
NON-CODING RNA IDENTIFICATION IN LARGE-SCALE GENOMIC DATA

By

Cheng Yuan

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy

2014

ABSTRACT

NON-CODING RNA IDENTIFICATION IN LARGE-SCALE GENOMIC
DATA

By

Cheng Yuan

Noncoding RNAs (ncRNAs), which function directly as RNAs without translating into

proteins, play diverse and important biological functions. ncRNAs function not only through

their primary structures, but also secondary structures, which are defined by interactions

between Watson-Crick and wobble base pairs. Common types of ncRNA include microRNA,

rRNA, snoRNA, tRNA. Functions of ncRNAs vary among different types. Recent studies

suggest the existence of large number of ncRNA genes. Identification of novel and known

ncRNAs becomes increasingly important in order to understand their functionalities and the

underlying communities.

Next-generation sequencing (NGS) technology sheds lights on more comprehensive and

sensitive ncRNA annotation. Lowly transcribed ncRNAs or ncRNAs from rare species with

low abundance may be identified via deep sequencing. However, there exist several challenges

in ncRNA identification in large-scale genomic data. First, the massive volume of datasets

could lead to very long computation time, making existing algorithms infeasible. Second,

NGS has relatively high error rate, which could further complicate the problem. Third, high

sequence similarity among related ncRNAs could make them difficult to identify, resulting

in incorrect output. Fourth, while secondary structures should be adopted for accurate

ncRNA identification, they usually incur high computational complexity. In particular,

some ncRNAs contain pseudoknot structures, which cannot be effectively modeled by the

state-of-the-art approach. As a result, ncRNAs containing pseudoknots are hard to annotate.

In my PhD work, I aimed to tackle the above challenges in ncRNA identification. First, I

designed a progressive search pipeline to identify ncRNAs containing pseudoknot structures.

The algorithms are more efficient than the state-of-the-art approaches and can be used for

large-scale data. Second, I designed a ncRNA classification tool for short reads in NGS data

lacking quality reference genomes. The initial homology search phase significantly reduces

size of the original input, making the tool feasible for large-scale data. Last, I focused on

identifying 16S ribosomal RNAs from NGS data. 16S ribosomal RNAs are very important

type of ncRNAs, which can be used for phylogenic study. A set of graph based assembly

algorithms were applied to form longer or full-length 16S rRNA contigs. I utilized paired-end

information in NGS data, so lowly abundant 16S genes can also be identified. To reduce the

complexity of problem and make the tool practical for large-scale data, I designed a list of

error correction and graph reduction techniques for graph simplification.

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

Chapter 1 Introduction . 1
1.1 Introduction to noncoding RNAs . 1
1.2 Related works to ncRNA identification in large-scale genomic data 2
1.3 Challenges in ncRNA identification in large-scale genomic data 4

1.3.1 Sanger sequencing and NGS technology 4
1.3.2 NCRNA identification in NGS data 5
1.3.3 Pseudoknot structures and challenges in finding ncRNAs containing

pseudoknot structures in large-scale genomic data 6
1.4 Contributions . 8

Chapter 2 Efficient known ncRNA search including pseudoknots 9
2.1 Background . 9
2.2 Related Work . 11
2.3 Approach . 13

2.3.1 Sub-structure derivation . 14
2.3.2 Search performance of different sub-structures 17

2.3.2.1 Sort sub-structures according to their E-values 18
2.3.2.2 Choose sub-structures for progressive search 20

2.3.3 Implementation . 22
2.4 Experimental results . 23

2.4.1 Pseudoknot sequences in Rfam . 23
2.4.2 Data set preparation . 24
2.4.3 Results and comparisons . 26

2.5 Conclusion . 31

Chapter 3 RNA-CODE: a noncoding RNA Classification tOol for short
reaDs in NGS data lacking rEference genomes 33

3.1 Introduction . 33
3.2 Methods . 37

3.2.1 Stage 1: SCFG-based filtration . 41
3.2.2 Stage 2: family-specific de novo assembly 43
3.2.3 Stage 3: contig selection . 45
3.2.4 MIRNA families . 47

iv

3.3 Results and Discussion . 47
3.3.1 Detecting reads of 16s ribosomal RNAs 49

3.3.1.1 Data . 49
3.3.1.2 Experimental results . 50

3.3.2 NCRNA classification in RNA-seq data 51
3.3.2.1 Data . 52
3.3.2.2 Experimental results . 53

3.3.2.2.1 Performance of filtration 54
3.3.2.2.2 Performance comparison with SSAKE 55
3.3.2.2.3 Using multiple overlap thresholds improves perfor-

mance of RNA-CODE 57
3.3.2.2.4 Performance of microRNA families 58

3.4 Conclusion . 58

Chapter 4 Reconstructing 16S rRNA genes in metagenomic data 60
4.1 Introduction . 60
4.2 Method . 63

4.2.1 Overview of REAGO . 63
4.2.2 16S rRNA reads identification . 64
4.2.3 Overlap Graph Creation and Graph Pruning 66

4.2.3.0.5 Node collapsing . 67
4.2.3.0.6 Alignment-based error correction 67
4.2.3.0.7 Topology-based graph reduction 69

4.2.4 Bad edge removal . 70
4.2.5 Guided path finding using paired-end information 72
4.2.6 Scaffolding 16S rRNA segments . 74

4.3 Experimental results . 76
4.3.1 Experiment 1: simulated metagenomic dataset 77

4.3.1.0.8 Performance of rRNA reads classification using cm-
search . 78

4.3.1.0.9 Overlap graph construction 79
4.3.1.0.10 Assembly performance evaluation 80

4.3.2 Experiment 2: synthetic metagenomic data 82
4.3.3 Experiment 3: human stool metagenomic data 85

Chapter 5 Conclusion and future work . 88

BIBLIOGRAPHY . 90

v

LIST OF TABLES

Table 2.1 The order of E-values is highly consistent to the order of number of
the FP hits. 20

Table 2.2 Sequences that do not contain annotated pseudoknots and thus may not

be real members. 24

Table 2.3 Sensitivity, FP hits, and running time comparison between RNAv, RNATOPS,

Infernal, and sub-structure. Bold font is applied to the highest sensitivity,

the lowest FP hit, or the shortest running time for each RNA family. The

empty cells indicate that the corresponding tools did not generate any

output within 4 CPU days. 28

Table 3.1 Performance comparison of RNA-CODE vs Metaxa. Both tools were
applied using the default parameters. 51

Table 3.2 Number of reads that are mapped to chromosome 2 of Arabidopsis. 53

Table 3.3 Filtration statistics. 55

Table 3.4 Performance of RNA-CODE (multiple-k), SSAKE, and RNA-CODE
(single-k) on transcribed ncRNA families. 57

Table 4.1 Species abundance. 77

Table 4.2 Pairwise sequence similarity. Bold numbers indicate sequence similarity above 90%. 78

Table 4.3 Performance of 16S rRNA gene recovery. 81

Table 4.4 Performance of 16S rRNA gene recovery on true positive simulated
data. 81

Table 4.5 The performance of cmsearch on the synthetic community data. . . 83

vi

Table 4.6 The performance of rRNA recovery on synthetic community data. Due to near

identical outputs and very high sequence similarity among some genes in some

genera, the sum of incorrect assemblies and correct assemblies may not sum to

the total number of output sequences. 84

Table 4.7 The performance of rRNA recovery on only true positive reads from synthetic

community data. Due to near identical outputs and very high sequence similarity

among some genes in some genera, the sum of incorrect assemblies and correct

assemblies may not sum to the total number of output sequences. 85

Table 4.8 Assembly tool performance on human stool data 86

Table 4.9 Species recovered by REAGO and EMIRGE. “Y” indicates the species
of the row is identified by the tool labeled by the column title. . . . 87

vii

LIST OF FIGURES

Figure 1.1 An example of the (A) secondary structure and (B) fundamental el-
ements of a hypothetical ncRNA. 2

Figure 1.2 An example of a psuedoknot-containing ncRNA 7

Figure 2.1 Consensus secondary structure of tmRNA and the secondary struc-
ture described by SCFG (pseudoknots missing). A. Consensus sec-

ondary structure of RF00023 (tmRNA) in Rfam. Stacking base pairs in

1 are parallel to base pairs in 2 and 3. 1, 2, and 3 are nested in 4. 2

and 3 form a pseudoknot. B. Secondary structure described by SCFG

(pseudoknots missing). 10

Figure 2.2 The pipeline of the SCFG construction and the progressive search. . 14

Figure 2.3 Five candidate sub-structures can be constructed from three stems in
a pseudoknot structure. Each arc represents a stem containing nested

base pairs and possible internal/bulge loops. Single-stranded regions are

represented using solid lines. 15

Figure 2.4 Number of TP hits and FP matches of each sub-structure under differ-
ent score thresholds. For each sub-structure, the length and the search

time corresponding to the highest sensitivity is listed. Time format is

hr:min:sec. Due to highly different number of FP hits, two sub-structures

are plotted in the embedded figure. 18

Figure 2.5 Sensitivity comparison on 71 families. 29

Figure 2.6 Comparison of false positive hits on 71 families. 30

Figure 2.7 Running Time comparison. There are 4 families on which Infernal run

much longer than on other families. To keep an appropriate scale, there

running times are not displayed on the figure. 30

Figure 3.1 Reads sequenced from pre-miRNAs cannot be assembled into contigs.
Three different miRNAs show highly different expression levels in the same

RNA-seq data. A. mir-156 B. mir-160 C. mir-166 38

viii

Figure 3.2 The pipeline of RNA-CODE. The pipeline of RNA-CODE. For miRNAs,

the output of the first stage (SCFG-based filtration) and the whole pipeline

will be used together for reads classification. 40

Figure 3.3 ROC curves of short reads classification using trCYK and BLAST.
ROC curves of short reads classification using trCYK and BLAST. Sensi-

tivity measures the ratio of correctly found true tRNAs to the total number

of true tRNA reads. False positive rate measures the ratio of falsely found

tRNA reads to the total number of false tRNA reads. 42

Figure 3.4 Three types of contigs. 46

Figure 4.1 Pipeline of the 16S rRNA gene assembly. Short black and gray bars
represent reads originated from different 16S rRNA genes. Short
white bars represent reads from non-16S regions. Long bars represent
contigs assembled from short reads. 63

Figure 4.2 Graph reduction is conducted iteratively until there is no change on
the graph. 66

Figure 4.3 Two types of bifurcation where error correction is applied. 68

Figure 4.4 An example of error correction (applied on V2 and V3). The sequence
represented by each node is given beside the node. (A) Ungapped
alignment of reads from bifurcating vertices. (B) Mutate rare bases.
(C) Remove bifurcation. 69

Figure 4.5 Topology-based graph reduction. 70

Figure 4.6 Path finding using paired-end information. Solid lines represent over-
laps between nodes and dashed lines represent the existence of paired-
end reads. The numbers beside dashed lines are the numbers of paired
end reads between the corresponding nodes. 74

Figure 4.7 Calculate the score between two segments. Arcs represent paired-end
match between vertices and thickness of arcs indicate weight of the
paired-end match. Actual weights also labeled beside each arc. . . . 75

Figure 4.8 Phylogenetic tree of the 64 species in the synthetic metagenomic data. 82

Figure 4.9 Phylogenetic tree of the 12 representative sequences. 85

ix

Chapter 1

Introduction

1.1 Introduction to noncoding RNAs

Noncoding RNAs (ncRNAs) are funtional RNA modules that are not translated into protein.

They function directly as RNA molecules and play diverse and important biological functions.

Studies have hint at an RNA world, in which the roles of ncRNA genes are as important as

that of protein coding genes [1, 2, 3]. Many types of ncRNAs function through both their

sequences and secondary structures, which are defined by interactions between Watson-

Crick and wobble base pairs as well as non-canonical Primary sequences of ncRNAs are

assembled as a chain of nucleotides, adenine (A), cytosine (C), guanine (G) and uracil (U).

Adenine and guanine are purines, which can form hydrogen bond with pyrimidines uracil

and cytosine, respectively. Other base interactions, such guanine-uracil interaction, are also

possible. Because of these interactions, primary sequence of ncRNAs can fold into two-

dimensional structures. The structure is composed from several fundamental elements, such

as hairpin loop, interior loop, stem and bifurcation, as demonstrated in Figure 1.1 [4].

Common types of ncRNA include snoRNA, microRNA (miRNA), ribosomal RNA (rRNA)

and short interfering RNAs (siRNAs). SnoRNAs are normally between 70 and 250 nt long.

There exist a very large number of snoRNAs, in which most function in rRNA modificaiton

and some function in rRNA processing. [5, 6, 7]. MicroRNA s are very short RNA molecules,

usually 21 to 22 nt long, that functions in RNA silencing and post-transcriptional regulation

1

A
A
C

G

G

C
G

.

.

G C.

A U.

A G
C

G
.

C

G
.

A

U
.

A

A

C

A U U
A

G

C
.
U

A
.

CC

U

C

G
.
G

C
.

G

U
U
C

5'

3'
A
A
C

G

G

C
G

.

.

G C.

A U.

A G
C

G
.

C

G
.

A

U
.

A

A

C

A U U
A

G

C
.
U

A
.

CC

U

C

G
.
G

C
.

G

U
U
C

5'

3'

unstructured single strand

bulge loop

branched loop

stem interior loop

hairpin loop

(A) (B)

Figure 1.1: An example of the (A) secondary structure and (B) fundamental elements of a
hypothetical ncRNA.

of gene expression [8, 9]. Ribosomal RNAs, as predominant material within ribosome, play

essential roles in protein synthesis. SiRNAs is a class of double-stranded RNAs, which are

involved in in gene silencing in RNA interference (RNAi) pathway [10].

1.2 Related works to ncRNA identification in large-

scale genomic data

Recent studies suggest the existence of surprisingly large amount of ncRNA genes in various

genomes. In particular, human genomes could possibly contains thousands of ncRNA genes,

which play very important role in many biological processes [2]. Thus it becomes increasingly

important to identify ncRNA in modern biology. A number of specialized tools are available

to identify each type of ncRNAs. For example, tRNAscan-SE [11] is designed to identify

tRNAs. snoscan and snoGPS are specialized for snoRNA identification [12]. And miRDeep*

[13] can be used to detect miRNAs, while miRPlant [14] aims to find miRNAs only in

plants. Each tool may has its specialty in identifying certain type of ncRNAs in certain

2

domain. There also exist universal tools for ncRNA identification. BLASTN [15] is one of the

widely used approaches for nucleotide sequences identification. A BLASTN search performs

primary sequence alignments between a query sequences and a library of sequences. A query

sequence is identified to be originated from a sequence in library if their alignment score

is greater than a threshold. However, only primary sequences of ncRNAs are modeled by

BLASTN. NCRNAs having high secondary structure conservation but low primary sequence

conservation tend to be missed by BLASTN [16]. The state-of-the-art approach for ncRNA

identification approaches are based on stochastic context-free grammar (SCFG). SCFG not

only models primary sequences of ncRNAs but also their secondary structures. A detailed

explanation can be found in the introduction and method section of Chapter 3. NCRNAs

with low sequence conservation but high structural conservation can still be identified. The

state-of-the-art implementation of SCFG is covariance model (CM) in Infernal [17]. Each

fundamental elements of ncRNAs can be modeled as a state in CM. A query sequence can be

optimally aligned to the underlying model using inside-outside algorithms. If the alignment

score is above a threshold, the query is then considered to be originated from this model. A

number of studies have demonstrated the advantages of incorporating secondary structural

information in various types of non-coding RNA homology search [18, 19, 20]. Experiments

have been conducted to compare between BLAST and CM-based approaches [18, 20]. The

results indicate that BLAST tends to miss ncRNAs with low sequence conservation. The

performance of BLAST is even worse with fragmentary query sequences, since the some

information is missing, resulting in marginal alignment scores. The latest distribution of

Infernal [19], on the other hand, is designed to recover the possible missing bases that could

be otherwise form base pairs.

3

1.3 Challenges in ncRNA identification in large-scale

genomic data

1.3.1 Sanger sequencing and NGS technology

Invented in 1977, Sangers method dominated the sequencing market for almost 30 years, and

is considered as the “gold standard” for sequencing [21]. The traditional sequencing method

relies on DNA synthesis from a DNA template of interest. DNA fragments are polymerized by

catalysed enzymic reaction to generate complementary of target DNA sequences. There are

some limitation in Sanger sequencing. First, one has to uses gels or polymers as separation

media. Second, the number of samples which could be handled in parallel is very limited,

making the sequencing process relatively slow. Third, the cost of Sanger sequencing if very

high. The limitations triggered the effort to develop more efficient and economical sequencing

technologies.

Next generation sequencing (NGS) overcomes the drawbacks of Sanger sequencing. First,

with very high throughput, NGS platform can generate massive amount of data in parallel.

Whole small genome can now be sequenced in a day [22]. Second, the sequencing cost is

greatly reduced. An estimated cost per million sequenced bases using NGS technologies is

1000-fold less than that using traditional chain termination based Sanger sequencing [23].

The entire sequencing process can be done on bench-top instrumentation. Widely used NGS

platforms include Roche (454) GS FLX sequencer, Illumina genome analyzer and Applied

Biosystems SOLiD sequencer. New platforms such as PacBio and Ion Torrent PGM are also

available. The advent of NGS technologies has revolutionized the microbiology study.

NGS technology is utilized by various applications. RNA-sequencing, also called Whole

4

Transcriptome Shotgun Sequencing (WTSS) [24], is a NGS based application to study RNA.

It aims to reveal a snapshot of presenting RNAs in an organism at a given moment. Metage-

nomics [25] is another application that utilizes NGS techonology and it allows people to

study uncultured microorganims in environment samples. Cheaper and faster technologies

enable sequencing of uncultured microorganisms directly from their inhabitants. Instead

of studying a few carefully cultured species, we are able to screen thousands of species to-

gether and discover their relationships. The sequenced data represents a comprehensive and

unbiased picture of species diversity in the environmental sample.

1.3.2 NCRNA identification in NGS data

Despite a range of advantages, NGS-based application also has its difficulties and limitations

in data analysis. First, volume of NGS data could be very high, making many existing

ncRNA identification tools infeasible. For example, RNAv [26] and RNATOP [27] are tools

designed for identification of ncRNA with pseudoknot structures. When the size of input

data is small, the tools could be very effective. However, if the data volume is high, both

tools cannot produce any output in reasonable amount of time [20]. Second, sequences

obtained by NGS technologies are usually fragmentary. There is no guarantee that entire

sequence of an underlying ncRNA gene is thoroughly sequenced, even with very high coverage

during sequencing process. Identifying such ncRNA genes with missing information could

be difficult. Sequencing errors could further deteriorate the performance of identification

of such genes [28]. Fourth, in particular, metagenomic datasets, which are usually from

heterogeneous microbial communities, could contain tens of thousands of species. We do not

generally know the ground truth about origin of each fragmentary sequence in the dataset,

nor do we know the true microbial composition in the environmental sample, making it

5

difficult to separate similar ncRNAs genes from highly related species [29]. As a result,

effective and efficient algorithms are in need to meet the computational challenges posed by

the nature of NGS data.

1.3.3 Pseudoknot structures and challenges in finding ncRNAs

containing pseudoknot structures in large-scale genomic data

Pseudoknot is a functionally important structural motif in ncRNA secondary structures [30].

In pseudoknots, bases in loop regions can form base pairs with bases outside the stem loop,

as displayed in Figure 1.2. It is already known that pseudoknots play important functions in

telomerase RNA, tmRNA, rRNA, some riboswitches, some protein-biding RNAs, Viral ribo-

somal frameshifting signals, etc [31]. Different research groups [32, 33] have shown that the

pseudoknot structure in the telomerase RNA is essential for telomerase activity. Gilley and

Blackburn [32] experimentally demonstrated that disruptions of the pseudoknot base pairing

within the telomerase RNA from Tetrahymena thermophila prevent the stable assembly in

vivo of an active telomerase. They further concluded that the pseudoknot topology rather

than sequence is critical for an active telomerase. Similarly, biologists reported that the

pseudoknots in tmRNA are highly important for protein biding, tmRNA maturation, and

proper folding of the tRNA-like domain [34].

6

A U.

G C.

C G.

U A.

G C.

U
C
G
G
C
A
C

A

C

C

C.

C.

G.

G

C

3'

5'

Figure 1.2: An example of a psuedoknot-containing ncRNA

The state-of-the-art approach for ncRNA identification is based on SCFGs. However,

SCFGs are not able to model pseudoknot. Thus, the implementations of SCFG by Infernal

neglect pseudoknots in the structures. As a result, Infernal could misclassify sequences as

members of families containing pseudoknots. In addition, Infernal [19] has high computa-

tional cost, limiting its usage in large-scale data sets, such as those generated by the next-

generation sequencing technologies. Other approaches include as RNAv [27] and RNATOPS

[26]. RNATOPS designs a graph model for RNA pseudoknots and solves the structure se-

quence alignment by graph optimization.RNAv is a profile based RNA secondary structure

variation search program that detects distant ncRNA structural homologs, which might be

missed by RNATOPS. Because of the high algorithm complexity, both tools are extremely

computationally expensive and are not feasible for large-scale data.

7

1.4 Contributions

During my Ph.D. study, I tried to tackle a few challenges in ncRNA identification in large-

scale genomic data. First, I designed and implemented an efficient progressive search pipeline

that can model and search for ncRNAs including pseudoknots. Using the pipeline, one could

examine a query to detect each component of a model trained from a family of psuedoknot-

containing ncRNAs. Second, I designed and implemented a computational pipeline to iden-

tify small ncRNAs in RNA-Seq data. An SCFG-based homology search was applied to

significantly reduced, making the pipeline very efficient in processing large dataset. Third,

I designed and implemented a set of graph-based algorithms to recover 16s rRNA genes in

metagenomic data. I designed a set of graph based algorithms with a list of graph reduction

techniques. By utilizing paired-end information, one can separate similar genes from highly

related species. Genes with very low abundance can also be recovered.

8

Chapter 2

Efficient known ncRNA search

including pseudoknots

2.1 Background

Noncoding RNAs (ncRNAs), which function directly as RNAs without translating into pro-

teins, play diverse and important biological functions [35]. Many types of ncRNAs function

through both their sequences and secondary structures, which are defined by interactions

between Watson-Crick and wobble base pairs. Pseudoknot is a functionally important struc-

tural motif in ncRNA secondary structures. In pseudoknots, bases in loop regions can form

base pairs with bases outside the stem loop. In a graphical representation where arcs connect

base pairs, pseudoknot-free secondary structures only contain parallel or nested base pairs

while pseudoknot structures allow “crossing” base pairs, shown by an example in Figure

2.1.A.

Because the functions of ncRNAs are determined by both the sequence and structure,

successful ncRNA homology search tools must consider both sequence and structural conser-

vations. Existing ncRNA search tools can be divided into two categories. One is commonly

referred to “known ncRNA search”, which aims to detecting homologs of ncRNAs with

annotated secondary structures. The second category includes tools for identifying novel

ncRNA genes. This work belongs to the first category and focuses on ncRNAs containing

9

pseudoknots.

For pseudoknot free ncRNAs, the state-of-the-art search method is based on stochastic

context-free grammars (SCFGs), which can accurately model the evolutionary changes of

both the sequences and structures of a group of homologous ncRNAs. Commonly used gen-

eral and specialized known ncRNA search tools such as Infernal [19], RSEARCH [36], and

tRNAScan-SE [37] are all based on SCFG. In conjunction with the ncRNA family database

Rfam, Infernal has been successfully applied to classify query sequences into different types

of ncRNA. However, SCFGs are not able to model pseudoknot. Thus, the implementations

of SCFG by Infernal neglect pseudoknots in the structures. For example, although RF00023

(tmRNA) has four pseudoknots, its SCFG only models the knot-free structures, shown in

Figure 2.1.B. As a result, Infernal could misclassify sequences as members of families con-

taining pseudoknots. In addition, Infernal has high computational cost, limiting its usage in

large-scale data sets, such as those generated by the next-generation sequencing technologies.

Figure 2.1: Consensus secondary structure of tmRNA and the secondary structure described
by SCFG (pseudoknots missing). A. Consensus secondary structure of RF00023 (tmRNA) in
Rfam. Stacking base pairs in 1 are parallel to base pairs in 2 and 3. 1, 2, and 3 are nested in 4. 2
and 3 form a pseudoknot. B. Secondary structure described by SCFG (pseudoknots missing).

More complicated grammars such as context-sensitive Grammars (CSGs) [4] exist to

faithfully model pseudoknots. However, the computational cost of the parsing algorithms of

a CSG is even higher than using a CFG [4]. Besides CSGs, other grammars such as par-

allel communicating grammar systems [38], RNA pseudoknot grammars [39], tree adjoining

10

grammars (TAGs) [40, 41], and multiple context-free grammars [42] have been proposed to

model pseudoknot structures. These work described the grammars and associated parsing

algorithms. However, they have not been widely used in pseudoknot search in large-scale

databases. First, although the parsing algorithms are polynomial, their cubic or even higher

time or memory complexity [42] limits their large-scale applications. Second, these methods

were designed for and tested on secondary structure derivation rather than homology search.

In order to conduct large-scale homology search, local parsing algorithms are needed. As

there are no source codes or executable implementations of these grammars, it is not clear

whether they can be automatically applied to known ncRNA search including pseudoknots.

In this work, we design an efficient pseudoknot search algorithm for all types of pseu-

doknots. Our method is based on a set of carefully chosen simple sub-structures (or sub-

structures for short), which do not contain pseudoknots or bifurcations. The time complexity

of the parsing and probability computation algorithms for an SCFG including the CYK, the

inside, and the outside algorithm will be significantly reduced when the secondary struc-

ture does not contain any bifurcation [4, 43]. Thus, these simple sub-structures can be

searched efficiently using existing implementations of SCFGs. For multiple sub-structures

extracted from one ncRNA family, we choose a set of sub-structures according to their sizes

and false positive (FP) rates in order to maximize the search performance. These chosen

sub-structures will be used in a progressive search. Our experimental results show that our

tool competes favorably with other pseudoknot search methods.

2.2 Related Work

Brown and Wilson [44] proposed an RNA pseudoknot search method using intersections of

SCFGs. Both Brown’s method and our approach try to decompose pseudoknot into knot-free

11

structures for SCFG modeling. There are two major differences. First, our sub-structures

are not only knot-free, but also bifurcation free, which enables faster search. Second, while

Brown and Wilson’s method focused on the model construction and parsing algorithm, we

focus on choosing an optimal set of sub-structures to optimize the search performance.

The model construction and the parsing algorithms can be conveniently implemented using

Infernal, which has gone through extensive testing.

Structural motifs similar to sub-structures have been used as filters to speed up Infernal.

FastR [45] relies on stem-loops ((k, w)-stack) that do not contain bulge or interior loops to

search for ncRNAs. Weinberg et al. [46] use more flexible structural motifs based on sub-

CMs and profile HMMs for ncRNA classification. Smith [43] used a decision tree to organize

partial SCFG models for fast ncRNA search. Currently, these filters are only designed and

tested for speeding up SCFG search.

Available pseudoknot search tools include RNAv [27] and RNATOPS [26]. RNATOPS

designs a graph model for RNA pseudoknots and solves the structure sequence alignment by

graph optimization.RNAv is a profile based RNA secondary structure variation search pro-

gram that detects distant ncRNA structural homologs, which might be missed by RNATOPS.

The chain filter designed by Zhang et al. [45] consists of a collection of short conserved

words in an ncRNA family. In our work, we use a collection of simple sub-structures for

pseudoknot search. Similar to Zhang et al.’s work, we find that using a collection of simple

structures can achieve a good tradeoff between sensitivity and false positive rate during

search.

12

2.3 Approach

There are two components in the method. The first component is the design of a set of

sub-structures to represent an ncRNA family. The second component is a progressive search

strategy using the designed sub-structures. Different regions of an ncRNA sequence have

different sequence and structural conservations. Well-conserved structural and sequence

motifs tend to yield better search performance than poorly conserved motifs. Our approach

sorts sub-structures extracted from different regions according to their lengths and predicted

FP rates in order to choose a set of sub-structures with the optimal search performance.

For a chosen set of sub-structures, we conduct a progressive search according to a pre-

determined order. During the progressive search, one sub-structure is only applied to regions

containing matches to all previous sub-structures. A sequence is classified into the pseudo-

knot family if and only if 1) it passes the score thresholds of all the chosen sub-structures;

2) the position relationship between matched substrings is consistent with the relationship

between the sub-structures. Thus the false positive rate of the chosen set of sub-structures

is bounded by the product of the false positive rates of all component sub-structures. The

pipeline of the approach is illustrated in Figure 2.2

13

Figure 2.2: The pipeline of the SCFG construction and the progressive search.

2.3.1 Sub-structure derivation

In order to use SCFG-based models for pseudoknot search, we decompose a pseudoknot

structure into simple sub-structures. Each sub-structure contains at least one stem, which

includes a set of stacking base pairs allowing short bulge and interior loops. A full secondary

structure of an ncRNA family can be decomposed into multiple stems. Combinations of

stems define different sub-structures. Figure 2.3 shows all five simple sub-structures derived

from the given pseudoknot.

14

Figure 2.3: Five candidate sub-structures can be constructed from three stems in a pseudo-
knot structure. Each arc represents a stem containing nested base pairs and possible internal/bulge
loops. Single-stranded regions are represented using solid lines.

We describe a method to systematically extract all simple sub-structures from a pseudo-

knot. In the first step, all stems are extracted and sorted in increasing order of their starting

positions (i.e. 5’ end of the outmost base pair in the stem). Second, we build a bit table R

of size N by N for N stems extracted from the first step. For each cell R[i, j], if stem i and

stem j are nested, R[i, j] = 1; otherwise, R[i, j] = 0. Table R provides us information about

whether given stems can form one sub-structure. Given the stem set and their relationship

table R, we use pseudocode in Algorithm 1 to extract all simple sub-structures. In the

pseudocode, Hx is the set of sub-structures containing x stems. Thus, the union of Hx for

x = 1 to N consists of all simple sub-structures for a given secondary structure. The number

of sub-structures depends on the number of nested stems. Suppose the average number of

nested stems inside a stem is n. The total number of sub-structures is O(N +N2n).

Algorithm 1 only outputs the combination of stems. For each stem (or stem set) in a

sub-structure, we add loop and flanking regions using the following three rules. Let the 5’

15

Algorithm 1 ExtractSubstructures Input: a secondary structure containing pseudoknots
Output: all simple sub-structures

1: for each stem i = 1 to N do
2: /* h: a sub-structure containing a set of stems */
3: h = {i}
4: H1 = H1 ⋃{h}
5: end for
6: for L = 2 to N do
7: HL = ∅
8: for each sub-structure h ∈ HL−1 do
9: for each stem i 6∈ h do

10: /* h[i] is the ith stem in a sub-structure h */
11: if R[h[1],i] and R[h[2],i] ... and R[h[L-1], i] then
12: /* construct a new sub-structure h′ */
13: h′ = h

⋃
{i}

14: HL = HL⋃
{h′}

15: end if
16: end for
17: end for
18: end for
19: output all sub-structures H = H1 ⋃H2 ⋃ . . .

⋃
HN

and 3’ ends of the outmost base pair in a sub-structure be I5 and I3, respectively. Thus,

I5 < I3.

• Rule 1: Add all single-stranded regions including bulge and internal loops between I5

and I3.

• Rule 2: Except the base pairs inside the chosen stems in a sub-structure, all other base

pairs will be treated as single-stranded regions.

• Rule 3: Extend the flanking single-stranded regions to the left of I5 and to the right

of I3 until the first base pair in other sub-structures.

16

2.3.2 Search performance of different sub-structures

Each sub-structure can be conveniently modeled by an SCFG. As different sub-structures are

derived from regions with different sequence and structural conservations, their correspond-

ing SCFGs have different performance in database search. In this section, we use an example

to illustrate this. We built SCFGs for eight sub-structures derived from RF00373 (Ribonu-

clease P) and evaluated the sensitivity, FP rates, and running time of the eight SCFGs when

applying them to a to a 22.5M Maize chromosome (data is described in “Experimental re-

sults”). The sensitivity and FP rates of different sub-structures from the same family can

be compared using true positive (TP) hits and FP hits respectively, because the condition

positive and condition negative sets are the same for all sub-structures derived from the same

family. For any SCFGMi, let the set of matched sequences be Hit(Mi). Let the set of true

pseudoknot sequences be S, which are the sequences in seed families containing pseudoknots

in Rfam. The number of true positive and FP matches of a sub-SCFG is |Hit(Mi)
⋂
S| and

|Hit(Mi) \ S|, respectively. We summarized the TP hits and FP matches of eight SCFGs

under different score thresholds in Figure 2.4. In addition, the search times are included for

the score thresholds corresponding to the highest sensitivity. It is clear that different SCFGs

have highly search performance. During a progressive search using a series of sub-structures,

the number of matches of the preceding sub-structure determines the search space of the

current sub-structure. Thus, the total search time depends on both the FP hits and the

model running time, which is heavily affected by the model length. In order to maximize

the search efficiency, it is important to sort all candidate sub-structures according to their

FP rates. When the FP rates of two or more sub-structures are similar (same order), we

prefer shorter models because they incur less search times.

17

Figure 2.4: Number of TP hits and FP matches of each sub-structure under different score
thresholds. For each sub-structure, the length and the search time corresponding to the highest
sensitivity is listed. Time format is hr:min:sec. Due to highly different number of FP hits, two
sub-structures are plotted in the embedded figure.

2.3.2.1 Sort sub-structures according to their E-values

There are two methods to calculate the FP rates of sub-structures. Theoretically, by as-

suming a background model for random sequences and applying the CYK algorithm [4],

we can directly calculate the probability that a random sequence matches an SCFG model.

18

Empirically, we can apply the SCFGs to a large annotated sequence database and record

the number of FP matches. However, as it is more important to compare the FP rates of

different sub-structures than knowing their exact values, it is not necessary to directly cal-

culate FP rates. By assuming that the SCFG alignment scores for random sequences follow

an exponential distribution, as implemented by Infernal, we can use E-values of the designed

score cutoffs to sort all sub-structures.

For an alignment score and a database size, an E-value indicates how many random hits a

user can expect to see with the same or better score in a random sequence database of similar

size. Thus, E-value indicates FP hits when it can be computed accurately. Currently, we

are using the E-value calculation method provided by Infernal. Although the assumed score

distribution is not accurate, we found that the estimated E-values allow us to compare FP

rates of different sub-structures with high accuracy. In order to estimate E-value, Infernal

generates a set of N random sequences whose GC content depends on the covariance model.

These N random sequences then are aligned against the model. In this process, all searching

result with score > 0 will be considered as hits. Scores of the top X hits are assumed to

follow an exponential distribution with two parameters, µ and λ. The maximum likelihood

approach is then taken to fit scores of hits into an exponential distribution.

E = db ∗ e−λ(score−µ)

where db is adjusted database size and is defined as

db =
dbtarget

dbsizerandom
(randhit+ 0.5).

19

In the E-value computation, µ and λ are parameters trained in Infernal. sc is the score for

which one needs to calculate E-value. dbtarget is the size of target database. dbrandom is the

number of random sequences generated for curve fitting. At last, randhit is the number of

random sequences found by the covariance model. We can directly obtain µ and λ from each

calibrated covariance model, which is built for a sub-structure. With these two parameters

available, we can use the above equation to compute E-values for given scores.

Our experiments show that although the change of E-values does not scale with the

change of the FP rates, the order of E-values is highly consistent to the order of FP rates for

all 71 families we tested. Only for SCFGs with similarly small FP rates, their E-values cannot

accurately reflect their order. Table 2.1 presents an example. It is worth noting that we also

considered to use the average entropy to sort the sub-structures. However, our experiments

show that there is no systematic relationship between entropy-based measurements and the

FP rates of sub-structures.

sub-structure E-value FP hits sub-structure E-value FP hits

RF00373 part2 1.71e+03 4894 RF00373 part1 7.33e+02 2606

RF00373 part5 7.30e-02 41 RF00373 part3 3.58e-02 39

RF00373 part4 3.18e-06 39 RF00373 part6 5.29e-09 37

RF00373 part8 4.52e-09 39 RF00373 part7 3.40e-15 34

Table 2.1: The order of E-values is highly consistent to the order of number of the FP hits.

2.3.2.2 Choose sub-structures for progressive search

During a progressive search based on multiple sub-structures, the final sensitivity is bounded

by the lowest sensitivity of all sub-structures. The final search time and FP rates heavily

20

depend on the order of applying these sub-structures. Let the final array of sub-structures

be SUB=(H1, . . . ,Hi, . . . ,Hn), where Hi will be applied before Hj if i < j. Let the size of

the original database be L. For a sub-structure Hi, let ti and fpi be its search time per hit

and FP rate, respectively. The final FP rate is bounded by
n∏
i=1

fpi. The final search time

is roughly T = L
n∑
i=1

ti(
i−1∏
j=1

fpj), where L
i−1∏
j=1

fpj is roughly the search space for the sub-

structure Hi. Minimizing T requires the accurate computation of ti or quantification of the

relationship between ti and fpi, which is not known as a priori. Although Infernal provides

estimated running time, it can be quite different from the true running time. According to

the equations, it is clear that we should apply short sub-structures with small FP rates before

long sub-structures with high FP rates. Thus we develop a greedy algorithm to generate a

set of sub-structures for progressive search based on our empirical observations.

We split sub-structures into short group and long group, which contain short and long

sub-structures respectively. For each group of sub-structures, we sort the sub-structures

according to their E-values and apply a greedy algorithm to choose a set of sub-structures

for search. The main steps of the greedy algorithm are outlined below, starting from the

short group:

1. In each iteration, choose the sub-structure with the smallest E-value. Remove it and

append it to the final sub-structure list SUB.

2. Remove any remaining sub-structure in both groups that only contains stems in this

sub-structure.

3. Repeat the first step until all stems are covered by one chosen sub-structure or the E-

values of all remaining sub-structures are bigger than a pre-determined cutoff (default

is 1).

21

If SUB has not included all stems, we apply the same process to the long group and

append the chosen sub-structures to SUB. We require all stems covered by the chosen sub-

structures in order to ensure the representation of the annotated pseudoknot structure. It

is possible that this constraint will exclude homologous ncRNAs that lack annotated stem

loop structures. Currently, we use size 150 as the threshold to divide sub-structures into the

short and the long group.

2.3.3 Implementation

For each sub-structure, we train an SCFG-based model based on the corresponding alignment

in the training data using Infernal. Let the SCFGs trained from n sub-structures of an

ncRNA family SUB = (H1, . . . ,Hi, . . . ,Hn) be Π = (M1, . . . ,Mi, . . . ,Mn), where Mi

represents a single SCFG. A sequence can be classified into the corresponding family if the

following conditions are satisfied. First, the sequence contains matches to all designed SCFGs

in Π. SCFG match will be defined in the following text. Second, for every pair of strings

that match two SCFGs, their position relationship must be consistent with the annotated

relationship between two SCFGs in the underlying ncRNA family. There are three types of

position relationship between two sub-structures: parallel, nested, and cross-over. Cross-over

indicates existence of pseudoknots.

We determine SCFG match using score thresholds. For all sequences in the training

set, its alignment score with a given SCFG is computed. The minimum score of all the seed

sequences is used as the score threshold. This score cutoff is similar to the NC (trusted cutoff)

bit score thresholds used in HMMER [47] or Infernal. When the training data contains a good

representation of the family member sequences, the computed score threshold can ensure a

high sensitivity during homology search. If the training set only contains close homologs of

22

this ncRNA family, the designed cutoff may be too high for remotely related homologs.

2.4 Experimental results

In order to test the performance of our tool for pseudoknot search in sequence databases,

we conducted two experiments. First, we examined the automatically classified pseudoknot

sequences in Rfam. Second, we applied it to part of the Maize genome. On the same data

set, we compared our tool with RNAv, RNATOPS, and Infernal.

2.4.1 Pseudoknot sequences in Rfam

Because CFG cannot model pseudoknots, the implementations of Stochastic CFG (SCFG),

covariance models (CMs) in Rfam neglect pseudoknots in the structures. As a result, tools

that use SCFG for ncRNA search such as Infernal could misclassify sequences as members

of pseudoknot families. Each Rfam family contains a seed sequence set and a full sequence

set. While the seed sequence set contains manually validated homologous sequences, the

full sets are automatically produced using SCFG-based search against RFAMSEQ database

[48]. Thus, some of the sequences in the full set may not contain pseudoknot structures that

are annotated in the seed sequences. We examined the full member set of the 71 ncRNA

families containing pseudoknots in Rfam using our tool. Many families contain dozens of

sequences that lack the annotated pseudoknot structures. For all those sequences that cannot

be matched by our tool, we also utilized the Infernal alignments and a RNA stem finding tool

RNAmotif [49] to double check whether the base pairs in pseudoknot structures are missing.

The SCFG alignments output by Infernal contains annotations of all base pairs that do not

form pseudoknots. By comparing the annotated base pairs and the consensus secondary

structure of the seed alignments, we can extract the regions that should form pseudoknots.

23

Then, we applied RNAmotif to output all stems of size at least two in the chosen regions.

Failing to output any stems validated our findings that these sequences do not have the

annotated pseudoknots. The results are summarized in Table 2.2. Although homologous

ncRNAs may not share the same set of stems, simply ignoring pseudoknots without knowing

their impacts on the function can introduce a large number of false members. In particular,

it was already experimentally shown that pseudoknot structures are vital to the functions

of some types of ncRNAs [32, 33, 34]. For these well-studied pseudoknot structures, it is

important to include them during homology search.

ID seqs ID seqs ID seqs ID seqs

without knots/ without knots/ without knots/ without knots/

num of seqs num of seqs num of seqs num of seqs

RF00009 37/500 RF00010 3/3864 RF00011 26/460 RF00023 53/2871

RF00024 56/233 RF00028 2587/39045 RF00030 47/470 RF00041 2/151

RF00140 81/524 RF00176 37/64 RF00216 25/126 RF00233 22/76

RF00259 78/124 RF00261 43/78 RF00499 1/16 RF00523 2/5177

RF00622 1/94 RF01050 3/60 RF01072 21/271 RF01073 1/7006

RF01086 15/1093 RF01087 1/31 RF01089 4/25 RF01096 2/45

Table 2.2: Sequences that do not contain annotated pseudoknots and thus may not be real mem-
bers.

2.4.2 Data set preparation

We created a simulated data set based on a contiguous 22-Mb region of the Maize Genome

[50]. The annotation of the 22-Mb region does not contain any hit to the 71 pseudoknot

families in Rfam. In order to evaluate the sensitivity of pseudoknot search tools, we randomly

chose 1,586 out of 26,704 seed sequences from 71 pseudoknot families and inserted them

in the 22-Mb region. The remaining seed sequences are used as the training data. In

24

order to examine the FP rate of SCFG-based tools, we also created 1,586 sequences without

pseudoknots. Specifically, for each of the 1,586 seed sequences, we altered the bases to disrupt

the base pairs that can form pseudoknots. Similarly RNAmotif is applied again to ensure

these sequences lose the annotated pseudoknot structure. These modified 1,586 sequences

and the original 22-Mb region of the Maize Genome constitute the negative training data.

Any hit to them is an FP hit. Note that by changing the bases, the modified sequences

might share lower sequence similarity to the trained model and thus pose an easier case

for all tools. Even so, our experimental results still show that different tools exhibit highly

difference performance on this data set. Thus, we feel this data set is a reasonable test set.

There are two major advantages of using this simulated data set for testing pseudoknot

search tools. First, as the 22-Mb region of the Maize genome does not harbor any reported

ncRNA that contains pseudoknots, we can measure the empirical FP rates of pseudoknot

search tools with higher reliability than using simulated sequences, which are usually gener-

ated using a simple i.i.d. model or low-order Markov model. In particular, the Maize genome

contains a high percentage of repeats and low-complexity regions, which could not be sim-

ply simulated and can pose a challenge for ncRNA search as warned by the Rfam website

(http://rfam.sanger.ac.uk/). Second, using thousands of seed members of the pseudoknot

families provides us adequate test data for evaluating the sensitivity.

Besides using the seed sequences of Rfam, we also considered another pseudoknot se-

quence database Pseudobase [51]. This database contains 304 RNA sequences with pseu-

doknot structures. A majority of them are sub-strings of Rfam seed sequences. Thus, we

choose to use Rfam seed sequences as the true label.

25

2.4.3 Results and comparisons

In order to separate the training set and the test set, we removed the sequences that were

inserted in the Maize genome from the seed alignments. For the alignments composed of

the remaining sequences, we trained the full covariance model and the models for the sub-

structures. We used the designed sub-structure sets for pseudoknot search. We evaluated

the performance of pseudoknot search tools using three metrics: the sensitivity, FP hits, and

running time. For each ncRNA family represented by an SCFG M, let Hit(M) be the set

of output sequences by a search tool. Let S be the set of true pseudoknot sequences, which,

in this data set, includes seed sequences of each pseudoknot family. The sensitivity is thus

defined as:

sensitivity =
|Hit(M)

⋂
S|

|S|

Any output that does not overlap with true pseudoknot sequences is a false positive hit. The

number of FP hits of a search tool on one family is computed as:

FP hits = |Hit(M) \ S|

We report the FP hits instead of the FP rates for two reasons. First, the condition negative

set is family specific and thus is the same for all search tools for a given family. Second, the

size of the condition negative set is mainly determined by the size of the genome minus the

size of all true pseudoknot sequences. For a large genomic sequence, the FP rate becomes

very small and cannot reflect the difference between different tools.

On the same dataset, we run RNAv, RNATOPS, and Infernal 1.0.2. Of the three, RNAv

and RNATOPS are designed for pseudoknot search. For Infernal and sub-structure, no

26

hidden Markov model-based filtration was used in order to maximize the sensitivity. Other

parameters were set as default for Infernal. We used the default parameters to run RNAv

and RNATOPS. All experiments were run on the main cluster of the High Performance

Computing Center on campus (http://www.icer.msu.edu/?q=hpcc). Each experiment was

allocated four CPU days at most. There are 65 families and 31 families that failed RNAv

and RNATOPS, respectively. The search jobs for those families were killed by the cluster

after four CPU days. No results were produced. Thus we could not report the results for

those families. RNAPTOPS output results for 22 families by the end of the allocated time.

The performance of these four tools is recorded in Table 2.3. The results show that our

tool is significantly faster than RNATOPS and RNAv. For a majority of families, the running

time is smaller than half an hour. A closer examination reveals that 99% of the running time

is attributed to the first sub-structure, which is expected. Of the six families for which RNAv

successfully generated outputs, they all have the sensitivity of 1.0, equal to the sensitivity

of sub-structure based search. Of the 40 families for which RNATOPS reported results, 14

of them have equal sensitivity to ours. 1 family yields slightly better sensitivity than ours

while other 24 families have significantly worse sensitivity. Thus, overall, our search achieves

higher sensitivity than RNAv and RNATOPS. In addition, sub-structure based search tool

incurs lower FP rate than RNATOPS and RNAv. Table 2.3 shows that RNATOPS yields

low FP hits. Of the 40 families, RNATOPS has the same number of FP hits as ours for only

one family and significantly more FP hits for the rest. In particular, RNATOPS outputs

over 1,000 hits for 9 families.

We compared the sensitivity, FP hits, and running time of Infernal and our tool in Figure

2.5, Figure 2.6, and Figure 2.7 using X-Y scatter plots. As Infernal and our tool generate

the same sensitivity or other metrics for some families, we use the bubble plot to visualize

27

RNA fam sen FP time sen FP time sen FP time sen FP hits time
ID RNAv RNA- Sub- INFER-

TOPS structure NAL
RF00009 1.0 5 01:47:37 1.0 38 26:16:07
RF00010 0.58 95 00:18:47 0.97 318 17:54:31
RF00011 0.84 25 00:06:51 0.97 179 09:09:52
RF00023 0.4 1 00:06:54 1.0 180 13:40:31
RF00024 0.95 24 00:06:33 0.81 86 20:36:42
RF00028 0.83 6 22:30:56 0.72 37 79:05:16
RF00030 0.38 26 02:35:01 0.98 87 83:37:31
RF00041 0.95 0 00:10:37 1.0 64 01:27:52
RF00094 0.88 0 00:09:21 1.0 35 00:54:20
RF00140 0.97 0 01:05:08 1.0 33 01:52:09
RF00165 0.21 4 4days 1.0 0 00:22:10 1.0 14 00:32:25
RF00176 1.0 58077 19:54:40 1.0 0 00:05:48 1.0 21 00:50:54
RF00216 0.87 0 00:03:03 1.0 30 04:42:29
RF00233 0.26 0 4days 0.96 0 00:09:06 1.0 29 00:47:38
RF00259 1.0 0 00:05:41 1.0 5 02:09:52
RF00261 1.0 0 00:13:53 1.0 20 02:50:11
RF00373 0.92 27 01:35:35 0.95 363 14:15:43
RF00381 0.38 30 4days 1.0 0 00:17:10 1.0 15 00:33:42
RF00390 1.0 763 4days 1.0 0 00:05:21 1.0 6 00:07:35
RF00458 1.0 0 00:09:37 1.0 10 02:18:47
RF00499 1.0 0 00:09:51 1.0 115 01:33:43
RF00505 0.2 2 4days 1.0 0 00:32:27 1.0 5 00:29:55
RF00507 0.41 7 4days 0.95 0 00:34:44 1.0 23 00:52:44
RF00523 0.29 160 4days 0.95 24 00:20:31 1.0 145 00:19:24
RF00622 1.0 0 00:05:15 1.0 14 00:42:40
RF01050 1.0 0 00:41:32 1.0 13 39:22:21
RF01072 0.52 273 4days 0.96 0 00:08:37 1.0 30 00:10:13
RF01073 1.0 196631 13:13:32 0.11 3 4days 1.0 0 00:18:36 1.0 13 00:29:04
RF01074 0.5 91 4days 1.0 0 00:06:59 1.0 10 00:15:00
RF01075 1.0 0 00:07:59 1.0 7 01:00:46
RF01076 1.0 139249 16:20:29 1.0 0 00:20:36 1.0 5 00:35:33
RF01077 1.0 0 00:53:32 1.0 4 00:37:23
RF01078 1.0 0 00:12:38 1.0 3 00:26:04
RF01079 1.0 333 4days 1.0 0 00:07:37 1.0 3 00:16:01
RF01080 0.5 135 4days 1.0 0 00:08:04 1.0 110 00:13:41
RF01081 0.67 284 4days 1.0 0 00:06:47 1.0 3 00:08:44
RF01082 0.5 2934 4days 1.0 0 00:05:47 1.0 4 00:09:13
RF01083 1.0 3002 4days 0.67 1 00:04:34 1.0 7 00:07:05
RF01084 1.0 0 00:10:46 1.0 8 01:53:25
RF01086 1.0 11 05:18:38 1.0 13 05:39:23
RF01087 0.5 3 4days 1.0 0 01:19:41 1.0 12 01:37:01
RF01088 1.0 0 00:39:09 1.0 4 00:37:14
RF01089 0.33 1 4days 1.0 3 01:03:09 1.0 20 01:21:27
RF01090 0.43 4 4days 1.0 0 00:23:11 1.0 8 00:36:35
RF01091 1.0 0 00:13:06 1.0 4 00:28:51
RF01092 1.0 165990 10:58:02 1.0 0 4days 1.0 0 00:17:57 1.0 15 00:30:08
RF01093 0.42 67 4days 1.0 0 00:13:59 1.0 23 00:29:56
RF01094 1.0 0 00:52:46 1.0 3 01:10:47
RF01095 1.0 0 00:10:56 1.0 2 00:27:12
RF01096 1.0 166314 16:44:20 0.5 1 4days 1.0 0 00:23:04 1.0 2 00:24:45
RF01097 0.25 1 4days 1.0 0 00:12:18 1.0 4 00:22:09

Table 2.3: Sensitivity, FP hits, and running time comparison between RNAv, RNATOPS, Infernal,
and sub-structure. Bold font is applied to the highest sensitivity, the lowest FP hit, or the shortest
running time for each RNA family. The empty cells indicate that the corresponding tools did not
generate any output within 4 CPU days.

28

the number of the same data points. As expected, Infernal is highly sensitive. However, it

reported dozens of hits on the pseudoknot-free sequences which we inserted as false positive

sequences. For all families, Infernal reported equal or more FP hits than our tool. In

addition, it is generally slower than sub-structure-based tool. Out of 71 RNA families, sub-

structure-based tool has shorter running time on 66 families. For 14 families, it yields 10x

speed up over Infernal.

Figure 2.5: Sensitivity comparison on 71 families.

29

Figure 2.6: Comparison of false positive hits on 71 families.

Figure 2.7: Running Time comparison. There are 4 families on which Infernal run much longer
than on other families. To keep an appropriate scale, there running times are not displayed on the
figure.

There is no significant difference in the sensitivity between Infernal and sub-structure-

30

based tool when the average sequence length in a family is not too long. Infernal has better

sensitivity on longer and more complicated RNA families including RF00010, RF00011,

RF00023, and RF00030. The major reason behind our worse sensitivity on the long families

is that we use sub-structure that cover every stem. Thus, we only classify sequences that

have all characterized stems from the underlying structure. However, some remote homologs

may lose base pairs in stems during evolution. Thus while we guarantee to find sequences

that have the same structures as the annotated pseudoknots, we can miss some homologs,

leading to lower sensitivity for some families.

2.5 Conclusion

Although Infernal is highly sensitive in known ncRNA search, caution must be taken when

applying Infernal to ncRNA families containing pseudoknots. In this work, we designed a

pseudoknot search method based on a set of carefully chosen sub-structures. These sub-

structures do not contain pseudoknots or bifurcations. SCFGs can be conveniently built

on them and searched with high efficiency. In order to minimize the overall FP rate and

the running time, we sorted sub-structures according to their lengths and their E-values for

designed trusted cutoff (NC) bit score thresholds. We designed a greedy algorithm to choose

a set of sub-structures and applied the progressive search to minimize search time. Our

experimental results showed that our tool competes favorably with RNAv and RNATOPs,

both of which have been used for pseudoknot search in large databases. This work provides

a complementary pseudoknot search tool to existing SCFG-based knot-free ncRNA search

methods.

Currently our tool only reports homologous ncRNAs with the same number of charac-

31

terized stems as the training data. As a result, some true homologs that have lost one or

multiple stems will be ignored. As part of the future work, we plan to incorporate available

RNA-seq data for remote homology search.

32

Chapter 3

RNA-CODE: a noncoding RNA

Classification tOol for short reaDs in

NGS data lacking rEference genomes

3.1 Introduction

Noncoding RNAs (ncRNAs), which function directly as RNAs without translating into pro-

teins, play diverse and crucial roles in many biochemical processes. For example, tRNAs and

rRNAs aid protein synthesis. SnoRNAs guide rRNA modifications. MicroRNAs (miRNAs)

regulate gene expression [52]. Short interfering RNAs (siRNAs) involve in gene silencing in

RNAi process [53].

In particular, the development of next-generation sequencing (NGS) technologies sheds

light on more sensitive and comprehensive ncRNA annotation. Deep sequencing of transcrip-

tomes of various organisms has revealed that a large portion of transcriptomic data cannot

be mapped back to annotated protein-coding genes in the reference genome, indicating that

those transcripts may contain transcribed ncRNAs [2]. Total RNA-seq and small RNA-

seq data generated by numerous transcriptomic sequencing projects are still accumulating

rapidly. Identifying different types of ncRNAs and quantifying their expression levels in

33

different tissues, conditions, and developmental stages have generated new knowledge about

functions of ncRNAs. Besides RNA-seq data, ncRNA identification is also important for

analyzing metagenomic data, which contain sequenced metagenomes from various environ-

mental samples. For example, 16s rRNA classification [54, 55] and assembly [29, 56] is a

fundamental step for studying phylogenies in a sample. NCRNA annotation is, therefore,

an important component in post-NGS analysis.

There are two different ncRNA identification problems for NGS data. One focuses on

identifying homologs of annotated ncRNAs, such as tRNA, rRNAs, snoRNAs, and many

types of miRNAs. Some example applications include comparing expression level changes

of let-7 miRNA genes in different developmental stages of C. elegans [57], identifying all

homologs to annotated miRNAs in the small RNA-seq data of a non-model species [58], and

16s rRNA annotation in metagenomic data [29]. These studies aim to annotate all known

ncRNAs or novel members of characterized ncRNA families. The second category focuses

on reporting novel ncRNA genes. One possible strategy is to cluster sequences and then

apply de novo ncRNA gene finding tools such as RNAz[59]. This work belongs to the first

category.

The state-of-the-art method for ncRNA homology search is still based on comparative

ncRNA identification, which searches for ncRNAs through evidence of evolutionary conser-

vation. As the function of an ncRNA is determined not only by its sequence but also by

its secondary structure, which contains interacting base pairs, such as Watson-Crick base

pairs and G-U base pairs, successful ncRNA search should take advantage of both sequence

and secondary structural similarity. A number of such tools are available such as a gen-

eral ncRNA search tool Infernal [17] and specialized tools for tRNA [11] and snoRNA [60]

etc. However, most existing homology search strategies use complete secondary structure of

34

annotated ncRNAs and are not optimized for NGS data. When applied to short and frag-

mentary sequences, these tools generate marginal scores and thus cannot distinguish reads

sequenced from ncRNAs or other regions. To our best knowledge, trCYK [16] is the only

tool that conducts homology search for fragmentary reads sequenced from various types of

ncRNAs. However, using it alone tends to incur high false positive rate according to our

experimental results.

It is worth noting that although NGS platforms are producing longer reads, many reads

sequenced from ncRNAs are still fragmentary. First, many ncRNAs are very long, including

mRNA-like long ncRNAs [61], 16s rRNAs [55], etc. Second, the biogenesis shows that some

types of small ncRNAs are cleavaged into short products (such as mature miRNAs from

their precursors). The sizes of these short products are not increasing with read length.

In order to apply existing ncRNA identification tools to NGS data, read mapping or de

novo sequence assembly tools are usually applied first to connect short reads into contigs.

When the reference genome is available, short reads can be mapped back to the reference

genome. Existing ncRNA identification tools can then be applied to the blocks containing

overlapping reads along the reference genome. When there is no quality reference genome

available, which is often the case for metagenomic data and RNA-seq data of non-model

organisms, de novo sequence assembly tools can be employed first to connect fragmentary

reads into contigs. However, using sequence assembly tools as the first step is not always

ideal for ncRNA classification.

First, the quality of read assembly deteriorates significantly in complicated NGS data

sets [28]. Different sequence assembly tools generate different sets of contigs. There is no

consensus on the best assembly tool. Error-containing contigs often affect down-stream

analysis.

35

Second, successful de novo assembly requires relatively high sequencing depth, which

is difficult to achieve for many ncRNAs. It is shown [62, 63] that the transcription levels

of many types of ncRNA genes are low and condition-dependent. Often it is difficult to

foresee which ncRNA genes are lowly transcribed. Thus there lacks information to optimize

the parameters of de novo assembly tools to produce complete or partial ncRNAs of highly

divergent expression levels or abundance.

Third, some types of ncRNAs are cleaved during the maturation process (mature miR-

NAs). The observed reads sequenced from these ncRNAs do not share any overlap and

cannot be assembled. Thus, there is a need for an alternative and better ncRNA search tool

for NGS data lacking reference genomes.

In this work, we introduce a comprehensive ncRNA classification tool for short reads:

RNA-CODE, which is specifically designed for ncRNA identification in NGS data sets that

lack reference genomes. Given a set of short reads, RNA-CODE classifies the reads into

different types of ncRNA families. The classification results can be used to quantify the

expression levels of different types of ncRNAs in RNA-seq data and ncRNA composition

profiles in metagenomic data, respectively. RNA-CODE integrates secondary structure based

homology search with family-specific de novo assembly. The parameters of de novo assembly

tools can be adjusted in a family-specific fashion.

The remaining of this manuscript is organized as follows. The Methods section describes

the design rationale of RNA-CODE and the three main stages. The Results section bench-

marks RNA-CODE with other ncRNA classification frameworks. We present experiments

results on real metagenomic data and RNA-seq data. For the small-scale metagenomic data,

we compare RNA-CODE with Metaxa [54] on 16s rRNA read classification. Then, we com-

pare RNA-CODE with de novo sequence assembly on small RNA-seq data annotation of a

36

well-annotated organism.

3.2 Methods

We propose a method that combines homology search and family-specific de novo assembly

to identify reads sequenced from ncRNAs. In particular, the homology search is applied to

both the short reads and contigs produced by assembly programs. This method is designed

based on two key observations. First, reads sequenced from ncRNAs tend to share higher

sequence and structural similarity with the their native families than reads sequenced from

other families. Thus, higher alignment scores by ncRNA homology search tools are expected.

In particular, homology search is vital for identifying ncRNAs that go through cleavage

and degradation. Reads sequenced from miRNAs are hard to assemble because only reads

corresponding to mature miRNAs can be largely captured into RNA-seq data. None or a

few can be mapped to other regions of the pre-miRNA due to fast degradation. Figure 3.1

shows the mapping results of reads sequenced from pre-miRNAs obtained from Arabidopsis.

No contig or very short contigs can be produced based on the typical read mapping pattern.

In addition, this read mapping pattern does not change with increase of expression levels, as

shown in the three miRNAs in Figure 3.1. For these types of ncRNAs, applying homology

search on short reads directly is indispensable.

37

0 10 20 30 40 50 60 70 80 90

posit ion

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

c
o
v
e
ra
g
e

0 10 20 30 40 50 60 70 80 90

posit ion

0

5

10

15

20

25

c
o
v
e
ra
g
e

0 20 40 60 80 100 120 140 160

posit ion

0

500

1000

1500

2000

2500

3000

3500

4000

c
o
v
e
ra
g
e

A

B

C

Figure 3.1: Reads sequenced from pre-miRNAs cannot be assembled into contigs. Three
different miRNAs show highly different expression levels in the same RNA-seq data. A. mir-156 B.
mir-160 C. mir-166

38

While homology search is important, applying it to short and fragmentary reads may

introduce high false positive rate when detecting remote ncRNA homologs (data will be

shown in Methods Section). Thus RNA-CODE employs the second observation that true

ncRNA reads sequenced from the same gene can be assembled into contigs with significantly

high alignment scores against their native families. On the contrary, reads aligned by chance

are not likely to be assembled because they tend to share poor overlaps. Both properties are

important in boosting sensitivity and accuracy of short reads classification.

RNA-CODE consists of three key stages. First, RNA-CODE coarsely classifies reads into

different ncRNA families using both secondary structure and sequence similarity. Then, a

family-specific sequence assembly is used to assemble aligned reads into contigs. Because the

numbers of reads that are coarsely classified in the first step indicate the expression levels

or abundance of ncRNA genes in this family, this step chooses de novo assembly parameters

(such as kmer size or overlap threshold) accordingly. The produced contigs are generally

longer than input reads and thus can be classified into ncRNA families with better sensitivity

and accuracy in the last step. For miRNAs which cannot be assembled into contigs, we use

their biogenesis-based property and homology search results for classification.

The three-stage workflow with chosen tool for each stage is illustrated in Figure 2.2.

Here, we highlight the rationale behind the design of the three stages. The first stage

aims to classify a large number of input reads into different ncRNA families with high

sensitivity. It employs existing homology search tools. For short and fragmentary reads,

this stage can incur high FP rate. Thus, downstream analysis is needed to remove those

falsely classified reads. In the second stage, de novo sequence assembly tools are employed to

assembly classified reads into contigs. The family-specific sequence assembly is expected to

produce contigs corresponding to complete or partial ncRNA genes. However, because of the

39

extremely uneven or low transcriptional levels of many types of ncRNAs or low abundance, a

small overlap cutoff or kmer is needed to ensure appropriate connectivity for some families.

As a result, some contigs are chimeric or simply consist of randomly aligned reads. The

third stage is used to remove the false positives. All contigs are aligned to ncRNA families.

Only ones with scores or lengths above given cutoffs are kept. For miRNAs that cannot form

contigs, we use stringent homology search scores and known biogenesis-related properties as

classification criteria. Every stage will be described in great detail below.

Align reads to Family-

1 using SCFG-based

tool trCYK

Align reads to Family-

2 using SCFG-based

tool trCYK

Align reads to Family-

N using SCFG-based

tool trCYK

Family-specific

assembly

Family-specific

assembly

Family-specific

assembly

Align Contigs to

Family-1

Align Contigs to

Family-2

Align Contigs to

Family-N

Read Classification

Reads Classified into

Family-2

Reads Classified into

Family-N

Reads Classified into

Family-1

Contig Set-1 Contig Set-2 Contig Set-N

Contig Set-1 Contig Set-2 Contig Set-N

Short Reads

...

...

...

...

...

...

Figure 3.2: The pipeline of RNA-CODE. The pipeline of RNA-CODE. For miRNAs, the output
of the first stage (SCFG-based filtration) and the whole pipeline will be used together for reads
classification.

40

3.2.1 Stage 1: SCFG-based filtration

To maximize classification sensitivity, short reads are aligned to an SCFG model built from

an RNA family of interest. An SCFG describes not only primary sequence of an RNA

family but also its secondary structure formed by base pair interaction. The state-of-the-art

implementation of SCFG model is Covariance Model (CM). The software suite Infernal [17]

builds a CM on a family of RNA sequences, and searches for homologs using inside-outside

algorithms. A CM in Infernal is implemented as a tree-like structure in which each node

models a single base or a base pair. Infernal is able to optimally align a sequence to this

tree with the highest possible score. Short reads, however, pose challenges to the search

algorithms because they are fragmentary sequences in which nucleotides expected to form

base pairs could be missing. Due to missing bases, base pairs that could have been aligned

to a base-pair node in a parse tree are not alignable any more. As a result, reads sequenced

from this family may not be well aligned to the underlying CM. Truncated-CYK (trCYK)

[16] is a specialized tool designed for fragmentary sequence search. It performs local RNA

alignment against a CM of interest, recovering base pairs that are possibly missing and would

otherwise be base paired. For every alignment, a score is provided by trCYK indicating the

goodness of alignment. Homologous reads tend to yield higher scores and longer alignments

than random reads.

Here we report the performance comparison of two homology search tools that can be

applied to short and fragmentary reads. One is the mostly commonly used homology search

tool BLAST [15], which relies on sequence similarity only. The second tool is trCYK [16].

The goal is to compare the performance of trCYK with BLAST in classifying ncRNA reads

of different lengths. Thus, for read length 25, 30 and 50, we sampled 5000 true reads from

41

tRNA sequences obtained from Rfam. Another 5000 random reads generated from other

RNA families were mixed with true tRNA reads. Seed sequences from Rfam were excluded

from the test data. Covariance Model used in trCYK and formatted database used in BLAST

were both built from seed sequences of tRNA. We then searched for tRNA reads in the mixed

reads using trCYK and BLAST. The performance of both tools is visualized in the ROC

curves in Figure 3.3. The figure demonstrates that trCYK has better performance than

BLAST. However, both tools have high FP rates, showing the need for further screening.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0. 05 0. 1 0. 15 0. 2

S
e
n
s
it
iv

it
y

False Positive Rate

BLASTLEN=25

BLASTLEN=30

BLASTLEN=50

trCYKLEN=30

trCYKLEN=50

trCYKLEN=25

Figure 3.3: ROC curves of short reads classification using trCYK and BLAST. ROC curves
of short reads classification using trCYK and BLAST. Sensitivity measures the ratio of correctly
found true tRNAs to the total number of true tRNA reads. False positive rate measures the ratio
of falsely found tRNA reads to the total number of false tRNA reads.

Like all alignment programs, a score cutoff is needed to distinguish homologous sequences

from others. We set two cutoffs s and l, on alignment score and alignment length, respectively.

s and l determine the strength of filtration. A low cutoff will lead to an overwhelming number

of negative reads which could significantly slow down the next two stages. A high cutoff,

however, will exclude remote homologous reads with poor conservation from further analysis.

As trCYK does not provide such thresholds, we considered two strategies to determine the

42

cutoffs. First, the expected alignment score for a homologous sequence of length L can be

used as the cutoff. In order to ensure high sensitivity, the actual cutoff can be smaller than

the expected score. Second, Monte-Carlo method can be used to evaluate the sensitivity and

FP rate of a score cutoff using a large number of sequences that are generated from both

ncRNAs and non-ncRNAs. In this work, we used the second strategy. Figure 3.3 shows that

some very short homologous reads have poor alignment scores. As the first stage defines

the upper-bound of the classification sensitivity, we chose a loose cutoff s = 1 to guarantee

that most positive reads can pass the filtration stage. We found that this threshold also

applies to reads sequenced from other types of ncRNAs. With the increase of read length,

this score threshold needs to be improved as well. As the first stage is designed to achieve

high sensitivity, the default cutoff is set to 1. To further increase the sensitivity of filtration,

we also accept reads with alignment score s greater than -1 and with alignment length l ≥ 30

bases.

3.2.2 Stage 2: family-specific de novo assembly

For reads that are coarsely classified to a family by the first stage, they will be input to de

novo assembly tools. Compared to conducting de novo assembly on all the reads, the input

sizes to assembly tools are significantly reduced. Thus, even memory intensive assembly

tools can be applied.

Multiple de novo assembly tools exist. Depending on the data properties, such as read

length and sequencing error rates, sensible choices can be made. In this work, the de novo

assembly programs are applied to RNA-seq data of non-model organisms or metagenomic

data. Thus, specific properties of these two data should be considered when choosing as-

sembly tools. Unlike genome assembly, highly diverse sequencing coverage is expected in

43

both data sets. In RNA-seq data, heterogeneous expression levels of ncRNAs contribute to

highly diverse sequencing coverage. In metagenomic data, different abundance of ncRNA

genes lead to different sequencing coverage. Choosing one set of parameters (such as overlap

threshold in overlap graph or kmer size in de Bruijn graph) for the whole data set is not

likely to produce optimal results for downstream ncRNA analysis. Thus, the first require-

ment for the chosen assembly program is that users can adjust the parameters according to

the output of the filtration stage. Specifically, although the first stage only coarsely classi-

fies reads into gene families, it can be used to estimate the expression levels or abundance

of genes in a family. For families with large number of reads classified, RNA-CODE as-

sumes high sequencing coverage and thus uses stringent assembly parameters. On the other

hand, for families with fewer number of classified reads, small overlap cutoffs (in an overlap

graph-based assembly tools) or small kmers (in de Bruijn graph) should be used to ensure

connectivity for lowly transcribed regions or low abundance genes. Second, many assembly

programs removed kmers with low coverage as they may contain sequencing errors. In order

to assembly ncRNAs of low expression or abundance, we use an assembly tool that can keep

reads/kmers with low coverage.

In this work, for very short reads (read length < 50bp), we applied and compared several

assembly programs [64, 65] and chose SSAKE [66] because it delivers better assembly perfor-

mance on our experimental data. SSAKE is a specialized de novo assembly tool for unpaired

short reads assembly. It is a graph-based greedy assembler that efficiently assembles millions

of short reads following near-linear time complexity. During the assembly process, the 3’

end of a contig is extended if its suffix overlaps with the prefix of another read. SSAKE

generates contigs progressively by searching all prefixes stored in a hash table for the longest

possible prefix-suffix match whose overlap is above a threshold. We modified the codes of

44

SSAKE to make it accept any overlap cutoff.

To follow standard notation for assembly algorithms, we use k to represent either the

kmer size in De Bruijn graph or the overlap threshold in an overlap graph for assembly.

The length of overlap threshold k is an important parameter in SSAKE. A higher k usually

results in fewer but more accurate contigs. A lower k leads to higher contiguity. But incorrect

extension may happen because the probability of a random prefix-suffix match is high. In

de novo assembly, there does not exist optimal overlap threshold. Although the expression

or abundance is not known a prior, we estimate it using the number of classified reads in

the first stage and choose k accordingly. In addition, it is observed that using a single-k will

lead to suboptimal performance of de novo assemblers. In the second stage, a range of k’s

are chosen and used on short reads assembly. For each k, all reads are used in assembly. The

contigs from different assemblies are subsequently pooled together for further analysis.

3.2.3 Stage 3: contig selection

Some randomly aligned reads in stage 1 can be removed by stage 2 because they are not part

of any contig. However, due to the loose overlap cutoff or small kmers, some reads can still

be assembled into contigs and thus produced by stage 2. There are three types of contigs

with reference to an ncRNA gene family: 1) positive contigs that are assembled by reads

originated from this family, 2) negative contigs that are assembled from false reads that are

not part of the underlying gene family, and 3) chimeric contigs that are formed by both

true and false reads. Negative and chimeric contigs can be formed due to small overlaps we

allowed in the multiple-k assembly. The probability that a contig is extended with a negative

read due to a random prefix-suffix match is high for a small overlap cutoff. Sketches of the

three types of contigs are presented in Figure 3.2.3.

45

Positive contig

Positive read Negative read

Negative contig

Chimeric contig

Chimeric contig

Figure 3.4: Three types of contigs.

To distinguish positive contigs from negative ones, we align contigs to the underlying

CM. We chose to use trCYK for the following reasons. 1) Both sequence and structural

information of a contig should be utilized. 2) Many contigs may not be complete RNA genes

especially when the gene transcription level is low. Thus we need to consider missing bases

while aligning contigs to the underlying CM.

After trCYK is applied to all contigs from stage 2, if there exist contigs with alignment

scores greater than a pre-determined cutoff, the gene of interest is considered to be tran-

46

scribed. As trCYK is a local alignment tool, it is common that only part of the contig is

aligned to the underlying CM. Thus only reads that assemble the aligned part are classified

into this RNA family. This feature could be very effective when multiple correct segments

exist in a chimeric contig, although we did not observe such cases in our experiment. Bad

segments interleaved by correct ones could potentially be removed.

3.2.4 MIRNA families

Normally, all classified reads need to pass through the entire pipeline. But for miRNA

families, as no contigs might be formed, we used two criteria for read classification. First,

the alignment score and length of the trCYK alignments in the first stage must pass the pre-

determined threshold. Second, for all reads that align to the miRNA* region, we examined

whether they can form a stem with reads aligned to the mature miRNA region. If not, the

reads aligning to miRNA* region will be removed. As a result, many reads that cannot form

any contig can be still classified into miRNAs based only on the homology search results in

the first stage.

3.3 Results and Discussion

RNA-CODE can be applied to ncRNA classification in both metagenomic data and RNA-seq

data of non-model species. To demonstrate the utility of RNA-CODE, we conducted two

experiments. In the first experiment, we tested RNA-CODE on identifying reads sequenced

from 16s rRNAs in a small-scale metagenomic data set. It is widely known that 16s rRNA is

an important genetic marker for taxonomic identification in metagenomes. Identifying 16s

rRNA reads can be used as the first step to assemble full-length 16s rRNAs [54, 29, 56].

47

This experiment aims to detect reads that are sequenced from 16s rRNAs. In the second

experiment, we tested RNA-CODE on annotating reads sequenced from different ncRNA

genes including house-keeping RNAs, miRNAs etc. in RNA-seq data of the model organism

Arabidopsis thaliana.

For the first experiment, the performance of RNA-CODE was benchmarked with Metaxa

[54], which is designed for classifying short reads into different rRNA families. For the second

experiment, the performance of RNA-CODE was benchmarked with standard annotation

pipeline for NGS data, which is de novo assembly tools plus existing ncRNA annotation

tools.

To evaluate the performance of all tools, we compared the true membership and the

predicted membership of reads. Two metrics are used in evaluation: read-level sensitivity

and positive predictive value (PPV), which indicates accuracy. For an RNA family of interest,

let TP be the set of true positive reads originated from this ncRNA family. Let P be the

set of reads predicted to be positive. Sensitivity is defined as

sensitivity =
P ∩ TP
TP

.

PPV is defined as re appropriate

PPV =
P ∩ TP

P
.

A good ncRNA identification tool should have both high sensitivity and high PPV.

48

3.3.1 Detecting reads of 16s ribosomal RNAs

RNA-CODE can detect and discriminate among multiple ncRNA types. This experiment

tests RNA-CODE in recognition of one type of ncRNA, 16s rRNA in a metagenomic data set.

Various tools exist for 16s rRNA search [17, 54, 67, 68], of which, only Metaxa is designed

for short reads. Thus, we benchmark RNA-CODE with Metaxa in this experiment.

3.3.1.1 Data

In order to accurately evaluate the performance of RNA-CODE, we need to know the ground-

truth membership of reads in metagenomic data. Thus, we constructed a small-scale real

metagenomic data set, for which we knew which reads were sequenced from 16s rRNAs.

We obtained human gut microbial metagenomics data from European Nucleotide Archive

(http://www.ebi.ac.uk/ena/data/view/ERA000116). The data were sequenced from fecal

specimens of obese individual human adults using Illumina Genome Analyser [69]. We se-

lected two pair-ended metagenomics data sets of different read lengths. There were 9,633,603

reads of length 44 in the one dataset and 14,822,431 reads of length 75 in the other. With-

out knowing the genomes of the species in this sample and their 16s rRNA annotations, we

cannot obtain the true membership of all the reads. Thus, we need to construct a small

metagenomic data set using reads that can be reliably labeled as 16s rRNAs in fully se-

quenced genomes. To do this, we first chose species that have whole genomes and 16s rRNA

annotations using the species catalog in [70]. Then, all reads that can be mapped to these

genomes were included in the small metagenomic data set. In total, 11 strains with complete

genomes available were selected from 67 strains designed by Turnbaugh [70]. To determine

whether a read was originated from 16s ribosomal genes, we mapped each read back to the

genomes of the 11 selected bacteria strains. The read mapping positions and the annotation

49

of 16s rRNA genes are combined to determine whether a read is sequenced from 16s rRNAs.

If a mapped read share at least 80% of bases with an underlying 16s genes, we defined this

read as positive. If a read has no overlap with any 16s gene, we defined it as negative. The

reads having less than 80% of their bases overlapped with a 16s gene are considered to be

ambiguous and were discarded. Additionally, the reads that cannot be mapped to any of

the 11 genomes were also discarded, because we did not have enough information of their

true membership. The small-scale metagenomic data consists of both positive and negative

reads. For the data set of read length 44, there are 606 positive reads and 71993 negative

reads, respectively. For the data set of read length 75, there are 379 positive reads and 61086

negative reads, respectively.

3.3.1.2 Experimental results

We applied RNA-CODE to the small-scale metagenomic data sets constructed above for

16s rRNA classification. We then compared RNA-CODE with Metaxa, a specialized tool

for detecting reads originated from SSU rRNAs such as 12s, 16s and 18s. Same as RNA-

CODE, input to Metaxa is also a set of short reads in FASTA format. Output of Metaxa

contains short reads presumably originated from SSU rRNAs. Short reads are categorized

by the species or organelles that they are originated from. The categories include bacteria,

archaea, eukaryota, mitochondria, and chloroplast. Because specific categories of reads are

not concerned in this experiment, we considered a read to be a true positive if it can be

categorized in any of the 5 categories.

The above experiments were conducted on reads of 44 bases and 75 bases using de-

fault parameters. As displayed in Table 3.1, both tools achieved high specificity for both

read lengths. The sensitivity of RNA-CODE out-performed Metaxa for both read lengths.

50

Specifically, RNA-CODE performed well on shorter reads. As Metaxa does read classifica-

tion using hidden Markov models (HMMs), short reads tend to produce marginal scores and

thus are hard to distinguish from non-rRNA reads. RNA-CODE considers both sequence

and secondary structure similarity and is more sensitive for short read classification. For the

same reason, as Metaxa relies on HMMs, it is not expected to perform well on other types

of ncRNAs that lack strong sequence similarity.

RNA-CODE Metaxa

read length sen PPV sen PPV

44 0.999 1.000 0.786 1.000

75 1.000 1.000 0.986 1.000

Table 3.1: Performance comparison of RNA-CODE vs Metaxa. Both tools were applied
using the default parameters.

3.3.2 NCRNA classification in RNA-seq data

To demonstrate the utility of RNA-CODE on detecting reads sequenced from various ncRNA

genes, we conducted the second experiment on real RNA-seq data. RNA-CODE classi-

fies reads into different ncRNA families. For house-keeping ncRNAs such as tRNAs and

rRNAs, which contain multiple gene members, the number of classified reads show the

overall expression levels of this type of ncRNA. For single-member ncRNA families such

as many miRNA families in some species, the number of classified reads quantifies the ex-

pression level of this gene. We chose to use RNA-seq of the model species Arabidopsis

thaliana, which has high-quality genome assembly and gene annotation available in TAIR 10

(http://www.arabidopsis.org), enabling us to determine the true membership of reads with

51

high confidence.

3.3.2.1 Data

An RNA-seq dataset obtained from NCBI SRA (accession number GSM706704) was used

in this experiment. This dataset was sampled from transcriptome of inflorescence tissues

of Arabidopsis thaliana. The sample was sequenced using Illumina platform and contains

2,327,100 short reads. After removing adaptor sequences and quality trimming, the average

length of reads is 23.5, which poses a great challenge for both homology search tools and

de novo assembly tools. Using ncRNA annotation from TAIR 10, there are hundreds of

ncRNAs annotated in Arabidopsis. In this work, we present the results on classifying reads

into ncRNAs annotated on chromosome 2 of Arabidopsis.

According to TAIR10 annotation and read mapping results, there are 15 transcribed

ncRNAs on chromosome 2 in this RNA-seq data. Out of the 15, there is one miRNA mir-

825a that does not have corresponding family in Rfam. In addition, miRBase shows that

there are only two sequences annotated as mir-825, which are not enough to train a model.

Thus, we excluded this miRNA from our test. After removing this family, we had in total 14

transcribed ncRNAs on chromosome 2 in this data set. These families were used to evaluate

the sensitivity of ncRNA classification. The number of mapped reads for the 14 ncRNA

families can be found in Table 3.2. In order to evaluate both the sensitivity and accuracy

of RNA-CODE, we randomly chose 32 non-transcribed but annotated ncRNA families as

negative test data. The non-transcribed families have zero mapped read and are used to

evaluate the accuracy of RNA-CODE. Ideally, an accurate ncRNA detection tool should not

classify any read in this RNA-seq data into these ncRNAs.

52

ID in Rfam gene name num of mapped reads num mapped reads(unique)

RF00002 5.8S ribosomal RNA 27984 417

RF00005 tRNA 35602 1339

RF00055 Small nucleolar RNA SNORD96 29 12

RF00073 mir-156 microRNA precursor 8875 13

RF00075 Mir-166 microRNA precursor 3657 18

RF00247 Mir-160 microRNA precursor 31 4

RF00268 Small nucleolar RNA snoZ7/snoR77 7 5

RF00300 Small nucleolar RNA Z221/R21b 79 13

RF00452 mir-172 microRNA precursor 101581 15

RF00647 microRNA MIR164 2746 5

RF00689 microRNA MIR390 933 11

RF00690 microRNA MIR408 322 12

RF00893 microRNA MIR854 1367 313

RF01280 Small nucleolar RNA snoR14 9 8

Table 3.2: Number of reads that are mapped to chromosome 2 of Arabidopsis.

For each of the 46 ncRNA families (14 positive + 32 negative), we used the correspond-

ing SCFG-based models in Rfam 10.1 as input to RNA-CODE. Read mapping results and

TAIR10 annotation are used to determine the membership of reads. Only if a read has more

than 80% of its bases overlapping with an annotated gene, we consider the read to be a

member of this gene. Reads with no overlapping bases are unlikely to be valid transcripts of

the gene of interest. Such reads are considered to be negative.

3.3.2.2 Experimental results

We evaluate the performance of RNA-CODE from four aspects. First, as the filtration stage

of using trCYK is important to the performance of RNA-CODE, we analyze the performance

of trCYK in this experiment. Second, we compare the performance of RNA-CODE with de

53

novo assembly tools. Third, we demonstrate the utility of using multiple overlap thresholds

in RNA-CODE. Finally, we present case studies for miRNA genes, which produce reads that

share no overlaps.

3.3.2.2.1 Performance of filtration In this experiment, we report the performance of

the filtration stage for different types of ncRNAs. The first stage of RNA-CODE uses trCYK

to coarsely classify reads into different families. Only reads that pass this filtration stage will

be further analyzed. Thus, the filtration stage determined the upper bound of the sensitivity

of RNA-CODE. A low score cutoff is used to keep high sensitivity. The price paid, however,

is low specificity, as displayed in Table3.3. trCYK did not show good discriminative power

on some genes because the transcripts sequenced from these genes are not well conserved

and cannot form statistically significant alignments with the underlying CM. For example,

a majority of transcripts originated from Small nucleolar RNA Z221/R21b had alignment

scores lower than the defined threshold due to poor conservation. Thus most reads cannot

pass the filtration.

54

gene name sensitivity PPV

5.8S ribosomal RNA 0.891 0.415

tRNA 0.882 0.5

Small nucleolar RNA SNORD96 1 0.018

mir-156 microRNA precursor 1 0.039

Mir-166 microRNA precursor 1 0.007

Mir-160 microRNA precursor 1 0.012

Small nucleolar RNA snoZ7/snoR77 1 0.003

Small nucleolar RNA Z221/R21b 0.077 0.001

mir-172 microRNA precursor 1 0.015

microRNA MIR164 1 0.002

microRNA MIR390 1 0.011

microRNA MIR408 1 0.018

microRNA MIR854 0.721 0.447

Small nucleolar RNA snoR14 1 0.007

Table 3.3: Filtration statistics.

3.3.2.2.2 Performance comparison with SSAKE Reads that are classified into each

family are used as input to de novo assembly programs. For N input families, N de novo

assembly programs can be run in parallel. A number of de novo assembly tools are available.

However, due to short read length and low coverage for many types of ncRNAs, some popular

tools such as Velvet [64] only produces a few contigs. We empirically compared several de

novo assembly tools and chose SSAKE 3.8 for two reasons. First, it produced more contigs

55

than others. Second, the source codes of SSAKE is relatively easy to modify to address

specific needs for this data. SSAKE was designed for short reads assembly and the minimum

length of an input read is 22 bases. In this data, there exist reads of less than 22 bases.

So we customized SSAKE to make it accept reads as short as 19 bases. SSAKE requires a

minimum overlap of 16 bases when extending contigs. When gene expression level is low,

the overlap between positive reads is often lower than 16 bases. To assemble reads of lowly

transcribed genes, we customized SSAKE to extend a contig when its suffix has more than

5 overlapping bases with a prefix of a read. We set Minimum Number of Reads Needed to

Call a Base During an Extension to be 1, as opposed to 2, the default value. The rationale

of using 1 is that in the transcripts of poorly expressed genes, base coverage is low. It is rare

to find duplicates of a read when extending with this read.

The chosen assembly tool is run for each family separately. Thus, family-specific assembly

parameters can be chosen. In particular, the overlap threshold of SSAKE can be adjusted

according to the number of classified reads by trCYK. Although the number of classified

reads is not an accurate indication of depth of read coverage, it is preferred to choose a small

overlap threshold if the number of classified reads is small. In addition, it has been shown

that using multiple kmers can improve RNA-seq assembly [65]. As described in our method,

RNA-CODE also uses multiple overlap thresholds. Thus, for SSAKE, we allow overlap from

6 to 16 if the number of classified reads by trCYK is less than 10,000. Otherwise, we use 10

to 20. Users can adjust these parameters according to any known knowledge.

The performance of RNA-CODE on the 14 transcribed families is listed in Table3.4.

For the 32 control families, which were not considered to be transcribed, RNA-CODE did

not find any reads, yielding 0% false positive rate. This indicates that RNA-CODE can

successfully distinguish transcribed families from un-transcribed ones. Table 3.4 also includes

56

the performance comparison with SSAKE. More specifically, all reads are used as input to

SSAKE. Then, all contigs produced by SSAKE are searched against input ncRNA families

using trCYK. The comparison shows that RNA-CODE yielded better performance on all

genes except for 5.8S ribosomal RNA. Without the first stage, a large number of negative

reads may be assembled together with positive reads and form chimeric contigs. In chimeric

contigs, positive reads could be interleaved by negative reads, making the alignment score

between itself and the underlying CM low.

gene name RNA-CODE SSAKE single-k
sen PPV sen PPV sen PPV

5.8S ribosomal RNA 0.778 0.95 0.99 0.884 0.999 0.978
tRNA 0.437 0.984 0.274 0.996 0.044 1

Small nucleolar RNA SNORD96 1 1 0.857 1 0.903 1
mir-156 microRNA precursor 0.929 1 0.786 1 0 N/A

Mir-166 microRNA precursor 1 0.947 0.944 1 0.996 1
Mir-160 microRNA precursor 0.75 0.214 0 N/A 0 N/A

Small nucleolar RNA snoZ7/snoR77 1 1 0 N/A 0 N/A
Small nucleolar RNA Z221/R21b 0 N/A 0 N/A 0 N/A
mir-172 microRNA precursor 1 1 0.733 1 1 1

microRNA MIR164 1 1 1 1 1 1
microRNA MIR390 0.909 1 0.909 1 0.996 1
microRNA MIR408 1 0.75 1 1 1 1
microRNA MIR854 0.599 0.978 0.468 0.698 0.415 1

Small nucleolar RNA snoR14 0.25 1 0 N/A 0 N/A

Table 3.4: Performance of RNA-CODE (multiple-k), SSAKE, and RNA-CODE (single-k)
on transcribed ncRNA families.

The reason why RNA-CODE was out-performed on 5.8S ribosomal RNA is that many

short reads originated from 5.8S ribosomal RNA did not pass the filtration due to poor

conservation. As a result, the overall sensitivity is lower than de novo assembly tools.

3.3.2.2.3 Using multiple overlap thresholds improves performance of RNA-

CODE Multiple-k approach is another important component in the pipeline. To demon-

57

strate the effectiveness of this approach, we compared RNA-CODE using multiple-k and

single-k approach. Sensitivity of RNA-CODE using multiple-k is generally better than us-

ing single-k, except for 5.8S ribosomal RNA and MIR-390. We used the default k value

(i.e. 16) in single-k approach. Many contigs assembled from short reads originated from

lowly expressed genes were not recovered in the single-k approach; since overlap between

two positive reads may be less than 16 bases. However, using multiple overlap thresholds

may also introduce chimeric contigs, which explains the worse performance of RNA-CODE

using multiple k than single k on 5.8S ribosomal RNA and MIR-390.

3.3.2.2.4 Performance of microRNA families For eight transcribed miRNA genes,

RNA-CODE performs better in six of them and has the same sensitivity and PPV for the

other two. This is expected because miRNA reads usually cannot be assembled. In this

data set, because of the extreme short reads, some of them are assembled into the mature

miRNA and thus are able to be output by SSAKE. For example, reads of length between 19

and 22 are assembled into the mature miRNA of length 25 for mir-156. For most RNA-seq

data that have longer reads after quality trimming, de novo assembly tools will not be able

to assemble them into contigs. Thus, using both homology search and de novo assembly is

important to generate a comprehensive catalog of ncRNAs.

3.4 Conclusion

We presented an ncRNA classification tool that can determine the membership of reads that

are sequenced from ncRNA genes. By combining homology-based ncRNA search method

and family-specific de novo assembly, we can classify reads into different types of ncRNAs,

including those that cannot be assembled because of cleavage and degradation. This tool can

58

be applied to NGS data that do not have quality reference genomes, such as metagenomic

data and RNA-seq data of non-model organisms.

RNA-CODE relies on trCYK as the ncRNA homology search tool for very short reads.

When reads are longer, more efficient ncRNA homology search tool such as Infernal [17] can

replace trCYK. For very short reads, trCYK is still the best choice in order to yield high

sensitivity.

59

Chapter 4

Reconstructing 16S rRNA genes in

metagenomic data

4.1 Introduction

Microbes are ubiquitous species existing in all environments on earth, including extreme

conditions [71]. From the desert to acid waste water, from pine forest soil to mine drainage,

they sustain themselves using various mechanisms [72]. Human bodies are also habitants

of microbes. It is estimated that there are 104 bacterial cell inhabiting on our body, which

is 10 times more than our own cells [73] [74]. Human life as well as the entire ecosystem

are profoundly affected by microbes. There is a strong need to understand the function of

microbial community and how they interact with the environments where they inhabit. It

has been discovered that function of microbial community is defined by its composition and

diversity [75]. In particular, metagenomic data, which contains sequenced DNA reads of a

large number of uncultured microbial species from a wide range of environmental samples,

provide a unique opportunity to thoroughly analyze microbial species that have never been

identified before.

A commonly adopted approach for analyzing the microbial species in environmental sam-

ples is to conduct comparative analysis of ribosomal RNA sequences [76]. The use of rRNA

for microbial phylogenetic analysis had become such a relied-upon methodology that by

60

2008, 77% of all INSDC [77, 78, 79] bacterial DNA sequence submissions described an rRNA

gene sequence [80]! 16S rRNA reads from metagenomic studies provide a source of sequences

that is not subject to PCR primer bias and therefore covers taxa that might be missed by

existing popular primer sets [81]. A fundamental step in using rRNA to analyze the micro-

bial species is to recover the rRNA genes from the large amount of reads in metagenomic

data sets, which is the goal of this work. The rRNA genes are a patchwork of hypervariable

(rapidly evolving) and universally conserved regions, complicating phylogenetic analysis of

rRNA genes in metagenomes both by the lack of usable phylogenetic signal in many unassem-

bled reads and by the difficulty in separately assembling genes for the individual populations

in a matagenome. In addition, the massive data volume, short read length, skewed species

abundance, and high similarity of 16S rRNAs genes all make rRNA recovery in metagenomic

data very difficult. Currently, there is a rapid accumulation of metagenomic data from a wide

range of environmental samples. For example, there are roughly 24,367 Gbases of data from

Human Microbiome Project (HMP) alone. A tool that can efficiently and accurately recover

rRNAs from the large amount of data is in great need for analyzing microbial composition

in the underlying samples.

Existing pipelines for annotating rRNAs in metagenomic data can be divided into two

groups. The first type of pipelines relies on existing de novo assembly tools to output

assembled contigs, which are then used as input to available genome-wide rRNA search tools.

There are various bulk metagenomic assembly programs [82, 83, 84, 85, 86, 87, 88], which

intend to recover individual genomes in an environmental sample. Metagenomic assembly is

computationally difficult [83]. A recent review [89] summarized the disadvantages of existing

de novo assembly. First, the quality of read assembly deteriorates significantly in complicated

NGS data sets. In particular, previous work shows that metagenomic sequencing of high-

61

complexity microbial communities results in little or no assembly of reads [90, 89]. Second,

successful de novo assembly requires high sequencing depth, which is difficult to achieve for

all rRNAs in one sample. In addition, our goal is to detect rRNAs in metagenomic data

while much of bulk de novo assemblies consist of other genomic regions. Thus, the commonly

used pipeline of combining bulk metagenomic assembly and genome-wide rRNA detection

tools is convenient but not optimized for rRNA detection in metagenomic data. The second

type of pipelines avoids bulk metagenomic assembly and incorporates properties of rRNAs

[29, 56]. The most promising one is perhaps EMIRGE [29], which uses an expectation

maximization approach along with a set of reference gene sequences to assemble rRNA

genes from metagenomic data. The method has been used to assemble complete genes from

organisms at apparent phylum-level diversity to known cultured organisms [91]. However,

EMIRGE requires a large number of known rRNA genes for read mapping and does not

separate rRNA genes from closely related organisms.

Therefore, lacking reference genomes, recovering full-length rRNAs from a large number

of short and error-prone reads is still an outstanding challenge. In this work, we propose and

implement a targeted rRNA assembly program REAGO 1 that is optimized for rRNA gene

recovery in metagenomic data. It has three advantages comparing with existing methods.

First, it significantly reduces the problem size by first discarding reads that are not likely

sequenced from rRNA genes. Secondary structure-aware homology search is adopted in this

step to recognize rRNA reads, which will be kept for downstream analysis. Second, paired

end information is carefully applied to guide gene assembly and thus distinguish rRNAs

from different species. Third, incorporating profile-based homology search, scaffolding step

is used to connect contigs with low coverage and thus is able to recover rRNAs in species of

1Scoure code is available at https://github.com/chengyuan/reago

62

low abundance. We applied our tool to both synthetic and real metagenomic data sets and

benchmarked its performance with several other programs. The experimental results show

that our tool competes favorably in recovery rRNA genes in metagenomic data sets.

Identify 16S

reads

Create overlap

graphs

Reconstruct 16S

rRNA genes

Scaffold 16S

rRNA fragments

Figure 4.1: Pipeline of the 16S rRNA gene assembly. Short black and gray bars represent
reads originated from different 16S rRNA genes. Short white bars represent reads from
non-16S regions. Long bars represent contigs assembled from short reads.

4.2 Method

4.2.1 Overview of REAGO

Figure 4.1 is a schematic representation of the pipeline, which contains four stages. First we

identify 16S rRNA reads from the original metagenomic dataset using secondary-structure

aware homology search. The majority of non-16S reads are discarded in this process, sig-

nificantly reducing the problem size. Second, REAGO constructs overlap graphs. Various

graphs reduction techniques are applied to remove possible sesquencing errors and prepare

the graph for efficient assembly. The third stage assembles reads into contigs by our path

finding algorithm. The path finding procedure is guided using paired-end information and

63

aims to avoid generating chimeric 16S rRNA genes by maximizing Weighted Paired-End

Match Score (WPEMS) (see Section4.2.5). Finally, paired-end information again is used to

scaffold incomplete 16S fragments, if any, into longer contigs or full-length genes.

4.2.2 16S rRNA reads identification

In our method, we first conduct homology search to identify reads originated from 16S

rRNA genes. To utilize both the sequence and structural conservation of 16S rRNA genes,

we align metagenomic reads to a Stochastic Context-Free Grammar (SCFG) based model

[92], which is trained from a selected set of 16S rRNA sequences. The model describes

not only primary sequence conservation of a gene family, but also its secondary structure

conservation. The-state-of-the-art implementation of SCFG is covariance model (CM) in

Infernal [17]. For a gene family, Infernal first builds a CM from a set of training genes from

this family and classifies queries by aligning them to the model. A CM is implemented in

a tree-like structure in which each node models a single base or a base pair. Inside-outside

algorithm [92] is then used to optimally align a query to the CM by maximizing alignment

scores. Higher alignment scores are likely to be assigned to reads originated from the family

while reads from other genes tend to receive low scores. Fragmentary sequences pose great

challenges to the alignment algorithm since structural information in short reads is likely

to be partially missing. As a result, such short reads tend to received marginal alignment

scores and are not identified. Infernal handles this problem by recovering possibly missing

bases while performing the inside-outside algorithms. Thus, short 16S rRNA reads can still

receive significant alignment scores.

BLAST [15] is also available for 16S read identification. By aligning reads with the

reference 16S rRNA database, rRNA reads may be recognized using BLAST alignment scores

64

or E-values. We choose to use SCFG-based homology search over BLAST for two reasons.

First, BLAST conducts homology search based on sequence similarity and will miss reads

lacking primary sequence conservation. Commonly used as the phylogenetic marker gene

[93], 16S ribosomal RNAs share high sequence similarity on many regions across different

species. However, there also exist a number of variable regions where secondary structures

are better conserved than primary sequences. Secondary structural information could then

be very helpful to provide additional evidence for 16S sequence identification. A number of

studies have demonstrated the advantages of incorporating secondary structural information

in various types of non-coding RNA homology search [19]. Experiments were conducted

to compare BLAST and CM-based approaches [16] on identifying short rRNA reads. The

results indicate that BLAST tends to miss short rRNA reads that are sequenced from non-

conserved regions. CM-based approaches generally improve the identification accuracy by

including secondary structure information. The second reason behind choosing SCFG-based

homology is that the single SCFG-based model provides a convenient reference for deciding

the relative positions among contigs during the scaffolding stage. We use the alignment

positions of reads inside a contig to determine the contig’s rough position along an SCFG

model.

65

Node

collapsing

Error

correction

Topology-

based

graph reduction

Bad edge

removal

Figure 4.2: Graph reduction is conducted iteratively until there is no change on the graph.

4.2.3 Overlap Graph Creation and Graph Pruning

All reads that are possibly sequenced from rRNA genes are used to construct an overlap graph

for assembly. An overlap between two reads is formed if the suffix of a read matches the prefix

of another read. A straightforward overlap detection method performs pairwise comparison

among all reads, requiring O(n2) comparisons. Efficient implementations of overlap graphs

based on data structures such as hash table and BTW [94, 95] exist to handle NGS data.

We choose Readjoiner [94], which provides a set of time and space efficient algorithms for

detecting all prefix-suffix matches among a set of reads. In created overlap graphs, each

vertex represents a read and each edge represents a prefix-suffix match of size at least l,

a pre-determined overlap threshold. l has high impact on complexity and connectivity of

graphs. Small l tends to increase the connectivity, but also complexity, of the overlap graph.

Larger l is likely to produce less tangled graph, but can possibly miss connections between

reads from lowly sequenced regions. Note that transitive edges are automatically removed

66

in the output by Readjoiner.

The original graphs generated from the output of Readjoiner could be very complex be-

cause of the large data size, sequencing errors, and highly similar regions shared by different

genes. We apply an iterative graph pruning procedure, as depicted in Figure 4.2, to grad-

ually simplify the graph at each iteration. The procedure terminates when the graph stop

changing. Below we detail each stage.

4.2.3.0.5 Node collapsing The original overlap graph tends to have chains of linearly

connected vertices. In such chains, each vertex has only a single in-coming edge and out-going

edge. Such vertices can be merged without loss of reachability.

4.2.3.0.6 Alignment-based error correction Sequencing errors and highly similar

regions shared by different genes can contribute to a large number bifurcations, greatly

complicating the graph. Error correction in metagenomic data is an unsolved problem.

Rare reads may come from lowly abundant genes rather than contain sequencing errors.

Nevertheless, we still follow the error correction rationale commonly used in de novo genome

assembly and correct bases in rare reads. As shown in Figure 4.3, we applied a heuristic but

efficient alignment-based error correction to two types of bifurcations. Reads or contigs from

sibling nodes V1, V2, · · · , Vn, which share the same predecessor or successor, are aligned.

Specifically, based on the known overlaps with the contig in the common predecessor or

successor, the contigs in the sibling nodes will be aligned first. Then the reads inside the

contigs can be aligned using their positions inside the contig.

For each column in the read alignment, a base is corrected if it is overwhelmingly out-

voted by other bases that are aligned to it. An assumption made here is, if a base is sequenced

multiple times, it is correctly sequenced majority of the time. A base a is corrected into a′,

67

if and only if the number of a′ is at least τ times more than the number of a. It is worth

noting that this strategy could potentially incorrectly mutate bases from lowly abundant

genes, since the number of those bases could be out-voted by bases from the related and

abundant genes. In order to make our tool more practically useful, we sacrifice some accuracy

for assembly efficiency. The value of τ is customizable so the user can change the strictness

of error correction according to different datasets by adjusting the value of τ . A larger τ

tends to yield more conserved error correction. A smaller τ tends to correct all erroneous

bases, but may also falsely modify correct bases into incorrect ones, especially in regions

with low coverage.

An example is depicted in Figure 4.4. Sequences represented in Vertices V2 and V3 are

very similar and only differ in one base. The bifurcation may be caused by sequencing error

or simply represent similar regions from highly related species. Reads in both vertices are

aligned. In the highlighted column, the number of base T in V3 is far less than that of the

base A in V2, so we mutate the T into A then merge V2 and V3 in to a single vertex.

(A) (B)

Vp

V0

Vn

V1

.

.

.

.

.

.....

.....

.....

Vs

V0

Vn

V1

.

.

.

.

.

.....

.....

.....

Figure 4.3: Two types of bifurcation where error correction is applied.

68

V1

CAGTCACGTCACAGT

CACGTCACAGT

ACGTCACAGTT

V2

CGTCACAGTTAG

GTCACAGTTAGA

CACAGTTAGAG

CACGTCTCAGT

ACGTCTCAGTTV3

V1

CAGTCACGTCACAGT CACGTCACAGT

ACGTCACAGTT

CGTCACAGTTAG

GTCACAGTTAGA

CACAGTTAGAG

CACGTCACAGT

ACGTCACAGTT

V23V1

CAGTCACGTCACAGT

CACGTCACAGT

ACGTCACAGTT

V2

CGTCACAGTTAG

GTCACAGTTAGA

CACAGTTAGAG

CACGTCACAGT

ACGTCACAGTTV3

CACGTCACAGTTAGAG

CACGTCTCAGTT

(A) (B) (C)

CACGTCACAGTTAGAG

CACGTCTCAGTT

CACGTCACAGTTAGAG

Figure 4.4: An example of error correction (applied on V2 and V3). The sequence represented
by each node is given beside the node. (A) Ungapped alignment of reads from bifurcating
vertices. (B) Mutate rare bases. (C) Remove bifurcation.

4.2.3.0.7 Topology-based graph reduction Alignment-based error correction is only

applied to nodes sharing the same predecessor or successor. Following existing assembly

methods, we continue to conduct topology-based graph reduction, as depicted in Figure 4.5.

We examine all tips and bubbles and remove them if certain criteria are satisfied. Tips are

vertices with one end disconnected and must have at least one sibling. Bubbles are formed

by two vertices sharing the same predecessor and successor. Tips and bubbles are formed

primarily due to sequencing errors and highly similar region shared among closely related

species. A tip can be simply dropped from the graphs if two criteria are satisfied. First, the

sequence represented by the tip are shorter than a user-defined value. Second, the number

of reads collapsed in the tip should be less than a user-defined value. A bubble is resolved by

removing the vertex containing less reads if the contigs represented by both vertices share a

sequence similarity greater than a threshold, which is set to 98% by default. Local gapped

alignment is generated between contigs represented by vertices forming the bubbles. Similar

to the bifurcation removal procedure, the tip and bubble removal could potentially remove

contigs from low abundant genes. So we also allow the threshold to be adjusted.

69

r1

r2 r3

r4

r5

r1

r2 r3

r4

r1

r2r3

r4

r1r2r3r4

Tip

removal

Bubble

removal

Node

collapsing

Figure 4.5: Topology-based graph reduction.

4.2.4 Bad edge removal

Due to the nature of metagenomic dataset, there may exist multiple species sharing very

high sequence similarity. Thus reads originated from different species have high chance to

form edges in the graph. In another word, having prefix-suffix match does not necessarily

guarantee correct connection. Wrong edges not only increase the complexity of graph but

also lead to chimera.

Thus after graph reduction, we applied a Nave Bayes Classifier, similarly to the RDP

classifier [96], on each vertex and approximately annotate it with one or more genera. If

the vertices on either of an edge do not share any common annotated genus, we remove this

edge from the graph. Annotation of each vertex can be obtained by calculating a posterior

probability P (Gi|C), where C is the contig the vertex represents and Gi is the potential

genus that C is originated from. The probability indicates the likelihood that the C is

originated from Gi. If the probability is higher than a threshold, we annotate C with Gi.

To calculate P (Gi|C), we first decompose the contig C into a set of k-mers k1, k2, ..., kn.

Same as the RDP classifier, the default value of k is 8. Then the likelihood P (C|Gi) can be

extended as P (k1, k2, ..., kn|Gi). Assuming the independence of ki’s, we can further simplify

the likelihood to P (k1|Gi)P (k2|Gi) · · ·P (kn|Gi), in which each term can be pre-calculated

70

based on the RDP database [96]. The prior probability P (Gi) can also be calculated as the

proportion of sequences in Gi to the total number of sequences in the RDP database. The

posterior probability P (C|Ḡi), which indicates the likelihood that C is not originated from

Gi, can also be calculated in the same way.

The detailed calculation of posterior probability is list as follows.

P (Gi|C) = P (Gi|k1, k2, ..., kn)

=
P (C|Gi)P (Gi)

P (C|Gi)P (Gi) + P (C|Ḡi)P (Ḡi)

=
P (k1, k2, ..., kn|Gi)P (Gi)

P (k1, k2, ..., kn|Gi)P (Gi) + P (k1, k2, ..., kn|Ḡi)P (Ḡi)

=
P (k1|Gi)P (k2|Gi) · · ·P (kn|Gi)P (Gi)

P (k1|Gi)P (k2|Gi) · · ·P (kn|Gi)P (Gi) + P (k1|Ḡi)P (k2|Ḡi) · · ·P (kn|Ḡi)P (Ḡi)

where

Gi =
number of sequences in genus Gi

total number of sequences in RDP database

Ḡi =
number of sequences in genus other than Gi
total number of sequences in RDP database

and

P (kj |Gi) =
number of sequences in genus Gi containing kj

total number of sequence in genus Gi

P (kj |Gi) =
number of sequences in genus other than Gi containing kj

total number of sequence in genus Gi

For a vertex, a genus Gi is included into its annotation if P (Gi|C) is greater than a

threshold. As most vertices in the graphs represent only short and partial 16S genes, the

classifier may not have enough evidence to uniquely and accurately annotate them. As a

result, each vertex is generally associated with multiple genera. Yet, base on our observation,

the annotation always include the true positive genus. The edge removal algorithm works

71

better on longer sequences. So we apply another round of graph collapsing, tip and bubble

removal, which potentially could generate vertices representing longer sequences.

4.2.5 Guided path finding using paired-end information

We then recover 16S rRNA sequences by finding paths that represent a full or partial rRNA

gene. Path finding starts at a vertex with no in-coming edges and terminates at a vertex

with no out-going edges. Paired-end information of reads are widely used in many assembly

tools for guiding the creation of contigs or scaffolds. The rationale is that two ends of a

read pair should to be assembled in the same contig or scaffold. To utilize the paired-end

information, a common approach adopted by SOAPdenovo [97], ABySS [98] and ALLPATHS

[99] creates graphs from a set of contigs where each vertex represents a contig and an edge is

formed between two vertices if more than a certain number of read pairs exist between their

reads. Then the graphs are searched, using various constraints and heuristics, to extend

contigs into longer scaffolds. Velvet [64], on the other hand, assumes a small variance of

insert size distribution and aims to create “long nodes” that are longer than all inserts. The

objective function intends to maximize the number of “long nodes” while minimizing the

number of read pairs spanning over such nodes. As an extension of Velvet, MetaVelvet [100]

uses paired-end information to guide the creation of contigs by checking their consistency.

Number of paired-end reads connecting the origin node and the extension node is used to

resolve chimeric node candidates.

In our algorithm, we use paired-end information to guide the path finding. At each vertex

with multiple successors, we decide which one to visit based on a new metric, weighted paired-

end match score (WPEMS), which gives higher weights to paired end reads located in distant

nodes than those located in nearby nodes. Suppose (r, r′) is a mate pair, which are located

72

in vertices V and V ′ (V 6= V ′), respectively. The WPEMS of this read pair is thus 2d(r,r′),

where d(r, r′) is the number of vertices between V and V ′. If V = V ′, we define its WPEMS

as 0. The WPEMS of a path P is the sum of WPEMS of all paired end reads in P.

WPEMS(P) =
∑

(r,r′) in different vertices

2d(r,r′)

When deciding among a set of vertices to visit next, we select the vertex that maximizes

the WPEMS of the current path in a greedy way. The rationale behind the design of

WPEMS is that only read pairs existing in non-adjacent vertices provide extra evidence for

path finding. Read pairs included in the same vertex or spanning adjacent vertices do not

provide additional path finding information beyond the existing overlap graph. In practice,

the graph pruning procedure leads to many vertices representing relatively long contigs.

Thus, for average fragment sizes such as hundreds of bases, the paired-end reads usually

exist within the same vertex or vertices connected by an edge already. Figure 4.6 describes

a typical example of read pair distribution in a graph. There are usually many paired-end

reads spanning adjacent vertices such as from n6 to n8. Much less paired-end reads span

non-adjacent vertices, such as those from n1 to n7 and from n4 to n7. Paired end reads

located in two adjacent nodes will have WPEMS of 1, because there is no intermediate

nodes between the adjacent nodes.

We use the example in Figure 4.6 to explain our path finding procedure. Nodes in the

graph are formed by reads from two different 16S rRNA genes A and B, colored in blue

and yellow, respectively. Nodes n3 and n6 are represented using shaded color since they

are formed by reads from common regions of A and B. Genes A and B are represented by

n1 → n3 → n4 → n6 → n7 and n2 → n3 → n5 → n6 → n8. Suppose the path finding

73

process has successfully identified the path n1 → n3 → n4 → n6, which is highlighted in

yellow, and needs to choose between n7 and n8 as the next node to include. Although n8

and n6 share a large number of paired-end reads, WPEMS will choose n7, the correct node,

because of the paired-end reads shared between non-adjacent nodes.

In order to produce all 16S ribosomal RNA sequences, we apply the path finding algorithm

on each vertex with no in-coming edges. If the length of a contig represented by a path is

greater than a user-defined threshold, we consider the contig as a full-length gene. Otherwise,

we include it in the input to the next scaffolding stage. As this approach is a greedy

algorithm, the time complexity is very low. The entire path finding procedure take O(mn)

time to complete, where m is the average out-degree of each vertex and n is the average

distance between nodes with no in-coming edges and nodes with no out-going edges.

n1 n2

n3

n4 n5

n6

n7 n8

15

7030

15

12

8

Figure 4.6: Path finding using paired-end information. Solid lines represent overlaps between
nodes and dashed lines represent the existence of paired-end reads. The numbers beside
dashed lines are the numbers of paired end reads between the corresponding nodes.

4.2.6 Scaffolding 16S rRNA segments

In the path finding stage, contigs longer than a user-defined parameter L, are output di-

rectly. Contigs shorter than L are selected for further processing. Short contigs are usually

74

created due to regionally low coverage of 16S genes in metagenomic data. Reads from lowly

sequenced regions failed to create connection to other region due to small overlap. As a

result, 16S segments originated from the same gene may be broken apart. To produce full-

length 16S sequences, we can utilize the WPEMS, with a minor modification, to scaffold

shorter segments. Orientation of segments can be inferred from the reads they contain. As

we have the alignment position of each read on the CM used the filtration stage, we can then

infer the alignment position of segments on CM. This information allows us to determine

orientation of segments as well as their relative position on CM. For two segments SA and

SB with SA being in the upstream of SB (see Figure 4.7), the WPEMS between SA and SB

is defined as

WPEMS(SA, SB) =
∑
(r,r′)

2d(r,r′)

where (r, r′) is a mate pair. r is in SA and r′ is in SB,

and d(r, r′) is total number of vertices after r and before r′, in SA and SB, respectively

Segment A Segment B

Scaffold

2
4

2
2

2
1

Figure 4.7: Calculate the score between two segments. Arcs represent paired-end match
between vertices and thickness of arcs indicate weight of the paired-end match. Actual
weights also labeled beside each arc.

We only calculate WPEMS(SA, SB) if SA is on the upstream of SB and their CM

75

alignment position overlap. If SA and SB are from the same gene, WPEMS(SA, SB) tends

to be the highest among all WPEMS(SA, Si) and WPEMS(Sj , SB). So we calculate the

pair-wise WPEMS in all segments. We then connect SA and SB , if

WPEMS(SA, SB) > WPEMS(SA, Si) for all Si on the downstream of SA, and

WPEMS(SA, SB) > WPEMS(Sj , SB) for all Sj on the upstream of SB

All connected segments with total length longer than L will be output.

4.3 Experimental results

To evaluate the performance of our algorithm, we applied REAGO to three sets of metage-

nomic data including a simulated data set, a mock community data set, and a human stool

metagenomic data set. As the species and their genomes are largely known in the first two

data sets, we are able to evaluate the accuracy of rRNA assembly. The third experiment

enables us to test the utility of REAGO on a real metagenomic data set. We benchmarked

our tool with EMIRGE, a 16S rRNA identification tool, and two bulk metagenomic assem-

bly tools, IDBA-ud [101] and Meta-Velvet [100]. We also compared the performance of the

three tools on two sets of inputs, the entire datasets and only true positive reads. For all

the tools, we evaluated their performance to reconstruct 16S rRNA sequences at sequence-

level and genus-level. We also recorded and compared their running time on the same high

performance computing node that has 64 bits CPU with Linux operating system.

76

Species abundance
Bacteroides thetaiotaomicron VPI-5482 (BTV) 24.17%

Bacteroides vulgatus (BVG) 4.13%
Chlorobium phaeobacteroides DSM 266 (CPB) 10.02%
Chlorobium phaeovibrioides DSM 265 (CPV) 6.29%

Chlorobium tepidum TLS (CTT) 12.38%
Salinispora tropica CNB-440 (STC) 1.96%

Sulfurihydrogenibium sp YO3AOP1 (SSY) 4.72%
Bordetella bronchiseptica RB50 (BBR) 7.86%
Burkholderia xenovorans LB400 (BXL) 10.02%

Leptothrix cholodnii SP-6 (LCS) 4.72%
Nitrosomonas europaea ATCC 19718 (NEA) 13.75%

Table 4.1: Species abundance.

4.3.1 Experiment 1: simulated metagenomic dataset

To evaluate the performance of REAGO , we first applied it to a simulated metagenomic

data set containing reads from 11 species of 8 genera. We used WGSIM [102] to generate

9.6e7 paired-end, 110bp long error-containing reads. The sequencing error rate was set to

2% by default and the insert size was set to 100 with a standard deviation of 10 bases. The

11 selected species have very skewed relative abundance, as shown in Table4.1. The most

abundant species is 11 times more than the least abundant species.

To challenge REAGO , we selected some closely related species in the same genus with

highly similar 16S rRNA genes. We listed their pair-wise sequence similarity in Table4.2. For

example, three selected species in Chlorobium share sequence identity above 93%. Chloro-

bium phaeobacteroides and Chlorobium phaeovibrioides even share similarity as high as 96%.

Reads simulated from these species tend to produce extremely tangled overlap graphs that

pose challenges for assembly. Traversing such graphs will result in a large number of paths,

and most of which are chimeric assemblies.

77

BBR BTV BVG BXL CPB CPV CTT LCS NEA SSY STC
BBR - - - - - - - - - - -
BTV 71 - - - - - - - - - -
BVG 71 91 - - - - - - - - -
BXL 91 72 71 - - - - - - - -
CPB 76 75 75 75 - - - - - - -
CPV 75 75 75 74 96 - - - - - -
CTT 75 75 74 74 93 94 - - - - -
LCS 90 73 72 90 76 77 76 - - - -
NEA 88 73 72 89 75 75 74 86 - - -
SSY 73 72 72 73 73 73 73 74 74 - -
STC 76 72 71 76 77 77 76 77 76 76 -

Table 4.2: Pairwise sequence similarity. Bold numbers indicate sequence similarity above 90%.

4.3.1.0.8 Performance of rRNA reads classification using cmsearch Following

the pipeline in Figure4.1, cmsearch was applied to the simulated dataset to identify reads

originated from rRNA genes. When building the covariance model (CM) for cmsearch, we

only used rRNA genes that are not in the simulated data set. Specifically, we downloaded

2,591 bacterial 16S rRNA genes from the RDP website [96]. Then we removed the rRNA

genes in the 11 species used for simulation and also the ones in the same genera as those 11

species. As a result, we have 2,219 genes in the training set for building the CM in cmsearch.

The performance of cmsearch is quantified using 2 metrics: sensitivity and positive predictive

value (PPV). The set of reads sequenced from 16S rRNA genes are true positive (i.e. TP)

while the set of reads extracted from other regions are true negative. Let P be the set of

reads predicted as positive by cmsearch. Sensitivity is thus defined as P∩TP
TP and PPV is

defined as P∩TP
P . It is worth noting that we only keep reads that can be globally aligned

to the covariance model. For reads that are partially sequenced from the rRNA genes and

thus produce partial or local alignments, we won’t keep them for downstream analysis.

Correspondingly, during the performance evaluation, we only use reads that are completely

78

sequenced from the rRNA genes and non-rRNA regions. The ones sequenced from boundaries

of rRNA genes will not be used for computation. For this simulated data set, the sensitivity

and PPV of cmsearch in recognizing rRNA reads are both 0.990. Reads originated from 16S

rRNA genes were precisely separated from those from other regions of genomes with only a

small amount of incorrectly classified reads. The output of cmsearch contains 82,638 reads,

which are used as input for overlap graph construction. Compared to the original size of the

data set (9.6e7 reads), the problem size is significantly reduced.

4.3.1.0.9 Overlap graph construction The reads classified as rRNA reads by cm-

search were used as input to Readjoiner for efficient overlap graph construction. By default,

the overlap threshold was set to 70% of the read length, which is 77 in the simulated data set.

Larger overlap may be used when sequencing depth is high for each species, while smaller

overlap should be used if some lowly abundant species are present. Smaller overlap, however,

tend to yield more tangled graphs. We have tried a range of overlaps from 66 to 99. The

results are almost identical on the simulated dataset. The error rate of WGSIM was set to

2%, which means that for every 50 bases generated, 1 error occurs. As a result, the error

correction threshold τ was set to 50, indicating that a base will be corrected if there are at

least 50 bases of a different kind are aligned to it.

We evaluated the efficiency of our error correction and graph reduction algorithms using

the change of graph complexity, which is quantified by the total number of paths in the graph.

The increase of the number of different paths implies the increase of the graph complexity.

We only record “complete” paths that start at nodes with no in-coming edge and end at nodes

with no out-going edges. The original graph contains 16,994,765 paths. After applying our

graph reduction procedures, the graph is significantly simplified, containing only 961 paths.

79

As shown by the assembly results presented in the following section, a majority of the genes

have been kept in the reduced graph.

4.3.1.0.10 Assembly performance evaluation Finally we evaluated the performance

of our assembly algorithms and compare it with EMIRGE, IDBA-ud, and Meta-Velvet.

Metrics used are the number of genes recovered at sequence level, the number of genus

recovered, the number of falsely recovered genes, and the running time. For all tools, all

contigs longer than 1350 nt are considered to be final output. An assembly is considered to

be correct at sequence level if and only if it can be aligned to the true gene with at least

98% of identity.

A genus is correctly recovered as long as one of its genes is recovered. For EMIRGE we

did two experiments using two different rRNA gene databases. The first one is its original

SSU candidate database excluding just the 11 training genes. The second one uses the

original database excluding all genes in the 8 selected genera. In this experiment, there are

83,510 reads fully sequenced from rRNAs. All parameters of IDBA-ud were set as default.

For Meta-Velvet, we conducted the multiple experiments with a wide range of kmer length

from 20 to 65 and pooled the output together as its final output. As REAGO , IDBA-ud,

and Meta-Velvet also output partial genes, we only kept full-length genes.

As displayed in Table4.4, our assembly algorithms demonstrate better performance in

reconstructing 16S rRNAs. EMIRGE achieved the same sensitivity as our tool with the first

database. But it took much longer running time. For the second database, which excluded

all genes in the eight chosen genus as the training set for our tool, it recovered much less

genes. Thus, if a genus in a metagenomic dataset does not exist in the SSU candidate

database at all, it is possible that the genes from this genus cannot be recovered. IDBA-

80

tool # output genes # genes recovered # genus recovered # incorrect assemblies running time
REAGO 12 11/11 8/8 1 4:53:19

EMIRGE, 16S DB 16 10/11 7/8 6 96:12:1
excluding 11 genes
EMIRGE, 16S DB 24 5/11 4/8 19 96:14:29
excluding 8 genera

IDBA-ud 416 3/11 3/8 413 16:36:28
Meta-Velvet 1258 1/11 1/8 1257 5:35:30

Table 4.3: Performance of 16S rRNA gene recovery.

tool # output genes # genes recovered # genus recovered # incorrect assemblies running time
EMIRGE, 16S DB 17 11/11 8/8 5 0:13:01
excluding 11 genes
EMIRGE, 16S DB 21 7/11 6/8 14 0:14:10
excluding 8 genera

IDBA-ud 3 3/11 3/8 3 0:5:26
Meta-Velvet 1 1/11 1/8 1 0:0:35

Table 4.4: Performance of 16S rRNA gene recovery on true positive simulated data.

ud was correct only on three genes and Meta-Velvet only identified one. The results show

that bulk or general de novo assembly tools are not optimized for recovering 16S rRNAs

and thus are not recommended for this task. We also conducted the same experiments on

EMIRGE, IDBA-ud and Meta-Velvet using only true positive reads. As displayed in Table

4.4, performance of the three tool increased.

81

Figure 4.8: Phylogenetic tree of the 64 species in the synthetic metagenomic data.

4.3.2 Experiment 2: synthetic metagenomic data

To further assess the performance of our assembly algorithms, we applied REAGO to a

metagenomic dataset (SRR606249) sequenced from mixture of archaeal and bacterial syn-

thetic communities [103], which contain 16 archaeal species and 48 bacterial species, covering

50 different genera. The metagenomic dataset was sequenced using Illumina HiSeq-2000 and

contains about 11.1 Gbp in total. Reads in the dataset are all 101-base long and were se-

quenced in pairs. The annotations of 16S rRNA genes in these species were downloaded

from NCBI. High sequence similarity exist among genes in the same genus and genes across

different genera, as shown in Figure4.8. For instance, species from Leptothrix, Bordetella,

82

CM # output reads Sensitivity PPV running time
remove only exact copies of genes 66,755 0.982 0.962 6:12:13
remove all genes in the 50 genera 66,347 0.976 0.958 6:35:18

Table 4.5: The performance of cmsearch on the synthetic community data.

Burkholdera, and Nitrosomonas share sequence similarity above 97%. Three species under

Thermotoga share sequences similarity above 99%. Genes with high sequence similarity lead

to very complicated overlap graphs, yielding a large number of paths. Additionally, abun-

dance of species are skewed in this dataset. The most abundant species is over 20 time more

than the least abundant species. Skewed abundance level, high sequence similarity, and a

large number of error-containing reads pose great challenges for rRNA recovery.

In rRNA read classification, we applied cmsearch to the metagenomic data with default

parameters using two CMs. The first CM was trained on all 16S genes from RDP excluding

the exact copies of rRNA genes in the 64 species of the synthetic community data. Next, we

further removed all genes belonging to any of the 50 genera and trained the second CM. The

read mapping results and the annotation of the 16S rRNA genes in the component genomes

enable us to determine whether a read is part of a rRNA gene. In this dataset, there are

67,979 reads completely sequenced from rRNA genes. Based on the known origins of the

reads, we can evaluate the performance of cmsearch on both CMs using sensitivity, PPV, and

running time. As displayed in Table4.5, cmsearch achieved both high sensitivity and PPV

with both CMs. Removal of all genes in the 50 genera only slightly decreased the sensitivity

and PPV. Running time of cmsearch with eight working threads did not differ much on the

two experiments. Table4.5 also shows the significant reduction of problem size by 99.87%

(from 54,029,186 reads to less than 68,000 reads). The experiments were conducted using a

2.4GHz CPU and 8GB memory.

83

tool # output genes # genes recovered # genus recovered # incorrect assemblies running time
REAGO 59 58/64 47/50 2 12:28:01

EMIRGE, 16S DB 76 42/64 33/50 42 120:30:11
excluding 64 genes
EMIRGE, 16S DB 105 19/64 16/50 89 120:25:38

excluding 50 genera
idba-ud 61 39/64 33/50 28 17:26:50

Meta-Velvet 135 4/64 4/50 131 7:56:01

Table 4.6: The performance of rRNA recovery on synthetic community data. Due to near identical outputs
and very high sequence similarity among some genes in some genera, the sum of incorrect assemblies and
correct assemblies may not sum to the total number of output sequences.

Next, we applied our assembly algorithms on the reads that are classified as rRNA reads

by cmsearch. The overlap threshold of REAGO was set to 70 and the error correction

threshold was 30. Training sequences of CM contained neither any of the 64 genes nor

any gene from the 50 genera. We compared the performance of REAGO with EMIRGE,

IDBA-ud, and Meta-Velvet. In this experiment, there are 67,979 reads fully sequenced from

rRNAs. Parameters of IDBA-ud were all set as default. Meta-Velvet was run with a wide

range of kmer length from 20 to 65. The output were pooled together as its final output.

EMIRGE was run twice with two different 16S rRNA databases. The first one is its 16S

rRNA database excluding only exact copies of the 64 genes and the second one is its database

excluding all genes in the 50 genera. For all tools, we only consider assemblies longer than

1,350nt as the final output. Following the first experiment, we quantified the performance

using 4 metrics, including the number of genes recovered at sequence level, the number of

genus recovered, the number of incorrect assemblies, and the running time.

We summarized the results in Table4.6. Our tool correctly recovered more genes and

genus with far less running time. Even with all genes in the 50 genera removed from the

training set of the CM, REAGO can recover 58 out of 64 genes and 47 out of 50 genera. For

REAGO , most of the time was spent in running cmsearch and the actual assembly procedure

finished within a couple of minutes. The filtration with cmsearch can be greatly accelerated

when running in parallel. EMIRGE, on the other hand, recovered less genes and genera

84

tool # output genes # genes recovered # genus recovered # incorrect assemblies running time
EMIRGE, 16S DB 82 45/64 36/50 45 0:52:19
excluding 64 genes
EMIRGE, 16S DB 103 25/64 20/50 82 0:51:48

excluding 50 genera
idba-ud 60 41/64 34/50 26 0:1:16

Meta-Velvet 65 16/64 16/50 49 0:0:26

Table 4.7: The performance of rRNA recovery on only true positive reads from synthetic community data.
Due to near identical outputs and very high sequence similarity among some genes in some genera, the sum
of incorrect assemblies and correct assemblies may not sum to the total number of output sequences.

with longer running time. With the removal of all genes in the 50 genera, the performance

of EMIRGE significantly deteriorated, indicating its limited ability on recovering 16S genes

from unknown genera. It is worth nothing that in this experiment EMIRGE outputs some

genes with high sequence similarity but not identical. Thus, several sequences output by

EMIRGE may share high sequence similarity with the same true rRNA gene in the data set.

To evaluate the necessity of applying cmsearch to identify 16S reads before the actual

16S gene recovery process, we applied EMIRGE, idba-ud and Meta-Velvet directly on true

positive 16S reads. As summarized in Table4.7, the number of recovered genes and genera

increased for all tools. Additionally, running time of each tool was significantly reduced.

Reads from non-16S did affect the performance of the 16S gene recovery, thus it is very

necessary to apply cmsearch before recovering 16S genes for better sensitivity and efficiency.

4.3.3 Experiment 3: human stool metagenomic data

uncultured_bacterium_16slp98-1b12.w2k_6.052%
uncultured_bacterium_014B-E11_3.05%

uncultured_bacterium_SJTU_G_10_53_3.262%
uncultured_bacterium_SJTU_E_02_29_7.498%

uncultured_bacterium_SJTU_B_06_60_2.405%
uncultured_organism_ELU0073-T501-S-NIPCRAMgANa_000369_2.16%

uncultured_bacterium_C2-121_2.583%
uncultured_organism_ELU0046-T235-S-NIPCRAMgANb_000196_2.791%

Bacteroides_sp._S-17_2.287%
uncultured_organism_ELU0078-T372-S-NI_000330_2.274%

Bacteroides_uniformis_23-18_2.579%
Bacteroides_vulgatus_ATCC_8482_60.772%

1

0.92

0.48

1

0.98

0.57

0.94

1

0.94

0.88

0.09

Figure 4.9: Phylogenetic tree of the 12 representative sequences.

85

CM number of identified representative sequences number of other identified sequences running time
REAGO 7/12 4 6:10:11
EMIRGE 6/12 2 45:12:34
IDBA-ud 1/12 0 6:02:09

Meta-Velvet 0/12 0 2:07:54

Table 4.8: Assembly tool performance on human stool data

In the first two experiments, we evaluated our tool on two data sets with known compo-

sition species and annotated rRNA genes. In this section, we describe the application of

REAGO to a metagenomic data set sequenced from a human stool sample (SRS015264).

The dataset was sequenced using Illumina and contains 31,577,655 100bp paired-end reads.

In this experiment, we applied all tools using their default setup without modifying the given

training SSU database or the given CM. The overlap threshold for REAGO is still set as 70.

Our tool outputs 17 genes and EMIRGE outputs 26 genes. As we don’t know the complete

composition of the stool metagenomic data set, we compared the output with the known

genes identified using read mapping against the reference rRNA databases. Specifically, we

mapped the reads to the RDP rRNA database, which contains 1,354,916 16S ribosomal RNA

genes. There are 387 genes with at least 200 reads mapped to them. Many of these genes

are highly similar. We thus clustered them using CD-HIT-EST [104] using identity cutoff

0.98. 12 clusters are formed by CD-HIT-EST and the phylogenetic tree of their representa-

tive sequences with average base coverage is plotted in Figure4.9. There exists a dominant

species Bacteroides vulgatus ATCC 8482, whose average coverage is 204X, taking 60.77% of

the entire dataset. On the other hand, the abundance of other species is very similar with

average coverage ranging from 7X to 10X. Among all reads in the dataset, there are 51.1%

of them can be mapped to the 12 representative genes. Figure4.9 presents the phylogenetic

tree of the 12 representative sequences.

We then compared the output of the tools with the representative sequences of the 12

86

species abundance REAGO EMIRGE
uncultured bacterium 16Slp98-1b12.w2k 6.052% Y

uncultured bacterium 014B-E11 3.05% Y
uncultured bacterium SJTU G 10 53 3.262%
uncultured bacterium SJTU E 02 29 7.498% Y
uncultured bacterium SJTU B 06 60 2.405% Y Y

uncultured organism ELU0073-T501-S-NIPCRAMgANa 000369 2.16% Y
uncultured bacterium C2-121 2.583% Y Y

uncultured organism ELU0046-T235-S-NIPCRAMgANb 000196 2.791% Y
Bacteroides sp. S-17 2.287% Y

uncultured organism ELU0078-T372-S-NI 000330 2.274%
Bacteroides uniformis 23-18 2.579% Y

Bacteroides vulgatus ATCC 8482 60.772% Y Y

Table 4.9: Species recovered by REAGO and EMIRGE. “Y” indicates the species of the row
is identified by the tool labeled by the column title.

clusters and summarized the results in Table4.8. We evaluated their performance using

3 metrics, number of identified representative sequences, number of other sequences, and

running time. Our tool successfully identified 7 out of 12 representative sequences and

EMIRGE identified 6. Within the 12 representative sequences, the top 3 abundant species

are Bacteroides vulgatus ATCC 8482 and 2 uncultured species SJTU-E-02-29 and 16Slp98-

1b12.w2k. Our tool managed to identify all of them while EMIRGE only identified the most

abundant species. The detailed outputs of EMIRGE and REAGO are compared in Table4.9.

We carefully examined the reasons of REAGO missing 6 representative sequences. During

the path finding process, if a path shares its first node with another path, which happens

when their sequence similarity is high, only one of the two path will be identified. Our tool

failed to identify 6 sequences because of the high sequence similarity between them and the

identified sequences as displayed in the phylogenetic tree in Figure4.9.

As described in Table4.8, both tools output a few assemblies that are not from the

representative sequences. They may be originated from species that are not in the 12 rep-

resentative sequence or not even in the RDP database. Applying RDP classifier shows that

the uncharacterized assemblies output by EMIRGE and REAGO all belong to Bacteroides

and Sutterella.

87

Chapter 5

Conclusion and future work

Noncoding RNAs play important roles in various important biological functions. Identifica-

tion of ncRNAs in genomic sequences becomes increasingly important for modern biology.

As many families of RNAs are more conserved in their secondary structures than primary se-

quences, it is necessary to include both pieces of information when creating models. Modeling

only primary sequences could lead to loss of sensitivity. With the advent of next-generation

sequencing (NGS) technology, massive amount of data has been rapidly accumulating, mak-

ing many existing algorithms infeasible. As a result, efficient analysis of such data is needed.

Based on objectives of algorithms, it is necessary to exclude unrelated data from being ana-

lyzed. For graph-based algorithms, the graph size could be very sensitive to the input size.

Large amount of input data could potentially lead to high computational cost. Due to the

limitation of sequencing technologies, data sequenced is normally fragmentary. Considering

sequencing error and uneven sequencing depth, recovery of longer or full-length genes is still a

challenging task. With the advance of sequencing technologies, reads with increasing length

and lower sequencing error rate could be available. Gene recovery and short reads assembly

in general could be easier and more reliable. Paired-end information sometimes could be

very useful for gene recovery from NGS data. Especially for many assembly algorithms, it

provides additionally information to aid graph traversal.

In the dissertation, a set of algorithms called REAGO is introduced to recover 16S riboso-

mal RNA from metagenomic data. REAGO first adopts a very effective approach to reduce

88

the input size. Then it represents all 16S genes in an overlap graph. After a set of graph

reduction procedure, it generates a list of 16S rRNA contigs. Short contigs are combined

to produce the final output. On both experiments, REAGO out-performed EMIRGE, the

state-of-the-art tool, and other two bulk assemblers.

Algorithms in REAGO can be readily extended to identify other types of noncoding RNAs

in NGS datasets. They could be especially effective for the families of ncRNAs with variable

primary sequence conservation. If the primary sequences of a RNA family are known to be

conserved, we could still apply REAGO. However, other bulk metagenomic data assemblers,

such as Meta-Velvet and IDBA-ud, should also be good options after we apply the read

identification procedure in REAGO. It is worth noting that, Algorithms in REAGO may fail

if sequences in a RNA family contain repeats, which may form cycles in overlap graphs, as

REAGO is not be able to resolve cycles.

In general, Assembly algorithms for identifying ncRNA in NGS data should be customized

to various sequencing platforms, which may produce short reads with various attributes,

such as read length, error rate and insert size. Assembly algorithms should be adjusted to

these attributes. For example, if the data is obtained from PacBio sequencing platform,

which produces very long reads (up to 1500nt) but with high error rate (12.86%). Assembly

algorithms should be redesigned focusing on erroneous base correction. Accordingly, the

overlap detection using Readjoiner is not feasible anymore. New tools should be developed

for this task.

89

BIBLIOGRAPHY

90

BIBLIOGRAPHY

[1] Storz G (2002) An expanding universe of noncoding rnas. Science 296: 1260–1263.

[2] Eddy SR (2001) Non–coding rna genes and the modern rna world. Nature Reviews
Genetics 2: 919–929.

[3] Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2004) Riboswitches: the
oldest mechanism for the regulation of gene expression? TRENDS in Genetics 20:
44–50.

[4] Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological Sequence Analysis: Prob-
abilistic Models of Proteins and Nucleic Acids. UK: Cambridge University Press.

[5] Eliceiri G (1999) Small nucleolar rnas. Cellular and Molecular Life Sciences CMLS 56:
22–31.

[6] Maxwell E, Fournier M (1995) The small nucleolar rnas. Annual review of biochemistry
64: 897–934.

[7] Fournier MJ, Stuart Maxwell E (1993) The nucleolar snrnas: catching up with the
spliceosomal snrnas. Trends in biochemical sciences 18: 131–135.

[8] Ambros V (2004) The functions of animal micrornas. Nature 431: 350–355.

[9] Bartel DP (2004) Micrornas: genomics, biogenesis, mechanism, and function. cell 116:
281–297.

[10] Lu S, Shi R, Tsao CC, Yi X, Li L, et al. (2004) Rna silencing in plants by the expression
of sirna duplexes. Nucleic acids research 32: e171–e171.

[11] Lowe TM, Eddy SR (1997) trnascan-se: a program for improved detection of transfer
rna genes in genomic sequence. Nucleic acids research 25: 0955–964.

[12] Schattner P, Brooks AN, Lowe TM (2005) The trnascan-se, snoscan and snogps web
servers for the detection of trnas and snornas. Nucleic acids research 33: W686–W689.

91

[13] An J, Lai J, Lehman ML, Nelson CC (2013) mirdeep*: an integrated application tool
for mirna identification from rna sequencing data. Nucleic acids research 41: 727–737.

[14] An J, Lai J, Sajjanhar A, Lehman ML, Nelson CC (2014) mirplant: an integrated tool
for identification of plant mirna from rna sequencing data. BMC bioinformatics 15:
275.

[15] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment
search tool. Journal of molecular biology 215: 403–410.

[16] Kolbe DL, Eddy SR (2009) Local rna structure alignment with incomplete sequence.
Bioinformatics 25: 1236–1243.

[17] Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of rna alignments.
Bioinformatics 25: 1335–1337.

[18] Kolbe DL, Eddy SR (2009) Local rna structure alignment with incomplete sequence.
Bioinformatics 25: 1236-1243.

[19] Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: Inference of RNA alignments.
Bioinformatics 25: 1335-1337.

[20] Yuan C, Sun Y (2013) RNA-CODE: a noncoding RNA classification tool for short
reads in NGS data lacking reference genomes. PLOS ONE 8: e77596.

[21] Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, et al. (2010) Comparison
of sanger sequencing, pyrosequencing, and melting curve analysis for the detection of¡
i¿ kras¡/i¿ mutations: Diagnostic and clinical implications. The Journal of Molecular
Diagnostics 12: 425–432.

[22] Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and appli-
cation. Journal of Investigative Dermatology 133: e11.

[23] Liu L, Li Y, Li S, Hu N, He Y, et al. (2012) Comparison of next-generation sequencing
systems. BioMed Research International 2012.

[24] Wang Z, Gerstein M, Snyder M (2009) Rna-seq: a revolutionary tool for transcrip-
tomics. Nature Reviews Genetics 10: 57–63.

[25] Handelsman J (2004) Metagenomics: application of genomics to uncultured microor-
ganisms. Microbiology and molecular biology reviews 68: 669–685.

92

[26] Huang Z, Wu Y, Robertson J, Feng L, Malmberg RL, et al. (2008) Fast and accurate
search for non-coding RNA pseudoknot structures in genomes. Bioinformatics 24:
2281-2287.

[27] Huang Z, Malmberg R, Mohebbi M, Cai L (2010) RNAv: Non-coding RNA secondary
structure variation search via graph homomorphism. In: CSB Conference Proceedings,
CA, USA. pp. 56-69.

[28] Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nature Reviews
Genetics 12: 671–682.

[29] Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF, et al. (2011) Emirge:
reconstruction of full-length ribosomal genes from microbial community short read
sequencing data. Genome Biol 12: R44.

[30] Powers T, Noller HF (1991) A functional pseudoknot in 16s ribosomal rna. The EMBO
journal 10: 2203.

[31] Staple DW, Butcher SE (2005) Pseudoknots: RNA Structures with Diverse Functions.
PLoS Biology 3: e213.

[32] Gilley D, Blackburn EH (1999) The telomerase RNA pseudoknot is critical for the
stable assembly of a catalytically active ribonucleoprotein. PNAS 96: 6621-6625.

[33] Chen JL, Greider CW (2005) Functional analysis of the pseudoknot structure in human
telomerase RNA. PNAS 102: 8080-8085.

[34] Wower IK, Zwieb C, Wower J (2004) Contributions of pseudoknots and protein SmpB
to the structure and function of tmRNA in trans-translation. the Journal of Biological
Chemistry 279: 54202-54209.

[35] Griffiths-Jones S (2007) Annotating Noncoding RNA Genes. Annual Review of Ge-
nomics and Human Genetics 8: 279-298.

[36] Klein RJ, Eddy SR (2003) RSEARCH: finding homologs of single structured RNA
sequences. BMC Bioinformatics 4: 44.

[37] Lowe T, Eddy SR (1997) TRNAscan-SE: a program for improved detection of transfer
RNA genes in genomic sequence. Nucleic Acids Res 25: 955–64.

93

[38] Cai L, Malmberg RL, Wu Y (2003) Stochastic modeling of RNA pseudoknotted struc-
tures: a grammatical approach. Bioinformatics 19: i66-i73.

[39] Rivas E, Eddy SR (2000) The language of RNA: a formal grammar that includes
pseudoknots. Bioinformatics 16: 334-340.

[40] Uemura Y, Hasegawa A, Kobayashi S, Yokomori T (1999) Tree adjoining grammars
for rna structure prediction. Theoretical Computer Science 210: 277 - 303.

[41] Matsui H, Sato K, Sakakibara Y (2005) Pair stochastic tree adjoining grammars for
aligning and predicting pseudoknot rna structures. Bioinformatics 21: 2611-2617.

[42] Kato Y, Seki H, Kasami T (2006) RNA pseudoknotted structure prediction using
stochastic multiple context-free grammar. IPSJ Digital Courier 2: 655-664.

[43] Smith JA (2009) RNA Search with Decision Trees and Partial Covariance Models.
TCBB 6: 517-527.

[44] Brown M, Wilson C (1996) RNA pseudoknot modeling using intersections of stochastic
context free grammars with applications to database search. In: Pacific Symposium
on Biocomputing (PSB ’96), Hawaii, USA. pp. 109-125.

[45] Zhang S, Haas B, Eskin E, Bafna V (2005) Searching genomes for noncoding RNA
using FastR. IEEE/ACM Transactions on Comp Bio and Bioinf (TCBB) 2: 366-79.

[46] Weinberg Z, Ruzzo W (2004) Exploiting conserved structure for faster annotation of
non-coding RNAs without loss of accuracy. Bioinformatics 20 suppl. 1: i334–40.

[47] Eddy S (2007). HMMER - biosequence analysis using profile hidden Markov models.
Http://hmmer.janelia.org/.

[48] Gardner P, Daub J, Tate J, Nawrocki E, Kolbe D, et al. (2008) Rfam: updates to the
RNA families database. Nucleic Acids Research 37(Database issue): D136-D140.

[49] Macke T, Ecker D, Gutell R, Gautheret D, Case D, et al. (2001) RNAMotif – A new
RNA secondary structure definition and discovery algorithm. Nucleic Acids Research
29: 4724-4735.

[50] Wei F, Stein JC, Liang C, et al (2009) Detailed analysis of a contiguous 22-mb region
of the maize genome. PLoS Genet 5: e1000728.

94

[51] van Batenburg FHD, Gultyaev AP, Pleij CWA, Ng J, Oliehoek J (2000) PseudoBase:
a database with RNA pseudoknots. Nucleic Acids Research 28: 201-204.

[52] Jones-Rhoades MWW, Bartel DPP, Bartel B (2006) Micrornas and their regulatory
roles in plants. Annual Review of Plant Biology 57: 19-53.

[53] Lu S, Shi R, Tsao CC, Yi X, Li L, et al. (2004) RNA silencing in plants by the
expression of siRNA duplexes. Nucl Acids Res 32: e171.

[54] Bengtsson J, Eriksson KM, Hartmann M, Wang Z, Shenoy BD, et al. (2011) Metaxa:
a software tool for automated detection and discrimination among ribosomal small
subunit (12s/16s/18s) sequences of archaea, bacteria, eukaryotes, mitochondria, and
chloroplasts in metagenomes and environmental sequencing datasets. Antonie Van
Leeuwenhoek 100: 471–475.

[55] Shah N, Tang H, Doak TG, Ye Y (2011) Comparing bacterial communities inferred
from 16s rRna gene sequencing and shotgun metagenomics. In: Pacific Symposium on
Biocomputing. World Scientific, volume 16, pp. 165–176.

[56] Fan L, McElroy K, Thomas T (2012) Reconstruction of ribosomal rna genes from
metagenomic data. PloS one 7: e39948.

[57] Stricklin Sea (2005) C. elegans noncoding RNA genes, WormBook, ed. The C. elegans
Research Community. WormBook.

[58] Ge X, Zhang Y, Jiang J, Zhong Y, Yang X, et al. (2013) Identification of MicroRNAs in
Helicoverpa armigera and Spodoptera litura based on deep sequencing and homology
analysis. Int J Biol Sci 9: 1-15.

[59] Gruber AR, Neuböck R, Hofacker IL, Washietl S (2007) The RNAz web server: pre-
diction of thermodynamically stable and evolutionarily conserved RNA structures.
Nucleic Acids Research 35: W335–W338.

[60] Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in
yeast. Science 283: 1168–1171.

[61] Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into
functions. Nature Reviews Genetics 10: 155–159.

[62] Sun G, Stewart CNJ, Xiao P, Zhang B (2012) MicroRNA expression analysis in the
cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One
7.

95

[63] Peng X, Gralinski L, Ferris MT, Frieman MB, Thomas MJ, et al. (2011) Integrative
deep sequencing of the mouse lung transcriptome reveals differential expression of
diverse classes of small RNAs in response to respiratory virus infection. MBio 2.

[64] Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using
de bruijn graphs. Genome research 18: 821–829.

[65] Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo rna-seq
assembly across the dynamic range of expression levels. Bioinformatics 28: 1086–1092.

[66] Warren RL, Sutton GG, Jones SJ, Holt RA (2007) Assembling millions of short DNA
sequences using ssake. Bioinformatics 23: 500–501.

[67] Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, et al. (2007) RNAmmer2:
consistent and rapid annotation of ribosomal rna genes. Nucleic acids research 35:
3100–3108.

[68] Vilo C, Dong Q (2012) Evaluation of the RDP classifier accuracy using 16s rRNA gene
variable regions. Metagenomics 1: 1–5.

[69] Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut microbial
gene catalogue established by metagenomic sequencing. Nature 464: 59–65.

[70] Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, et al. (2010) Organ-
ismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes
of identical twins. Proceedings of the National Academy of Sciences 107: 7503–7508.

[71] Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409: 1092–
1101.

[72] Konings WN, Albers SV, Koning S, Driessen AJ (2002) The cell membrane plays a
crucial role in survival of bacteria and archaea in extreme environments. Antonie Van
Leeuwenhoek 81: 61–72.

[73] Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annual Reviews in
Microbiology 31: 107–133.

[74] Berg RD (1996) The indigenous gastrointestinal microflora. Trends in microbiology 4:
430–435.

96

[75] Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, et al. (2001) Biodiversity and
ecosystem functioning: current knowledge and future challenges. science 294: 804–808.

[76] Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms:
proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National
Academy of Sciences of the United States of America 87: 4576-9.

[77] Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2010) GenBank.
Nucleic Acids Research 38: D46-D51.

[78] Cochrane G, Akhtar R, Bonfield J, Bower L, Demiralp F, et al. (2009) Petabyte-scale
innovations at the European Nucleotide Archive. Nucleic Acids Research 37: D19-D25.

[79] Tateno Y, Imanishi T, Miyazaki S, Fukami-Kobayashi K, Saitou N, et al. (2002) DNA
Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids
Research 30: 27-30.

[80] Christen R (2008) Global sequencing: a review of current molecular data and new
methods available to assess microbial diversity. Microbes and environments JSME 23:
253-268.

[81] Hamady M, Knight R (2009) Microbial community profiling for human microbiome
projects: tools, techniques, and challenges. Genome Research 19: 1141-1152.

[82] Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) Metavelvet: an extension of
velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic
Acids Research 40: e155.

[83] Treangen T, Koren S, Sommer D, Liu B, Astrovskaya I, et al. (2013) MetAMOS:
a modular and open source metagenomic assembly and analysis pipeline. Genome
Biology 14: R2.

[84] Laserson J, Jojic V, Koller D (2011) Genovo: de novo assembly for metagenomes. J
Comput Biol 18: 429-443.

[85] Peng Y, Leung HCM, Yiu SM, Chin FYL (2011) Meta-IDBA: a de novo assembler for
metagenomic data. Bioinformatics 27: i94-i101.

[86] Luo C, Tsementzi D, Kyrpides N, Konstantinidis K (2012) Individual genome assembly
from complex community short-read metagenomic datasets. ISME J 6: 898-901.

97

[87] Salzberg SL, Sommer DD, Puiu D, Lee VT (2008) Gene-boosted assembly of a novel
bacterial genome from very short reads. PLOS Comput Biol 4: e1000186.

[88] Wu Y, Rho M, Doak TG, Ye Y (2012) Stitching gene fragments with a network match-
ing algorithm improves gene assembly for metagenomics. Bioinformatics 28: i363-i369.

[89] Jeffrey AM, Zhong W (2011) Next-generation transcriptome assembly. Nature Reviews
Genetics 12: 671-682.

[90] Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, et al. (2005) Compar-
ative metagenomics of microbial communities. Science 308: 554-557.

[91] Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, et al. (2012) Fermenta-
tion, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science
337: 1661-1665.

[92] Durbin R (1998) Biological sequence analysis: probabilistic models of proteins and
nucleic acids. Cambridge university press.

[93] Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the
primary kingdoms. Proceedings of the National Academy of Sciences 74: 5088–5090.

[94] Gonnella G, Kurtz S (2012) Readjoiner: a fast and memory efficient string graph-based
sequence assembler. BMC bioinformatics 13: 82.

[95] Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Research 22: 549-556.

[96] Cole JR, Chai B, Farris RJ, Wang Q, Kulam S, et al. (2005) The ribosomal database
project (rdp-ii): sequences and tools for high-throughput rrna analysis. Nucleic acids
research 33: D294–D296.

[97] Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using com-
pressed data structures. Genome research 22: 549–556.

[98] Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. (2009) Abyss: a parallel
assembler for short read sequence data. Genome research 19: 1117–1123.

[99] Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, et al. (2008) Allpaths:
de novo assembly of whole-genome shotgun microreads. Genome research 18: 810–820.

98

[100] Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) Metavelvet: an extension of
velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic
acids research 40: e155–e155.

[101] Peng Y, Leung HC, Yiu SM, Chin FY (2012) Idba-ud: a de novo assembler for single-
cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:
1420–1428.

[102] Li H (2011). wgsim-read simulator for next generation sequencing.

[103] Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, et al. (2013) Comparative
metagenomic and rrna microbial diversity characterization using archaeal and bacterial
synthetic communities. Environmental microbiology 15: 1882–1899.

[104] Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets
of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.

99

