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ABSTRACT

Study Of Electronic Structures Of Solids With Strongly

Interacting Electrons

By

Yen-Sheng Su

This work contains studies of two classes of perovskite transition metal oxides.

The first class is the layered perovskite cuprates and the related nickelate. The second

class is the three dimensional perovskite manganites. Both model and ab initio

calculations are carried out for the two classes of systems. The dissertation is therefore

divided into the following four parts.

The first part is about the 3-band Hubbard model. The model is commonly used

for describing the electronic properties of the important Cqu layers in the crystals of

high-Tc superconducting cuprates, such as doped LazCuO4 and YBazCu307. The

straightforward perturbation expansion on the model taking tpd/epd (~0.36 for the

cuprates) as the small parameter does not converge. In this work, I Show that there exist

canonical transformations on the model Hamiltonian such that the perturbation expansion

based on the transformed Hamiltonians converges.

In the second part, crystal Hartree—Fock calculations are carried out for LazNiO4

and LaZCuO4. The results predict correctly that these two materials are antiferromagnetic

insulators, in contrast to the wrong predictions made by the density functional

calculations using the local spin density approximation (LSDA). The spin form factors of

the materials are also calculated. The results agree with previous theoretical works using



an embedded cluster model. The calculated spin form factor of LazCuO4 is consistent

with the few experimental data currently available, while the results for LazNiO4 show a

large discrepancy between theory and experiment. We question the accuracy of the

experimental results of LazNiO4 and call for more experiments to settle the issue.

In the third part, crystal Hartree-Fock calculations are carried out for LaMnO3.

Our main focus is on the magnetic and orbital orderings, the effect of the crystal

distortion from the cubic perovskite structure, and the analysis of the projected density of

states. In addition, we also find unexpected charge associated with the Mn ions. The

effective spin Hamiltonian obtained by mapping the energies of different magnetically

ordered states is consistent with experimental data of the spin wave dispersion, while it is

qualitatively different from that of a LSDA calculation which was also claimed to be

consistent with the experiment. We show that the current experimental accuracy is not

enough to distinguish these two theories.

In the fourth part, I report a study on possible extensions of the double-exchange

(DE) model for the doped manganites in the hope of understanding the recently observed

softening of the spin wave dispersion near the Brillouin zone edge. I also argue that most

models in the literature are flawed by assuming uncoupled normal mode vibrations of the

MnO6 octahedral clusters in the crystal. As a first trial, I consider several possible

electron-phonon couplings based on the single-band DE model. The results show that the

spin wave states are robust and the spin wave dispersion gets very slightly hardened in

the presence of the electron-phonon couplings. This suggests that the observed softening

of the spin wave dispersion may be beyond the scope of the single-band DE model.
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Chapter 1

Introduction

The fundamental physical law at the atomic length scale and above has long been

known; namely, the Schrodinger Equation with Coulomb interaction between charged

particles plus secondary relativistic corrections like spin-orbit coupling. For electronic

systems, a wonderful feature of the theory is that often the electrons can be treated as

non-interacting particles moving in an effective potential to a good approximation,

provided the proper statistics are obeyed. This approximation is a kind of mean-field

theory and is often called a single-particle picture, where the electron-electron interaction

is treated in an average way. In this picture, one first calculates the energy levels of an

electron in the presence of an effective potential. Then the states of a system with N

electrons will be just all possible configurations obtained by filling the N electrons in the

set of energy levels in different ways obeying the Pauli exclusion principle. For example,

the band theory of solids with periodic structures and the interpretation of the atomic

emission/absorption spectra by transitions of electrons between energy levels are two of

the most well known and successful single-particle theories.

Corrections to the single-particle picture are often called correlation or many-body

effects and cause only quantitative changes in many physical systems. However, in some

circumstances electron correlation can surprise us by leading systems to unexpected new

states or phases. The Mott insulator [1] and the fractional Quantum Hall effect [2] are

two of the famous examples. Simply put, correlation is probably the very source of most



of the radically new physics at the atomic level that we are still discovering everyday

even after the fundamental physical law was discovered so long ago in 1926 by E.

Schrodinger.

In this dissertation, I study the perovskite La-cuprate (and isostructural La-

nickelate) and La—manganite. Both have been the focus of intensive studies by many

researchers [3-4]. When properly doped with some elements, the cuprate reveals high-Tc

superconductivity and the manganite reveals the so-called colossal magnetoresistance.

The interesting physics of the two systems is generally believed to be dictated by the

strong interaction among the transition metal (Cu, Ni, Mn) 3d electrons and the oxygen

2p electrons. To understand the observed physical properties of these systems,

correlation effects must be taken into account to some extent. For both systems, I study

model Hamiltonians commonly used in the literature and also carry out ab initio

calculations using the crystal Hartree-Fock (HF) method. For the latter we use the

unrestricted HF method, which allows a sensible treatment of the ground state even when

correlation effects are large. The detailed motivation for the selection of different models

and the calculation methods will be given in the respective chapters.

In Chapter 2, I study the 3-band Hubbard model for cuprate and nickelate using a

perturbation approach called the effective Hamiltonian method. In Chapter 3, I carry out

crystal HF calculations for the cuprate and nickelate and compare various physical

quantities obtained with those from the Local Spin Density Approximation (LSDA) [5]

and those from an embedded cluster approximation [6]. In Chapter 4, I carry out the

crystal HF calculation for the manganite and compare the results with those of LSDA

calculations. Some quantities, like the order of the oxygen p band and the manganese d



band, and the charge of the manganese ions in the crystal, are found to be dramatically

different from those of LSDA calculations or those of the commonly conceived picture.

The significance of the discrepancy will be discussed. In Chapter 5, I report a study on

modified Double-Exchange models for the doped manganite motivated by the recent

intriguing experimental observation of phonon—induced softening of the spin wave

dispersion near Brillouin zone boundaries. In Chapter 6, some concluding remarks of the

work of this dissertation are given.



Chapter 2

Small-Bandwidth Perturbation Theory

for Highly-Covalent Mott Insulators"

2.1 Introduction

The question of how to set up a perturbation theory for Mott insulators like NiO,

KNiF3, Fe203, was considered in 1959 by P. W. Anderson [7]. The object was to take

advantage of the obviously localized property of the magnetic electrons to construct the

theory, where the interatomic overlap of localized orbitals is treated as the small

parameter. Such a theory leads to low-lying states that are governed by the Heisenberg

spin Hamiltonian, in leading order. At the time, it was known that most of the low-

temperature properties of these materials could be understood on the basis of such a

Hamiltonian.

Anderson, on considering how to determine the localized orbitals, stated that there

exist "exact" localized orbitals (orthogonal, and thus called Wannier functions) which

will make the perturbation theory converge well. These orbitals were required to be

nonmagnetic (spin-up and -down orbitals the same), as is natural, since the magnetic

properties were to be derived from the spin Hamiltonian resulting from the perturbation

theory (p.t.). Anderson gave an explicit prescription, namely Wannier functions derived

 

‘ This work has been published partially in “T. A. Kaplan, S. D. Mahanti, Y—S Su, and K. Kubo, J. Appl.

Phys. 79, 6433 (1996)” and partially in “Y-S Su, T. A. Kaplan, and S. D. Mahanti, Phys. Rev. B 56,

15596 (1997)”.



from Hartree-Fock theory in which the spins of the magnetic ions were all parallel. It

was noted. some time later [8] that there was an inconsistency with this, since Hartree-

Fock eigenstates with up and down spins differ in such a situation. [9] An alternative

approach was studied [8] based on the so-called Thermal Single Determinant

Approximation (TSDA) [10], a variational generalization of thermal Hartree Fock theory.

Solving this TSDA for non-magnetic localized solutions at sufficiently low temperature

amounted to minimizing the mean detenninantal energy, averaged over all spin

configurations of the magnetic ions, an approach adopted by Gondaira and Tanabe [11].

It was shown for a small cluster model [8,11] which we can call H-He-H (hydrogen-

helium—hydrogen) and for a 1-D crystal model [8] (the corresponding H-He chain) that

this TSDA choice indeed improved, quite dramatically, the convergence rate of

perturbation theory for the Heisenberg exchange parameter J, through 4th order in the H-

He overlap.

The overlap, or more precisely, the amplitude for cation-anion hopping, is small

in the highly ionic materials considered at the time, e.g. NiO, KNiF3, so the pi. was

expected to converge rapidly. For this reason higher order perturbations were not

investigated. However, materials that have recently become of interest in connection

with high-temperature superconductivity, namely the cuprates and the related LaQNiO4,

are thought to be much more covalent. Doubts about the validity of perturbation theory

in this connection, specifically for the 3-band Hubbard model of a Cqu plane (Fig. 2.1),

have been expressed [12-14]. And, in fact, later we have shown [15] that straightforward

perturbation theory does not converge, specifically for the version of the 3-band model



due to Hybertsen et al. [12], which is rather realistic for many physical observables [16],

and is quite similar to other versions of the 3-band model [17-20].

0 O O O O

O O O O O O O 0 O

[0 Copper 0 Oxygen]

Figure 2.1: CuO2 plane.

Clearly then it is of interest to try the TSDA approach to find new localized

orbitals, and to test the implied new perturbation expansion for convergence. In fact, the

question of convergence of p.t. within the 3-band model has been addressed [13,14], and

rapid convergence of a new p.t. was claimed. But the transformation in these works

involved both 1- and 2-body transformations. (Finding new localized orbitals is an 1-

body transformation.) It is important to understand how far one can go with the l-body

transformation alone, because of its relative conceptual simplicity and its historical

interest. This is the content of this chapter.

We have been motivated to explore these questions by difficulties in connection

with calculating the ground state spin density in the cuprates and LaQNiO4 [21,22]. The

type of perturbation theory discussed above, which in effect separates the spin and space

(or charge) degrees of freedom, might be the only hope at present of making tractable ab



initio calculations of this observable. This is due to the fact that the reduction of the

ordered spin due to zero-point or quantum spin fluctuations (QSF), which is large in these

cases, constitutes a macroscopic correlation effect. That is, (i) in principle it requires the

thermodynamic limit for its very existence, and therefore one needs very large systems to

estimate the QSF [23], and (ii) the wave function representing such a state requires a

linear combination of many Slater determinants. Thus, even with the remarkable

advances in computational many-body physics (e.g. Refs. 24 and 25), the present problem

is still beyond the reach of those approaches. Also, standard band-theoretic approaches

fail to capture essential physics (the local spin density approximation misses the

antiferromagnetism and insulating property of LaQCuO4 [26], and the Hartree-Fock

method (unrestricted) misses the QSF).

Since the work reported here involves calculations only for a small cluster, the

spin density of a crystal can't be addressed (the spin density in a finite cluster with an

even number of electrons is zero, since the ground state is a singlet). Instead we will be

investigating the Heisenberg exchange parameter J as an indicator of convergence of the

perturbation expansions. In Sec. 2.2 we define the Hamiltonian to be considered, review

effective-Hamiltonian perturbation theory, and the TSDA. In Sec. 2.3 we describe the

three types of single-particle transformations considered, which we call site localization,

cell localization, and no localization (the names are after the transformed ligand p

orbitals surrounding the magnetic cations), and find the best in each case according to the

TSDA. Also in this section, J is calculated to high order in p.t. to examine its

convergence properties. In Sec. 2.4 we carry out the particular 2-body transformation

suggested by the work of Ref. 13, for the special model they considered, as a check; we



also carry this out for the model of Hybertsen et al. [16]. A summary and conclusions are

given in Sec. 2.5. A brief overview of the results obtained can be seen by glancing at

Figs. 2.3, 2.5, 2.7, 2.9, 2.10 which show the non-convergent series of straightforward p.t.,

and the rather dramatic improvement obtained in each of the four modifications,

respectively.

2.2 The model, effective-Hamiltonian

perturbation theory, and TSDA

2.2.1 Model Hamiltonian

We consider the 3-band Hubbard Hamiltonian (sometimes referred to as the

Anderson lattice model) as parametrized by Hybertsen et al. [12,16]:

H=H,+HU+HK (2.1)

where

HI = a}: n,” +de Eager; +h.c.)+tpp Eager, +h.c.), (2.1a)

i <il>a <ll'>0’

d I d

HU =UdZniTnE]+UpZnfinlfl+UPdZni n1”, (2.1b)

i I <iI>

and

HK = KP, chgcfocgc; + K”, Zc,’;+c,’;.c,’.’;.c,’.’a . (2.1c)

<il>aa’ <Il'>00"



V+

cm creates a hole in a Wannier function W”. of type v at site i with spin 0,

10' i0 ia‘
n,” = Z n}; , n.” = cwcv The orbital at a copper site is dx2_y2; at each oxygen site there

is onep orbital. The parameter values are s= 3.6, tpd = -1.3, tpp = -0.65, Ud = 10.5, Up

= 4, Upd = 1.2, Kpd = -0.l8, Kpp = -0.04, all in eV [27]. Note that for the convenience

of having the d—p hopping parameters all the same, and similarly for the p-p hopping, as

in Eq. (2.1a), one has to set up the underlying Wannier firnctions in the way that they may

change signs under the crystal or cluster symmetry. The signs corresponding to orbital

phases are chosen as follows: if die—)9 exists at a particular Cu, then at the O's

immediately to its right and left (along the x-axis) the orbitals are px and -px

respectively; similarly, the orbitals at the nearest 0's below and above are py and —py

respectively. The remaining phases are determined by having the nearest neighbor d—p

overlap always negative. We limit ourselves to the case where the number of holes

equals the number of Cu sites, i.e. the Mott insulator limit.

2.2.2 Formal perturbation theory

The form of the perturbation theory used involves an effective Hamiltonian.

Given

W = E‘P , (2.2)

then the effective Hamiltonian Heffsatisfies

Hcfl(E)P‘IJ = EP‘I’, (2.3)

namely



Hcflw) = P{H+H[Q(E—H)Q]"H}P. (2.3a)

Here, P = 1-Q is a projection operator which projects ‘P onto a given subspace. The

"inverse of the corner" [28] G(E) E [Q(E-H)Q]'1 has to be understood as the matrix with

zeroes everywhere except in the Q-subspace, where the matrix is the inverse of the Q-

projection of E - H. Similarly, Q E Ql is the matrix with zeroes everywhere except for

the Q-subspace, where it is the unit matrix. We choose the P-subspace as that defined by

the ground states of some chosen unperturbed Hamiltonian H0, with eigenvalue E0.

Then PHQ = P(H0+V)Q = PVQ, and Eq. (2.3) can be rewritten as

P{V + VG(E)V}P? = (E PLP, (2.4)

where 6E = E-EO. Expanding G(E) in powers of (E -V, and substituting the full left—

hand side of Eq. (2.4) for oEP‘I’ everywhere it appears in the expansion, Eq. (2.4)

becomes [29]

P{H0 + V + VGOV + (VGOVGOV — VGOZVPV) + - - -}P\I’ = EP‘I’. (2.5)

where

G. = [Q(Eo — Hoar".

Straightforward perturbation theory takes the terms in H that involve hopping (tpd

and tpp) plus the exchange terms (HK) as the perturbation V (and H0 = H — V). We

studied [15] this p.t. in the case of a crystal (infinite Cqu plane), where we obtained the

first three terms (3rd, 4th and 5th order) for the nearest Cu—Cu exchange parameter in the

Heisenberg Hamiltonian [30]. We also studied this p.t. on the cluster CuzO7, using the

10



embedding scheme described in Ref. 16, and showed that the corrections to J increase in

magnitude and oscillate in sign through 14th order [15]. See Fig. 2.3 below.

2.2.3 TSDA

To help in choosing transformations which are to define new p.t.'s (i.e. new

choices of V), we will appeal to the TSDA [10] which, essentially, finds the “best” 1-

particle wave fimctions according to the free energy variational principle (for the

canonical ensemble)

F(p) a tr(pH) + ,6“tr(plnp) Z — ,6" lntr exp(—,BH). (2.6)

Here p is any density operator and ,8" is Boltzmann's constant times absolute

temperature. Writing ,0: Zn” exp(—,BHa) with Z“ 2 tr exp(-flHa), one can consider H,

as an approximate Hamiltonian. The TSDA is defined by taking Ha as a general real

function of the occupation number operators for some complete orthonormal set of one-

particle wave functions luv and then varying the functional form of Ha and the \[Iv’s to

minimize F. A complete set of eigenstates of Ha can be chosen as single Slater

determinants with all the various subsets of the wv’s occupied. It turns out [10] that the

best function Ha for a given set of wv is simply the determinantal energy of the exact

Hamiltonian H with respect to that set of WV. In other words, if H is expressed with

respect to an arbitrary complete orthonormal set of one-particle wave functions wv as

H = z hvflc:c# +% Z vV/LMCCC/jckc,I , (2.7)

141 milk“

11



where the subscripts v, u, .. each label both the spatial and spin quantum numbers and the

quantities kW and v are matrix elements (which, by properly choosing the phase
via/Dr

factors of the rpv’s, are taken to be real in this paper), respectively, of the one- and two-

body terms in the exact Hamiltonian H, then Ha will be

Ha = zhvvnv +%Z(vvp.vp — vv;1.;1v )nvny (28)

V}!

which contains terms linear and quadratic in the occupation-number operators n,

corresponding to the wv’s. (The distinction between this and thermal Hartree Fock theory

is that in the latter, H" is restricted to be linear in the occupation numbers, i.e. a one-

electron operator.) Ha turns out to be equal to the diagonal part ofH with respect to the

single-determinantal states constructed from having the one-particle states u, v,

occupied in all possible ways. As an example, for the particular model Eq. (2.1) the

determinants with the original Wannier functions occupied in all possible ways have

energies given by

Ha = .92 n,” + HU + KP, annf; + KW 212,195,, (2.9)

<il>0' <ll'>0

the values of the occupation numbers being defined by the determinant being considered.

Furthermore, stationarity of F(p) with respect to the \[Iv’s implies [10]

< nv —n# > hvfl +Z<(nv —nfl)n, >(vwmd — Van”): 0, (2.10)

,1

where the brackets < -- > mean average over the canonical ensemble with H" as

Hamiltonian, i.e. for any operator A, < A > means

12



”(e—W“ A)

< A >5. —-—-——. 2.11

”(e—3”“) ( )

A physical interpretation of Eq. (2.10) is presented in Appendix A.

It should be noted that TSDA allows localized solutions in crystals, or

analogously in molecules with high symmetry, in contrast to thermal HF approximation

[10,31]. This distinction is important in the Mott insulators we are considering. Further,

the form of the localized orbitals in TSDA is dictated by the Hamiltonian, H. As far as

we are aware TSDA is the only variational theory in the literature with this formal

property.

It would be natural to ask here why not simply use the TSDA as a variational

approximation to the Hamiltonian H of Eq. (2.1)? The answer is that it is known to give

a poor description of the low—energy physics when the hopping is very small (actually,

specifically in the case of the single-band Hubbard model), so that the low-lying energies

are accurately given by the Heisenberg model. E.g., it gives a Curie law susceptibility

rather than the correct Curie-Weiss law at temperatures above the antiferromagnetic

transition temperature, and it gives the latter about an order of magnitude too large. [32]

Thus in the present work we are not considering TSDA in this way. Rather we are using

it as a formal device to help discover a l-body transformation that (hopefully) will lead,

via a rapidly convergent perturbation theory, to the proper effective Hamiltonian (it is the

solution of the latter that will determine accurately the low-energy physics of the model).

The early success of this approach discussed in the Introduction has motivated our

present investigation.

13



Thus in our TSDA considerations here, [3 will be considered as a parameter whose

optimum value [30 would ideally give the “fastest” convergence of the perturbation

expansion Eq. (2.5). As is apparent from the above TSDA equations, the solution, i.e. the

guy’s, will depend on 00. If we take a finite number of terms in the perturbation expansion

(as one would do), then the resulting effective Hamiltonian will thus depend on [30. For

thermal properties, e.g., [50 would then enter the partition function

Z" exp[—En(flo) / kBT] where En(,80) are the eigenvalues of the spin Hamiltonian and T

is the physical temperature. When working within the TSDA to find the \pv’s, we will

think of B" intuitively as temperature to help find a “good” TSDA solution, i.e. a solution

that gives rapid convergence of p.t.; in fact we will tend to consider large [3, since the

effective Hamiltonian is designed to give the low-energy states of H. (One could

probably not explore the whole range of [3 in practice.)

One should realize that even for the small-basis-set model of the small cluster

treated below, the 1-body Hilbert space is too large to explore completely. So one needs

some guide. There are alternate approaches to determining localized orbitals, widely used

in quantum chemistry; see Ref. 25 and references contained there, and Ref. 33. These

conceivably could be useful in the magnetism problem considered here, and should

probably be studied in this connection.
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2.3 Achievement of convergence via 1-body

transformations

As mentioned above, we applied [15] pt to the Hamiltonian in the original

Wannier-function representation, i.e. Eq. (2.1), where the perturbation V incorporates all

the hopping and exchange terms and H0, the rest. For the crystal (an infinite Cqu plane)

we obtained the first 3 contributions to the nearest-neighbor exchange parameter J (they

occur in 3rd, 4th and 5th order), with no sign of convergence [34]. We also calculated J

to very high order for the embedded cluster CuzO7, shown in Fig. 2.2, with two holes.

The results of the latter work are given in Fig. 2.3. Plotted there is

J“) = ZJ", (2.12)

":1

where J” is the contribution to J (the splitting between the lowest singlet and triplet) from

n-th order p.t.. The non-convergence is apparent, the result oscillating with increasing

amplitude about the exact value (straight line) calculated by direct diagonalization.

O 0

P2 P5

0 O O O 0

P3 d1 P1 d2 P6

0 0

P4 P7

Figure 2.2: The cluster CuzO7. The symbols at each site serve both as labels and as

orbitals.
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Figure 2.3: The nth approximation to J vs n according to straightforward perturbation

theory. The horizontal line shows the exact value ofJ. From Ref. 15.
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To follow up on the idea [7] that an appropriate change of l-electron basis states,

with its consequent change in the partition of H into unperturbed and perturbed pieces,

might improve the convergence, we consider the unitary linear transformation,

qr, = Z Aye-1.0. (2.13)

.I

An essential assumption we make about this transformation is that it maintains

localization and symmetry of the d states and that all states should be nonmagnetic. The

reason for this is that we want to maintain the property of the straightforward p.t. that the

low-lying energies are governed by a Heisenberg Hamiltonian with the symmetry of the

nuclear structure. Av is a unitary matrix, which we take as real, since we assume the new

Wannier functions are real. The spin independence of AD. embodies the assumption that

the new Wannier functions are nonmagnetic (they are each a product of a spatial orbital

times a spin function, or or [3, the spatial orbital being the same for either spin). These

properties are assumed of course to hold for the original Wannier functions, i.e. those

created by the cg.

2.3.1 Site localization

We begin with our first scheme which we call site localization, defined by the

requirement that the new Wannier functions have the same symmetry properties as the

original ones. Referring to Fig. 2.2, let 6V and oh be reflections in the vertical and

horizontal symmetry axes, respectively. Then the d states are taken to satisfy

d" = _0.vd?t

(2.14)
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(a similar relation being assumed, of course, for the original, unprimed, orbitals; the sign

choice follows the discussion in Sec. 2.2.1). Similarly, we require

_ I I _ I I_ I

p2 —_O-vp5’ p3 _ —0-vp6, p] — _0-\’pl , etc.

I r r r t r (215)

p2 = 011194 2 p5 = 011197 a 1’3 : 011P3 2 etc'

Eqs. (2.14) and (2.15), satisfied also by the unprimed Wannier functions, define "site

localization".

One can see that these requirements plus orthonormality are not sufficient to

completely determine the transformation. A simple example is the 3-site cluster

dl — pl — a’2 or CuzO: Then the two symmetry requirements, Eq. (2.14) and p,’ = —a‘,p,',

give

d1, : ]V1(d1+ Ardz + Azpi)

d,’ = N,(A,d1 +ai2 +A2p1).

pi = N2[B(d1+d2)+p1]

The Ni are normalization constants, determined directly in terms of the three coefficients,

A 1, A2, and B. Orthogonality clearly gives two equations, leaving one independent

coefficient. For the cluster CuZO7, it turns out that there are 9 independent coefficients. It

is useful to see this in detail. We can write the transformation as

‘11, = N1[d1 + Aldz + A2p1+ A3(p2 + p4)+ A4P3 + A5(P5 + p7)+ A6p6]

pi = N2[31(d1+d2)+p1+Bz(P2 +p4 +P5 +p7)+Bs(p3 +P6)l

Pi = N3(C1d1 + Czdz + C3p1 + F2 + C4p3 + C5p4 + C6ps + C7176 + C8177)

p5 = N4[D1d1 + Dzdz + D3191 + D4092 +p4)+p3 +D5(p5 + p7)+D6p6]

(2.16)

The first two and the last forms are dictated by the horizontal reflection symmetry; the

remaining five primed orbitals are obtained from those given here by operating with 0',
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and oh. Aside from the M there are 23 coefficients A,, B,, Ci, Di. One can see that there

are 14 orthogonality conditions, leaving 9 free coefficients.

To determine these coefficients we turn to the TSDA. For every pair of states 11

and v, there is a corresponding TSDA equation (2.10) to be satisfied. Since both It and v

are spin independent, the states labeled v and u in the TSDA equation (2.10) must

correspond to the same spin, each such state also corresponding to an atomic site using

the site-localized orbitals defined by Eq. (2.16). It is easy to see that if two sites are

equivalent by symmetry, e.g. the two Cu sites or the two O sites labeled p2 and 1),, then

the corresponding equation vanishes identically, giving no information. Thus from Eq.

(2.10) the only equations with content are those where the sites in v and u are non-

equivalent, e.g. a Cu and an oxygen, or pz-p3. The number of such non-equivalent pairs

which are independent can be seen directly to be 9, the number of free variables to be

determined, i.e. there is the correct number of equations to determine these unknowns.

Because we are looking for basis functions on which a perturbation theory will be

based with the purpose of deriving a spin Hamiltonian which will yield the low-lying

energies and magnetic properties, we look for low-temperature nonmagnetic solutions

such that for every spin up state there is a spin down state with the same spatial orbital.

In the same spirit, we consider Kdd<<B" <<e, where Kdd is the splitting of the lowest

levels within the single-determinantal energies (It was 0 for the original Hamiltonian, Eq.

(2.1), but as we’ll see later it has value of about 0.03 eV after the 1-body

transformations). Unfortunately, the low temperatures of interest lead to large disparity

in the sizes of different contributions to the thermal averages <n 1?, etc., this causing
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serious numerical difficulties. An approximation has been introduced to get rid of the

exponential factors in, and thus simplify, the TSDA equations. Details of the calculation

and discussion about its validity are given in the Appendix B.

The results obtained after solving these approximate TSDA equations are shown

in Fig. 2.4 which gives an idea of the “shape” of the new orbitals relative to the original

ones. The Hubbard Hamiltonian, Eq. (2.1), is then rewritten in terms of the new orbitals

and thus the parameters in the model get renormalized. Note that the price to pay for the

transformation is mainly that the Hamiltonian, which was restricted up to nearest-

neighbor terms in Eq. (2.1), now resumes back to a general form like Eq. (2.7). We take

together all those terms which are associated only with number operators as unperturbed

Hamiltonian H0, and the rest of the transformed Hamiltonian as perturbation [35]. The

exchange parameter obtained from the new perturbation expansion is seen in Fig. 2.5 to

converge (to the exact value). The errors in 2nd and 4th order are 15.4% and 15.7%,

  
  

  

  

            

    

  

  

            

respectively.

.24 400 .20 .20

[ .24 .88 .22 -02 -.02 ] | —.15 -.28 .80 -.28 —.15 |

.24 -.00 .20 .20

di pi

.73 -00 -.55 .03

.57 -.26 -.08 .03 .01 | [ .52 .06 .34 -.08 -.04|

—.27 -00 -.55 .03

pé 10;

Figure 2.4: TSDA orbitals within the site localization assumption--the numbers indicate

the amplitudes of the transformed orbital at the original orbitals. (The positions of the

numbers correspond to the CILZO7 cluster in Fig. 2.2.)
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Figure 2.5: Perturbation result for site localization.
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2.3.2 Cell localization

To see if we could do better, we considered another type of symmetry assumption,

named cell localization with respect to the transformed p orbitals. This was inspired by

the work ofZhang and Rice [36], which also played an important role in the work of Refs

13 and 14. Instead of demanding that each new p orbital is localized at a site, we require

each of them, with the exception of the central p, to be localized either within the cell on

the left (the d plus the 4 p’s) or the one on the right, maintaining a certain symmetry,

analogous to Eqs. (2.14) and (2.15). There is no distinction between site and cell

localization for the d orbitals, so they obey Eq. (2. 14):

d,’ = —o*vd2' (2.17)

The distinction between site and cell localization is seen in the following symmetry

requirements for the (cell localization) p orbitals:

I I I - .

p' =—O-vpir’ pi“) =O-hpi(r), WIthl:1’2I

pi = -0.p§ , pi“ = #21193") , (2.18)

C

P = «7.120, p“ = 01,196-

The superscripts l and r stand for left and right, and c for central. Thus, for example,

rather than 07, taking orbital p; into an orthogonal orbital p], as in the site localization, it

takes p,’ into itself. The explicit transformation in this case is

d,’ = N1[dI +A,d2 + Azp, + A,(p2 +p4)+ A4p3 +A5(p5 +p7)+ A6126]

1)” = B,(d. +6172)+Bzr)l +B3(p2 +12. +1). +p7)+Bi(p3 +126)

pi = C1d1+ Czdz + C3171 + C4(P2 +P4)+ C5173 + C6(P5 +107) + C7136 (2-19)

p; = p,’ with C, replaced by D,

pi =7'7(p2 -p.)
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Following a counting similar to that done in the site localization case, one can show that,

for the cell localization, the number of free coefficients after orthonormalization and the

number of independent nontrivial TSDA equations are equal, as in the previous case.

The analogous figures to the site localization case for the cell localization are

shown in Fig. 2.6 and Fig. 2.7. The errors in the exchange parameter in 2nd and 4th order

are 15.4% and 13.6%, respectively. It shows that the cell localization is a slightly better

choice for the perturbation calculation than the site localization.

    

 
 

 
 

         

   

   

 

  

 
 

            

.24 -00 .20 .20

.24 .88 .22 -.02 .02] [-15 -.28 .80 -.28 -.15

.24 —.00 .20 .20

d; pr

.32 -.01 —.55 .03

| .80 -.36 -.11 .04 .01 ] | .52 .06 .34 -.08 -.04]

.32 —.01 —.55 .03

pl pi

Figure 2.6: TSDA orbitals for cell localization.
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Figure 2.7: Perturbation result for cell localization.
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2.3.3 No localization

The third choice of the symmetry of the new orbitals is named no localization.

The term means releasing any localization requirement on the new p orbitals (but still

keeping the new 0’ orbitals localized). This is analogous to the case in a crystal where the

p orbitals may form a p-band while the d orbitals remain localized. The new orbitals are

required to satisfy the following symmetry properties:

d,’ = —ovd2' (2.20)

which is the same as in the previous two cases, and

[717+ = —0-vpi—+ a P? = 07,1): Withi = 19 2’ 3

pl.++ = O'Vpl.” , 1H = 031p:+ withi = l, 2 (2.21)

p" = —0.p", p" = flip", 0"" = 0.19"“, 10““ = flip“,

where the first sign in the superscripts denotes the symmetry under 0“,, and the second

sign, the symmetry under 07,. The explicit transformations for some of the orbitals are

listed below

d1, : Nridr + Ardz + A2p1+ A3(P2 +174) + A4p3 + A5(p5 +p7) + A6p6]

p.” = B.(d1 +d2)+sz. +3300: +194 +105 +07)+B4(193 +196)

p; (pf) = pf“ with B, replaced by Cl.(D,.)

pi+ : E1(d1_d2)+E2p1+E3(P2 +174 —p5 -p7)+E4(p3 _p6) (2'22)

p2++ = p,++ with E, replaced by E.

p" = 2002 -p4 +105 -p7)

+——

.0 —%(p2 -p4 -p5+p7)
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The transformed orbitals and the perturbation results for the no localization case is shown

in Fig. 2.8 and Fig. 2.9. The errors at 2nd and 4th order in the exchange parameter J are

15.5% and 14.8%, respectively, not as good as the cell localization.
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Figure 2.8: TSDA orbitals for no localization.
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Figure 2.9: Perturbation result for no localization.
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2.3.4 Comments on the TSDA solutions for the three

localization choices

Because the symmetry requirements in these three choices are different for p

orbitals but the same for d orbitals, and since the lowest energy states in which only the d

orbitals are occupied dominate at low T, it turns out that the transformed d orbitals for the

three localization choices are the same. After TSDA transformation, the energies of the

lowest two single-determinantal states of the half-filled CuzO7 cluster are —2.7718 and

-2.7430 (all in eV) for the spins of the two holes, one at each transformed d orbital, being

parallel and antiparallel, respectively. This can be compared with the energies using the

original orbitals, 0 for both parallel and antiparallel spin configurations, and with the

exact eigen-energies from direct diagonalization of the Hamiltonian matrix, -2.7738 and

-2.9000 for the triplet and the singlet, respectively.

After transformations, all parameters hvp and v in the Hamiltonian get
VpJJt‘

renormalized. For example, some new parameters resulted from the TSDA solutions are:

1;, = —0.403, U; = 6.910, Uéd = 0.113, K], = —0.029, (2.23)

where the lst, 3rd and 4th ones were absent in the original form of the Hamiltonian, Eq.

(2.1).
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2.4 Further improvement via 2-body

transformation

Although the TSDA guided l-body transformations did lead to convergent

perturbation expansions as we had hoped, we were somewhat disappointed about the

relatively slow convergence rate compared to the achievement of Refs. 13 and 14, in

which transformation is not restricted to be 1-body. An interesting question was then

asked: What is the main factor which limits the convergence rate of 1-body-

transformation-induced p.t.? The answer is given below and a minimal 2-body

transformation is added to improve the convergence rate.

Our attempt to incorporate both 1- and 2-body transformations is inspired by the

work of Zhang and Rice [36], as well as J. H. Jefferson et al. [13]. On the CuO2 planes, a

cell is defined as any one copper and its four surrounding oxygens. Turning on the

perturbation (p-d hopping) will induce hybridization among the copper d orbital and the

oxygen p orbitals. If the perturbation is small, the new orbitals would remain localized

within a cell. The copper d orbital is expected, by symmetry, to equally hybridize with its

four surrounding oxygenp orbitals. Let us define the symmetric p orbital of each cell as

1715 = 52 p, ,

le{i}

where the summation index indicates that l is taken over the (four) p sites in cell i. It is

intuitive to expect that the largest hybridization will occur between the d1 and pf . The

symmetric pf orbital has its analogue in our cell localization choice of the l-body

transformation for the Cu2O7 cluster, namely p,’ and p,’ , for the left cell and the right cell
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respectively. Therefore our following investigation is based on the cell localization

choice.

Because the Hamiltonian of Eq. (2.1) conserves the total spin S and its projection

on the z-axis $2, the Hamiltonian matrix elements form isolated blocks for different

values of S,. From here to the end of this section we only consider the SZ = 0 case.

Through the process of the l-body transformations, the hybridization between the d and p

orbitals are actually taken into account. Because of the expected large hybridization

between the d and the symmetric p5 orbitals, we are interested in those states which

consist of only d,’ (112') and p,’ (Pil- Among the total 81 states for the half-filled CuzO7

cluster (i.e. only two holes on it) with SZ = 0, this means the states of interest are

61116111),  dfiph>t Phph>a
(224)

  idfiphl

and four similar states for the right cell. Hereafter we consider only the left cell because

the expressions for the right cell are exactly the same. After the l-body transformation,

the Hamiltonian submatrix in the basis set of Eq. (2.24) is

’ 5.483 —1.149 —2.239 —0.148‘

- 1.149 5.483 2.239 0.148

—- 2.239 2.239 4.055 0.984

— 0.148 0.148 0.984 11.922

(2.25)

  

(row and column indices correspond to the states in Eq. (2.24) in order). Two things are

worth noting. First, the off-diagonal matrix elements are large. This is due to d 1' and p,’

being mainly strong mixtures of d, and pf . This hybridization leads to large

renorrnalized model parameters for hole-transfer terms (between “'1' and p,’) in the
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transformed Hamiltonian, and thus contributes to the off-diagonal matrix elements. It

indicates that these four states are far from the eigenstates and may lead to slow

convergence if adopted as unperturbed states in the perturbation calculation. Second, the

energy of the state of double occupancy of the d orbital, 4.055, the third diagonal element

of Eq. (2.25), is dramatically reduced from its original value 10.5, also a result of strong

hybridization. Each new 61 orbital contains part of the original 61 orbital and part of the

original p orbitals. Therefore double occupancy in the new d orbital only gains energy

from a fraction of the large (original) Ud, and that causes the large change of this energy

level. Direct diagonalization of the Hamiltonian matrix shows that the energy levels

associated with double occupancy at the d orbitals remain high (~12.7). Thus, in spite of

giving good approximate low-lying energy levels, the l-body transformation also leads to

some high-lying levels which are not at all good approximations of corresponding

eigenstates, and these high-energy eigenstates do play am important role in the

perturbation theory. In conclusion, it is the strong hybridization (covalence effect) and

the large on-site Coulomb energy Ud (correlation effect) together that prevents a l-body

transformation from generating good approximation for the whole energy spectrum.

In order to take care of the above limitation, we diagonalize the matrix of Eq.

(2.25) and use the 4 resulting eigenstates (the 2-body transformation comes in here), plus

the 4 counterpart states for the right cell and the remaining 73 (unchanged) states, as the

basis set to perform the perturbation calculation. In some sense, by this we allow

relaxation in the intermediate states of the p.t., where one hole hops into the neighbor cell

which has already been occupied by another hole. We call this scheme the minimal 2-

body transformation where “minimal” means that, among the various p orbitals, only
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p1’(p,’) are involved in the 2-body transformation. The result is shown in Fig. 2.10. We

have also tried including p§(p2') in the 2-body transformation [p§(p3’) are out of our

consideration because they possess different symmetry from d,’(d2')]. However, it only

made a tiny change from that of the minimal 2—body transformation and so the result is

omitted here.

In Ref. 13, J. H. Jefferson et al. described another transformation scheme, which

is, in spirit, similar to our 1-body + minimal 2-body transformation, and demonstrated

rapid convergence to 2nd order p.t. on a model with a restricted parameter set: 8:3, (pd:-

I, tpp=-0. 5, Ud=oo, and all other parameters equal to zero. (The straightforward p.t. for

this parameter set is divergent, too.) For comparison, we applied our method to the same

parameter set. The result showed that the l-body transformation alone fails to lead to a

convergent perturbation expansion. This is not surprising since the renormalization in

Ud, the double-occupation energy at d orbitals, caused by the l-body transformation is

fatal to the p.t. in the case of Ud=oa Nevertheless, we achieved similar precision as

theirs after we added the minimal 2-body transformation to the pt.
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Figure 2.10: Perturbation result for cell localization 1-body + minimal 2-body

transformation.
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2.5 Summary and discussion

For simplicity, we sought 1-body transformations to convert the pi. from

divergent to convergent in the context of strongly covalent Cqu planes. Taking TSDA

as a guide, several l-body transformations were found, in the CuzO7 case, to achieve this

goal, but the convergence rate in each case was rather slow. Besides those suggested by

TSDA, we have also tried some other l-body transformations, of which the best one gives

errors of about 13% and 6% at 2nd and 4th order p.t., respectively, better than the best

TSDA result (cell localization, where the errors at 2nd and 4th order p.t. are 15.4% and.

13.6%). However, the convergence is still slow, particularly in higher order where the

results oscillate with slowly decreasing amplitude, similarly to TSDA (see Fig. 2.5, 2.7,

2.9). The details of these other transformations are omitted here for the above reason and

the fact that they were obtained in a rather ad hoc way, not as systematically as in TSDA.

A striking difference between the best ad hoc trial and the cell localization TSDA is the

following. Two of the transformed p-orbitals of the ad hoc trial (the one with errors 13%

and 6%) were deliberately guided to be close to the Zhang-Rice-type orbital [36] (where a

transformed orbital localized in a cell consists of four oxygen p-orbitals in the cell with

equal weight). On the other hand, the p[ and p,’ in the cell localization choice of TSDA

are further from the Zhang-Rice-type orbital, which is a result of the low symmetry of the

CuzO7 cluster plus the free energy minimization. This suggests that being closer to the

Zhang-Rice-type orbital helps the convergence. However, one can see that this issue

becomes moot when the cell localization TSDA is applied to the crystal, where the 4-fold
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symmetry at a Cu site holds and therefore the cell localization TSDA will give the

Zhang-Rice-type orbital.

After all our considerations of l-body transformations, we guess that we are close

to their limit in connection with improving convergence. If one wants to do better, 2- or

more-body transformation is probably necessary. It is the large covalence and strong

correlation in the problem that limits the effect of l-body transformations: a 1-body

transformation designed to give some zero-order energy levels accurately will likely spoil

other levels, all ofwhich enter p.t. in high order.

We then found that a minimal 2-body transformation dramatically improved the

convergence rate. Only transformed di-like and pf—like orbitals are essential to be taken

into account in extracting the Hamiltonian submatrix to solve for “good” two-particle

basis states. In comparison, our cell-localization 1-body + minimal 2-body

transformation scheme achieves similar (high) precision by second order p.t. as obtained

in the work of Ref. 13.
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Chapter 3

Crystal Hartree-Fock Calculations for

LazNiO4 and LaZCuO4*

3.1 Introduction and Methods

L212NiO4 and LaZCuO4, which have essentially the same crystal structure, have

attracted considerable theoretical and experimental research efforts, especially since the

latter was found to become a high-Tc superconductor when properly doped with Sr or Ba

[3 7]. Above their respective structural transition temperatures TS, both materials are in a

tetragonal structure [space group D4,,17 (I4/mmm), see Fig. 3.1 below]. Below TS, they are

slightly distorted to an orthorhombic structure. Each of them is an antiferromagnetic

(AFM) insulator below a Néel temperature TN ( < Ts ), and is a paramagnetic (PM)

insulator above TN.

The past theoretical studies of these two materials can be broadly classified into

two categories. The first one is density functional calculations executed on the crystals.

This sort of approach only achieved partial success and failed to predict certain properties

of the materials. For instance, local spin density approximation (LSDA) calculations

incorrectly predicted LazCuO4 to be a PM metal [37] and LaQNiO4 to be an AFM metal

[38]. Since 1990, several modifications have been made to LSDA to produce AFM

 

' This work has been published in “Y-S Su, T. A. Kaplan, S. D. Mahanti, and J. F. Harrison, Phys. Rev. B

59, 10 521 (1999)”.
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insulating solutions, like SIC-LSDA, LSDA+U [39,40]. However, since the

modifications are somewhat ad hoc, whether the modified LSDA approaches still fall into

the ab initio regime or not is arguable.

The second category is cluster calculations. This category itself can be further

divided into two subsets: single-magnetic-ion cluster (SMIC) calculations and multi-

magnetic—ion cluster (MMIC) calculations. The SMIC calculations were aimed at

obtaining the neutron scattering form factors of the crystals [41] and hyperfine properties

[42]. A more detailed description of this approach will be given in Sec. 3.2 when we

come to the comparison of results of the SMIC calculations with the results of our present

work. Note that, since the cluster in the SMIC calculations contains only one magnetic

ion, the AFM ground state of the crystals must be assumed a priori and quantities such as

the Heisenberg exchange parameter J cannot be extracted from the calculations. On the

other hand, MMIC calculations [43-46] have given information about J.

The present calculations were done using the program CRYSTAL95 [47], which is

designed to do Hartree-Fock (HF) calculations on infinite crystalline materials, using

linear-combination-of-atomic-orbital (LCAO) basis sets. Clearly, the crystal Hartree-

Fock approximation (HFA) falls outside the two categories mentioned above and thus

may provide useful supplementary information. The crystal HFA has recently been

applied to a number of AFM Mott insulators including MnO, NiO [48], KNiF3 [49],

KCuF3 [50], and CaCuO2 [51]. These were successful in that they gave the materials to

be insulators (vs. metals), to be antiferromagnets (vs. ferro- or paramagnets); also they

gave energy differences between the various magnetic states in semiquantitative

agreement with experiment. In this paper, in addition to these considerations, we will
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compare the spin density with neutron diffraction experiments. Our major emphasis is on

the ground state properties, although some discussion of band structure (l-electron

energies, nature of 1-electron states) is presented.

 

 

 

 
  

Figure 3.1: The centered-tetragonal structure of LazNiO4. LaQCuO4 has the isosturcture

of LazNiO4 (Ni atoms are replaced by Cu atoms). The NiO6 octahedral cluster, an

important signature of perovskite crystal structure, is marked by the dotted lines.

In this work, we use the centered tetragonal crystal structures with lattice

constants taken from experimental data [52]: a=3.855, c=12.652 for LazNiO4, and

a=3.7793, c=13.226 for LazCuO4 (in units of A). The basis sets of 0, Ni and Cu are taken

from Ref. 53, which are specially designed for crystal calculations. (Note that the usual

basis sets used in molecular and cluster calculations are often too diffuse for crystal
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calculations; they may cause nonconvergence or a very slow convergence rate with not

much increment in the accuracy to the result one might get using tighter basis sets [47].)

Since La is a heavy atom (atomic number 57), relativistic effects are not negligible for the

inner shell electrons. Besides, an atomic basis set for La suitable for crystal calculation is

not available in the literature. We thus used the effective core potential (ECP) calculated

by Hay and Wadt [54] for the La+3 ion core [55], where the relativistic effect of the inner

shell electrons is supposed to have been taken into account. In Hay and Wadt’s papers,

basis sets for valence electrons designed for use with the ECPs were also given.

However, they are so diffuse that they cause a numerical problem in the crystal HF

calculation. Thus, La was treated in the present work as a bare La’”3 ion and represented

by the Hay and Wadt large core ECP, no valence orbitals (therefore no valence electrons)

being attached to it. We did test the significance of the bare La“3 core approximation to

some extent by adding a d shell (consisting of a single, Optimized, Gaussian exponent) to

the La+3 and seeing how it affected the results. It turned out that about 0.45 electron per

La gathered into the added shell. Accompanying that, the total energy per formula unit

(including one Ni or Cu) changed by about 4.5 eV. However, the shape of the occupied

bands and the spin density changed negligibly, and the energy difference between

ferromagnetic (FM) and AFM solutions, which is around 36 meV, varied by only about

1.4 meV. The insensitivity of the FM-AFM energy difference to variation of the outer

shells of basis sets was also observed for other materials [49]. The properties that are

only slightly affected by the bare La+3 core approximation are the main focus in this

paper.
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3.2 Results

3.2.1 Heisenberg exchange parameter J

Our results show that both LazNiO4 and LaQCuO4 are AFM insulators, in

agreement with experiments. The FM solutions also exist for both materials, with higher

energy. The energy difference per formula unit between FM and AFM states is 36.9 meV

for LaQNiO4 and 36.1 meV for LaQCuO4. It is a common and long-standing practice

[56,57,48-50,43] to map energies of FM and AFM electronic states to the mean field

approximation for the nearest-neighbor Heisenberg Hamiltonian Hum-s. This is done for

materials such as these, where H is known to accurately describe the low-lying
Heis

excitations [56,58], and leads to an estimate of the Heisenberg exchange parameter J. In

Appendix C, we give a rationale for doing the mapping in HF calculations, while pointing

out a potential inconsistency if the same procedure is used in approximate density

functional theories.

To proceed then with the determination of J, the Heisenberg Hamiltonian is

HM = .125, .51., (3.1)

<1 1)

the summation going over each nearest neighbor pair (i, j) of magnetic ions, taken once.

We equate the calculated FM-AFM energy difference in the HFA to the corresponding

FM-AFM energy difference in the mean field approximation of Eq. (3.1), and thus define

the Heisenberg J in the HFA, JHF, as follows

NZ]. (3.2)AEHF = (24.3]?
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AEHF is the FM-AFM energy difference for the whole crystal in the HFA, N is the

number of magnetic ions, s is the spin of each site (1 for Ni and 1/2 for Cu), and Z is the

coordination number. Eq. (3.2) (with J instead of JHF) appears elsewhere [43-46] for

dimers where N = 2, Z = 1, but the claim in some of the references that this gives the

correct or exact J is not warranted in general (see Appendix C). Since the interactions

within a Cqu plane are much stronger than the interplanar ones, we take Z = 4. It turns

out that J is 9.2 meV for LaQNiO4 and 36.1 meV for LaQCuO4. The LazCuO4 result agrees

with an embedded cluster calculation using HFA [43], which gives 37.8 meV,

strengthening the suggestion [43-46] that J appears to be a rather local property. These

values are to be compared with the experimental data, which give 18 meV for LaQNiO4

[59,60], and 134 (neutron) or 128 (Raman) meV for LaQCuO4 [61,62]. Although our

results are about a factor of 3 too small, it actually is remarkable to be so close, since we

are picking up the small difference between the FM and AFM energies with each on the

order of 4000 Hartrees. (So it is at an accuracy of about one out of a million.) Similar

underestimates for J using HFA were found for other materials [48-50].

3.2.2 Spin density and spin form factor

Spin density maps on the perovskite magnetic ion — oxygen layer [(001) plane] are

given in Fig. 3.2 for both materials. The x-y plane of the graphs matches the NiO2

(Cqu) plane and includes 3 x 3 magnetic ion sites. The large peaks on the graphs

coincide with the locations of the magnetic ions. The sign of the spin density alternates

from one site to another, a manifestation of the AFM character of the systems. The
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magnitudes of spin density around oxygens, which are half way between each nearest

neighbor pair of magnetic ions, are extremely small as expected. Every peak in the

graphs has an approximate 4-fold symmetric shape, a result of the singly occupied die—)9

orbital. Although Fig. 3.2(a) (for LaQNiO4) and Fig. 3.2(b) (for LazCuO4) resemble each

other very much, a characteristic difference between the spin densities of these two

materials does exist and can be seen in a tomograph of other directions. For instance,

Fig. 3.3 shows the spin density tomographs of these two materials in the (100) plane

passing through a magnetic ion. For this plane, the peak in the graph of LaQNiO4 still has

four lobes, while the peak in the graph of LaQCuO4 has only two lobes aligned in the y

direction. This is expected because each copper in LazCuO4 has only a singly occupied

dx,_y, , while each nickel in LaQNiO4 has a singly occupied dx2_y2 and a singly occupied

d322$ whrch together grve a spin d1str1butlon wrth cubic symmetry (small distortrons

from cubic symmetry are caused by the surroundings). Later on we will see that this

difference in spin densities leads to characteristically different spin form factors for these

two materials.

It has been shown [41] that, for the single-band Hubbard model assuming small

hopping t compared to the repulsion U, the Fourier transform of the spin density is

42>:4)....4011211+0181 63>

42





 

La2NiO4

 

(a)

La2Cu04

 

(b)

Figure 3.2: The spin density in the magnetic ion - oxygen plane [(001) plane]: (a)

LazNiO4, AFM, (b) LazCuO4, AFM. The range of the basal plane in the graphics is 20 (a

is the lattice constant) in each direction and is centered at one magnetic ion. The vertical

axis is in atomic units (same as Fig. 3.3 in the following).
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Here (52),“ is the expectation value of the spin at a site (an up site) in the

(spontaneously) symmetry-broken ground state of the corresponding Heisenberg model.

f(I; ), the form factor, is the Fourier transform of Us times the HF spin density over a

nonmagnetic unit cell centered at a magnetic ion, where s is the spin quantum number for

the free ion (1 for Ni+2 and 1/2 for Cu”). This implies f(0) = l . F01?) is given as

F02): get-W (3.4)
R

where R runs over all the Bravais lattice vectors and kA is an antiferromagnetic wave

_.

vector (e.g. for the square lattice with lattice constant a, kA is l i]). The correction
a’a

term 0((%,)2) is negligible for the cuprate [41] and, we expect, for the nickelate [63].

Although the derivation of Eq. (3.3) is somewhat lengthy, the result is physically

understandable. (sz>Heis accounts for the quantum spin fluctuations (QSF) in the

Heisenberg-model ground state and is just an overall scale factor. F(I; ) accounts for the

occurrence of the Bragg peaks. f(I; ) gives the relative sizes of the Bragg peaks, and

conveys detailed information about the spin density s(F) in the unit cell. Eq. (3.3) is

discussed further in Sec. 3.3.

In an earlier work [41] of our group, SMIC calculations on several AFM

insulating compounds including LaQNiO4 and LaQCuO4 were carried out based on this

formula. The results agreed extremely well for KNiF3 and NiO; for LaQCuO4 they gave

rough overall agreement for the shape of f(it) (for a sample well off stoichiometry).

Only in the case of LaZNiO4 did the results show a serious qualitative disagreement with
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experiment [64]. This disagreement provided a strong part of our motivation for the

present study.

Thus we calculated the Fourier transform of the spin density that we had obtained

from the crystal HF calculations. The resulting form factors at the k-values for the

magnetic Bragg peaks are shown in Fig. 3.4.

Note that if the spin density is spherically symmetric, all the data will fall on a

smooth curve. In Fig. 3.4(b), the form factor of LazCuO4, the data separate into several

branches, indicating that the form factor varies dramatically in different directions of I; .

This is understood as due to the asphericity of the Cu dx2_y2 orbital of the unpaired

electron, as first pointed out by S. Shamoto et al. [65]. On the other hand, in the Ni

compound both eg states are singly occupied, giving a nearly cubic spin density; and thus

s(F) is closer to spherical. Indeed, the corresponding form factor [Fig 3.4(a)] reveals no

obvious branches.

46



La2NiO4

1 lemfimmmmlllvm__m_l_”m__~_mm_mm.-.11.,H.lq,pl

  

 

  

0.8 * .

‘ o

i * .~. 1

H ‘ .‘ i

o -t
“'k

80 6 1.1
g M

. I.

At

E i
.i(40.4} I

8 . n

I

0.2L

‘ 1

1mm -1-” _l........ _Li

1 2 3 4 5 6

k

(a)

La2CuO4

1 V V a

0.8;

‘ *9 t o t i

O 1

i

i o ]

u t

80 6 O

F o

*i
. .‘IA.

EOJL ‘ . _-

o ‘ I
Lu ‘ A

0.2- i

l i

l 2 3 4 5 6

k

(b)

Figure 3.4: The spin form factor: (a) LaQNiO4, AFM, (b) LaQCuO4, AFM. The

horizontal axis is the magnitude of l6 , in units of inverse Angstroms. The black stars are

for the family of (i —§,l) Bragg peaks, diamonds for (%,%,l), circles for (%,%,l), empty
2’

stars for (%,—%,l), triangles for (%,—%,l) and squares for (%,%,l), where the three

components of the triple numbers are in units of 27” , 27” , 27" , respectively. With our

choice of coordinate system, for the Bragg peaks the sum of the three components of each

triple number must be an even integer.

47



Our present results are compared to the previous cluster calculations and to

experiment in Fig. 3.5. Note that Fig. 3.5(a) for the nickelate shows the Bragg scattering

amplitude (in units of 1.13) and Fig. 3.5(b) for the cuprate shows the form factor. In Fig.

3.5(a), the Bragg scattering amplitude g(sz ) Hm f(I; ) is calculated using g = 2.29 [66] and

(32 > Has = 0.8 from the spin wave theory [67]. The two theoretical results agree with each

other very well; however, both disagree qualitatively with experiment. In View of the

very good agreement between theory and experimental results for several other

compounds like KNiF3 and NiO [41], it seems odd that the theory would be so far off

from experiments for the case of LaZNiO4. The agreement between the cluster and the

crystal calculations ensures that the theoretical results are calculation-error free,

excluding one possible source of the discrepancy between theory and experiment. Then,

logically, more independent experiments are called for to cross-check with the single

existing experimental work on a presumably stoichiometric sample [64,68]. We should

note that the plot in Fig. 3.5(a) is on an absolute scale; thus the agreement between theory

and experiment at large k might be significant [69].
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Figure 3.5: Comparison of the crystal and cluster calculations with experiments: (a)

Bragg scattering amplitude for LaZNiO4. (b) spin form factor for La2CuO4. The

diamonds are for the crystal, stars for the cluster, and circles with error bars for the

experimental data. Note that in (b) the experimental data has been scaled to make the

least-square fit to the crystal results.
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For the cuprate [Fig 3.5(b)], the experimental form factor data [70] have been

scaled to give the least-square fit to the crystal HF result. It has been argued [71, 41] that

the moment (and Néel temperature) should be maximum at the stoichiometric compound;

the main experimental question here is the oxygen content [72,73]. Since the

experimental “moment” in Ref. 70 is appreciably smaller than that of other samples [72],

we expect the one used to measure the form factor shown is far from being

stoichiometric. Therefore, only comparison of the “shape” of the form factor might be

sensible. It is seen that the overall shape is in rough agreement with theory.

For a test of the absolute value of our calculated spin density, we consider the

sample with the highest “moment”, 0.6 i 0.05 Bohr magnetons (with Néel temperature of

298K) [72]. As discussed in Ref. 41, the “moment” (called moment in that reference)

defined by the experimentalists is the amplitude g<s(lt)> at the Bragg peak with the

smallest k, divided by 0.835 (the form factor of KzCuF4, interpolated for the k—value

appropriate for the cuprate being measured [72]); g is the usual g-factor, E 2.2 for the

cuprate. Multiplying the above “moment” by 0.835 yields g<s(l;)> = 0.50 i 0.04.
exp

Using our calculated HF value of f(I; ) = 0.763, (sJHm = 0.3 for the square lattice

(appropriate to a Cqu plane) [67], and g = 2.2, Eq. (3.3) gives g<s(R)> the, = 0.504. This

exact agreement is surely fortuitous. In fact a sample with a slightly higher TN (325K)

has been reported [74] as being highly stoichiometric. Unfortunately an absolute

magnetic Bragg intensity measurement (which would yield 6.g. a value of the “moment”)

was not reported on this sample. Judging from the increase in “moment” with TN shown
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in Ref. 72, the experimental amplitude will be larger than the 0.5 quoted above.

Nevertheless, this agreement between theory and experiment suggests that the HF

approach, corrected for quantum spin fluctuations, gives a very good account of the

ground state spin density. It is clearly important to have the absolute intensities at several

Bragg peaks measured on an excellent sample like that of Ref. 74, for comparison with

our calculations.

It is noted that an appreciable discrepancy between the crystal and cluster HF

results exists. This is interesting in view of the very good agreement between the two

theoretical calculations for the nickelate as shown in Fig. 3.5(a). We believe that the

larger covalence in the cuprate is the cause of this discrepancy. Indeed, we performed the

integration of the HF spin density over a Wigner-Seitz cell on the magnetic ion sublattice,

as a measure of the ordered spin per magnetic ion (without QSF), on both materials. We

found 0.926 for the nickelate and 0.421 for the cuprate. In comparison with the free

magnetic ion spin (1 for Ni+2 and '/2 for Cu”) we see a 7.36% reduction for the nickelate

and 15.8% reduction for the cuprate [75]. This reduction is evidence of the covalence

between Ni (Cu) and Oxygen [76,77]. The finding here of appreciably less covalence in

the nickelate strongly suggests that the original explanation [64] of the extreme flattening

of the form factor at small k as being due to strong covalence may not be correct [78].

As one further check on the accuracy of our crystal calculations, we considered

another Ni compound, KNiF3, where the cluster approach agreed excellently with

experiment [41,66]. Taking (s2) = 0.92 from the spin wave theory [67], we
Heis

summarize the results for the amplitude <s(li)> at the three Bragg peaks measured in
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Table 3.1. It is apparent that both the crystal and cluster results are slightly larger than

the experimental data. However, if we took (s2) .3 = 0.9, both of them predict the
Her

experimental data to within the error bars! It should be remembered that the spin wave

theory of Ref. 67 is an approximation to the ground state of the Heisenberg model [79].

Table 3.1: Comparison of the crystal HF, the cluster HF and the experiment results of

the spin form factor of KNiF3. The first row shows the indices of the three Bragg peaks

measured in experiments up to date. For the convention of the indexing, see the caption

of Fig. 3.4.
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Crystal HF 0.813 0.679 0.554

Cluster HF 0.807 0.683 0.564

Experiment 0.783 a 0.018 0.672 1 0.015 0.553 i 0.013

     
 

3.2.3 Band structure

The band structures of the AFM solutions are given in Fig. 3.6. The results show

a wide gap (~17 eV) for both materials; we also see a similar large gap for the FM

solutions. The experimental (optical) gap for La2CuO4 is about 2.0 eV [80]. That the gap

is much larger than the experimental gap has been found much more generally in the

HFA; see the papers of Refs. 48-50 for examples and Ref. 48 for discussion. The results

suggest that the insulating character of both materials is not strongly correlated with their
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magnetic ordering, in agreement with experiment [81], and in contradiction to a band-

theory scheme proposed by Slater [51,82]. In the LaQNiO4 AFM solution, the F point of

the highest occupied band consists mainly of the Ni 3dx2—y2 and 0(1) 2pm , and the F

point of the lowest unoccupied band consists mainly of the O(1) 3s and 0(2) 3s, plus a bit

of Ni 4s and 0(2) 3pz. In the LaQCuO4 AFM solution, the F point of the highest

occupied band consists mainly of the Cu 3dxz_y2 and 0(1) 2pm , and the F point of the

lowest unoccupied band consists mainly of the 0(1) 3s and 0(2) 3s, plus a bit of Cu 4s.

For both materials, the F point is the minimum in the lowest unoccupied band but not the

maximum in the highest occupied band, showing an indirect band gap. The width of the

highest occupied band is about 1.6 eV for LaQNiO4 and 0.6 eV for LaQCuO4. The

projected densities of occupied states (not shown) have many features in common with

those previously reported for other Mott insulators [48-50]. Two of these features are

that it is mainly anion p-states that exist near the Fermi energy, and that the bulk of the

magnetic ion eg states is lower in energy than the t2g states. These results need further

analysis and are suitable for a future publication.
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Figure 3.6: The band structure: (a) LazNiO4, AFM, (b) LaQCuO4, AFM (on next page).

The band structures of the spin-up and spin-down states are the same (because of the

antiferromagnetism), so the figure shown here is for either one. The (vertical) a—axis is in

units of Hartrees. The (horizontal) k-axis goes through two contiguous paths: (%%0) —->

(000) —> (21-3-0) —> (fio) —> (000) a (001) and (44,4) —) (000) —+ (404). For the

convention of the triple numbers, see the caption of Fig. 3.4. The horizontal line inside

each graph indicates the Fermi energy.
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Figure 3.6 (continued from previous page)
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3.3 Summary and Discussion

We have calculated the electronic structure of LaQNiO4 and LaQCuO4 using the

crystal HF approach. The major emphasis has been on ground state properties, although

some discussion of band structure has been given. The results provide supplementary

information to that obtained from crystal LSDA and embedded cluster calculations in

interpreting the experimental data. For both materials, our crystal HF results correctly

predict an AFM insulating ground state. The calculated Heisenberg exchange parameter J

is about a factor of 3 too small compared with experiments. This is consistent with the

interpretation of Martin and Illas [43], and Towler et al. [48] that the HFA overestimates

the on-site Coulomb interaction. The spin form factor f(I; ) basically agrees with earlier

cluster calculations. However, there is an appreciable discrepancy between the two

theoretical calculations in the cuprate case, which we believe is due to the larger

covalence in the cuprate. We found rough overall agreement with experiment for the

shape of f(if ) vs. ll; | for a poor sample of the cuprate, and excellent agreement for the

absolute intensity of the one Bragg reflection measured on a good cuprate sample.

However in the case of LaQNiO4 the shape of the form factors in both the crystal and

cluster calculations disagree seriously with experiment. The fact that we found the

nickelate to be (appreciably) less covalent than the cuprate deepens the puzzling nature of

this disagreement with the nickelate together with agreement for the cuprate. For a

further check, we also calculated the form factor for KNiF3 and found excellent

agreement with experimental absolute intensities. These results should create strong

motivation for performing more experiments on a stoichiometric sample of the nickelate;
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it is also important to measure the absolute Bragg intensities at more than one Bragg peak

for a stoichiometric sample of LaQCuO4 for a more stringent test of our theory.

We conclude with a discussion of the procedure used to calculate the spin density.

We used our earlier result calculated within the single-band Hubbard model as a guide.

Namely, following that result, we took the spin density to be that in the HFA reduced by

the ratio <sz>Heis / s, the reduction from 1 being due to the quantum spin fluctuations in

the Heisenberg AFM ground state. In fact we have shown [83] that this procedure is not

exact for a model more general than the single-band Hubbard model. Thus we need to

understand, e.g., why our present and previous [41] results are in excellent agreement

with experiment for a number of cases using the HFA. Such studies are in progress. In

any case, we want to emphasize that the QSF (which give large effects) cannot be

ignored, as they were in Ref. 46 where a large moment reduction was attributed entirely

to covalence. We note also that in Ref. 43, the large QSF correction was made, showing

the confusion on this issue in the literature. The single-band Hubbard model result, Eq.

(3.3), is a good starting point for clarification, and the generalization is clearly important.
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Chapter 4

Electronic Structure of LaMnO3 in the Ab

Initio Crystal Hartree-Fock

Approximation*

4.1 Introduction

The divalent-metal doped rare-earth-manganites have received a great deal of

attention in recent years largely due to the colossal magnetoresistance (CMR) in these

compounds. The phase diagrams of these manganites are very rich; the magnetic and

conducting properties, as well as crystallographic structure, can vary substantially with

temperature and doping concentration [84]. These properties alone, aside from the CMR,

constitute an interesting research area. LamCaanO3 is a typical family of these

manganites, with the CMR occurring in the region near x = 1/3 [84]. Here we focus on

LaMnO3 (the x=0 end member of the above family). Its properties, which involve

magnetic and orbital orderings plus strong Jahn-Teller distortion, are interesting in their

own right.

There has been a great deal of work on LaMnO3; the papers most directly relevant

here are Refs. 85 — 90. Saitoh et al. [85] obtained experimental photoemission results

and interpreted them through a cluster configuration-interaction model. LSDA (local spin

 

* This work has been published in “Y-S Su, T. A. Kaplan, S. D. Mahanti, and J. F. Harrison, Phys. Rev. B

61, 1324 (2000)”.

58



density approximation) band calculations were reported in Refs. 86-88. In all three of the

band calculations, the experimentally observed ground state magnetic ordering was

found. The observed orbital ordering was obtained by Satpathy et al. [87] (this property

was not discussed in Refs. 86 and 88). The spin Hamiltonian, which governs the

magnetic properties including the low-lying excitations (spin waves or magnons), was

calculated by Solovyev et al. [89] within the LSDA. Hirota et al. [90] determined the

magnon dispersion via inelastic neutron scattering measurements, and claimed it to be

consistent with the theory of Ref. 89. Sarma et al. [86] found their LSDA density of

states and calculated photoemission intensity to agree with the measurements of Saitoh et

al. [85].

These facts would seem to have the theory of these properties of LaMnO3 in

satisfactory shape. However, the theories of Refs. 85 and 86, both of which apparently

explain the photoemission data, disagree with each other. In Ref. 86 (in agreement with

the other LSDA calculations of Refs. 87 and 88), the Mn d-band lies near the top of the

valence band, with the O p-band lower than the d-band, while in Ref. 85 the opposite

order occurs. Furthermore, an LSDA+U band calculation gave the Mn d-band below the

O p-band [87]. Thus there are major differences between existing pictures, and they are

of considerable importance, e.g. at stake is the nature of the band gap, O-p —> Mn-d or

Mn-d —> Mn-d (the two possibilities have been called charge-transfer insulators or Mott—

Hubbard insulators, respectively [91]). We were thereby motivated to carry out

calculations on LaMnO3 using the Hartree-Fock approximation (HFA). HFA is a well-

established theoretical approach, independent of the above methods, and thus can provide
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valuable comparison with the other results. Also, it is known that for some 3d-transition-

metal oxides with perovskite-based structure, e. g. lanthanum cuprate and nickelate,

LSDA failed [92] and the HFA succeeded [93] to predict correctly the ground state

insulating property and the magnetic ordering.

Our HFA results show some surprising physical effects, and significant

differences from LSDA. The correct magnetic and orbital orderings and insulating

character are found in both theories. However, we find major differences in the occupied

densities of states (e. g. the O p bands lie close to the top of the valence band in the HFA,

more like the interpretation of Ref. 85 and the LSDA+U results of Ref. 87). There is also

a major difference in the effective spin Hamiltonians; yet the magnon dispersion curves

of both theories are consistent with the neutron scattering experiment [90], as we will

explain. Also, in apparent contrast to LSDA [87,94], a large Spinless charge backflow,

0'2 2p ——> Mn+3 3d, is found in HFA. Finally, the fundamental type of insulator differs in

the two approximations: LSDA gives a band insulator (the gap doesn't exist for the cubic

structure), HFA yields a Mott insulator (the gap exists for both the cubic and distorted

structures).

4.2 Method

If there were no distortion, LaMnO3 would be a perfect cubic perovskite crystal as

shown in Fig. 4.1. Note that the MnO6 octahedron marked in the figure is connected with

every one of its neighboring octahedra by sharing a common oxygen, which is a key
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signature of the perovskite structure. In reality, the MnO6 octahedra (denoted as [Mn06])

are strongly distorted due to Jahn-Teller effect and rotate from the crystal axes by an

appreciable amount, resulting in an orthorhombic crystal structure (space group ana)

with four Mn per unit cell [95]. The unit cell of the orthorhombic structure is close to a

J2 x J2 x 2 supercell of the undistorted cubic perovskite structure. The longest side of

the unit cell is chosen as c-axis [96] and the MnO2 planes perpendicular to it are called

basal planes.

 
  

 
Figure 4.1: The cubic perovskite crystal structure. This is the structure for compounds

like KNiF3 and CaMnO3. For LaMnO3, large distortion exists. The atom at the center of

the cube is Mn, the face centers are 0, and the corners are La. The important MnO6

octahedral cluster is marked by the dotted lines.
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We carried out the calculations on both the observed orthorhombic structure and

the fictitious iso-volume cubic structure in order to investigate the effect of the strong

lattice distortion. To our knowledge, ours is the first ab initio HFA calculation for this

material [97]. The calculation makes use of the program CRYSTAL95 [98]. The basis

sets of Mn and O are those optimized for CaMnO3 [99]. La is treated as a bare La+3 ion

and represented by an effective core potential [100]; a test of this approximation as well

as other accuracy control parameters of the program will be discussed in Sec. 4.4.

4.3 Results

4.3.1 Magnetic properties

For the orthorhombic structure, it can be shown that there are five collinear

magnetic orderings that maintain the size of the unit cell. They are ferromagnetic (FM),

A-type, G-type, and C-type antiferromagnetic (AAF, GAF, and CAF), and ferrimagnetic

(FI) orderings, defined as follows. AAF: the Mn spins are parallel in a basal plane and

antiparallel from plane to plane. GAF: each nearest neighbor (n.n.) pair of Mn are

antiparallel. CAF : each n.n. pair ofMn are antiparallel in a basal plane and parallel along

the c-axis. FI: one of the four Mn in a unit cell is antiparallel to the other three. HFA

results for these ordered states are listed in Table 4.1, together with LSDA results [88] for

comparison. It is seen that HFA predicts the ground state of LaMnO3 to be an AAF

insulator, in agreement with experiment [101]. LSDA also makes the same prediction.

In the cubic structure, both theories predict the FM state to have the lowest energy.
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However, there are substantial differences between the theories. E.g., in HFA all states

are insulating (for both cubic and orthorhombic structures), while in LSDA all states of

the cubic structure are metallic [88]. The band gaps (not shown in the table) in HFA are

much larger than those in LSDA. From the results in the AAF column, it is seen that the

crystal distortion lowers the energy per Mn by ~1 eV in HFA, vs. 0.27 eV in LSDA. For

the cubic case, it is seen that LSDA predicts much larger energy differences among the

various magnetically ordered states.

Table 4.1: HFA and LSDA [88] energies of LaMnO3 with various magnetic orderings.

The energies shown are relative to the FM state of the cubic structure, in meV / Mn.

(ins.=insulator, met.=metal.) The HFA energies are for the states with the observed

orbital ordering (see text).

 

 

 

 

 

FM AAF GAF CAF FI

cubic 0, ins. 0.4, ins. 34, ins. 32, ins. 16, ins.

”FA orth. -1053, ins. -1055, ins. —1041, ins. —1039, ins. -1047, ins.

cubic 0, met. 110, met. 365, met. -- --

LSDA orth. -- -156, ins. -- —- —-         
 

The HFA energies of the five magnetically ordered states for the orthorhombic

structure are used to map to an effective spin Hamiltonian (see Refs. 93 and 99 for

discussion of the mapping). We add 4-spin terms to the usual 2-spin terms in the spin

Hamiltonian [102]

H =constant+ZJUSi S]. + ZJfik,(4—spin terms)+---; (4.1)

(131‘) (i,j,k,1)
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where S, is the spin at (Mn) site i, Jij and Jijkl are exchange parameters, and each

combination of summation indices is summed once. Since there are five energies, the

mapping can determine four J’s plus the constant in H. We choose the J’s in the

following way. We consider the one-band Hubbard model with n.n. intra- and inter-

(basal) plane hopping t,, t2. Perturbation theory with the ti small implies the spin

Hamiltonian of Eq. (4.1). Keeping through fourth order terms, more than four J’s occur;

however, only a particular subset of four can be determined by the five ordered states

considered. This is the chosen set and is as follows: the intra-plane n.n. J ,, the inter-plane

n.n. J2, the inter-plane next n.n. J3, and the inter-plane 4-spin J4. Due to the distortion of

the crystal structure, there are actually two types of J3 and J4, denoted as J3“) and J3(2) [89],

and J4“) and J4(2). In the mapping here, only the average values of the two types of J’s are

determined: J3 is the average of J3“) and J3“), and similarly for J4. Note that the same

mapping can also be done for the cubic case. This is possible because the existing orbital

ordering (discussed later on) breaks the cubic symmetry and make, for example, J, not

equal to J2.

The results of the mapping are listed in Table 4.2. In both the cubic and

orthorhombic cases, J3 and J4 are negligible. This supports the neglect of further neighbor

terms, expected a priori to be small. The signs of J, and J2 reflect the ground state

magnetic properties (FM for the cubic and AAF for the orthorhombic). LSDA

calculations by Solovyev et al. for the orthorhombic case give a qualitatively different

picture [89]. As shown in Table 4.3, LSDA gives a much bigger J3; also J, and J2 are both
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ferromagnetic and they alone would yield a wrong magnetic state. It is the J3 that turns

the ground state from FM to AAF in the LSDA.

Table 4.2: HFA J’s in the effective spin Hamiltonian of LaMnO3, in meV.

 

 

 

J, 12 J, J.

cubic -21 -013 0.019 0.0049

orth. -0.88 0.21 0.0036 0.00051       

The spin wave spectrum of the system has been measured in a recent inelastic

neutron scattering experiment and was fitted very well using a 2-J (Jl and J2) spin

Hamiltonian by Hirota et al. [90]. The results are also included in Table 4.3 for

comparison. Our HFA results are smaller in magnitude than the experimental values by

about a factor of 2 for J, and 6 for J2. At first glance one would say that the experiment

shows a 2-J character of the system and thus favors the HFA picture. However, as we

analyze further, we find that this conclusion is not solid enough yet. Hirota et al. state

that their experimental results are consistent with those of Solovyev et al. in the following

sense. If one maps the 3—J model by Solovyev et al. to the following effective 2-J model,

{Jim 2 JIM
(4 2)

(21) _ (U) (U)

(the factor of 4 in the second equality comes from the coordination number involved with

J3), then J ,(2’) and J2” have the right signs and are both about a factor of 2 too large in

magnitude compared with the experimental values. By Eq. (4.2), the 3—J model and its
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effective 2-J model have identical spin wave dispersion along the c-axis. Dispersion

along several other directions is shown in Fig. 4.2. It is seen that the spin wave spectra of

the two models are quite close. The difference is estimated to be about the size of the

error bars of the experimental data cited. So at this point, the LSDA picture is not

definitely ruled out. The issue could be settled by somewhat more accurate

measurements.

Table 4.3: Comparison of the HFA, LSDA [89] and experimental [90] J’s in the spin

Hamiltonian of LaMnO3, in meV.

 

 

 

 

    

J, J2 J3

Exp. -1.67 1.21 ~ 0

HFA -0.88 0.21 ~ 0

LSDA -2.28 -0.78 0.78 
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Figure 4.2: The spin wave dispersions of the 3-J (solid line) and its effective 2-J

(dashed) spin Hamiltonians, along four arbitrarily chosen directions. The values of J’s

are those given by Solovyev et al. [89]. The k-indexing follows the convention used in

Ref. 90.
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4.3.2 Spinless Charge Backfiow and Density of States

To our surprise, Mulliken population analysis (MPA) on the HFA results gives

charges that deviate substantially from the formal valence picture, although the spin

values do not show such deviation. We find Mnlz'z, O,"'7 and O,,"'75, while the Mn spin is

1.98; the formal valence picture is Mn”, 02, with Mn spin of 2. (O, is the apical oxygen

and O,,, the basal-plane oxygen.) We note that, due to the bare core approximation for

La, these MPA results should only serve as an indication of deviation from the formal

valence picture, not taken as being very accurate. A similar but more severe departure

from the formal valence picture has been reported for an all-electron HFA calculation on

CaMnO3 [99], where Mn was found to be Mn“l7 with spin 3.25/2, compared with the

nominal value Mn+4 with spin 3/2. That is, there is a large nearly Spinless backflow of

electrons from O'2 to Mnl3 or Mn”. Such large changes in ionic charges would have

obviously important consequences, e.g., on Madelung energies, phonon spectra, dielectric

constant. How they would affect current simplified models is obscure, but certainly their

implications for such models would have to be considered.

It must be pointed out that the MPA is basis set dependent, and can be very

misleading when in the basis set there are diffuse basis functions that are appreciably

occupied [103,104]. However the following considerations suggest that the deviation

from the formal valence picture found here cannot be explained solely by basis set

dependence. (i) We repeated the calculation with the most diffuse Mn (1 and 0 sp basis

functions omitted from the basis set. This gave a very small change in the MPA, the

result actually being further from the formal valence picture. (ii) The way that the MPA
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attributes an overlap charge to the two atoms involved is somewhat artificial and

therefore results in an inherent uncertainty in the meaning of the MPA results. Moreover,

when the MPA gives ridiculous results due to the presence of very diffuse basis fiinctions

in the basis set [103,104], there usually are large overlap charges. So smallness of the

overlap charges is an indication of the reliability of the MPA results. In the present case,

the overlap charges totally account for 0.06 electrons for Mn, considerably smaller than

the deviation of the MPA charge ofMn fiom the formal charge. (iii) In contrast to MPA,

the charge from the actual integration of the charge density over a reasonable volume

(vide infra) around an atom is much more basis-set insensitive, and gives a realistic value

of the HFA result (assuming a good basis set, of course). So this integration is a good

check for verifying the correctness of MPA results. We didn't do the integration for

LaMnO3 since the precise numbers will not be useful due to the bare core approximation

for the La, as mentioned in the previous paragraph. Instead, we redid the all-electron

calculation of Ref. 99 for CaMnO3, and then integrated the charge density over a cube

around a Mn. The faces of the cube are perpendicular to the Mn-O bonds and pass

through the minima of the charge density along the bonds, which gives the cube edge to

be 1.8 A (the cube is close in size to the Mn sphere of diameter 2.12 A used in Ref. 88).

The integrated charge for Mn was +2.52, close to the MPA result of +2.17. Further

discussion of the La bare core approximation is given in Sec. 4.4, where it is suggested

that a large deviation from formal valence, as found above, probably will hold true in

more accurate HFA calculations.

The projected density of occupied states of LaMnO3 is shown in Fig. 4.3. It is

seen that a small amount of Mn-d projected density of states (DOS), both up and down,
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exists in the range of 0 to 6.9 eV below the top of the valence bands, E,, coinciding with

the range of the O p bands and accounting for the nearly Spinless backflow. The large

peaks (spin up) in the Mn-d projected DOS in the 8.7-10.3 eV range below Et are

associated with the Mn (1 bands, which are spin polarized and give the moment of Mn

close to that predicted by the formal valence picture.

This HFA picture is rather different from previous LSDA calculations. First, to

our knowledge, no departure from the formal valence picture has been reported in LSDA

studies of the system. In fact, Satpathy et al. [87] state that the charge states are close to

nominal in their LSDA results. Second, the O p bands lie above the Mn d bands in HFA,

opposite to what LSDA predicts [86-88,94]. The disagreement between HFA and LSDA

in the order of O p and transition metal (1 bands has also been seen for other systems.

[92,93,88,99]

We also note that LSDA+U calculations [87] show ordering of the O p and Mn (1

bands much like our HFA results. Those calculations were disparaged [88] on the

grounds that the Mn spin turned out to be larger than the nominal value (3/2 for

CaMnO3). However, as far as we are aware, there is no theorem that the Mn spin must

not be greater than nominal. In fact intra-atomic exchange would tend to increase the Mn

spin by polarizing electron transfer from 0; also, we find in HFA an increase in Mn spin

(as determined by integration of the spin density within a suitable cube centered at the

Mn) over the nominal value for CaMnO3.
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Figrue 4.3: The (projected) DOS of LaMnO3, with AAF ordering. Positive and negative

DOS are for up- and down-spin states, respectively. Energies are relative to the top of the

valence band. The projected Mn-d and O,,-p DOS are for Mn and O on an up-spin basal

plane. The projected O,-p and total DOS are symmetric for up- and down-spin. The

down-spin part of the total DOS is omitted from the figure.
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The HFA predictions of the charges on ions and the characters of the valence

bands are consistent with the interpretation of a recent experiment by Saitoh et al., who

studied LaHerMnO3 by photoemission and x-ray-absorption spectroscopy [85]. These

authors determined that the character of the band gap of LaMnO3 is of the p-to-d charge-

transfer type while that of SrMnO3 (corresponding to CaMnO3 in our discussion) has

considerable p-p character as well as p-d character. The HPA results (via the MPA) show

that for LaMnO3 and CaMnO3, the Mn-d electron population is roughly equal, while the

O-p population gets reduced for the latter. This implies that the valence bands of

CaMnO3 consist of a smaller amount of O-p character than LaMnO3, which in turn

suggests that there is a larger amount of O—p character in the conduction bands of

CaMnO3. Combining this with the other HFA prediction that the O p bands are the

highest occupied bands can explain the above experimental observation. Saitoh et al.

also reported that the Mn-d electron population is 4.5 for LaMnO3 and 3.8 for SrMnO3, a

considerable deviation from the formal valence picture similar to (although not as severe

as) that predicted by the HFA, which we find to be about 4.7 for both LaMnO3 and

CaMnO3. The most surprising aspect of the Saitoh et al. work [85] is that their

calculation showed a large reduction in photoemission intensity of the Mn d band as

compared to the density of states (due to matrix-element effects). We intend to calculate

that intensity using our HFA wave functions to check this.
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4.3.3 Orbital Ordering

We now discuss orbital ordering — this is ordering of the single eg orbital occupied

at each Mn. In the observed structure, each [MnOé] is stretched substantially along one

axis and is rotated by 10-15° from its orientation in the cubic structure. Disregarding the

rotation for simplicity, the stretched axes lie in the basal plane, alternating in direction by

90°, and this pattern repeats along the c-axis. The stretching, being driven by the Jahn-

Teller splitting of the eg states, leads to an expected orbital ordering — the single occupied

eg orbital at each Mn is d(3zZ-r2)-type with its axial symmetry along the stretched axis of

the associated [MnO6]. This orbital ordering is indeed found in our HFA solutions, by

plotting the spin density. A combination of the three t2g and one eg electrons (nominally

the only unpaired electrons in the system) dictates a unique shape in the spin density

distribution, which therefore can be used to identify which eg orbital is actually occupied.

For example, Fig. 4.4 shows the spin density at a Mn with the d(3x2—r2) orbital occupied

(the z-direction is along the c-axis). This orbital ordering, which was predicted long ago

by Goodenough [105], has also been obtained in LSDA calculations [87], and was

recently confirmed in experiments [106].
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Figure 4.4: The spin density on the xy-, yz- and zx-planes at a Mn with the d(3x2-r2) and

three t2g orbitals occupied. The plotting region is about (3.9 A)2, centered at the Mn. The

slightly off of the symmetry axes of the distribution from the x—, y- and z-axes is a result

of the rotations of the [Mn06] in the observed crystal structure.
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In our study, we obtain the same orbital ordering for all trials with various

magnetic orderings as well as initial conditions used to start the Hartree-Fock

calculations, for the observed orthorhombic structure. However, for the cubic structure

we find a variety of orbital orderings by starting with different initial conditions. This is

probably due to the absence of the Jahn-Teller distortion which would stabilize the

occupancy pattern of the eg orbitals [107]. Table 4.4 lists the energies of the various

states we have obtained in the cubic case. Roughly speaking, the results suggest that the

energy scales associated with the change in crystal structure (cubic to orthorhombic),

orbital ordering (in the cubic structure), and magnetic ordering are in the ranges of 1, 0.1

and 0.01 eV / Mn, respectively.

Table 4.4: HFA energies of different magnetic and orbital ordering states for the cubic

structure. The symbol d(3z2-r2) means that the eg electron is of this type for all Mn,

similarly for d(x2-y2). The third one, d(3x2-r2)/d(3y2-r2), is the observed ordering of the

orthorhombic structure, as discussed in the text. Energies are relative to the AAF state of

the orthorhombic structure, in meV / Mn.

 

 

 

 

      

FM AAF GAF CAF

«322-8) - 1 147.4 - —

d(x2-y2) - 1165.9 1145.0 1157.5

d(3x2-r2)/d(3y2-r2) 1054.8 1055.2 1088.9 1087.2
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4.4 Discussion and Summary

The extreme smallness of the various energy differences between magnetic states

requires a discussion of the numerical accuracy of our calculations. The sources of error

are [98] the tolerance in the direct-space summations of Coulomb and exchange series

(controlled in the program by five parameters called TOLINTEG), the number of

sampling points for the Brillouin zone integration (controlled by a shrinking factor IS),

and the finite basis sets used. The presented results of this work were calculated using

TOLINTEG of (7, 7, 7, 7, 14) and IS of 6. IS = 6 translates to 80 asymmetric k-points in

the Brillouin zone and is more than adequate for our need of accuracy; the total energy

obtained from using IS = 4 (30 asymmetric k-points) deviated by less than 0.003 meV /

Mn. The deviation of total energy due to change of TOLINTEG is much larger; by using

(8, 8, 8, 8, 16) for TOLINTEG, we observed that the total energy changed by about 50

meV / Mn. However, the energy differences between various magnetic states in the test

remained quite stable, typically only varying by ~ 0.1 meV / Mn. Concerning the errors

due to the finite basis sets, we expect the most severe should come from the La bare core

approximation, which we now discuss.

The test of the bare La+3 ion approximation consisted of adding to the La+3 core an

optimized d shell consisting of a single primitive Gaussian (0.32 Bohr‘2 is the optimized

exponent). The total energy decreased by about 2 eV / Mn; however, the energy

differences between the various magnetic states changed by only ~ 0.1 meV / Mn (a few

%), and the change in the occupied band structure (not shown) is small. Similar behavior

of the basis set dependence was also found in studies of other systems [93]. The charges
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found in the test were La+2'58, Mnm", OH” and OU'1'59. Interestingly, 0.42 electrons per

La occupied the added La (1 shell, but these electrons were taken from oxygen, making

the results even further from the formal valence picture.

To summarize, our HFA results on LaMnO3 give a dramatically different picture

from that of previous LSDA calculations, although for some properties, e. g. orbital and

magnetic ordering, the two theories agree. This agreement is surprising in View of, but

certainly not inconsistent with, the large differences. Some of the HFA predictions have

been supported by experiment. In particular, the HFA spin Hamiltonian is consistent

with a spin wave experiment, but the present accuracy of the experiment is not quite

sufficient to distinguish conclusively between the HFA and LSDA results. The DOS in

HFA is consistent with one interpretation [85] of a photoemission experiment [85].

However it is not consistent with another interpretation [86] of the same experimental

results, based on LSDA. Further, the DOS in LSDA+U theory [87] is more like the HFA

result, and is definitely inconsistent with the LSDA result. We can conclude that our

HFA results have added weight to the picture where the top of the valence band consists

predominantly of O-p states, as found in the LSDA+U [87] and the cluster model

interpretation of photoemission results [85] (in contradiction to the LSDA results [86—

88]).
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Chapter 5

Effect of Oxygen Vibration 0n Spin

Waves in the Double-Exchange Model

5.1 Introduction

In recent years, research activities on perovskite manganites such as AHBanO3

(A represents a trivalent rare-earth element such as La, Pr or Nd; B represents a divalent

alkali or transition element such as Ca, Sr, or Pb) have increased dramatically due

primarily to the possibility of important technological applications of the colossal

magnetoresistance observed in about the 0.2 S x S 0.4 region. AMBanO3 has the typical

perovskite structure, where each Mn is surrounded by six oxygens forming an MnO6

octahedron, and each MnO6 octahedron shares one oxygen with each of its six nearest-

neighbor octahedra. Fig. 4.1 in Chap. 4 shows the basic cubic structure of A,_xBanO3,

while the actual crystal may exhibit distortion depending on the constituents and doping

concentration.

When x = 0, each Mn carries charge of +3 with electronic configuration [Ar]3d4.

The substitution of a divalent element for the trivalent element introduces holes and

results in Mn+4 ([Ar]3d3) ions in the crystal. The electronic transport properties of these

manganites are usually described by the so called double-exchange (DE) model [108]. In

the model, only the d electrons of Mn’s are considered. Due to the cubic (or near cubic)

crystal field, the Mn d shell splits into t2g (xy, yz, zx) and eg (xz-yz, 3zz-r2) levels with the
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former lower in energy. In the DE model, three electrons are assumed to be in the tzg

orbitals, localized at each Mn, constituting a local spin SI. at i site, S, = 3/2. All

remaining (1 electrons, the number of them depending on the doping concentration, go

into the eg orbitals and can hop from Mn to Mn. The interactions between the t2g and eg

electrons are governed by the strong intra—atomic exchange J (Hund’s rule coupling) and

Coulomb repulsion. Historically, people considered the simpler single-band DE model

(assuming one eg orbital per Mn), which reads:

H=—z Edge}, +h.c.)—JZ§, -§,., (5.1)

<ij>.a'

where <ij> denotes nearest neighbors, c; (cw) creates (destroys) an eg electron with spin

0' at Mn of site i, 3.1-(3:1) is the spin of the localized t2g (conduction eg) electrons, and t (J)

is the hopping (exchange) parameter, both positive. In these materials, J/t >> 1. This

model can explain the concurrence of the metallic and ferromagnetic phases of the

materials in the following way: if all of the local spins 5:1 are parallel, then the

conduction (eg) electrons with the same spin direction can move most freely because there

is no energy barrier (due to the exchange term) for them to hop between sites, thereby

minimizing the kinetic, as well as the exchange energy.

The DE model of Eq. (5.1) also predicts a shape of the spin wave dispersion very

much like that of the Heisenberg model with nearest neighbor spin-spin coupling in a

broad range of doping concentration, 0.1 S x S 0.6 [109]. This has been confirmed by

experiments on high—Tc (Curie temperature) manganites, e.g. LamemMnO3 [110].

However, recent experiments on low-TC manganites such as LamCamMnO3 [111] showed
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strong softening of the dispersion near zone boundaries compared with that of the

Heisenberg model with same spin wave stiffness. Moreover, results of Ref. 111 strongly

suggest that this softening is phonon-induced and the magnon-phonon band crossing

pattern is unusual and therefore intriguing. Under common circumstances, the spin wave

dispersion is a steadily increasing curve from Brillouin zone (BZ) center to the zone

boundary. (In one dimension, it is more or less close to an upside-down cosine curve.)

On the other hand, an optical phonon band remains quite flat throughout the whole BZ.

If these two bands happen to cross and there is some inter-band interaction present,

usually we would expect that a gap opens up near the crossing and two new non-crossing

bands are formed. This expectation turns out not to be the scenario observed in the low-

Tc manganite experiment of Ref. 111. The experimental data show the following: The

optical phonon band remains roughly constant all the way to the BZ edge. The spin wave

band increases from zero at k = 0, but where it meets the optical phonon band, it flattens

(“softens”) and merges with the phonon band, out to the BZ edge. Thus there is no band

above the phonon band near the B2 edge as would be expected in usual band-crossing

situations. Based on the DE model, we have tried several possible schemes for the

electron-phonon interaction to seek the mechanism which underlies the observed spin

wave softening.
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5.2 A flaw of popular models in the literature

In fact, even before the recently found spin wave softening many modifications of

the DE model had been studied in the literature for various reasons, e.g. isotope effect

[112]. Most of the works extended the DE model by including some form of the so

called Jahn-Teller (JT) coupling. According to the well known Jahn-Teller theorem, it is

energetically favorable to distort the MnO6 octahedra to lift the degeneracy of the two eg

orbitals. This interplay between the electronic energy and the geometry of a MnO6

octahedron is therefore called JT coupling and is introduced in many extensions of the

original DE model. A typical model including the JT coupling is the following:

H = H, +th +HJT, (5.2)

(lb + " .. U

He =— 21".}. (ciwcjba +h.c.) —JZ S, -sm ‘3270717 , (5.3)

<1_'/>,a.ab i,a i.7

M - K

th :—2_ZQ132+EZQIZCI’
(5'4)

HJT : g'Z Q1111 "' g2 (Q1271: + Q13T1'z)’ (55)

This is a two-band model: it considers both the two eg orbitals of each Mn, which are

described by a pseudospin 1'. Due to some technical details, only x and 2 components of

r are present in the model. The first two terms in Eq. (5.3) are just the direct

generalization of the single-band DE model. The third term in Eq. (5.3) takes into

account the on-site Coulomb repulsion between eg electrons, which is irrelevant in the
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single-band DE model in the large J/t limit but important in the two-band DE model. Eq.

(5.4) is the Hamiltonian of the three relevant normal mode vibrations (with coordinates

Q,, Q2 and Q3, respectively) of each MnO6 octahedron [112]. Eq. (5.5) is the JT coupling

(an electron-phonon interaction), where the Q modes affect the on-site energies of the two

eg orbitals in a specific way deduced from symmetry considerations ( g' and g are two

coupling constants). Note that there is a definite proportionality among the components

(lb . . . o . .

of t0 , but the actual relation rs not uniquely determined and its form may vary slightly

from model to model [113].

By Eq. (5.4), this model assumes that the vibrations of MnO6 octahedra of

different sites are uncoupled, which we consider as a rather unphysical assumption. The

fact that every pair of nearest-neighbor octahedra share a common oxygen implies that

their individual Vibrations cannot be uncoupled. In other words, there should be some

cross terms (Qin. and QiQ, terms) in Eq. (5.4). Unfortunately, the significance of this

assumption has not been discussed in most of the literature. [114]

One may speculate that maybe the cross terms are small in the first place. This

turns out not to be the case. Furthermore, there are more complications than meet the

eyes. To illustrate the point, consider a 1D chain of Mn-O as shown in Fig. 5.1:

o O o O 0 O O O

i+2 u.z u. 1+1 u. 1+2
1'" I [H

o manganese 0 oxygen

Figure 5.1: The Mn-O linear chain
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The manganese atoms are assumed heavy and therefore still. The ui’s are displacements

of the oxygens from their equilibrium positions. Suppose there are N unit cells with

periodic boundary condition, i.e. uN+i = 111'. The Hamiltonian of these vibrations can be

written in terms of ui’s and their conjugate momenta:

H —_1_fi 2.1-fir (56)pk 2M i=1 pi 2 i=1 1' -

In this 1D model, the relevant normal mode coordinate of each unit cell would be

Q.- = flu.- —u.--1)- (5.7)

Now, can we transform the Hamiltonian to a form in terms of the Q variables? The

answer is NO. Because of the periodic boundary conditions, we have

2Q, = 0. (5.8)

1:]

This means that we only have N-l truly independent Q variables. Therefore the

transformation from the u variables to Q variables is impossible unless we add an

arbitrarily chosen new variable to the Q set. A natural choice for the Nth variable (let’s

call it Q) will be

Q0 172“; (59)

Now we are able to proceed with the transformation of Eq. (5.6) from {u} to {Q}. The

result is not in a simple form and therefore is omitted here. But the general properties of

the results can be described easily: After the transformation, terms Qin with any i and j
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are present. For i and j nonzero, the coefficients of Qin (i at j) are of the same order of

magnitude as those of the diagonal terms Qi2 when [i - jl are small, then their magnitudes

decrease gradually with Ii - j| and become near zero when [i - j| reach the maximum.

Furthermore, cross terms not only occur in the potential energy part (the Qin terms), but

also in the kinetic energy part (the Pin terms) with the same coefficients. This means that

the neglect of cross terms in Eq. (5.4) is not justified.

There is actually a paper by G. Khaliullin and R. Kilian [115], which includes

cross terms of nearest-neighbor Q’s with the coefficient as an adjustable parameter,

claiming to have solved the spin wave softening problem. However, there is a flaw in

their model: cross terms of the kinetic energy part are missing.

5.3 Model Studied

In view of the question raised in the previous section, we suggest that the th in

Eq. (5.4) should be replaced by

th =%Zufa +—I-2<—Zu,;, (5.10)

where the u variables denote the displacements of individual oxygens. The HJT in Eq.

(5.5) remains unchanged but should be now written in terms of the u variables.

To seek the mechanism which underlies the spin wave softening near the zone

boundaries, we explored several possible schemes of inclusion of electron-phonon

interaction into the DE model. To get started, we considered the 1D single-band model
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with only oxygen vibrations taken into account. The portion of the crystal structure of

interest to the model is the Mn-O linear chain, as shown in Fig. 5.1. The Hamiltonian

considered has the following form:

HzHe+th+He—ph’ (511)

H, =-1Z(c;;c,.,m +h.c.)-J25, -§,., (5.12)

1 K

H =—— .2+— u.2. 5.13
ph 2MIZp, 2 2i: 1 ( )

The electronic part He is just the original single—band DE model. The phonon part Hph

represents the simple-harmonic oxygen vibrations (u,- and pi are the displacement and

corresponding momentum of oxygen at site i). He_ph stands for the electron-phonon

interaction part and hasn’t been specified above. Which form of the electron-phonon

interaction H would give rise to the spin wave softening is not known a priori. It
e-ph

could be that displacements of the neighboring oxygens would affect the local on—site

energy 8 of the eg orbital. Assuming linear response 8i oc (ui-ui_1), then H would have
e-ph

the form:

He—ph : ZEiCLCia = _g2(ui — ui—l )Citrcia ' (514)

This is analogous to Eq. (5.4) for the two-band model. In addition, we have also

considered another possibility where oxygen vibrations affect the local electron hopping

parameter t (in both magnitude and phase). The results of the first scheme (changing on-

site energy) are presented in next section, while the results of the other scheme will only
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be mentioned briefly in Sec. 5.5, Remarks and Conclusions, since its results are not any

better than those of the first scheme towards the explanation of the spin wave softening.

5.4 Results

We solved the Hamiltonian of Eq. (5.11) — (5.14) for a ring with 4 Mn’s and 4 0’s

in the 5210’“, = Smaximum — 1 manifold in two different approximate ways.

5.4.1 Pseudo-Born-Oppenheimer approximation

In this approximation, the oxygen is assumed heavy and Hp], is neglected. Each u,-

in H,ph [Eq. (5.14)] is randomly taken from the interval [-6/2, 6/2] with a uniform

probability distribution. For a set of {ui} randomly taken, He + H,,_th is solved exactly,

giving a set of electronic eigenenergies. Then another set of {ui} is chosen, and the

procedure repeats. We ran many iterations to get a statistical distribution of the electronic

eigenenergies. A typical case is shown in Fig. 5.2 with ground state energy set to 0.

Fig. 5.2(a) shows the energy levels of the ordered system. The lowest three peaks

carry the wave vector quantum number k of 0, win/2 (two-fold degeneracy) and 7r,

respectively. These are excited sites due to creation of a single magnon, with wave vector

k, from the ground state. For an infinite ring, these three levels will expand into a

complete band and become the familiar spin wave dispersion. Thus we refer to the states

associated with these three peaks as the spin wave states.
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Fig. 5.2(b) shows clearly that each energy level of the ordered system is now

broadened by the random electron-phonon interaction. Compared with the width of the

random distribution of ui (0.5 in this example), the broadening of the spin wave levels is

surprisingly small. Other higher energy levels do have much larger broadening. The

results suggest that the spin wave dispersion remains robust in the presence of the

electron-phonon interaction of the form of Eq. (5.14). Moreover, we also calculated the

distribution centers of the spin wave states in Fig. 5.2(b) and found that the ratio of the

(averaged) k=71 magnon energy to the k=7r/2 magnon energy increases slightly compared

with that of the ordered system [Fig. 5.2(a)]. Therefore this model actually predicts a

small hardening in the spin wave dispersion, opposite to the experimental observation.
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Figure 5.2: Density of states of the DE model for a 4-site, 3-electron ring.

(t=1,J=oo,g=1,6=0.5)
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5.4.2 QM treatment of the oxygen vibrations with cut-off in

the number of phonons

In the second approximation, we treated the oxygen vibrations fully quantum-

mechanically but a cut-off in the number of phonons was imposed. This approximation

was checked for convergence by using different cut-offs. The energies of the spin wave

states are shown in Fig. 5.3, plotted as E versus k. The result is consistent with that of the

first approximation; namely, the spin wave energies are very robust in the presence of the

electron-phonon interaction Eq. (5.14) and the spin wave dispersion is actually slightly

hardened in this model.

   

 

i
_._ 9:0

0.15] * g=0 1

0.1.: —I~ g=0 2

i 4- g=0.3

0.05    
 

Figure 5.3: The spin wave dispersion of the DE model for a 4-site, 3-electron ring. (out-

off ofphonon number = 4, t =1, J = 00, com = 0.15)
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5.5 Remarks and Conclusions

We have criticized the unphysical assumption of uncoupled vibrations of the

MnO6 octahedra in studies of the DE model with JT coupling, which unfortunately is

prevalent in the literature. We suggest that the Hph in question should be changed from

I Eq. (5.4) to Eq. (5.10).

In seeking the underlying mechanism of the recently observed spin wave

softening in low-Tc manganites, we considered the simple 1D single-band DE model with

electron-phonon coupling in the spirit of our suggestion mentioned above. Given the

Hamiltonian of Eq. (5.11)-(5.14), the spin wave energies hardly change at all in the

presence of the electron-phonon interaction. A study of the ratio of the energies of the

k=7r and 7r/2 magnons shows that the model actually predicts slightly hardening in the

spin wave dispersion, contrast to the large softening found in experiments for low Tc

manganites.

Although omitted here, another possible scheme for the Hem, in which oxygen

vibration can modify the local electron hopping, is also studied. Two cases in this regard

are considered: One is

HM, = a2 11,2 (40cm + h.c.), (5.15)

where a is an adjustable but positive parameter. Note that the sign of this term is

Opposite to that of the hopping term in Eq. (5.11); that is to say that the displacement of

oxygen, u,, can reduce the magnitude of the local electron hopping. The proportion to ui2

90



is due to symmetry consideration; the reduction of the hopping magnitude shouldn’t

depend on which way the oxygen moves. The other case is

Hm”, = —tZ(eia"’ —1Xc;,ci+,‘a + h.c.)z —iatZu,(c;ci+m + he). (5.16)

This assumes that ui can alter the phase of the local electron hopping. Despite the rather

different mechanisms defined in Eqs. (5.14), (5.15) and Eq. (5.16), their effects are very

similar for the spin wave states alone (while they make larger difference for other states).

Namely, the spin wave states are robust and the dispersion gets very slightly hardened in

the presence of these electron-phonon interactions.

This strongly indicates that the observed softening of the spin wave dispersion

cannot be explained by the simple single-band model. A more realistic two-band model

which incorporates the Jahn-Teller effect such as Eqs. (5.2), (5.3), (5.5) and (5.10) may

be needed in this respect.
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Chapter 6

Concluding Remarks

This work gives several new results which are likely to have a broader impact on

the research community on these subjects. First, although the three-band Hubbard model

with the model parameters fitted to high-Tc superconducting cuprates [12] has a large

[pd/8pd (~0.36) ratio, the perturbation expansion using the effective Hamiltonian method

on this model for the undoped case is proved to converge well in the leading order. It

explains why the low-lying states of the undoped cuprates are found to be governed by

the nearest-neighbor Heisenberg spin Hamiltonian in a study of the model on small

clusters [16]. However, the rapid convergence of the expansion doesn’t come from the

straightforward perturbation. In fact, the straightforward perturbation does not converge

at all. To achieve convergence, one has to first perform a proper canonical

transformation on the model Hamiltonian and then apply the perturbation method to the

transformed Hamiltonian. In this work, it is shown that transformations involving only

recombinations of the underlying single-particle orbitals (called l-body transformations)

lead only to a slow convergent expansion. The reason for the slow convergence is the

following: 1-body transformations are usually aimed to reduce the hopping between the

transformed orbitals. But at the same time, it also reduces the intra-atomic Coulomb

repulsion in the new d orbitals due to the p-d orbital mixing (the Coulomb repulsion in

the p orbitals is much less than that in the d orbitals). This repulsion energy occurs in the

energy denominators of the perturbation expansion, associated with the intermediate
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states where two holes occupy the same copper site. Thus the reduction of this repulsion

energy has a negative impact on the convergence of the perturbation expansion. This is

an inherent limitation of l-body transformations. I have shown that an l-body + minimal

2-body transformation can simultaneously reduce the hopping and retain the large

repulsion energy, and leads to rapid convergence.

Second, the crystal Hartree-Fock (HF) calculations on the spin form factors of

LaQNiO4, LaQCuO4 and KNiF3 in this dissertation confirm the results of Ref. 41 which

explored the embedded cluster approximation. In both the works, Eq. (3.3) is used as the

approximation to obtain the spin form factor. The authors of Ref. 41 actually have

calculated spin form factors for a much broader range of Mott insulators. Their results all

agree very well with experimental measurements except for the case of LaQNiO4 in which

a large discrepancy between the theory and an experiment [64] is observed. Based on the

agreement between this work and Ref. 41, and the fact that Eq. (3.3) has been

successfully applied to many other materials in Ref. 41, we cast doubt on the

experimental results of LazNiO4 and call for more experiments to settle the issue.

Third, the crystal Hartree-Fock approximation (HFA) is proved to be valuable for

the solids with strong interacting electrons. For example, the crystal HFA predicts

correctly that LazCuO4 and LazNiO4 are both antiferromagnetic insulators, in contrast to

the wrong prediction (paramagnetic metal for LaQCuO4 and antiferromagnetic metal for

LaQNiO4) made by the local spin density approximation (LSDA) [37,38]. It is commonly

perceived that, in general, the HFA overestimates band gap and the LSDA underestimates

or predicts no band gap for insulators. However, there are other important differences in

the predictions of the two theories which have not been tested by direct experimental
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measurements yet. For example, the crystal HFA predicts the oxygen p band while the

LSDA predicts the magnetic ion (1 band to be the top valence band for the perovskite

Mott insulators. This is a fundamental problem in understanding the electronic structures

of these systems, but has not yet been resolved by direct experimental measurement.

Besides, it is found in the crystal HFA that the charge of the Mn ion is close to +2 for

both LaMnO3 and CaMnO3, in contrast to the formal valence picture where it is Mn"3 for

LaMnO3 and Mn‘“4 for CaMnO3. What makes the matter more intriguing is that the spin

of the Mn ion predicted by the crystal HFA is very close to the value of the formal

valence picture (2 for LaMnO3 and 3/2 for CaMnO3). Based on these results, we

hypothesize that high charge ion states are not energetically favorable in reality and, for

systems containing ions with large formal charges, there is a Spinless charge backflow

from the anion (such as O, F) p orbitals to the magnetic ion (such as Cr, Mn) d orbitals

(thus it only changes the charge but not the spin of the magnetic ion). Since the formal

valence picture has been a universal concept in general physics and chemistry, the

importance of examining this hypothesis, which is a departure from the formal valence

picture, is obvious.

Fourth, in this work it is argued that the common treatment of the double-

exchange (DE) model with Jahn-Teller (JT) coupling found in the literature [112] is

seriously flawed. The DE model is commonly used in describing the electronic

properties of the perovskite manganites. The point of concern here is the vibrations of the

MnO6 clusters in the crystal, which affect the electronic properties through the IT

coupling. Obviously for the sake of convenience, most people treat the Vibrations of the

MnO6 clusters as uncoupled. This leads to an approximation which essentially neglects
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all the cross terms in both the kinetic and the potential energy parts of the Hamiltonian

for the Mn06 vibrations. Using a simple example, I show that the coefficients of the

cross terms are just as large as those of the diagonal terms. Thus the neglect of the cross

terms is not justified.

Fifth, the energies of the spin wave states in the single-band DE model are found

to be surprisingly robust in the presence of several trial electron-phonon couplings.

Based on this, it is believed that the mechanism responsible for the recently observed

phonon-induced softening of the spin wave dispersion near Brillouin zone boundaries in

several low-TC (Curie Temperature) manganites [111] lies beyond the simple single-band

DE model. It remains to be seen whether the two-band DE model with JT coupling can

explain this phenomenon satisfactorily.
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APPENDICES



Appendix A

A physical interpretation of the TSDA

equations

In the one-body terms of the Hamiltonian, hvflc:c#(v¢ ,u) is the so called

hopping term which causes a particle initially in the one-particle state [.1 to hop to the one-

particle state v, provided the one-particle state v is empty initially. Therefore, for an

arbitrary single-determinantal state [‘P), the expectation value of the operator

hvfln#(1 — It) gives the amplitude of the hopping u—w when [‘11) is operated on by the

hopping terms of the Hamiltonian; i.e.,

<LIJ h n (1_ anLP> : <LP'IHII—body1w 71  
111), (A1)

 

where H,'_body E (H — Ha),_body = 241618011011 and [\IJ') is the single-determinantal state

(1:38

which differs from [‘11) by replacing, if there is any, the one-particle state 11 in I‘P) with

the one-particle state v. For the same reason, the operator hmnv (l—nfl) (note that

hw=hw are assumed to be real here) corresponds to the reverse hopping v—>u. The

difference between these two operators:

hwnv(l—n#)-hvfln#(l—nv)=hw(nv—-n#) (A2)

reflects, in some sense, the “net” hopping v—>u. Therefore we define it as the net

hopping operator due to the one-body terms of the Hamiltonian.
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Now, let’s turn to the two-body terms of the Hamiltonian. The analogous hopping

terms which cause a particle in the one-particle state 11 to hop to another one-particle state

v while other particles in the system don’t move are 1914116: cj'clcfl and va‘lyc‘fczcycl.

What’s different from that of the one-body terms is that this hopping must occur in the

presence of another particle in the orbital A. Also keep in mind that the second term,

mack/101101 , introduces an extra minus sign in the final state from that of the first term,

vV/L1.10:6: c,1 cy. Analogous to the case of the one-body terms of the Hamiltonian, for an

arbitrary single-determinantal state [‘11) the expectation value of the operator

2(a)”, —va# )n,n#(l—nv) gives the amplitude of the hopping u—w when [‘11) is

A

operated on by the two-body terms of the Hamiltonian,

 

r

HZ-body  
111) (A3)

<LIJ I; (Vt/2.112 _ V1412); )n/lnp (1 _ ”V X ‘1’) = (‘11,

where H2’_body denotes the two-body terms of H — Ha and [‘P') has the same meaning as

in Eq. (A1); and correspondingly, 2(1),,” “V171,411 )nAny (1 —n#) accounts for the reverse

2

hopping v—au. The difference,

2632,1721 _ vvl,/tp>1/1nv(1_ ”/1 )_ 2(Vv2.y1 _ Vv2,211)"2"11(1— ”v)

4 2

= 2694.44 “ Vv4.411)"4(”v " ”11)

2

(A4)

is defined as the net hopping v—>u due to the two-body terms of the Hamiltonian. Then

it’s natural that the total net hopping operator is

hvrz(nv —ny)+Z(v1/A,M —vv2./ip )nl (”v _n,u)’ (A5)

21
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which is just the left-hand side of the TSDA equation (2. 10) without the thermal average

acting on it. Thus we get another View of TSDA; namely, the solutions of TSDA give

zero thermal average of the net hopping operator (again, note that here the thermal

averages are not with respect to the exact Hamiltonian H but to the approximation Ha).
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Appendix B

Solving the TSDA equations

Since the detailed use of the TSDA in the present context is not commonly seen,

we present the details to aid in further pursuit of the matter. Because of the numerical

difficulty mentioned in the text and explained later in this appendix, what we have

actually solved are modified TSDA equations, where the modification is based on

argument of the large [3 (or low temperature) region of interest. In the following, we

consider site localization as an example to explain the difficulty and show how we

circumvent it.

The TSDA equations are: [Eq. (2.10) of the text]

< n, -n# > hm +Z< (n, —n#)n,1 > (V4.14 —v,,,,,,) = 0 (B1)

A

for any pair of orbitals labeled v, u. The thermal average bracket, < -- >, is defined as, for

any operator A,

= tr(e"fl”aA) _ Z < ”an'13-flH“ 141',
va >

< A >_ — , B2

tr(e‘fl”" ) Z < .., NV,--|e_flH“ I", NV," > ( )

  

where the summation is over all possible occupations. The subscripts in Eq. (B1) label

both the spatial and spin quantum numbers of the one-particle states. In the Hubbard

model, the one-body and two-body matrix elements, h,” and mum, preserve spin (i.e.

_ . ,. . . _ _ . , , .

hvfl hia‘ja.—01f0'¢0',srmilarlyv =v —01f0'¢0' ors¢s)andaresprn
vyjtlr i0js,kcrls'
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independent (i.e. hm,” E 11,}; similarly, v,ojs,,ds 2 vi“). So the TSDA equations in this

case can be written in the following form:

< 11,, — 12,, > h, + Z< (11,, — n,,)n,,. > (1),”, — 5,,.v,,,,) = 0 (B3)

k.d'

for any pair of spin-orbitals ,0 and jg. In the large B regime in which we are

interested, the exponential factors in the thermal averages of the number operators in Eq.

(B3) cause numerical difficulty and need special treatment.

In viewing the diagram of the CuzO7 cluster (Fig. 2.2), it is apparent that all the

orbitals can be divided into four groups:

(diadz’), (101'), (péaplapéapé), (193310;). (B4)

Each orbital is said to be equivalent by symmetry to any other orbital in the same group.

Because no original orbital (unprimed) will occur in this discussion, the prime on the new

orbitals will be suppressed hereafter for brevity. By symmetry requirements, it is easy to

see that the TSDA equation (B3) for any pair of orbitals is automatically satisfied if the

two orbitals of this pair are in the same group. These trivial equations give us no

information in determining the new orbitals. Further, careful counting shows that, among

those remaining non-trivial TSDA equations, there are precisely nine independent

equations; they are the TSDA equations for the pairs

(d. 1,101 Md. tp. Md. t1); Md. t1). l),(d1 tp. T).
(135)

(p. 1,192 TM101 T,p3 T),(p2 1,103 T),(p2 1,106 T)-

(The corresponding equations for the down-spin pairs are identical to these.) If B" is far

below the transfer energy ap-g d but much larger than the parallel-antiparallel splitting of
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the underlying states, i.e. Kdd << ,6" << 8p — 8d, then the states which have one hole in

each of the Cu d orbitals will dominate the thermal averages and the weights they

contribute to the thermal average are essentially equal no matter what their spin

configurations are. For the CuZO7 cluster this means

— — _ ~ 1<”d,1 >—<”d.1 >—<na,2T >—<nd2, >= 2

, . (B6)
< n” >='_- 0 for all 1 =17 and 0' =T,i

Because the TSDA equations for the last four pairs of Eq. (B5) only involve the thermal

averages < "p.17 > and < nplan, > , their numerical values for the left hand side of Eq. (B3)

are very small. This causes difficulty in solving numerically the nine simultaneous

TSDA equations resulting from Eq. (B5) since the computer program may only “see” the

first five equations of Eq. (B5) and regard the last four as having been solved. To

circumvent this problem, we keep only the leading terms in the thermal averages,

substitute them into the TSDA equations, and then extract the limiting forms of the

equations in the large B regime, as shown below.

The lowest energy group of the half-filled Cu207 cluster is the set of 4 single

determinants

‘l’(d10',dzo"), (B7)

where 0' and o" are either T or \L. The next three higher energy groups are

.‘I’(d,0',p,o"), LI’(d20',p,0")

2. ‘1’(d20', p20”), LI’(d20',p4o"), ‘l’(d,0',p50"), LI’((1',0',p7o"). (B8)

3. L11(d20',p30"), lI’(d10', p60")

102



(We don’t know the energy order of the three groups in Eq. (B8) before we solve the

TSDA equations.) To circumvent the numerical difficulty mentioned above, we make

two assumptions about B: (i) [3" is sufficiently low such that in the thermal average the

exponential weight due to a lower energy group numerically overwhelms the weights due

to other higher energy groups. (ii) But at the same time B" is sufficiently high such that

the parallel-antiparallel splittings are to be neglected and average energies (over 4

possible spin configurations) are to be used in substitution of real individual energies.

For example, define E(d, 0', p10”) as the energy of state LI’(d,o*, p10”) and E(d, p,) as

the average of E(6110', p10”) over the 4 possible spin configurations,

1 ,
E1411.) = ZZEwlmm)

l

: 22(hd1dr + hPrPI + vdlplsdlpl — aaa'vdlpl’pldl )
(B9)

_ __l.

— hdldl + hPrPl + vlervdIPI 2 vd1P|1PId1

Because there is essentially no energy resolution among the different spin configurations

by our assumption, we are to replace E(dlo, p10”) with E(d 1 p,) in our calculation. The

energies of other states are similarly treated. We will come back to our assumption about

B later. Some thermal averages of the number operators are listed below as examples:
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l _ _ 1

< n >5 —(e flw'a‘dm + e [’W'O'dz“) E 2 < n n . >5 —
d,0' Z (1.0 dzo 2

1 _ _ _ _
< n >5 —(e flE(p1a.d1T) +e 125010.411 +e 165071011121) +e flammdzh) E 4 < "hand-a, >5 0

1 _ _

< n >5 E02 350120.112?) +e 1356204120) 5 2 < nmnd . >5 0
20'

1 _ _

< 12 >2 —(e ”(W’M) +e [’EW’AZ“) 5 2 < np and 0. >2 0
Z 3 2

(1310)

where Z denotes the partition function. The TSDA equation for the pair (a’l T, pl T)

therefore reduces approximately to a simple form in our assumed B regime:

k,0'

l

_

I) (3 — O)hd1P1 + (< nlendzT > —O)(vd1d21prd2 _ vd1d2142P1)+(< ndITndzl > -0)(vd1d21prd2)_ O

-1 =

3 hdlpl +(vd1d21P1d2 2 vdldzsdzpr) 0

The TSDA equations for the 2nd to 5th pairs in Eq. (A5) are similar in form to that for

(d 1 T, [21 T) . Now we examine the TSDA equation for the 6th pair (p] T, p2 T):

(< ”7711 > _ < ”I72T >)hP1P2 + Z“ ”mink“ > — < "min/‘0 >)(v/411.71% — 6Tavp1k1kpz ) = O

k,a

3 (< nplT > _ < npzT >)hP1P2 + (< "PITnle > _O)(vP1d1~P2d1 — vP1d11d1P2)+(< nplTnle' > _0)(vp'd"p2d')

+(< ”p.tnd,t >_<”p,t”d,t >)(v )+(< "p.tndzt >—<np2Tnd2[ >)(v )=0
Pldzspzdz _ vP1d21d2P2 P1d21P2d2

_ _ L:> (2 < nPITndfl > < ”p,1"d2a >)hmp2 + < "p.tndp > (Wm/224. 2 vl’ldl1d1P2 )

) = 0
_ _ L

+ (< np.Tnd,-0 > < npzTndzO >)(vP1d21P2dz 2 vPIdzvdzpz

where in the last expression dw can be either dn , d], , d2T , or d2]. If

E(pld,) < E(p2d2) , then <"p,1”d,o> >> <npzTnd20> by the former assumption about [3 and

the previous equation reduces to

104



_ -1. _ 'l—V

2hP1P2 +(VP1dIaP2d1 2 vP1d11d1P2 ) + (vP1d21P2d2 2 vPrdz d2P2 )= 0’

on the other hand, if E(p,d,) > E(p2d2), then <"p.t”d,a> << <np2Tnd20> and the equation

reduces to

)= 0
hP1P2 +(VP1d21P2d2 —2vP1d2 d2P2

The limiting forms of the TSDA equations for the 7th to 9th pairs in Eq. (B5) can be

obtained in a manner similar to that for (pl T,p2 T). All the nine equations are

summarized below:

(d, t, p, t) : 71,”, + (vdl,2,pl,2 — 2814.412, ) = 0 for 1 = 1,2,3,5,6

(AT45TVWQA+WMMa‘%%am)+WMMm-zvpmfim)=(Hfflde)<flpd)

hp”,2 +(Vp1d2.p2d2 —%vpld2,d2p2) =0 if E(p1d1)> E(pd)

(pl t, p, T) : 211M +(vpldmdl —;vp|,l,lp3)+(vpldzM ;vM,2”): 0 if E(pd1)< E(pd)

mm+0MMfl-zvmgmg= OKEde)>flpd)

)= 0

)= OHEwwd)<flpd)

h

(p. Tm. T) : h

(1). 1,5,1)».

h

1v

'1‘ V

P2P3 ( Pzdszsz —2 vadzd2P3

__l_v

+ V

P2P6 ( P2d21P6d2 —2 vadz d2P6

)= OfiEmwd)>Emd)
_ 1v

P2P6 + (vP2d11P6d1 2vP2dI‘1'1P6

(311)

There are 3! = 6 possible orderings of the energies E(p,d,), E(p,d,), E(p3d,). For each

possible order, we solve Eq. (B11) and then check the consistency of the solutions with

their respective presumed energy order. Those which are not self-consistent are, of

course, dropped. Although the forms of Eq. (B11) are pretty simple, the transformed

parameters h”, and v in Eq. (B11) are each a polynomial function of the
walk“

transformation coefficients defined in Eq. (2.16) of order 2 and 4, respectively. Therefore
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there indeed exist many solutions. We solved Eq. (B11) numerically. By varying the

starting point and length of searching steps, we got several solutions of Eq. (B11). These

solutions were examined by comparing their resulting TSDA free energies and also by

cross checking with the solutions obtained in the cell localization and no localization

cases to confirm that the real TSDA solution (which means the one which, within the

single-determinantal and the particular localization-choice framework, gives the lowest

free energy) has been found and identified. It turns out E(p2d2) < E(p,d,) < E(p,d,) for

the real TSDA solution.

Now we examine the consistency of the solution with our assumption about [3,

which was made to simplify the TSDA equations and therefore circumvent the numerical

difficulty it leads to. Based on the solution, we calculate the energies of various states.

The average energies (over 4 possible spin configurations) of the first four lowest energy

groups, i.e. those of Eqs. (B7) and (B8), are

E(d.d2) 1301,41) E(p2d2) E(p3d2)
. (312)

—2.75742 3.80976 3.40425 4.6475

The smallest energy gap among the above four groups is between the second and the third

ones, which is about 0.41. For our assumption to be right, the [3" must be well below

0.41 to make a lower energy group numerically overwhelm other higher energy groups in

contributing the weight in thermal average. However, the parallel-antiparallel splittings,

which we have neglected in order to replace the energy of every state of a group with the

average energy of that group, for the four groups in Eq. (B12) are
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K(d1d2) K(p1d1) K(p2d2) K(p3d2)

0.0288 0.7605 0.0097 0.0823 ' (B 13)

(Note that the second one is big because the p1 and d1 are nearest neighbors to each other

so that they are from strong hybridization of the original p1 and d], and that strong

hybridization also leads to big exchange energy between the new p1 and d1 orbitals.) So

[3" must be much larger than 0.76 for the neglect of parallel-antiparallel splittings to be

legitimate. An inconsistency thus occurs.

We have two reasons to believe that this inconsistency does no harm to our work

here. First, in addition to what we presented so far (which we call the average case), we

have done the same calculation on two artificial cases: one is to assume the spins of the

two particles in the Cu207 cluster can only be parallel and the other, antiparallel. As a

matter of fact, the parallel case is not really artificial because it is exactly the limiting

situation when B"—>0. (Note that a state with a pair of spin-parallel particles is always

lower in energy than its antiparallel counterpart by an amount of the exchange energy K

between these two particles. When [5" is sufficiently low, the parallel states will

dominate the thermal average.) At first glance, the inconsistency suggests that we

shouldn’t assume [3" is sufficiently high and neglect the parallel-antiparallel splittings. It

turns out that the TSDA solution of the average case is somewhere between the TSDA

solutions of the parallel and antiparallel cases, and, more importantly, they only slightly

differfrom each other. This suggests that the solution we obtained is close to the solution

one might get by solving the exact (unsimplified) TSDA equations (for ,6" << 0.4 ).

Second, the average case itself can also be viewed as the exact calculation for another
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artificial case, namely, a system which has no spin degrees of freedom and has the

average energies as the energies of its levels. Our purpose is to seek a definite guideline

which can lead us to a good transformation on the basis set such that the perturbation

converges rapidly. So the model which we use to derive the transformation may be

closely related to the system of interest, but it doesn’t have to be the same. Also, recall

that [3" here is rather a parameter than a physical temperature. Therefore, the

inconsistency is not really our concern as long as we can obtain a suitable transformation.
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Appendix C

On the determination of the Heisenberg J

from electronic structure calculations

In this appendix, we discuss the theoretical justification behind the commonly

used mapping scheme mentioned in Sec. 3.2.1 in estimating the Heisenberg exchange

parameter J from ab initio electronic calculations. We assume that the problems under

consideration have their low-lying states governed by a Heisenberg Hamiltonian. Of

course, if a problem is simple enough, one can calculate J exactly (using standard

quantum chemistry techniques such as configuration interaction). For example, if one

were actually dealing with two magnetic electrons, with a limited number of non-

magnetic electrons, one could in practice calculate the energies of the true lowest energy

eigenstates, singlet and triplet. Equating their energy difference to the difference in

eigenvalues of the Heisenberg Hamiltonian, would then yield J. This approach has been

used [1 16-1 18,44-46].

However, for more complicated systems, we are forced to make approximations.

The mapping scheme to estimate J in Sec. 3.2.1 has been used for years, in both Hartree-

Fock and density functional calculations. We have shown [83] that for some special

cases, e.g. a single-band Hubbard model, JHF defined by Eq. (3.2) equals J to the leading

order in perturbation with small hopping; but that does not hold in general (although one

may get the contrary impression from some papers [46]). Still, JHF serves as a reasonable

and well-defined estimation of J.
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We now discuss the determination of J within density functional theory (DFT)

approaches, which invoke the following procedure [119,120]. One obtains a symmetry-

broken (SB) solution for the Kohn-Sham determinant DKS for the “antiferromagnetic”

state and a triplet state (for simplicity we discuss the case of one magnetic electron per

magnetic site in a two-magnetic-site cluster). The triplet energy minus the SB AFM state

energy is equated to the triplet energy minus the (average) energy of the SB spin state

a(1),8(2) for the Heisenberg model, thereby obtaining a number for J [121]. Although

making the correspondence “SB electronic state H SB spin state” sounds reasonable, one

must realize that there is not a unique SB spin state, even in this simplest of cases.

The following spin state is SB for all values of,uiO or 00.

Q. = —1——{a(l)fl(2) — [301042) + yla<1m<2>+ .6(1)a<2>]} . (CI)
1/2]1+,uz]

The expectation value of the Heisenberg energy is

(C2)
 

If one used the exact density functional (DF), then the energies of the exact lowest

triplet and singlet states would be obtained. The difference in these energies would be

equated to the corresponding difference in Eq. (C2) with ,u = 0 and 00, and this would

give the exact J. However, given an approximate DF, as in almost all applications, one is

faced with the problem of what value of ,u to use in Eq. (C2) for the SB AFM state.

Many people [57,119,120] take [2 = 1 without giving a reason. But there is a potential

inconsistency in doing so: as one’s approximate DF gets closer to the exact DF, continued
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use of ,u = 1 may lead to serious errors. Thus the appropriate value of ,u to use is

unknown.

A possible way out of this dilemma is as follows. From Eq. (C2) one gets

_ §2
u—\/< %2—«62 >), (C3)

where S = S, + 5,. One could demand that < S2 > be equal to the expectation value of

 

the square of the total electronic spin in DKS, thus determining ,u via Eq. (C3). One

should remember that there is no guarantee that DKS is an eigenfunction of S2 or that the

average value < S2 >in DKS is correct, even for the exact DKS, presenting a possible

inconsistency in this approach. Also, how to generalize this mapping idea for

determining the SB AFM spin state to more than two sites (two electrons) is not obvious

and remains to be investigated.

Interestingly, this idea raises a question about the standard mapping used for the

HFA where ,u is taken to be 1 for the AFM spin state. For this two-site two-electron

example, one can show easily that < S 2 > D”; = 1— 62 , where DHF is the HF determinant of

the AFM state and 6 is the overlap integral between the two localized orbitals. Since 6 is

usually quite small (< 0.1), it is seen that this probably would make little difference.
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