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ABSTRACT

DATA CLUSTERING WITH PAIRWISE CONSTRAINTS

By

Jinfeng Yi

The classical unsupervised clustering is an ill-posed problem due to the absence of a unique

clustering criteria. This issue can be addressed by introducing additional supervised informa-

tion, usually casts in the form of pairwise constraints, to the clustering procedure. Depending

on the sources, most pairwise constraints can be classified into two categories: (i) pairwise

constraints collected from a set of non-expert crowd workers, which leads to the problem of

crowdclustering, and (ii) pairwise constraints collected from oracle or experts, which leads

to the problem of semi-supervised clustering. In both cases, the costs of collecting pairwise

constraints can be expensive, thus it is important to identify the minimal number of pairwise

constraints needed to accurately recover the underlying true data partition, also known as

a sample complexity problem.

In this thesis, we first analyze the sample complexity of crowdclustering. At first, we propose

a novel crowdclustering approach based on the theory of matrix completion. Unlike the ex-

isting crowdclustering algorithm that is based on a Bayesian generative model, the proposed

approach is more desirable since it only needs a much less number of crowdsourced pairwise

annotations to accurately cluster all the objects. Our theoretical analysis shows that in or-

der to accurately cluster N objects, only O(N log2N) randomly sampled pairs should be

annotated by crowd workers. To further reduce the sample complexity, we then introduce a

semi-crowdsourced clustering framework that is able to effectively incorporate the low-level



features of the objects to be clustered. In this framework, we only need to sample a subset

of n� N objects and generate their pairwise constraints via crowdsourcing. After complet-

ing a n× n similarity matrix using the proposed crowdclustering algorithm, we can further

recover a N × N similarity matrix by applying a regression-based distance metric learning

algorithm to the completed smaller size similarity matrix. This enables us to reliably cluster

N objects with only O(n log2 n) crowdsourced pairwise constraints.

Next, we study the problem of sample complexity in semi-supervised clustering. To this

end, we propose a novel convex semi-supervised clustering approach based on the theory of

matrix completion. In order to reduce the number of pairwise constraints needed we apply

a nature assumption that the feature representations of the objects are able to reflect the

similarities between objects. This enables us to only utilize O(logN) pairwise constraints to

perfectly recover the data partition of N objects.

Lastly, in addition to sample complexity that relates to labeling costs, we also consider the

computational costs of semi-supervised clustering. Specifically, we study the problem of effi-

ciently updating clustering results when the pairwise constraints are generated sequentially,

a common case in various real-world applications such as social networks. To address this

issue, we develop a dynamic semi-supervised clustering algorithm that casts the clustering

problem into a searching problem in a feasible convex space, i.e., a convex hull with its ex-

treme points being an ensemble of multiple data partitions. Unlike classical semi-supervised

clustering algorithms that need to re-optimize their objective functions when new pairwise

constraints are generated, the proposed method only needs to update a low-dimensional vec-

tor and its time complexity is irrelevant to the number of data points to be clustered. This

enables us to update large-scale clustering results in an extremely efficient way.
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Chapter 1

Introduction

Data clustering is a method of grouping similar objects together. Given a representation of

N objects, the goal of data clustering is to find r groups based on a measure of similar-

ity such that objects within the same group are alike but the objects in different groups

are not alike [71]. Data clustering is an important problem that has found numerous appli-

cations in different domains, including computer vision [55], information retrieval [11, 91],

bioinformatics [85,140], recommender systems [83], etc.

Generally speaking, data clustering is considered as an unsupervised learning technique

in which the input data only contains the data points themselves without any additional

information. The unsupervised nature makes data clustering an ill-posed problem since data

can be usually partitioned in many equally valid ways depending on users’ intent and goal.

Consider a simple clustering task that groups 4 face images into 2 clusters, as shown in

Figure 1.1. The 4 face images are taken from a young man, a young woman, an old man,

and an old woman, respectively. These images can be clustered either based on the gender

of the people, as shown in Figure 1.1(b), or based on the age of the people, as shown in

Figure 1.1(c). Both these partitions are equally valid, implying that it is not possible to

determine the correct partition without further information. Such information, usually cast
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(a) 4 face images need to be
grouped into 2 clusters

(b) partition the face im-
ages based on gender

(c) partition the face images
based on age

Figure 1.1 A clustering of 4 face images into 2 clusters. It is possible to cluster these face
images in two ways, with both of them equally valid. They can be clustered based on gender
as shown in (b), or clustered based on age as shown in (c). Without further information from
the user, it is not possible to determine the correct partition.

in the form of pairwise constraints, can be used to tune the clustering algorithm towards

finding the data partition sought by the user.

Pairwise constraints are introduced by Wagstaff et al. [123] to specify the relationship be-

tween class assignments of two objects, which are also known as must-link and cannot-link

information. A must-link constraint between two data points implies that these two data

points tend to be assigned to the same cluster, while a cannot-link constraint between two

data points implies that they tend to be assigned to different clusters. These link information

thus provide constraints on clustering results. Must-link and cannot-link have some interest-

ing properties. Must-link constraint is an equivalence relation and hence are symmetrical,

reflexive and transitive. For example, if object x and object y are connected by a must-link,

and object y and object z are connected by a must-link, then object x and object z should

also be connected by a must-link. Similarly, must-link constraints can give rise to cannot-link

constraints. For example, if x and y are connected by a must-link, y and z are connected
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by a cannot-link, then x and z can also be connected by a cannot-link. Despite the simple

definition, must-and-cannot links are powerful and widely used for facilitating data clus-

tering [32, 124]. In this thesis, we address two main issues regarding incorporating pairwise

connections in the data clustering problem: (i) how is the pairwise constraints obtained and

specified?, and (ii) how the clustering performance is improved with increasing number of

pairwise constraints, an issue that is usually referred to as sample complexity in supervised

learning [7]. In the sequel, we discuss both of these questions.

Depending on the sources, most pairwise constraints can be classified into two categories.

In the first category, the pairwise constraints are collected from a set of non-expert crowd

workers through crowdsourcing tools such as the Amazon’s Mechanical Turk [14]. Then the

problem of incorporating all the crowdsourced pairwise constraints into a data partitioning is

denoted as crowdsourced clustering, or crowdclustering [60,141] for short. Since the pair-

wise constraints collected via crowdsourcing usually have a high noise level, crowdclustering

can be considered as one problem of clustering with noisy pairwise constraints. In the second

category, a small amount of pairwise constraints are collected from oracle or experts. Then

the problem of searching for the optimal data partition that is consistent with both the given

pairwise constraints and the input data points to be clustered leads to the problem of semi-

supervised clustering. Since most semi-supervised clustering frameworks assume that the

provided pairwise constraints are perfect, it can be considered as a problem of clustering

with noiseless pairwise constraints. Below, we describe each of them in detail.
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1.1 Crowdclustering

Crowdclustering is a technique of utilizing human power in acquiring similarities between

objects need to be clustered. The main focus of crowdsourced clustering is to combine a set

of crowdsourced pairwise constraints to form a data partitioning of the entire data set. In

more detail, given a collection of objects to be clustered, a subset of objects is first sampled

in each Human Intelligence Task (HIT), and a crowd worker is asked to annotate the subset

of objects in the HIT based on their own opinion. The annotation task can either be grouping

objects based on their similarities or describing individual objects by multiple keywords; the

annotation results then can be summarized in the form of pairwise constraints. The keyword

annotation is transformed into binary pairwise constraints by checking if two objects share

common annotated keywords. The results of each HIT, which can be considered as a partial

local clustering of the objects in that HIT, are then combined to form a data partitioning of

the entire data set. Note that the question of crowdclustering is motivated by practical con-

siderations: if we have a large number of objects, it may not be realistic to expect a single

person to look at all the objects and form an opinion as to how to group them. Crowd-

clustering solves one important issue in data clustering, namely the inconsistency between

the similarity computed by data points’ attributes and the similarity in human perception.

This is due to the reason that crowdclustering obtains similarity measures between objects

based on manual annotations, which capture the human perception of similarity among

objects.

Two major problems play an important role in crowdclustering. First, since crowd workers

are paid by the number of crowdsourcing tasks they worked on, it is important to analyze the
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minimal number of crowdsourced pairwise constraints needed to recover an accurate enough

data partition. The second major problem of crowdclustering lies in the issue of high noise

levels in crowdsourced pairwise constraints. This is because that most crowd workers are

untrained non-experts. They sometimes assign low-quality labels due to the reasons such as

they do not understand the labeling criteria, or they do not look at the instances carefully

when labeling. As pointed out by [141], more than 80% of crowdsourced pairwise labels

can be inconsistent with the true cluster assignment. Thus how to identify the true data

partitions based on the noisy crowdsourced pairwise constraints becomes one main challenge

in crowdclustering.

1.2 Semi-supervised Clustering

In semi-supervised clustering, the pairwise constraints are collected from oracle or experts.

In contrast to crowdclustering, most semi-supervised clustering frameworks assume that the

provided pairwise constraints are perfect. These pairwise constraints, also known as side

information, can be incorporated in the clustering process to attain better clustering perfor-

mance. Several mechanisms have been developed to exploit the side-information to improve

the clustering performance. Most semi-supervised clustering algorithms can be classified into

two categories [12]: constrained clustering and distance metric based semi-supervised cluster-

ing. The constrained clustering employs the side information to restrict the solution space,

then only find the feasible data partitions that are consistent with the pairwise constraints.

The distance metric based semi-supervised clustering attempts to find and apply a trans-

formation to the data such that (a) the data points in must-link constraints are separated
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by small distances, and (b) data point in cannot-link constraints are separated by larger

distances.

Generally speaking, the larger the number of pairwise constraints been provided, the better

the clustering performance can be achieved by semi-supervised clustering. However, one

major issue regarding incorporating pairwise constraints in the data clustering problem is

how the clustering performance is improved with increasing number of pairwise constraints,

also known as the sample complexity problem in supervised learning [7]. Since collecting

pairwise constraints from oracle or experts are usually very expensive, it becomes crucial

to discover the minimal number of pairwise constraints required to perfectly recover the

underlying true data partition in semi-supervised clustering.

In addition to sample complexity that relates to the labeling costs, computational cost is also

an important issue of semi-supervised clustering. In this thesis, we also study the problem

of efficiently updating the clustering results when the pairwise constraints are generated se-

quentially, a common case in various real-world applications. For example, in social networks,

we can treat the user attributes like gender, educational background, nationality, interests

and so on as features, and the social connections like friendship and common community

membership as the pairwise constraints. Hence, the task of grouping users in social networks

is essentially a semi-supervised clustering problem. Note that the pairwise constraints in

social networks are changing all over the time, a clustering algorithm that is able to cope

with dynamic pairwise information is needed to solve this dynamic semi-supervised clus-

tering problem. However, given a set of new pairwise constraints, classical semi-supervised

clustering algorithms need to re-optimize the objective function over all of the data points

subject to all the received connections, making them computationally infeasible for updating
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large-scale data clustering results. Thus how to develop an efficient dynamic semi-supervised

clustering framework becomes an interesting and important problem.

1.3 Main Contributions

In this thesis, we focus on the problem of data clustering with pairwise constraints. In

particular, this thesis addresses a number of important issues in both the crowdclustering

problem and the problem of semi-supervised clustering. Below, we briefly summarize each

of our contributions.

• Crowdclustering by Matrix Completion

The first problem we consider in this thesis is to reduce the number of pairwise anno-

tations needed in crowdclustering. In particular, we propose a novel crowdclustering

approach based on the theory of matrix completion [20]. The basic idea of the proposed

algorithm is to construct a partially observed similarity matrix based on a subset of

pairwise annotation labels that are agreed upon by most crowd workers. It then de-

ploys the matrix completion algorithm to complete the similarity matrix and obtains

the final data partition by applying a spectral clustering algorithm to the completed

similarity matrix. Unlike the existing work of crowdclustering [60] that based on a

Bayesian generative model, the main advantage of the proposed approach is that much

less crowdsourced pairwise annotations are needed to accurately cluster all the objects.

This is due to the reason that the Bayesian approach requires a sufficiently large num-

ber of manual annotations to discover the hidden factors for clustering decision. This

results in high cost, both in computation and annotation, which limits the scalability
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to clustering large data sets. In contrast, the proposed algorithm can significantly re-

duce the demanding of manual annotations due to a key observation, i.e. the complete

similarity matrix for all the objects should be of low rank [73]. According to the matrix

completion theory [20], when an N×N matrix is of low rank, it can be perfectly recov-

ered given only a very small portion of entries (i.e. O(log2N/N)). This guarantees that

the proposed crowdclustering algorithm can accurately discover the underlying data

partitions with only small number of crowdsourced annotations. Another advantage of

the proposed crowclustering algorithm is that by filtering out the uncertain data pairs,

the proposed algorithm is less sensitive to the noisy labels, leading to a more robust

clustering.

• Semi-Crowdsourced Clustering by Distance Metric Learning

As our second problem, we study the crowdclustering framework when most of the

objects are not manually annotated by crowd workers. This question is motivated by

a practical consideration of clustering large-scale data sets. Since it is very expensive

to hire a large amount of crowd workers for annotation, it is not feasible to have each

object manually annotated by crowd workers. To address this limitation, we propose a

new approach for clustering, called semi-crowdsourced clustering that effectively com-

bines the low-level features of objects with the manual annotations of a subset of the

objects obtained via crowdsourcing. The key idea is to learn an appropriate similarity

measure, based on the low-level features of objects and from the manual annotations of

only a small portion of the data to be clustered. In more detail, the proposed algorithm

for clustering N objects consists of three steps: (i) in the first step, we randomly sam-

ple a subset of n� N objects and obtain their manual annotations by crowdsourcing.
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Then we filter noisy pairwise similarities for n objects by only keeping object pairs

whose pairwise similarities are agreed by many workers. The result of this step is a

partially observed n × n similarity matrix with most of its entries removed or unob-

served; (ii) we then recover the n × n similarity matrix from the partially observed

entries by exploiting the matrix completion algorithm; and (iii) in the third step, we

apply a regression algorithm to learn a distance metric from the recovered similarity

matrix, then clustering the N ×N pairwise similarities based on the learned distance

metric. The main advantage of the proposed approach is that, in order to cluster N

objects, we only need a small subset to be annotated by crowdsourcing.

• Semi-supervised Clustering by Pattern Assisted Matrix Completion

We then turn to the problem of semi-supervised clustering. In particular, we address

two main shortcomings with the existing semi-supervised clustering algorithms. First,

most semi-supervised clustering algorithms have to deal with non-convex optimization

problems, leading to clustering results that are only locally optimal and sensitive to the

initialization. Second, although many computational algorithms have been proposed

for semi-supervised learning, none of them is equipped with a theoretical guarantee

on clustering performance. We address these limitations by developing a novel con-

vex semi-supervised clustering approach based on the theory of matrix completion.

Instead of penalizing the violations of pairwise constraints, which usually leads to non-

convexity, we treat them as the subset of observed entries in the similarity matrix of the

N objects need to be clustered. Namely, we consider the must-link as similarity 1 and

cannot-link as similarity 0. We then deploy the matrix completion method to complete

the partially observed similarity matrix under the key observation that the complete
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similarity matrix should be of low rank. To reduce the number of pairwise constraints

needed, we apply a nature assumption that the feature representations of the objects

are good enough, i.e., they are able to reflect the similarities between objects. In more

detail, we assume that the singular vectors of the similarity matrix should lie in the

subspace spanned by the first k eigenvectors of feature representations of the objects.

Our analysis shows that under this assumption, only O(logN) pairwise constraints are

needed to accurately recover the true cluster partition. This logarithmic dependence

on the number of objects been clustered makes the proposed algorithm particularly

suitable for clustering large-scale data sets.

• A Constant-Time Algorithm for Dynamic Semi-Supervised Clustering

Another problem we address in this thesis is how to efficiently update clustering results

when the pairwise constraints are dynamic. Our motivation stems from the observa-

tion that in numerous real-world applications, the pairwise constraints are not fixed,

which is different from the assumptions made by most classical semi-supervised clus-

tering algorithms. A typical example is social network analysis. If we treat user profiles

as features, and connections between users as pairwise constraints, then the task of

grouping user communities is essentially a dynamic semi-supervised clustering problem.

Given a set of newly generated pairwise constraints, classical semi-supervised cluster-

ing algorithms need to re-optimize their objective functions over all the data points

and constraints, prohibiting them to efficiently update the data partitions. To address

this issue, we propose an efficient dynamic semi-supervised clustering framework that

casts the clustering problem into a searching problem in a feasible convex space, i.e.,

a convex hull with its extreme points being an ensemble of multiple data partitions.

10



According to the principle of ensemble clustering, the optimal partition lies in that

convex hull and it can be uniquely represented by a low-dimensional simplex vector.

This enables us to carry out the dynamic semi-supervised clustering problem as an

updating procedure of the simplex vector based on the newly received pairwise con-

straints. Using this idea, we derive a constant time algorithm for updating the simplex

vector (clustering result) and this enables us to update large-scale clustering results in

an extremely efficient way.

The remainder of this thesis is organized as follows. In Chapter 2, we provide a survey

of some background materials from crowdclustering, ensemble clustering, semi-supervised

clustering and matrix completion. In Chapter 3, we present the framework of crowdclustering

by matrix completion. This is based on our work published in the 4th Human Computation

Workshop in junction with AAAI (HCOMP) [141]. Chapter 4 introduces the proposed semi-

crowdsourced clustering framework. The contents in Chapter 4 follows our paper appeared

in Advances in Neural Information Processing Systems (NIPS) [142]. We then present the

proposed semi-supervised clustering method in Chapter 5. The material in Chapter 5 come

from our work published in the International Conference on Machine Learning (ICML) [143].

In Chapter 6, we focus on the problem of efficiently updating clustering results when the

pairwise constraints are dynamic. Finally, we conclude the thesis and discuss some future

directions that can be explored in Chapter 7.
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Chapter 2

Literature Survey

The goal of this chapter is to give an overview of the material related to the work has

been done in this thesis. In particular, we will survey the problems of crowdclustering,

ensemble clustering, semi-supervised clustering, the evaluation metrics of data clustering

and the technique of matrix completion.

2.1 Crowdclustering

The idea of crowdclustering was first proposed in [60]. With the advent of crowdsourcing

services such as Amazon’s Mechanical Turk, it becomes much more convenient to purchase

Human Intelligence Tasks from large groups of anonymous crowd workers. Note that the

similarity between two objects computed using their attributes may not reflect human per-

ception of inter-object similarity, crowdsourcing provides an easy way to address this issue by

utilizing human power in acquiring pairwise similarities between objects. Generally speak-

ing, crowdclustering is a divide and conquer procedure with two steps. In the first step, the

problem of clustering N objects is reduced to a number of small problems. Each small prob-

lem, denoted as a human intelligence task (HIT), contains a set of objects with reasonable
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size. Then the human intelligence tasks are assigned to a large pool of human workers for

annotations. The annotation tasks can be either grouping objects based on their similarities,

or describing individual objects by multiple keywords. Then the annotation results can be

summarized in the form of pairwise constraints. In the second step, a model need to be devel-

oped to aggregate the human annotations automatically that yield a partition of N objects

into clusters. Crowdclustering is a challenge problem due to the following reasons: (i) each

worker has only a partial view of the data, (ii) different workers may have different clustering

criteria and may also produce different numbers of clusters, and (iii) the annotation quality

varies significantly among different workers since some workers are spammers or malicious

users.

To address such issues, the authors in [60] proposed a Bayesian generative model for crowd-

clustering. In more detail, the objects to be clustered are represented in a Euclidean space

and workers are modeled as pairwise binary classifiers in this space. Then the clusters are

obtained by clustering these inferred points using a Dirichlet process mixture model [99].

However, one limitation of the Bayesian approach for crowdclustering is that in order to

discover the hidden factors for clustering decision, it requires a sufficiently large number

of manual annotations. This leads to high annotation cost for clustering large-scale data

sets.
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2.2 Ensemble Clustering

The main idea behind ensemble clustering [54, 116] is to combine multiple partitions of a

dataset into a single data partition, termed as the consensus partition, hoping to exploit

the strength of different clustering algorithms and at the same time, compensate for their

limitations. This problem is related to crowdclustering problem since both of them aim to

combine multiple partitions of data into a single clustering result.

According to [121], ensemble clustering can be classified into two categories: median partition

based approaches and object co-occurrence based approaches. In the median partition based

approaches, ensemble clustering is cast into an optimization problem that finds the partition

by maximizing the within-cluster similarity, where various similarity measures have been

proposed, such as Mirkin distance [126], Jaccard coefficient [10], utility function [117] and

normalized mutual information [113]. Among the approaches based on object co-occurrence,

one major category is the relabeling/voting based method [5, 41, 44, 50, 119, 131]. The basic

idea is to first find the corresponding cluster labels between different partitions, and then

obtain the consensus partition through a voting process. The second group of approaches in

this category is based on co-association/similarity matrix [54, 69,87, 120,128]. They use the

similarity measure to combine multiple partitions, thus avoiding the label correspondence

problem. The third group of approaches in this category is the graph based methods [49,113].

These methods construct a weighted graph to represent multiple partitions from the ensemble

and find the optimal partition of data by minimizing the cut of the graph.

While some of ensemble clustering methods can work with partial input clusterings, most

have not been demonstrated in situations where the input clusterings involve only a small
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subset of the objects to be clustered, which is the case in the problem of crowdclustering. In

addition, since different human workers in crowdclustering may have different clustering cri-

terion, they may produce various partial clustering results. This usually makes a significant

amount of noise and inter-worker variations in their clustering results. As a consequence,

there may exist a large number of uncertain data pairs for which about half of the human

workers put them into the same cluster while the other half do the opposite. These uncer-

tain data pairs can mislead the ensemble clustering algorithms to create inappropriate data

partitions.

2.3 Semi-supervised Clustering

There are two major approaches for clustering with semi-supervised information: the con-

strained clustering and the approach based on distance metric learning. In this section, we

review the existing work for both of them, followed by two categories of dynamic clustering:

clustering based on user feedbacks, as well as dynamic network clustering.

2.3.1 Constrained Clustering

The constrained clustering employs the side information to restrict the solution space, and

only find the feasible data partitions that are consistent with the pairwise constraints. Among

them, hard constraints-based approaches [2,30,31,33,34,108,125,125] only consider the clus-

ter assignments that all the constraints are strictly satisfied. In [125], the cluster centers are

first initialized randomly. Each data point is then assigned to the nearest cluster center en-
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suring that no constraints are violated. The cluster centers are updated by finding the mean

of the points assigned to the cluster, like in the K-means algorithm. In [2], the authors mod-

ified the k-means and the self organizing map algorithms respectively, to adjust the cluster

memberships to be consistent with the given pairwise constraints. In [108], the generalized

Expectation Maximization (EM) algorithm was modified to ensure that only the mixture

models that are consistent with the constraints are considered. One problem with treating

the side information as hard constraints is that such methods may lead to counter-intuitive

clustering solutions, or even render the clustering problem infeasible [31]. To overcome this

problem, a number of studies view the side information as soft constraints [8, 9, 30, 80, 93].

Instead of trying to satisfy all the constraints, the key idea behind such methods is to satisfy

as many constraints as possible, and introduce a penalty term to account for constraints

that cannot be satisfied. In [8, 9, 93], probabilistic models are applied to semi-supervised

clustering problem and they consider pairwise constraints as Bayesian priors to learn the

model. In [74], the pairwise constraints are added as an additional penalty term in the ob-

jective in spectral learning. In [80], the authors proposed a graphical model which considered

the pairwise constraints as random variables. Then an EM-based algorithm was developed

to model the uncertainty of constraints. In [79], the authors enhanced the performance of

the k-means algorithm by constructing a kernel matrix, which incorporates the given pair-

wise constraints. More discussion on constrained clustering can be found in [35], and the

references therein.
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2.3.2 Distance Metric Learning

Another approach to semi-supervised clustering falls into the category of distance metric

learning. It aims to learn a transformation to the data from the pairwise constraints such

that the data points in must-link constraints are separated by smaller distances, than the

data point in cannot-link constraints [137]. Many algorithms [59, 64, 109, 129, 135, 139] have

been developed for distance metric learning, such as distance metric learning by convex op-

timization [135], relevance component analysis [109], discriminative component analysis [64],

nearest neighbor component analysis [59], local distance metric learning [139], large margin

nearest neighbor classifier [129], information theoretic metric learning [37], distance func-

tion learning [115], and learning a Bregman distance function [133]. In [135], the authors

formulated the problem of distance metric learning into a PSD constrained convex program-

ming problem. The authors in [129] proposed a nearest-neighbor classifier to enforce that the

examples from different classes were separated by a large margin. In [37], an information-

theoretic method was proposed to learn a Mahalanobis distance function. In [6], relevant

component analysis learns a distance metric by assigning large weights to relevant dimen-

sions while low weights to irrelevant dimensions. It was further improved in [64] to effectively

explore both the must-link and the cannot-link constraints simultaneously. More work on

distance metric learning can be found in survey [137] and references therein. One problem

with approaches based on distance metric learning is that they usually need to deal with the

positive semi-definite constraint and this makes them computationally expensive.

Despite the progress, there are two main shortcomings with the exisiting algorithms for

semi-supervised clustering. First, most semi-supervised clustering algorithms have to deal
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with non-convex optimization problems, leading to the clustering results that are sensitive

to the initializations. Second, although many computational algorithms have been proposed

for semi-supervised learning, none of the exisiting semi-supervised clustering algorithms an-

alyze the important sample complexity problem, namely how the clustering performance is

improved with increasing number of pairwise constraints.

2.3.3 Dynamic Clustering

In recent years, an increasing amount of literature studied the problem of clustering evolving.

Among them, clustering based on user feedbacks [13, 28] attracted considerable attentions

in the last decade. As one of the earliest work, Cohn et al. [28] considered a scenario when

users can iteratively provide different types of feedbacks regarding the clustering quality.

Then an EM-based scheme was developed to update the distance metric for achieving better

clustering results. The algorithm proposed in [13] is a variant of the complete-link hierarchical

clustering. It combines the feedback pairwise constraints with spatial constraints to learn a

new distance metric that only satisfies local pairwise constraints. Huang and Mitchell [67]

proposed a probabilistic generative model for text clustering. This model enables users to

provide four types of user feedback to further enhance the clustering performance.

As a related topic, dynamic network clustering [21,21,26,26,77,89,114] studies how a com-

munity evolves when a network to be clustered is changing continuously. Evolutionary clus-

tering [21, 26] ensures that the output partition achieves high accuracies on the new data,

while still consistent with the historical clustering results. Chakrabarti et al. [21] developed

evolutionary versions of both k-means and agglomerative hierarchical clustering algorithms.

18



Chi et al. [26] then extended this idea to evolutionary spectral clustering algorithm. In [114],

a parameter free algorithm called GraphScope was proposed to mine time-evolving graphs

using the principle of Minimum Description Length (MDL). FacetNet [89] used probabilistic

community membership models to identify dynamic communities within the graph. Kim and

Han [77] further allowed a changing number of communities and proposed a particle-and-

density based algorithm to form new communities or dissolve existing communities.

2.4 Evaluation Metrics

In this section, we review four widely-used metrics for evaluating the quality of clustering

results. They are purity [95], normalized mutual information (NMI for short) [29], pairwise

F-measure (PWF for short) [132] and Rand index [105].

Purity focuses on the frequency of the most common category in each cluster, and rewards

the clustering solutions that introduce less noise in each cluster [3]. Given the ground truth

partition C = {C1, C2, . . . , Cr} and the partition C′ = {C ′1, C
′
2, . . . , C

′
r} generated by a

clustering algorithm, the purity is computed by taking the weighted average of maximal

precision values:

Purity(C,C ′) =
1

N

∑
i=1,...,r

max
j=1,...,r

|Ci ∩ C ′j |,

where N is the total number of objects been clustered. One problem of purity is that a

high purity can be easily achieved when the number of clusters is large. Thus purity is not

appropriate for evaluating the clustering performance with large number of clusters.

This problem can be addressed by normalized mutual information. Given the ground truth
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partition C and the partition C′ generated by a clustering algorithm, the mutual information

is computed as

MI(C,C ′) =
∑
Ck,C

′
l

p(Ck, C
′
l) log

p(Ck, C
′
l)

p(Ck)p(C ′l)
,

where p(Ck) denotes the probability that a randomly selected node belongs to the cluster

Ck, and p(Ck, C
′
l) indicates the joint probability that a randomly selected node belongs to

both of the cluster Ck and cluster C ′l . Then the normalized mutual information is given

by

NMI(C,C ′) =
2MI(C,C ′)

H(C) +H(C ′)
,

where H(C) =
∑
k p(Ck) log 1

p(Ck)
represents the Shannon entropy of partition C.

Pairwise F-measure is another commonly used measure for evaluating clustering algorithms.

Let A be the set of data pairs that share the same class labels according to the ground

truth, and let B be the set of data pairs that are assigned to the same cluster by a clustering

algorithm. Given the pairwise precision and recall that are defined as follows

precision =
|A ∩ B|
|A|

, recall =
|A ∩ B|
|B|

,

then the pairwise F-measure is computed as the harmonic mean of precision and recall,

i.e.

PWF =
2× precision× recall

precision + recall
.

An alternative way to evaluate the clustering performance, known as Rand index, considers

clustering results as N(N − 1)/2 object pairs. Four measurements are then introduced to
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compute the rand index. They are (i) true positive (TP) decision that assigns two similar

objects to the same cluster, (ii) true negative (TN) decision that assigns two dissimilar

objects to different clusters, (iii) false positive (FP) decision that assigns two dissimilar

objects to the same cluster, and (iv) false negative (FN) decision that assigns two similar

objects to different clusters. Then the Rand index measures the percentage of decisions that

are correct, given by

RI =
TP + TN

TP + TN + FP + FN
.

All the four discussed measurements lie in the range [0, 1] where a value of 1 indicates

perfect match between the obtained partition by a clustering algorithm and the ground

truth partition and 0 indicates completely mismatch.

2.5 Matrix Completion

Since all the proposed approaches utilize the technique of matrix completion [15], in this

section, we review the existing work for matrix completion.

Matrix completion was originally proposed for collaborative filtering [57], where the goal is

to predict the ratings of users for all the items given the ratings for a subset of randomly

sampled items. Generally speaking, matrix completion aims to reconstruct a data matrix

from a small subset of observed entries under the assumption that the data matrix is of

low-rank. The observed entries can be either noiseless or noisy. In the noiseless setting, the

observed entries are exactly sampled from the underlying true matrix while in the noisy

setting, the observed entries are perturbed by some random noises from the true entries. In
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the following, we discuss the matrix completion problem under both scenarios.

2.5.1 Matrix Completion with Noiseless Entries

When the sampled entries of a n1× n2 matrix A are revealed without any noise, we can try

to recover it by solving the following optimization problem

min
A′

rank(A′) (2.1)

s.t. P∆(A′) = P∆(Ã),

where rank(·) is the rank of a matrix and P∆ : Rn1×n2 7→ Rn1×n2 is a matrix projection

operator that takes a matrix A as the input and outputs a new matrix P∆(A) ∈ Rn1×n2

as

[P∆(A)]ij =


Aij (i, j) ∈ ∆

0 otherwise.

(2.2)

This projection operator guarantees that only the observed entries in the matrix can be

projected into the space where we apply matrix completion.

One problem with (2.1) is that it is non-convex because rank(·) is a non-convex function [20].

This makes the problem (2.1) an NP-hard problem and it is therefore computationally chal-

lenging to find the optimal solution. To address this challenge, we follow [20] and replace

rank(A) in (2.1) with its convex surrogate |A|∗, the trace norm of matrix A. This allows us
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to relax (2.1) into the following convex optimization problem

min
A′

|A′|∗ (2.3)

s.t. P∆(A′) = P∆(Ã).

One important question regarding problem (2.3) is what is the minimal number of observed

entries needed to perfectly reconstruct the matrix A. The authors in [19] show that, under the

assumptions of incoherence property and uniform sampling, the matrix A can be correctly

recovered with a high probability by solving problem (2.3) if the number of observed entries

is at least O(n6/5 log n) with n = max(n1, n2). This bound was later tightened to O(n log2 n)

with contributions from [20,62,62,75,106].

2.5.2 Matrix Completion with Noisy Entries

To solve a more general setting when the sampled entries are noisy, some robust algorithms

were developed to accurately recover the underlying matrix. Usually, two types of errors and

corruptions are considered in the literature.

In the first case, the locations of noisy entries are assumed to be spread out, meaning that no

single column or row has too many corrupted entries. This problem was first studied in [24],

which assumes that the received partially observed matrix is a summation of an unknown

low-rank matrix and an unknown sparse error matrix. Then several works extend the results

of [24] under different settings. One line of work [65] provides worst case guarantees for

arbitrary corruption in the entries. Another avenue [16,56,76,86,100] provides probabilistic
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guarantees for the setting when the locations of the noisy entries are chosen uniformly at

random but the values of the errors are arbitrary. In addition, approximate recovery in the

presence of stochastic additive noise has also been studied in [1, 17].

In contrast, the second case allows all entries from some columns to be entirely corrupted.

As a result, it is in general impossible to recover these corrupted columns, and the goal

thus becomes recovering the other, uncorrupted columns. This setting is important in many

applications, such as the problem of collaborative filtering [57] with malicious users. This

problem has been studied in [1, 136], which use convex relaxation of minimizing rank plus

column support to distinguish between authentic and corrupted columns.
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Chapter 3

Crowdclustering with Sparse Pairwise

Labels

In this chapter, we propose a novel approach for crowclustering that exploits the technique

of matrix completion. Instead of using all the crowdsourced annotations, the proposed al-

gorithm constructs a partially observed similarity matrix based on a subset of pairwise

annotation labels that are agreed upon by most annotators. It then deploys the matrix

completion algorithm to complete the similarity matrix and obtains the final data partition

by applying a spectral clustering algorithm to the completed similarity matrix. The main

advantage of the proposed algorithm is that only a small number of crowdsourced pairwise

annotations are needed to accurately cluster all the objects. Our analysis reveals that, by

exploiting the technique of matrix completion, we can perfectly recover the underlying true

partition of N objects given only a very small portion of reliable pairwise constraints (i.e.

O(log2N/N)). Another advantage of the proposed crowclustering algorithm is that by filter-

ing out the uncertain data pairs, the proposed algorithm is robust to the noisy crowdsourced

labels.

The remainder of the chapter is organized as follows: In Section 3.1, we introduce the back-
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ground and discuss the motivation of the proposed crowdclustering framework. Section 3.2

presents the proposed crowdclustering algorithm and the related analysis. We summarize

the results of our empirical studies in Section 3.3. Section 3.4 concludes the chapter and we

put the omitted proofs in the appendix.

3.1 Introduction

In data clustering problems, crowdsourcing helps to address one of the key challenges,

namely how to define the similarity measure between objects. A typical clustering algo-

rithm measures the similarity between two data points based on their attributes. However,

these pairwise similarities may not reflect human perception of inter-object similarity in the

unsupervised setting. In contrast, crowdclustering utilizes human power in acquiring pair-

wise similarities by asking each worker to perform clustering on a subset of objects, thereby

defining a similarity measure between pairs of objects based on the percentage of workers

who put them into the same cluster.

The core of crowdclustering is to combine the partial clustering results, generated by indi-

vidual workers, into a complete data partition. One way to address this challenge is ensemble

clustering [53,113], as suggested in [60]. There are, however, two special challenges in apply-

ing ensemble clustering to the crowdclustering problem. First, since each worker deals with

only a subset of the entire dataset (because the task of partitioning a large dataset is too

complex for individual workers), only partial clustering results are available in the ensem-

ble for combination. This is in contrast to most ensemble clustering studies that require a
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clustering of the complete dataset from individual partitions. Second, there is a significant

amount of noise and inter-worker variations in the partial clustering results generated by

individual workers. As a consequence, we often observe a large number of uncertain data

pairs for which about half of the human workers put them into the same cluster while the

other half do the opposite. These uncertain data pairs can mislead the ensemble clustering

algorithms to create inappropriate data partitions.

To address the potentially large variations in the pairwise annotation labels provided by

different workers (i.e. whether or not two objects should be assigned to the same cluster),

a Bayesian generative model was proposed for crowdclustering in [60]. It explicitly models

the hidden factors that are deployed by individual workers to group objects into the same

cluster. The empirical study in [60] shows encouraging results in comparison to the ensemble

clustering methods. However, one limitation of the Bayesian approach for crowdclustering is

that in order to discover the hidden factors for clustering decision, it requires a sufficiently

large number of manual annotations, or HITs. This results in high cost, both in computation

and annotation, which limits the scalability to clustering large data sets.

To overcome the limitation of the Bayesian approach, we propose a novel crowdclustering

approach based on the theory of matrix completion [20]. The basic idea is to first compute

a partially observed similarity matrix based only on the reliable pairwise annotation labels,

or in other words, the labels that are in agreement with a sufficiently large percentage

of the workers. It then completes the partially observed similarity matrix using a matrix

completion algorithm, and obtains the final data partition by applying a spectral clustering

algorithm [102] to the completed similarity matrix.
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The main advantage of the matrix completion approach is that only a small number of pair-

wise annotations are needed to construct the partially observed similarity matrix. Therefore,

we can obtain a clustering accuracy similar to the Bayesian methods, with a substantial re-

duction in the number of workers and/or the number of HITs performed by individual

workers. The high efficiency of the proposed algorithm in exploiting manual annotations

arises from a key observation, i.e. the complete similarity matrix for all the objects should

be of low rank [73]. According to the theory of matrix completion [20], when an N × N

matrix is of low rank, it can be perfectly recovered given only O(N log2N) entries. Another

advantage of the proposed crowclustering algorithm is that by filtering out the uncertain

data pairs, the proposed algorithm is less sensitive to the noisy labels, making the clustering

results more robust.

3.2 Crowdclustering by Matrix Completion

The key idea of the proposed crowdclustering algorithm is to derive a partially observed

similarity matrix from the partial clustering results generated by individual workers, where

the entries associated with the uncertain data pairs are marked as unobserved. A matrix

completion algorithm is applied to complete the partially observed similarity matrix by

filtering out the unobserved entries. Finally, a spectral clustering algorithm [102] is applied

to the completed similarity matrix to obtain the final clustering. Below, we describe in

detail the two key steps of the proposed algorithm, i.e., the filtering step that removes the

entries associated with the uncertain data pairs from the similarity matrix, and the matrix

completion step that completes the partially observed similarity matrix.
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The notations described below will be used throughout the paper. Let N be the total number

of objects that need to be clustered, and m be the number of HITs. We assume that the

true number of clusters in the data is known a priori1. Given the partial clustering result

from the k-th HIT, we define a similarity matrix W k ∈ RN×N such that W k
ij = 1 if objects

i and j are assigned to the same cluster, 0 if they are assigned to different clusters, and −1

if the pairwise label for the two objects can not be derived from the partial clustering result

(i.e. neither object i nor object j is used in the HIT). Finally, given a subset of object pairs

∆ ⊂ {(i, j), i, j = 1, . . . N}, we define a matrix projection operator P∆ : RN×N 7→ RN×N

that takes a matrix E as the input and outputs a new matrix P∆(E) ∈ RN×N as

[P∆(E)]ij =


Eij (i, j) ∈ ∆

0 otherwise.

(3.1)

This projection operator guarantees that only the reliable entries in the matrix can be

projected into the space where we apply matrix completion.

3.2.1 Filtering Entries with Unlabeled and Uncertain Data Pairs

The purpose of the filtering step is to remove the uncertain data pairs from the manual

annotations. To this end, given the m similarity matrices {W k}mk=1 obtained from individual

1We can relax this requirement by estimating the number of clusters via some heuristic,
eg., considering the number of clusters as the rank of the completed matrix A.
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workers, we first compute matrix A = [Aij ] ∈ RN×N as the average of {W k}mk=1, i.e.,

Aij =


∑m
k=1

Wk
ijI(Wk

ij≥0)∑m
l=1 I(Wl

ij≥0)

∑m
l=1 I(W l

ij ≥ 0) > 0,

−1 otherwise

where I(z) is an indicator function that outputs 1 when z is true and zero, otherwise. We

introduce the indicator function I(W k
ij ≥ 0) in the above equation so that only the labeled

pairs of objects will be counted in computing A.

Since Aij ∈ [0, 1] for a labeled data pair (i.e. Aij ≥ 0) measures the percentage of HITs that

assign objects i and j to the same cluster, it can be used as the basis for the uncertainty

measure. In particular, we define the set of reliable data pairs whose labelings are agreed

upon by the percentage of workers as

∆ = {(i, j) ∈ [N ]× [N ] : Aij ≥ 0, Aij /∈ (d0, d1)}

where d0 < d1 ∈ [0, 1] are two thresholds that will be determined depending on the quality of

the annotations. We then construct the partially observed similarity matrix Ã as follows

Ãij =


1 (i, j) ∈ ∆, Aij ≥ d1

0 (i, j) ∈ ∆, Aij ≤ d0

unobserved (i, j) /∈ ∆

(3.2)
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3.2.2 Completing the Partially Observed Matrix

The second step of the algorithm is to reconstruct the full similarity matrix A∗ ∈ RN×N

based on the partially observed matrix Ã. To this end, we need to make several reasonable

assumptions about the relationship between Ã and A∗.

A simple approach is to assume Ãij = A∗ij ,∀(i, j) ∈ ∆; in other words, assume that all

the observed entries in matrix Ã are correct. This, however, is unrealistic because Ã is

constructed from the partial clustering results generated by different workers, and we expect a

significant amount of noise in individual clustering results. Thus, a more realistic assumption

is Ãij = A∗ij for most of the observed entries in ∆. We introduce the matrix E ∈ RN×N to

capture the noise in Ã, i.e.,

P∆(A∗ + E) = P∆(Ã), (3.3)

where P∆ is a matrix projection operator defined in (3.1). Under this assumption, we expect

E to be a sparse matrix with most of its entries being zero.

The assumption specified in equation (3.3) is insufficient to recover the full similarity A∗

as we can fill the unobserved entries (i.e., (i, j) /∈ ∆) in A∗ with any values. An additional

assumption is needed to make it possible to recover the full matrix from a partially observed

one. To this end, we follow the theory of matrix completion [20] by assuming the full similarity

A∗ to be of low rank. It was shown in [73] that when the similarity matrix A∗ is constructed

from a given clustering (i.e. A∗ij = 1 when objects i and j are assigned to the same cluster and

zero, otherwise), its rank is equal to the number of clusters. As a result, when the number
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of clusters is relatively small, it is reasonable to assume A∗ to be of low rank.

Combining the two assumptions together leads to the following approach, to recover the full

similarity matrix A∗ from the partially observed matrix Ã. We decompose Ã into the sum

of two matrices E and A∗, where E is a sparse matrix that captures the noise in Ã and A∗

is a low rank matrix that gives the similarity between any two objects. Based on this idea,

we cast the matrix recovery problem into the following optimization problem

min
A′,E

rank(A′) + C‖E‖1 (3.4)

s.t. P∆(A′ + E) = P∆(Ã)

where ‖X‖1 =
∑
ij |Xij | is the `1 norm of matrix X that measures the sparsity of X. Pa-

rameter C > 0 is introduced to balance the two objectives, i.e., finding a low rank similarity

matrix A′ and a sparse matrix E for noise. We will discuss in Section 3.3.2 about how to

automatically determine the value of C.

One problem with the objective function in (3.4) is that it is non-convex because rank(·) is

a non-convex function [20]. It is therefore computationally challenging to find the optimal

solution for (3.4). To address this challenge, we follow [20] and replace rank(A′) in (3.4) with

its convex surrogate |A′|∗, the trace norm of matrix A′. This allows us to relax (3.4) into

the following convex optimization problem

min
A′,E

|A′|∗ + C‖E‖1 (3.5)

s. t. P∆(A′ + E) = P∆(Ã).
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We then use the efficient first order algorithm developed in [90] to solve the optimization

problem in (3.5).

Given the completed similarity matrix A∗ obtained from (3.5), we apply the spectral clus-

tering algorithm [102] to compute the final data partition, which is essentially an application

of k-means algorithm [94] to the data projected into the space of the top r eigenvectors of

A∗.

3.2.3 Theoretical Analysis

A theoretical question is whether the similarity matrix obtained by (3.5) is close to the true

similarity matrix A∗. Our theoretical analysis gives a positive answer to this question. In

the following, we show that, under appropriate conditions about the eigenvectors of A∗, A∗

can be perfectly recovered by (3.5) if the number of noisy data pairs is significantly smaller

than the number of observed data pairs.

First, we need to make a few assumptions about A∗ besides its low rank. Let A∗ be a

low-rank matrix of rank r, with a singular value decompsition A∗ = UΣV >, where U =

(u1, . . . ,ur) ∈ RN×r and V = (v1, . . . ,vr) ∈ RN×r are the left and right eigenvectors of

A∗, satisfying the following incoherence assumptions.

• A1: The row and column spaces of A∗ have coherence bounded above by some positive

number µ0, i.e.,

max
i∈[N ]

‖PU (ei)‖22 ≤
µ0r

N
, max

i∈[N ]
‖PV (ei)‖22 ≤

µ0r

N
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where ei is the standard basis vector.

• A2: The matrix E = UV > has a maximum entry bounded by
µ1
√
r

N
in absolute value

for some positive µ1, i.e. |Ei,j | ≤
µ1
√
r

N
,∀(i, j) ∈ [N ]× [N ],

where PU and PV denote the orthogonal projections on the column space and row space of

A∗, respectively, i.e.

PU = UU>, PV = V V >

Remark The assumptions A1 and A2 essentially assume that for both the left and right

eigenvectors, the values are spread over all the entries. In other words, no entry in those

eigenvectors has its value dominated by the other entries of the same eigenvector. This is

the key property that makes it possible to recover the full matrix from a small number of

observed entries.

To state our theorem, we need to introduce a few notations. Let ξ(A′) and µ(A′) denote the

low-rank and sparsity incoherence of matrix A′ defined by [22], i.e.

ξ(A′) = max
E∈T (A′),‖E‖≤1

‖E‖∞ (3.6)

µ(A′) = max
E∈Ω(A′),‖E‖∞≤1

‖E‖ (3.7)

where T (A′) denotes the space spanned by the elements of the form uky
> and xv>k , for

1 ≤ k ≤ r, Ω(A′) denotes the space of matrices that have the same support to A′, ‖ · ‖

denotes the spectral norm and ‖ · ‖∞ denotes the largest entry in magnitude. Then the

following theorem states the theoretical guarantee of the proposed algorithm.

34



Theorem 1. Let A∗ ∈ RN×N be a similarity matrix of rank r obeying the incoherence prop-

erties (A1) and (A2), with µ = max(µ0, µ1). Suppose we observe m1 entries of A∗ recorded

in Ã with locations sampled uniformly at random, denoted by S. Under the assumption that

m0 entries randomly sampled from m1 observed entries are corrupted, denoted by Ω, i.e.

A∗ij 6= Ãij , (i, j) ∈ Ω. Given PS(Ã) = PS(A∗ + E∗), where E∗ corresponds to the corrupted

entries in Ω. With

µ(E∗)ξ(A∗) ≤ 1

4r + 5
, m1 −m0 ≥ C1µ

4n(log n)2,

and C1 is a constant, we have, with a probability at least 1 − N−3, the solution (A′, E) =

(A∗, E∗) is the unique optimizer to (4.2) provided that

ξ(A∗)− (2r − 1)ξ2(A∗)µ(E∗)
1− 2(r + 1)ξ(A∗)µ(E∗)

< λ <
1− (4r + 5)ξ(A∗)µ(E∗)

(r + 2)µ(E∗)

The proof can be found in the appendix. As indicated by Theorem 1, we have a good chance

to recover the full similarity matrix A∗ if the number of observed correct entries (i.e., m1)

is significantly larger than the number of observed noisy entries (i.e., m0).

3.3 Experiments

In this section, we first demonstrate empirically that the proposed algorithm can achieve

similar or better clustering performance as the Bayesian approach for crowdclustering [60]

with significantly lower running time. We further show that, as we reduce the number of
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Figure 3.1 Some sample images from the 13 categories in the Scenes data set

(a) Human (b) Animal (c) Plant

Figure 3.2 Some sample images from the three categories in the Tattoo data set

pairwise labels, either by reducing the number of workers, or by reducing the number of HITs

performed by each worker, the proposed algorithm significantly outperforms the Bayesian

approach.

3.3.1 Data Sets

Four image data sets are used in our experiments. They are:

• Scenes Data Set : This is a subset of the larger Scenes image data set [46] which has

been used in the previous study on crowdclustering [60]. It is comprised of 1, 001 images

belonging to 13 categories. Figure 6.3 shows sample images of each category from this

data set. To obtain the crowdsourced labels, 131 workers were employed to perform

HITs. In each HIT, the worker was asked to group images into multiple clusters, where

the number of clusters was determined by individual workers. Pairwise labels between
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(a) Tractor (b) Horse

cart

(c) Bench (d) Black-

berry

(e) Violin (f) Saxo-

phone

(g) Hammer

Figure 3.3 Some sample images from the seven categories in the ImageNet data set

(a) Car (b) Dog (c) Chair (d) Cat (e) Bird

Figure 3.4 Some sample images from the five categories in the PASCAL 07 data set

images are derived from the partial clustering results generated in HITs. The data we

used, including the subset of images and the output of HITs, were provided by the

authors of [60].

• Tattoo Data Set : This is a subset of the Tattoo image database [72]. It contains 3, 000

images that are evenly distributed over three categories: human, animal and plant.

Some sample images of each category in the Tattoo data set are shown in Figure 6.4.

Unlike the Scenes data set where the objective of HIT was to group the images into

clusters, the workers here were asked to annotate tatoo images with keywords of their

choice. On average, each image is annotated by three different workers. Pairwise labels

between images are derived by comparing the number of matched keywords between

images to a threshold (which is set to 1 in our study).

• ImageNet data set : This is a subset of the larger ImageNet database [39]. This subset

contains 6, 408 images belonging to 7 categories: tractor, horse cart, bench, blackberry,

violin, saxophone, and hammer. Figure 3.3 shows some sample images of each category

in this data set.
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• PASCAL 07 data set : This is a subset of the PASCAL Visual Object Classes Challenge

2007 database [45]. The subset contains 2, 989 images belonging to five classes: car,

dog, chair, cat and bird. Some sample images of each category in the PASCAL 07 data

set are shown in Figure 3.4. Similar to the Tattoo data set, the crowd workers were

asked to annotate images from both ImageNet and PASCAL 07 data sets with at most

3 keywords. On average, each image is annotated by five different workers. Pairwise

labels between images are derived based on whether two images share at least one

common keyword.

3.3.2 Baseline and Parameter Selection

Studies in [60] have shown that the Bayesian approach performs significantly better than

the ensemble clustering algorithm [113], and Non-negative Matrix Factorization (NMF) [84]

in the crowdclustering setting. Hence, we use the Bayesian approach for crowdclustering as

the baseline in our study.

Parameter C in (3.5) plays an important role in deciding the final similarity matrix. Since

no ground truth information (true cluster labels) is available to determine C, we present a

heuristic for estimating the value of C. We assume that the N objects to be clustered are

roughly evenly distributed across clusters; a similar assumption was adopted in normalized

cut algorithm [110]. Based on this assumption, we propose to choose a value of C that leads

to the most balanced distribution of objects over different clusters. To this end, we measure

the imbalance of data distribution over clusters by computing
∑N
i,j=1A

′
i,j = 1>A′1, where

1 is a vector of all ones. Our heuristic is to choose a value for C that minimizes 1>A′1. The
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rationale behind the imbalance measurement 1>A′1 is the following: Let N1, · · · , Nr be the

number of objects in the r clusters. Since 1>A′1 =
∑r
k=1N

2
k and

∑r
k=1Nk = N , without

any further constraint, the optimal solution that minimizes 1>A′1 is Ni = N/r, i = 1, . . . , r,

the most balanced data distribution. Hence, 1>A′1, to some degree, measures the imbalance

of data distribution over clusters. The experimental results show that this heuristic works

well. It usually helps us to find a good enough C among all the candidates.

We use normalized mutual information (NMI) and pairwise F-measure (PWF) to evaluate

the clustering performance. Besides clustering accuracy, we also evaluate the efficiency of

both algorithms by measuring their running time. The code of the baseline algorithm was

provided by the authors of [60]. Both the baseline algorithm and the proposed algorithm

were implemented in MATLAB and run on an Intel Xeon 2.40 GHz processor with 64.0 GB

of main memory.

3.3.3 Experimental results with full annotations

To evaluate the clustering performance of the proposed algorithm, our first experiment is

performed on the four image data sets using all the pairwise labels derived from the manual

annotation process. For all data sets, we set d0 to 0 and d1 to 0.9. Two criteria are deployed

in determining the value for d1: d1 should be large enough to ensure that most of the

selected pairwise labels are consistent with the cluster assignments, and should be small

enough to obtain enough number of entries with value 1 in the partially observed matrix

Ã. Table 3.1 summarizes the clustering performance and running time (CPU time) of both

algorithms.
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Table 3.1 Clustering performance and running time of the proposed algorithm (i.e. matrix
completion) and the baseline algorithm (i.e. Bayesian method) on four data sets

Datasets Matrix Completion Bayesian Method

Scenes Data Set
NMI 0.738 0.764
PWF 0.584 0.618

CPU time (s) 4.31× 102 4.84× 103

Tattoo Data Set
NMI 0.398 0.292
PWF 0.595 0.524

CPU time (s) 4.75× 103 5.44× 104

ImageNet data set
NMI 0.631 0.615
PWF 0.734 0.718

CPU time (s) 2.62× 104 7.48× 104

PASCAL 07 data set
NMI 0.394 0.388
PWF 0.462 0.439

CPU time (s) 9.23× 103 2.36× 104

We observed that for the Scenes data set, the proposed algorithm yields similar performance

as the Bayesian crowdclustering algorithm but with much lower running time. For the Tat-

too, ImageNet and PASCAL 07 data sets, the proposed algorithm outperforms the Bayesian

crowdclustering algorithm in both accuracy and efficiency. The higher efficiency of the pro-

posed algorithm is because that the proposed algorithm only needs to handle a subset of

reliable pairwise labels while the Bayesian crowdclustering algorithm needs to explore all the

pairwise labels derived from manual annotation. For example, for the Scenes data set, only

less than 13% of image pairs satisfy the specified condition of “reliable pairs”. The small

percentage of reliable pairs results in a sparse matrix Ã, and consequently a high efficiency

in solving the matrix completion problem in (3.4).

We also examine how well the conditions specified in our theoretical analysis are satisfied

for the two image data sets. Besides the technical conditions that are difficult to verify,

the most important condition used in our analysis is that a majority of the reliable pairwise
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(a) Highway and Inside

city

(b) Bedroom and Kitchen (c) Mountain and Open

country

(d) Tall building and

Street

Figure 3.5 Sample image pairs that are grouped into the same cluster by more than 50% of the
workers but are assigned to different clusters according to the ground truth.

labels derived from manual annotation should be consistent with the cluster assignments (i.e.

m1−m0 ≥ O(N log2N)). We found that for the Scenes data set, 95% of the reliable pairwise

labels identified by the proposed algorithm are consistent with the cluster assignments, and

for the Tattoo data set, this percentage is 71%.

We finally evaluate the significance of the filtering step for the proposed algorithm. First, we

observe that a large portion of pairwise labels derived from the manual annotation process

are inconsistent with the cluster assignment. In particular, more than 80% of pairwise labels

are inconsistent with the cluster assignment for the Scenes data set. Figure 3.5 shows some

example image pairs that are grouped into the same cluster by more than 50% of the workers

but belong to different clusters according to the ground truth.

To observe how the noisy labels affect the proposed algorithm, we fix the threshold d0 to be

0, and vary the threshold d1 used to determine the reliable pairwise labels from 0.1 to 0.9.

Table 3.2 summarizes the clustering performance of the proposed algorithm for the Scenes

data set with different thresholds and the percentage of resulting reliable pairwise labels

that are consistent with the cluster assignments. Overall, we observe that the higher the

percentage of consistent pairwise labels, the better the clustering performance.
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Table 3.2 Performance of the proposed clustering algorithm as a function of different thresh-
old values and the percentage of 1 entries in the matrix Ã that are consistent with the cluster
assignments for the Scenes data set

Threshold d1 0.1 0.3 0.5 0.7 0.9
Consistency percentage 18.02% 28.10% 35.53% 43.94% 61.79%
NMI 0.507 0.646 0.678 0.700 0.738
PWF 0.327 0.412 0.431 0.445 0.584

3.3.4 Experimental results with sampled annotations

The objective of the second experiment is to verify that the proposed algorithm is able

to obtain an accurate clustering result even with a significantly smaller number of manual

annotations. To this end, we use two different methods to sample the annotations: for the

Scenes data set, we use the annotations provided by 20, 10, 7 and 5 randomly sampled

workers, and for the remaining three data sets whose pairwise constraints are generated by

keywords matching, we randomly sample 10%, 5%, 2% and 1% of all the annotations. Then

we run both the baseline and the proposed algorithm on the sampled annotations. All the

experiments in this study are repeated five times, and the performance averaged over the

five trials is reported in Figure 3.6.

As expected, reducing the number of annotations deteriorates the clustering performance for

both the algorithms. However, the proposed algorithm appears to be more robust and per-

forms better than the baseline algorithm for all levels of random sampling. The robustness

of the proposed algorithm can be attributed to the fact that according to our analysis, to

perfectly recover the cluster assignment matrix, the proposed algorithm only requires a small

number of reliable pairwise labels (i.e. O(N log2 /N)). In contrast, the Bayesian crowdclus-

tering algorithm requires a large number of manual annotations to overcome the noisy labels

42



(a) Scenes data set (b) Tattoo data set

(c) ImageNet data set (d) Pascal 07 data set

Figure 3.6 NMI values as a function of number of workers and percentage of annotations for four
data sets

and to make reliable inference about the hidden factors used by different workers to group the

images. As a consequence, we observe a significant reduction in the clustering performance

of the Bayesian approach as the number of manual annotations is decreased.

3.4 Conclusion and Discussion

In this chapter, we present a matrix completion framework for crowdclustering. The key to

the proposed algorithm is to identify a subset of data pairs with reliable pairwise labels.

These reliable data pairs are used as the seed for a matrix completion algorithm to derive

the full similarity matrix, which forms the foundation for data clustering. Currently, we

identify these reliable data pairs based on the disagreement among workers, and as a result,

a sufficient number of workers are needed to determine which data pairs are reliable. An
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alternative approach is to improve the quality of manual annotations. Given that our matrix

completion approach needs only a small number of high quality labels, we believe that com-

bining appropriately designed incentive mechanisms with our matrix completion algorithm

will lead to greatly improved performance. In [107], the authors discussed different incentive

mechanisms to improve the quality of work submitted via HITs. In particular, they studied

a number of incentive mechanisms and their affect on eliciting high quality work on Turk.

They find that a mechanism based on accurately reporting peers’ responses is the most

effective in improving the performance of Turkers. As part of our future work, we plan to

investigate the conjunction of appropriate incentive mechanisms with clustering algorithms

for this problem.
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Chapter 4

Semi-Crowdsourced Clustering by

Distance Metric Learning

As discussed in Chapter 3, crowdclustering addresses the challenge of defining appropri-

ate similarity measures between objects by using the manual annotations obtained through

crowdsourcing. However, a key limitation of crowdclustering is that it can only cluster ob-

jects when their manual annotations are available. To address this limitation, in this chapter

we propose a new approach for clustering, called semi-crowdsourced clustering that effec-

tively combines the low-level features of objects with the manual annotations of a subset of

the objects obtained via crowdsourcing. The key idea is to learn an appropriate similarity

measure, based on the low-level features of objects and from the manual annotations of only

a small portion of the data to be clustered. One difficulty in learning the pairwise similarity

measure is that there is a large amount of noise in the manual annotations obtained via

crowdsourcing. We address this difficulty by developing a metric learning algorithm based

on the matrix completion method. Our empirical study with two real-world image data sets

shows that the proposed algorithm outperforms state-of-the-art distance metric learning

algorithms in both clustering accuracy and computational efficiency.
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The remainder of the chapter is organized as follows: In Section 4.1, we describe the set-

tings and introduce the motivation of the proposed semi-crowdsourced clustering framework.

Section 4.2 presents the proposed semi-crowdsourced clustering algorithm and the related

theoretical analysis. We summarize the results of our empirical studies in Section 4.3. Sec-

tion 4.4 concludes the chapter.

4.1 Introduction

Despite the encouraging results obtained via crowdclustering, a main shortcoming of crowd-

clustering is that it can only cluster objects for which manual annotations are available,

significantly limiting its application to large scale clustering problems. For instance, when

clustering hundreds of thousands of objects, it is not feasible to have each object manually

annotated by multiple workers. To address this limitation, we study the problem of semi-

crowdsourced clustering, where given the annotations obtained through crowdsourcing

for a small subset of the objects, the objective is to cluster the entire collection of ob-

jects. Figure 4.1 depicts the proposed framework. Given a set of N objects to be clustered,

the objective of the proposed framework is to learn a pairwise similarity measure from the

crowdsourced labels of n objects (n � N) and the feature representations of N objects to

be clustered.

The key to semi-crowdsourced clustering is to define an appropriate similarity measure for

the subset of objects that do not have manual annotations (i.e., N −n objects). To this end,

we propose to learn a similarity function, based on the object features, from the pairwise
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Figure 4.1 The proposed framework for semi-crowdsourced clustering. The given N objects
(o1, o2, . . . , oN ) need to be clustered, but only a small subset of the N objects (o′1, o

′
2, · · · o

′
n)

have been annotated by crowdsourcing, n� N .

similarities derived from the manual annotations for the subset of n objects; we then apply

the learned similarity function to compute the similarity between any two objects, and

perform data clustering based on the computed similarities. In this study, for computational

simplicity, we restrict ourselves to a linear similarity function, i.e. given two objects oi and

oj and their feature representation xi and xj , respectively, their similarity sim(Oi, Oj) is

given by sim(Oi, Oj) = x>i Mxj , where M � 0 is the learned distance metric.

Learning a linear similarity function from given pairwise similarities (sometimes referred to

as pairwise constraints when similarities are binary) is known as distance metric learning,

which has been reviewed in the Section 2.3.2. The key challenge of distance metric learning

in semi-crowdsourced clustering arises due to the noise in the pairwise similarities obtained

from manual annotations. According to our previous observation in Section 3.3, large dis-
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agreements are often observed among human workers in specifying pairwise similarities. As

a result, pairwise similarities based on the majority voting among human workers often dis-

agree with the true cluster assignments of objects. As an example, we show in Section 3.3

that for the Scenes data set [46], more than 80% of the pairwise labels obtained from human

workers are inconsistent with the true cluster assignment. This large noise in the pairwise

similarities due to crowdsourcing could seriously misguide the distance metric learning and

lead to a poor prediction performance, as already demonstrated in [66] as well as in our

empirical study.

We propose a metric learning algorithm that explicitly addresses the presence of noise in

pairwise similarities obtained via crowdsourcing. The proposed algorithm uses the matrix

completion technique [20] to rectify the noisy pairwise similarities, and regression analysis to

efficiently learn a distance metric from the restored pairwise similarities. More specifically,

the proposed algorithm for clustering N objects consists of three components: (i) filtering

noisy pairwise similarities for n objects by only keeping object pairs whose pairwise similar-

ities are agreed by many workers (not majority of the workers). The result of the filtering

step is a partially observed n × n similarity matrix (n � N) with most of its entries re-

moved/unobserved; (ii) recovering the n × n similarity matrix from the partially observed

entries by using the matrix completion algorithm; (iii) applying a regression algorithm to

learn a distance metric from the recovered similarity matrix, and clustering the N ×N pair-

wise similarities based on the learned distance metric. Figure 6.2 shows the basic steps of

the proposed algorithm.

Compared to the existing approaches of distance metric learning [138], the proposed algo-

rithm has the following three advantages: (i) by exploring the matrix completion technique,
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Figure 4.2 The proposed framework of learning a distance metric from noisy manual anno-
tations

the proposed algorithm is robust to a large amount of noise in the pairwise similarities;

(ii) by utilizing regression analysis, the proposed algorithm is computationally efficient and

does not have to handle the positive semi-definite constraint, a key computational bottle-

neck for most distance metric learning algorithms; (iii) the learned distance metric, with

high probability, is close to the optimal metric learned from the perfect or true similarities

(i.e. similarity of 1 when two objects are in the same cluster and 0, otherwise) for arbitrarily

large n.

4.2 Semi-Crowdsourced Clustering by Robust Distance

Metric Learning

In this section, we first present the problem and a general framework for semi-crowdsourced

clustering. We then describe the proposed algorithm for learning distance metric from a

small set of noisy pairwise similarities that are derived from manual annotations.
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4.2.1 Problem Definition and Framework

Let D = {O1, . . . , ON} be the set of N objects to be clustered, and let X = (x1, . . . ,xN )

be their feature representation, where xi ∈ Rd is a vector of d dimensions. We randomly

sample a subset of n � N objects from the collection D, denoted by D̂ = {Ô1, . . . , Ôn},

and obtain their manual annotations by crowdsourcing. Let m be the number of HITs used

by crowsourcing. Given the manual annotations collected from the k-th HIT, we define

a similarity matrix Ak ∈ Rn×n such that Aki,j = 1 if objects Ôi and Ôj share common

annotations (i.e. share common annotated keywords or assigned to the same cluster by the

worker), zero if they don’t, and −1 if either of the two objects is not annotated by the kth

HIT (i.e. unlabeled pair). Note that we only consider a binary similarity measure in this

study because our goal is to perfectly reconstruct the ideal pairwise similarities based on the

true cluster assignments (i.e. 1 when both objects are assigned to the same cluster and zero,

otherwise). The objective of semi-crowdsourced clustering is to cluster all the N objects in

D based on the features in X and the m×m similarity matrices {Ak}mk=1 for the objects in

D̂. Throughout this paper, we assume that the number of clusters, denoted by r, is given a

priori1.

To generalize the pairwise similarities from the subset D̂ to the entire collection of objects

D, we propose to first learn a distance metric from the similarity matrices {Ak}mk=1, and

then compute the pairwise similarity for all the N objects in D using the learned distance

metric. The challenge is how to learn an appropriate distance metric from a set of similarity

1Similar to the Chapter 3, we may relax this requirement by estimating the number
of clusters via some heuristic, e.g. considering the number of clusters as the rank of the
completed matrix A.
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matrices {Ak}mk=1. A straightforward approach is to combine multiple similarity matrices

into a single similarity matrix by computing their average. More specifically, let Ã ∈ Rn×n

be the average similarity matrix. We have

Ãi,j =
1∑m

k=1 I(Aki,j ≥ 0)

m∑
k=1

I(Aki,j ≥ 0)Ai,j

where Aki,j < 0 indicates that the pair (Ôi, Ôj) is not labeled by the kth HIT (i.e. either

object Ôi or Ôj is not annotated by the kth worker) and I(z) is an indicator function that

outputs 1 when z is true and zero, otherwise. We then learn a distance metric M from Ã.

The main problem with this simple strategy is that due to the large disagreements among

workers in determining the pairwise similarities, the average similarities do not correlate well

with the true cluster assignments. In the next subsection, we develop an efficient and robust

algorithm that learns a distance metric from a set of noisy similarity matrices.

4.2.2 Learning a Distance Metric from a Set of Noisy Similarity

Matrices

As illustrated in Figure 6.2, the proposed algorithm consists of three steps, i.e. filtering step,

matrix completion step and distance metric learning step. For the first two steps, namely

the data preprocessing steps, we follow the idea proposed in Chapter 3.

Filtering step. To filter out the uncertain object pairs, we introduce two thresholds d0 and

d1(1 ≥ d1 > d0 ≥ 0) into the average similarity matrix Ã. Since any similarity measure

smaller than d0 indicates that most workers put the corresponding object pair into different
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clusters, we simply set it as 0. Similarly, we set the similarity measure larger than d1 as

1. For object pairs with similarity measure in the range between d0 and and d1, they are

treated as uncertain object pairs and are discarded (i.e. marked as unobserved) from the

similarity matrix. The resulting partially observed similarity matrix A is given by

Ai,j =


1 Ãi,j ∈ [d1, 1]

0 Ãi,j ∈ [0, d0]

unobserved Otherwise

(4.1)

We also define ∆ as the set of observed entries in Ai,j

∆ = {(i, j) ∈ [N ]× [N ] : Ãij ≥ 0, Ãij /∈ (d0, d1)}

Matrix completion step. Since A is constructed from the partial clustering results gen-

erated by different workers, we expect some of the binary similarity measures in A to be

incorrect. We introduce the matrix E ∈ Rn×n to capture the incorrect entries in A. If A∗ is

the perfect similarity matrix, we have P∆(A∗ + E) = P∆(A), where P∆ outputs a matrix

with [P∆(B)]i,j = Bi,j if (i, j) ∈ ∆ and zero, otherwise. With appropriately chosen thresh-

olds d0 and d1, we expect most of the observed entries in A to be correct and as a result, E

to be a sparse matrix. To reconstruct the perfect similarity matrix A∗ from A, following the

matrix completion theory [20], we solve the following optimization problem

min
Â,E

|Â|∗ + C|E|1 (4.2)

s. t. P∆(Â+ E) = P∆(A),
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where |A|∗ is the nuclear norm of matrix A and |E|1 =
∑
i,j |Ei,j | is the `1 norm of E. Using

the facts that E is a sparse matrix and Â is of low rank [73], under the two assumptions made

in Section 3.3, with a high probability, we have A∗ = Â, where Â is the optimal solution for

(4.2).

Distance metric learning step. This step learns a distance metric from the completed

similarity matrix Â. A common problem shared by most distance metric learning algorithms

is their high computational cost due to the constraint that a distance metric has to be

positive semi-definite. In this study, we develop an efficient algorithm for distance metric

learning that does not have to deal with the positive semi-definite constraint. Our algorithm

is based on the key observation that with a high probability, the completed similarity matrix

Â is positive semi-definite. This is because according to the Theorem 1, with a probability

at least 1 − N−3, Â = Y Y >, where Y ∈ {0, 1}N×r is the true cluster assignment. This

property guarantees the resulting distance metric to be positive semi-definite.

The proposed distance metric learning algorithm is based on a standard regression algo-

rithm [97]. Given the similarity matrix Â, the optimal distance metric M is given by a

regression problem

min
M∈Rd×d

L̂(M) =
n∑

i,j=1

(x̂>i M x̂j − Âi,j)2 = |X̂>MX̂ − Â|2F (4.3)

where x̂i is the feature vector for the sampled object Ôi and X̂ = (x̂1, . . . , x̂n). The optimal

solution to (4.3), denoted by M̂ , is given by

M̂ = (X̂X̂>)−1X̂ÂX̂>(X̂X̂>)−1 (4.4)
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where Z−1 is pseudo inverse of Z. It is straightforward to verify that M̂ � 0 if Â � 0.

Directly using the solution in (4.4) could result in the overfitting of similarity matrix Â

because of the potential singularity of X̂X̂>. We address this challenge by a smoothing

technique, i.e.

M̂s = (X̂X̂> + λmI)−1X̂ÂX̂>(X̂X̂> + λmI)−1 (4.5)

where I is the identity matrix of size d × d and λ > 0 is a smoothing parameter used to

address the overfitting and the curse of dimensionality.

4.2.3 Theoretical Analysis

We now state the theoretical property of M̂s. Let A(Oi, Oj) be the perfect similarity that

outputs 1 when Oi and Oj belong to the same cluster and zero, otherwise. It is straight-

forward to see that A(Oi, Oj) = y>i yj , where yi ∈ {0, 1}r is the cluster assignment for

object Oi. To learn an ideal distance metric from the perfect similarity measure A(Oi, Oj),

we generalize the regression problem in (4.3) as follows

min
M∈Rd×d

L(M) = Exi,xj

[
(x>i Mxj − A(Oi, Oj))

2
]

(4.6)

The solution to (4.6) is given by M = C−1
X BB>C−1

X , where CX = Exi [xix
>
i ] and B =

Exi [xiy
>
i ]. Let Ms be the smoothed version of the ideal distance metric M , i.e. M = (CX +

λI)−1BB>(CX + λI)−1. The following theorem shows that with a high probability, the

difference between M̂s and Ms is small if both λ and n are not too small.
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Theorem 2. Assume |x|2 ≤ 1 for the feature representation of any object. Then, with a

probability 1− 3n−3, we have

|Ms − M̂s|2 = O

(
lnn

λ2
√
n

)

where |Z|2 stands for the spectral norm of matrix Z.

Proof. To prove Theorem 2, we need the following theorem for matrix concentration.

Lemma 1. (Lemma 2 from [111]) Let H be a Hilbert space and ξ be a random variable on

(Z, ρ) with values in H. Assume ‖ξ‖ ≤M <∞ almost surely. Denote σ2(ξ) = E(‖ξ‖2). Let

{zi}mi=1 be independent random drawers of ρ. For any 0 < δ < 1, with confidence 1− δ,

∥∥∥∥∥ 1

m

m∑
i=1

(ξi − E[ξi])

∥∥∥∥∥ ≤ 4M ln(2/δ)√
m

Using the assumption that |x|2 ≤ 1 and Lemma 1, we have, with a probability 1−N−3,

∣∣∣∣ 1

m
X̂X̂> − CX

∣∣∣∣
2
≤ 12 lnn√

n

and therefore ∣∣∣∣∣
(

1

m
X̂X̂> + λI

)−1

− (CX + λI)−1

∣∣∣∣∣
2

≤ 12 lnn

λ
√
n

Second, according to Theorem 1, with a probability 1 − N−3, we have Â = Y Y > and

therefore X̂ÂX̂> = X̂Y Y >X̂>. Again, using the matrix concentration theory, we have,
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with a probability 1−N−3, ∣∣∣∣ 1

m
X̂Y −B

∣∣∣∣
2
≤ 12 lnn√

n

Finally, we rewrite |Ms − M̂s|2 as

‖Ms − M̂s‖2

≤

∣∣∣∣∣Ms −
(

1

m
X̂X̂> + λI

)−1

BB>CX

∣∣∣∣∣
2

+∣∣∣∣∣
(

1

m
X̂X̂> + λI

)−1

BB>CX −
(

1

m
X̂X̂> + λI

)
BB>

(
1

m
X̂X̂> + λI

)−1
∣∣∣∣∣
2

+∣∣∣∣∣
(

1

m
X̂X̂> + λI

)−1

BB>
(

1

m
X̂X̂> + λI

)−1

−
(

1

m
X̂X̂> + λI

)−1 X̂Y

m
B>

(
1

m
X̂X̂> + λI

)−1
∣∣∣∣∣+∣∣∣∣∣

(
1

m
X̂X̂> + λI

)−1 X̂Y

m
B>

(
1

m
X̂X̂> + λI

)−1

− M̂s

∣∣∣∣∣
It is easy to see that with a probability 1 − 3n−3, each term on the right hand side of the

above inequality is bounded by 12 lnn
λ2√n

, leading to the result of the theorem.

Given the learned distance metric M̂s, we construct a similarity matrix S = X>M̂sX and

then apply a spectral clustering algorithm [110] to compute the final data partition for N

objects.

4.3 Experiments

In this section, we demonstrate empirically that the proposed semi-crowdsourced clustering

algorithm is both effective and efficient.
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4.3.1 Data Sets

Two real-world image data sets are used in our experiments: (i) ImageNet data set is a subset

of the larger ImageNet database [39]. The subset contains 6, 408 images belonging to 7 cat-

egories: tractor, horse cart, bench, blackberry, violin, saxophone, and hammer. (ii) PASCAL

07 data set is a subset of the PASCAL Visual Object Classes Challenge 2007 database [45].

The subset contains 2, 989 images belonging to five classes: car, dog, chair, cat and bird. We

choose these specific image categories because they yield relatively low classification perfor-

mance in ImageNet competition and PASCAL VOC Challenge, indicating that it could be

difficult to cluster these images using low level features without side information. The image

features for these datasets were downloaded from the homepages of the ImageNet database1

and the research group of Learning and Recognition in Vision (LEAR)2, respectively.

To perform crowdlabeling, we follow [141], and ask human workers to annotate images with

keywords of their choice in each HIT. A total of 249 and 332 workers were employed us-

ing the Amazon’s Mechanical Turk [70] to annotate images from ImageNet and PASCAL

datasets, respectively. On average, each image is annotated by five different workers, with

three keywords from each individual worker. For every HIT, the pairwise similarity between

two images (i.e. Aki,j used in Section 4.2.1) is set to 1 if the two images share at least one

common annotated keyword and zero, otherwise3. We note that the crowdsouced annota-

tions of these two data sets are also used to evaluate our crowdclustering algorithm proposed

in Chapter 3.

1http://www.image-net.org/download-features
2http://lear.inrialpes.fr/people/guillaumin/data.php
3We tried several other similarity measures (e.g. cosine similarity measure and tf.idf

weighting) and found that none of them yielded better performance than the simple similarity
measure used in this work

57



4.3.2 Baselines

Two baseline methods are used as reference points in our study: (a) the Base method that

clusters images directly using image features without distance metric learning, and (b) the

Raw method that runs the proposed algorithm against the average similarity matrix Ã

without filtering and matrix completion steps. The comparison to the Base method allows

us to examine the effect of distance metric learning in semi-crowdsourced clustering, and the

comparison to the Raw method reveals the effect of filtering and matrix completion steps

in distance metric learning.

We compare the proposed algorithm for distance metric learning to the following five state-

of-the-art distance metric learning algorithms: (a) GDM, the global distance metric learning

algorithm [134], (b) RCA, the relevant component analysis [6], (c) DCA, the discriminative

component analysis [63], (d) ITML, the information theoretic metric learning algorithm [38],

and (e) LMNN, the large margin nearest neighbor classifier [130]. Some of the other state-

of-the-art distance metric learning algorithms (e.g. the neighborhood components analysis

(NCA) [58]) were excluded from the comparison because they can only work with class as-

signments, instead of pairwise similarities, and therefore are not applicable in our case. The

code for the baseline algorithms was provided by their respective authors (In LMNN, Prin-

cipal Component Analysis (PCA) is used at first to reduce the data to lower dimensions).

For a fair comparison, all distance metric learning algorithms are applied to the pairwise

constraints derived from Â, the n × n pairwise similarity matrix reconstructed by the ma-

trix completion algorithm. We refer to the proposed distance metric learning algorithm as

Regression based Distance Metric Learning, or RDML for short, and the proposed
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semi-crowdsourced clustering algorithm as Semi-Crowd.

4.3.3 Parameter Selection and Evaluation

Similar to the Section 3.4, two criteria are used in determining the values for d0 and d1

in (4.1). First, d0 (d1) should be small (large) enough to ensure that most of the retained

pairwise similarities are consistent with the cluster assignments. Second, d0 (d1) should

be large (small) enough to obtain a sufficient number of observed entries in the partially

observed matrix A. For both data sets, we set d0 to 0 and d1 to 0.8. Besides, we follow the

heuristic proposed in Section 3.4 to determine the parameter C in (4.2), which is selected to

generate balanced clustering results. Parameter λ in (4.5) is set to 1. We varied λ from 0.5

to 5 and found that the clustering results essentially remain unchanged.

Normalized mutual information (NMI for short) is used to measure the coherence between

the inferred clustering and the ground truth categorization. The number of sampled images

is varied from 100, 300, 600 to 1, 000. All the experiments are performed on a PC with Intel

Xeon 2.40 GHz processor and 16.0 GB of main memory. Each experiment is repeated five

times, and the performance averaged over the five trials is reported.

4.3.4 Experimental Results

First, we examine the effect of distance metric learning algorithm on semi-crowdsourced

clustering. Figure 6.4 compares the clustering performance with six different metric learning

algorithms with that of the Base method that does not learn a distance metric. We observed
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(a) ImageNet data set (b) PASCAL 07 data set

Figure 4.3 NMI vs. no. of sampled images (n) used in crowdlabeling.

that four of the distance metric learning algorithms (i.e. GDM, ITML, LMNN and the

proposed RDML) outperform the Base method, while RCA and DCA fail to improve the

clustering performance of Base. We conjecture that the failure of RCA and DCA methods

is due to their sensitivity to the noisy pairwise similarities. In fact, RCA and DCA can yield

better performance than the Base method if all the pairwise similarities are consistent with

the cluster assignments. Compared to all the baseline distance metric learning algorithms,

RDML, the proposed distance metric learning algorithm, yields the best clustering results

for both the data sets and for all values of n (i.e. the number of annotated images) considered

here. Furthermore, the performance of RDML gradually stabilizes as the number of sampled

images increases. This is consistent with our theoretical analysis in Theorem 2, and implies

that only a modest number of annotated images is needed by the proposed algorithm to learn

an appropriate distance metric. This observation is particularly useful for crowdclustering

as it is expensive to reliably label a very large number of images. Figure 4.4 shows some

example image pairs for which the Base method fails to make correct cluster assignments, but

the proposed RDML method successfully corrects these mistakes with the learned distance

metric.

Our next experiment evaluates the impact of filtering and matrix completion steps. In Fig-
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(a) Two images incorrectly placed

in different clusters by the Base

method (similarity 0.16) but correctly

grouped into the same cluster by the

proposed method (similarity 0.66).

(b) Two images incorrectly placed

in different clusters by the Base

method (similarity 0.31) but cor-

rectly grouped into the same cluster

by the proposed method (similarity

0.85)

(c) Two images incorrectly grouped

into the same cluster by the Base

method (similarity 0.72) but correctly

clustered to different clusters by the

proposed method (similarity 0.22)

Figure 4.4 Sample image pairs that are incorrectly clustered by the Base method but correctly
clustered by the proposed method (the similarity of our method is based on the normalized distance

metric M̂s).

ure 6.4, we compare the clustering results of the proposed algorithm for semi-crowdsourced

clustering (i.e. Filtering+Matrix-Completion+RDML) to the Raw method that runs the

proposed distance metric algorithm RDML without the filtering and matrix completion

steps. Based on these experiments, we can make the following observations: (i) the pro-

posed distance metric learning algorithms performs better than the Raw method, partic-

ularly when the number of annotated images is small; (ii) the gap between the proposed

semi-crowdsourced clustering method and the Raw method decreases as the sample size in-

creases. These results indicate the importance of filtering and matrix completion steps for

the crowdsourced data in semi-crowdsourced clustering. Finally, it is interesting to observe

that the Raw method still outperforms all the baseline methods, which further verifies the

effectiveness of the proposed algorithm for distance metric learning.

Finally, we evaluate the computational efficiency of the proposed distance metric learning al-

gorithm. Table 4.1 shows that the proposed distance metric learning algorithm is significantly

more efficient than the baseline approaches evaluated here. The last row of Table 4.1 indicates

the run time for the matrix completion step. Since all the distance metric learning algorithms
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Table 4.1 CPU time (in s) for learning the distance metrics.

CPU time (s) ImageNet Data Set PASCAL 07 Data Set
Sample sizes (n) 100 300 600 1,000 100 300 600 1,000

RDML (proposed) 4.2 6.3 8.0 11.2 27.4 34.2 41.7 47.3
GDM [134] 11384 14706 18140 25155 26346 36795 44237 53468
LMNN [130] 59.8 157 330 629 55.1 124 277 527
ITML [38] 2128 2376 2692 3081 5311 5721 6104 6653
DCA [63] 8.5 9.2 14.5 20.7 51.2 64.1 72.7 82.3
RCA [6] 9.7 13.5 18.6 23.6 71.4 92.7 103 122

Matrix Completion 12.4 74.2 536 1916 12.8 86.6 615 1873

are applied to the similarity matrix recovered by the matrix completion algorithm, the com-

putational cost of matrix completion is shared by all distance metric learning algorithms

used in our evaluation. One interesting observation comes from a comparison of Table 4.1

and Table 3.1, which summarizes the running time of doing standard crowdclustering. We

observe that, to cluster the same ImageNet Data Set, the proposed semi-crowdsourced clus-

tering algorithm is more than 1, 000 times more efficient than the crowdclustering algorithm

proposed in Chapter 3.

4.4 Conclusions

In this chapter, we present a semi-crowdsourced clustering framework that effectively com-

bines the low-level features of objects with the manual annotations of a subset of the objects

obtained via crowdsourcing. The proposed framework overcomes the limitation of the classi-

cal crowdclustering problem, which can only cluster objects when their manual annotations

are available. In addition, the proposed semi-crowdsourced clustering method provides a

much more efficient way to solve the crowdclustering problem, comparing to the approach
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proposed in chapter 3. Furthermore, our work also addresses the challenge of learning a

reliable distance metric from noisy pairwise constraints. Although many studies on distance

metric learning have been reported, one limitation of these earlier studies is that they can only

work with a relatively small number (typically less than 30%) of noisy pairwise constraints.

In contrast, the proposed distance metric learning approach can handle a significantly larger

percentage of pairwise similarities (as many as 80%) that are inconsistent with the true

cluster assignments.
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Chapter 5

Semi-supervised Clustering by Input

Pattern Assisted Pairwise Similarity

Matrix Completion

In this chapter, we focus on the semi-supervised clustering problem. Many semi-supervised

clustering algorithms have been proposed to improve the clustering accuracy by effectively

exploring the available side information that is usually in the form of pairwise constraints.

However, there are two main shortcomings of the existing semi-supervised clustering algo-

rithms. First, they have to deal with non-convex optimization problems, leading to clustering

results that are sensitive to the initialization. Second, none of these algorithms is equipped

with theoretical guarantee regarding the clustering performance. We address these limi-

tations by developing a framework for semi-supervised clustering based on input pattern

assisted matrix completion. The key idea is to cast clustering into a matrix completion prob-

lem, and solve it efficiently by exploiting the correlation between input patterns and cluster

assignments. Our analysis shows that under appropriate conditions, only O(logN) pairwise

constraints are needed to accurately recover the true cluster partition of N objects.
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The remainder of the chapter is organized as follows: In Section 5.1, we describe the back-

ground and introduce the motivation of the proposed semi-supervised clustering framework.

Section 5.2 presents the proposed framework for semi-supervised clustering and efficient com-

putational algorithm. Theoretical analysis for the proposed algorithm for semi-supervised

learning is presented in Section 5.3. We summarize the results of our empirical studies in

Section 5.4 and Section 5.5 concludes with the discussion about the relationship between

the proposed semi-supervised clustering approach and the semi-crowdsourced clustering ap-

proach proposed in Chapter 4.

5.1 Introduction

The objective of semi-supervised clustering algorithms is to search for the optimal data

partition that is consistent with both the given pairwise constraints and the input data points

to be clustered. Despite the progress, there are two main shortcomings with the available

semi-supervised clustering algorithms. First, most semi-supervised clustering algorithms have

to deal with non-convex optimization problems, leading to clustering results that are only

locally optimal and sensitive to the initialization. Second, although many computational

algorithms have been proposed for semi-supervised learning, none of them is equipped with

a theoretical guarantee on clustering performance. In particular, it is unknown how the

clustering performance is improved with increasing number of pairwise constraints, an issue

that is usually referred to as sample complexity in supervised learning [7].

In this chapter, we aim to address these limitations by developing a new framework for semi-

65



supervised learning based on the theory of matrix completion [15]. The proposed framework

aims to reconstruct the pairwise similarity matrix, that gives 1 for any two data points in

the same cluster and 0 otherwise, based on the given constraints and the input patterns

of the objects to be clustered. The proposed framework results in a convex optimization

problem and, consequentially, globally optimal solutions. More importantly, the proposed

work is equipped with a strong theoretical guarantee: with a high probability, the proposed

algorithm can accurately recover the true data partition provided (i) the cluster membership

vectors can be well approximated by the top singular vectors of the data matrix, and (ii)

the number of pairwise constraints is sufficiently large. In particular, we show that under

appropriate conditions, the true data partition can be perfectly recovered by the proposed

algorithm with O(rk logN) pairwise constraints, where N is the number of data points to

be clustered, r is the number of clusters, and k is the number of singular vectors used to

approximate the cluster memberships. The logarithmic dependence on N makes the proposed

algorithm particularly suitable for large-scale data clustering problem.

5.2 Semi-supervised Clustering by Input Pattern As-

sisted Matrix Completion

In this section, we first present a matrix completion based framework for semi-supervised

clustering. We then present the proposed algorithm for semi-supervised clustering.
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5.2.1 A Matrix Completion Framework for Semi-supervised Clus-

tering

Let D = {O1, . . . , ON} be the set of N objects to be clustered, and let X = (x1, . . . ,xN )

be their feature representation, where xi ∈ Rd is a vector of d dimensions. Let M denote

the set of must-link constraints where (i, j) ∈ M implies that xi and xj should be in the

same cluster, and C denote the set of cannot-link constraints, where (i, j) ∈ C implies that

xi and xj belong to different clusters. For the convenience of presentation, we also define

set Ω =M∪ C to include all the pairwise constraints. Let r be the number of clusters, and

Nmin be the size of the smallest cluster. The objective of semi-supervised clustering is to

partition N data points into r clusters that are consistent with (i) the pairwise constraints

in M and C, and (ii) the data matrix X such that data points with similar input patterns

are put into the same cluster.

Let ui ∈ {0, 1}N be the membership vector of the i-th cluster, where ui,j = 1 if xj is assigned

to the i-th cluster and zero, otherwise. Define the pairwise similarity matrix S ∈ {0,+1}

as

S =
r∑
i=1

uiu
>
i

Evidently, Si,j = 1 if xi and xj are assigned to the same cluster, and zero, otherwise. It is

easy to verify that the rank of matrix S is r. The given must-links inM and cannot-links in C

provide partial observations for M , i.e. Si,j = 1 if (i, j) ∈M and Si,j = 0 if (i, j) ∈ C. Since

finding the best data partition is equivalent to recovering the binary similarity matrix S,

following [73,141], we cast the semi-supervised clustering problem into a matrix completion

problem, i.e. filling out the missing entries in binary similarity matrix S based on the pairwise
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constraints in M and C (i.e. the partial observations of S) and the data matrix X.

Similar to the standard theory for matrix completion [15], we can accurately recover the

binary similarity matrix S because S is of low rank. We, however, note that the matrix com-

pletion problem discussed in this work is different from the previous studies of using matrix

completion for clustering [73, 141] in that we aim to complete the binary similarity matrix

S by utilizing both the observed entries in S and the input patterns in X. It will be shown

later, both theoretically and empirically, that by effectively exploring the input patterns

in X, the proposed algorithm is able to reduce the sample complexity for matrix comple-

tion from O(N [logN ]2) to O(logN), making it possible to apply the proposed algorithm to

cluster very large data sets.

5.2.2 Input Pattern Assisted Matrix Completion

In this subsection, we first present input pattern assisted matrix completion for semi-

supervised clustering. We then describe an efficient algorithm for solving the related convex

optimization problem.

In the standard matrix completion theory [15], to reconstruct a matrix Q of size N × N

from a subset of observed entries in ∆ ⊆ [N ] × [N ], we solve the following optimization

problem

min
Q∈RN×N

|Q|tr s. t. P∆(P ) = P∆(S) (5.1)

where | · |tr is the trace norm, and R∆(S) : RN×N 7→ RN×N is a linear operator that maps
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a matrix S to a new matrix P∆(S) given by

[P∆(S)]i,j =


Si,j (i, j) ∈ ∆

0 (i, j) /∈ ∆

According to [15], with a high probability, matrix Q can be perfectly recovered by solving the

optimization problem in (6.6) if the number of observed entries in ∆ isO(µ(Q)2r(Q)N [logN ]2),

where r(Q) is the rank of Q and µ(Q) is the coherence measure of Q. In the case of binary

similarity matrix S, it is easy to verify that the coherence measure µ(S) is bounded by√
N/[Nminr] and the rank of S equals to the number of clusters r. As a result, the number

of pairwise constraints required for perfectly recovering the binary similarity matrix S is

O(κN [logN ]2), where κ = N/Nmin. When data points are evenly distributed over clusters,

we observe that the number of pairwise constraints required by matrix completion increases

at least linearly in the number of data points to be clustered, making it unscalable to large

data sets.

We address this limitation by developing a matrix completion approach that explicitly incor-

porates the data matrix X into the matrix completion process. Let Z = (z1, . . . , zk) include

the first k left singular vectors of X, where k ≥ r. We make the following crucial assumption

about the relationship between X and S:

A3 {ui}ri=1 lie in the subspace spanned by {zi}ki=1 ,

a similar assumption used by the spectral clustering algorithm [101]. Using assumption A3,

we can write S as S = ZMZ>, where M ∈ Rk×k. Following the theory of matrix completion,

69



we obtain the optimal M by solving the following optimization problem:

min
M∈Rk×k

|M |tr (5.2)

s. t. PΩ(ZMZ>) = PΩ(S)

where Ω ⊆ [N ] × [N ] includes all the observed entries in S derived from the pairwise con-

straints in M and C.

The following theorem shows the perfect recovery result for (6.7).

Theorem 3. Let µ(Z) be the coherence measure for matrix Z given by

µ(Z) = max
1≤i≤N

n

k
|[ZZ>]i,i|2 (5.3)

Define

µ0 = max

(
µ(Z),

√
N

rNmin

)
. (5.4)

For fixed β > 2, define a and B as

a =
1

2
(1 + log2 k − log2 r) (5.5)

B =
512β

3
µ0rk lnN (5.6)

Then, under assumption A3 with a probability 1−4(a+1)N−β+1−2aN−β+2, M∗ = Z>SZ

is the unique optimizer to (6.7) provided |Ω| ≥ aB.

Remark: Compared to the standard matrix completion theory, the sample complexity of
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input pattern assisted matrix completion is reduced from O(rN [logN ]2) to O(k logN logN)

if µ0 = O(1). Thus, if k = Ω(r) and the number of clusters r is small, Theorem 3 implies

that O(logN) pairwise constraints are needed in order to obtain the perfect clustering result,

provided assumption A3 holds and the coherence measure µ0 is small.

Evidently, A3 is a strong assumption that usually does not hold in real world applications.

We thus relax this assumption by assuming that the cluster membership vectors {ui}ri=1

can be well approximated by the top k singular vectors of X. More specifically, we define the

projection operator Pk as Pk = ZZ>, and the projection errors for the cluster membership

vectors as

E2 = max
1≤i≤r

1

N2
‖ui − Pkui‖2F (5.7)

Instead of assuming E = 0 as assumption A3, we assume that E is small enough to allow for

an accurate recovery of the binary similarity matrix S. Under this assumption, we modify

the optimization problem in (6.7) as follows

min
M∈Rk×k

|M |tr +
C

2

∥∥∥PΩ(ZMZ>)− PΩ(S)
∥∥∥2

F
(5.8)

where parameter C > 0 is introduced to balance the tradeoff between finding the low rank

matrix M and fitting the observed pairwise constraints. The following theorem shows that

the binary similarity matrix S can be accurately recovered by (6.8) if (i) the approximation

error E is small and (ii) |Ω|, the number of pairwise constraints, is sufficiently large.

Theorem 4. Let M̂ be the optimal solution to (6.8) and Ŝ = ZM̂Z be the reconstructed

similarity matrix. For a fixed β > 2, with a probability 1− 4(a+ 1)N−β+1 − 2aN−β+2, we
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have

‖Ŝ − S‖F ≤ ν(k, r)E

where

ν(k, r) = 6
(√

2k + 4
√
r
) (

3 +
√
r
)

provided |Ω| ≥ aB and C ≥ 1/[
√
rE ]

As indicated by the above theorem, with a sufficiently large number of pairwise constraints,

we have ‖Ŝ − S‖F ∝ E , implying a small difference between Ŝ and S when the cluster

membership vectors can be well approximated by the top k singular vectors of X.

Let M̂ be the optimal solution for (6.8). The estimated binary similarity matrix is given by

Ŝ = ZM̂Z>. Since |Ŝ − S|F is small and the eigenvectors of S correspond to the cluster

membership vectors, we expect the first r eigenvectors of Ŝ reveal the clustering structure

of the data. As a result, we apply the spectral clustering algorithm to find the best data

partition, i.e. we first compute the top r eigenvectors of Ŝ, and then run the k-means al-

gorithm over the computed eigenvectors. To improve the computational efficiency, we apply

the spectral clustering algorithm proposed in [25] that reduces computational cost by the

matrix sparsification technique [122] and the Nystrom approximation [51].

We finally discuss how to efficiently solve the optimization problem in (6.8). We exploit the

fast stochastic subgradient descent (FSGD) method developed in [4]. Define

L(M) =
C

2

∥∥∥PΩ(ZMZ>)− PΩ(S)
∥∥∥2

F
.
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Algorithm 1 Efficient Stochastic Subgradient Descent for Solving the Optimization Prob-
lem (6.8)

1: Input:
• Z ∈ RN×k: first k left singular vectors of X
• C > 0: loss function parameter
• r: number of clusters
• T : number of iterations
• ηt: step size

2: Initialization: U0 = 0k×r, Σ0 = 0r×r, V0 = 0k×r
3: for t = 0, . . . , T − 1 do
4: Generate a k × r probing matrix H
5: Set Ût+1 = [UtΣt, Bt], where Bt = (UtV

>
t + C · Z>(RΩ(ZMZ> − S))Z)H.

6: Set V̂t+1 = [Vt − ηtH]

7: QR factorization of Ût+1: Ût+1 = QURU
8: QR factorization of V̂t+1: V̂t+1 = QV RV
9: Compute K = RUR

>
V

10: SVD decomposition of K: K = M̃Σ̄t+1Ñ
>

11: Set Ūt+1 = QUM̃ and V̄t+1 = QV Ñ
12: Ut+1 = Ūt+1(1:k,1:r)
13: Σt+1 = Σ̄t+1(1:r,1:r)
14: Vt+1 = V̄t+1(1:k,1:r)

15: M (t+1) = Π(Ut+1Σt+1V
>
t+1)

16: end for

At each iteration, the proposed algorithm samples a subset of rows from the binary similarity

matrix S by introducing a probing matrix H. It then computes an unbiased estimate of the

gradient ∇L(Mt), denoted by ∇̃L(Mt), based on the sampled rows. Given the unbiased

estimate of gradient, solution Mt is updated by Mt+1 = Π
(
M ′t+1 = Mt − η∇̃L(Mt)

)
. Here,

Π(A) is a soft thresholding function and is defined as Π(A) =
∑r
i=1 max(λi − 1, 0)aia

>
i ,

where (ai, λi), i = 1, . . . , r are the top r eigenvectors and eigenvalues of A. Algorithm 1 shows

the detailed steps of the proposed algorithm, where the notation U(1:k, 1:r) represents the

sub-matrix of U that includes the first k rows and the first r columns of U .
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5.3 Theoretical Analysis

In this analysis, we will focus on the result for the noisy case, namely where the cluster

membership vectors can be well approximated by the top k singular vectors of X although

they do not lie in the subspace spanned by the top k singular vectors. This is a more general

case and the perfect recovery result in Theorem 3 follows immediately from Theorem 4 by

setting E = 0.

We need to define a few notations before presenting our analysis. We define two linear

operators PT : RN×N 7→ RN×N and P
T⊥ : RN×N 7→ RN×N as follows:

PT (A) = PUA+ APU − PUAPU (5.9)

P
T⊥(A) = (Pk − PU )A(Pk − PU ) (5.10)

where PU = UU> and Pk = ZZ>. The coherence measurement µ for binary similarity

matrix S is given by

µ(S) =
N

r
max

1≤i≤N
|PUei|2 ≤

N

rNmin
(5.11)

As a result, we have the following inequality for µ0 defined in (5.4)

µ0 = max

(
µ(Z),

N

rNmin

)
≥ max(µ(Z), µ(S))

Our strategy is to first identify the deterministic conditions for the optimal solution M∗ =

Z>SZ to be close to M̂ , and then confirm that these deterministic conditions will hold with
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high probability.

Theorem 5. Under the assumptions

1. the number of pairwise constraints is sufficiently large, i.e.

|Ω| >
512µ2

0r(k − r) lnN

3
(5.12)

2. there exists a dual matrix Y ∈ RN×m satisfied the following condition

PΩ(Y ) = Y,

‖PT (Y )− UU>‖ ≤
√

r

2k
, (5.13)

‖P
T⊥(Y )‖ ≤ 1

2

3. for any nonzero F ∈ RN×N satisfying F = PkFPk, we have

‖PT (F )‖F ≤ γ‖P
T⊥(F )‖F + 2‖PΩ(F )‖F , (5.14)

where γ is given by

γ = 4µ0(k − r)

√
2 logN

3|Ω|
(5.15)

Then, by setting C = 1√
rE ,, we have

|S − Ŝ|F ≤
[
6
(√

2k + 4
√
r
) (

3 +
√
r
)]
E

Proof. Define S∗ = Z>M∗Z and F = ZM̂Z>− S∗. Evidently, we have F = PZFPZ . Using
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the condition in (5.14), we have

‖PT (F )‖F ≤ γ‖P
T⊥(F )‖F + 2‖PΩ(F )‖F

Let U⊥ be the eigenvectors of P
T⊥(Z). Evidently, column vectors in U⊥ are orthogonal to

the column vectors in U . We have

|M̂ |tr = |Ŝ|tr ≥ 〈S∗ + Z,UU> + U⊥U
>
⊥ 〉

≥ |S|tr − |S∗ − S|tr + 〈Z,−Y + UU> + U⊥U
>
⊥ 〉

≥ |S∗|tr − 2
√

2r‖S∗ − S‖F

+〈F,UU> − PT (Y ) + U⊥U
>
⊥ − PT⊥(Y )〉

≥ |M∗|tr − 2
√

2rE + ‖PT (F )‖F ‖UU> − PT (Y )‖F

+ (1− ‖PT (Y )‖) ‖P
T⊥(F )‖F

≥ |M∗|tr + ‖P
T⊥(F )‖F

(
1

2
− γ
√

r

2k

)
−2

√
r

2k
‖PΩ(F )‖F − 2

√
2rE

When

|Ω| >
512µ2

0r(k − r) logN

3

we have

|M̂ |tr ≥ |M∗|tr +
‖P

T⊥(F )‖F
4

−2

√
r

2k
‖PΩ(F )‖F − 2

√
2rE
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Since

L(M̂) =
C

2
‖PΩ(ZM̂Z> − S)‖2F

≥ C

2
(‖PΩ(S∗ − S)‖F − ‖PΩ(Z)‖F )2

and

C ≥ 1√
rE
,

it is easy to verify that

‖PΩ(Z)‖F ≤ (12 + 2
√
r)
√
rE

and therefore

‖P
T⊥(Z)‖ ≤ 4

(
2

√
r

2k
‖PΩ(Z)‖F + 2

√
2rE +

C

2
rE2
)

≤ 24
√
rE
(
3 +
√
r
)

As a result, we have

‖Z‖F ≤ ‖PT (Z)‖F + ‖P
T⊥(Z)‖F

≤ (γ + 1)‖P
T⊥(Z)‖F + 2‖PΩ(Z)‖F

≤
[
6
(√

2k + 4
√
r
) (

3 +
√
r
)]
E

Thus finishes the proof.

The following two theorems are developed to confirm that the conditions specified in Theo-

rem 5 hold with a high probability.
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Theorem 6. With a probability 1−4N−β+1,for any Z 6= 0 satisfying Z = PUZPU , we have

‖PT (Z)‖F ≤ γ‖P
T⊥(Z)‖F + 2‖PΩ(Z)‖F

where γ is given in (5.15), provided |Ω| ≥ Ω0 and |Ω1| ≤ Ω0.

To verify if there exists a matrix Y that satisfies the condition in (5.14), we follow [18]

and construct Y as follows. We randomly select qΩ0 entries from Ω, and divide the selected

entries into q subsets of equal size, denoted by Ω1, . . . ,Ωq, with

|Ωi| = Ω0, i = 1, . . . , q.

We generate a sequence of Yt, t = 1, . . . , q as follows

Yt =
N2

Ω0

t∑
i=1

PΩi
(Wi)

where W1 = UU> and Wt+1 is defined inductively as

Wt+1 = PT (UU> − Yt)

= Wt −
N2

Ω0
PTPΩt

(Wt)

=

(
PT −

N2

Ω0
PTPΩt

PT

)
Wt

We construct Y as the last element of the sequence, i.e. Y = Yq. Evidently, we have

Y = PΩ(Y ). The following theorems show that Y satisfies the other properties specified

in (5.14)
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Theorem 7. With a probability 1− 2qN−β+1, we have

‖PT (Y )− UU>‖ ≤
√

r

2k

if q ≥ a.

Theorem 6 and Theorem 7 follows directly from the analysis from [106]. Thus we omit the

proofs in this thesis.

5.4 Experiments

In this section, we first conduct a simulated study to verify our theoretical claim, i.e. the

sample complexity of the proposed semi-supervised clustering algorithm is only logarithmic

dependence on N . We then compare the proposed algorithm to the state-of-the-art algo-

rithms for semi-supervised clustering on several benchmark datasets.

5.4.1 Baselines, and Parameter Settings

Baselines. We compare the proposed semi-supervised clustering algorithm to the following

six state-of-the-art algorithms for semi-supervised clustering, including three constrained

clustering algorithms and three distance metric learning algorithms. The three constrained

clustering algorithms are (a) MPCK-means, the metric pairwise constrained k-means al-

gorithm [12], (b) CCSKL, constrained clustering by spectral kernel learning [88], and (c)

PMMC, pairwise constrained maximum margin clustering [144]. The three state-of-the-art
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distance metric learning algorithms are (d) DCA, the discriminative component analy-

sis [63], (e) LMNN, the large margin nearest neighbor classifier [130], and (f) ITML, the

information theoretic metric learning algorithm [36]. In order to examine the effectiveness

of pairwise constraints for clustering, we also include the baseline method, referred to as

Base, that directly applies the spectral clustering algorithm to cluster data points without

any constraints. We refer to the proposed semi-supervised clustering algorithm as Matrix

Completion based Constraint Clustering, or MCCC for short.

Evaluation and Parameter Settings. Normalized mutual information (NMI for short) [29]

is used to measure the coherence between the inferred clustering and the ground truth cat-

egorization. To determine the parameter C in (6.8), we follow the heuristic used in Sections

3.3 and 4.3 that chooses the best C that results in a balanced cluster distribution. Two

criteria are used in determining the values for k. First, k should be small enough to make

the Algorithm 1 efficient. Second, k should be reasonably large to make the projection errors

relatively small. In our experiments, we set k = min(100, d), where d is the dimensionality

of the datasets.

5.4.2 Experiment with Synthesized Data

We first conduct experiments with simulated data to verify that under the assumption

A3, the proposed semi-supervised clustering algorithm can perfectly recover the true data

partition with only O(logN) sampled pairwise constraints. To this end, for a fixed N , the

number of data points to be clustered, we create a partition of five clusters of equal size.

Let ui ∈ {0, 1}N , i = 1, . . . , 5 represent the cluster membership vectors. The target matrix
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Figure 5.1 The plot of the smallest number of pairwise constraints (PCs) needed for perfect
recovery. The correlation coefficient computed by the linear fit is 0.992, indicating a linear
dependence of sample complexity in log n.

to be recovered is S =
∑5
i=1 uiu

>
i . We construct the input pattern matrix Xsyn by first

generating a Gaussian random matrix G ∈ R5×15, with Gi,j drawn independently from a

Gaussian distribution N (0, 1), and setting Xsyn = UG, where U = (u1, . . . ,u5). We vary

N in range {5, 000, 10, 000, 20, 000, 50, 000, 10, 0000}. For each N , we search for the smallest

number of pairwise constraints that results in the perfect partition (i.e. NMI = 1). Figure 5.1

shows that the number of required constraints increases linearly in logN , thus verifying that

the sample complexity is logarithmic in the number of data points to be clustered.

Another advantage of the proposed algorithm is its scalability to large datasets since it only

requires solving an optimization problem involving a small (k×k, k = Ω(r)) matrix. Table 5.1

summarizes the running time of recovering the synthetic data Xsyn of different sizes, with

the number of observed pairwise entries set to be the minimum required for perfect recovery.

We observe that even for N = 100, 000, it takes the proposed semi-supervised clustering

algorithm less than an hour.
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Table 5.1 Running time (in s) for recovering synthetic data of different size

N 5K 10K 20K 50K 100K
CPU time 24.0 77.1 217 1, 086 3, 429

5.4.3 Experiment with Benchmark Datasets

We then evaluate the proposed semi-supervised clustering algorithm on multiple benchmark

datasets. They are (i) Mushrooms database1 that contains 8, 124 mushrooms belonging to

2 classes: poisonous or edible; (ii) RCV1 M2 database, a subset of the RCV1 corpus [82],

that is comprised of 4, 923 documents belonging to the categories “C15” and “GCAT”.;

(iii) COIL5 database, a subset of the larger COIL100 database [98], that is comprised of

360 images belonging to 5 objects; and (iv) Segment database2 that contains 2, 310 random

segmentations of 7 outdoor images, (v) USPS M5 and L5 databases, that are two subsets of

images from the USPS handwritten dataset [68]. Among them, “USPS M5” consists of the

first five categories of USPS dataset and has a total of 5, 427 images. “USPS L5” consists

of the last five categories and includes 3, 871 images in total, (vi) MNIST4k database that

is a subset of the MNIST handwritten digits data set [81]. The subset contains the widely

used first 4, 000 images which belong to 10 classes, (vii) 20 Newsgroups database3 which

contains 18, 774 documents belonging to 20 news categories, and (viii) ImageNet data set,

a subset of the larger ImageNet database [39], that is comprised of 6, 408 images belonging

to 7 categories (i.e. tractor, horse cart, bench, blackberry, violin, saxophone, and hammer).

Details of these nine datasets are given in Table 5.2.

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
2http://archive.ics.uci.edu/ml/datasets/Image+Segmentation/
3http://qwone.com/˜jason/20Newsgroups/
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Table 5.2 Description of Datasets

Name #Instances #Features #Clusters
Mushrooms 8, 124 112 2
RCV1 M2 4, 923 29, 992 2
COIL5 360 1, 024 5
Segment 2, 310 19 7
USPS M5 5, 427 256 5
USPS L5 3, 871 256 5
MNIST4k 4, 000 784 10
20 Newsgroups 18, 774 61, 188 20
ImageNet 6, 408 1, 000 7

We vary the number of randomly sampled pairwise constraints from 2, 000, 4, 000 to 6, 000

for each data sets. We note that we did not run experiments with smaller numbers of pairwise

constraints because our theoretical analysis shows that the proposed algorithm is effective

only when the number of constraints is sufficiently large. All the experiments are performed

on a PC with Xeon 2.40 GHz processor and 64.0 GB memory. Each experiment is repeated

five times, and the performance averaged over five trials is reported.

Table 6.1 summarizes the performance of the proposed semi-supervised clustering algorithm

and the baseline algorithms. We first observed that although all the semi-supervised clus-

tering algorithms significantly outperform the Base method with sufficiently large numbers

of pairwise constraints, generally speaking, the distance metric based algorithms outperform

the constrained clustering algorithms. We conjecture that this may be due to the fact that

the number of pairwise constraints is large enough to learn a good distance metric such that

data points of the same class will be separated by a small distance and data points from

different classes are separated by a large distance. For the Mushrooms, RCV1 M2, COIL5

and USPS M5 databases, we observe that MCCC, the proposed semi-supervised clustering

algorithm, achieves very high NMI values (> 0.9) and outperforms all the baseline methods
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when the number of constraints is relatively large (i.e. 4, 000 and 6, 000). Since the Base

method can achieve high NMI scores (> 0.5) on these datasets without utilizing any pair-

wise constraints, we conjecture that these datasets satisfy our assumption, i.e., the cluster

membership vectors can be well approximated by the top eigenvectors of the data matrix.

Among such data sets, the experimental results for Mushrooms dataset is very encouraging

since only 4, 000 pairwise constraints are needed to achieve more than 0.99 NMI. This only

accounts for about 0.012% of all possible pairwise constraints. In contrast, for the datasets

20 Newsgroups and ImageNet, the Base method yields very low NMI scores (i.e. 0.221 for

20 Newsgroups and only 0.148 for ImageNet). Thus it is very likely that the cluster mem-

bership vectors of them do not lie in the space spanned by the top singular vectors of their

features. For these two challenging datasets, the proposed algorithm yields similar clustering

performance as the baseline methods when the number of constraints is relatively small (i.e.

2, 000 and 4, 000) and starts to significantly outperform the baseline methods when the num-

ber of constraints reaches 6, 000. This result demonstrates that even when the assumption

is violated, the proposed algorithm is still able to yield good clustering performance with

sufficiently large numbers of constraints.

5.5 Conclusion and Discussion

In this chapter, we propose a framework for semi-supervised clustering based on input pattern

assisted matrix completion. The key idea is to cast clustering into a matrix completion

problem, and solve it efficiently by exploiting the correlation between input patterns and class

assignments. A stochastic subgradient descend method is employed to optimize the convex
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optimization problem. Since k is usually very small (≤ 100), directly computing the SVD of

k × k matrix M is also very fast. This meets our observation that a standard subgradient

descend method can also be very efficient. Under the assumption that cluster membership

vectors can be well approximated by the top few singular vectors of the data matrix, we

show that with an overwhelming probability, the proposed algorithm can accurately recover

the true data partition with only O(logN) randomly sampled pairwise constraints. Our

empirical study verifies the effectiveness of the proposed algorithm.

We note that the proposed semi-supervised clustering framework is related to the semi-

crowdsourced clustering framework proposed in Chapter 4. Both of them address the problem

of combining features of objects with the pairwise constraints to enhance the clustering

performance. The major difference between them is that the semi-crowdsourced clustering

uses human annotations that are collected from a small subset of n (n � N) objects. As

a result, it only needs O(n log2 n) reliable pairwise constraints to accurately recover the

true data partitions. In contrast, the proposed semi-supervised clustering approach exploits

a small amount of noiseless pairwise constraints sampled from all of N objects. Then the

true data partition can be almost perfectly recovered with only O(logN) randomly sampled

pairwise constraints. The proposed semi-supervised clustering can also be applied to the

setting of semi-crowdsourced clustering. By randomly sample a set of object pairs and ask

crowd workers for annotation, we can generate a N×N partially-observed pairwise similarity

matrix with all the observed entries to be reliable pairwise constraints that are agreed upon

by many crowd workers. Then the proposed semi-supervised clustering framework can be

used to solve the problem of semi-crowdsourced clustering.
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Table 5.3 Average Clustering performance of the proposed semi-supervised clustering algo-
rithm (MCCC) and the baseline algorithms (Base, MPCKmeans (MPCK) [12], CCSKL [88],
PMMC [144], DCA [63], LMNN [130], and ITML [36]) on nine datasets with 2, 000, 4, 000
and 6, 000 randomly sampled pairwise constraints (PCs)

Datasets #PCs MCCC Base MPCK CCSKL PMMC DCA LMNN ITML

Mushrooms
2, 000 0.982 0.540 0.645 0.652 0.876 0.873 0.980 0.971
4, 000 0.991 0.540 0.684 0.786 0.898 0.977 0.982 0.981
6, 000 0.998 0.540 0.713 0.754 0.923 0.988 0.983 0.984

RCV1 M2
2, 000 0.844 0.702 0.792 0.814 0.821 0.811 0.802 0.815
4, 000 0.897 0.702 0.846 0.884 0.895 0.867 0.874 0.883
6, 000 0.932 0.702 0.903 0.894 0.886 0.917 0.928 0.924

COIL5
2, 000 0.914 0.582 0.909 0.624 0.897 0.818 0.925 0.931
4, 000 0.973 0.582 0.970 0.668 0.955 0.824 0.970 0.968
6, 000 1.000 0.582 1.000 0.737 0.992 0.846 0.998 1.000

Segment
2, 000 0.750 0.651 0.693 0.721 0.718 0.723 0.714 0.706
4, 000 0.755 0.651 0.701 0.695 0.734 0.741 0.744 0.740
6, 000 0.774 0.651 0.718 0.684 0.748 0.760 0.751 0.743

USPS M5
2, 000 0.901 0.681 0.864 0.869 0.793 0.872 0.890 0.884
4, 000 0.923 0.681 0.883 0.886 0.831 0.896 0.919 0.914
6, 000 0.944 0.681 0.901 0.910 0.887 0.916 0.928 0.931

USPS L5
2, 000 0.811 0.521 0.792 0.798 0.789 0.793 0.802 0.808
4, 000 0.830 0.521 0.809 0.817 0.804 0.821 0.819 0.825
6, 000 0.862 0.521 0.833 0.838 0.820 0.848 0.860 0.858

MNIST4k
2, 000 0.784 0.435 0.769 0.773 0.760 0.783 0.789 0.785
4, 000 0.817 0.435 0.794 0.802 0.785 0.803 0.809 0.811
6, 000 0.841 0.435 0.823 0.821 0.805 0.829 0.831 0.832

20 Newsgroups
2, 000 0.244 0.221 0.243 0.235 0.254 0.164 0.213 0.225
4, 000 0.293 0.221 0.246 0.280 0.291 0.252 0.267 0.270
6, 000 0.323 0.221 0.301 0.313 0.311 0.289 0.302 0.299

ImageNet
2, 000 0.196 0.148 0.192 0.099 0.171 0.213 0.194 0.218
4, 000 0.255 0.148 0.172 0.191 0.214 0.258 0.249 0.255
6, 000 0.279 0.148 0.202 0.213 0.256 0.271 0.269 0.265
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Chapter 6

A Constant-Time Algorithm for

Dynamic Semi-Supervised

Clustering

One condition that is often overlooked by existing semi-supervised clustering is that side

information can be generated sequentially and dynamically, a practical setting in numerous

real-world applications such as social network and E-commerce system analysis. Given a

set of new pairwise constraints, classical semi-supervised clustering algorithms need to re-

optimize their objective functions over all the data points and constraints, prohibiting them

to efficiently update the data partitions. In this chapter, we propose an efficient dynamic

semi-supervised clustering framework that casts the clustering problem into a searching prob-

lem in a feasible convex space, i.e., a convex hull with its extreme points being an ensemble

of multiple data partitions. According to the principle of ensemble clustering, the optimal

partition lies in that convex hull and it can be uniquely represented by a low-dimensional

simplex vector. This enables us to carry out the dynamic semi-supervised clustering prob-

lem as an updating procedure of the simplex vector based on the newly received pairwise

constraints. We then derive an efficient algorithm that is able to update the simplex vec-
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tor (clustering result) in a constant time. Our empirical studies with multiple real-world

benchmark datasets show that the proposed algorithm outperforms several state-of-the-art

semi-supervised clustering approaches with visible performance gain and significantly re-

duced running time.

The remainder of the paper is organized as follows. In Section 6.1, we describe the settings

and introduce the motivation of the proposed dynamic semi-supervised clustering framework.

Section 6.2 presents the proposed framework for dynamic semi-supervised clustering followed

by an efficient solution using convex searching. We summarize the results of our empirical

studies in Section 6.3. Section 6.4 concludes with the future work.

6.1 Introduction

Despite the progress of semi-supervised clustering, one issue that is often overlooked is how to

efficiently update the clustering results when the pairwise constraints are dynamic, i.e., new

pairwise constraints are generated sequentially. This condition is closely related to numerous

real-world applications. For example, one common application in social network analysis is to

group user communities based on users’ profiles as well as their social connections. If we treat

user profiles as features, and connections between users as pairwise constraints, then this

application is essentially a semi-supervised clustering problem. Note that user connections in

social networks are changing all over the time, it requires an efficient updating of user groups

given newly generated connection links. In addition, similar situation also occurs in various

real-world E-commerce platforms, which usually group items or customers according to their
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attributes (features) and dynamic co-purchasing histories (pairwise constraints).

We note that although the problem of clustering evolving has been extensively studied, no

previous study has investigated the efficiency issue in the dynamic semi-supervised clustering

setting. For example, [13, 28] studied the problem of updating clustering results based on

various user feedbacks. However, these algorithms are less scalable since they often need

to learn distance metrics iteratively. In addition, dynamic network clustering [21, 21, 26, 26,

77, 89, 114] studied the problem of community evolving when a network to be clustered is

changing continuously. However, they only use link information to guide clustering procedure

and ignore the important attributes of the data points.

To address the issue of clustering updating, we propose an efficient dynamic semi-supervised

clustering framework for large scale applications. The key idea is to cast the large-scale semi-

supervised clustering problem into a problem of searching in a low-dimensional convex space.

More specifically, the proposed algorithm consists of two components: (i) an offline step for

constructing a low-dimensional convex space, and (ii) an online step for efficiently updating

clustering results when new pairwise constraints are generated. In the first component, we

employ the ensemble clustering technique [113] to generate m ensemble partitions of all the

data points to be clustered. Note that the m ensemble partitions can form a convex hull [61]

with m extreme points. According to the principle of ensemble clustering [52, 113, 117], the

optimal data partition can be approximated by a linear combination of the m ensemble

partitions, indicating that the optimal partition should lie in the inner space of that convex

hull. Since the inner space of a convex hull can be spanned by the linear combinations of the

extreme points, the problem of finding the optimal data partition is equivalent to deriving the
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combination weights, denoted as a m-dimensional simplex vector γ 1. Given new pairwise

constraints generated at time t, this enables us to efficiently update data partitions by

computing an updated simplex vector γt from γt−1. Therefore, in the second component of

the proposed framework, we design an efficient updating scheme that is able to update the

simplex vector in a constant time. Note that the new data partition should be somewhat

similar to the old data partition. We cast the simplex updating problem into a learning

problem that aims to learn a vector γt that is close to γt−1, and also consistent with the

new pairwise constraints. We then present an efficient solver for our learning problem.

Compared to the existing approaches of semi-supervised clustering, the proposed algorithm

has the following two advantages: (i) by exploring the ensemble clustering technique, the

proposed algorithm is able to exploit the strength of different ensemble partitions and at the

same time, compensate for their limitations; (ii) by casting the problem of clustering n data

points into the problem of learning a m-dimensional vector γ, the proposed algorithm is

computationally efficient and the time complexity of updating γ is irrelevant to the number

of data points to be clustered. This enables us to update large-scale clustering results in an

extremely efficient way. To evaluate the performance of the proposed algorithm, we conduct

empirical studies on several large-scale real-world datasets. The experimental results and the

comparison with peer methods verify both the efficiency and effectiveness of the proposed

algorithm.

1A simplex vector is a vector whose elements are non-negative and the summation of all
the elements equals to 1
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6.2 Semi-supervised Clustering with Dynamic Constraints

In this section, we first present a more general framework for semi-supervised clustering,

then discuss the proposed efficient dynamic semi-supervised clustering algorithm.

6.2.1 Semi-supervised clustering

Let X = (x1, . . . ,xN ) be a set of N data points to be clustered, where each data point

xi ∈ Rd, i ∈ [N ] is a vector of d dimensions. Let Mt be the set of must-link constraints

generated till time t, where each must-link pair (xi,xj) ∈Mt implies that xi and xj should

be in the same cluster. Similarly, let Ct be the set of cannot-link constraints generated till

time t, where each cannot-link pair (xi,xj) ∈ Ct implies that xi and xj should belong to

different clusters. For the ease of presentation, we also define Ωt = Mt ∪ Ct to include all

pairwise constraints generated till time t. Similar to most studies on data clustering, we

assume that the number of clusters r is given as a priori. Throughout this paper, we use

a binary matrix F ∈ {0, 1}N×r to represent the result of partitioning N data points into

r clusters, where Fij = 1 indicates that xi is associated with the j-th cluster. We further

denote F as the set of all possible clustering results

F = {F ∈ {0, 1}N×r : F>∗iF∗j = 0 ∀i 6= j,
∑

Fk∗ = 1 ∀k}.

Let κ(x,x′) be a kernel function used to measure the similarity between two data points x

and x′. Let K = [κ(xi,xj)] ∈ RN×N+ be the kernel matrix, and let Ki,∗ be the i-th row

vector of K. The goal of semi-supervised learning is to find the clustering result that is
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consistent with both the kernel similarities in K and pairwise constraints in Ωt. To measure

the discrepancy between the kernel similarity K and a clustering result F , we define the

distance between K and F as

d(K,F ) =
N∑
i=1

F>i,∗K
−1Fj,∗ = tr

(
F>K−1F

)
(6.1)

As indicated by the above measure, the smaller the distance d(K,F ), the better the con-

sistency between the clustering result F and the similarity matrix K. We note that an

alternative approach is to measure the distance by tr(F>LF ) where L = diag(K1) −K is

the graph Laplacian.

To measure the inconsistency between the clustering result F and pairwise constraints, we

introduce two loss functions, one for must-links and one for cannot-links. More specifically,

given a must-link (xi,xj) ∈Mt, we define the loss function `−(Fi,∗, Fj,∗) as

`−(Fi,∗, Fj,∗) = ‖Fi,∗ − Fj,∗‖22 (6.2)

Similarly, given a cannot-link (xi,xj) ∈ Ct, we define the loss function `+(Fi,∗, Fj,∗) as

`+(Fi,∗, Fj,∗) = ‖Fi,∗ + Fj,∗‖22 (6.3)

We note that a loss function similar to (6.3) has been used in label propagation with cannot-

links [92]. The justification of using loss function `+(·, ·) for cannot-links is provided in the

following proposition.

Proposition 1. Let a ∈ Rd+ be a fixed vector. Let b∗ be the minimizer to the following
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optimization problem

min
b∈Rd+,‖b‖q≤R

`+(a,b)

where q ≥ 1. Then we have b∗ ⊥ a.

As indicated by Proposition 1, by minimizing the loss function `+(Fi,∗, Fj,∗), the resulted

solution, under no other constraints, will satisfy Fj,∗ ⊥ Fi,∗, implying that xi and xj are

assigned to different clusters.

Using the distance measure d(K,F ) and the loss functions, we can cast semi-supervised

clustering into the following optimization problem

min
F∈F

∑
(xi,xj)∈Mt

`+(Fi,∗, Fj,∗) +
∑

(xi,xj)∈Ct

`−(Fi,∗, Fj,∗)

s. t. d(F,K) ≤ ε, (6.4)

where the threshold ε decides the level of consistency between the clustering results and the

kernel similarity.

The main challenge of dynamic semi-supervised clustering arises from the fact that pairwise

constraints are dynamically updated over time. A naive approach is to solve the optimiza-

tion problem in (6.4) from the scratch whenever pairwise constraints are updated. A more

efficient approach is to explore the fact that only a small portion of pairwise constraints

are updated at each time, leading to a small change in the clustering result. Based on this

intuition, we can use the existing solution as an initial solution to the optimization prob-

lem with updated constraints. Despite the simplicity, this approach can significantly reduce

the running time, and has been widely used in clustering social networks with dynamic up-
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dates [21, 26]. Although this simple approach reduces the number of iterations due to the

appropriate initialization, it still needs to solve the optimization problem in (6.4), which is

computationally expensive when the number of data points N is very large. To address this

challenging issue, we propose an efficient dynamic semi-supervised clustering algorithm that

it highly attractive for clustering large-scale data sets.

6.2.2 A Constant Time Algorithm for Dynamic Semi-supervised

Clustering

The proposed algorithm is based on the key observation that the number of different clus-

tering results F in the subspace ∆ = {F ∈ F : d(K,F ) ≤ ε} is not large when ε is suf-

ficiently small and the eigenvalues of K follow a skewed distribution, where d(K,F ) =

tr(F>K−1F ).

To this end, we denote by λ1, . . . , λN the eigenvalues of K ranked in the descending order,

and by v1, . . . ,vN the corresponding eigenvectors. {λi} follows a q-power law if there exists

constant c such that λk ≤ ck−q, where q > 2. The following lemma summarizes an important

property of K when its eigenvalues follow a q-power law.

Lemma 2. Define V = (v1, . . . ,vN ) and ξ = V >x for a unit vector |x| = 1. If x>K−1x ≤

ε, we have

|ξ|1
|ξ|2
≤
√
εN

(
1 +

2

q − 2

)

provides that eigenvalues of K follow a q-power law.

94



Proof. Since

x>K−1x =
N∑
i=1

λ−1
i ξ2

i ≤ ε,

we have

ξk ≤
√
cεk−q/2, k = 1, . . . , N

and therefore

|ξ|1 ≤
√
cε

N∑
k=1

k−q/2 ≤
√
εc

(
1 +

2

q − 2

)

We complete the proof by using the fact |x|2 = 1 and c ≤ n.

The above lemma shows that when the eigenvalues of K follow a power law, V x is a `1 sparse

vector if x>K−1x ≤ ε. The observation provides the key foundation for our analysis.

In order to show that the number of significantly different partitions in ∆ is small, we first

consider the simple case where the number of classes is 2. In this case, we can simplify the

domain ∆ as

∆2 =
{

v ∈ {−1,+1}N : v>K−1v ≤ Nε
}

We define θN (ρ) the maximum number of partitions in ∆2 such that the difference between

any two partition vectors v1 and v2 is at least ρN . The theorem below bound θN (ρ).

Theorem 1.

θN (ρ) ≤
(

2d

s

)Cs/[2ρ]

where C is an universal constant and

s =
√
εN

(
1 +

2

q − 2

)
(6.5)

95



Proof. We first notice that |v|2 =
√
N . As the first step, we relax ∆2 into ∆′2 as follows

∆′2 =
{

x ∈ Rd : |x|2 ≤ 1,x>K−1x ≤ ε
}

Define γN (K, δ) the maximum number of vectors such that the distance between any two

vectors is at least δ. Since the distance between any two partitions that differs by at least

ρN entries is at least
√

2ρ

θN ≤ γN

(
∆′2,

√
2ρ
)

Using Lemma 3.4 from [104] to bound, we have

γn

(
∆′2,

2√
N

)
≤ exp

(
Cs

2ρ
log

2d

s

)
=

(
2d

s

)Cs/[2ρ]

where s is defined in (6.5).

It is straightforward to extend the above result for two-way clustering into multiple-way

clustering. Define θN (ρ; r) be the maximum number of partitions in ∆ for r-way clustering

such that the difference between any two partitions is at least ρN . Then we have

θN (ρ; r) ≤
(

2d

(r − 1)s

)Cs(r−1)/[2ρ]

Based on the above results, there is a relatively small number of significantly different clus-

tering results in the subspace ∆. Hence, to improve the computational efficiency of dynamic

semi-supervised clustering, a natural thought is to pre-compute all the possible clustering

results in ∆, and find the best clustering result in ∆ that is consistent with most of the
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dynamically updated pairwise constraints. The main shortcoming of this approach is that it

is computationally infeasible to identify all the different clustering results in ∆.

To address this problem, we propose to construct a convex hull ∆̃ ⊂ F to approximate

different clustering results in ∆. The key advantage of using convex hull approximation is

that all the solutions in ∆̃ can be represented by a linear combination of the extreme points

of the convex hull. As a result, instead of searching for the best clustering result, we only

need to compute the linear combination weights. Since the number of combination weights

to be determined equals to the number of extreme points, which is much smaller than the

number of data points to be clustered, it is significantly more efficient to compute combi-

nation weights than to directly estimate the best clustering result. More specifically, the

proposed learning process is comprised of an offline step and an online step. In the offline

step, we compute multiple partitions for the data points in X using the ensemble clustering

technique. These clustering results will be used to construct the convex hull ∆̃ that approx-

imates the solutions in ∆. In the online step, an efficient learning algorithm is developed to

update the combination weights based on the newly received pairwise constraints. Below, we

describe in detail the two key steps of the proposed algorithm for dynamic semi-supervised

clustering.

6.2.3 Offline Step: Ensemble Clustering

In this step, we generate a convex hull ∆̃ ⊂ F using the technique of ensemble cluster-

ing [113]. Ensemble clustering is motivated by the fact that different clustering algorithms

have their own merits, as well as their own limitations. Thus no single clustering algorithm
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is universally better than others for all types of data. Using the idea of ensemble clustering,

we will create m different partitioning results of the data, and construct a convex hull based

on the computed data partitions to approximate the feasible clustering results in ∆.

According to [54], multiple partitions of a same dataset can be generated by (i) running dif-

ferent clustering algorithms [48], (ii) running the same algorithm with different initializations

and parameters [47,116], (iii) clustering via sub-sampling the data repeatedly [96,118], and

(iv) clustering via projecting the data onto different subspaces [42,48]. In order to efficiently

generate m ensemble partitions for a large-scale data set, we follow the last approach by first

randomly selecting m different subsets of attributes in X and then applying the approximate

kernel k-means algorithm [27] to each subset of selected features to create m data partitions.

We denote by P = {P1, P2, . . . , Pm} the m realigned ensemble partitions processed by the

Hungarian algorithm [78], where each partition Pl ∈ F , l ∈ [m] divides X into r disjoint

subsets. Using m partitions of dataset X , we then construct a convex hull

∆̃ =

{
F | F =

m∑
i=1

γiPi,γ � 0, 1>γ = 1

}
,

where each clustering solution F is represented by a simplex vector γ ∈ Rm. Two key

observations are made here: (i) by generating multiple partitions using a kernel k-means

algorithm, which is shown to be closely related to spectral clustering [40], all the ensemble

partitions should satisfy the condition

d(K,Pi) ≤ ε, ∀i ∈ [m].

This indicates that the constructed convex hull ∆̃ is a subspace of ∆; and (ii) according to the
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Figure 6.1 The offline step: generate a convex hull using the technique of ensemble clustering

widely used median partition based ensemble clustering approaches [52,113,117], the optimal

data partition should be similar to all the ensemble partitions P1, . . . , Pm, indicating that

the optimal partition should lie in the inner space of ∆̃ and it can be uniquely represented

by a m-dimensional simplex vector γ.

Using the convex hull representation, we cast a problem of clustering N data points into the

problem of finding a m-dimensional simplex vector γ. More specifically, instead of finding

the best F , we will solve the following optimization problem to find the optimal γ

min
γ∈Rm+

∑
(xi,xj)∈Mt

`+(Fi,∗, Fj,∗) +
∑

(xi,xj)∈Ct

`−(Fi,∗, Fj,∗)

s. t. γ>1 = 1, F =
m∑
i=1

γiPi (6.6)

Since m = O(1) is a small number independent of the data size N , the optimization problem

in (6.6) can be solved efficiently with a constant running time 1. When no pairwise constraints

1We note that the ensemble partitions are computed offline and therefore do not affect
the efficiency of online computation, which is the main concern of this work
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is generated, the clustering problem reduces to a standard ensemble clustering problem. The

clustering result in terms of simplex γ, denoted as γ0, can be simply set to ( 1
m , . . . ,

1
m)

or computed by some existing ensemble clustering algorithms such as [113, 117]. Figure 6.1

shows the conceptual framework of the offline step. In the next subsection, we introduce the

online step for efficiently updating the data partition (i.e. the simplex vector) when pairwise

constraints are dynamically updated over time.

6.2.4 Online Step: Efficient Updating Simplex Vector

Although the formulation in (6.6) already significantly reduces the overall computational

cost, it is still undesirable to solve the optimization problem in (6.6) from the scratch when-

ever new pairwise constraints are introduced. This is particularly true if for most of the time,

only a few constraints are added to the system. In this subsection, we develop an online step

to efficiently update the simplex vector when the number of newly added constraints is small.

To simplify the presentation, we divideMt, the set of must-link constraints received till time

t, into two subsets: Ma
t that includes all the must-link constraints received before time t

and Mb
t that includes the new must-link constraints added at time t. Similarly, we divide

the cannot-link set Ct into Cat and Cbt . We also denote by γ1, . . . ,γT the sequence of simplex

vectors computed based on the updated constraints.
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Using the above notation, we rewrite the optimization problem in (6.6) as

min
γ∈Rm+

Lat (F (γ)) + Lbt(F (γ))

s. t. γ>1 = 1, F =
m∑
i=1

γiPi (6.7)

where

Lat (F ) =
∑

(xi,xj)∈Ma
t

`+(Fi,∗, Fj,∗) +
∑

(xi,xj)∈Cat

`−(Fi,∗, Fj,∗)

Lbt(F ) =
∑

(xi,xj)∈Mb
t

`+(Fi,∗, Fj,∗) +
∑

(xi,xj)∈Cbt

`−(Fi,∗, Fj,∗)

Since γt−1 approximately minimizes the objective Lat (F (γ)), we can approximate Lat (F (γ))

as

Lat (F (γ)) ≈ Lat (F (γt−1)) + λ‖γ − γt−1‖2

and as a result, the optimization problem in (6.7) is further simplified as

min
γ∈Rm+

Lbt(F (γ)) + λ‖γ − γt−1‖2

s. t. γ>1 = 1, F =
m∑
i=1

γiPi, (6.8)

where parameter λ is introduced to balance between two objectives, i.e., ensuring that the

learned γ is close to γt−1, and also consistent with the new pairwise constraints. Compared

to (6.7), the main advantage of using (6.8) is that it only involves the new constraints that

are added to the system at time t and does not need to store and work with the constraints
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received before time t.

In the following, we discuss how to efficiently update the simplex vector with the new pair-

wise constraints. By representing F as a linear combination of {Pi}mi=1, we rewrite the

optimization problem (6.8) as

minγ∈Rm+
f(γ) =

∑
(xi,xj)∈Mb

t

||
m∑
k=1

γk[Pk(i, :)− Pk(j, :)]||2

+
∑

(xi,xj)∈Cbt

||
m∑
k=1

γk[Pk(i, :) + Pk(j, :)]||2

+λ||γ − γt−1||2 (6.9)

s. t. 1>γ = 1,

where Pk(i, :) and Pk(j, :) represent the i-th and the j-th row of the matrix Pk. The opti-

mization problem (6.9) can be efficiently solved by a gradient descend method. Specifically,

we update the γ by

γ = P∆(γt−1 − η∇f(γt−1)),

where η is a step size and P∆ : Rm → Rm is a projection operator that takes a m-dimensional

vector as input and outputs its projected simplex vector, as described in [43].

Note that ∇f(γt−1) has a closed-form solution as

∇f(γt−1) = 2(
∑

(xi,xj)∈Mb
t

γt−1U (ij)U (ij)> +
∑

(xi,xj)∈Cbt

γt−1V (ij)V (ij)>

+λγt−1 − λγt−2), (6.10)
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where U (ij) and V (ij) are two m× r matrices, satisfying

U (ij)(k, :) = Pk(i, :)− Pk(j, :), V (ij)(k, :) = Pk(i, :) + Pk(j, :).

Then the optimal solution of γ is given by

γ = P∆{γt−1[Im − 2η(
∑

(xi,xj)∈Mb
t

U (ij)U (ij)> +
∑

(xi,xj)∈Cbt

V (ij)V (ij)>)]

−2λη(γt−1 − γt−2)}, (6.11)

where Im is the m×m identity matrix. Since we can precompute U (ij)U (ij)> and V (ij)V (ij)>

for each pair (i, j) offline and store the results in a server, we can efficiently update γ using

equation (6.11).

Despite a low time complexity of the above updating scheme, it however requires a space

complexity of O(N2m2) to store all the matrices, which is expensive when the number of

objects N is large. In the following, we discuss how to reduce the expensive storage cost by

relaxing the optimization procedure.

Note that the k-th row of the matrix U (ij) should equal to either of these two cases: (i)

containing all zero entries if the ensemble partition Pk put object i and object j in the

same cluster, or (ii) containing one positive entry (=2) , and one negative entry (=−2) if

the ensemble partition Pk put object i and object j in different clusters. Then the diagonal

elements of the matrix U (ij)U (ij)> either equal to 0 or equal to a positive value (=8). Thus
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the matrix

Im − 2η
∑

(xi,xj)∈Mb
t

U (ij)U (ij)>

essentially suggests us to assign less weights to the ensemble partitions that mistakenly

assign the object i and object j in different clusters when they share a must-link connection.

Likewise, the matrix

Im − 2η
∑

(xi,xj)∈Cbt

V (ij)V (ij)>

essentially suggests us to assign less weights to the ensemble partitions that mistakenly assign

the object i and object j in the same cluster when they share a cannot-link constraint. After

updating γ from γt−1, the ensemble partitions that are consistent with the new pairwise

constraints are assigned with larger weights, while the ensemble partitions that are not

consistent with the new pairwise constraints are assigned with smaller weights. This leads

to a relaxed updating procedure

γ = P∆{(1− 2λη)γt−1 + 2ληγt−2 − ηγt−1 ◦
∑

(xi,xj)∈ {Mb
t∪C

b
t }

a(ij)} (6.12)

where a(ij) is a m-dimensional vector with the k-th element equaling to 1 if the ensemble

partition Pk is not consistent with the pairwise constraints (xi,xj), and 0 otherwise.

Given the learned simplex vector γ, we can compute a soft labeling matrix as a linear

combination of the ensemble partitions

P = γ1P1 + γ2P2 + . . .+ γmPm.
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Figure 6.2 The online step: efficiently update clustering results when new pairwise con-
straints are generated

Then the hard partition can be easily obtained by rounding, i.e., assign the i-th data point

to the k-th cluster if Pik is the largest entry in the i-th row of the matrix P . The time

complexity to update the simplex vector γ is only O(m), which is a constant time irrelevant

to the number of data points. Although we need to go through each row of the matrix P for

final partitioning, it is still very efficient since we only need to find the largest element in

each row of P . Figure 6.2 depicts the steps of online updating.

6.3 Experiments

In this section, we present extensive empirical evaluations of the proposed dynamic semi-

supervised clustering algorithm, namely Constrained Clustering by Convex Searching (CCCS

for short). In particular, we aim to address the following questions in our study:

1. How does the number of extreme points m influence our performance?

2. Does the proposed semi-supervised clustering method outperform the state-of-the-art

algorithms for semi-supervised clustering?
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3. Is the proposed semi-supervised clustering method significantly more efficient than the

state-of-the-art algorithms for semi-supervised clustering?

6.3.1 Experimental Setup

Datasets. In order to examine the effectiveness of the proposed dynamic semi-supervised

clustering algorithm, nine public benchmark datasets are used in the experiments:

• USPS [68] is a widely used handwritten digit database containing 9, 298 handwritten

images. Each image is a 256 dimensional vector that belongs to one of 10 classes.

• RCV1 is a subset of text documents from the RCV1 corpus [82]. It contains 193, 844

documents that belongs to one of 103 classes.

• 20 News 1 is a well-known database that contains 18, 774 documents belonging to 20

news categories.

• BlogCatalog is a social blog directory dataset that was crawled from BlogCatalog2

by Wang et. al [127]. This dataset contains a total of 19, 664 bloggers that are grouped

into 60 categories. Each blogger is represented as a 5, 413-dimensional vector with each

dimension denoting one semantic tag.

• TDT2 3 is a text dataset that contains 9, 394 documents belonging to one of 30

classes.

1http://qwone.com/˜jason/20Newsgroups/
2http://www.blogcatalog.com
3http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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• MNIST is also a well-known handwritten digits database1. It contains a total of

70, 000 handwritten digits which belong to one of 10 classes.

• YouTube [103] is a dataset retrieved using the YouTube Data API2 from Oct. 31st,

2011 to Jan. 17th, 2012. This dataset has 2, 860, 264 users and their comments on

6, 407 YouTube videos. All the users are belong to one of the two imbalanced classes:

177, 542 spam users or 2, 682, 722 non-spam users.

• BBC 3 is a database consisting of BBC news during the years of 2004 and 2005. It

contains 2, 225 news with 9, 636 distinct words, categorized into five topics: business,

politics, tech, sport, and entertainment.

• Network Intrusion [112] is a database containing 4, 897, 988 patterns representing

TCP dump data of network traffic for a local-area network (LAN). Each pattern is a

50-dimensional vector that belongs to one of 10 different classes.

Parameter Selection. In order to generate m ensemble partitions, we need to randomly

sample d̃ out of d features in each time. Two criteria are used in determining the values

of d̃. First, d̃ should be small enough to make the ensemble partitions diverse. Second, d̃

should be reasonably large to get good enough ensemble partitions since the quality of the

starting point γ0 is rely on the quality of m ensemble partitions. In our experiments, we set

d̃ = [d/10]. The parameter λ in problem (6.9) is introduced to balance the tradeoff between

the change of the simplex vector and the fitness over the new pairwise constraints. Note that

1http://yann.lecun.com/exdb/mnist/
2http://code.google.com/apis/youtube/getting_started.html
3http://mlg.ucd.ie/datasets/bbc.html
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the term ||γ − γt−1||2 is upper bounded by 2, while the term

∑
(xi,xj)∈Mb

t

||
m∑
k=1

γk[Pk(i, :)− Pk(j, :)]||2

and ∑
(xi,xj)∈Cbt

||
m∑
k=1

γk[Pk(i, :) + Pk(j, :)]||2

are upper bounded by 2 × |Mb
t | and 2 × |Cbt |, respectively. In order to make two terms

comparable, we set λ to be |Mb
t ∪ Cbt |, the number of pairwise constraints generated at time

t.

6.3.2 Parameter Sensitivity of m

A key factor that influences the performance of the proposed algorithm is the number of

ensemble partitions m, which introduces a trade-off between clustering quality and efficiency.

As m increases, the clustering quality tend to improve at the cost of increased computational

time. In order to analyze how the clustering performance is influenced by different m, we

first conduct experiments with two benchmark datasets, BBC and Network Intrusion. We

choose these two datasets since they are the smallest and the largest testbeds in our study.

By this means, we can also analyze whether the selection of m is influenced by the data size

N . To this end, for both of the two datasets, we begin with the unsupervised data partition

γ0 generated from m = {10, 20, 30, 40, 50} different ensemble partitions. Then we randomly

generate 100 pairwise constraints based on the ground truth information of the data sets in

each tier, and apply the proposed CCCS algorithm to update the partition. We repeat this
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(a) BBC data set (b) Network Intrusion data set

Figure 6.3 NMI vs. the number of ensemble partitions m = {10, 20, 30, 40, 50} with different
number of pairwise constraints.

step for 10 times, until the total number of pairwise constraints achieves 1, 000. Figure 6.3

shows how the performance of the proposed dynamic semi-supervised clustering algorithm

is changed with different m and different number of pairwise constraints.

From this figure, we first observe that the clustering performance keeps increasing with more

and more pairwise constraints being provided. In addition, the clustering performance was

improved when m increases. We conjecture that the performance gain may be due to the fact

that a larger m indicates a larger searching space and also a larger overlap between the the

true searching space ∆ and the relaxed space ∆̃. In addition, a larger number of ensemble

partitions usually provide a more diverse clustering results, leading to a higher chance to

find data partitions that are consistent with most of the pairwise constraints. Furthermore,

the performance of the proposed semi-supervised clustering algorithm gradually stabilizes

as m increases to 50. This is also consistent with the intuition since when the number of

ensemble partitions are already large enough, adding more partitions cannot provide more

information since it is likely that the new data partitions are coincide with some existing

partitions. This provides us a guidance to appropriately choose m: on one hand, m should

be reasonably large to provide a diverse and large enough convex searching space, while on
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the other hand, m should be relatively small to reduce the computational cost to update the

partitions. In our experiments, we set m = 50 for all the remaining experiments.

6.3.3 Comparison with Other Baseline Algorithms

To examine the effectiveness and efficiency of the proposed semi-supervised clustering algo-

rithms, we compare it to the following seven state-of-the-art algorithms for semi-supervised

clustering, including three constrained clustering algorithms and four distance metric learn-

ing algorithms. The three constrained clustering algorithms are (a) MPCK-means, the

metric pairwise constrained k-means algorithm [12], (b) CCSKL, constrained clustering by

spectral kernel learning [88], and (c) PMMC, pairwise constrained maximum margin clus-

tering [144]. The four state-of-the-art distance metric learning algorithms are (d) RCA, the

relevant component analysis [6], (e) DCA, the discriminative component analysis [63], (f)

LMNN, the large margin nearest neighbor classifier [130], and (g) ITML, the information

theoretic metric learning algorithm [36]. The code for the baseline algorithms was provided

by their respective authors. For a fair comparison, all the parameters used in the baseline

algorithms were their suggested values (if applicable).

In our experiments, we begin with 100 randomly generated pairwise constraints, denoted as

tier t1. In each of the following tier, another set of 100 randomly sampled pairwise constraints

are generated and all the semi-supervised clustering algorithms are called to update the

data partition given the newly generated pairwise constraints. Specifically, we rerun all the

baseline semi-supervised clustering algorithms by combining the new pairwise constraints

with the old ones. We repeat such steps from tier t1 to tier t10, finally leading to a total of
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Table 6.1 Average CPU time (in s) for updating the partition in each tier. (N/A means
that the clustering task cannot be accomplished by the algorithms within 5 hours.)

Datasets CCCS MPCK CCSKL PMMC RCA DCA LMNN ITML
20 News 0.6 9.7 N/A N/A 489 377 N/A N/A
RCV1 1.3 64 N/A N/A 926 601 N/A N/A
YouTube 1.7 49 N/A N/A 177 132 N/A N/A
Network Intrusion 2.8 31 N/A N/A 148 99 N/A N/A

1, 000 randomly sampled pairwise constraints. All the experiments are performed on a server

with Intel Xeon 2.4 GHz processor and 64 GB of main memory. Each experiment is repeated

ten times, and the average clustering performances are reported in Figure 6.4.

We first observe that, compared to all the baseline algorithms, the proposed dynamic semi-

supervised clustering algorithm CCCS yields the best performance for most of the datasets

(USPS, RCV1, 20 News, BlogCatalog, MNIST, Youtube and Network Intrusion). Specifically,

when given a small number of the pariwise constraints, our method outperform the compared

methods with significant performance gain. This is because that by generating a convex hull

from a set of ensemble partitions, we dramatically reduce the possible searching space and it

is expected that all the inner points in that convex hull can correspond to reasonably good

data partitions. Also, by computing the starting point γ0 based on the idea of ensemble

clustering, it is not surprising that γ0 should already be close to the optimal solution. Thus

a simple locally search is good enough to recover the optimal partition.

In addition to superior performance, the proposed CCCS algorithm is also extremely ef-

ficient, requiring much less running time compared to all the baseline algorithms. Table

6.1 summarizes the average running time to update the data partitions in the four largest

datasets, namely 20 News, RCV1, YouTube and Network Intrusion. We mark the results as

N/A if an algorithm cannot output the results within 5 hours. By comparing the results in
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Table 6.1, we observe that the running time of the proposed dynamic semi-supervised clus-

tering algorithm to update the partition is significantly less than all the baseline algorithms.

In particular, the results show that even for updating the partition of about 5 million data

points, it only takes the proposed algorithm less than 3 seconds.

6.4 Conclusions

In this chapter, we propose a dynamic semi-supervised clustering algorithm that is able

to efficiently update the clustering results when new pairwise constraints are generated.

The key idea is to cast the clustering process into the problem of searching in a feasible

clustering space, i.e., a convex hull generated from multiple ensemble partitions. Based on

ensemble clustering, the optimal partition should lie in the inner space of this convex hull.

Since every inner point of a convex hull can be uniquely represented by a simplex vector,

the dynamic semi-supervised clustering problem can be reduced to the problem of learning

a low-dimensional vector. Given a new set of pairwise constraints, we derive an efficient

updating scheme that is able to learn an optimal simplex vector in a constant time. Our

empirical studies conducted on multiple real-world datasets verify both the effectiveness and

efficiency of the proposed algorithm.
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(a) USPS data set (b) RCV1 data set (c) 20 News data set

(d) BlogCatalog (e) TDT2 data set (f) MNIST data set

(g) Youtube data set (h) BBC data set (i) Network Intrusion data set

Figure 6.4 Average clustering performance of the proposed dynamic semi-supervised cluster-
ing algorithm (CCCS) and the baseline algorithms (MPCKmeans (MPCK) [12], CCSKL [88],
PMMC [144], RCA [6] DCA [63], LMNN [130], and ITML [36]) from tier t1 to t10 on nine
datasets.
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Chapter 7

Conclusions and Future Directions

In this thesis, we study the issue of data clustering with pairwise constraints. Three important

problems are considered, namely crowdclustering, semi-crowdsourced clustering, and semi-

supervised clustering. In this chapter, we first review our main contributions to each problem,

then point out a few possible directions for future research..

7.1 Summary of Main Results

In previous chapters, we have presented a matrix completion based approach for addressing

the problem of crowdclustering. In addition, we solved the problem of semi-crowdsourced

clustering based on the proposed robust distance metric learning approach. Furthermore,

we developed an input pattern assisted matrix completion to address the semi-supervised

clustering problem. Finally, we proposed a semi-supervised clustering algorithm that can

efficiently update clustering results when new pairwise constraints are generated. In below,

we summarize each of them.

• In Chapter 3, we present a matrix completion based framework to solve the problem of

crowdclustering. To address the issue of high noise levels in crowdsourced annotations,
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we first identify a subset of pairwise constraints that are agreed upon by most crowd

workers. We then use these reliable pairwise constraints as the seed to derive the full

similarity matrix by exploiting a matrix completion algorithm. Then the final data

partition can be obtained by applying a spectral clustering algorithm to the completed

similarity matrix. Different from the previous Bayesian crowdclustering approach that

requires a sufficiently large number of manual annotations to discover the hidden fac-

tors, the proposed algorithm needs only a small number of manual annotations to

obtain an accurate data partition. In addition, by filtering out the uncertain pairwise

constraints collected from crowd workers, the proposed crowdclustering algorithm yield

more robust clustering result.

• In Chapter 4, we focus on the problem of semi-crowdsourced clustering. This is moti-

vated by a practical consideration that the classical crowdclustering problem can only

cluster objects when their manual annotations are available. This significantly limits

its application to large scale clustering problems since it is not feasible to have each

object manually annotated by multiple workers when the number of objects is large.

To address this issue, we at first randomly sample a small subset of objects for human

annotation, and construct a partially observed similarity matrix based on the reliable

annotations. We then exploit a matrix completion algorithm to recover the similarity

matrix, and finally learn a linear similarity function to compute the similarities be-

tween all the objects. To the best of our knowledge, it is the first semi-crowdsourced

clustering approach been proposed.

• In Chapter 5, we aim to address two main shortcomings with the existing semi-

supervised clustering algorithms. First, most semi-supervised clustering algorithms
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suffer from non-convexity optimization problems, leading to only locally optimal clus-

tering results. Second, none of the existing approaches analyze the theoretical guarantee

on sample complexity problem, i.e., what is the minimal number of pairwise constraints

needed to accurately recover the underlying true partitions? To address such issues, we

propose a framework for semi-supervised clustering based on the input pattern assisted

matrix completion. Under the assumption that cluster membership vectors can be well

approximated by the top few singular vectors of the data matrix, we cast the problem

of semi-supervised clustering into a convex matrix completion problem. We then solve

it efficiently by exploiting the stochastic subgradient descent method. Our theoretical

analysis shows that only O(logN) pairwise constraints are needed to accurately re-

cover the true cluster partition of N objects. The logarithmic dependence on N makes

the proposed algorithm particularly suitable for clustering large-scale data sets.

• In Chapter 6, we focus on the problem of efficiently updating data partitions upon

receiving some newly generated pairwise constraints, which is a common case in nu-

merous real-world applications. Traditional semi-supervised clustering algorithms are

not suitable to handle this problem since they need to re-optimize their objective func-

tions over all the data points subject to all the pairwise connections, rendering high

computational costs when data sets are large. To address this issue, we proposed an

efficient algorithm that cast the problem of semi-supervised clustering into a searching

problem in a convex hull, whose extreme points are an ensemble of multiple data par-

titions. We show that the time complexity of this algorithm is irrelevant to the number

of data points to be clustered. This enables us to update large-scale clustering results

in an extremely efficient way.
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7.2 Future Directions

In addition to sample complexity and time complexity discussed in this thesis, both crowd-

clustering and semi-supervised clustering still remain many interesting open questions that

worth to be considered in the future. We discuss three such research directions.

• Spammers and multi-objectives detection in crowdclustering

Note that the quality of crowdsourced annotations is usually very difficult to control. As

indicated by [141], more than 80% of crowdsourced pairwise labels can be inconsistent

with the true cluster assignment. Very often that the crowdsourced annotations can

be dominated by spammers, who tend to assign labels randomly. A large amount of

spammers can significantly increase the labeling costs, and also degrade the overall

quality of the crowdsourced annotations. Thus how to separate spammers from good

users is a very useful and important application.

Think along this line, even among the good users, people may not share only one view

to partition the objects. Instead, they can have multiple objectives to cluster the data

with all of them meaningful and valid. A typical example is the clustering of face images

as illustrated in chapter 1. Both the clustering criteria that based on age and based on

gender are equally valid, although their clustering results are orthogonal to each other.

Compared to spammer detection, learning multiple objectives of workers is probably

a even more challenging problem. This is due to the reason that spammers tend to

assign random labels since they usually annotate instances without truly looking at

them. This enables us to detect spammers by considering the consistency of their

annotations. In contrast, the objectives of crowd workers are hidden and unknown,
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and they need to be learned from the crowd annotations. However, since the number of

pairwise constraints provided by each worker is usually limited, it becomes a problem of

learning multiple hidden variables based on sparse labels. This is definitely a challenge

but very interesting research problem.

• Active data clustering by matrix completion

In all the aforementioned matrix completion based clustering algorithms, we assume

that the pairwise constraints are generated randomly. This is consistent with the clas-

sical matrix completion theory [20] that the observed entries are randomly sampled.

However, it is expected that by actively selecting the most informative pairs of objects

for querying, we have chance to achieve an even lower sample complexity. The research

in this field may lead to a profound development to the theory of matrix completion.

• Semi-supervised clustering with dynamic instances

In chapter 6, we presented a dynamic semi-supervised clustering algorithm that is

able to efficiently update clustering results given new pairwise constraints. However,

in many real-world applications, both the instances and pairwise constraints can be

dynamic. Take Facebook as an example, on average 5 new accounts and hundreds of

connections are created in every second 1. This demands a semi-supervised clustering

algorithm that is able to update clustering results with both new instances and pairwise

constraints.

1http://www.iacpsocialmedia.org/Resources/FunFacts.aspx
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In order to prove Theorem 1, we aim to construct Q that satisfies the following conditions:

(a) Q = PS(Q), (b) PT (Q) = UV >, (c) ‖P
T>(Q)‖ < 1, (d) PΩ(Q) = γsgn(PΩ(A)), and (e)

|PΩc(Q)|∞ < γ. We first provide the following proposition.

Proposition 1. Let Ω be a set of m entries sampled uniformly from [N ]×[N ] according to the

Bernoulli model, and PΩ(Z) projects Z onto the subset Ω. Let β > 1. Assume m > m0, where

m0 = C2
Rµ0rnβ log n and CR is some positive constant. Then, with probability 1 − 3N−β,

for any Z ∈ T with PΩ(Z) = 0, we have Z = 0.

Let T be the space spanned by the elements of the form uky
> and xv>k , for 1 ≤ k ≤ r,

where x and y are arbitrary, and let T⊥ be the orthogonal complement to space T . First,

according to Theorem 2 of [23], when N > m0, where m0 is defined in Proposition 1, with

a probability at least 1− 3N−β , mapping PTPSPT (Z) : T 7→ T is one to one mapping and

therefore its inverse mapping, denoted by (PTPSPT )−1 is well defined. Similar to the proof

for Theorem 2 in [23], we construct the dual certificate Q as follows

Q = λsgn(N∗) + εΩ + PSPT (PTPSPT )−1(UV > + εT )

where εT ∈ T and εΩ = PΩ(εΩ). We further define

H = PSPT (PTPSPT )−1(UV >)

F = PSPT (PTPSPT )−1(εT )
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Evidently, we have PS(Q) = Q since Ω ⊂ S, and therefore (a) is satisfied. To satisfy (b)-(e),

we need

PT (Q) = UV > → εT = −PT (λsgn(N∗) + εΩ) (1)

‖P
T⊥(Q)‖ < 1→ µ(N∗) (γ + |εΩ|∞)

+ ‖P
T⊥(H)‖+ ‖P

T⊥(F )‖ < 1 (2)

PΩ(Q) = λsgn(N∗)→ εΩ = −PΩ(H + F ) (3)

|PΩc(Q)|∞ < λ→ ξ(M∗)(1 + ‖εT ‖) < λ (4)

Below, we will first show that there exist solutions to εT ∈ T and εΩ that satisfy conditions

(1) and (3). We will then bound |εΩ|∞, ‖εT ‖, ‖PT⊥(H)‖, and ‖P
T⊥(F )‖ to show that with

sufficiently small µ(N∗) and ξ(M∗), and appropriately chosen λ, conditions (2) and (4) can

be satisfied.

First, we show the existence of εΩ and εT that obey the relationships in (1) and (3). It is

equivalent to show there exists εT that satisfies the following relation

εT = −PT (λsgn(N∗)) + PTPΩ(H) + PTPΩPT (PTPSPT )−1(εT )

or

PTPS\ΩPT (PTPSPT )−1(εT ) = −PT (λsgn(N∗)) + PTPΩ(H)

Similar to the previous argument, when |S \Ω| = N−m > m0, with a probability 1−3N−β ,

PTPS\ΩPT (Z) : T 7→ T is one to one mapping, and therefore (PTPS\ΩPT (Z))−1 is well
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defined. Using this result, we have the following solution to the above equation

εT = PTPSPT (PTPS\ΩPT )−1 (−PT (λsgn(N∗)) + PTPΩ(H))

We now bound ‖εT ‖ and |εΩ|∞. Since ‖εT ‖ ≤ |εT |F , we will bound |ε|F . First, according

to Corollary 3.5 in [15], under the assumption of this theorem, when β = 4 and with a

probability 1−N−3, for any Z ∈ T , we have

∣∣∣P
T⊥PSPT (PTPSPT )−1(Z)

∣∣∣
F
≤ |Z|F .

Using this result, we have

|εΩ|∞ ≤ ξ(M∗) (‖H‖+ ‖F‖)

≤ ξ(M∗)
(

1 + |P
T⊥(H)|F + ‖εT ‖+ |P

T⊥(F )|F
)

≤ ξ(M∗) (2 + ‖εT ‖+ |εT |F )

≤ ξ(M∗) (2 + (2r + 1)‖εT ‖)

In the last step, we use the fact rank(εT ) ≤ 2r if εT ∈ T . We then proceed to bound ‖εT ‖

as follows

‖εT ‖ ≤ µ(N∗) (λ+ |εΩ|∞)
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Combining the above two inequalities together, we have

‖εT ‖ ≤ ξ(M∗)µ(N∗)(2r + 1)‖εT ‖+ 2ξ(M∗)µ(N∗) + λµ(N∗)

|εΩ|∞ ≤ ξ(B) (2 + (2r + 1)µ(N∗)(λ+ |εΩ|∞)

leading to

‖εT ‖ ≤
λµ(N∗) + 2ξ(M∗)µ(N∗)
1− (2r + 1)ξ(M∗)µ(N∗)

|εΩ|∞ ≤ 2ξ(M∗) + (2r + 1)λξ(M∗)µ(N∗)
1− (2r + 1)ξ(M∗)µ(N∗)

Using the bound for |εΩ|∞ and ‖εT ‖, we now check condition (2)

1 > µ(N∗) (λ+ |εΩ|∞) +
1

2
+
r

2
‖εT ‖

or

λ <
1− ξ(M∗)µ(N∗)(4r + 5)

µ(N∗)(r + 2)

For condition (4), we have

λ > ξ(M∗) + ξ(M∗)‖εT ‖

or

λ >
ξ(M∗)− (2r − 1)ξ2(M∗)µ(N∗)

1− 2(r + 1)ξ(M∗)µ(N∗)

To ensure that there exists λ ≥ 0 satisfies the above two conditions, we have

1− 5(r + 1)ξ(M∗)µ(N∗) + (10r2 + 21r + 8)[ξ(M∗)µ(N∗)]2 > 0
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and

1− ξ(M∗)µ(N∗)(4r + 5) ≥ 0

Since the first condition is guaranteed to be satisfied for r ≥ 1, we have

µ(N∗)ξ(M∗) ≤ 1

4r + 5
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[120] Sandro Vega-Pons and José Ruiz-Shulcloper. Clustering ensemble method for hetero-
geneous partitions. In CIARP, pages 481–488, 2009.
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