . ,MgJ by expanding the power series (5.18) into the continued fraction (5.20)

using an efficient recursive algorithm [103]. Having Obtained only a finite number Of

coefficients A], we need to estimate the remaining ones. Fortunately however, the

asymptotic behavior (5.19) implies [105] the following asymptotically linear growth

for the continued-fraction coefficients

A-

lim —,J = a. (5.22)

Therefore it is natural to match this linear growth to the first J < oo coefficients

 

A1, . . . ,AJ to construct the approximations R(J)(z) to R(z) by means of

00 A“)

BMW) = .K1( 7: ), (5-23)
J:
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where

A- for j 3 J

A”) = J . (5.24)
J

AJ+a(j—J) for j>J

A continuous fraction with a linearly increasing coefficient can be written in terms of

the Whittaker parabolic cylinder function Du,

  

- D_ a— -1/2

(Haj) _ ({3/ ) 1(a 2) (5'25)

— al/QD_5/a(a‘1/Qz)’

which is valid if a > 0, B + 04 > 0 and §Rez > 0, so that we can write Eq. (5.23) as

 R(J)(z) = . (5.26)

 

2+

2+ AJ__1

._ +

z+AJT(AJ,a,z)

 

Applying the inversion formula (5.17) immediately gives the restored cyclotron reso-

nance absorption 6C(w) as shown in Fig.5.2.

5.4 Summary

From very general arguments is seems to be clear that the singular behavior of tran-

sistions within the lowest Landau level states may not affect the cyclotron resonance

absorption. The suppression of the low-frequency conductivity for w —> 0 may be
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Figure 5.2: Approximating 66 with continued fractions. The convergence is astound-

ingly fast, with increasing number of moments 5,. For k = 3,4,5 the curves

lie on top of each other Fig.5.2b. The convergence can be compared to the stan-

dard Hermite polynomials approximation. Fig.5.20 shows a comparison between the

continued-fraction (solid line) and the Hermite polynomial approximation (dashed

line) for k = 5. Interestingly, though a non-critical behavior of the cyclotron reso-

nance absorption is expected, the Hermite reconstruction fails to converge quickly.
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attributed to level repulsion between overlapping localized states. This repulsion is

comparatively small for states of relatively large radii, with energies close to the band

center. Indeed, only such states contribute to the low-frequency conductivity, as we

saw in Sec. 4.5. On the other hand, resonant cyclotron absorption is due to transi-

tions between different Landau levels. Although the central part Of the absorption

peak is formed by transitions between strongly overlapping states, the involved states

are eigenstates of different Hamiltonians, with random parts H((10) and H([1). Their

wave functions have different spatial structures and their energies are essentially un-

correlated; except for states deep in the tails of the Landau levels. Consequently,

we expect no suppression of transitions at frequencies close to we. This argument is

in agreement with the results of the method of moments presented in this chapter

Fig. 5.2.
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Chapter 6

Many-electron conductivity

In the present chapter we show that the electron-electron interaction (EEI) in a

correlated 2DES gives rise to a nonzero static magnetoconductivity and to a low-

frequency plateau in oxx(w). We obtain the value of 033(0) and the width of the

plateau, which for a weakly nonideal Fermi gas would be determined by the dephasing

rate [106]. This allows us to reconcile the results on the QHE and the data on the

strong-field magnetoconductivity of electrons on helium.

The EEI also dramatically changes the tail of oxx(w) for w >> ”)I. In the single-

electron approximation, this tail is formed by the transitions between localized states

with energies lying on the opposite tails of the disorder-broadened Landau level. Since

the tail of the density of states is Gaussian [5, 28], so is also the tail of 0351(0)).

The EEI makes it possible for an electron to absorb a photon by changing its

position with respect to other electrons. The photon energy then goes to the potential

energy of the correlated many-electron system. In a quantizing transverse magnetic

field B, an electron displacement by 6r requires the momentum transfer (e/c)6r x B.
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This momentum is provided by the disorder potential, via multiple scattering by

defects - the mechanism which is somewhat similar to the one that gives rise to

anomalous tunneling transverse to a magnetic field [107]. As a result, the many-

electron ox$(w) falls much slower than in the single-electron approximation, with a

nonanalytic exponent w2/3 [108].

Below, in Sec. 6.1, the magnetoconductivity of a nondegenerate electron fluid in

the limit of weak short-range disorder is analyzed. It is shown that, for finite frequen-

cies (w << we), the conductivity in quantizing fields becomes a nonmonotonic function

Of B. In Sec. 6.2 the low-frequency conductivity for strong disorder is considered.

6.1 Many-electron magnetoconductivity for weak

short-range disorder

The force on an electron wave packet of size I from the disorder potential is ~ 57/l.

Therefore the limit of weak disorder compared to the electron-electron interaction

corresponds to

fly/l << e(E?)1/2. (6.1)

This condition can be interpreted also in terms of energies. It is seen from Eq. (4.6)

that the quantity ’7 characterizes the distance between the single-electron states, of

spatial extent I, localized on the same potential fluctuation. The fluctuational field

gives rise to mixing of these states. The strength of this mixing is characterized by
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e(E?)1/2l/h*y. When the mixing is strong (6.1), it is appropriate to speak of scattering

of an electron, which moves in the fluctuational field, by disorder. As we will see, the

scattering rate is small compared to the reciprocal duration of an individual scattering

event (i.e., the reciprocal collision time).

6.1.1 General expresion for the low-frequency conductivity

In the range of temperatures hwc >> kBT >> hr) and for kBT >> fiw, the low-frequency

magnetoconductivity of a nondegenerate 2D electron liquid can be written in the form

Of an Einstein-type relation, see also Sec. 4.1

6$$(w) : ne2D5(8k3T)_l6(w), D3 = 127. (6.2)

Here, D, is a characteristic single-electron diffusion coefficient: in a scattering by a

short-range defect an electron is displaced by ~ l, and the single-electron scattering

rate is 7. The reduced conductivity 6 is given by the expression [93]

6(w) = -2(fim7wc)"l / 46‘2“, (44')
CD

><<114V¢exr> [iqrn(t)lexp[iq’rn(0)l>- (6-3)

Eqs. (6.2), (6.3) were Obtained from the standard Kubo formula for om(k, w) applied

to a many-electron system in the limit A: —> 0. First, in the Heisenberg equations

of motion for the total electron momentum P the term dP/dt ~ wP was neglected

compared to wcP. Then P is expressed in terms Of the parameters Of the disorder
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Hamiltonian

H,- = ZZ Vq exp(iq rn) (6.4)

(rn is the nth electron coordinate). The correlator of two P Operators is given by the

sum over n, n’ of the correlators (VqVqI exp[iq r,,(t)] exp[iq’ rn.(0)]). Only the terms

with n = n’ were kept in this sum because, for a short-range potential (4.6) and for

a correlated electron system, the typical wave numbers q, q’ ~ l‘1 largely exceed the

"1/2, or in other words, a short-range defect is interacting onlyinterelectron distance n

with one electron at a time.

For weak disorder, the conductivity 6(w) should be evaluated to the lowest order

in Vq, which corresponds to neglecting the disorder potential when calculating r,,(t).

We will find the appropriate conditions later. At this point we will only assume that

the range of times that contribute to the integral (6.3) are It] << 9‘1, where Q was

defined in (3.22). In this case the fluctuational electric field En on the nth electron

is time-independent and uniform over the electron wavelength l.

6.1.2 Electron density correlator

We will calculate the density correlator (6.3) using the lowest Landau level wave

functions 2%,? (r) of an electron in a uniform electric field Ef,

4,9330) 4504/2751“

 

1 E12 2
x exp [ikyy — EE (2: — (€le + GmLZ )

C
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Here, Ly is the size of the system in the y-direction, and we chose the x-axis in the

direction of Ef, i.e. Ef 2 E02.

We will count the electron energy E(°)(ky) Off from (1/2)fiwc — (e2E3/2mwg), in

which case

E<°>(k,) = eEfkyfi (6.6)

(the energy spectrum of the many-electron system is continuous, and so is the energy

spectrum of an electron in the field of other electrons).

From Eqs. (6.5) and (6.6), the diagonal matrix element Of the operator in (6.3) is

<44” lexplz‘q r<t>1exp[—z'q 4(0)]! 4,90

1 t

= exp [—§q2l2] exp [irrijw 15;f Aq] (6.7)
C

(for chosen axes, the wedge product is just Efqy).

Calculation of the density correlator in Eq. (6.3) requires averaging of the matrix

element (6.7) over electron states in the electron liquid. It can be done just by

averaging (6.7) over the fluctuational field Ef, using the field distribution (3.25).

This gives

 iqr..(t) -iqrn(0) __ _1212 1 7rt2 68
<6 e >—exp 2g + 2t2 1 ( ’ )
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where

7171’1/2

=5__\/<E?>
t. = 103/c) (5,-1) ~ (MET/hr”? (5.9)

The quantity te has a simple meaning: this is the time of flight of an electron wave

packet, of size 1, in the crossed fields Ef,B, past a short-range defect, i.e. te is

the duration of a collision. For typical q ~ l‘l, it determines the time over which

the correlator (6.8) decays. In terms of te, the weak-disorder condition (6.1) has a

simple form yte << 1 which, in the single-electron transport theory, correSponds to the

condition that the collision duration is small compared to the reciprocal “strength”

of the random potential. In other words, collisions occur successively in time.

For hi2 << kBT we have te << Q“, which means that the fluctuational field on

the electron does not vary during the collision, as assumed in the derivation above.

On the other hand, for an electron fluctuating about its quasiequilibrium position,

the time interval between successive collisions with the same scatterer is ~ (ti/”29“,

where 6 was introduced in (3.17). It largely exceeds the time 52“ it takes for an

electron to exchange energy with other electrons and thus to loose coherence. This

shows that for weak scattering interference effects leading to weak localization in the

single-electron approximation are not important.
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6.1.3 Analysis of the conductivity

Eqs. (4.6), (6.8) give an extremely simple expression for the reduced conductivity

6(w) of the correlated 2D electron liquid,

6(w) = (@711. (1+ 3%) exp (if—2%) (6.10)

In the quasi-static limit of small wte Eqs. (6.2), (6.10) give 033(0) 2

(7r/2)1/2ne21272te/8kBT, as obtained earlier [93, 12] using different approaches (but

still based on the notion of the fluctuational field). Thus, 63,,(0) has a form of the

single-electron conductivity in a magnetic field, with the scattering rate 7‘1 = 72te

which is quadratic in the disorder potential and is determined by the EEI.

The frequency dependence Of 6 is shown in Fig. 6.1. Although it has a maximum

at w = 0, it is very different from the standard Drude form (1 + wzrz)”. The

characteristic width of the peak t;1 is given not by the rate of scattering by disorder

(which is determined by 7), but by the many-electron time te. The tail Of the peak

is exponential in w, following the Urbach rule.

The shape of the tail can be understood by noticing that the conductivity is

formed by processes in which the energy of the absorbed photon hw goes to the

many-electron system through a process in which the absorbing electron shifts by the

distance 6r 2 hw/eEf along the fluctuational electric field. The associated momen-

tum h/(Sr is provided by short-range scatterers. Since the size of the electron wave

packet is l, the probability to transfer momentum bigger than h/l is exponentially

small. Therefore the conductivity decays for w >> eEfl/h, or wte >> 1.
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Figure 6.1: (a) The dependence of the reduced conductivity 6’ (w) = (2/7r)1/26(w) /yte

on the reduced frequency w’ = wt,,(2/7r)1/2 in the limit of weak disorder (6.10).

An interesting and specific feature of the many-electron microwave conductivity

6m(w) is its nonmonotonic dependence on the magnetic field. Since 7 oc 1/l at B”2

(4.6), and te o< B1/2 (6.9), the static conductivity 033(0) cc 3”2 is increasing with

the magnetic field for quantizing fields. This is a consequence of the fast increase,

with the increasing B, of the characteristic scattering rate yzte. The latter happens

because, as B increases, the electron wave function becomes more localized, thus

increasing the effective strength of coupling to short-range scatterers. At the same

time, the characteristic collision duration t8 is also increasing, which further increases

the scattering rate [93, 12]. The increase of om(0) with the increasing B has been

quantitatively confirmed by the experiment [15].

For finite frequencies orm (w) displays a peak as a function of B, see Fig. 6.2. The

position of the peak is given by the expression
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Figure 6.2: (a) The dependence of the reduced microwave conductivity o”(w) =

(nezv2/8h2wk3T)”lom(w) on the magnetic field, B, = wte(2/7rB)1/2, in the limit of

weak disorder.

(44,)...“ = (7r/8)1/2(1+ J5), B4... o< ...-2. (6.11)

The onset of the peak is due to competition between the increase of the scattering

rate with increasing B and the decrease of the probability to absorb a photon for

wt,3 > 1 explained above (te increases with B).
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6.2 LOW—frequency conductivity for strong disor-

der

We now consider the Opposite case Of comparatively strong disorder where the char-

acteristic force on an electron originates from the defects,

hy/l >> e(E?)1/2 or 7te >> 1. (6.12)

In this case collisions with defects “overlap” in time. One might expect therefore

that the electron—electron interaction (EEI) would not affect the conductivity, and

one could use the single-electron theory. In fact, this was done on several occasions

for a correlated system Of electrons on helium [13, 14, 15], using the self-consistent

Born approximation (SCBA), although the existence of the parameter (6.12) was not

always appreciated.

The SCBA conductivity is incompatible with the single-electron phenomenology

of the quantum Hall effect (QHE), in which all but one (or maybe a few) states in the

broadened Landau band are localized [17]. As a consequence, for kBT >> fry, where

all states in the band are equally occupied, the single-electron static conductivity

should be equal to zero, in contrast to the SCBA result.

6.2.1 Many-electron conductivity for w —> 0

Self-diffusion in the electron liquid, which is present in the temperature range of

interest kBT >> fry, eliminates the single-electron localization. As a result, the static
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conductivity Of the liquid has a nonzero value. However, in the strong-disorder limit

'yte >> 1, because of multiple scattering by defects, the coefficient of self-diffusion is

very different from that in the free electron liquid. In this subsection we Obtain an

estimate of this coefficient and of om(w) for small w/y.

For strong disorder (6.12) but for e2n1/2 >> kBT >> fw, electrons remain corre-

lated, and one can think of the fluctuational electric field as a smooth perturbation

superimposed on the disorder. The energy distance between the states of size ~ I

localized on the same disorder-potential fluctuation is ~ fly and is large compared

to ClEfll. For such states, the field Ef is a perturbation, which nevertheless causes

interstate transitions. On the other hand, for the states near the Landau band center,

which have large radii and small interlevel distances, the effect of Ef is very strong.

As a result Of the EEI, the energy of an electron in the potential of defects V(r)

is not conserved. An electron displacement by a distance 6L leads to change of the

reduced energy 65 ~ elEfldL/hy ~ 6L(7te)‘1. By setting 6L equal, to the order Of

magnitude, to the correlation length £5, one obtains the width [5f] of the band of

long-range states which “survive” in the presence of the fluctuational field

5. ~ (7t6)_1/(”+1). (6.13)

One can easily check that the displacement 6L = hy5f/elEfI ~ l(7te)"/("+1) is much

less than the thermal displacement 5 for h”) << kBT, which justifies the approximation

of a uniform fluctuational field.

The motion of each electron gives rise to modulation of energies Of all other elec-
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trons. The overall change of the Coulomb energy of the electron system over a small

time interval is given by Zn e (Eh, 6r"), where 6rn is the displacement Of the nth elec-

tron due to the potential of defects, and Efn is the electric field on the nth electron

from other electrons. Clearly, Eh, and (5rn are statistically independent. This allows

us to relate the coefficient of energy diffusion of an electron D6 to the coeflicient D

of spatial diffusion in the potential V(r) [108],

D. = (52/2) (Er?) D ~ 701/154)? (6-14)

Energy diffusion eliminates electron localization which caused vanishing Of the

single-electron static conductivity. The low-frequency boundary w, Of the range of

applicability of the single-electron approximation can be estimated from the condition

that the diffusion over the energy layer of width ~ 651 : (wl/7)‘u [which forms the

single-electron conductivity (4.35) at frequency w; << 7] occurred over the time 1/w,.

For ,u = 1/(2u), this gives

447/7 = 01(7t.)‘2"/‘”+”, C. ~ 1. (6.15)

Clearly, (551 : (wt/7)“ as given by Eq. (6.15) coincides with the estimate (6.13)

Obtained using different arguments. All states with energies |5|5651 contribute to the

conductivity for frequencies w < w). Therefore the many—electron conductivity may
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only weakly depend on w for w < w), as shown in Fig. 6.3, and the static conductivity

6,,(0) 2 6,441,) ~ (ne2712/k3T)(7te)”1/("+1). (6.16)

We note a similarity between the EEI-induced energy diffusion, which we could

here quantitatively characterize for a correlated nondegenerate system, and the EEI-

induced phase breaking in QHE [109, 110]. The cutoff frequency we can be loosely as-

sociated with the dephasing rate [Eq. (6.16) can be Obtained also as a conductance of a

system of noninteracting electrons of size Lw, at given temperature 1537" >> 67 >> fiwg].

In the range 7te ~ 1, Eq. (6.16) matches the many-electron theory [12] where

om(0) = (2r)1/2ne272t612/16k3T. The results are shown by the solid line in Fig. 6.3.

 4

Q
?

 

   _
_
_
—
_
_
_
]
-
—

   

O p
—
a

i
.
.
< N

Figure 6.3: Reduced microwave conductivity (6.3) Of a nondegenrate electron liquid

for strong disorder, 7te >> 1 and kBT >> 67 (solid line). The single-electron conduc-

tivity (dashed line) goes to zero for w -—> 0. The electron-electron interaction results

in flattening of 6(w) for wgwl (6.15), and in a much slower decay of 6 for w >> 7.
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Chapter 7

Suggestions for an experiment

The many-electron 2D system that we investigated is characterized by several param-

eters. Some Of them (the electron densitry n, temperature T, and the magnetic field

B) can be easily controlled. For electrons on helium, the Landau level broadening

by the disorder potential 7 = (2/7rf12)1/2v/l, can also be controlled independently. It

follows from our results that, in the broadly investigated domain two > [CT > 67,

different regimes of the conductivity are determined by the single parameter 7te,

where the many-electron time te oc n‘3/4T‘1/2Bl/2. In the strong-coupling regime

7te >> 1, our results predict the occurrence of a new behavior Of the conductivity, the

peak of 6(w) at a finite frequency w ~ 7. We also predict a very specific dependence

of the static conductivity on the control parameters n, B, T, as specified below. All

Of these phenomena can be used to unambiguously detect the physical properties Of

the disordered many-electron system that we investigate.

The results Obtained from the single-electron theory in chapter 4 and 5 with

their many-electron modification in chapter 6 directly apply to electrons on helium.
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Although the many-electron theory of the static conductivity for comparatively weak

coupling has been fully confirmed by the experiment, so far only a limited number

Of experiments has been conducted in the range of strong coupling, or extremely

strong magnetic fields, which is of primary interest for the present work. Much of the

available data was interpreted in terms of the single-electron theory (SCBA) which,

as we have shown, is inconsistent. We expect that new experiments on the static

conductivity in low-density electron systems will reveal the many-electron effects that

we predict. Particularly revealing would also be the frequency resolved experiments

in low-density systems, either on helium or in semiconductor heterostructures.

A new type of feasible experiments that may be particularly revealing is the in-

vestigation of the magnetoconductivity at a given nonzero frequency w as a function

Of the external magnetic field B. The corresponding representation of our results is

given in Fig. 7.1 for the scaled conductivity 6,.(B; w),

 L, (7.1)

where the scaling factor 6(7) 2 1.08, and the scaling field Bo(w) is defined by the

equation 7(BO) = w. The magnetoconductivity on is related to o..(B; w) by a factor

which is independent of B (but depends on w),

6(7) 71 n e2
 o,(B;w). (7.2)

OMW) : 47r kBT mwro

Here, 70-1 = mvz/h3 is the rate of electron scattering by the short-range potential (4.6)
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Figure 7.1: Reduced ac magnetoconductivity o... (7.1) at a nonzero frequency w as a

function Of the reduced magnetic field B/B0 (w) 0: B w‘z. In order to demonstrate the

anomalous single-electron behavior, a... is also plotted with an extra factor (B/Bo)1/2.

For large B, the single-electron conductivity displays scaling behavior, Bl/2o, oc

B‘fl/Z.

in the absence of the magnetic field. The frequency-dependent scaling field in Eq. (7.1)

is related to w and To by the expression Bo (w) = 7rmc7'0w2/2e.

In the self—consistent Born approximation, the function 6,.(B; w) decays with the

increasing magnetic field as B‘1/2, for B > B0(w) With the localization effects taken

into account, this dependence becomes steeper, with Bl/Zo. oc B’“/2, as illustrated

in Fig. 7.1.

The most restrictive limitation on the single-electron theory is imposed by many-

electron effects. Even where the electrons do not form a Wigner crystal and the 2DES

is nondegenerate, these effects can determine magnetotransport phenomena [111, 12].

Many electron effects strongly modify the behavior of both, low-frequency magneto-

conductivity and cyclotron resonance absorption [112, 113]. However, for sufficiently

strong magnetic fields, the effective coupling to a short-range disorder potential be-

comes in some sense stronger than the electron-electron interaction. Therefore the
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single-electron approximation describes certain features of the magnetoconductivity

for strong fields.

In particular, for strong coupling to short-range scatterers the full many-electron

conductivity 0“,.(00) is nonmonotonic. Observation of the peak of 63,,(w) and/or

its counterpart in the magnetic field dependence of the weighted ac conductivity

131/20“ (w) (cf. Fig. 7.1) would be a clear demonstration of single-electron localization

effects in quantizing magnetic fields.

The w-dependence Of the low-frequency many-electron conductivity in the weak

disorder regime 7t, < 1, t, being the many electron collision time, is significantly

different. The magnetoconductivity on is maximal for w = 0 and decreases mono-

tonically with the increasing w, see Fig. 6.1.

Both regimes, the weak disorder regime and the strong coupling to scatterers,

can be explored by increasing the magnetic field B, since 7 and te increase with B.

The Obtained results strongly suggest new experiments in the low-density regime to

explicitly observe the many-electron effects on the dynamical magnetoconductivity.
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Chapter 8

Conclusion

In conclusion, we have analyzed the low—frequency single-electron magnetoconduc-

tivity and the single-electron cyclotron resonance absorption of a nondegenerate 2D

electron liquid in quantizing magnetic field, well beyond the known SCBA results.

We considered the experimentally important parameter range where the width of the

Landau levels is less than temperature, so that all states within the lowest Landau

level are equally populated. In this range, by combining the ideas of the scaling

theory of the IQHE, the method of Optimal fluctuation, and the method of spectral

moments, we Obtained highly accurate numerical results throughout the frequency

domain where the conductivity displays peaks.

We found that, in contrast to the prediction of the SCBA or other mean-field

theories [114], the low-frequency conductivity displays a peak at a nonzero frequency,

as shown in Fig. 4.5. For short-range disorder, the position of the peak is given by

wm m 0.267. For w —+ 0, the single-electron conductivity displays a universal power-

law dispersion on oc w“, which is related to the scaling behavior of the localization
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length as a function of the distance in energy from the center of the disorder-broadened

Landau level. On the other hand, the peak of the cyclotron resonance does not display

such singular behavior and is not shifted away from we, as seen from Fig. 5.2. Both

peaks have Gaussian tails, with different exponents [see Eqns. (4.20), (5.15)].

The application of the single-electron theory is very much limited by many—electron

effects. It was found that many electron effects strongly modify the low-frequency

dynamical magnetoconductivity, even when the effective coupling to a short-range

disorder potential becomes in some sense stronger than the electron—electron interac-

tion.

In the developed theory, the dimensionless parameter 7te, t8 being the many

electron collision time, distinguishes between two different conductivity regimes. In

the strong coupling regime, 7te > 1, the full many-electron dynamical conductivity

6,1,(w) is nonmonotonic. This is directly a consequence of the localization effects

of a random potential of defects which in the single-electron case would lead to a

vanishing static conductivity. Yet for not too large 7te, the static many-electron

conductivity om(0) is still of the same order as the single-electron SCBA conductivity

OESBA(O) = 4n527l2/37rk3T [14]. This is a consequence Of a comparatively large value

of the exponent V and the related steep frequency dependence Of the single-electron

conductivity (4.35) for w —> 0, see Fig. 4.5. However, for very large 7t, the ratio

OIx(O)/0§SBA(O) is small.

On the contrary, the w-dependence of the low-frequency many-electron conductiv-

ity in the weak disorder regime, 7t, < 1, is significantly different. The magnetocon-

ductivity on is maximal for w = 0 and decreases monotonically with the increasing
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w, see Fig. 6.1. The characteristic width of the peak t;1 is given not by the rate of

scattering by disorder (which is determined by 7), but by the many-electron time te.

The tail of the peak is exponential in w.
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Appendix A

Coherent states

The lowest Landau level subspace is endowed with a “chiral” structure, of which any

state is represented by a linear combination of basis states like the ones in (2.17),

meaning that only states with a negative angular momentum, z’" = rme’im‘p, m 2 0,

are present. Equivalently one can describe those state by (C-analytic functions. Here,

the analytic structure of any such state is emphasized by writing

44fl55WW2 M»

where f (z) is an arbitrary Canalytic function. It is worth to study the aforementioned

level degeneracy caused by the translational gauge invariance in the framework of

canonical coherent states [115]. Since our focus lies on the properties of states within

the LLL, we will drop the Landau level index, [0; m) E |m).
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A state la) which is the result Of the following Operation is called a coherent state

Ia) = T(a)|0) = eac*-O‘C|0) a e c.

We can rewrite the coherent state in terms of the eigenfunctions

acI—o'c

IO) = 6 l0)

acle—a‘ce— qul—2[c,cf] l0)

 

= e

°° a"_1£(_2_ 0° a"

= ”2'23$“)"(0) =6 2 2 73'7”“ (A2)

"=0 71:0 '

The probability of finding a state In) in a coherent state la) is poisson distributed

2n

2 —|a[2 [04]

TI, 0’ — 6 _—

Coherent states have the property to be minimal uncertainty states. It is equally

well justified to represent the generated states |n) (2.13) by conjugate variables X, Y

(2.12) as eigenfunctions of a harmonic oscillator. Notice however, the Hamiltonian

(2.6) does not depend on those Operators, thus

_ Tl : i
.

e_x2/212

¢n(X)— (X l > fi2nnan(X/z)

WY) = <Y|n> = —1—-Hn(Y/l)e'Y
2/212 .

fi2nnll

To evaluate the function (X|a) we use the the property that la) is an eigenfunction
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Of the annihilation Operator o,

00 an

cla) = 6"“‘2/22—40)
n:0 m

e"-la| /2 l")

7:33—16!“n —1).

= Ore—'0'?” 2:; 3771'“) = Ola) . (A.3)

Using (2.11), (2.12) and [X, Y] = il2, then Eq. (A.3) can be written as

(12585; + X) (X16) = —l\/20(X|a),(“631/ + Y) (176) = l\/2()I(Y|a),

which immediately leads to the normalized solution for a =2 a, + iag,

2 2

6“? e““1
—(X—-/l \/.oi)2 /2 —(Y/l-+-i\/2a:)2)2/

<1¥la>:7T1/1l1/2e <Y]C¥)=7r1/4l1/28 (AA)
  

and verifies that the coherent state la) is a minimum-uncertainty state,

(AX)(AY) = 12/2.

It is also useful to obtain the real-space representation ¢a(r) of la), using

(g + 21258;) (rla) = x/2M(r|a), 1' = ($119):
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for which the normalized solution is found

1

l\/ 27r

 exp[—(:r — \/2all)2/4l2 — (y — \/2ozgl)2/412 + —i—(za2 — yozl)],wok): [fl

or equivalently for \/2al = x0 + 2% and r0 = (2:0, yo) we simply obtain

1

l\/‘2—7r_ exp[—(r — I‘o)2/4l2 + if /\ I'D/212] . (A5)
1/100‘) :
 

Horn the general point of a gauge transformation, it is easy to derive (A.5) without

the use of coherent states. However, the coherent state formulation reveals easily the

analytic structure of the LLL. As seen from (A2) one can write

ma) :— <a|¢) : e‘lal2/2f(a*), (A.6)

where la) is a coherent state and f (0*) an C—analytic function in oz". Accordingly to

(A.5), if we identify z*/l\/2 = a, then the analytic representation (A.1) is obtained.

A few more remarks shall be made on the properties of coherent states. As evident

from the continuous parameter a E (C in contrast to the discreteness of the ladder

operators c, cl, the set of coherent states has to be overcomplete, meaning

/dala><al = 7n (ma) = 6"5'2/2+B"’"“‘2/2,
(1”)

which clearly shows the lack of orthogonality among those states. A set of character-

istic points a : fi(m + in), m, n = 0, i1, 21:2, . . ., the von Neumann lattice [116],
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may be chosen to eliminate the overcompleteness, yielding an infinitely discrete ba-

sis set of wavefunctions. Pictorially, this corresponds to localized states (A.5) with

centers at r0 = l\/27r(m,n). Each state occupies the area 27r12, the Landau- level

degeneracy is (27r12)‘1.

Gauge transformation

The appearance of the gauge factor, exp[z' r A r0], in (A.5) is the result of a gauge

transformation in the vector potential A,

A —> A + VA => 11) —> wexp[—i%A] . (A.8)

Certainly, 1/2(r) oc exp[—(r — r0)2/4l2] is a solution to H0 (2.6) with A = B/2(y0 —

31,1: — 330,0), then with (A8) it readily follows that (A.5) is a solution to H0 with

A = B/2(—y,:1:,0).
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Appendix B

Kubo-conductivity of

non-degenerate 2DES

The Kubo-conductivity for a system of non-degenerate electrons in the regime w < wC

and flu) << 1 was given in (4.1)

”625 00

2m2
dt 6““ (px(t)px(0)>, (31)

—OO

 ou(w) =

where p = (—ihV — (e/c)A) is the electron momentum operator in a magnetic field.

In the single-electron approximation the time evolution of p(t) is guided by

d —'r-1[H +V(r) ] H — p2 (132)
dtp—ZI’ 0 up) 0—2771, °
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where V(r) is the time independend scattering potential. We define the Landau level

raising and lowering operators

[p‘ap-t] : 1? pi: : (p11: 4: z.I“:p?l)/ V 2hmwc,

where K: = eBZ/mwC 2 21:1. In the absence of defects the electron Hamiltonian is then

1

H0 : fwc(p+p_ + i)

Further we define the guiding center algebra

  
K/py K471: (II :F 2.51131

X : + , Y : — , : —,

5r mwc y mwc qi fl

with commutation relations [X, Y] = -—z'1~cl2 and [R, p] = 0 where R = (X, Y). Now

V(r) can be expanded in a Fourier series

V(r) = 2 qu£“’ = Z Vq exp[iqR + l (CI—19+ - q+p—)l

q q

= Z Vq exp[iqR — q212/4]elq'p+ 6‘1“”. (8.3)

q
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To evaluate equation (B2) it is advantagous to use the relation [pram] = lqie‘q'

readily seen from (8.3), thus leading to

d
- i r a '

Elk = chIJy - 2 Eq qque q = chpy _ (91‘ V (r)’

d . a
"— — c :c — . V zqr : _ c _ —V '
dtpy [cw P 2 Eq :Qy (:6 “3w Pa.- 6y (r)

(3.4)

With the modest assumption that the momentum correlator asymptotically decouples

<Px(t)px(0)) —> 0 for t —> 00, we can use

(ip.<t>p.<0)>. = fwdtewfipmmw»
dt .00

: —iw [oodt ei“‘(pz(t)p$(0)) = -—iw(px(t)Px(0))m

(13.5)

and rewrite (8.4) as

iw<p.<t>p.(o>>.. = —m.<py<t>p.<o>>..+<§xv<rm<o>>w

momma»... = nwc<px<t>p.(0)>.+<%V<r)p.<o>>w.

(8.6)
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Equations (B.6) can easily be decoupled leading to

- K“ i r

p,(t) = -.. —V(r(t)) = -2; Z quqeq . (BS)

6 q

We also note that the time evolution of the guiding center R(t) is determined by

' '— - l2 ' it

X = zh1[H,X]=—zngzq:qyl/qeq,

. 12 .
_ -——l _ - 11‘

Y _ m [H,Y]— m7; Eq:quqeq, (8.9)

where the commutation relation [X, Y] = -inl2 has been used. From (8.9) and (B8)

we conclude, px(t) = mX(t), similarily the relation holds for py(t) = mY(t). The

conductivity 0(w) is an averaged quantitiy which is spatially uniform, (jx(t)jx(0))w =

(jy(t)jy(0))w. We obtain the Kubo-conductivity for w < we, (3w << 1:

03:1.(w) = ”6:33 [:dt 6“” TY{R(t) 11(0)}. (B.10) 

The trace in (B10) is understood as a trace over the Landau level index as well as

the position degeneracy of the orbit centers. The trace over the Landau level index is
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taken before averaging over the random potential is carried out upon which the left

trace over the orbit centers will be trivial. Essentially we have to consider

€N(Q1qliw) : / dt eiwt X

—00

Z<N|eiq’(‘)|]V[)(M|eiq"(°)|N), (13.11)

M

where

[:dt em <R(t) - R(O)> oc

Ze‘fiENTY{Z VqVq’ (qq’) €~(q, q’,w)}-

N q.q’

 

Here, |N) denotes only the Landau level index and EN its engery. For quantizing

magnetic fields kBT << have, we may assume that only LLL-states ID) are occupied,

then the thermal averaging in (8.10) is easily achieved by projecting the correlation

function onto the LLL, IN = O) in (8.11).

The fast cyclotron motion is described by the ladder operators pa(t), a = :t1.

Time evolution is guided by (34),

d .

a pa(t) = aiwcpau) — 111-1 Z gar/gem“). (13.12)

q

If we consider the case 7 << we we may effectively decouple pa from the slow motion

of the orbit centers R (adiabatic approach), then pa(t) 2 pa exp(az'wct). The matrix

element (N I exp[iqr(t)]|M) o< exp(z'(N — M)wct) contains a highly oscillating factor
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for M 75 N, therefore we need only to consider the Landau level transition amplitudes

of the form

- l2 2 2 2 ,

(Nle'q‘mlN) = L~(—§-)e-‘ ‘1 M exp[zqmm, (8.13)

where LN($) is the Laguerre polynomial of degree N. As follows easily with (8.13),

the correlator (B.11) can be written as

 

I 00 _ [2 2 l2 I2

€N(q,q,w) = / dt elm LN('2i)LN( g ) X

exp[iqmtn exp[iq'mon e-’2<"2+q’”>/4, (8.14)

where the time evolution of R is guided by the onto the N-th Landau level projected

Hamiltonian,

WW1) 2 PN V(r)PN = n) PNZ VJMei‘IR, (3.15)

q

174”) = (WM) L1v(<12 l2/2) e><p(-q212/4:)- (316)

In quanziting magnetic fields, kBT << have, the low-frequency conductivity

0m(w) w << we, is determined by transition of states within the lowest Landau level.

Therefore, the low-frequency correlator simply is

60(Qa q’aw) : / dt eiwt X

00

exp[iqRun exp[iq’mon e—’2<""+q’2>/4, (13.17)
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where the time evolution of R is guided by the projected Hamiltonian, H =

Zq Vq exp[iqR]. Finally the reduced conductivity 5, (4.10), follows easily from (8.10)

and (B.17).
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Appendix C

Diagonalization technique

We consider the integral with a real and antisymmetric matrix am

71

1. "
q: + 52 Z a“ qk /\ ql). (Cl)

°° 1

/ dq1---dqn QIQj exp(--2-

“00 k=l k,l=1

The integration for each variable q with its two components, dqxdqy, is performed

over the entire infinite plane. Integral (Cl) is a quadratic form in q, which is solved

by diagonalization. By changing variables qt 2 (qI ¥ iqy)/\/2 the integration is done

by

/dq= /dqxdqy —> qu+dq_.
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Using vectors Qi and matrices 11,133,191, with components

(Q+)k : (Ll-k) (Q—)k = q-ka

Akl = iakt, Eu = 5w, Mk1 = 5k,151,j,

integral ((3.1) is easily written as

/ d61+1°--dq+..dII—.-~d(1—..(QLMQ+ + QLMQ_) x

1 - - - -

exp<—§QL<E — mm.) magma + mm-)

(0.2)

The coefficient matrix a“ is real and antisymmetric, thus A is hermitian and can

easily be diagonalized,

c
.

:
9
.

9‘
:

II D, T = UQ+, v = UQ__, (o3)

where f} is the unitary transformation matrix and f) the diagonal matrix with real

entries Ak. Integral (C2) can be transformed into

/ at, . . ~dtndvl - . -dv,,(TTUMfJ*T + VIUMUlV) x

1 ’r 1, t" 1 t 1 . f~

exp(—§T T + ézT DT) exp(—§V V — —2-zV DV).

(C4)

137



Here, we used the fact that the Jacobian of any unitary transformation is one. Further,

TTfiMfiTT = tfcumuf’jt), Tl '—" t1, 0;” = UkJ,

a similar expression holds for V in (Q4). Since tk and 21;, are independed complex

variables the necessary condition for (C4) not to vanish is that k = I, thus leading to

fdtl ' ° ' dtndvl ' ' ° dv,,(|tk|2 + Ivk|2)uk,1u;,j X

1 , 1 .

exp(-§|tk|2(1+ zAk)) exp(—§|vk|2(1 - zAk)). ((3.5)

Finally, integral ((3.5) is readily integrated,

Tl It

ul‘lulvj

(2%)" Ha + Air”? 12:? 2’17)? (on)

k=1
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Appendix D

Optimal potential configuration

The asymptotic (7 < w << we) conductivity 0(w) is determined by transitions be—

tween exponentially rare, spatially close pairs of states with the energy separation w.

In functional form the conductivity is

411: 1
h”) Z

5(5, — Eb—w)l<w.IWI¢b>IZ, (13,1)

6(w) = [DI/(r) exp(—R[V]) x

where wt (t 2 top) denotes bound state with the largest energy Et, whereas ([4, (1):

bottom) denotes the one with the lowest energy Eb. The fiuctuational weight for a

6-correlated gaussion potential has the form

 

MHz/Wmm. mm
2212
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The wavefunctions M, 1,0,, are within the LLL, i.e., in the circular gauge they can be

written as P(z) exp(—|z|2/4), where P(z) is an arbitrary polynomial and z = :r — iy.

The 6-function with the help of a Lagrange multiplier as well as the overlap prefactor

in (D1) can be incorporated into the exponent using the auxiliary functional,

 

~ 2

R[V] = [ZSMHAw—mn [MVl/(rhpb dr

  

,\ ff (war) — (an) V(r; r') Wr') + w» drdr',

(13.3)

where l7 is the projected potential (BIG) and 212),), are eigenfunctions within the LLL,

171/)”, 2 EM lbw- The optimal fluctuation Vopt is found by

6R VO r
z 0 _‘> it; ) ___ A (thl2 __ W132) +

1 6

If V(rwwz‘wb) drl‘i 5V“)

  

2

/ V(rw (wzwb) dr , 

 

(13.4)

from which follows that V0,, may be expanded into a product of LLL basis wavefunc-

tions (pm,

Vopt(r) = Z umn¢In(r)¢n(r)- (D5)

The solution to (D4) in general is not amenable to analytic techniques. However,

from general arguments we can assume that vim, is realized by an antisymmetric
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potential V(r) = —V(—r). With constraints imposed upon umn (D.5) numerical

results can be obtained which strongly support the following picture for the limit

w/7 >> 1: The overlap term o< (123/J), remains small and the major contribution comes

from the fiuctuational weight to localize the states, therefore the scaling A o< w holds.

Though it seems, that the overlap term can be completely neglected in this limit, its

influence on the solution Vopt is more subtle. In genral, lowest Landau level states in

an antisymmetric potential V(r) = —V(—r) may be represented by

wt(r) = f(z—zo)exp(—|z—zOI2/412+i/2r/\r0),

1,12),(r) = f(—z—zo)exp(—|z+z0|2/412—i/2r/\r0),

(D.6)

where f is analytic in z = x—iy and 20 = zo—iyo, the further, r = (11:, y), r0 = ($0,310),

(these wavefunctions actually solve the SE (—z'V -+- 6/2 B x r)2/2m 1/2 = Lac/2 ([2).

Thus, we simply can state 1/2,(r) = 1/2b(—r) as a general property of lowest Landau

level wavefunctions in any antisysmmetry potential V(r). If we were to neglect the

overlap integral in (D4), then the much simplier result would apply,

v... = m (ll/1d? — 17.0.12). (m)
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To lowest order in perturbation theory we find,

(.0 = Et — E, = v2A/(li/Jtl2 — Iz/zbl2)2 dr +

= m (A— / vatlzwbrdr), (I18)

with A = f lwt|4dr = f |7,/)b|4dr, the inverse participation number. Clearly, from (D8),

(D7) it follows

1
2 _

Rlvoml = 5%,; (A — / litrwdr) . (D9)

The global minimum of (D9) is reached for a maximum A with zero overlap between

the wavefunction wt and 101,. A simple scaling argument allows us to identify the

maximum value of A,

, (p.10)

€
1
l
e

WXVLE => A=/|7,b|4dro<

The most “localized” state in the lowest Landau level is the wavefunction (D.6) with

f = (2n)‘1/2. The minimal overlap requirement is fulfilled when TO —+ 00, thus

giving the value exp(—R) : exp(—2w2/72) found in (4.20). For large w/"y the small

correction to R (DA) from the overlap |(¢)|VV|wb)| moves the global minimum of

R to a finite interpotential distance 2r0. The overall shape of potential and the

wavefunctions 1b, and 1/2b is barely perturbed. Numerically we find confirmation for

this behavior, see Appendix E. Accordingly, a direct variational method with Vopt oc
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—V_E(r — r0) — VE(r + to) as in (D?) can be used to find the optimal distance r0

and the overlap parameter K = exp(—r(2,/12). We find the functional [2 (D3) as a

function of the interpotential distance 7‘0

R(ro) = 2(a)”)? (1+ e—rg/fl) + 2%)?— — 1n ((_hl_w)2 :73) . (D.11)

The optimal distance is r0 = l,/1n(w/’y)2 where (D11) is only valid for ro/l >> 1.

143



Appendix E

Finding numerically the optimal

potential

We will numerically find the antisymmetric optimal potential, V(r) - —V(—r), which

minimizes

km = 2%), / v2 dr — HEM — Eb[V] — w) — 1n (/ Egan, dr)2 , (E.1)

where Et[V] — Eb[V] = w, is the constrained energy difference between the top and

bottom-level eigenstates. Necessary condition for the minimum is

  
 

_ __ ) 2_ 2 2 6 a_V at

Mr, —0 => ,2 —A(Iz(.(r)l we) )+ f Z—wz‘wb dr Mr) 6 mm.

(32)
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Applying the scaling relation, V(r) = vU(r), we may solve for

 

2 3U

U(r)=vx\(lwt(r)I2—I'(r +3)_nga dr 6U:)axf—w:wbdr (E3)
t

as well, such that

72(V1—1/U2d 1 8U *(d 2 12 U 2d —“’—E—, rn—(f 535m. ) —nv, / (one): r7;— ..

(E.4)

For convenience we may now choose '0 = 1, in which case w’ 2 w/v and X = v/\

coincide. In summary, we have to minimize the constrained functional

MU] = g / U2 dr — X(E,[U] — Eb[U] — w') — ln U gigagab dr)2 , (E.5)

where Et[U] — Eb[U] = w’. We can simplify the notation in our problem of an

antisymmetric potential, E = Et[U] = (’l/JtlUll/Jt) and —E = Eb[U] = (i/JblUlwb). The

minimization procedure applicable to (E5) will be briefly outlined here.

We will seek the solution to (E3) by the application of a conjugate gradient

method. The formulation of an unconstrained problem is advantageous for the use of

such method. We notice that w’/2E is the proper scale factor for U(r), as seen from

(E4), therefore

 
w’ 3U * 2

RlUl= “(2E gnaw) , (122.6)      

4E2
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constitutes our basic unconstraint functional equation. As can be shown, the minimal

solution to (E.6) coincides with the solution to (E3)

Upon having obtained a numerically close solution by a conjugate gradient

method, we will solve for the optimal potential U(r) to any arbitrary accuracy by

iterating equation (E3). Here, it shall be remarked that this procedure will converge

superlinearly.

E.1 Formulas for the conjugate gradient method

Let us work in the symmetric gauge, H0 = (—iV + m—S’lez >< r)2/2m, where we is the

cyclotron frequency, eB/m, —e the electron charge. The angular momentum wave

functions (WF) of the LLL are 2/2k(r) = (2k+17rkl)“1/2rk exp[-—r2/4 — igpk], k 2 0. We

may expand U(r) in the form U(r) = 2m," u,n,ni,b;,z/2n, (E3). Since U(r) is real and

antisymmetric we have um,n = 11;,” and um," = 0 when n — m is even. Using

/ ’dflfl/fiwn’w dl' : 6m+j—n—l _1_ 2—m-j m + J m + J) , TH,j, 71,! Z 0

J 471' j I

(13.7)

 

we obtain for

U2 1 00 _n_- n+j n+j ,..
/7 (11‘ = 21—7; 2: 2 J\/( j )\/( m ) Re {um,nuj,n—m+j} (E'S)

n>m20,

n—m odd,

1:0
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the logarithmic weight of a potential fluctuation. To solve for eigenstates, we need

the Hamiltonian of the projected potential, HI = Z1 [71)]- )U,-,(1/1,|, where

0 j—leven

U11: (:11le In) = _ _ . (13.9)

,1, :22. awn/(110W?) , >1

The matrix U3) is hermitian, Uj) = U5. Further, we need to handle the expression for

the overlap integral, the top- and bottom level wavefunctions are related with each

other by WP) = Z]- le/Jj = 1P1“) = 1/1b(-1‘), giving

(¢tlaxU|¢b) = —(8x¢t|U|wb)—(¢,|U|ax¢b>

: —Z
/Cj(15W)wmumH¢n¢l

(1)IC(dl‘

j,,mn,:l0

—2 f6; «1; /Inum,n10n(3-xw1)()’61dr- (E10)

j,m,n,=l0

We notice that we can rewrite the wavefunction z/Jk(r) = (2k+17rk!)‘1/2zk exp[—zZ/4],

where z = x - iy. The partial derivative then simply reads, 0;, = Oz + ('95, therefore

.. “+1 ,.. 1 1+1 *

(BM/QM?! : \/:¢j..W1_§12—2—‘¢j+1¢7-§ Twfl/JHI,

... 1 5+1 .1 1 j+1 .1
1/9 21111 = \/;¢j¢1~11—5 71/54/le — 5 71151.14):-
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Then (E.10) simply is

(arwtlUllz’b) :

°° j+1. 1/j+1, 1, 1+1

Z< TCjHUJ'J" E TCjUj+l,l— 'échj,l+1 T (—1)lc),

131:0

w , 1+1 1 1+1 1 '+1

2 02' (—UJJV TQM - §UN+1VTCI — §\/ 12—Uj+1,101) (—1)l-

j,l=0

Now, using the property that c is an eigenvector of (Uj’l)

00

Z CiUJ'J = E 07, Z Uj,t(—1)’Cz = -E (—1)jcj,

.720 (=0

we arrive at the following equations

E °° J +1 . . .
(watlUlw = ‘2‘ Z (‘1)] T (‘2Cj+lcj ‘ Cjcj+1— CHIC»,

1:0

E °° ] +1 ,.. .. .

(wtlUlawa) = 3 Z (-1)J T (_2CJ+1Cj " Cjcj+1 _ Cj+lcj)°

i=0

In summary we find

6U, J— m j . .
521/121, dr = 2 2192(4) M] + 1 Re {c,-c,-+1}, (E-ll)

j=0

similarily

8U m -r——[El/1gp)”, dr : 2\/—2-EZ(-1)J J+11m{CjC;+1}-

j=0
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E.1.1 Gradient formulas of the functional

We will solve for the potential U(r) which minimizes (E.6), using the definition

[2

(A) U2 (A), 8U t ~ 2

_4E2 /'—2'Ch', G—‘é—E" awtdbdr, R—W—IHG. (E.12)

 

Given the interaction matrix Uj, we simply have to solve for the maximum eigenvalue

Emx with corresponding eigenvector c, where its coefficients determine a) = Z]. cjwj,

: (will/I‘m) {é (Ujl) C : Emax C, E : Emax-

For (E.6) being minimal, it has to be satisfied

Bum _ —E_8upq+ 4E2 811,”, G811in

 

   

.. ,2
an _2_E_W6E+ w [_drw_1/6medr_0(E13)

where only am for p < q are truly independent, hence we can assume p < q and q — 1)

odd, (uM = 0 with even q — p). Therefore whenever we write 69/811,,” we actually

 

 

mean 6/8upq + a/Bupq, thus

8E 51 1 °° _ _. q + j q + j)
= {I , = _ (I J R ‘ . .

an” 34:46]” 811M U“ 271' J; 2 W 1‘ )\/( p e {Cq‘p+’c’}

(13.14)

and

 

 (U—.- .—-.,2: 2.(«Wm
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We still need the third term of (E.13), with the help of

(71) 0° 0*(k) C(71) *(k) (’1)

06m : _1_ ZIZ 2-q—j 9+3 Q+j CJ+q-PC] + 63 CJ+q‘PC(k)

Bum 47r j p EW — EU“) "I ’

(E.16)

 

  

here, E("l is the eigenvalue with eigenfunction 1%") = Z]. cgnhlj. We used the notation

Em) = Emx and CEO) = C], (E.1.1). The sum 2’ indicates that the summation index

k = n is excluded. Then we may write

8

aupqE

 
—- 66:1)—¢tl/)bdl‘=

1 00 at (k)

2‘5 Z’Em)— E(k) Re{(2%(1)" \/—+_1(Cl1) Cn(+)1 + 011(0) Cn+1)) X

k 71:0

1 °° q+j q+J'_—- *(k) (0) «106(0)

(aifififl , W p )c..:.. +6 lml
3:

E2 The conjugate gradient procedure

 

(13.17)

We have to minimize 7% in the high dimensional space um,“ where only um,“ for m < n

and n — m odd are independent. The evaluation of the function 7% and its gradient

8’I’é/Bupq is achieved by:

1. Given the potential U(3) in coefficient form 215,51?” calculate the interaction matrix

US) according to (E9)

(5)
2. Diagonolize (UN ), calculate all eigenvalues and eigenvectors according to

(E.1.1), the maximal eigenvalue is E, and its corresponding eigenvector cs.

3. With given w’ , U(3), E3 and c, calculate 73(3) in (E.6) and its gradient 87%“) /8ul,s.(),
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as in (E.13).

We solve for the optimal potential U(°°) iteratively, using a conjugate gradient

method (Polak-Ribiere, Numerical Recipes ch. 10.6):

1. First, choose some initial potential U(0) in terms of all?" which reflects the

proper symmetry. This can be done by writing the wavefunction

(1170 + Z'90)]._ 1 2 - _ —r2/4 00 , _

l/J(I') — 2—7—r-exp[—(r — r0) /4 + zr /\ I‘D/2] — C 0 Z lej)j, CJ' — w,

J=0

(E.18)

the coefficients 2&2?" for the initial setup potential U(O) = |2,[2(r)|2 — [1/2(—r)|2 are

0 n—meven

0

24.3. —
20;,0" else

Calculate the functional value 73(0) and its gradient at the point 2152?" with the

downhill direction go 2 —67é(0)/011,333 and ho : go.

2. For given point ulffin and direction hs find the local minimum of 7% along the

direction hs, leading to a new point ulfil) = 113),, + ahs.

3. Obtain the new downhill gradient gs+1 = —87é(s+1)/8u,(,f:1) and conjugate di-

rection hs+1 = g3+1+73h3, where 75 = (33“ — gs)g;+1/g§. Now start over with

2 until the minimum is reached with some accuracy.
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E3 The interative procedure for arbitrary preci-

sion

The solution obtained by the conjugate gradient method is supposedly very close to

the exact solution to (ES), our original functional. Indeed it is feasible to obtain a

numerical representation of the Optimal potential U(r) with arbitrary precision. We

simply have to apply

 U(r)=A’(lwt()| -|L/2b(rl))4rg,f;]1:wb dr WW/W/derw (E.19)

iteratively. To do so, we need to represent (E.19) as an equation for the coefficients

um. With the help of

 

60577:) 1 Z,w*(k)(r)¢(")(r) - ¢’(k)(—I‘W(n)(—r) C(k)

6U(r) 5 k E(")—-E(’~‘)

for an antisymmetric potential %(U(r) — U(—r)) where 1,!)(k)(r) = Z]. 4."le are

eigenfunctions with eigenvalue EU“) to the Hamiltonian H, 2 EM |1/),~)Uj,k(r[2k| it

 

 

follows

0U ,, , , *(“(1‘)1/1(1‘)-wk’(-W)(- 1‘)

6U(r) [Elli/l“ =‘f2 Re {21W Eve/Em X

Senna—fie.):52: + c:.<°> 51:21)},
n=0
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where w’ = 2E(0) has been used. We find for lg — pl odd

 

’6 t

2A'c‘c = in ——2\/§ c;(Mcq¢k+cpcqfl<l>k

” q 2E M G k l—EW/E

<1». = Z(-1Wn+1'(£1”131+we», (E20)
1120

0
where cj = c(. lJ are the components of the eigenvector c which defines the eigenfunction

2,0(r) = Z]. CjI/Jj with eigenvalue E = 5(0). Provided we have X, we will find the

solution by iterating (E.19). To solve for x\’ we can use

w' — 5 = x / (It/)(r)? — weer)? dr

with

 

k j>l>0, j l

37,1223“ (E21)

Re{C;(C;Sk)Cm+j—lq)k+Cyn(c1n+)j_4(1),“)61cl}
 

1 — E(’°)/E(0)

EA Direct variational method

Having defined 2:0 as in (13.18) as half the separation distance of the wells in the setup

potential V(O) oc |z,b(r))|2 — |1/2(—r)|2, we find for the Euclidian action

~ 2 2

”R = 2(w/7)2 (1 + exp(—-:I:g)) + 22:3 -— 1n 11:3 —— ln (:1) , 7 = \/;v. (E22)

v W

W

 

~lnGz
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We easily find the optimal half-way separation distanct 2:0 as

and therefore

W = 2am)? + 2, G2 = i (3)4111 (3)2, (£3.23)

where 0 oc G2e“W determines the asymptotic conductivity.

E.5 Numerical results

 

p
—
a

O

I

 

 

  
 

Figure E.12 Comparison between exact weight-function (solid line) with the one ob-

tained from the direct variational approach (dotted line). Both of these curves ap-

proach the constant 7r, (dashed line).
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Figure E12: Lagrange multiplier X plotted against frequencey w’. It approaches in

the weak overlap limit the straight line with slope 27r.
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Appendix F

Polynomial reconstruction from

moments

We seek an approximation scheme for finding a function f (:13) which has a known

asymptotic behavior for large and small :1: described by the function w(:1;), and given

moments .Mk. We interpolate this function as f(:1:) = p(.1:)w(:1:), where p(:r) is a

series. The coefficients in this series have to be restored from the moments, and

the restoration has to be recursive. As explained in the text, this means that, if we

approximate p(ar) by a polynomial function pn(:r) 2 co + c111: + . . . + 0,1113" of degree n,

the successive terms of the polynomial have to be found from the successive moments,

as given by the equation

Mk 2 fdx :rkpn(.1:)w(a:), k = 0,1,... . (F.1)

The weight function w(:::) in case of a Hermite reconstruction has the form 10(33) 2
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exp(—:1:2), whereas in the case of Laguerre reconstruction it is of the form w(:1:) =

:13“ exp(—;r2).

A consistent way to find the function 1),,(1') is to introduce an orthonormal set of

polynomials gk(:r) with respect to the weight function. That means

[dart gm(:r)g,,(:v)w(:c) : 6mm. (F2)

Now, pn(:r) can be sought as an expansion in the functions (F2),

puts) = ngdk (R3)

k=0

with expansion coefficients dk. The use of orthogonal polynomials allows one to solve

for dk successively, meaning that knowledge of higher moments doesn’t change the

already obtained expansion coefficients. This is because we use the prOperty

(:1:";gk) = /dx xngk(1t)w($) E 0 for k > 77.. (F4)

Then one only has to solve a triangular matrix equation

(0,9,) 0 0 0 Wm (MA

(It; 90> <27; 91) 0 0 d1 M1

      \<$";go) (33";91) ($5970) \dn/ \Mn}
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The coefficients in the matrix are standard integrals in the both relevant cases of

Hermite and Laguerre polynomials.
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Appendix G

Outline for the classification

program

It follows a simple documentation of the program procedure used in Sec 4.3 to nu-

merically classify and count diagrams.

The container classes for generating diagrams of the order SEQUENCE and the

exponential matrix B (4.15) and (4.16) also of that order are initialized.

Matrix B(SEQUENCE);

Diagram diagram(SEQUENCE);

Here comes the main loop over all diagrams:

while (diagram.done()==False) {

True) IIif ((diagram.is_simple_zero()

(diagram is_parity_zero() True)) {

diagram.next(); // take the next diagram
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continue; // and start all over

Now we probably have a non-zero diagram and can sum over the j—tupel (4.15). For

each j-tupel we initialize the matrix B (4.16) and take care of all associated signs

:tl. Then one quickly obtains a unique key value for that contracted matrix, which

only specifies where the zeros and ones are located (this procedure is very fast and

allows to restore the structure of that matrix from its key value). Next, depending

on whether the DIAGRAM is one that contracts the end-variables q1 = q2k+2 one counts

those matrices (or better the keyvalue thereof) onto a different stack. Here we use an

efficient binary tree to count the occurence of those contracted matrices.

// export the diagram into the DIAGRAM variable

diagram.get(DIAGRAM);

for(integer j=0; j<stopj; j++) {

// initialize the matrix B which is then contracted

B.initia1ize(j); // the initialization and contraction

B.contract(DIAGRAM); // procedure is explained in Sec (4.3)

// determine the sign of the j-tupel

sign = get_sign(j); // sign has value +1 or -1

// count the occurance of the contracted matrix

if (DIAGRAMEIJ == 1) {

Tree1.update(B.key(), sign); // end variables are contracted

} else { // put the rest onto a
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Tree2.update(B.key(), sign); // different stack

}

} // end for loop

diagram.next(); // take the next diagram

} // end while (diagram.done() == False) the main loop

Now, we have counted all diagrams and the number of contracted matrices is still

large. The more, even different contracted matrices can give the same value after the

integration in (4.15) is carried out. Before analytically integrating those large number

of integrals (4.15), one for each stored matrix in the container structures Tree1 and

Tree2, one can numerically integrate them. The way to do that is shown in App. C.

// scan through all the accumulated data

while (Tree1.done() == False) {

Tree1.get_contracted,matrix( &A, &mu1tiplicity);

value - numerically_integrate(A);

// now sort according to the value classifier into different

// bins, observe the multiplicty!

ValueTreel.update(value, multiplicity);

Tree1.next();

}

while (Tree2.done() == False) {

Tree2.get_contracted_matrix( &A, &multip1icity);

value = numerically_integrate(A);
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ValueTree2.update(value, multiplicity);

Tree2.next();

Finally, the data structures ValueTreel and ValueTree2 contain only non-equivalent

diagrams (represented as contracted matrices) according to the numerical classifier

(4.17). The analytic integration then is done with Mathematica using a special inte-

gration tool [102].
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