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ABSTRACT

DIFFUSION APPROXIMATION FOR SOLUTIONS OF PERTURBED

DIFFERENTIAL EQUATIONS

By

Alla Sikorskii

We consider the operator differential equation perturbed by a fast Markov process:

in a separable Hilbert space H. Here y is an ergodic jump Markov process in phase

space Y satisfying some mixing conditions and {A(y), y E Y} is a family of closed

linear operators. We study the asymptotic behavior of the distributions of u.(t/e).

For the case when the operators A(y) commute, Salehi and Skorokhod (1996) proved

that the distributions of u€(t/e) asymptotically coincide with the distributions of some

Gaussian random field with independent increments.

We do not assume that the operators A(y) commute, but we impose some condi-

tions on the structure of these operators. We study the asymptotic behavior of the

stochastic process z€(t) : e“‘/iu€(t), where A = fA(y)p(dy), and p(-) is the ergodic

distribution of the Markov process y(t), t 2 0. We prove that the stochastic process

z€(t/e) converges weakly as e —+ 0 to a diffusion process 2(t), t 2 0, which is de-

scribed using its generator. The proof is based on the theorem on weak convergence

of H-valued stochastic processes to a diffusion process.
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Chapter 1

Introduction

1 . 1 Introduction

Randomly perturbed dynamical systems and differential equations were studied by

many authors: Krylov and Bogolubov, Gikhman (1950, 1951, 1964), Khasminskii

(1966), Papanicolaou and Varadhan (1973), Papanicolaou, Strook and Varadhan

(1977), Papanicolaou (1978), Krylov and Rozovskii (1979), Rozovskii (1990), Hop-

pensteadt, Salehi and Skorokhod (1995), Salehi and Skorokhod (1994, 1996) as well

as other authors. There are several types of problems that are considered for such

equations.

Averaging theorems state the convergence of the solution of the perturbed equa-

tion to the solution of the ”averaged” equation. The first averaging theorems were

proved by N.M. Krylov and N.N. Bogolubov in 19208 and 19303. They considered

the equation of the form

 



where function (1 depends on two times: fast (third argument) and slow (second

argument). If there exists the average of a in fast time

, 1 T _
Th—iEoT/O a(:r,t,7')d‘r —a(a:,t),

then the solution of the perturbed equation 3:6(t) converges to :Y:(t), which is the

solution of the averaged equation

 

Gikhman (1950, 1951) established a general averaging theorem for randomly per-

turbed equations. An averaging theorem for the randomly perturbed Volterra integral

equation

Mt) = W) + f K(s,t,y(§),x.(s>>ds

was proved by Hoppensteadt, Salehi and Skorokhod (1995). The kernel K depends

on a fast Markov process y with ergodic distribution p, which is assumed to satisfy

some mixing conditions. One of the results of the above mentioned article is the

convergence of 3176(t) to 5i:(t), the solution of the averaged equation

i(t) = (0(t) +/O K(s,t,§:(s))ds,

where

K(s,t,x)=/YK(s,t,y,;r)p(dy).



More precisely, it was proved that

P{lim sup Hut) — 53(t)|| = o} = 1.
6—)0 t<T

An averaging theorem for dynamical systems in Hilbert space was proved by Hop-

pensteadt, Salehi and Skorokhod (1996).

Hoppensteadt, Salehi and Skorokhod (1995) also present a result of another type:

a theorem on normal deviations. From the averaging theorem the difference between

the solution of the perturbed equation and the solution of the corresponding averaged

equations tends to zero. But appropriately normed, this difference (the deviation)

is asymptotically Gaussian. Namely, it is proved that the finite-dimensional distri-

butions of the process 6—1/2($6(t) — f:(t)) converge weakly as e —+ 0 to a Gaussian

process, which can be described as the solution of some stochastic linear integral

equation. A theorem on normal deviation for the difference equations was proved by

Hoppensteadt, Salehi and Skorokhod (1997).

The theorems on the approximation by diffusions deal with the asymptotic be-

havior of 2136(t/e). From the averaging theorems and theorems on normal deviations

we know that the solution of the perturbed equation is close to the solution of the

averaged equation and the deviation is approximately Gaussian with mean zero and

variance of order 6. When we consider 3:6(t) for large time, that is time of order

0(1/6), these deviations accumulate and 11:6(t/e) converges weakly as e —> 0 to a

diffusion process.

Theorems of such type were proved by Hoppensteadt, Salehi and Skorokhod (1995)



for perturbed Volterra equations, Salehi and Skorokhod (1994) for perturbed wave

equations, and Hoppensteadt, Salehi and Skorokhod (1997) for difference equations.

Salehi and Skorokhod (1996) consider a very general setup: operator differential

equations in a separable Hilbert space H:

dig)” = A(y(§))u.(t>. u.(0> = no (1.1) 

and

d:;§‘>=At<g»u.m, u.(0)=uo, “it;  
= ’00, (1.2)

where y(t) is an ergodic homogeneous Markov process in phase space Y with ergodic

distribution p satisfying some mixing conditions, and {A(y),y E Y} is a family of

closed linear operators with a common dense domain. The theory of differential

equations with operator—valued coefficients is contained in Krein (1982) and Kato

(1984).

Under the assumption that the operators A(y) commute and A*(y) = —A(y),

where A“ denotes the adjoint to A, the finite-dimensional distributions of u,(t/€)

coincide asymptotically with those of a Gaussian process {if (t). A similar result is

obtained for equation (1.2) under the assumption that all A(y) are symmetric non-

positive self-adjoint operators. Also, theorems on normal deviations are established

for both equations.

The method of proof is based on spectral decompositions for the operators A(y).

Since these operators commute, they can be represented as spectral integrals with



respect to the same resolution of identity. This method does not work if the operators

A(y) do not commute, which is the case considered in the present work.

We assume that A(y) = A0(y) + A1(y), where Ao(y) commute with

A = L, A(y)p(dy), and Al (y) are finite-dimensional with the same finite-dimensional

range for all y E Y. Since operators A(y), y E Y do not commute, we can not use

the method of Salehi and Skorokhod (1996).

A different approach using a sufficient condition for the convergence to a diffusion

process found in Skorokhod (1989). Such method is implemented in HOppensteadt,

Salehi and Skorokhod (1997) for the difference equations in Rd. It is based on martin-

gale characterization of multidimensional diffusion processes (see Strook and Varad-

han (1979)). Another important tool for proving the weak convergence is a sufficient

condition for the weak compactness of a sequence of the stochastic processes, which

can be found in Parthasarathy (1967) for the case of H-valued processes.

In the present work we generalize the method used in the paper of Hoppensteadt,

Salehi and Skorokhod (1997) to the case of infinite-dimensional Hilbert space using

the results of Daletskii (1967, 1983). The limiting diffusion process is an infinite-

dimensional diffusion process. Such processes arise in the theory of stochastic partial

differential equations. Stochastic differential equations have received a considerable

attention in the recent years. Here we mention just a few books and papers that

are devoted to them: Varadhan (1980), Rozovskii (1990), Protter (1990), Krylov and

Rozovskii (1979), Papanicolaou and Varadhan ((1973), Papanicolaou (1978).



1 .2 Summary

Chapter 2 contains the results that are necessary to prove the weak convergence to a

diffusion process in a separable Hilbert space H. Section 2.1 contains the theorem on

weak compactness of a sequence of H-valued stochastic processes, a condition that

ensures that the diffusion coefficients specify the transition probability of a Markov

process and a proposition on the martingale characterization of diffusion processes.

These results are used in section 2.2 to formulate and prove the theorem on weak

convergence to a diffusion process, which is the main result of Chapter 2.

In Chapter 3 we consider the differential equation (1.1) with operator-valued co-

efficients in a separable Hilbert space H. The coefficients are perturbed by an ergodic

jump Markov process y in a phase space Y with ergodic distribution p. We do not

assume that the coefficients commute, but assume that A(y) = A0(y) + A1(y), where

A0(y) commute with A = L, A(y)p(dy), and A1(y) are finite-dimensional with the

same finite-dimensional range for all y E Y. This assumption is crucial for the proof

of Lemma 3.7 (section 3.4). It ensures that all the integrals involving the resolution

of identity are well defined. We also suppose that A0(y) = a0(y)D, where no is a

real-valued function and D is a non-random Operator. This is a more restrictive as-

sumption than the one made in the paper by Salehi and Skorokhod (1996), where

a general family of closed commuting operators is considered. If A0(y) = 0 for all

y E Y, then we have a system of linear differential equations, which were studied by

Khasminskii (1966).

We think that it is possible to extend the results obtained in this dissertation



to the case when Ao(y) = ZZZlak0(y)Dk, n > 1, am k = 1,...,n are real-valued

functions and Dk, k = 1,. . . ,n are non-random operators, and also to the case of

general closed operators A0(y). These are the problems for future research.

Under the above assumptions on operators A0 and Al the commutativity condition

means that A0(y) commute with A1 for all y E Y. This condition is satisfied in many

applications when A1 = 0. An example of such kind is given in section 3.5, where we

consider a perturbed partial differential equation. When A1 aé 0, the commutativity

condition is not satisfied automatically. There are some applications of the results of

the thesis in this case as well (for example, to the systems of differential and partial

differential equations).

The main result is formulated in section 3.3. The proof is in section 3.4 and it is

based on the results from Chapter 2 and some special representations obtained using

the properties of Markov process y and spectral decomposition for the operator A.



Chapter 2

Theorem on weak convergence to a

diffusion process

2.1 A sufficient condition for weak compactness of

a sequence of stochastic processes

Let H be a separable Hilbert space and ("(t), t 6 12,. be a sequence of H-valued

stochastic processes. We say that 5,, converges weakly to a stochastic process 5 if the

finite dimensional distributions of {n converge weakly to those of the process 6, i.e.

"1320 Ef(€n(tl)a€n(t2)a - - °€n(tk)) : f(€(tl)v€(t2)v ' ° ° 6(a))

for all k 2 1, t1, t2, . . . tk E R+ and f : Hk —+ R that is bounded and continuous.

We say that the sequence {€,,(t), n = 1,2, . . .} is weakly compact if any subse-



quence {n.k, k 2 1} admits a further subsequence {nlk, k 2 1} such that 5",}: is weakly

convergent in the sense of the above definition.

To prove the theorem on weak convergence to the diffusion process we need a

theorem on weak compactness of a sequence of H-valued stochastic processes.

Theorem 2.1. Let the sequence of stochastic processes 5,, satisfy the conditions:

a) there exists a positive compact linear operator Q : H —-) H such that its range

contains 5,,(t) for all n 2 1 andt 6 R+ and

lim lim supsupP{||Q 5,,((2‘)” > r} = 0, for all T > 0,

r—’°° n—+oo

1))

hm hm supsup sup P{||5,,() — 5n(t')|| > e} = 0

n—>oo t<T|t— t’|<h

forallc>0andT>0.

Then the sequence 5,, is weakly compact.

Proof of this theorem follows from the condition of compactness of measures in

Hilbert space (see Parthasarathy (1967), ch. V1, p. 151).

2.2 Theorem on weak convergence to a diffusion

process

We consider a Markov process 5 (t), t 6 12+ in H with transition probability

P(s,:r,t, B), :1: E H, 0 g s < t < 00, B E B(H). It is called a diffusion process if



there exist continuous functions a: R+ x H —> H and B: R+ x H —> L+(H), where

L+(H) is the space of all continuous non-negative linear operators from H to H, such

that

/g(:r')P(s,a:,t,da:’) — g(x) = [st/Lug(:r')P(s,:r,u,dx')du (2.1)

where g is a function from H to R that has bounded first and second derivatives,

0§s<tand

Lug(x) = (g'(a:),a(u,:r)) + $Tr(g"(x)B(u,x)) (2.2)

and TrB denotes the trace of the operator B. The operator L, is called the generator

of the Markov process.

Proposition 2.1. Let functions a and B satisfy the condition: for any r > 0 there

exists a constant l, for which

1/2

||a(t,a:) -— a(t,:1:’)|| + [Tr(B(t,:r) — B(t,:r'))2] S erI — 13'” (2.3)

if “2:” g r, ”513'“ S r, t S r. Then the transition probability is determined by functions

a and B through the formula:

P(s,:1:,t,A) = P{5~,,x(t) e A}, A e 8(H), a: e H, t 2 s 2 0,

where the process 55,2: is the solution of the stochastic differential equation

dam = a(t, 53,.(t))dt + B‘Wt,é.,x(t))dW(t) (2-4)

10



on the interval [3, oo) satisfying the initial condition

£3,x(3) : :13,

where W(t) is the generalized Wiener process in H for which E(VV(t), z) = 0,

E(W'(t), z)2 = tllzllz, z E H and BI/2 is a linear operator such that (Bl/2)"‘Bl/2 = B,

where B" denotes a conjugate to B. Under condition (2 3) the stochastic diflerential

equation (24) has a unique solution for any initial condition.

This proposition was proved by Daletskii (1967), Theorem 2.1, p. 33. Also see

Daletskii (1983).

Proposition 2.2. Let 5(t), t 6 12+ be a measurable H-valued stochastic process and

let (1'), t E R+) be the filtration generated by 5. Iffor any function g : H -—> R with

bounded first and second derivatives

is a local martingale, where L, is defined by (2.2) and functions a and B satisfy the

condition of Proposition 2.1, then 5 admits a continuous modification 5, which is a

Markov random function with transition probability P(s, 3:, t, B).

This proposition is proved in Strook and Varadhan (1979) for Rd-valued stochastic

processes. The proof for the case of H—valued processes is the same.

Denote by C(2)(H ) the set of all functions from H to R with bounded first and

second derivatives.

11



Theorem 2.2. Let 5,,(t), t E 12+, n = 1, 2, . .. be a sequence of measurable H-valued

processes. Suppose that

1) the distributions of 5,,(0) converge weakly to some distribution m0(-) on B(H);

2) there exists a compact positive operator Q for which

lim lim supsup P{||Q‘15n(t)|| > r} = 0
r—ioo T

n-—>oo ts

for all T > 0;

3) there exists a subset D C C(2)(H) that is dense in C(2)(H) and the generator

of a diffusion process Lt with the coefficients satisfying the conditions of Proposition

2.1 for which

lim E(G(€n(t1),-~€n(tk)) 9(€n(t+h)) -g(€n(t)) -/t Lug(€n(U))dUJ) = 0
71400

forallkz 1, 091 g...tk <t<t+h, GeC(H"),geD.

Then 5,, converges weakly to a Markov random function 5 with the transition

probability P(s, x, t, B) that is determined by relation (2.1) and the distribution of

~

5(0) equals rn0(-).

Proof. It is easy to check that the sequence {5", n = 1,2, . . .} is weakly compact,

since the assumptions of Theorem 2.1 are satisfied.

Let {‘nl,’ ,l 2 1} be a subsequence for which the sequence {fun 1 Z 1} converges

weakly to some stochastic process 5. The distribution of 5(0) is m0 and 5 is a stochas-

tically continuous process, i.e. P{||5(t) — 5(8)“ > e} —> 0 as s ——> t. Therefore 5 has a

12



measurable modification, so we can assume that 5 is measurable.

It follows from assumption 3) of the theorem and stochastic continuity of 5 that

lim E(G(a<t1). . . aw) [gene + h» — gene» -— [m L.g(a(u))du}) = o.
71—)00

Therefore

E(g(é<t + h» — g(£<t>) —f L.g(£(u))du/a) = o,

and so the limit process satisfies the conditions of Proposition 2.2.

Since the sequence {5”, n 2 1} is weakly compact and all convergent subsequences

have the same limit, we conclude that 5,, —> 5 weakly as n ——> oo.

13



Chapter 3

Theorem on diffusion

approximation for solution of

perturbed differential equation

3. 1 Introduction

We consider operator differential equation in a separable Hilbert space H:

(3.1)

u,(0) = U0,

where {y(t), t Z 0} is an ergodic homogeneous Markov process in a measurable space

(Y, C) satisfying some mixing conditions and {A(y), y E Y} is a family of closed linear

operators with a common dense domain D, uo is a fixed element of D. We denote by

(~, -) the scalar product in H. Differential equations with operator-valued coefficients

14



are studied in Kato (1984) and Krein (1982).

Let p be the ergodic distribution of the process y. We assume that for all x E D

the integral f A(y)xp(dy) = Ax is defined, and we consider the averaged equation for

(3.1):

We will investigate the asymptotic behavior of u€(t/t) as 6 —+ 0.

3.2 Assumptions

1. Let {U(t),t 2 0} be a family of linear operators from H to H satisfying the

differential equation

10(15): amt), t > 0 (3 3)

where I is the identity operator.

The solution of equation (3.3) defines a semigroup of operators in H:



Assume that this group is unitary, i.e. for any f E D

(U'(t)f.U(t)f) = (f.f)-

Also suppose that {U (t), t E R} is weakly continuous.

II. Suppose that y(t), t Z 0 is a jump Markov process with transition probability

P(t, y, C), t Z 0, y E Y, C E C satisfying the relation

, 1

11m ?(P(t, y,C') — 10(y)) = H(y,C)
t—>0

and supy VarII(y, ) < 00.

III. SMC (Strong mixing condition). Set

R(t,y,B) = P(t,y,B) - p(B), t Z 0, y E Y, B E C.

Assume that

[000 |R(t,y,B)|dt < 00 for all y E Y,B E C.

Set

12(3), B) = A00 R(t,y,B)dt.

Under assumption I the group {U(t), t E R} admits the following representation

16



(see Dunford and Schwartz (1963), v.2, sec. XII.6.1, p. 1243, Stone’s Theorem):

Ur“) : eitS 2 / Bit/\dEA.

R

The resolution of identity EA and the symmetric operator S are determined uniquely

by the group {U(t), t E R}.

Set 141(3)) = A(y) — A, y e Y.

~ 4.

IV. Suppose that A(y) : A0(y) + A1(y), A0(y) = a0(y)D, where a0 is a function

from H to R for which

[/lao(y)|p(dy)<oo. Lflao(y)ao(y)3(y,dy)p(dy)<00.

D is a linear operator from H to H such that D“ = —D and A0(y)E,\ = EAA0(y) for

all y E Y.

Denote a0 = fY a0(y)p(dy).

V. Assume that A1(y) = iSl(y), and all S1(y), y E Y are symmetric and finite-

dimensional with the same range R of dimension ii. Let el, e2, . . . , en be an orthonor-

mal basis in R and Skj(y) = (S1(y)ek,e,-), k,j = 1,. . .,n.

3.3 Results

Set z.(t) = U(—t)u.(t).

Theorem 3.1. Suppose that conditions I—V are fulfilled. Then there exists a positive

17



compact operator Q such that the stochastic process Q2,(t) = Qz,(t/e) converges

weakly as c —> 0 to the diflusion process 2(t) with the generator L determined on

functions <I> : H —> R with bounded first and second derivatives by the relation

L<I>(Qz) = (6(ta 6262(2)) + §Tr<1>"(ez)eé(z)e (3.4)

where

62(2) = /Y [Y f/W} dial/lame) )dE.zR(y, dy )puy), (3.5)

3(2) 2 800(2) + 801(2) + 310(2) + 311(2), (3.6)

300(2) = 2 [Y [Y < Adz/)2 0 Ann/)2 > R(y.dy’)p(dy). (3-7)

Bale) = 2 f f // < Adz/)2 o dE1A1(y)dE,,z > R(y,dy')p(dy), (3.8)

Y Y {A=u}

B10(z) = 2/ / f/ < dEAA1(y')dE,,z o A0(y)z > R(y,dy’)p(dy), (3.9)

Y Y {A211}

B11(z) = 2/ / [f < dEAIA1(y')dE,,Iz o dEAA0(y)dE,,z >

Y Y {x+p—,\—p'=0}

>< R(y. dy’)p(dy)- (3-10)

Here < a o b > denotes the tensor product of vectors a, b E H, namely for any x E H

the following relation holds < a o b > x = (a, x)b.

Remark 3.1. For a function (I) : H —> R, its derivative <I>’ at point z is defined in

the following way: we consider <I>(z+tu), t E R, u E H as a function oft acting from

18



R to R. If the weak differential

D<I>(z, u) : gdflz + tu)

t=0

depends on u linearly, then D<I>(z,u) = (®’(z),u). Vector <1>'(z) is called the weak

derivative of (I) at point 2.

To define the second derivative consider

2

‘ <I>(z+t1u1+t2u2) , U1,U2€H, t1,t2€R.

dilatg ,l:0,,2:0

 

This expression {the second differential) is a bilinear function of ul, U2 6 H, and

it defines an operator <I>”(z) acting from H to H, this operator is called the second

derivative of function (I) at point 2.. Its boundedness means that the bilinear function

and the operator are bounded.

The third derivative is defined through

03

“(P(Z +L1U1+tQU2 + t3U3) 1' L’,(U1, U2, U3),

8t1at20t3 £120,t2:0,t3=0

ulau2iu3 E Hit1.t2,t3 E R-

The boundedness of the third derivative means that the trilinear form V defined

on H x H x H is bounded, i.e.

SUP ll’lfuliuzziusn = “V” < oo.

lluk||51.k=1,2,3

19



Remark 3.2. Under conditions IV and V, formulas (3.5) and (RU-(3.10) can be

rewritten as follows:

2) 2 D02 + f/ 2 [(,dE112 8j)AkjdE,\€k+

{A=#}k1;_1

dEA€k(ij2, dEuej) + SjkdEA€k(dEu2, 63)] ,

B00(z) = 2/Y/Yao(y)ao(y’)R(y, dy')p(dy) < D2 0 D2 >,

301(2.-)=2Z// d(Ez,e,-) <A,,,zodE,e,,>,

kj—l {3:11}

B10(2 ——2 Z // (,dEu2 Bj) < dEABk 0 ijZ >,

kj_1 id:fl}

811(2 ——2 Z //// Skj1m(dEu2,8j)(dE,/2,8m)X

{A’+p—A—u’=0}
k,j,.lm=1

< dExez O dEACk >,

where

20



i/ / &o(y)Skj(y’)R(y.dy’)p(dy)D,

Y Y

where 510(y) : a0(y) — ('10,

n

Sjk = E Sljkl-

(:1

Remark 3.3. Operator Q is chosen so that Q&(z) and and QB(z)Q satisfy the as-

sumptions of Proposition 2.1. Therefore Qa(z) and QB(2)Q determine the transition

probability of the process 2(t) as described in Proposition 2.1.

3.4 Proofs

The proof of Theorem 3.1 follows from Theorem 3.2 formulated below and the The-

orem 2.2 on weak convergence to a diffusion process.

Theorem 3.2. Let (I) : H a R have bounded <I>’, CI)”, <I>”’, D<I>’, DD<I>’, D<I>"D and

£(D<I>”(z)Dx,x), and let assumptions I—V be fulfilled. Then for any 0 3 t1 < t2

E(<1>(2.(t2)) — <I>(i.(t1))/f§.) = EU; L<1>(2.(T))dT/rg,) + 0(1),

where F,‘ is the o-algebra generated by {y(s/e), s _<_ t}, the operator L is given by

(3.4) with the coefiicients defined by formulas {3.5)~(3.10).

The proof of Theorem 3.2 is based on the following lemmas:
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Lemma 3.1. The process z, is bounded, namely ||z,(t)|| = ||uO|| for all t > 0.

Proof. It is easy to see that z,(t) satisfies the following differential equation:

(3.11)

Note that B*(t,y) = —B(t,y) for all t 2 0, y E Y, where B" denotes the conjugate

to B, and so (B(t,y)z, z) = 0 for all t 2 0, y E Y, z E H. Therefore

(as), z.(t)) — (240), z.(0)) = 2 f (as), B<s,y(§))z.(s))ds = o.

C]

Let g be a measurable bounded function from H to R. Consider the linear oper-

ators H and R that act on a function g as follows:

H901) = fylgty') — 9(y)lH(y, dy')

R901) = [Y 9(y’)R(y. dy’).
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where II(y,C) and R(y,C), 'y E Y, C E C were defined in assumptions II and III

respectively.

Lemma 3.2. Let g : Y —> R be measurable, bounded and satisfy

fY g(y (dy)- 0. Then IIRg——

Proof. Consider the semigroup of operators {Tb t 2 0} generated by the transition

probability of the Markov process y(t):

119(3)) = / g(y')P<t,y.dy'),

then according to assumption II

1

H9 = 11111t—(Ttg 9)

We calculate HRg under the condition that fr g(y)p(dy)—-— 0. Note that

fooo TiQU/ldt = Rg(y) and therefore

HRg-—— limOh(T),Rg— Rg)-— ling) h (/ ThT,g(y)dt - / T,g(y)dt) =

o 0

1 oo oo 1 h

1%h(/ T,g(y)dt-—/O T,g(y)dt)_-— 1131—51) Ttg(y)dt= —9(y)

because T, ——> I as t —> 0, where I is the identity operator.

[:1

Lemma 3.3. The process (z,(t), y(f)) is a homogeneous Markov process in the phase

space H x Y with generator C, determined on functions f : H x Y —> R, which are
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measurable and bounded with bounded partial derivative in the first argument, by the

    

relation:

G.(t)f(z,y)=11$%[E(f(z.(t+h),y( 1+1.» _ 2,,_,(:=,)_,(,,y,]=

: 1

(May),B(t.y)z)+;Hf(z.y) = (f: (z y) )+:/(mzy) (z ,’.y)]11(y,dy)

The proof of this lemma is the same as in the finite-dimensional case. The next

lemma is a generalization of Dynkin’s formula.

Lemma 3.4. Let f : R+ x H x Y —i R be measurable and bounded with bounded

partial derivatives in first and second arguments. Then for any 0 g t, < t2 < 00

t2
t1 6

E<f<t2. 26(t2).y(;)) — m1, z.(t.),y<;))/n) =

E(/[f:(s,z.(s),y(§)) + G.(s)f<s 24s ds/7-1:)

Lemma 3.5. Let conditions I~V be fulfilled. Let (I) be a bounded measurable function

such that (IJ’ and D*<I>' are bounded. Then for any 0 3 t1 < t2 < 00

E(<I>(z,(t2)) — <I>(z€(t1))/.7-'fl) =

6E(I /} [(CI>”(z,(u))B(U,y(EeL-DZJU): B(u.y’)z.(u))+

+(<I>'(z,(u)), B(u, y')B(u, y(%))z,(u)) + (<I>'(z,(u)), B1(u, y')/lz — ABl(u, y')z,,(u)) x
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u , 6

R(y(;),dy )du/r,,) + 0(6),

where B1(s, y) = U(—s).~’ll(y)U(s) and 0(6) does not depend on t1 and t2.

Proof. Using the fact that 26 satisfies the differential equation (3.11) we can write

<I>(z.(t2)) — <1>(z.(t1))= / 2 g(s, z.(s),y(§))ds
t1 6

where g(s, z, y) = (<I>’(z), B(s,y)z). Set f(s, z,y) = Rg(s,z, y), then since

fY g(s,z,y)p(dy) = 0 from Lemma 3.2 we have that IIf(s,z,y) = —g(s,z,y) (here

operator I1 acts on g as function of y). From Lemma 3.4 we have

E(/t2 g(s, z,(s),y(:))d8/.7:f,) = —e(f(t2,z,(t2),y(:)) — f(t1,z((t1),y(—)))+

t1

6

EU, [02(8. as), ye». B(s, y(§))z.(s)) + f:(s.z.(s), 11(3)] ds/F) =

E(/ l.» [(q>~(z.(u))B(u,y(§))z.(u).B(u,y')z.(u))+

+(<1>'(z.(u)), B(u, y')B(u, y(§))z.(u)) + (<1>'(z.(u)), B1(u, y’)/Iz — Asa, y')z,(u))] x

B(y(—E).dy')du/rt) +0(e)

since under the assumptions of the lemma function f is bounded.

Lemma 3.6. Suppose that conditions I—V are fulfilled. Then for a function

<1); H —> R such that <1>', <1)", <1>'" D*<I>’, D*D*<I>’, D*<I)”D and §;(D*<I>”(2)Dx,x) are

25



bounded, the following representation is valid:

EU; R(E,2,(T))dT/rg,) + 0(3)

where

K(r, z) = R’1(T, a) + Rg(T, z),

K1(Ta2) = [Y fy(<1>"(2)B(T.y)z.B(T.y’)Z)R(y.dy')p(di/),

1mm) = / jy (3(3), B(T. 338v,y)z)R<y,dy')p<dy).

Proof. Set

K(u, z,y) = fy[(<I>"(z)B(u, y)z, B(u,y')z)+

(‘1”(Z).B(U,y')3(uay)2) + (4"(2). 31W. y’)Az — fit-310‘, 3192)] B(y, 613/),

Kw, 2) = / Km. 3. z)p(dy).

Then we can rewrite the statement of the previous lemma as follows:

E(<I>(2,(t2))—<I>())/J-'§1)—E(/:2(K(s,(sz,y(st/ff)+0()

(

Denote P((s, z, y) = K(s, z, y) — K(s, 2). We need to prove that

£2

eE(/ t R’(s,z,(s),y(::-))ds/f§l) —+ 0 as c —+ 0.

El 6
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Since fy H(s, z, y)p(dy) = 0 for all s 2 0, z E H, HRH = —K by Lemma 3.2 (the

operators H and R act on If as a function of its last argument, y).

Set f(s,z,y) = Rff(s,z,y). Recall that B(s,y) = a0(y)D + Bl(s,y), and B1 is

a bounded operator: Bl(s, y) = U(—s)/I1(y)U(s). Under assumptions of the lemma,

If has bounded partial derivatives in first and second arguments since 2:,E is bounded

(Lemma 3.1):

K;(s. 2. 32) = / [(3"(3)(3,(3, 3M — 31333, (2)2. 3(3, 3')z)+

(<I>"(z)3(3 92,) (3,(3 2M — AB.(s,i)z)+

(‘1”(Z).B(8.y')((31(8.iM-ABI(S.i/)Z)+(‘1"(Z).(31(S.y’)/5-431(8.y')Z)B(8.I))Z)+

(<I>’(z), B1(s, y'A/lz — 2AB1(s, y')Az + AAB((s, y')z) 12(3), dy'),

K;(s, y) = /Y 3*(3, y')B(s, y)z<I>'(z) + <I>"(z)B(s.y')B(s, y)+

[.13 _ AB,(3, y')]*<I>'(z) + mate _ AB-1(s, y')]z+

B(s.y’)*<1>"(z)B(s,y)z+B(s.y)*<1>"(z)B(s y)+{§((<1>"(z)8(s y)3 B((33)::)}|,_z

From Lemma 3.4 we have

EU, K(,3 3,(3 y(—))—0d3/J-'f,)_

eE(/ [we z.(s).y(§)),B(s.y(§))()) + f( y(fw]/f)
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So

Lemma 3.7. Under the assumptions of the previous lemma there exists the limit

~

T

limTaooi/ K(r,z)dr =K(z),

T 0

~ ~ ~

K(z) = K1(z) + K2(z), and

KHZ) :2 (A0(<I>"(z))z,z) + [/{A: }(A1(<I>”(z)dE,\)dE#z, z)+

f/{Azu
} (A2(dEA

<I>”(z)
)Z, dEfl

z)+

f/f/ (A3(dEAI¢"(Z)dEA)dE#
Z,dEuIZ), (3.12)

{N+u-A-p’=0}

19(2) = [/3323} / fy(<1>(z),dEAA(y)A(y)dEyz)R(y,dy)p(dy) =

((D'(z),Doz) + //{ } Z [(dEpz,eJ-)(<I>'(z),.AikjdEAekH-

A=fl kgzl

((D'(z), dEAek)(C‘k,-z, dEuej) + 53.4%), dEAek)(dE,,z, ej) , (3.13)

where for a linear operator C from H to H

313(0) = h jy Marc/homo,dyipwy), (3.14)
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343(0) ——- l3 f}an’rcfimaeu,dy'wy), (3.15)

343(0) -—- f [Y Alo'rczioomudy'wy), (3.16)

343(0) = fy/Y41(y’)*C41(y)R(y,dy')p(dy)- (3.17)

and

Do: [Y [Ydo(y')/io(y)R(y3dy’)p(dy)-

The operators A“, Ck], k,j = 1,. ..,n and coefiicients Skjlm, Sjk, k,j,l,m = 1,. . .n

are defined in Remark 3.2.

Remark 3.4. Assumption V ensures that the integrals in formulas (3.12) and (3.13}

are well- defined:

71

(A1(<I>"(z)dE,\)dE,,z, z) = Z (<I>"(z)dE,\ek, AkafldEyz, ej), (3.18)

kJ=1

A2(dE,V<I>"(z)z,dE#rz) = Z (dE#/Z,ej)(<b"(z)é'ka,dEXek), (3.19)

k,j=l

A3(dE,\,<I>”(z)dE,\)dE,,z,dEfllz)= Z Skflm(dEuz,ej)(dE,,z,em)x

k,j,l,m=1

(‘1’"(Z)dEAek, dExezl3 (3-20)

since for any vectors $1,172 6 H the expression (EA$1,.’E2) treated as a function of A,

has bounded variation on R.
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Proof. Recall that

(,T z) —//(((<I>”( (r y)z B(r y’))R(y3dy’)p(dy)3

and B(r, y) = U(—r)xi(y)U(r). Using the spectral decomposition for (7(r) we can

K1(r,z) =LL(<I>"(z)/e_"’\dE,\}i(y)/eiT"dE"z,

/(WWW)/ e‘T“’dEirz)R(y,dy')p(dy> :

/ / [ff] eiT(,\’+l1—/\—p’)(A(y’)*dEAI@"(Z)dE,\/i(y)dE#Z,dEfltz).

Y Y

For an operator C set

= ff A(y')’Cfi(y)R(y3dy')p(dy)3

then

(,7' Z) “ff/f““WA#) (A(dE,\I(I)"(Z)dE),)dEMZ,dE“IZ).

A:

Under assumption IV zi(y) = Ao(y) + 341(31), and therefore A(C) can be written in

the form

“4(0) = A0(C) + A1(C) + Anzfcl + A3(C),

where A,(C), i = O, 1, 2, 3 are given by formulas (3.14)—(3.17) and satisfy the following

properties:

1) EAA0(C)Ep : A0(EACEp)a
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Now we average with respect to r, that is, compute

1 T -
Ef/O‘ h’1(T,Z)dT.

Note that

1 T .
Tlim _7: [0 e”(“_”dr = 0 if ,u 7£ Aand it equals 1 otherwise.

Therefore

lim —/0T K((,r z) =(A0(<I>"(z))z,z)+
T—+ooT

[fwd(A1(<I>”(z)dE3)dE,.z, 2) +df/{Azu}(A2(dE,\<I>”(z))z, dE,,z)+

ff/f («43(dEx<I>"(Z)dEA)dE,,z, 313,3).
{A'+#->\—u’=0}

Formula (3.12) is proven.

Formula (3.13) is obtained similarly:

mm) = h fyo'e), B(n y’)B(T3y)Z)R(3/,dy’)p(dy) =

f, /Y f](<I>’(z)
,e-Wm(yawniw

fl)my, dy'Wy)
2

f[W W)>R(y3dy’)p(dy)+

/f [/3110“(‘1’A)Ao<y’
>dEvil<y>dE3zm(3/,33

333,),

/ / [/wA" NBA/A (:1'>dEiAo(y)z)R(y,dy')
p(dy)+
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fyfyff eir(A—u)(<1)'(z),dEA/l1(
y’).zll(y)dEpz)R(%(lg/)p

(dy) 2

(drama) + f [Y // eI‘AA-A [ Z (Aug/idle),skj<y>(dE.z,e.)dE.e.)+
kJ=1

n

2' 2 (@'(z), Skj(y)(dE#/lo(y)z,ej)dEAek)+

k.j=1

n

i Z W(Z), Skj(y)(dEpzw ejldEA/il (31360] B(y, dy')p(dy) =

kJ=l

((1)’(Z):DOZ) + /Y /Y // eiTlA—M [i Z (dEuz,ej)(<I>'(z),30(y')Skj(y)dE,\ek)+

kJ=1

TI.

2' Z (Ao<y>z,e.><<1>'(z)(z), Stowe.)—
k.j—‘-1

Z Skj(y)(dEuZa €1>Szm(y')(ek, em)(<1>’(Z). dEAell] B(y, C1y’)/)(dy)-

k.j.l.m=l

Taking into account the definitions of 21k]. CH and SW", given in Remark 3.2 we have

Rg(7,z)=(q>'(z),00z)+/YL/faAA-W‘:

kj=l

[(dEpz, €j)((I)I(Z), fikjdEABk)+

We), dE.e.>(C“..z. due.) + slum e.><<1>'<z), diam] B(y, dy'>p<dy>.

Averaging with respect to T, we get formula (3.13).

Lemma 3.8. Suppose that the assumptions of Lemma 3.7 are fulfilled. Then

E(<I><2.(t2)) — wan/fig.) = E(/ 2 R’(2.(r)>dr/f-g.) + 0(1).
ii
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where K() was introduced in the previous Lemma.

Proof. We need to show that

E(/t:2[R<-§,2.<s>>—fc<2.<s>]ds/ ;)lim sup

c—->O   

For an h > 0 consider

t+h 8 _ _ S

E5,z,y‘/t “K(E, 2£(S)) — K(Z~((S))) _ (K(Ev Z) — K(Z))]d8 (321)

From Lemma 3.7

t+h 8 ~

% f [12192) — K<z>1ds =

—/ [K(s, z) — K(z)]ds ——> 0 as 6 -> 0 for any h > O. (3.22)

Fix 3 > O and consider 1/2(z) = K(f, z) — K(z) as a function of z. The function 2/)

satisfies the assumptions of Lemma 3.5, and thus we have that

Bows» — man/f5) = E(<u>;(9>, 2.<s)> — (um), awn/e) = 0(e + h).

Therefore for some constant c1 > 0

P: {|(w;(0),2.(s) — mm > 6} s fS—‘(e + h).
;,Z,y
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Thus

t+h s _ _ .9 ~

IE5.. / [um-5,24») — K(2.(s>>> — (K(—,z) — K(z)>]ds s
E

h(6 + fife + h)).

The last inequality together with formulas (3.21) and (3.22) imply that

8
1 t+h _ _ Cl

lim sup E5 / [K(—,E.(s)) — K(E.(s))]ds S 6 + ~6—h

te—+O c ,Z,yh 6 

foranyh>0,6>0.

Set t]. =t1 +kh, k=0,1,2,...,n, then

E(/t[K(:§e(8)) — Mime/F1)

B(hg % [+1 [K(Eus» — K(2.(s)]ds/}'§})

for any 6 > 0, h > 0. The proof is completed by letting h —+ 0, then 6 —> 0.

lim sup

c—>O   

S (t2 — t1)(5 +%1h)lim sup

e—+0   

E]

Lemma 3.8 implies the statement of Theorem 3.2 if we note that for any vectors

a, b E H and linear operator C from H to H

(Ca,b) =TrC<boa>,

and use formulas (3.12)—(3.17).

To complete the proof of Theorem 3.1 first we observe that the set of functions (I)
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that satisfy the assumptions of Theorem 3.2 is dense in C(2)(H) Therefore the first

part of condition 3) is satisfied.

Unfortunately, the drift EL and the diffusion operator 3 do not necessarily satisfy

the conditions of Proposition 2.1, and therefore do not necessarily define a diffusion

process. Therefore we consider the process Q§.(t), where Q is a compact positive

Operator, and we apply Theorem 3.2 to this process. Its generator

. 1 ~

L<I>(Qz) = (<I>'(Qz),Qa(z)) + §TTQ¢"(Q2)QB(2) =

(«<ta 6262(2)) + $Tr<I>"(Qz)QB<z)Q.

Note that a(z) is linear in 2, since it has the structure Flz, where F1 is a linear

operator. The diffusion operator B(z) is bilinear in z and has the structure < F22 o

z >, where F2 is a linear operator. Thus

Qa(z) = QFlz, TrQB(z)Q = TrQ < F22 o z > Q = (z,QF2Qz).

We choose Q so that QFI and QFgQ are bounded. Then Qa(z) and QB(2)Q satisfy

the condition of Proposition 2.1 and therefore define a diffusion process.
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3.5 Example

Let H be L2(R3), that is the space of complex-valued functions f such that

[3 lf(:c)l2dsv < oo, :2: = ($1,252,133)-
R

Let A be the Laplace operator. We consider the equation

Bu.(t, :13)
8t : —iao(0(§))A + A1(0(§))u.(t,a‘), (323)

where 6(t) is a Markov process in phase space 9 that has ergodic distribution p and

satisfies conditions II and III of section 3.2, the function a0 satisfies condition IV, and

{A1(0), 0 E 8} is a family of finite-dimensional operators. For example, let A1(6) be

an integral operator with the kernel

1(xy,9=iZak(x)bkz/,

where ak, bk, k = 1, 2, . . . , n are real-valued functions and

u(,t 2:) ———z':ak(:r)/3 bk((y,0)u(t,y)dy.

Since the range of operator 141(6) is contained in the span of functions a1, . . . , an, this

operator is finite-dimensional. Hence the condition V of section 3.2 is fulfilled.
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For convenience assume that

[gum/51510) =

Also assume that L, bk(y,6)p(d6) = 0 for all y E R3 and k = 1,2, . . .,n. The last

assumption ensures that condition IV of section 3.2 is satisfied: the Operator fl = —z'A

commutes with A009) 2 —ta0(0)A.

The operator S introduced in section 3.2 equals —A, it has the spectrum [0, 00).

Its Green function (resolvent kernel) is

 1‘. (a? 11): 4-7; lat-yl

13,3; 6 R3, :13 75 y, z ¢ [0, 00). The resolvent R. satisfies

(Ru,)v =//F(,:1:y) ())xdrrdy.

Ra Ra

Denote by E the resolution of identity of operator S. Using the expression for the

Green function and the fact that E({a}) = 0 for all a E R, it can be shown that the

resolution of identity for the operator S satisfies

.1.111mmWm

Here C C [0, 00), u, v E C(2)(R3) and have bounded support.

 

Consider z.(t, a3) :2 e“‘Au.(t, :13). Let ej,j = 1, 2, . . . be an orthonormal base in L2.
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The Fourier coefficients of z.(t, :13) can be computed as follows:

(Mikey) = 26.j(t) = (eitAu(t),€J-) =

1 _ __

foeit)A(alE.u.(),e.-) =/ooe-AA / [Er—5 8‘“(fix 3") 1.,(1 y)ej(:13)d)\d:cdy.

o R3 1234 l5” 9'

According to the Theorem 3.1, there exists a positive compact operator Q such

 

that the stochastic process Qz.(t/e) converges weakly to the diffusion process that is

determined by its generator. Let us compute the diffusion coefficients using formulas

given in Remark 3.2:

{1(2) = cAAz, c = — f6 [6(a0(6') — 1)(a0(0) — 1)R(0,d6')p(d9),

~

B(z) = Boo(z) 2 2c < A2 0 AZ >,

here

< AZ 0 AZ > f(:1:) = (A2, f)Az($) = Az(y) (y)dyAz(:13).

Ra

Remark 3.5. According to Remark 3.2 in the case of equation (3.23) 801(2) 2

810(2) 2 811(2) 2 0 and 51(2), 3(2) 2 Boo(z) do not depend on the operators A1(6),

since E({a}) = 0 for all a E R. So the limit process will be the same for all equations

of the form (3.23) as long as operators A(0) are finite-dimensional and the operator

A commutes with A.

Now let us choose an operator Q. It has to be chosen so that QAA is a bounded

operator. We can do it in the following way: we try to find a kernel K such that for
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UELQ

QMI) = K(I. y)u(y)dy-
R3

Since Q has to be a compact operator, the kernel has to be in L2(R3 x R3), also it

has to be symmetric and nonnegative, and the following relation must hold:

IIQAAUII S Clllull (3-25)

for some constant c1. If the equation (3.23) is considered in a bounded region a C R3,

with the boundary 0a ( and this is usually the case for the equations of such form),

then we set K and AK together with their normal derivatives equal to 0 outside of a

and on its boundary. Then according to the Green formula for the Laplace operator

we obtain

QAAuo) = / K(z.y)AAu(y)dy =

6Au 8K

LAyK(:13,y)Au(y)dy +[3a(-57—1——K — Au%)ds —

[AyKCmi/MW/My: [AyAyK($.y)U(y)d1/,

where subscript y indicates that operator A acts on K as a function of y, ds is an

element of the boundary, and % denotes derivative in the normal direction to the

boundary. If AAK is bounded, then formula (3.25) is valid.

If equation (3.23) is considered in an unbounded region, then K and its derivatives

up to the third order have to decrease rapidly at infinity.

Remark 3.6. The example considered above can be generalized to the case ofa system
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of partial differential equations. Let H be (L2(R3))’, that is the space of functions

u: R3 —> CT, u = (111,112, . ..u.)’ such that

|u(:13)|2d:13 < 00,

R3

 

here a: = (331,132,333), |u| = \/Iu1|2+ |u2|2+...|u,|2 is the Euclidian norm. We

consider a system of partial differential equations

Bu. (t,:13) , t _ " t

————gt : —’la§c0) (6(2))Aue,k(t, 317) + Z 2 (1.513(1) L3 bjk(y, 6(2))uc,j(ta y)dy

i=1

or in vector notation

8u6(t, .73) . 0 t 1 t
at = —ia( )(6(;))Aue(t1$)+ A( )(6(E))u.(t,:13),

here a( — (11(0), . . .,aiol)’ is a vector-column. We assume that Is bjk(y,6)p(d0) = 0

for all j, k z 1, 2, . . .r and y E R3. Then condition IV of section 3.2 is satisfied.

Again, A(1)(6l) can be any finite-dimensional operators (not necessarily integral) as

long as operator A commutes with A. Note that since the action ofA on (u1,...u,)

is coordinate-wise, the diffusion coeflicients of the limit process can be computed in

the same way as above, and they do not depend on operators A(1)((9).
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