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ABSTRACT

SEIBERG-WITTEN INVARIANTS OF 4-MANIFOLDS WITH CIRCLE
ACTIONS

By

Scott Jeremy Baldridge

The main result of this paper is a formula for calculating the Seiberg-Witten invari-
ants of 4-manifolds with fixed-point free circle actions. This is done by showing un-
der suitable conditions a diffeomorphism between the moduli space of the 4-manifold
and the moduli space of the quotient 3-orbifold. Two corollaries include by >1 4-
manifolds with fixed-point free circle actions are simple type and a new proof that
SWysys1 = SWys. Using the formula, we show how to construct a nonsymplectic 4-
manifold with a free circle action whose orbit space fibers over circle. We also describe
a nontrivial 3-manifold which is not the orbit space of any symplectic 4-manifold with
a free circle action. An infinite number of by =1 4-manifold where the Seiberg-Witten
invariants are still diffeomorphism invariants are constructed and studied. As an ap-
plication of the main results, we derive a formula for the 3-dimensional Seiberg-Witten

invariants of the total space of a circle bundle over a surface.
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CHAPTER 1

Introduction

The main idea of this work is to systematically study 4-manifolds that admit an
Sl-action and classify them using Seiberg-Witten gauge theory. When the action on
X1 is free, the quotient by the S!-action is a smooth 3-manifold Y and the manifold
with given circle action is classified by the Euler class x € H?(Y;Z). When the circle
action is not free there will be non-trivial isotropy groups, which forces the orbit space
to be an orbifold rather than a manifold. The main result of this paper is a formula
for calculating the Seiberg-Witten invariants of any 4-manifold with a fixed point free
circle action. We derive the formula by proving the existence of a diffeomorphism
between the moduli space of the 4-manifold with the moduli space of the quotient
3-orbifold.

A given manifold may admit more than one circle action. So while the 3-manifold
and Euler class are fully sufficient to classify a free circle action, the Seiberg-Witten
invariants are stronger in that they are invariant of the underlying space up to dif-
feomorphism regardless of the circle action.

The first theorem we prove puts a restriction on the set of Spin® structures with
nontrivial Seiberg-Witten invariants for manifolds which admit a fixed point free circle
action. (See Chapters 2 and 3 for descriptions of Spin® structures and Seiberg-Witten

invariants.)



Theorem A. Let £ be a Spin® structure on by#1 4-manifold X with a fized point
free circle action such that SWx (§) # 0. Then the Spin® structure & is pulled back

from a Spin® structure on Y.

See section 4.1 for the statement when b, (X) = 1. This theorem is already enough
to imply that X is SW simple type — that the expected dimension of the moduli space
for all Spin® structures with nontrivial invariants is zero.

Let 7 : X — Y be the projection map from a smooth 4-manifold with a fixed
point free circle action to its quotient orbifold. The manifold X can be thought of
as a orbifold circle bundle over Y. If in is the connection 1-form of the circle bundle
and gy is any orbifold metric, we can form the metric gx = n® n + 7*(gy) on X.
After perturbing the Seiberg-Witten equations on Y by a closed orbifold 2-form ¢
and on X by its self-dual pullback 7*(6)* = Z(1 4+ )7*(J), there is a moduli space of
irreducible solutions to the Seiberg-Witten equations M*(X, gx,7*(6)") associated
with X and M*(Y, gy, d) associated with Y (see sections 2.4 and 3.3 for definitions).
Let N*(X, gx,7*(6)*) be the subcomponent of M*(X,gx,n*(§)") which are the
Spin® structures that are pulled back from Y. Theorem A tells us that these are the
only Spin® structures that are useful to study. We can now state the main theorem

of this paper:

Theorem B. The pullback map 7™ induces a homeomorphism

T M*(Y, gy, 8) = N*(X, gx,7"(8)").

Furthermore, if either of the two moduli spaces is a smooth manifold, then both of

them are smooth, and 7* is a diffeomorphism.

The approach to the proof of Theorem B was inspired by similar work done in

[MOY].



As in the free case, a manifold with a fixed point free S'-action can still be
considered as a unit circle bundle, but now it is a unit circle bundle of an orbifold line
bundle over a 3-orbifold. In this setup, H%(Y; Z) is replaced by a group called Pic*(Y)
which records local data around the singular set (see section 2.2). Our main results
express the Seiberg-Witten invariants of X in terms of the Seiberg-Witten invariants

of the orbifold Y and the orbifold Euler class x:

Theorem C. Let X be a closed smooth 4-manifold with by >1 and a fized point free
circle action. Let Y3 be the orbifold quotient space and suppose that x € Pic'(Y) is
the orbifold Euler class of the circle action. If € is a Spin® structure over X with

SW3(€) # 0, then & = w*(&) for some Spin® structure on'Y and

SWx(€) = >, SWp(E),
=€ mod x
where £ — &, is a well-defined element of Pic'(Y). When b, =1, the formula holds for

all Spin® structures pulled back from Y .

This results produces two immediate corollaries. One is a corresponding formula
for manifolds with free circle actions. This corollary is useful for calculating exam-
ples. The second corollary is a proof of the well known fact that the Seiberg-Witten
invariants of Y3 x S! are the same as the Seiberg-Witten invariants of Y3.

Theorem C, together with the conjectured formula when X contains fixed points
(see chapter 9), would completely calculate the Seiberg-Witten invariants for all
b, > 1 4-manifolds with circle actions. These calculations are useful beyond just
distinguishing manifolds. When Seiberg-Witten invariants are combined with C.
Taubes’s results on symplectic manifolds (c.f. [T]), the formulas become an easy and
powerful way of calculating an obstruction for an S'-manifold to admit a symplectic

structure.



As an example of the main result, we produce a nonsymplectic 4-manifold with
a free circle action whose orbit space is a 3-manifold which fibers over S!. This
example runs counter to intuition since there is a well-known conjecture/question of
Taubes that M3 x S admits a symplectic structure if and only if M3 fibers over S'.
Furthermore, there is evidence [FGM] which suggests that many such 4-manifolds are,
in fact, symplectic. As another example of our formula, we construct a 3-manifold
which is not the orbit space of any symplectic 4-manifold with a free circle action.

Theorem B can also be used to study moduli spaces in the case when b, (X) = 1.
Normally when b, (X) = 1, the Seiberg-Witten invariant depends on the “chamber”
of the metric used to calculate it. A theorem of T. J. Li and A. Liu [LL] shows
how the numerical invariant changes when the metric moves from one chamber into
another. Under certain conditions, their theorem says that the invariant does not
change (making it a diffeomorphism invariant again). We show how to construct an
infinite number of b, = 1 manifolds with this property and study their moduli spaces
using Theorem B. This theorem provides a way to see explicitly why the invariants
do not change when a chamber wall is crossed.

Another application of the Theorem C is a formula for the Seiberg-Witten invari-
ant of the total space of a circle bundle over a surface. This formula can be thought

of as the 3 dimensional analog of the 4 dimensional formula.

This dissertation is organized as follows.

e In Chapter 2 we show how to define the Seiberg-Witten equations and invariant

on a 3-orbifold.

e Chapter 3 shows the relationship between 4-manifolds with fixed point free

circle actions and orbifold line bundles over a 3-orbifold.

e We prove Theorem A in Chapter 4 by showing a relationship between solutions

and topology.






In Chapter 5 we prove Theorem B by showing that solutions to the Seiberg-

Witten equations on the 4-manifold are circle invariant.
Chapter 6 contains a proof of Theorem C and its corollaries.

Chapter 7 is an alternate proof of Theorem C in the case where the 4-manifold

admits a free circle action.

Chapter 8 describes some examples and applications of both Theorem B and

Theorem C.

In the last chapter, Chapter 9, we conjecture what the Seiberg-Witten invari-

ants are for a 4-manifold which admits a circle action that has fixed points.



CHAPTER 2

Seiberg-Witten on 3-orbifolds

We show that all of the usual notions of gauge theory hold for 3-dimensional real
orbifolds. Throughout, we assume that all orbifolds are oriented, connected, and

closed unless otherwise specified. We start with the definition of orbifolds (c.f. [S]).

2.1 Definitions

An n-dimensional orbifold Y is a Hausdorff space |Y| together with a system = =

({U:}, {@:i}, {U:}, {Gi}, {¢i;}) which satisfies
1. {U;} is locally finite.
2. {U;} is closed under finite intersections.

3. For each U;, there exist a finite group G; acting smoothly and effectively on a

connected open subset U’i of R* and a homeomorphism ; : Ui /G = Us.

4. If U; C Uj, there exist a monomorphism f;; : G; = G; and a smooth embedding

Dij U, — U]‘ such that for all g € G;, z € U;, @ii(9-z) = fij(g) - $ij(x) making



—



the following diagram commute:

U; U,
- l Pi; =~ l
Ul/Gz —_— > U]‘/G]
$i l%‘
U; j

where ¢;; are induced by the monomorphisms and the r;’s are the natural

projections.

The system = is called an atlas and each p; or; : U, — U; is called a local chart.
An orbifold Y is connected and closed if the underlying space |Y'| is. Two atlases give
the same orbifold structure if there is a common refinement.

Let z € |Y| and U, — U be a local chart containing z. The local group at z,
denoted G, is the isotropy group of G of any point in U corresponding to z (well-
defined up to isomorphism). Set Y = {z € |Y| | G, # 1}. This set is closed and
nowhere dense, and in fact it is easily shown that dim XY < n — 2. After removing
the singular set, Y \ £Y becomes a manifold.

All theorems henceforth will be stated and proved for 3-dimensional orbifolds Y
where XY is a finite disjoint set of smooth circles [y, ...,[, that are assigned integral
multiplicities a1, ..., a, given by their local isotropy group Z,, = Z/o;Z. Let D be
the standard complex disk and consider a Z,, action on it by rotation. We will take
a convenient atlas in all of the atlases which give the same orbifold structure. Equip

|Y| with an atlas of coordinate charts



¢;: (S' x D, S' x0) = (U, ) i=1,...,n

b : D3> U, zeY\{l,... .},

where the ¢; induce homeomorphisms from (S! x D/Z,., S* x 0) to (U;, l;), the ¢, are
homeomorphisms, the U; are all pairwise disjoint, U, N XY = (, and the transition

functions are all diffeomorphisms.

Example 2.1 The triple Y = (S3, K,n) where K is a knot in S®, K is the singular

locus Y = K, and the isotropy group around K s Z,, is an example of a 3-orbifold.

Define an n-dimensional orbifold bundle over Y in the following manner. Set
U, x V"™ over each U, for an n-dimensional vector space V™. Over U; the vector bundle
is given by the quotient (S! x D x V™) /Z,, where (S* x D x V") is a Z, -equivariant
vector bundle specified up to isometry by giving a representation o; : Z,, - GL,(V).
The vector bundle over Y is then specified by a 1-cocycle of transition functions over

the overlaps.

2.2 Orbifold line bundles

Under tensor product the topological isomorphism classes of orbifold line bundles
form a group Pic’(Y) called the topological Picard group. We describe this group in
this section.

We can record the information in Pic!(Y) by using a generalization of equivariant
cohomology. Think of Y as the union of Y\ {l1,...,l,} and I ({; x D/Z,,). Define Yy
to be the union of Y\ {l1,...,l,} and I (I; x (D xz, EZ,,)) glued using sections of






li x (D\{0} Xz,, EZqa,) — Ui\ l;. These sections are unique up to homotopy because
the fibers of the bundle are contractible.

The following theorem is contained in [FuS].

Theorem 2.2 The following groups are isomorphic:
1. H*(\Yv;Z2) = HY(|Y|;Z),

2. H*(Yy; Z) = Pict(Y).

Remark 2.3 In the literature, the group Hy (Y) := H*(Yy) s often called the V-

cohomology ring of Y.

Here is another way to describe Pic‘(Y). Define an orbifold line bundle over Y to
be a trivial line bundle A = (Y'\l;) xC and over U it is given by B = (S*x DX C¢)/Z,,

where a € Z,, acts using the standard representation

2mia 2mia

a-(v,w,z) > (y,e* w, e 2).

The bundle is glued together using a transition function ¢pga(y, w) = w on the overlap
S! x (D \ {0}). For each ;, create such a line bundle called E;.

Let L be an orbifold line bundle over Y. There is a collection of integers £, ...,
satisfying

0< B <oy

such that the bundle L ® E;? ® ---® E;#" is a trivial orbifold line bundle over each
neighborhood of the [;’s. By forgetting the orbifold structure, it can be naturally

identified with a smooth line bundle (denoted by |L|) over the smooth manifold |Y|.

Theorem 2.4 The isomorphism classes of orbifold line bundles on Y with specified
isotropy representations 5{3‘, o, &P along 1y, . . ., 1, respectively are in bijective corre-

spondence with x € H*(|Y|;Z).






The proof below generalizes [F'2] to the case of an arbitrary orbifold line bundle.

Proof: Given L € Pic!(Y), we construct L E;”' ® - --® E;# and its desingu-
larization |L| explicitly. Let 7 : X — Y be the unit circle bundle of L. Set @ = UU;
inY and P = 771(Q) with P, = 7#7!}(U;). Then X’ = X \ P is a principal S'-bundle
over Y=Y\ Q.

In general, the unit circle bundle X is an orbifold rather than a manifold. P; is a
quotient of [; x D? x S! by the action of Z, defined by & : (v, w,t) — (v, Ew, £Pt). 1t
follows that the isotropy group of a point in the quotient of [; x {0} x S' is {€ € Z, :
€P = 1} for all points p € I. When the isotropy group is trivial (ged(, 8) = 1) the
quotient is smooth. In the case that 8 = 0 mod,, L is a usual line bundle around that
loop, but the 4-manifold still has a nontrivial orbifold structure. Set d = gcd(a, 53;).

Let m; = 0({0} x D x {1}) be the meridian loop of I; before the quotient is
taken. Denote the class it represents in the quotient by m;. The homeomorphism
@; : OP; — 0X' determines a section s : Y’ — 90X, which is specified up to homology

by the relation:
ol = () s-tm + (5 ) 11

where m] is the meridian of /; in Y’, f' is a fiber of 0X’, and 0 < 8; < ;. The local
invariants («;, f3;) specify P; up to orientation-preserving equivariant homeomorphism.

The bundle X’ can be extended to the unit circle bundle of |L| by equivariantly
attaching [; x D x S! with a bundle isomorphism ¢;. Bundle isomorphisms covering the
identity are classified up to vertical equivariant isotopy by homotopy classes of maps
in [0(S' x D),S'] = Z & Z. However we can change ¢; by a bundle automorphism
classified by [S' x D,S'] = H'(S! x D;Z) = Z; these maps change (¢;).([l;]) by

a multiple of the fiber. Therefore the resulting bundle X’ Uy, (I; x D x S*') can be

10






completely specified by the map
(¢:)«[mi] = s.[m'] + r[f’]

for some r € Z. Thus we determine the principal S! bundle of |L| by specifying that
r=0.

In summary:

1. The unit circle bundle of L is obtained by gluing the quotient P using maps

~ Q; ] /B‘i 1
(i) ] = (g) si[m;] + (g) [£].
Note that this bundle depends only on the section s,[m}] as well because bundle

automorphisms of P; correspond to

U, S") = H'(l; x (D Xz, EZq,);Z) = H'(I; X BZa;Z) = Z.

2. The unit circle bundle of L ® E;”' ® --- ® E;# is obtained by gluing in the

quotient II; [; x (D/Z,,) x S' into X' using maps (¢;).[m;] = s.[m}].

3. The unit circle bundle of the desingularization |L| is obtained by gluing in

0, [; x D x S! using maps (¢;).[m;] = s.[m].

Next we show that two orbifold line bundles L; and L, with the same isotropy
representations and equivalent desingularizations |Li| = |L,| are equivalent as orbifold
line bundles.

Construct two principal S'-bundles X, and X, from X' to form unit circle bun-
dles |L;| and |Ly|. The construction depends on choices of the class Y ., s;[mj] €

H\(0X'; Z) coming from sections s; : 8Y' — 90X for j = 1,2. Let 6; € H*(Y",0Y")

11






be the obstruction to extending these sections over X;. Let 7 € H'(0Y') be the

primary difference of s; and s;. A diagram chase

H(IL; x D; Z) — H2(Y,1Ll; x D;Z) -2~ H*(Y;Z)

HY(0Y";Z) — =~ H2(Y",0Y"; Z)

.

Hz(Hili X D, 8; Z)

shows that jTA™10,(7) = j7 A7 (6 — 02) = c1(|L1]) — ¢1(]L2|) = 0. Thus there is an
element 7' € H'(II;l; x D) such that §;7" = A\"16,7, and 83(7 — i*7') = 0. Therefore
7 € *(H*(I;l; x D;Z)) implying that (s;).[m}] is homotopic to (s;).[m!] through a
homotopy in /; x D. Since the construction of the unit circle bundle of the orbifold

line bundle in (1) depended only on these sections, L; and L, are equivalent. O

The above theorem means that a given orbifold line bundle L over Y is specified

by the data
(Cl(lLDmBla ceey Bn)

called the Seifert invariant of L over Y. (This data, of course, is not unique).

2.3 Spin° Structures on 3-orbifolds

The Spin® structures on a 3-orbifold Y are defined by a pair £ = (W, p) consisting of
a rank 2 complex orbifold bundle W with a hermitian metric (the spinor bundle) and

an action p of orbifold 1-forms on spinors,

p: T*Y — End(W),

12






which satisfies the property that, if e!, €, €3 are an orthonormal coframe at a point in

Y, then the endomorphisms p(e) are skew-adjoint and satisfy the Clifford relations
p(e)p(e?) + p(e?)p(e') = ~26;.
We also require that the volume form e! A % A €3 acts by
ple* Ne* A ed) = —Idy.

We will write ¢; (&) for the first Chern class of det W.

Theorem 2.5 The tangent bundle T*Y of an orbifold always lifts to an orbifold
Spin®(3)-bundle.

Proof: If we can split 7Y into a 1-dimensional real line bundle and a complex
orbifold line bundle L, then we(TY) = wy(RMB L) = wy(L) is just the mod 2 reduction
of ¢;(L) for some orbifold line bundle L. Hence TY lifts.

We need to find a nowhere zero section of T'Y. Note that each l; x D/Z,, comes
with an Z,, -invariant oriented nonzero vector field that is tangent to /; at each point
in D/Z. This vector field induces a nonzero section s : Y’ — TY|s. Remove an extra
S! x D from the interior of Y’ and put a similar nonzero section on the boundary.

The obstruction to extending the section into the interior of
Y'"=Y\((S'xD) U I;l; x D/Z,)
is an element of H3(Y”,0Y"; 15(S?%)) = Z. Using the homology relation

[a(sl X D)] = - Z[a(ll X D/Zai)]?

13






the obstruction can be removed by changing the framing on the boundary of S* x D.

Thus TY admits a nowhere zero vector field. a

Remark 2.6 In [S], I. Satake treated the V-Euler class as the index of a unit vec-
tor field on TY with singularities and showed that xv(Y) = 0 for odd dimensional

orbifolds. Thus it is not surprising that nonzero vector fields exists on 3-orbifolds.

Theorem 2.7 The set of Spin® structures lifting the frame bundle of a 3-orbifold Y
is a principal homogeneous space over Pic'(Y): The difference of two Spin® structures

&1, & 1s an orbifold line bundle.

Proof: Let & and & be two Spin® structures which are lifts of the frame bundle.
Away from the [;’s, the difference of two Spin® structures is a complex line bundle as

in the smooth case. Because

(a1(&) —a(&))[0(l; x D/Z,,)] =0

for all [;, we can extend the complex line bundle over the desingularization |Y'| using
techniques in Theorem 2.4. Thus we can investigate locally to show that any two lifts
of isotropy representations into Spin®(3) differ by a representation into S'. Note that
this is not immediately obvious because there are many different representations of
Z, into Spin®(3) = U(2).

Let ©; be the unit vector field on l; x D/Z, which is tangent to the circle /; at
each point. We use the fact that p : Z, — SO(3) is a rotation which leaves the
nonzero vector field ©; invariant. Identify SU(2) with the unit quaternions. The

map Ad : SU(2) — SO(3) is given by

g+ ghg

14






for all ~ € ImH and is the double cover of SO(3). Thus SO(3) can be thought of as
the unit quaternions modulo the equivalence h ~ —h. Without loss of generality, we
may assume that the invariant vector field ©; is generated by i € ImH at each point
in [;.

It is easy to see that elements of SO(3) which rotate the second two components
while leaving i invariant are of the form e € H. Hence p(1) = A" where ) is a
2a-root of unity in C and 0 < 7 < a.

The Spin® representation o : Spin® — End(H) is given by o(g,€e??)h = ghe® for
all h € H. Here we have used the fact Spin®(3) = SU(2) x S'/(—1,—1). Using this

identification, Spin® projects to SO(3) by the adjoint map as well,

(9,€) — ghg

for all h € ImH. Thus the representation p lifts to p:

Sl

l

?/ Spin©

/A

Zo —5 SO(3)

given by p(1) = (A", p(1)) (or equivalently (—A",—p(1))) for some representation
p:Zs— S'. The representation p is given by p(1) = A* for some 0 < k < «. Hence
the difference of two Spin® structures & — & locally is a representation (p; — p2) :
Zy, — S

Globally, & — &, differs by a complex line bundle over |Y| and local isotropy

representations into S, i.e., an element in Pic*(Y) as described in Theorem 2.4. O

15






2.4 Seiberg-Witten Equations on 3-orbifolds

Fix an orbifold SO(3)-connection °V on the cotangent bundle 7*Y and a Spin® struc-
ture £ = (W, p).

Definition 2.8 A Hermitian connection V on W is called spinorial with respect to

°V if it @s compatible with Clifford multiplication, i.e.,

V(p(v)¥) = p(*Vv)y + p(v) (V). (2.1)

The set of all spinorial connections will be denoted by A(W).

Given a trivialization for W, the connection matrix of any °V-spinorial connection

V can be written with respect to this trivialization as
1 i iAo g
Zijcgap(e A€?) 4 ibIdy

where w? are the connection matrices for °V, and b € Q'(Y,R) is an orbifold 1-form.
We will often think of spinorial connections on a Spin® structure as U(1) connections
on det W coupled with the Levi-Civita connection Vy on 7*Y . A spinorial connection
V defines a Dirac operator D4 : I'(Y, W) — I'(Y, W) on the space of orbifold sections
of W which is self-adjoint. The perturbed Seiberg-Witten equations are the following
pair of equations for (A4, ¥) where A is a U(1) orbifold connection on det W and ¥

is an orbifold section of W:

Fp+i6—xr(¥) = 0
D(¥) = 0.

16






Here 7 : T(Y, W) — Q!(Y;iR) is the adjoint to Clifford multiplication, defined by

(p(ib) ¥, W)y = 2(ib, 7(¥)) s,

for all orbifold 1-forms b and all ¥ € T'(Y, W). The ¢ is a closed orbifold 2-form used
to perturb the equations.

For a fixed metric gy and perturbation term ¢, the moduli space M(Y, &, gy, d) is
the space of solutions to (2.2) modulo the action of the gauge group G = Map(Y, S').
Let M*(Y,&, gy, ) denote the set of irreducible solutions (i.e., where ¥ # 0). For a
generic perturbation, the moduli space is a compact, smooth manifold containing no
reducible solutions. In that case, the fundamental class [M(Y, €, gy, 6)] is essentially
the Seiberg-Witten invariant. Evaluating it against some universal classes defines a
map SW3(£) € Z which is independent of the Riemannian metric and perturbation
when b;(Y) > 1 (c.f., [M]). Denote the union over all distinct Spin® structures by
M(Y, gy, 9).
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CHAPTER 3

4-Manifolds with fixed point free

circle actions

In this chapter we study manifolds with fixed point free circle actions. We describe the
cohomology of these manifolds and show that under some circumstances, line bundles
with connections can be pushed forward to orbifold line bundles with connection
on the quotient. Finally, we describe how to pullback Spin® structures from Spin®

structures on the quotient.

3.1 Homology

A 4-manifold with fixed point free S'-action can be viewed as the boundary of a
disk bundle or the unit circle bundle of an orbifold line bundle L over a 3-orbifold
Y. Henceforth, we will assume that X is a unit circle orbifold line bundle L over Y
where each local invariant f3; is relatively prime to ;. Denote 7 : X — Y for the
projection map.

When X is smooth, then Xy — Yy is an honest S'-bundle and we have the Gysin
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sequence:

0 —— H}(Y) ——= H}(X) — HY(Y) —= H3(Y)

0— HY(Y|) — HY(X Z Pic'(Y)
1 L]
— HY(X) — By () — BY(Y
H | ||
— H}(X) — HY(|Y|) — H}(Y)
Theorem 3.1 If X is a4 ifold with a fized-point free circle action over Y given

by the sphere bundle of a line bundle L over Y, then

H(X.Z) Y(|Y[;Z), [L) is not torsion

IR

HY(|Y|,Z)® Z, [L] is torsion
HY(X;2) = (Pic(Y)/ < [L]>) @ker(-U[L) - H'(V];Z) > HY(Y; Z).

In particular, since the kernel of (-U[L]) : H' — H? is torsion free, all torsion classes

must come from pullbacks in 7*(Pic'(Y)).

When [L] is not torsion, the rank of Pic*(Y)/ < [L] > and ker(- U [L]) are both
equal to by (|Y'[) — 1. A basis for the former space can be represented by the Poincaré
duals of tori of the form 7~ (loop) for smooth loops in Y\ Y. A basis for the later
space can be represented by surfaces in X, which, after integrating over the fiber, are
the Poincaré duals of surfaces in [Y|. The simple intersection relationship between
loops and surfaces in |Y| implies that the intersection form Qx should be simple as
well.

In fact, since the signature is zero (c.f. [HP]), the classification of intersection

forms says that @y is equivalent to the direct sum of matrices of the form (where d
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an integer)

01
1 d

with respect to a basis {A, B} where A € n*(Pic'(Y)) is a class pulled back from Y.
Pulled back classes always have square zero by the naturality of the cup product and

the fact that the product of 2-forms on Y is always zero.

3.2 Line bundles over X

Orbifold line bundles E over Y pullback to usual line bundles 7*(E) over X. Except
for the case X = |Y| x S!, this is a many to one correspondence. Nonetheless, it can
be made faithful in the following way. Given a line bundle F with connection A over

X with the following two properties:

1. The curvature two form of A pulls up from Y, i.e.,

LTFA = 0,

where T is the everywhere non-zero vector field generated by the circle action

on X.

2. There exists a point z € Y \ &Y such that holonomy of A around 7~!(z) is

trivial.

Then (E, A) can be pushed forward to an orbifold line bundle with connection on Y
(up to gauge equivalence). If one such point € Y\ LY satisfies the second condition,
then all points outside the critical set do. Such connections are said to have trivial

fiberwise holonomy.

We state Proposition 5.1.3 from [MOY].
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Proposition 3.2 There is a natural one-to-one correspondence between orbifold line
bundles with connection over Y and usual line bundles with connection over X, whose
curvature forms pull up from'Y and whose fiberwise holonomy s trivial. Furthermore,
this correspondence induces an identification between orbifold sections of the orbifold

bundle over Y with fiberwise constant sections of its pullback over X.

Pull back connections 7*A are characterized by VX 4¥ = 0 for all pulled back

sections W.

3.3 Seiberg-Witten Equations of Smooth 4-
manifolds

A Spin‘ structure £ = (W, o) on an oriented 4-manifold X is a hermitian vector bundle
W of rank 4, together with a Clifford multiplication o : T*X — End(W). The bundle
W decomposes into two bundles of rank 2, W+t & W~ with det W+ = det W~. The
bundle W~ is the subspace annihilated by the action of self-dual 2-forms. We set
c1(€) to be the first Chern class of det W*.

There is a natural way to pullback a Spin® structure from Y to X. Let n denote
the connection 1-form of the circle bundle 7 : X — Y, and let gy be a metric on Y,
then endow X with the metric gx = 7 ® 7+ 7*(gy). Using this metric, there is an
orthogonal splitting

T*"X ZRn@n*(T"Y).

If £ = (W, p) is a Spin® structure over Y, define the pullback of £ to be 7*(§) =
(m*(W) @ n*(W), o) where the action

o:T*X - End(m*(W) & 7*(W))
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is given by

0 m*(p(a)) + blds-(w)

m*(p(a)) — bId s (w) 0

o(bn+ 7*(a)) =

This defines a Spin® structure on X.

Choosing a Spin® structure & = (W, p) on Y gives rise to a one-to-one corre-
spondence between Hermitian orbifold line bundles and Spin® structures on Y via
E — W, ® E. Likewise, the pullback Spin® structure £ = 7*(&;) induces a one-to-one

correspondence between Hermitian line bundles and Spin® structures on X.

Remark 3.3 In this way we can think of a Spin® structure with respect to & or &£
as a choice of line bundle on Y or X respectively. This allows us to push-forward
a Spin® structure with a trivial fiberwise connection on det W+ from X to Y via

Proposition 5.2.

There is a natural connection on X which is compatible with the reduction 7" X =
Ry & 7*(T*Y). Let V¥ denote the Levi-Civita connection on Y and set °V = d &

7*(VY). This is a compatible connection which satisfies

V=0, and °V(r*(8)) =" (VYA). (3.1)

It is more convenient to use this reducible SO(4)-connection instead of the Levi-
Civita connection. By coupling it with a U(1)-connection A on det W we can define a
spinorial connection on W*. Define a Dirac operator P} : [x(W*) = I'x(W™) from
the space of smooth sections of W* to W~. The 4-dimensional perturbed Seiberg-

Witten equations for a section ¥ € I'x (W) and a U(1)-connection A on det W+
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Ff +i0 — q(¥)
12189

Il
=3

(3.2)

I
=

Here F is the projection of the curvature onto the self-dual two forms, 4 is self-
dual 2-form used to perturb the equations, and ¢ : Tx (W) — Q" (X, iR) defined by

q(¥) = Y®@¥* — 1[¥|? is the adjoint of Clifford multiplication by self-dual 2-forms,i.e,

(o(iB)T, Whw+ = 4(iB,q(V))in+ (3:3)

for all self-dual 2-forms 3 and all sections .

Similar to the 3-dimensional case, the moduli space M(X, ¢, gx,0d) is the space
of solutions (A, ¥) modulo the action of the gauge group. We are using a reducible
connection °V instead of the Levi-Civita connection on 7* X, but this alternative com-
patible connection is an allowable perturbation of the usual Seiberg-Witten equations
and can be used to calculate the Seiberg-Witten invariants (see section 4 of [0S2]).
Under suitable generic conditions the moduli space is a compact, oriented, smooth

manifold of dimension

d(€) = X (ci(6)? - 2x(X) - 30(X)) (3.4)

1
which is independent of metric and perturbation when b (X) > 1.

The Seiberg-Witten invariant SWy (€) is a suitable count of solutions. Fix a base
point in M and let G° C Map(X,S') denote the group of maps which map that point
to 1. The base moduli space, denoted by M, is the quotient of the space of solutions
by G°. When the moduli space M (X, €, gx, d) is smooth, M is a principle S*-bundle

over M(X, &, gx,6). For a given Spin® structure £, the 4-dimensional Seiberg-Witten
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invariant SWx (€) is defined to be 0 when d(£) < 0, the sum of signed points when
d(€) = 0, or if d(§) > 0, it is the pairing of the fundamental class of M(X, ¢, gx,0)
with the maximal cup product of the Euler class of the S'-bundle M°.

The dimension formula (3.4) simplifies when the manifold has a fixed point free
circle action. Because X has a nonzero vector field T, the Euler class is zero. As

mentioned previously, the signature of X is also zero.

Proposition 3.4 Suppose that X is a 4-manifold with a fized point free circle action.

The ezxpected dimension of the moduli space for a Spin® structure & is
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CHAPTER 4

Spin® structures and SW solutions

We continue to work with a circle bundle 7 : X — Y with an S'-invariant metric
gx =n*+7*(gy). The perturbation § € Q?(Y,iR) is a closed orbifold 2-form used to
perturb the 3-dimensional equations which is then pulled back and projected on to

the self-dual 2-forms of X to perturb the 4-dimensional equations.

4.1 Restrictions on Spin° structures

First, we make some basic observations. If SWx(£) # 0 for some Spin® structure &,

then the expected dimension of the moduli space is nonnegative, implying
c(€)2>0. (4.1)

If b, (X) = 1, then the metric gx induces a splitting H?(X;R) = H* & H~ where
‘H* is one dimensional. Let c;(£)* be the L? projection onto the self-dual subspace
H*. When c¢,(£)" is nonzero, it provides an orientation for #*. In this situation
the Seiberg-Witten invariant depends on the chamber of 27c,(§) + 7*(6). We will
say that o € H?(X;R) lies in the positive chamber if o™ - ¢;(§)* > 0. Denote the

Seiberg-Witten invariant calculated for @ = (27¢;(§) + 7*(4)) in this chamber by
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SW3(€) and denote the invariant of the other chamber by SWy (€).
When ¢;(§)* = 0 there no distinguished chamber. However, if SWx(£) # 0 in

either chamber, the dimension of the moduli is nonzero and

0< (€)= (al§) ) <0

Since the intersection form on H~ is definite, ¢;(€) is a torsion class and pulled back
from Y by Theorem 3.1.

With this as background, we can state:

Theorem A. Let £ be a Spin® structure on 4-manifold X with a fized point free circle

action such that SWx (&) # 0 (in either chamber when b, =1).

1. If b (X)>1 or by (X)=0, then c,(§) is pulled back from Y .

2. If by (X)=1, then either ¢,(€) is pulled back from'Y, or SW{(€) = 0.

Remark 4.1 In case 2b, the Seiberg- Witten invariant of the other chamber can be

calculated using the wall crossing formula of [LL].
Corollary 4.2 Ifb,(X) > 1 then ¢,(£)? =0 and X is SW simple type.

Recall that a 4-manifold is SW simple type if the dimension of the moduli space
is 0 for all Spin® structures with nonzero Seiberg-Witten invariants.
Theorem A follows easily from the following formula about Seiberg-Witten solu-

tions.

Theorem 4.3 Let (A, ¥) be any solution in M(X, €, gx,7*(6)"). Then
2mei(§) -7 (6) = / Ve ®|? + DT + |ep Fal? + 21%c1 (€)%
bs

The vector field T is the everywhere nonzero vector field generated by the circle action.
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Remark 4.4 The equation in Theorem 4.8 only holds for perturbations which are

pulled back from Y. It does not hold for a general self-dual 2-form on X.

The rest of this section contains a proof of Theorem A assuming Theorem 4.3
above. We will then come back and prove Theorem 4.3 in the next section. We prove
each case separately.

Proof of case 1: When b, (X) > 1, the moduli space is nonempty for all generic
metric and perturbation pairs. Since generic pairs are dense in the space of metrics
and self-dual 2-forms, we can take a sequence of generic pairs which converge to the
pair (gx,0). By compactness, solutions of the generic pairs converge to a solution

(A, ¥) € M(X,¢&,9x,0) and it satisfies
0 = / VU2 + | DY + |opFal? + 27%¢, (€)? (4.2)
X

by Theorem 4.3. Using equation (4.1) we conclude that all terms in equation (4.2)

vanish; in particular, ¢,(£)? = 0 and
LTFA = 0.

Since dFy = 0, this equation implies L1F4 = 0 by Cartan’s formula. Together the
FA7

equations t7Fy = L1F4 = 0 imply that F4 is pulled back from Y. Since ¢;(§) = ﬁ
case 1 follows.
When b, (X) = 0 we have that b,(X) = 0 is also zero because the signature

is zero. Thus c¢;(£) is always a torsion class and this is pulled back by Theorem 3.1. O

Proof of case 2:  Assume that c;(£) is not pulled back. By the argument
proceeding the statement of Theorem A, ¢;(£)* # 0.

We proceed by contradiction. Suppose that SWi(£) # 0. In this chamber, the
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moduli space will be nonempty for all generic pairs of metrics and perturbations.
Note that the unperturbed Seiberg-Witten equations (§ = 0) are in this chamber
because (¢;(£) — 0)* - ¢;(€)* > 0. Hence we can use the same argument as in case
1 to show that c;(&) is pulled back from Y - contradicting our assumption. Thus

SWi() =o. 0

4.2 Solutions to the SW equations

In this section we prove Theorem 4.3. The idea is to prove a Weitzenbock-type
decomposition for the Dirac operator we constructed in section 3.3. Before we prove
this decomposition, however, we need to show that the full Dirac operator D, :
Ix(Wtre W~) - Ix(Wt @ W) is self-adjoint. The following technical lemma

accomplishes this.

Lemma 4.5 Let £ = (W, 0) be a Spin® structure over X. Let V be a spinorial con-
nection created by coupling a connection A € A(det W) with the SO(3)-connection
°V defined in section 3.3. Similarly, let V€ be the spinorial connection created by
coupling the same connection A with the Levi-Civita connection °VEC-. Then

o~ pa=Lotonan as

Since PLC and Clifford multiplication by 3-forms are both self-adjoint operators, ID 4

is self-adjoint.

€' e?, e} on a patch

Proof:  Extend 7 to an orthonormal coframe {n = e
of X so that € = 7, and {e',e? €3} are horizontal lifts of an orthonormal coframe
{e',e%,e®} on Y. Let {e; = T, ey, e, €3} be the dual vector fields with respect to the

metric gyx.
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The difference 1-form w = V&% — °V € Q!(s0(T*X)) can be thought of as an

element in Q!'(A2T*X) via the vector space isomorphism
i s0(T*X) — A2(T"X)
defined by

1 o
i(af) =3 Za{ce] A ek
j<k

The action of so(7*X) on the bundle W is modeled on o, o :. Thus we can Clifford
multiply the A? component of w € Q'(A?T*X) to get
¢ =DPat+onen(w)
where opigp2 : A ® A2 = End(W) is a linear map defined by
ongnz(@® B) = o(a)o(B)
for a basis element a ® 3 € A' ® A?. This map can be conveniently reformulated as

Ineaz(a ® B) = —o(1ef) + o(a A p),

where ¢,» is contraction with the vector field which is gx-dual to a.

Let {C12, (13, (23} be the functions defined by
dn = 2C10et A e + 2Cizet A e + 2(3e? A €. (4.4)
We can use equation (4.4) and the first Cartan Structure equation

deizz:ej/\w;
J
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to calculate the connection matrix for °V%¢. For example, we can write dn as
dn = €' A (Cra€® + Ci3e®) + € A (—Crae! + (13€®) + €8 A (—Cize’ — (a3€?)

to get the top row of the connection matrix

( 0 Ci2€® + C13€®  —Cioe' + (o3e®  —(rze! — (p3€? \
—C126? — C13€° 0 —C12€° + w; —C13€® + w3 (4.5)
Cize' — Caze®  (12e® —wy 0 — (936" + w?

\ Cize' + (o3e®  (13€° — w3 C3e® — wi 0 /

The w;’s in the second, third, and forth row are pulled-back from the connection

1-form for the Levi-Civita connection on Y. The connection matrix for °V is

0 0 W w
2 (4.6)
0 —wl 0 w?
\ 0 —w} —wi 0 )
Using the isomorphism i, the difference V*¢- — V can be written as
1g 1
w= 5;61 ® N A te,(dn) + §n®dn.
O

A straight forward calculation gives opiga2(w) = —20(n A dn).

Remark 4.6 The operators D5 and D 4 have the same indez.
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Lemma 4.7 The square of the Dirac operator decomposes into
1
() Ph = —(Vr)?+ (DY) DY + 50((77 ArFa)T). (4.7)

where ()t is the projection onto self-dual 2-forms.

Proof: = We work with the full Dirac operator first. By using the definition of

°V from equation (3.1), we see from

(c(mVr¥,®) = (¥, Vri(o(n)®))
= (¥,°Vr(n)®) + (¥,0(n)Vrd)

= <\Ila O(U)VT¢>

that o(n)Vr is L? self-adjoint.

The Dirac operator decomposes into a sum of two self-adjoint operators:

wA :U(n)VT+D,

where D = 322 o(e')V,,.

Squaring and noting that Vyn = 0 and o(n)o(n) = —Id yields
Pi = ~(Vr)* + D+ {o(n)Vr, D}.

The last term simplifies using Clifford relations and the equations (2.1) and (3.1):
3

{o(MV1,D} = > o(nAe)[Vr, Ve

1=1
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One can use the connection matrix (4.5) to calculate that
[T,e;] = °V5Ce; —°VECT =0 (4.8)
for = 1,2,3. In this situation the curvature reduces to
Fy(T,e;) = [V, Ve, (4.9)
and we can see that

3
{o(mVr,D} = Y o(nAe)Fy(T,e;) = o(n)o(irFo). (4.10)

1=1

By the definition of °V, the action of [V, V] for i = 1, 2,3 commutes with Clifford

multiplication. Therefore Fy (T, e;) is a scalar endomorphism, so
1 ,

Restricting attention to W gives the formula. a

Proof of Theorem 4.3: Take a solution (A, ¥) € M(X,gx,7*(6)"), apply
(P3)*P¥, and take the inner product with ¥. After applying Lemma 4.7 and inte-

grating over X we get

Pe, )

1
><\><\

U, ) + (D) DY) + Slo((n A erFa) )T, ¥)

- /|VT\I/|2+|D+\I!|2+2((7;/\LTFA) a()). (4.12)
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In the last step we used the adjoint property of g(¥) from equation (3.3) and the fact
that ¢(¥) is self-dual.

Substituting the ¢(¥) = F{ + 7*(i6)* from (3.2), we get

2((n A urFa),q(¥)) = 2((AwrFa), Fi +7(i6)7))
= (trFa, t1(Fa+xF4+ 7" (id) +x77(16)))
= |upFal?> + (LpFa, tr x (Fa 4+ x7*(i6)))

= |LTFA|2+%iFA/\iFA—iFA/\ﬂ'*(é) (413)

The last equality is true by the following calculation. Let Fj; be the functions defined

by
Fy= Z iF et nel.
0<i<j
Then
vrFy = iFge! + iFpe? + iFyse?
and

LT % FA = iF12€3 - iF13€2 + iFQgel.

Taking their inner product gives
L. .
(trFa, vt % Fa) = ForFoz — FoaFiz + FozFig = §1FA NiFy.

A similar calculation shows that (vrFy, t1* 7%(0)) = —iF4 A 7%(6).

Integrating equation (4.13) over X gives the lemma. ]
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CHAPTER 5

Diffeomorphic moduli spaces

In this chapter we prove Theorem B. We continue to work with the circle bundle
7 : X — Y with the S'-invariant metric gx = n® n + 7*(gy) as in 3.3. Fix a closed
orbifold 2-form ¢ to perturb the 3-dimensional equations and pull it back to get an
S'-invariant 2-form on X. Perturb the 4-dimensional equations by projecting 7*(4)
onto the self-dual 2-forms to get 7*(§)™.

The total moduli space M (X, gx,7*(6)") is a disjoint collection of moduli spaces,

one component for each Spin® structure £ on X. Define
N(X7 gx, W*(6)+)

to be the components of the total moduli space whose cohomology class ¢ () is pulled
back from Y.

Theorem A implies that we need only look at these components to calculate the
Seiberg-Witten invariants when b, > 1. This restriction on the total moduli space is
done to rule out Spin® structures covered in Theorem A case 2b.

Note that for any Spin® structure £ whose ¢, () class is pulled back and for any
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2-form 7*(4),

c(§) -7 (6) = 0. (5.1)

In particular, the expected dimension of the moduli space is 0 by Proposition 3.4.
A pullback of a solution (Ag, ¥p) to (2.2) on Y is the solution (A4, ¥) = 7* (Ao, ¥o)

to (3.2) on X. Pick an orthonormal coframe on a patch of X

{eo, e, e?, e3}

so that e

= n, and {e',e? €*} are horizontal lifts of an orthonormal coframe
{e',€%,2°} on Y. Let {ep = T,e1, ez €3} be the dual vector fields with respect to

the metric gx. In this case the Dirac operator can be written as

Ph=onVr+ Dy (5.2)

where V is a connection on W created by coupling A with the reducible connection
°V (see section 3.3) and D = > o(e')V,, for i = 1,2,3. From the construction of
the pulled back Spin® structure, it is immediately clear that 7*(W¥) is harmonic since
it is constant along the fiber and comes from a harmonic spinor on Y. The first
equation of (3.2) is satisfied by pulling up the first equation and projecting each term
onto the self-dual 2-forms. Since a gauge transformation on ¢ pulls back to a gauge

transformation of 7*(&), we get a well defined map on the level of moduli spaces.
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Theorem B. The pullback map 7 induces a homeomorphism
T* M*(Yv 9y, 5) - N*(Xa 9x, 7Tl.((d)—+-)'

Furthermore, if either of the two moduli spaces is a smooth manifold, then both of

them are smooth, and 7* is a diffeomorphism.

One remark: There is no restriction on b, (X) in the above theorem.

The next three sections contains the proof of this theorem. We show that 7* is
a homeomorphism in the first two sections. In the final section we show that dn* is
an isomorphism on the kernel of the linearizations. This is sufficient to prove that
the moduli spaces are diffeomorphic because the expected dimension of each is zero.

Bochner vanishing arguments are used to prove that 7* and dn* are surjective.

5.1 ~* is injective

Suppose we have two irreducible solutions to the 3-dimensional equations whose pull-

backs (A, ¥) and (A’, ¥') differ by a gauge transformation g € Map(X, S?),
g(A,¥) = (A, 0.

We wish to show that g is in fact pulled back from Map(Y,S'). We think of g as
a section of End(det W) = End(n*(det W)) = n*(End(det W)). Use A to create a

connection VERd op End(7*(W™)) which has trivial fiberwise holonomy. Then

(VEMp)w = vA(gp) - gviT

=0
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because ¥’ = g¥ are pulled back sections. By the unique continuation theorem for

elliptic operators, ¥ # 0 on a dense open set, hence

Vg’ndg =0

on X. Thus g is a fiberwise constant section of the line bundle 7*(End(det W)) and
by Proposition 3.2, it can be pushed forward to a section of End(det W) on Y, i.e., a

gauge transformation on Y.

5.2 7 is surjective

Take a solution (A4,¥) € N*(X,gx,7m*(d)") to the Seiberg-Witten equations (3.2).
We will show that the solution is pulled up from a solution (Ag, ¥y) on Y.
Combining the formula in Theorem 4.3 with the fact that Spin® structures from

N*(X, gx,m*(6)T) satisfy equations (5.1), we get

2me (€) - (8) = / VU2 + |DYE|? + |erFa)® + 27%¢, (€)% (5.3)
—_———— X N——

and that the following terms must be identically zero:

0 = VpU, (5.4)
0 = D'V, (5.5)
0 = rfa, (5.6)

Equation (5.6) implies L1F4 = 0 and together the equations imply that F is
circle invariant and pulled up from Y. Equation (5.4) and the fact that ¥ # 0 means

that A has trivial fiberwise holonomy. Therefore we can apply Proposition 3.2 and
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Remark 3.3 to { with connection A to conclude that ¥ corresponds to an orbifold
section ¥ on a Spin® structure & with connection Ay on Y.

In this situation, D* is the Dirac operator on the orbifold Y, so by equations (5.5)
and (5.4), the second Seiberg-Witten equation of (2.2) is satisfied for (Ag, ¥y). It is
easy to check that (Ag, ¥y) also satisfies the first Seiberg-Witten equation.

Therefore the map 7* is a homeomorphism of moduli spaces. 0

5.3 The kernels are isomorphic

Consider an irreducible solution S = (A, V) to the 4-dimensional Seiberg-Witten
equations for a fixed metric and perturbation (gx,7*(d)") in the Spin® structure £. In
the previous section we saw that (A, ¥) was pulled back from a solution Sy = (A, ¥y)
to the 3-dimensional equations on Y in the Spin® structure &p.

We now describe the tangent space at the solution S. The following sequence of

operators (for a fixed k > 5)
0 —=T1L2,,(Y,S") Z Ts L2, iT*Y & W+) B L2(GA,T*Y @ W) —>0

is called the deformation compler at S. The map Ls is the infinitesimal action of the

gauge group at S described by its differential at the identity:
Ls:if — (=2idf,if¥),

and LSW* is the linearization of the 4-dimensional Seiberg-Witten equations with

fixed perturbation 7*(§)*. We can wrap LSW* and Ls into one operator

Ts: LE(iT" X @ W) - LLGAT'X @ W~ @ iA°T*Y)
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by setting Ts = LSW* + L. Then the ker Ts is the set of (a, ) which satisfy

d*a—q(y,¥) - q(¥,9) = 0,
Day+ %o(a)\lf = 0, (5.7)
—2d*a + ilm(y, ¥) = 0

The last equation is a slice condition for the gauge group action.
Let Hg denote the cohomology of the deformation complex at S. We can now

state Lemma 2.2.11 from [N, page 129]:

Lemma 5.1 The deformation complez at S is Fredholm, that is, the coboundary maps

have closed ranges and the cohomology spaces are finite dimensional. Moreover,
HI 2 ker L5, Hi = ker Ts
and
coker Ts = HI @ H2.

In particular, the ezpected dimension of the moduli space for the Spin® structure £ is

d(€) = —xr(HE) = —dim H2 + dim H} — dim H2.

A metric and perturbation (g, ) is called a good pair if H2 = H2Z = 0 for every
solution to the Seiberg-Witten equations in the Spin® structure €. If (gx,7*(8)*) is
good, then the moduli space M(X, €, gx,7*(6)") is a smooth manifold of dimension
d(€), its formal tangent space can be identified with i at the point S, and we can
use it to calculate the Seiberg-Witten invariants of £. For a careful treatment of these

ideas, see pages 127-135 of [N].
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There is a similar complex for the solution Sy on Y. It too can be described by

an operator
Tso : Li  (iTY @ W) — LZ(A’T'Y © W @ iA°T*Y)
given by the map

d+a0 - T(wa \II) - T(\I,v w)
Ts
= D agbo + %P(ao)‘l’o
—Qd*ao + 11m<1/)0, \I/o)

Qo

Yo

It also has a complex at Sy, and an associated cohomology denoted by #g, which can
be described using 7Ts, and a similar statement as Lemma 5.1 above.
By definition S is irreducible if and only if #2 = 0 (and likewise for Sp). Hence

solutions in N*(X, &, gx,m*(8)") satisfy
0=d(¢§) = dimHg — dim H2 (5.8)

by Proposition 3.4, equation (5.1), and the previous lemma. Therefore H2 vanishes
for these solutions precisely when dim H{ = 0. We will use this fact and the following

theorem to show when dim H2 = 0.

Theorem 5.2 Let S = (A,¥) € N*(X,&,9x,7m(8)F) be a irreducible solution to the
Seiberg- Witten equations and let So = (Ao, ¥o) € M*(Y, &, gv,0) be the solution such
that S = 7*(So). Then

r (M) = ML,

i.e., the kernels of Ts, and Ts are naturally isomorphic via T*.

Because the expected dimension of the moduli space on the 3-manifold is always
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zero, when there is a good pair (gy,d) such that dim %l = dimHZ = dimHg, =0
for all solutions in M(Y, gy, d) we get by Theorem 5.2 that the dimension of H{ will
be zero for the pulled back solutions as well. Hence H2Z = 0 by equation (5.8) for all
irreducible solutions S implying that N*(X, gx,7*(d)") is a smooth manifold. Thus
Theorem 5.2 finishes the proof of Theorem B. If, in addition, N'(X, gx,7*(6)*) does
not contain any reducible solutions, then (gx,7*(8)*) will be a good pair for any
Spin® structure pulled back from Y.

The rest of this section contains the proof of Theorem 5.2. We use a Bochner
vanishing argument similar to equation (5.3).

Certainly a solution to 7s,(a,%9)=0 pulls back to a solution of
Ts(m*(ag), 7*(vs)) = 0. We need to show that 7* is surjective, i.e., for each

solution (a, ) of the equations (5.7), we will prove that
V=0 and a€ 7 (Q(Y;iR)).

Use 7 to decompose a into a = fn + ¢ where f € Q°(X;iR) and ¢ € Q!(X;iR).

Since (a,) satisfies P49 + 30(a)¥ = 0, we have

0 = [ 1P+ gol@ur
= [ ltot) (va +5 f\p)) F(D* + oW
= [ 1Vrvt GPUP DT+ o (U + (5.9)
2Re(o(n) V1), DY) + Re(o(n) Ve, o(c)¥) +

Re(fo(n)¥, D*) + Re(fa(n)¥, 30(c)¥).

Two of the cross terms in equation (5.9) are zero as follows. First, since Vn =0

we have
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/ Re(o(n) Ve, D* ) = /X (0 (n)Vap, D*) + (D4, 0(n) V)
— /Xw,a(n)VT(D‘Li/})) + (¥, D™ (a(n)Vry))
- /X (%, {o(n)V'x, D}¥)

But by equations (4.10), (4.11), and (5.6),
1
{o(n)V1,D} = 37 ANurF4 = 0.
Similarly, we can use the fact that fn and c are both self-adjoint to show

2 /X Re(o(fn)¥,0(c)¥) = / (oo (fn) + o(fm)o(c) T, )
- /X (e, )@ = 0

The remaining two cross terms in equation (5.9) are analyzed in the following

lemma.

Lemma 5.3 In the situation above,

/ Re(a(n)V i, 0(c)¥) + Re(fa(n)¥, D ) :/ |vrdal?. (5.10)
X X

Proof: Let {n = €% ¢e',e? €3} be a local coframe where e!,e? e* are pulled
back from the base. First we take the adjoints of both terms on the left hand side of

equation (5.10).
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Applying the adjoint of o(n)V in the first term of equation (5.10) gives
3

a(mVr(o(c)¥) = ZU(W)U("VT(@G"))‘I’+0(77)0(C)(VT‘1’)

zl
Za(n)o(°VT(ciei))\Il

3
Y o ((TenAne) ¥ +a(no(e V() v

=1

= Z o ((Te)nne) (5.11)

i=1

We used equation (2.1) in the first line, and (5.4) in the second. We also used the
definition of °V from equation (3.1).

Similarly, we take the adjoint of D in the second term of equation (5.10) to find
D(fo(n)¥) = o(df An)¥ +o(fn)DV = o(df An)¥. (5.12)

Next we show that the sum of the right hand sides of equations (5.11) and (5.12)
is equal to

o(n A vr(da))¥.

First, note that for : = 0,1, 2, 3,
trdn =0 and vrde’ = 0. (5.13)

This holds for €® = 7 since dn is the curvature of a principal orbifold circle bundle

so is pulled back from Y; it holds for the remaining 7 since e!, e?,e® are pulled back
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from Y. Hence,

nAvr(da) = nAer(d(fn+c)) (5.14)

3
= NAur <(df An+ fdn) + Z(dci Ae +c A de’))

i=1

3
= df An+ Z(Tci)n A€

=1

Combining equations (5.11), (5.12), and (5.14) and projecting onto the self-dual

2-forms we get:

/XR6<U(7I)VT¢,0(C)‘I’>+Re<f0(77)‘I’,D+w) = /XRe<1/)»(77/\LTda)+\IJ>

Using equation (5.7), we can reduce further

/XRe(w,(n/\LTda)+\Il) = /){%(1/),(77/\LT(1(1)+‘I’>+%<(77/\LTda)+\I/,¢>
- /X 2(n A exda)*, a0, ) + q(4, )

= /2((7)/\Lrpda),d+a)
X

= /|LTda|2+1/ida/\ida.
X 2 J/x

The last equality is the same calculation as in equation (4.13). a

Combining equations (5.9-5.10), gives the sum of non-negative terms. Hence we

conclude that the following terms are identically zero:

vw+%f\p _— (5.15)
D+w+%a(c)\ll _— (5.16)
trda = 0. (5.17)
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Notice that the equation (5.17) is equivalent to
°Vra = df. (5.18)

We investigate equation (5.15) more carefully in the next lemma.

Lemma 5.4

1 1
[ 19rws grep = [ 1V 0 2l
X X

Since f = vra and ¥ # 0 almost everywhere, we conclude that

Vi = 0, (5.19)

ira = 0. (5.20)

Equation (5.19) implies that the spinor is circle invariant while equations (5.17)
and (5.20) imply that a is pulled back from Y. These two facts together imply that
(a,v) is pulled back from some (ag,%,) on Y. Equation (5.16) shows that (ag, %)
satisfies the last equation of 7s,. It is easy to verify that (ao, o) satisfies the other
two equations of Ts,. Hence (a, ) is in 7*(ker Ts,) and this completes the proof of

Theorem B.

Proof of Lemma 5.4: We must show that the cross term satisfies

| Re(xw, ) = [ olarp
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Integrating by parts and noting that V¥ = 0,

/X Re(Vr, f) — / Re(t, (=°Vrf)¥).

Pulling out the imaginary valued function °V 1 f, using equation (5.7), and integrating

by parts again,

[ Retw,(=vanw) = -2 [ (9afaa
X X
= 2/X<f,°de*a). (5.21)

The results follows once we show °Vrd*a = Af. We first calculate d*a at a point
p € X over po = m(p) € Y. Choose a coframe {€° = n,e’,e? e*} at p such that the
{e', e?, €3} are pulled back from a coframe on Y chosen such that the pull back of the

connection 1-forms satisfy w?(p) = 0 in the matrix (4.5). Then

3

3

* _ o L.C. _ ox7L.C. i

d'a = —gLeiV a = —E(Vei a,e’).
1=0

1=0

Differentiating this with respect to °Vr,

3
°Vrd*a = °Vr(°VE%a, €
=0
3 .
= - Z(°VT°V€Li’C'a, e'). (5.22)
1=0

Next we will show using the connection matrices (4.5) and (4.6), and equation

(4.8) that

> ALV, °ViClae) = 0. (5.23)



By setting a = Y axe® and using the fact that °Vye! = 0,

3 3
Z([°VT, °Vi%a, e’y = Z(°VT ((ei - ak)e® + ax’VECer) = °VEC ((T - ar)er) , €'
= i= 0

= ZT ei-a; + (T ap)(°VECer, €) + ax(CV°VEC e, e)

—e;-T-a; = (T-a)(°VECer, ).

The first and fourth term cancel because [T,e;] = 0 by equation (4.8). The second

and last term also cancel. The third term is equal to
axT - CVECer, e (5.24)

because °V is compatible with the metric and °Vre! = 0. But

3

Z< VECek ) = _Z<ek7ovéc.ei>.

1=0

Using the fact that wi(p) = 0 for i,j = 1,2,3, we can see that °V.“e' = 0 by
inspecting the connection matrix (4.5). Since this term vanishes, equation (5.24)
vanishes giving equation (5.23).
Therefore we can commute °V with °Vé'c' in equation (5.22), and apply equation
(5.18) to get: \
Vrd'a = -) (VECdf,e') = Af.
i=0

This statement is independent of frame, so we can substitute it into equation (5.21).

The lemma now follows by integration by parts.
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CHAPTER 6

Results

We are now ready to prove the formula for calculating the Seiberg-Witten invariants of

a 4-manifold with a fixed point free circle action and state some immediate corollaries.

Theorem C. Let X be a closed smooth 4-manifold with by > 1 and a fized point
free circle action. Let Y? be the orbifold quotient space and suppose that x € Pic'(Y)
1s the orbifold Euler class of the circle action. If € is a Spin® structure over X with

SW(€) #0, then & = 7*(&) for some Spin® structure on 'Y and
SWx(€) = Y SWE),
§'=6 mod x

where & — & is a well-defined element of Pic'(Y). When by = 1, the formula holds

for all Spin® structures which are pulled back from Y.

Remark 6.1 In the b, (X) =1 case, the numerical invariant may still depend on the

chamber structure of Y if b,(Y) = 1.

Proof: Recall that for a generic choice of metric and perturbation (gy,d) the
moduli space satisfies H3 = Hs, = M3, = 0 for all solutions So = (Ao, ¥p) to the 3-

dimensional Seiberg-Witten equations (see section 5.3 for more details). For this good
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pair the moduli space M(Y, gy, d) is a smooth manifold with no reducible solutions.
Since we can choose a perturbation generically such that the projection of F4, +
onto the harmonic 2-forms is not a multiple of the harmonic representative of x for

all solutions in M(Y, gy, d), we have that
(" (Fap) +77(6))" # 0

on X as well, hence N(X,gx,n*(6)*) does not contain reducible solutions either.
By Theorem B, N(X,gx,7*(8)") is diffeomorphic to a smooth manifold without
reducible solutions. We have in effect shown that (gx,7*(4)*) is a good pair and that
this moduli space can be used to calculate the SW invariant.

Choose a specific Spin® structure & on X such that c;(£) is pulled back and
SWx(€) # 0. There exists a Spin® structure & on Y such that & = 7*(&) by
Theorem B, and

NX,&gx,m (@) = [ M€ 9v,0).

=€ mod y

From this the formula follows. a

When the action is free, the theorem above reduces to the formula:

Corollary 6.2 Let X be a closed smooth 4-manifold with by > 1 and a free circle
action. Then the orbit space Y* is a smooth 3-manifold and suppose that x € H*(Y; Z)
is the first Chern class of the circle action on X. If £ is a Spin® structure over X

with SW$(€) # 0, then £ = 7*(&) for some Spin® structure on 'Y and

SWx(©) =Y. SWH),

£&=¢ mod x
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where £ — &, is a well-defined element of H*(Y;Z).

Because of this formula, it is particularly easy to calculate the Seiberg-Witten
invariants for manifolds with free circle actions. We will use this version of Theorem
C in Chapter 7. In the next chapter we give an alternative proof of this corollary

using a gluing theorem and assuming the next corollary, which is also a consequence

of Theorem C:

Corollary 6.3 (c.f. Donaldson [D]) Let X = Y3 x S! with b,(X) > 1. If a Spin®
structure £ has SWx(€) # 0, then there is one Spin® structure & on Y such that
£ =7"(%) and

SWi (€) = SWy (&)

The usual route used to explain the corollary above is to consider the cyclic cover-
ing of X by Y3 x R. There is a natural way to pullback solutions of (3.2) to solutions
on Y? x R for Spin® structures pulled up from Y3. After putting the solution in
temporal gauge it satisfies the 3-dimensional Seiberg-Witten equations because it is
a constant gradient-flow of the Chern-Simons-Dirac functional [CM]. Thus for each
€ on X such that SWx(€) # 0 there is a Spin® structure on Y whose moduli space
is nonempty for all generic metrics and perturbations. This corollary shows that this
moduli space can actually be identified with the moduli space of X and can be used

to calculate the Seiberg-Witten invariant.
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CHAPTER 7

An Alternate Proof

In this chapter we prove Corollary 6.2 assuming Corollary 6.3. It shows that the
Seiberg-Witten invariants can be computed using the gluing formula in [MMS]. This
proof cannot be generalized to the fixed point free case because the argument breaks
down: the sum on the left hand side of equation (7.2) cannot be reduced to a single

term as in the free case.

7.1 Classifying free circle actions

Let X be an oriented connected 4-manifold carrying a smooth free S'-action. Its
orbit space Y is a 3-manifold whose orientation is determined so that, followed by
the natural orientation on the orbits, the orientation of X is obtained. Choose a
smooth connected loop [ representing the Poincaré dual PD(x) € H,(Y;Z). Remove
a tubular neighborhood N = D? x [ of [ from Y, and set X' = (Y \ N) x S!. View
X' as an S'-manifold whose action is given by rotation in the last factor. Let m’ be

the meridian of [ in X', and let f’ be an orbit in X’. We then have:

Lemma 7.1 The manifold X is diffeomorphic (by a bundle isomorphism) to the man-
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ifold
X()=X"u, D* x T? (7.1)

where ¢ : T — 0X' is an equivariant diffeomorphism which evaluates ¢.([0(D? x

pt)] = [m' + f'] in homology.

When gluing D? x T? into the boundary of a manifold, the resulting closed manifold
is determined up to diffeomorphism by the image in homology of [(D? x pt)]. (For
example, see [MMS].)

The proof follows immediately from construction (3) in Theorem 2.4 where the
section on the boundary s : (Y \N) — 0X' is given by 5.[0D?] = m’+ f'. Henceforth,

we shall work with X ({) and refer to it as X.

7.2 Gluing along T3

Since we have X = X' U, (D? x T?) we may apply the gluing theorem of Morgan,
Mrowka, and Szabé [MMS].

Theorem 7.2 (Morgan, Mrowka, and Szabd) If the Spin® structure £ over X
restricts nontrivially to D?* x T?, then SWx (£) = 0. For each Spin® structure &, — X'
that restricts trivially to 0X', let Vx (&) denote the set of isomorphism classes of Spin®

structures over X whose restriction to X' is equal to &. Then we have

dooSwx(©) = Y. SWyes©)+ Y, SWx, (), (7.2)

£€Vx (&o) €€Vy , 51(é0) €€V, (§o)
where the manifold Xo/1 = X' Uy, , D? x T? is defined by the map @o1 which maps

[0(D? x 1 x 1)] = [f'] in homology.

In our situation, this formula simplifies significantly. Let ¢ denote the inclusion

of 0X' into Xy. A study of the long exact sequences in homology shows that the
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left hand side consists of a single term when i.[m’ + f'] is indivisible. Since 7,[f] is
independent of i.[m'] and i.[f'] is a primitive class in H;(Xo; Z), t.[m’ + f'] is such
a class. Therefore, the formula enables the calculation of the SW invariants of X in
terms of the SW invariants of Y x S' and a manifold Xy, .

The manifold Xy/; admits a semi-free S L_action whose fixed point set is a torus.
Its orbit space is Y \ NV, and (Y \ N) = 0N is the image of the fixed point set. The

condition b, (X) > 2 of the Corollary 6.2 implies that b, (Xo/;) > 1 and that
rank H; (Y \ N,0(Y \ N);Z) > 1.
The two statements are proved as follows. The Gysin sequence
HYY;Z) =~ H¥(X;Z) —> H\(Y;Z) ==~ H3(Y; Z) (7.3)
implies
H*(X;Z) = (HYY;Z)/<x>) @ ker (Ux:H'(Y;Z)— H*Y;Z)). (7.4)

Each component of the direct sum above has rank b,(Y) — 1. The bilinear form of X
is the direct sum of hyperbolic pairs which implies that b, (X) = b;(Y) —1. Since [{] is
not a torsion element, removing N from Y implies the rank of H,(Y\ N,0(Y \ N);Z)
is also b;(Y) — 1. The second statement now follows because b;(Y) —1 = b, (X) > 1.

The first statement requires the following Mayer-Vietoris sequence
H3(T% Z) - Hy(X';Z) ® Hy(D* x T% Z) — Hy(Xo/1;Z) > H\(T% 7).

The rank of Hy(X';Z) is 2b;(Y) — 1 and the rank of the image of the first map is 2.

Therefore by(Xo/1) = 2b1(Y") — 2. Since the bilinear form of X/, is also a direct sum
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of hyperbolic pairs, b, (Xo/1) > 1.
We can now apply the following general theorem about manifolds with semi-free
circle actions (whose local isotropy group at a point is either trivial or S!) to the

manifold X ;.

Proposition 7.3 Let X be a smooth closed oriented 4-manifold with a smooth semi-
free circle action and b, (X) > 1. Let X* = X/S? be its orbit space. Suppose that X*

has a nonempty boundary and rank H,(X*,0X*;Z) > 1. Then SWx = 0.

Proof: Let F denote the fixed point set of X and F™* its image in X*. Then
0X* C F*. The restriction of the circle action to X \ F' defines a principal S'-bundle
whose Euler class lies in H2(X* \ F*;Z). Let x' € H\(X*, F*;Z) denote its Poincaré

dual. Consider the exact sequence

0 — Hi(X*,0X*Z) 5 H\(X*, FZ) — Ho(F*,0X*;Z) — Ho(X*,0X";Z).

Since the rank of H,(X*,0X*;Z) is greater than 1, there is a class in
i.(H,(X*,0X*;Z)) which is primitive and not a multiple of x’. This class may be
represented by a path a in X* which starts and ends on d.X but is otherwise disjoint
from F™.

The preimage S = 7~ !(c) is a 2-sphere of self-intersection 0 in X. It has self-
intersection 0 because the path a can be perturbed slightly to another path o which
is disjoint from «; hence S’ = 77!(c’) is homologous but disjoint from S. The Gysin

sequence gives:
H3(X*,F*,Z) - H\(X*,F*,Z) 4 Hy(X,F,Z) = Hy(X*, F*,Z)

where p, (i,[c]) = [S]. The image of H3(X*, F*,Z) = Z in H,(X*, F*,Z) is generated

by x'. Since i,[a] is primitive and not a multiple of x/, the class [S] € Imp C
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H,(X, F,Z) is not torsion; hence [S] is nontorsion as an element of Hy(X; Z).

It now follows from [FS1] that SWx = 0. O

Proposition 7.3 implies that the formula (7.2) simplifies to

SWx(€) = Y. SWysi(€). (7.5)

§'€Vy,<51(5|x’)

7.3 Spin¢ structures which are not pullbacks

There are Spin® structures on X which do not arise from Spin® structures that are
pulled up from Y. In this section we show that the Seiberg-Witten invariants vanish
for these Spin® structures.

Fix a Spin® structure £, = (W, p) on Y and consider its pullback £ = 7*(&;) over
X (see section 3.3). The other pulled back Spin® structures are now obtained by the
addition of classes 7*(e) for e € H*(Y;Z).

Looking at the Gysin sequence (7.3), if a class e € H?(X;Z) is not in the image

of 7*, then £ + e is not a Spin® structure which is pulled back from Y.

Lemma 7.4 If £ is a Spin® structure on X which is not pulled back from Y, then
SWx (&) = 0.

Proof: We claim that there exists an embedded torus with self-intersection 0
which pairs nontrivially with ¢;(¢). Then by the adjunction inequality [KM] the

Spin® structure ¢ has Seiberg-Witten invariant equal to zero. Let
H=ker(-Ux: H(Y;Z) - H*Y;Z))

in equation (7.4), and consider for a moment the projection of c;(£) onto the

first factor of H ® n*(H?(Y;Z)) by changing the Spin® structure by an element of
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n*(H*(Y;Z)). Since £ is not pulled back from Y, ¢,(¢)|u # 0, and since H(Y;Z) is
a free abelian group, ¢, (§)|q is not a torsion class.

Examining the Gysin sequence, c;(£)|g € H*(X;Z) maps to a class 8 € H'(Y;Z),
B U x = 0. Thus the Poincaré dual of 5 can be represented by a surface b, and there
is a 1-cycle A in Y \ N rel 0 such that [A] - [b] # 0. Since ON is connected, [}] is
actually represented by a loop A in Y\ N. The preimage 77}(\) = A x S’ in X is a
torus with self-intersection 0, and ¢;(€)|u - [~ (A)] = [8] - [A] # 0.

On the other hand, if A € 7*H?(Y;Z) then its Poincaré dual is represented by a
loop a in Y which may be chosen disjoint from A. Thus A - [r~'(\)] = 0. This means
that ¢, (€) - [r~1()\)] # 0, as required. O

7.4 Identifying the set Vy , s1(£|x)

We identify the Spin® structures in the set Vy 51 (&|x/).
According to the previous lemma, the only nontrivial Seiberg-Witten Spin® struc-
tures are those pulled up from Y. Thus far we have seen that for such a Spin® structure

€ = m*(€") with & = €[ x:, we have

SWx(€) =Y. SWyusi(€).

{’evyxsl(fo)

Let 7 : Y x S' — Y be the projection. We identify the set V3, s1(£o) of isomorphism

classes of Spin® structures over Y x S! which restrict on X’ to &.

Lemma 7.5 Vy,s1(&) = {7 ({*+n-x) | n€Z}.
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Proof: The diagram

X inc X, inc Y x Sl

induces Spin® structures on X, X’, and Y x S! which satisfy
inc*(7*(§7)) = &o = inc™(7*(£7).

Recall that £ is the only Spin® structure induced on X by &, since i,[m' + f'] is
indivisible. Since 7*(£*) € Vyys1(&o), the set of Spin® structures on Y x S! is {#*(£*)+
ele € H2(Y x SY;Z)}. Now 7*(€*) +e lies in Vy 51 (&) if and only if inc* (7*(£*) +¢€) =

&o, i.e. if and only if inc*(e) = 0. Therefore,
Vxsi (&) = {7 (€7) + ¢ | inc*(e) = 0} (7.6)
The kernel of inc* is equal to the image of j* in the diagram below.

H2(Y x S',(Y \ N) x §,;Z) L~ H2(Y x S Z) 2~ H2(X"; Z)

|0 |0 |0

Hy(D?* x T Z.) Hy(Y x SY,Z) — Hy(X',0X"; Z)

n(T?) - nll x f] 0

However j.[pt x T?] = [l x f'], and since 7*(x) = PD7[l x f'], the lemma follows. O

Applying Corollary 6.3 completes the proof.
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CHAPTER 8

Examples

In this chapter we discuss many interesting examples related to a question/conjecture

of C. Taubes:

If Y is a 3-manifold such that Y x S' admits a symplectic structure, must

Y fiber over the circle?

A well-known technique of Thurston shows that if Y is a 3-manifold which fibers
over the circle (with homologically essential fiber) then ¥ x S! admits a symplectic
structure. One might ask whether one could use similar techniques to construct a
symplectic structure on X, a 4-manifold with a free S!-action, whose orbit space is a
3-manifold Y which fibers over the circle with essential fibers. Partial positive results
to this question have been posted by Ferndndez, Gray, and Morgan [FGM]. However,
using the formula of the above theorem, some knot theory, and work of Taubes [T},
we construct in Example 1 a 4-manifold with a free circle action whose quotient fibers
over the circle (with essential fiber) but which admits no symplectic structure.

Another example related to Taubes’ question is a 3-manifold which cannot be the
orbit space of any symplectic 4-manifold with a free circle action. In Example 2, we
demonstrate a 3-manifold which has the property that each 4-manifold which is a

principal S!-fiber bundle (i.e. admits a free S'-action) over it has a SW polynomial
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Figure 8.1. Yk before surgery.

whose coeflicients are all greater than 1 in absolute value. Since Taubes has shown
that the canonical class of a symplectic 4-manifold has Seiberg-Witten invariant equal
to 1, these 4-manifolds cannot admit a symplectic structure.

First we describe the main construction for all of our examples.

8.1 A construction and a calculation

The following construction is similar to but simpler than the main construction
in [FS2]. Let Zx denote the manifold resulting from 0-surgery on a knot K in S3.
Let m' be a meridian of the knot in Zg. Let m,, my, m3 be loops that correspond to

the S! factors of 7. Construct a new manifold

Yk = T*#m=mZk = [T° \ (m1 x D*)] U [Zk \ (m x D?)]

by removing tubular neighborhoods of m and m; and fiber summing the two manifolds
along the boundary such that m = m; and dD? is sent to 0D?.

This is a familiar construction. If one forms a link L from the Borromean link by
taking the composite of the first component with the knot K (see Figure 1), then Y
is the result of surgery on L with each surgery coefficient equal to 0. If K is a fibered

knot, then the resulting manifold T3#,,, -, Yx is a fibered 3-manifold.
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Consider the formal variables tg = exp(PD(B)) for each § € H;(Y;Z) which
satisfies the relation t,43 = tatg. The Seiberg-Witten polynomial SW of X is a
Laurent polynomial with variables ¢z and coefficients equal to the Seiberg-Witten

invariant of the Spin® structure defined by t4.

Theorem 8.1 (Meng and Taubes [MT]) For a closed oriented 3-manifold Y with
by > 0, the Seiberg-Witten polynomial is given by the Milnor torsion of Y. In the

situation above we can simplify this to:

where Ak 1s the symmetrized Alexander polynomial of K.

For example, the manifold Yy in Figure 8.1 where K is the trefoil knot has Seiberg-
Witten polynomial

SWy (tmy) = —t72 +1—1t2, .

8.2 Example 1: Non symplectic X* whose quotient
fibers over S!

We first produce an example of a nonsymplectic 4-manifold which admits a free
circle action whose orbit space is a 3-manifold which is fibered over the circle. Our
construction generalizes easily to produce a large class of such manifolds with this
property. Let K; and K, be any fibered knots. Form the fiber sum of the complements

of K, and K, with neighborhoods of the first and second meridians of T3, i.e.,

YKle = (53 \ Kl)#m=m1T3#m2=m(S3 \ KQ)
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Figure 8.2. Yk, g, before surgery

where m is the meridian of the corresponding knot. Since both K; and K, are
fibered, the manifold Yk, g, is a fibered 3-manifold. By the Meng-Taubes theorem,
the Seiberg-Witten polynomial of this manifold is

SW3 (tmntmz) = AK1(tfn1)AK2(t3ng)'

Yic i,

Let Xk, k,(l) be the 4-manifold with free circle action that has Yk, g, for its orbit
space and PD(l] for the Euler class of the circle action. Taking both K; and K to
be the figure eight knot (see Figure 8.2), we get a manifold with the Seiberg-Witten

polynomial:
3 —2,-2 -2, 42 42 -2 2 —2,2 2 2 42
SWYK1K2 =t tms — 3ty + bt — 3t +9 =3t +t Tt — 3t it -

The Seiberg-Witten polynomial of the manifold X g, k,(4m,) can be calculated from

Corollary 6.2,

4 _ -2
SWXK1K2(4ml) =2t

mi+ma

—3t,2 +9—6t2, +2t] — 3t2

m1+m2 m2)

where tg = exp(7*(PD(f))) is the pullback of the Spin® structure on Y, g, .
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A theorem of Taubes [T] implies that the first Chern class ¢; of a symplectic 4-
manifold must have a Seiberg-Witten invariant +1. We thus see that the manifold
Xk, k,(4m;) admits no symplectic structure with either orientation. This is not the
only free S'-manifold over Yk, g, with this property. The manifolds X, k,(—4m,),

Xk, k,(4m2), and Xk, g,(—4m,) also admit no symplectic structures.

8.3 Example 2: Y3 which is not a quotient of a
symplectic X*

Next we produce an example of a 3-manifold which is not the orbit space of any
symplectic 4-manifold with a free circle action. Let K; = K, be the nonfibered knot

5, (see [R]). Note that H?(Yk,k,; Z) has no torsion. The Seiberg-Witten polynomial

of YK1K2 is
3 _ —-2,-2 -2 2 42 -2
SWYK1K2 - 4tm1tm2 - 6tm2 + 4tm1tm2 - 6tm1 +9

— 6t2, + 4t 22— 6t2, +4tZ, ¢

m)“m2 my“ma”’

By Corollary 6.3 we see that Xg, k,(0) = Yk, k, X S* does not admit a symplectic
structure. For all other principal S!-bundles above Y, g,, we need to calculate as in
Example 1. There are only finitely many free S! manifolds X, k,(l) which need to be
checked because for all [ = am; +bm, with |a|, |b] > 4 the Seiberg-Witten polynomial
SWH* is equal to the 3-dimensional polynomial (only the meaning of the variables will
Spin®

change). An example calculation of the Seiberg-Witten invariant for the ¢,2¢ 2

mp “mz
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structure of Xk, g, (6m;) is

o0
4 —2,-2 - _
SWXKle(GmI)(tmltm‘l) = Z SW}%KHQ (tm21+6ntmi)
n=-—00
_ 3 —8,-2 3 =242
= - SWR (B tn) + SWY o (bl tnl) +

SWy, iy (tmy ) + -

= - 4+0+44+0+---

= 4.
The 6m, pairs the Spin® structure ¢,;2¢;2 with Spin°® structures that are outside the set
of Spin® structures with nontrivial invariants. For principal S!-bundles with |a|, |b] <
4, calculations show that the Seiberg-Witten invariant for each Spin® structure is
greater than one in absolute value. For instance, the Seiberg-Witten polynomial for
Xk k,(2my) is

SW; =22 —3+2t2 .

XK, Kqy(2m

Hence for all | € H,(Yk, k,; Z) the principal S'-bundle X, k,(l) does not admit
a symplectic structure. Therefore, Yk g, is not the orbit space of any symplectic

4-manifold with a free circle action.

Remark 8.2 The above two examples show:
1. There exist nonsymplectic free S'-manifolds with fibered orbit space.

2. There exists a nontrivial 3-manifold which is not the orbit space of any symplectic

4-manifold with a free S*-action.

8.4 Example 3: b, = 1 diffeomorphism invariants

In this section we construct a b (X)=1 4-manifold with free circle actions whose

Seiberg-Witten invariants are still diffeomorphism invariants. In this situation we can

63






use Theorem C to calculate its Seiberg-Witten polynomial. We then use Theorem B
to study the moduli spaces of X and its quotient Y and explain why the invariants
do not change when crossing a “wall.”

Recall the construction from section 8.1. Instead of the Borromean link, use the
Whitehead link in S? and compose each component with the knots K; and K, (see
Figure 1). Then the 3-manifold Yk, g, is the result of surgery on this new link with
each surgery coefficient equal to 0. Because the Whitehead link is fibered, when and

K, and K, are fibered knots, the resulting 3-manifold fibers over the circle.

R

Figure 8.3. Yk, k, before surgery.

Define the Xk, g, (L) to be the unit circle bundle of a line bundle L over Yk k,.

When ¢, (L) is nontorsion, we get the following facts:

1. b1(YK1K2) = 2, bl(XKll(g(L)) = 2, and b+(XK1K2(L)) =1.

2. The cup product pairing

U: H (Xk,k,(L); Z) ® H'(Xk,k,(L); Z) = H*(Xk,k,(L); Z)

is trivial. This can be computed from the cup product on Yk, g, using the
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isomorphism 7* : H (Y, k,; Z) > H(Xk,k,(L); Z).

The two facts above are exactly the conditions needed to show that the wall
crossing number is zero for all Spin® structures [LL]|. Hence Seiberg-Witten invariants
are still diffeomorphism invariants for these manifolds. In fact, any unit circle bundle
over a three manifold which satisfies the conditions above will be such an example.
The manifolds constructed above are also particularly easy for calculating the Seiberg-
Witten polynomial using Theorem C. We give one example.

Let Y = Yk, k, be the manifold where K; and K, are the fibered 63 knot in [R]

(see Figure 2). Then the Seiberg-Witten polynomial

SW3(z,y) = (27" = 3272 +5 -3z + z")(y™* =3y~ 2+ 5 — 3y° +y*)

is calculated using Milnor torsion (Theorem 8.1). In this setup z = exp(PD(m,))
and y = exp(PD(m;)) are formal variables where m;,my, € H;(Y;Z) represent the
meridian loops of each component of the Whitehead link. Thus the term 9z%y? in the
polynomial above means that the Seiberg-Witten invariant for the Spin® structure

identified with PD(2m; + 2m,) is 9.

)

6

1S

Figure 8.4. Y constructed out of 65 knots.

&
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Let X = Xk k,(L) be the unit circle bundle of a line bundle L which satisfies
c1(L) = 4PD(m;). Since the Seiberg-Witten invariants for X are independent of the
wall crossing, we can use a similar argument as above to show that ¢, (£) is pulled back
from Y. Thus d(§) = 0 and condition (5.1) holds for Spin® structures with nontrivial

SW invariants. We can apply Theorem C to get

SWi(z,y) = Ty~ —62%y~* — 21y 2 +182%y 2+ 35— 3022 — 2192+ 1822y + 7Ty* — 62%y*

where the formal variables are defined by z = exp(n*(PD(m;))) and y =
exp(m*(PD(my))) and represent the pullback of Spin® structures on Y. X is also
another example of a nonsymplectic 4-manifold with a circle action whose quotient
fibers over the circle.

The power of Theorem C is that one can actually visualize why the Seiberg-
Witten invariant does not change when crossing a wall. Let G x be the product space
of metrics and I'(A,), then (gx,d) € Gx is called a good pair if the moduli space
M(X, €, gx,0) is a smooth manifold without reducible solutions. When b, > 1 the
wall of bad pairs is at least codimension 2 and a cobordism can be constructed between
the two moduli spaces of good pairs. However, when b, (X) = 1 it is possible that
two good pairs cannot be connected through a generic smooth path in Gx without
crossing a wall of bad pairs where reducible solutions occur. Passing through a bad
pair could cause a singularity to occur in the cobordism. For a general b, = 1
manifold, this will often break the invariance of the Seiberg-Witten invariant.

Suppose that we had two good pairs that can not be connected without going
through a bad pair. Connect the two good pairs with smooth generic paths to good
pairs of the form (gx = n? + gy, 7*(F £ n)*). Here gx is fixed, ||n|| is sufficiently
small, and F is the harmonic curvature form which represents 27ic; (&y) for some Spin®

structure on Y. Suppose for the sake of argument that {y(t) = (gx,7*(F +tn)*) | —
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1 <t < 1} is a smooth generic path in Gx connecting the good pairs. Then a bad
pair occurs in both Gx and Gy precisely when ¢t = 0. While the wall has codimension
b+ (X) =1 in Gx and hence unavoidable, the wall in Gy has codimension b,(Y) = 2.
Thus it is possible to perturb the path in Gy to a smooth generic path which avoids

the bad pairs. The moduli spaces M(Y, &, gy, F + 1) are then cobordant, and

SWY(§0,9Y7F_77):SWY(€079Y»F+77)-

This can be done for each Spin® structure & on Y such that £ = 7*(¢'), so by
Theorem C

SWx (& gx, 7" (F —n)%) = SWx (& gx, 7" (F +1)7),

i.e., the Seiberg-Witten invariant is independent of metric and perturbation.

Note that the perturbed path in Gy will correspond to a perturbed path in G
which will still go through a bad pair. The moduli space for X will have reducible
solutions at the bad pair, but they do not change the value of the Seiberg-Witten
invariant.

The same analysis holds for any b,=1 4-manifold with a fixed point free circle

action and b;(Y') = 2. Therefore we get the following corollary to Theorem C.

Corollary 8.3 Let X be a b, =1 4-manifold with a fized point free circle action whose
quotient Y satisfies by(Y) = 2. If € = n* (&) is a Spin® structure which is pulled back

from a Spin® structure & on Y, then

SWx(€) =Y. SW)

&=€& mod x

and the numerical invariant does not depend on the chamber in which it was calcu-

lated.
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8.5 Application: A Formula for circle bundles over
surfaces

A corollary to Theorem C is the calculation of the 3-dimensional Seiberg-Witten
invariants for the total space of a circle bundle over a surface. The following corollary

can also be derived from [MOY] using different techniques.

Corollary 8.4 Let m : Y — X, be a smooth 3-manifold which is the total space of
a circle bundle over a surface of genus g > 0. Let ¢(Y) = n\ € H*(3,;Z) where )
1s the generator and n # 0. The only invariants which are not zero on 'Y come from

Spin® structures which are pulled back m: Y — ¥,. Hence,
SWy (1" (sA)) = Z SWs,xs1(T*(tA))
t=s modn
where T : Ly x ST = L,
Proof: Let 7 :Y — ¥, be the total space of a circle bundle over ¥ with Euler
class n). Then the manifold Y x S! can be thought of as a smooth 4-manifold with

a free circle action for which the orbit space is £, x S'. The Euler class of the action

is 7*(nA)). Applying the Corollary 6.2 gives

SWy s ((m,id)" (7*(sA))) = > SWis (§)

T*(tA)=7*(sA) mod 7*(n)

the right hand side of the equation. Applying Corollary 6.3 shows that SW* = SW?3

in this case. a

The Seiberg-Witten polynomial for the product of a surface with a circle,

SWi,xsi(t) = (¢ = 717,
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follows from the Seiberg-Witten invariants of £, x T? in [FM2]. Combining this with
the previous results gives a formula for the Seiberg-Witten polynomial in terms of

the Euler class and the genus of the surface.

Corollary 8.5 Let m: Y — X, be the total space of a circle bundle over surface with
g > 0. Assume ¢;(Y) = n\ where A € H*($4;Z) is the generator and n is an even

number n = 2l # 0, then the Seiberg- Witten polynomial of Y 1is

-1 k=2¢-2 29— 2
SWy(t) = sign(n) Y Y (-1l ( | )t
i=0 k=—(29—2) (9 —1)+i+ k|l
where t = exp(m*()\)) and defining the binomial cofficient (Z) =0 forqg <0 andq > p.

For the formula where n is odd, replace | by n and t* by t'.

This formula highlights the fact that principal S'-bundles over surfaces are simple
examples that illustrate the difference between Milnor torsion and Turaev torsion. If
one uses [MT] to calculate the Milnor torsion for a circle bundle Y over a surface, one
finds that the invariant is identically 0. This is because all Spin® structures on Y with
nontrivial invariants have torsion first Chern class. Turaev introduced another type
of torsion in [Tul, Tu2] and a combinatorially defined function on the set of Spin®
structures 7' : S(Y) — Z derived from this torsion, and showed that this function
was the Seiberg-Witten polynomial up to sign. Therefore Turaev torsion is not 0 for
principal S!'-bundles over surfaces. Note that this can also be seen by calculating

both Milnor torsion and Turaev torsion directly.
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CHAPTER 9

Final remarks

Theorem C together with an affirmative answer to the following conjecture would
establish a way to calculate Seiberg-Witten invariants for any b, >1 4-manifold with

a circle action.

Conjecture 9.1 If X s a by > 1 smooth closed 4-manifold with a circle action that

has fized points, then SWx = 0.

There is already considerable evidence which suggest that this is true. For simply

connected 4-manifolds carrying a circle action, we can apply the classification result

of R. Fintushel [F1, F2].

Theorem 9.2 (Fintushel) Modulo the 3-dimensional Poincaré conjecture, a simply

connected 4-manifold carrying a smooth S'-action must be a connected sum of copies

of S4, CP?, TP, and S? x S2.

This classification result is enough to show that in the b, > 1 case, X is the
connected sum of two b, > 0 pieces, and hence SWx = 0.

The conjecture also follows from Proposition 7.3 for 4-manifolds with smooth
semi-free actions whose orbit space Y has a nonempty boundary and the rank

H\(Y,8Y;Z) > 1.
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A counter example to the conjecture above would be just as interesting as the

proof.
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