This is to certify that the dissertation entitled THE LOWEST EIGENVALUE OF THE NEGATIVE LAPLACIAN IN TWO DIMENSIONS: A MODIFIED PERTURBATION METHOD presented by Ling-Huang Yu has been accepted towards fulfillment of the requirements for Ph . D . degree in mm yajor professor / Date IZ/zz/oo MS U i: an Affirmative Action/Equal Opportunity Institution 0-12771 LIBRARY Michigan State University PLACE lN RETURN Box to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE OCT 5332' M 6/01 cleIRC/DateDuepes-pJS THE LOWEST EIGENVALUE OF THE NEGATIVE LAPLACIAN IN TWO DIMENSIONS: A MODIFIED PERTURBATION METHOD By Ling-Huang Yu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Mathematics 2000 ABSTRACT THE LOWEST EIGENVALUE OF THE NEGATIVE LAPLACIAN IN TWO DIMENSIONS: A MODIFIED PERTURBATION METHOD By Ling-Huang Yu The eigenvalue problem for the negative Laplace operator in two dimensions is classical in mathematics and physics. Nevertheless, analytical methods for estimating the eigenvalues are still of much current interest. In this work, a modified perturba- tion method is formulated by applying perturbation method, reflection method, and the Fredholm alternative theorem. The method provides the asymptotic expansion formulas of the lowest eigenvalue to bounded doubly connected regions having the inner boundary which encloses a region with the maximum dimension of 2c, 0 << 1. The first three order terms of the asymptotic expansion formulas are found explicitly by correcting the inner and outer boundary conditions alternatively and by applying the generalized Green’s functions. The relations between the first three order terms of the asymptotic expansion formulas and geometric properties of the regions are also investigated. To my Mother iii ACKNOWLEDGMENTS I would like to express my deep gratitude to my advisor Professor 0. Y. Wang for introducing me to the world of research applied mathematics in the best possible way, for sharing his knowledge and insight, and for his belief in me. I also would like to express my thanks to each of the committee members, Prof. Gang Bao, Dr. Chichia Chin, Prof. Charles R. MacC’luer, and Prof. Jerry D. Schuur for their assistance and time. I thank my family and friends for their encouragement and support. iv TABLE OF CONTENTS LIST OF FIGURES INTRODUCTION 1 Perturbation Formulation 2 SB is a Circle of Radius c Centered at (20,310) 2.1 Membrane With a Circular Core of Radius c Centered at (mmyo) . . . . 2.2 Circular Membrane With 3 Circular Core of Radius c Centered at (20,310) 2.3 Annular Circular Membrane With Outer Radius 1 and Inner Radius c . . 3 5;; is a Strip of Length 2c Centered at ($0,310) 3.1 Membrane With a Strip of Length 2c Centered at (2:0, yo) ......... 3.2 Circular Membrane With a Centered Strip of Length 2c .......... 4 Conclusions APPENDIX A The Pin-point Phenomenon of Simply Connected Membranes APPENDIX B The Generalized Green’s Ifimctions APPENDIX C The Egg; Series Expansion of K 0.1 Annular Circular Membrane With Outer Radius 1 and Inner Radius c . C.2 Elliptic Membrane of Area 1r With an Internal Confocal Strip of Length 2c BIBLIOGRAPHY vi 10 12 20 24 32 36 53 54 60 62 8322 69 LIST OF FIGURES 2.1 SB is a circle of radius c centered at ($0,310) ................ 10 3.1 SB is a strip of length 2c centered at (2:0, yo) ................ 32 4.1 The comparison of the asymptotic approximation and the exact solution 57 vi INTRODUCTION The eigenvalue problem for the negative Laplace operator in two dimensions is ¢=OonC‘, (2) where R is a bounded region with boundary C in two dimensional space. It arises from separating the time variable out of the wave equation, so it occurs in many applications; particularly in applications to vibrations of membranes and to acoustic and electromagnetic waveguides. For instance [12], we can consider the case of a fixed, uniform, flexible membrane R, of mass p per unit area, stretched under uniform tension T per unit length. The equation of motion is the wave equation - 162T! T A‘P—pw-‘ZO; 02='p—', (3) where I1 is the vertical displacement of the membrane from its equilibrium position. The boundary condition is \IIzOonC'x[0,oo). (4) By requiring simple harmonic dependence on time, we can separate out the time factor: \II = 1/16”” , w is the vibrational frequency , (5) where 2 , — w -A¢=WmR;u=;2-, (6) 2,!) = 0 on C’ . (7) Eqs(1),(2) has a spectrum of infinitely many positive eigenvalues 0<#1<#2£#3£-~, (8) with no finite accumulation point [8]. The closed form solutions for the eigenvalues p of —A exist only in few geometric regions. In two-dimensional space, they exist only in regions [12] which can be described by rectangular, parabolic, polar, or elliptic coordinates, regions such as rectangles, circles, ellipses, annular circles, and confocal ellipses. Numerical techniques such as the finite difference method, finite element method, point matching method, and eigenfunction matching method are often used to solve this problem. However, for doubly connected regions with the region bounded by inner boundary which has maximum dimension of 2c, c << 1, the disadvantages of numerical techniques, such as repetition of the evaluation for each different c and serious scaling problems due to the small size, encourage us to develop the asymptotic expansion formula for ,u. The dissertation consists of three parts: In Chapter 2, the formulation of the modified perturbation method and the re- sulting asymptotic expansion formulas are presented; it is performed by applying the perturbation method [1], the reflection method [7], and the Fredholm alternative theorem [4]. In Chapter 3 and 4, the applications of the modified perturbation method to special cases are executed, such as regions with an inner circular boundary, regions 2 with an inner linear boundary, annular circular regions, and circular regions with a centered strip ; it is achieved by correcting the inner and outer boundary conditions alternatively and by applying the generalized Green’s functions [4, 12]. The first three order terms of the asymptotic expansion formulas are found explicitly. In Chapter 5, the accuracy of the first three order terms of the asymptotic ex- pansion formulas resulting from the modified perturbation method is compared. The first three order terms of the asymptotic expansion formulas to general regions are exhibited explicitly. Relations between the first three order terms of the asymptotic expansion formulas and geometric properties of the regions are also investigated. CHAPTER 1 Perturbation Formulation Consider a membrane having region R0 enclosed by a boundary So, with an internal core which has a boundary S B. The governing Helmholtz equation is AW(:1:,y) + K2W(:z:,y) = O, (1.1) where W is the normalized vertical displacement and K is the normalized vibrational frequency, K = w - L - l/E’l—O’T' The symbol L is a characteristic length defined by \/ (area of R0) / 7r. Let region bounded by So and S 3 be the region R. Consider AU(x,y) + K2U(:r,y) = 0 in R, (1.2) U(a:,y)=OonSoUSB, (1.3) and AU(:1:,y)+ K20($,y) = O in R0, (1.4) I7(:1:,y) = O on So. (1.5) Let K0 be the fundamental frequency to eqs(1.4),(1.5) and U0 be the corresponding eigenfunction. K0 is simple [8]. According to eq(A.1), we assume that [1, 7] the fundamental frequency K to eqs(1.2),(1.3) and its corresponding eigenfunction are many) = Uo(rc,y) + iA'UAxw) , (1-6) (:1 K = K0+ZA‘F,, (1.7) l=1 where the parameter /\ is introduced as a formal way of separating out approximate solutions of various orders in eq(1.7) and as a sequencing tool in eq(1.6). Substituting eqs(1.6),(1.7) into eq(l.2) yields (AU0(:L~, y) + K3U0(a:, y)) + A (and, y) + K3U1(x, y) + 2KoF1Uo(a:, 21)) + Z x" AUm(x, y) + K3U...(x, y) + 2K0 2 Fij_.-(x. y) m=2 j=1 +3: :im was y) =0. (1.8) 8:1 For similar orders of A, this leads to AUo(:c,y) + K3Uo(rc,y) = 0 , (1-9) AU1(:c.y) + K§U1(w,y) = —2KoF1Uo(:v,y) , (1-10) and AU", (:13, y)+K2Um (3,31): m— lm—a "2KOZFj-(Um -j 13 y) _2 Z FsFtljm —(s+t)(x y)! jzl 8:1 i=1 mzzsApu. 01D Let Un(:c,y) = Vn(x,y) + Wn(x,y) , n = 0,1,2,- -- , where V0(x, y) = O, Vn’s are defined in R, Wn’s are defined in R0, and [7] W0($,y) : 0 on SO, : W0(:13,y)+ Al[1(33iy) : O 012 SB, Wo(-’Bay) + A (V1($,3/) + W103)?!» = 0 0’” 30, ’ W003)?» + All/1013a?!) + W1($ay)) + ’ " +/\m—1(Vm_1(x,y)+ Wm—l(xay)) + )‘me(3ay) : O on 53 i m=2,3,4,..., W0(931y)+ /\ (V100,?!) + W1(:c,y)) + . -- Hm (Vm(x.y) + Wm(:c,y)) = 0 on So , m=2,3,4,.... Set A]: 1. Then eqs(1.6),(1.7) become where U(1L‘,y)= W0($,y) + (V1(1L’,y) + W1(x,y)) + . . . +((Vm(11y) + Wm($ay)) 'l' ' ' ° , K2K0+F1+...+Fm+..., AI/V0($1:y) + K02W0(31y) : 01:17, R0 1 6 (1.12) (1.13) (1.14) (1.15) (1.16) (1.17) (1.18) (1.19) (1.20) W0(:c,y) = 0 0’” So, ‘ AV1(x,y) + K§V1(a=,y)= 0 in R , (i. [I l[1(may): —W0($3y) on SB, AW1($,y) + K3W1($,y) = —2KOF1W0($,y) 271 R0 , W1(xiy) = -—V1(a:,y) on SD: AV2(x,y) + K02V2(2:,y) = —2K0F1l/1(x,y) in R , V2033) = -W1(x,y) on 53 , AW2(x,y) + K§W2(:L‘,y) = —2K0F1W1(:1:,y) — 2K0F2W0($ay) - FEW/M504!) in Ro , W2(a:,y) = —V2(:z:,y) on So , AVm (:6 y) +K3Vm(x,y) = m-——1ms _2KOZF'1_Vm—j(xy) ZZFsl/mFt —()8+t(3y)inRi j=l s=:=lt1 m=3,4,5,..., Vm(xay) : —Wm_1($,y) on SB 3 m = 3,4)5‘i"' i AW". (It 31) +K§Wm 23,3) = m— lm-s —2KOZFj—ij(xa_y) 2:17:17th —(s+t)(m y)anOi j=1 8::1tl m=3,4,5,..., Wm(a:,y) = —Vm(:z:,y) on. So, m = 3,4,5,.... (1.21) (1.22) (1.23) (1.24) (1.25) (1.26) (1.27) (1.28) (1.29) (1.30) (1.31) (1.32) (1.33) By the Fredholm alternative theorem, the existence conditions [4] of W“, n = 1,2,3, . . ., give 6U , - / 2K0F1Wo(6) resulting in Bessel equations of order b [12] zde‘NZ) + Zd\II(z) + (2:2 - b2)\I’(z) = 0 where z = Kr (2 5) dz2 dz ’ ' and d2(6) 2 __ £102 + b (6) —— O , (2.6) where b is a separation constant. The periodic solutions to eq(2.6) are ) sin(n0) , cos(n0) , n =I‘IQ,’1,2,... . (2.7) . .\ The corresponding solutions [12] to eq(2.5) are J", the 71“ order Bessel function, and Yn, the nth order Neumann function, where (£)(n+2l) 2 “(Tl-fl”, "' 31"") Ym(Z)=-72:(ln£)Jm( z)_;1r,m llm—jH—l) (2)(m-22') 1:0 z 1 co _ 1)t(§)‘"‘+2"(¢(m+l+1)+¢(z+1)) ;Z(u(m+z)1 ’ =0 (2.10) ~ m=1,2,3,..., where 7 z 0.5772,1,/)(m + l + 1) = (1+ % + + m)— ’y, and 1/1(1) = —7. 2.1 Membrane With a Circular Core of Radius 0 Centered at (2:0, yo) U0(r, 6) is finite in R0, we assume that U00", 0) = BoJ0(KOT) + i Jm(KoT) (Am 81110716) + Bm cos(m0)) (2.11) m=l with appropriate constant coeflicients Bo, Bm, and Am determined by the boundary condition, eq(1.5). {1, cos(m0), sin(m6)°° _1 is a complete orthogonal set of functions and 21r / sin2(m6) d6 = 7r , (2.12) 0 21r / cosz(m6) d0 = 7r . (2.13) 0 Thus, eqs(1.22),(1.23) give V1039) = 80(6) (J0(Ko7‘) — £E;::;%(K0T)) — 302E;::;%(K0T) + i [1,..(3) (Jm(Kor) _ ——;:[’I:::]Ym(xor)) -— AmSJ/fE—fi—ggmwor) sin 12 + §3[B,n( c)Jm(( (K0r—) ){ZEfiZZgYmmOrO —B,,, Y—E—ggg—gy m(Kor) cos(m6), mzl (2.14) To correct the boundary condition on So to 0(E173) for (U0+V1)1 Bo(c), Am(c), and Bm(c) must be at most 0(E1—C). Green’s 2Ml identity [4, 11] and eqs(1.20),(1.21),(1.22),(1.23) give £0 Vl(x,y)aU(:a(:1y) d3 2 £8 U0($,y) (LKQZ—ly). + W) d3, (215) then eq( 1.37) becomes . (91/103111) 0Uo(x,y) flea o(:c,y)( 8n + 6n )ds —2K0 / U02(:c,y) dA R0 [10]'gives 2 W(Jm(z),Ym(z)) : —, (2.17) 7rz where W (Jm(z),Ym(z)) is the Wronskian of Jm(z) and Ym(z). J0(KOC) __—_1r 1 +£(ln2—7—ano) 1 +---. (2.18) Y0(Koc) — 2 (—1nc) (lnc)2 Eqs(2.11),(2.12),(2.13),(2.14),(2.16),(2.17),(2.18) yield 2” 81/1 (7‘, 0) 6U0(7‘, 0) f0 U0(c,6’)( 8r |,:c+ 6r (m cd0 2KO Cflof U30, 6) dA F1: 2Bo(c )Boi—ZE——;Z ]+ 2(4... )4..+B (1B...) jig] 0C)-—K0/RO(C U02( r, a) dA 2JOOC)(K 2 2 Jm(K0C) 230nm: c...)+ Z (A ”3 )Ymmoc) —K0 / Ug( r, 0) dA R0 13 J0(KOC) 0° ~ ~ Jm(KOC) 0m + 2.3 (1-014,. + 3433'”) m —K0 / U020, 19) dA R0 2Bo(C)B «BS 1 + 7r(ano+7—ln2)Bg 1 + K0 [R0 Ug(r,9)dA llncl K0 fRO Ug(r,0)dA llllcl2 + (2.19) B0(c), Am(c), and Bm(c) are at most 0(lfi), the simplest choice is to set Bo(c), Am(c), and Bm(c) equal to zero. Other choices would only lead to a higher order correction to the first order result F1, eq(2.19). Thus, ”BOJ0(KOC) 0° V1(r,6) : Y0(Koc) Y0( Kor) —mZ=I'—}],—:—— Y(Kor) (Am sin(m6) + Bm cos(m6)) (2.20) and F1: «83 1 + 7r(ano+'7—ln2)B§ 1 2+..., Ko/ U§(r,0)dA llncl Ko/ Ug(r,9)dA |1n Cl Ro R0 (2.21) where ’7 x 0.5772. The Green’s 2'” identity [4, 11] and the generalized Green’s function G(r,6;F,R),eq(B.5), yield 600,19; 120') an W1(r,6) = EU0(r,9) + £3 V1(F,é) ds (2.22) °° "N? U r, a) 6U -(r a) -E ”3( f 41—bv ,6 d , 2.23 U0( (,1‘ 9) )+ szlJZTUQV —K0)HUN,j“2 so 611. 1(1‘ ) S ( l where E is a constant and UNJ-(r, 0) = B0(N,j)J0(KNr) + i Jm(KNr) (Am(N,j) sin(m9) + Bm(N,j) cos(m0)) mzl 14 (2.24) with appropriate constant coefficients BO(N, j), Bm(N , j ), and Am(N, 3') determined by the boundary condition, eq(1.5). Eqs(2.18),(2.20) yield BUNJ(T',6) _ 7TBo 6UN,J-(r,0) 1 £90 an V1(r,6)ds—( 2 £0 6n Y0(Kor) ds |lnc|+nu (2.25) To correct the boundary condition on SB to 0(1'117) for (U0 + Vl + W1), the constant E must be zero. Thus, (90(1‘, 6; 1", fl) W1(r,9) = lie. an V1023) ds (2.26) °° ’(N) U - 0 6U . 0 N1](r? ) f NJ(T’ )V(T 0) d = —— , s . (2.27) ~21; (Ki; - 11(02)||UN.1||2 So an 1 Let 15(3)?!) = V2i(3313/)+ V2h(xiy) 1 (2-28) where AW($iy) + Kill/{(93131) : —2K0F11/1($,y) in R1 (229) AV2h(a:,y) + K02V2h(:r:,y) = 0 in R , (2.30) ‘6”(23) = —W1(x,y) - V3003) on 58 . (231) For the non-homogeneous equation n 1 I 2 m2 R +;R + K°_—r?_ R=Ym(Kor), m=0,1,2,3,... (2.32) 15 the particular solution is _ TY7;(K07') _ R— _2K0 , m—0,1,2,3,... (2.33) Thus, 1' _ ‘BoJo(KoC) 7 V30", 0) — F1 Y0(K0c) TYO (Ko’r') — Jm (K0 c) rY'(Kor)(Amsin(m6)+Bmcos(m0)) m—1/7nc(K0 ) (2.34) Eqs(2.12),(2.13),(2.30),(2.31),(2.34) yield ~ J (K c) h _ _ o 0 V2 (7‘19) - 170(0) (J0(K07‘) Y0(K0c)YO(KOT)) 00 ~ ~ Jm(KOC) +2; (C (c)sin(m0)+ +Dm(c)cos(m6)) (Jm(K0r) Ym(Koc)Ym(Kor)) +D0Y0(K0r) + Z Ym(K0r) (Cm sin(m0) + Dm cos(m6’)) , (2.35) m=1 where _ —1 2" BoFch0(K0C)I/O,(K0C) D0 _ 27rYo(Koc) f0 W1(c,6) d6+ Y02(Koc) , (2.36) _ —1 2" , AmFICJm(k0C)Y,;(KoC) c... _ ”YMKOc) f0 sm(m0)W1(c,0) as Y..2.(Koc) , (2.37) _ -1 2” BmF1CJm(koc)Yr;,(KOC) Dm _ Koo) f0 cos(m9)W1(c,0) 39+ 1m K06) (2.33) Eqs(2.24),(2.25),(2.27) yield 2 °° "”0 «23 B (N “)J (K c) 6U -(r 0) 1 W()6d6= °°(”°” ——N-’3——’-—YKd— f0 10 LE; (Kt— KrilllUNgl|2 fs. an °( ”’"l 3 llncl +..., 16 (2.39) _ °° “Ni 231114.171) (KNc) 01/173039) lo S‘“(m9)WI(C’9)d9—[:Z 2133— K3>IIU~,.-Ir KTWKOTW N21 j=1 1 llncl +..., (2.40) 2n on 1N) 7r2 C ‘7‘ f0 comm/1W 9=[2212(KN 308 mm j)Jm (KN ) £61131 ,0) K—3>IIU~.-12 6n WK”) d3] 1 |lnc| N—l J +... (2.41) To correct the boundary condition on So to 0(I'1n—5 CI) for (U0 + V1 + W1 + V2), D0(c), Dm(c), and Cm(c) must be at most 0(l—ln—él7). Green’s 2’“ identity [4, 11] gives 0U0(r,6) _ 6U0(r,6) z. 350 an V2(r,0)ds—f;o an V2(r,6)ds 6Uo(r, 9) h 8V2"(r, 9) __ £3 (Ti/2 (736) —— TUo(r,0)) ds. (2.42) Thus, eq(1.38) becomes 8U0(1‘,0) '- F2: F12 _fSO—an V2(r,6)ds “Mo 2K U2 6 dA Ol/‘R0 0(7‘, ) 6Uo(r,0) h 01/2"(r, 0) £8 (Tl/2 (7‘19) TUOO‘ 91d 2K U2 ,0 CIA O/Ro 0(7" ) (2.43) Eqs(2.18),(2.21),(2.34) yield 6U0(7‘,0) i __ BoJo(KoC) BUO(7‘,6) , £90 an V2(r,0)ds— F1{ ham) )2 an rY0(Kor)ds 17 + i}, m( (KOZ) £0 {—92% (Am sin(m0) + Bm cos(m6))rY,§,(K0r) ds} m=1Ym( 71.233 f erfl,’(Kor) ds 1 2 +--- . (2.44) 2K0 [R0 U36, 6) dA So 5" llncl Eqs(2. 11),((2. 17), (2.35), (2.36), (2.39) yield 7‘ h 7' 1.. (Lauren/.1...) .. ___6%agf>3.(.,.)) d. 21r h _/ (L5— *6U0( (,7' 6) I =c %h(c,6) + W lr=c U0(C,9)) C d0 8r - J0(K C 0° ~ ~ Jm(KOC) _ 4BoDo(C)YO(K C 2;1(Amcm(c)+ B...D,,.(c)) Ym(Koc) +4BODO + 2 Z (AmCm + BmDm) m=l ~ J0(K0€) 0° Jm(KOC) :—4BD C_— AmCmC +BmDm 0 0( )Y0(K0C) 7712;1( ( ) ( )) Ym(Koc) +i 7%)(K2 :2B2BO(N, 3') f My (K r) ds _1_ + N=1j= 1 ’KolllUlelz So an 0 0 [Inc]2 (2.45) D0(c), Dm(c), and Cm(c) are at most 0(W), the simplest choice is to set D0(c), Dm(c), and Cm(c) equal to zero . Other choices would only lead to a higher order correction to the 2"" order result F2, eq(2.43). Thus, V2h(r, 0) = DOYE)(K0r) + Z Ym(K0r) (Cm sin(m6) + Dm cos(m6)) , (2.46) m=1 where “‘1 2" BoF16J0(K0C)Y0’(Koc) D=——/ W ,6d6 , 2.47 ° Browne) 0 “C ’ + 13660 ( ’ 18 AmFICJm(k0C)YTL (KOC) Yr3;(KoC) , —1 = 1er(K0c) (2'48) 21r Cm / sin(m6)W1(c, 6)d0 + o -1 _ BmFICJm(k0C)Yr;(KOC) — ’ITYm(KOC) . Yn2,(Koc) (2.49) 21r Dm / cos(m0)W1(c, 0)d8 + o and, by eqs(2.21),(2.43),(2.44),(2.45), EU 1', 0 , W233 «233 f3 —%(1—1—)rY0(K07-) ds —2K3 ([120 U§(r,0) dA)2 + —4Kg (fRo Ug(r, 0) dA)2 "M «2323(N' 0U . 0 0 0 1.7) f N,J(r? )Y KT d3 (Kg—K511115512 so an °( °) 1 2K0 [R0 030,9) dA Ilncl2 F2 2 oo 2 . +N=13 + - ~ . (2.50) Eqs(1.19),(2.21),(2.50) give «33 1 + 1r(ln K0 + 'y — 1n 2)Bg K0 / (130,0) dA |1n C| K0 f U020, 62) dA 30 Ho K=Ko+ «23ng a—U£(:’—@-1"Y0'(Kor) ds 7‘2 Bd _ 0n 2K3 (fa. Ugo, o) dA)2 4K3 (LG U029, 9) M)2 q 6n Y0(Kor) ds 1 N=1 j=1 (K12v " KdHlUNJHz So 2K0 [R0 Ug(r,9) dA 11M2 + + - -- , (2.51) where 7 x 0.5772 . 19 2.2 Circular Membrane With a Circular Core of Radius 0 Centered at (2:0, yo) The geometry of the concerned region is with the outer boundary where So is r' = 1 and the inner boundary where S B is r = c. For a circular membrane with the boundary where So is r’ = 1, the frequencies I? and the corresponding eigenfunctions [8, 12] [7 to eqs(1.4),(1.5) are Km, m =1,2,3,... , (2.52) Km , p,m = 1,2,3,... , (2.53) and J0(K0,m’f") , m = 1,2,3, . . . , (2.54) Jp(Kp,mr')sin(p6') , Jp(Kp,mr')cos(p6') , p,m = 1,2,3,... , (2.55) respectively, where Km," is the mth zero of Jn , n = 0,1,2,3,... , m = 1,2,3, . .. . K0 = KO,1 x 2.4048 and U0 = J0(KOT’). Translational addition theorems for circular cylindrical wave functions [5, 6, 12] give J0(Kr') = i J,(Kr0)J,(Kr) cos ([6 — l(60 + 1r)) , (2.56) l=—oo Jp(Kr') sin(p6') = i J;_,,(K1'0)J1(Kr) sin (10 — (l — p)(00 + 7r)) , (2.57) p: 1,2,3,..., Jp(Kr') cos(p0') = i J1_p(Kro)J;(Kr)cos (l6 — (l — p)(00 + 7r)) , (2.58) lz—oo p: 1,2,3,..., 20 where To is the distance between 0 = (0,0) and 01 = (2:0, yo) and 00 is the angle from the :1: axis to 001. [10] gives J__.-(z) = (—1)"J,-(z) , 2': 1,2,3, . .. . (2.59) Thus, J0(Ko,m7") = J0(Ko,mT0)Jo(Ko,m7‘) + :0: [(—1)‘2J,(Ko,mro) sin(z'90)] J,(K0,mr) sin(z'0) + :([(-1Y121(K0,m7‘0) (305090)] J5(Ko,m7‘) 008(i0) , (2.60) m=1,2,3,... , J.sin<‘P>J.(K.,mro)cos< +(—1)(‘+1)J,+p(Kp,mro) cos ((2' + p)00)] J,(Kp,mr) sin(z'6) 00 + ; [(—1)(“”+1)J,_,,(Kp,mro) sin ((z' — moo) +(—1)‘J,+p(Kp,mro) sin ((i + p)60)] J,(Kp,mr) cos(z’6) , (2.61) p,m= 1,2,3,... , Jp(Kp,m7J) (308090,) : Jp(Kp,mr0) COS(p60)J0(KP.mT) 21 1"]8 ll H + [<—1)<‘-P>J._.(Kp.mro) sin W — moo) 1 +(—1)i i+p(Kp,mr0) sin ((2 + p)00)] J,(Kp,mr) sin(z'0) + i [(_1)(inp)Ji-p(Kp,mT0) C05 ((2 _ FWD) +(—1)‘ i+p(Kp,mro) cos ((i +p)00)] J,(Kp,mr) cos(2'0) , (2.62) p,m=1,2,3,... . Integrals of products of Bessel functions [10] give / tJ§(t) 5;[Jg(z )+ Jf(z)] , (2.63) foth3_1(t =(2Z(n + 2l)J J,2,+2,(z (z) , (2.64) (=0 72: 2,3,4,.... Thus, (a. J3 em = 7r [J3] : WJ12(KO,m) 1 (265) m=1,2,3,..., IIJPcos(p9'))2 dA 00 27r 2 = K2 2(1) + 1 + 21)Jp+1+2I(Kp.m) a (2-67) p.171 (=0 p,m = 1,2,3,.... Law of Cosine : r2 = r'2 + r3 -— 27w" cos(6' -— 60) . (2.68) Ja = —J.(z) , Yam = -Yl(z> . (269) Then, 8J0(K07") , £0 77%(K07‘) d3 21r : J1(K0)K0/ \/1+ r8 — 27'0 cos 6”Y1(K0\/1 + r3 — 27'0 cos 0’) (16’. o (2.70) Translational addition theorems for circular cylindrical wave functions [5, 6, 12] give Y0(Kr) = f: J1(Kro)Yl(Kr') cos (l0' — ZOO) , (2.71) l=-oo where To is the distance between 0 = (0,0) and 01 2 (11:0, yo), 60 is the angle from the :1: axis to 001, and the formula holds for points lying ouside the circle with the diameter 001 = r0. Then, aJ K ,, ' f; 0(673, 7‘ )Y0(K07') d8 = —27rKo,nJo(K0T0)Y0(K0)J1(Kom) , (2.72) n=2,3,4,..., 0.] K mr’ sin ’ I . {9 P( P. an) (p6 )}’0(K07‘) d8 : 271.1(1).me(K0T0)},p(KO)Jp(Kp,m)Sln(p60) , p,m=1,2,3,... , (2.73) 23 (9.1,,(K mr cos(p6’) I £0 1» 8n) Y0(K0r) ds = 2nKp,me(Koro)1/p(K0)Jp(Kp,m) cos(p60) , p,m = 1,2,3,... (2.74) Eqs(2.51),(2.60),(2.61),(2.62),(2.65),(2.66),(2.67), (2.70),(2.72),(2.73),(2.74) give K : K0 + (J3(KOT0) ) 1 [(11] K0 + ’7 — 1n 2)J02(K0T0) _ J3(K07‘0) K0J12(Ko) K0J12(Ko) ZKdJflKo) |lnc| 21r J8(Koro)/ \/1+ 7'3 — 270 cos 0’Y1(Ko\/1 + 1% —— 27‘0 cos 9’) d6' 0 4K0Jf(Ko) +7TJ0( K070) )i 0° K3 mJ p(Kp,m7'0)J;(Kp’m)Jp(KoTo)Y;,(Ko) —2—_ oo +12K0J HKOM:1:1(K2,m — Kg) 2(1) + 1 + 21)J3+1+21(Kp.m) (:0 _7TJ0 (K070) }/o( Ko) 00 K0,nJ0(K0,nT0) 1 2 )Z 2 K0J1(KO) 11:2 (Kan — K3) J1(K0,n) |lnc| + . .. , (2.75) where To is the distance between 0 = (0,0) and 01 = (2:0,yo), K0 = K0,] 5:: 2.4048, 7 x 0.5772, and K0,", is the mth zero of Jo, Jnm is the mth zero of JP, m,p = 1,2, 3, . . .. 2.3 Annular Circular Membrane With Outer Ra- dius 1 and Inner Radius 0 The geometry of the concerned region is with the outer boundary where So is r’ = 7' = 1 and the inner boundary where S 3 is r' = r = c. 70 = 0. J0(0)=1 , Jp(0)=0, p=l,2,3,... . (2.76) 24 Eq(2.75) gives K=Ko+( 1 ) 1 [(ano+7—ln2) 1 K0J12(K0) KoJf(Ko) _ 2K3Jf-—i 1761—1 (2') L16) 176) (282) 0 _277’ m _7rcosm, m —7rSlnm, - m: 1,2,3,..., £n(P,,(r,r)) : —(5(r,f) , n = O,1,2,... , (2.83) £m(Qm(r,F)) = —6(r,7") , m = 1,2,3,... , (2.84) where [3,, is the Sturm-Liouville operator of order n [12] ; ~ n2 £n(W)=rW"+W'+r(K2——2)W, n=0,1,2,.... (2.85) r {1, sin(m6), cos(m0)}::’:l is an orthogonal set of functions, eqs(2.79),(2.82) yield Pn(1,f) = 0, Pn(0,f‘) is finite, n = 0,1,2,... , (2.86) Qm(1,i‘) = 0, Qm(0,f) is finite, m =1,2,3,... (2.87) Thus, 3J,(f{7) (”(1914177) — mum) , 7 g 7 2 MK) Pn(r,F) = ] , (2.88) 3.741%?) (Yn(I-() Jn(1~{r) — Yn(f(r)) , r 2 7" 1 2 Jn(K) Tl : 011121 1 Qm(r,f) = Pm('r,f) , m = 1,2,3, . .. . (2.89) Eqs(2.80),(2.82),(2.88),(2.89) give G(7‘,9;F,é) = —1—P0(r,f) + 2,, i COS (m(9 - 5)) Pm(r, 7) . (2.90) m=1 =ll1-| Thus, by eq(B.6), f Y0(K0)J0(K07)J0(K07) KOJ1(KO) —‘£li [J0(K0T)Y0(Kof) + _ TY0(K0)J0(K0F)J1(KO7‘) J1 K0 _ (J0(Kor)Jo(KOF)Y1(K0) + FJ0(K07‘)Y0(K0)J1(KOF))] J1 K0 —E i COS (771(6 — é)) [Jm(KoT)Ym(KOf) — Jm(K0T)YmE§:)Jm(KO'F)] Jm ) ,TSF interchange 7‘ and F in the above result of r S F 1 ,r 2 F . (2.91) Eq(2.54) yields Uo('l‘,6) = J0(K07‘) . (2.92) Then ,by eq(2.20), J0(K0C) 6 = -— . 2. 3 V1(7', ) m(KOC)YO(KOT) ( 9 ) Recurrence relations of bessel functions [10] give , 1 1 27 Thus, 00 ,0;",9~ _ ~ w1=f50 (ran’ )vloamds 2" 60(1‘, 0; 'F, 5) J0(KoC) ~ = [0 a; |-=1 (—YO(Koc)nYi(Ko) + -’§’-Y0Ji(Ko)) 7T2Y0(K0) 2Y0(K0) + K0Y1(K0) — J1(K0) _. l 4K0J12(K0) |ln Cl2 + . . (2.102) Eqs(1.19),(2.96),(2.102) give K=K0+F1+F2+--- 1 1 (1n K0 + 7 — 1n 2) 1 1rY1(K0) 2K“ KflK 1 KflK _2K3J4K "2KJ3K 01(0) Incl 01(0) 01( 0) 01(0) K0 2 (KoJi(Ko)Yi(Ko) + —2-Y0(Ko)J2(Ko)) 71' “(1(0) 2%(K0) + K0Y1(Ko) - J1(K0) l 4K0J12(K0) * |1nc|2 + . . , (2.103) Recurrence relations for cross-products of bessel functions [10] give 4 MoTO — N000 = m , (2.104) where Mo = J0(K0)Y0(Ko) —‘ Jo(Ko)Y0(K0) = 0 i (2-105) 30 N0 = J0(K0)Y0’(Ko) — J0(K0)Y0(K0) = J1(K0)Y0(K0) , Go = J6(K0)Y0(Ko) — J0(K0)Y0'(Ko) = -J1(K0)Y0(Ko) , Then, To = J0(K0)Y0(K0) — «10(K0)Y0’(K0) = 0 - 7r 1 —Y K = —— . 2 0( 0) KOJ1(K0) Recurrence relations of bessel functions [10] give Thus, K=Ko+< 1 KlOJl(K0) : J0(Ko) + J2(K0) = J2(K0) - K013 1 (1(0)) |lnc| (ln K0 + '7 - 1n 2) 1 7rY1(Ko) 1 +l KOJHKO) +2K3Ji(K0)—2K0J13(K0) |lnc|? where K0 2 Km 2 2.4048 and 'y z 0.5772. 31 +... (2.106) (2.107) (2.108) (2.109) (2.110) (2.111) CHAPTER 3 S B is a Strip of Length 2c Centered at ($07 3J0) Figure 3.1: SE is a strip of length 2c centered at (1:0, yo) The cartesian coordinates (m’, y’) and (as, y), as in Figure 3.1, are related by 2’ cos sin '2: -— a: = ‘P0 900 0 , (3.1) y’ - sin ‘Po cos 900 y - yo 32 where 900 = 90 + 61, 00 is the angle from :1: axis to 6—61, 01 is the angle from 0‘63 to x’ axis, and O = (O, 0), 01 = ($0,310). Let (£’,n’) be elliptic coordinates related to the cartesian coordinates (:r,y) by :1: = ccosh 5' cos 0' , y = csinh §' sin 17' , (3.2) and (5,77) be elliptic coordinates related to the cartesian coordinates (1," ,y’ ) by :1." = ccoshgcosn , y' = csinhfisinn , (3.3) where 2c is the distance between the foci. Due to the invariability of the governing Helmholtz equation under the translation and rotation of coordinates, the governing Helmholtz equation can be written as (cosh(2§) — cos(2n)) U(£,17) = O . (3.4) 02U(€,0) + 32U(€,n) + K28 0&2 6172 2 Eq(3.4) can be separated by U(§,n) = ql(§)<1>(n) resulting in Mathieu equations [12] %—+ [hzcoshzé— ]\I’=O, (3.5) $+ [b—hzcos217]=0, (3-6) where h = Kc and b is a separation constant. The periodic solutions [12] to eq(3.6) are Sop, the pth order odd angular Mathieu function, and Seq, the q‘h order even angular Mathieu function, where 00 So..(h,cosn) = 2331(h,p)sin(2177); (21)B§z(h,p) = 1 =1 (:1 l 33 if p is even , (3.7) 50,.(h, 0081?) = Z B§i+i(h,p) sin ((2l + 1)77); 2321+ 1)B§i+i(h,p) = 1 1:0 (:0 if p is odd , (3.8) Se,(h, cos 0) = Z B§z(h, q) C08(2177); Z 35101, q) = 1 l=0 l=0 if q is even , (3.9) s..(h, cosn) = Z B§l+1(h:Q)((2l + 1)n) ; 2 82.104) = 1 1:0 1:0 if q is odd , (3.10) p: 1,2,3,... , q=0,1,2,.... The corresponding solutions [13] to eq(3.5) are J09, the 12‘“ order odd radial Mathieu function of the first kind, Nap, the p‘h order odd radial Mathieu function of the second kind, Jeq,the q‘h order even radial Mathieu function of the first kind, and Neg, the qth order even radial Mathieu function of the second kind, where Jop(h, coshg) = gtanhéi {(—1)1'¥(2l)B§,(h,p)J21(h cosh 5)} 1:1 (E i {(-1)"5 ° (hip) 830%?) 1:1 21 1 _£ 1 ,5 1 _£ 1 e _ , [J¢_1(§he )J,+1(§he )— J1+1(§he )Jz_1(§he )J} if p is even , (3.11) Jop(h, cosh g) = gtanhéi {(—1)"£;‘1(2l + 1) §,+1(h,p)J21+1(h cosh 5)} (:0 34 23$.) B.,, i{(— 1)‘ ”T‘Biiiiwp) :J[ < (plzzo he ‘Meéh e)— Ji+i(— adhefiM 9130]} ifpz'sodd, (3.12) M [OH-I; He, (h coshfi) _—_ EZH—l B§,( (,h q)J21(hcosh£)} l=0 (12? 00 i iseven = 33(h,q)§,i( 1) B2102 q)Ji( ”M01311 an} fq , (3.13) m M8 H 0 Je (h, cosh 6) = q {(—1)l—1;—IB§t+1(ha Q)J21+1(h @3110} z 3% = 3.0,,an 1)’ B3302 q) 1 1 . . [Jz(-h€-£)Jz+1(§he£) + Jt+1(§he—£)Jz(§h€£)]} 1f q 13 Odd , NH (3.14) Nop(h, cosh g) = g tanhgl: {(—1)‘-‘SZ (21)B§,(h, p)N2,(h cosh .9} fl i{(‘1)l—;B§z(hil’) _ B§(h1p)z 1 1 _ 1 E 1 _£ l 6 . . [J,_1(—2-he £)Nz+1(§h‘9 )— J,+1(§he )N,_1(§he )]} 2f P 13 even i (3.15) Nop(h, cosh g) = gtanhfi :2 {(—1)’"P%l(2l + 1)B§,+1(h,p)N2z+1(h cosh §)} :0 35 Wi{_1) — ;IB§I+1(h1p) [JA-hep H)Ni+i(—he )— Ji+i(%he-‘)Ni(%he‘)]} if p is odd. (3.16) Neq( (h ,)cosh£ 2 £2“ — )1 §B§,( h, q)N2i(hcosh{)} (=0 (E °° . . = §B(‘ (h,qN l{he J 1‘he }i is even, 38“,, 200—112, )1 )i(- ) fq (3.17) Neq(h,cosh{) = \flgi {(— 1)’ LB§,+1(h, q)N21+1(hcosh£)} = ‘5 -§:{<—1)'LB3.1 R0 -c e Jean 10?“ ’1) +A2n+1(C,‘P0)A2n+1(C’(’00)N + (h: 1) ¢2n+1 , Mama] + 1 i [(Aan)” (c,soo)1{;“"(h°’ 1) M§n(ho) —2K0 [R0 U02(§,17) dA ”=0 m(ho, 1) e 2 chn 1(h0’1) c + (AW) (C’¢O)Nc,;l(ho,1)M2"+1(h0)] . (3.28) figm(c, (p0) and Agn+1(c, cpo) do not affect F1, the simplest choice is to set them equal to zero. [13] gives Balm) = 0(6 — (00)) W ds) BUNJ-(r, 0) 8n d3 + £0 Y2n(K07‘) (2n(6 — We» 43 = [(9% (EWWW is. 2355914545191 d8] 3— + ° '- |lnc| _ 7rBo 0UN,J~(1‘,6) 1 _ (T £0 Y0(KOT)—an— d3 [111C] + . (3.49) To correct the boundary condition on SE to 0(lnl cl) for (U0 + V1 + W1), the constant E must be zero. Thus, 00 ((N) 2U 6U ‘ ‘2 2(K N,j (5 0) £0 Mmen) d3 . (3.50) 1H j_1_K0)l|UN.jH2 0n Let V2(:c,y) : V2i($,y) + V2h($,y) 2 (3'51) where AV§(x,y) + KgV,‘(a:,y) = —2K0F1V1(2:,y) in R , (3.52) AV2h(a:,y) + K02V2h(:c,y) = 0 in R , (3.53) Vz"(1v,y) = —W1(1',y) - Vz‘($,y) 0n 53 - (3-54) The method of variation of parameters [3] gives V‘ , = 2K F Aen c, A—Se n h ,cos 2(5 77) o 1§{ 2 ( $00)N¢,n(ho,1) 2 ( o 77) lF;n(€)Nezn(hOa C031] 6) _ ;n(§)Jezn(hOv COSh (H J e2n+l N e2n+l ho l ((h: 1))S¢,n+,(h0,cos17) +A§n+1(c, s00) [F;n+l(€)N€2n+1(h0!COShé) — ng+l(€)J32n+l (ho, COSh £)]} 1 (3.55) 44 where E Fm) = / J..(ho.cosh u)Ne,(ho,Cosh/1) cm, (3.56) 6 £ 2 0.15): f NeqHUN.,-H2 [2 24‘ We 1) ( ~ ) (21ng(hN, 2q)B5(h0, 2n) + 71' Z B§,(hN, 2q)B§,(ho, 210)] 1:1 2 6n (KN - Ko)||UN,,-||2 7rB 3U -r,6 0° 1(N)(— if; Y0(Kor )JJé—J d ) [214240 C1‘p01N 1j)Jezq(hN11) (2633mm 2q)BS(ho, 2n) + 7‘ 2 353W“ 2033““ 212))” (=1 |lnc| (3.65) 21r A W1“): n)S€2n+1(h’01 COS 77) d7? 1(N) (£0 WWW) d8) [co = A8 c, ,N,jJe,qlh,1 Z: (K3—K3>HUN.,-II2 Z3 23+“ “0" ) +(N ’ (771:3 21+1(hN129 + 1) §I+1(h012" + 1))] 1:0 00 ((N) (T 5' Y0(K07’)_ é'n 1 - d3) 00 = 0 Ac (C190 aNaj)J€2q+l(hN’ 1) Z Z (K?v — K8)I|U~.jl|2 [2 ° «1:0 47 (”2851+“th 2‘1 +1)B§l+1(h012n +1))]} (:0 1 |ln cl ’ (3.66) 21r /(; W1(0177)Sozm(h01 C0577) d0 : 0 1 (367) 21r f0 W1(0a’7)Sozn+1(h0,COS77) dn = 0 . (3.68) Thus, by eqs(3.25),(3.27), 6UO(€277) h 8V2h(§,77) £3 (Tl/2 (£177)_ 7110(5)”) d5 __ 21' 8110“,") h 6V2h(£,77) — [0 (‘T 6:016 (0,11)+ T Igzo Uo(o,n) dn 0° _1 e ”e e - "2:0 [Em/127(0) 900)Czn(c, W0)M2n(h0) —1 e ”e e + Ne2n+1(h01 1)A2n+l(c) c100)C'2n-+-1(C7(100)1‘4211-1-1(ho)] + Z [A546 ammo, (comma) + 113,316, (PO)C§n+1(C, ¢O>M5n+1] , (8.6) A(.,y)@(w, wit?) + Ifzéhwflfl) = -5(w,y;:fi.3}) in R0 , (13-7) C(x,y;x,g) = 0 on SO , (38) where K2 is not an eigenvalue to eqs(1.4),(1.5). 63 APPENDIX C The Exact Series Expansion of K C.1 Annular Circular Membrane With Outer Ra- dius 1 and Inner Radius c The characteristic equation [14] is Yo(K)Jo(KC) - Jo(K)Yo(KC) = 0 - We assume that [2] K = K0 + Kl-lfi + K26(c) + 0(6(c)) , where K0 = KOJ x 2.4048 : the first zero of Jo , _ [m(Ko) . 6(a) _ 1 _ 2 J1(Ko) ’ and c1310 1 — 0' |lnc| Addition theorems for bessel functions [10] give Yo(K> = Y0(K0) — K1Y1(Ko)7fi;l — Y1(K0)K26(c) + . .. 64 (0.1) (0.2) (0.3) K2 2 J0(KC) = 1 "' OC +~~ , (0.4) 1 KfJ2(K0) 1 =—K K MK) 1J1(0)]lnc|+ 4 |lnc|2 — K2J1(K0)6(C) + ‘ ’ ' , (0.5) 2 2 Y0(Kc)=—lnc+-(ano+7—ln2)+--- , (C6) 71' 71' where 7 x 0.5772 . Eq(C.1) becomes [Yuma — Kit/l(Koilfil — Y1(K61K26(c) + - . ] 1 K§J2(Ko) 1 |ln c] 4 |lnc|2 — [—K1J1(K0) — K2J1(Ko)6(C) + ' ' {l [glnc+§(ano+7—ln2)+'~]:0. (C-7) Balancing the leading orders, one finds 1 (5(0) : W (C.8) and K2] K —£K1Y1(Ko) + M +(1nKo + '7 — 1n 2) K1J1(Ko) K2 2 2 4 . (C.9) J1(Ko) Eqs(C.2),(C.9) give 7rYo(Ko) 1 = K — K 0 + 2 J1(Ko) |lnc| K2J K —%K1Y1(Ko) + —1—24-(—‘12 +(1nKo + 7 — 1n 2) K1J1(Ko) 1 + 7.07.) (1.62 +"' ' (0.10) 65 7r 1 _y K : —__. CH 2 0( 0) KOJ1(K0) ( ) 2 E‘J1(K0) = J2(K0) . (0.12) 0 Thus, 1 1 K = K 0 + (KOJ3(K0)) |lnc| (1n K0 + 7 — ln 2) + 1 1rY1(K0) 1 + KoJ12(Ko) “(3510(0) 2Ko-Ji3(Ko) llncl2 , (013) where K0 2 Km z 2.4048 and '7 3 0.5772. C.2 Elliptic Membrane of Area 7r With an Internal Confocal Strip of Length 20 The characteristic equation [13] is Neo(h, 1)Jeo(h, cosh c) — Jeo(h,1)Neo(h,coshc) = 0 , (C.14) where h = Kc. The asymptotic expansion [9] of K is l 1 K : K K —_ —— .15 0+ 1|lnc|+K2|lnc|2+ ’ (C ) where K0 2 K0,] 2 2.4048 : the first zero of Jo , WY0(K0) K = —— R1 1.5429 1 2 11m) ’ K2J K Jim/1m) + ——(—°’ + J1(Ko)K1(1n K0 — 1n4 + 7) K2 = 2 4 x 0.1208 . J1(Ko) 66 Eqs(C.11),(C.12) give 7TY0(K0) 1 K=— z—z1.5429, 1 2 J1(K0) K0J12(K0) K2J K —%K1Y1(K0) + —1——:—(—°) + J1(K0)K1(1nKo —- ln4 + 7) K : 2 J1(K0) _ (ano+'y—ln4) + 1 _ 7rY1(K0) KoJflKo) 2K3Ji1(Ko) ZKOJf(Ko) % 0.1208 Thus, 1 1 = K K 0 + (KoJf(Ko)) |lnc| (1mm, +7 - 1114) + 1 _ m(Ko) 1 K0J12(Ko) 2K3Jf(K0) 2K0J?(Ko) IIDCP where K0 2 KOJ x 2.4048 and 7 x 0.5772. 67 (0.16) (0.17) (0.18) , BIBLIOGRAPHY 68 BIBLIOGRAPHY -- [l] A.H.NAYFEH. Perturbation Methods. Wiley, New York, 1973. - [2] C.Y.WANG. On the Polygonal Membrane with a Circular Core. Journal of Sound and Vibration, 2_1§:195—199, 1998. [3] E.A.CODDINGTON. An Introduction to Ordinary Differential Equations. Prentice-Hall, N.J., 1961. ~[4] G.F.ROACH. Green’s Functions. Cambridge University, New York, 1982. [5] J .A.ROUMELIOTIS and S.P.SAVAIDIS. Cutoff Frequencies of Eccentric Circular-Elliptic Metallic Waveguides. IEEE Transactions on Microwave Theory and Techniques, MTT-42(11):2128—2138, 1994. [6] J .A.STRATTON. Electromagnetic Theory. McGraw-Hill, New York, 1941. fi7] J .HAPPEL and H.BRENNER. Low Reynolds Number Hydrodynamics. Kluwer Academic, The Netherlands, 1991. ({8} J .R.KUTTLER and V.G.SIGILLITO. Eigenvalues of the Laplacian in Two Di- mensions. Siam Review, 2_6_(2):163—193, 1984. [9] L.H.YU and C.Y.WANG. Fundamental Frequency of a Circular Membrane with a Centered Strip. Accepted by Journal of Sound and Vibration, 2000. [10] M.ABRAMOWITZ and I.A.STEGUN. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1965. [11] O.D.KELLOGG. Foundations of Potential Theory. Dover, New York, 1953. [12] P.M.MORSE and H.FESHBACH. Methods of Theoretical Physics, volume 1. McGraw-Hill, New York, 1953. [13] P.M.MORSE and H.FESHBACH. Methods of Theoretical Physics, volume 2. McGraw-Hill, New York, 1953. 69 [14] LORD RAYLEIGH. The Theory of Sound, volume 1. Dover, New York, 1945. 70