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ABSTRACT 

 

HOTSPOTS, UNDERREPORTING, AND DYNAMIC SPACE-TIME INFLUENCES OF 

WILDLIFE-VEHICLE COLLISIONS 

 

By 

 

Nathan P. Snow 

 

Vehicular collisions with wildlife are one of the most widespread and persistent human-wildlife 

conflicts that exist throughout the United States. An estimated 1–2 million wildlife-vehicle 

collisions (WVCs) occur each year, and that number is increasing annually. The total annual cost 

associated with WVCs is estimated to be >8.3 billion dollars, as well as the loss of millions of 

animals. Despite the magnitude of consequences from WVCs, relatively few options exist for 

reducing the frequency of collisions. A number of reasons can explain the shortage of options. 

First, identifying the most critical locations for mitigation is not straightforward. Hotspots of 

WVC locations are loosely defined, even though hotspots provide the best opportunity for cost-

effective mitigation. Second, reporting of WVCs is inconsistent, resulting in incomplete 

information for studies that analyze where collisions occur. Inferences from these studies could 

be unreliable because of incomplete data. Finally, there is a lack of knowledge regarding large-

scale and long-term trends in the frequencies of WVCs. Larger geographic and temporal studies 

are needed to understand the environmental influences for those trends. My overall objective was 

to enhance the current approaches for examining WVCs and provide more reliable inferences for 

reducing collisions. In Chapter 1, I address the issue of inconsistency and subjectivity in 

delineating hotspots of WVCs. In Chapter 2, I address the issue of sensitivity in statistical 

inferences from underreporting or studies of WVCs. In Chapter 3, I address the issue of 

understanding large-scale, dynamic processes that influence white-tailed deer (Odocoileus 

virginianus)-vehicle collisions (DVCs) through space and time.  



 

 

The collective works in these chapters contribute 3 primary conclusions for better 

understanding the influences of WVCs. First, the landscape can be used to objectively delineate 

hotspots. This new approach indicates that hotspots are larger than previously reported. Second, 

analyses of the influences of WVCs are highly robust to underreporting likely because WVCs 

occur in highly predictable patterns (i.e., hotspots). Therefore, relatively few reports are required 

for reliably understanding the environmental influences on where hotspots occur. Third, the 

large-scale, ecological drivers of DVCs through are related to suburbanization. The suburb effect 

consists of a unique combination intermediate to high traffic volume, high abundances of deer, 

and a highly fragmented landscape with high proportions of croplands. The suburb effect did not 

change through time, indicating high spatiotemporal predictability for DVCs.  

These collective works suggest large hotspots associated with suburban landscapes 

account for the highest frequencies of collisions, therefore these locations should be targeted for 

mitigation. Identifying the most critical locations to mitigate can be accomplished with relatively 

few reports of collisions if collected in a consistent manner. Managers should consider investing 

in long-term mitigation strategies (i.e., underpasses) to reduce WVCs for many years, because 

the ecological drivers of hotspots do not appear to change.  
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PROLOGUE 

 

 

Vehicular collisions with wildlife represent only 5% of all reported crashes in North America, 

but their financial and ecological consequences are immense (e.g., Huijser et al. 2008). Wildlife-

vehicle collisions (WVCs) represent one of the most widespread and persistent human-wildlife 

conflicts that exist throughout the United States. An estimated 1–2 million WVCs occur each 

year, and that number is increasing annually (Huijser et al. 2008). The total annual cost 

associated with WVCs is estimated to be >8.3 billion dollars. Approximately 26,000 injuries and 

200 fatalities for humans can be attributed to WVCs each year. Since 1990, fatal collisions with 

wildlife have increased 104% (Sullivan 2011). Populations of wildlife suffer from WVCs, 

including reduced survival (e.g., Snow et al. 2012) and species endangerment (Huijser et al. 

2008). 

Despite the magnitude of consequences from WVCs, relatively few options exist for 

reducing the frequency of collisions. A number of reasons can explain the shortage of options. 

One reason is that identifying the most critical locations for mitigation is not straightforward. For 

example, hotspots of WVC locations are loosely defined, even though hotspots provide the best 

opportunity for cost-effective mitigation (Forman et al. 2003). Another reason for the shortage is 

inconsistent reporting of WVCs (Huijser et al. 2008), resulting in incomplete information for 

studies that analyze where collisions occur. Inferences from these studies could be unreliable 

because of incomplete data. Finally, there is a lack of understanding of the large-scale and long-

term trends in the frequencies of WVCs. In particular, collisions with white-tailed deer 

(Odocoileus virginianus) occur throughout every state in the United States with high frequency 



2 

 

(Figure 1). Studies at larger geographic and temporal extents are needed to understand the 

environmental influences for those trends. 

Figure 1.1 Map generated by State Farm Mutual Automobile Insurance Company ©2010 

showing the likelihood of a motorist being involved in a collision with a deer during 2011. 

 

To address the deficiencies in understanding the dynamics of WVCs, my goal was to 

bring together data sets spanning 3 species in 6 states, and draw on recent advances in statistical 

tools to enrich the current approaches for examining WVCs. Here I present 3 chapters that 

strengthen the analytical methods used to examine WVCs and enhance the exploration of their 

ecological relationships. Specifically, I focus on improving 3 current weaknesses that are 

limiting the ability to understand and manage WVCs. These weaknesses include 1) insufficient 

techniques for identifying the most critical locations for mitigating WVCs, 2) insufficient 
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knowledge about the number of WVC locations needed to inform research studies, and 3) 

insufficient knowledge about broad scale, ecological drivers of WVCs. The use of digital WVC 

records for all chapters were conducted with approval of the Michigan State University, 

Institutional Animal Care and Use Committee (approval date: 11 Feb 2013) 

Chapter 1 focuses on delineating hotspots. The most cost-effective strategy for managing 

WVCs is to focus on the highest-risk locations (i.e., hotspots). However, defining a hotspot is not 

straightforward and has often been subjective. The definition of a hotspot varies among studies, 

therefore delineations of these high-risk locations are inconsistent (e.g., Openshaw and Taylor 

1981, Gomes et al. 2009, Okabe and Sugihara 2012). This inconsistency leads to unreliable 

information for planning management strategies to reduce WVCs. I contend that these subjective 

choices may lead to non-reproducible results or pseudoreplicated observations from a lack of 

independence among delineated hotspots. I develop a non-subjective approach for delineating 

hotspots using variation in the surrounding landscape. Variation in the landscape provides an 

appropriate and convenient measure for delineating hotspots because attributes of landscapes are 

important ecological drivers of WVCs. I test this approach for a variety of species across 

different landscapes to ensure that hotspots were successfully delineated under dissimilar 

conditions.  

Chapter 2 focuses on issues with underreporting. Many collisions are unreported, making 

it difficult to empirically identify hotspots that are in most critical need of management action. 

Only approximately 300,000 of the estimated 1–2 million WVCs in the United States are 

reported in national crash databases each year (Huijser et al. 2008). Many WVCs are not 

reported because they involve insufficient property damage to warrant reporting, motorists 

choose not to report them, or police, natural resource, and transportation agencies do not record 
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such information (Huijser et al. 2008). I test the usual caveat that these incomplete data produce 

reliable information about the ecological relationships on where collisions occur (i.e., influences 

from the environment). To my knowledge, no studies have examined this assumption, although 

many studies have assumed it is true. I simulate underreporting of wildlife-vehicle collisions for 

2 species: white-tailed deer in central Illinois and moose in western Maine. These species cause 

the highest rate of monetary damage and human injury in the United States, respectively, from 

WVCs. They also represent 2 distinct datasets from different landscapes and road networks, 

thereby providing an objective comparison for how underreporting affects studies of wildlife-

vehicle collisions in multiple situations. 

Chapter 3 focuses on understanding dynamic, ecological drivers (e.g., from changes in 

traffic, abundance of deer, and the landscape) of white-tailed deer-vehicle collisions (DVCs) 

across large geographic and temporal extents. Deer-vehicle collisions cause the most human 

injuries and fatalities, and the highest amount of property damage than collisions with any other 

species (Huijser et al. 2008). Major changes have occurred throughout the North American 

landscape during the last half century (e.g., urbanization, parcelization of land, climate change, 

and wildlife management) that have affected wildlife habitat and abundances of wildlife 

populations (Roseberry and Woolf 1998, Thompson et al. 1998, Drzyzga and Brown 1999, Kling 

et al. 2003). These changes are predicted to continue, and it is unclear how they will affect the 

frequencies of DVCs in the future. Smaller scale studies have assumed that the ecological drivers 

of DVCs are constant through space (Finder et al. 1999, Hubbard et al. 2000, Nielsen et al. 2003, 

Ng et al. 2008, Hothorn et al. 2012). Other studies examined large geographic extents, but 

assumed the ecological drivers were constant through time (Finder et al. 1999, Sudharsan et al. 

2005, Farrell and Tappe 2007, Hothorn et al. 2012). I apply a new technique to examine for 
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dynamic, environmental influences on the frequency of DVCs across 3 eco-zones (Northern 

Forest, Agriculture-Forest Matrix, and Agriculture) that intersect 4 Midwestern states (n = 355 

counties throughout Illinois, Iowa, Michigan, and Wisconsin) during 12 years (2000–2011). I use 

a temporally dynamic model to estimate how traffic, abundance of deer, and attributes of the 

landscape interact to influence the frequency of DVCs for each eco-zone. The goal of this 

analysis is to determine how large-scale changes in the environment influence the frequencies of 

DVCs through time. Understanding these large-scale ecological relationships will help managers 

prioritize mitigation strategies for DVCs in the future. 
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A LANDSCAPE-BASED APPROACH FOR DELINEATING HOTSPOTS OF 

WILDLIFE-VEHICLE COLLISIONS 
 

ABSTRACT 

Imposing human perceptions about the scales of ecological processes can produce unreliable 

scientific inferences in wildlife research and possibly misinform mitigation strategies. An 

example of this disconnect occurs in studies of wildlife-vehicle collisions (WVCs). Subjective 

procedures are often used to delineate hotspots of WVCs, resulting in hotspots that are not 

spatially independent. I developed a new approach that identifies independent hotspots using 

attributes of the landscape to inform delineations instead of subjective measures. First, I 

generated a candidate set of grouping scenarios using unique combinations of kernel-density 

estimation (KDE) parameterization (i.e., bandwidth and isopleth values). Next, I associated the 

groups of WVCs with attributes of the surrounding landscape. Finally, I identified the grouping 

scenario with the highest amount of variation in the landscape among the groups. The highest 

variation corresponded to hotspots that were most distinguishable from each other (i.e., most 

independent) based on the surrounding landscape. I tested my approach on 3 species of wildlife 

(island foxes [Urocyon littoralis] on San Clemente Island, CA; white-tailed deer [Odocoileus 

virginianus] in Onondaga County, NY; and moose [Alces alces] in western Maine) that 

exemplified varying degrees of space-use in different landscapes. I found that the landscape-

based approach was able to effectively delineate independent hotspots for each species without 

using subjective measures. The landscape-based approach delineated fewer or larger hotspots 

than currently used methods, suggesting a reduction in spatial dependency among hotspots. 

Variation in the landscape indicated that hotspots may be larger than previously identified; 

therefore current mitigation strategies should be adjusted to include larger areas of high risk. 
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2.1 INTRODUCTION 

Human perceptions about scales of ecological processes may not closely match associated 

wildlife behaviors (Wiens 1976;1989). Examples of this disconnect occur in studies of wildlife 

that delineate hotspots of occurrence (i.e., areas of high incidence) using point-process data. 

Methods for delineating hotspots have evolved to rely on increasingly sophisticated quantitative 

tools, but most methods require assumptions that are built upon human perceptions of how 

animals respond to the environment. A variety of different assumptions are used, resulting in 

hotspots that are inconsistent and possibly pseudoreplicated. Accurately delineating hotspots is 

important for wildlife research because they often are indicative of influential processes that are 

affecting populations of wildlife. 

Hotspots of wildlife-vehicle collisions (WVCs) are used to determine what environmental 

factors influence where the highest risk locations of WVCs exist. Typically, hotspots are the 

sample units in statistical models that examine how landscape, traffic, and abundance of wildlife 

influence the occurrence of WVCs (e.g., Malo et al. 2004, Ramp et al. 2005, Gomes et al. 2009, 

Danks and Porter 2010). These hotspots are treated as independent sample units, although the 

amount of dependency among them is usually unknown. If they are not independent, then they 

are pseudoreplicated. Pseudoreplication can mislead scientific inferences by identifying 

conflicting or invalid relationships, or underestimating the true variation in statistical models 

(Hurlbert 1984, Heffner et al. 1996). 

A variety of methods are currently used for delineating hotspots of WVCs. One method is 

to ignore hotspots and treat all WVCs as independent observations (e.g., Snow et al. 2011). 

Another method uses predefined distances to group WVCs into hotspots (e.g., Ng et al. 2008). 

More sophisticated approaches use the counts of WVCs within predefined lengths of road 
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segments to identify hotspots (e.g., Malo et al. 2004, Ramp et al. 2005, Gomes et al. 2009). Even 

more sophisticated approaches use nearest-neighbor clustering with predefined threshold 

distances and the overall length of roads in the study area (e.g., Levine 2004, Clevenger et al. 

2006), or use kernel-density estimators (KDEs) to identify hotspots (e.g., Xie and Yan 2008, 

Okabe et al. 2009, Danks and Porter 2010). Subjective choices are required for all these 

approaches and include decisions such as: 1) assuming every location is independent, 2) 

selecting the lengths of road segments, 3) selecting the length of threshold distances, or 4) 

defining the parameters for KDEs (i.e., bandwidths and isopleths). 

Kernel-density estimators provide a promising, non-parametric, approach for objectively 

identifying independent groups of WVCs. For studies of wildlife, the application of KDEs has 

recently expanded from identifying boundaries of home ranges (e.g., Worton 1989, Seaman and 

Powell 1996, Seaman et al. 1999, Laver and Kelly 2008) to identifying hotspots of WVCs (e.g., 

Danks and Porter 2010). Kernel-density estimation uses a group of spatially-referenced points 

(i.e., observations) to generate a probability surface based on the concentration of observations 

across 2-dimensional space (Bailey and Gatrell 1995). Generating the probability surface 

depends on a user-specified, bandwidth smoothing parameter (Kernohan et al. 2001). Bandwidth 

parameters represent the amount of contribution each observation point contributes to the entire 

probability surface (Gitzen et al. 2006). A large bandwidth value specifies broad smoothing, and 

generates a smooth surface of mostly high probability (Kernohan et al. 2001). Whereas, a small 

bandwidth represents narrow smoothing, and generates a more fragmented surface of probability. 

After a probability surface has been generated with KDE, isopleth lines are used to 

construct hard boundaries around user-specified volumes of the probability surface (Beyer 2012). 

For example, a 0.95 isopleth represents a boundary around 95% of the volume of probability. A 
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0.05 isopleth represents a more constricted boundary around 5% of the volume. Observations are 

grouped together within the boundaries of isopleths, or are not grouped and are considered 

single-occurrence events. The amount of grouping relies on the size of the bandwidth and 

percentage of isopleth used. Selection of these values has been highly scrutinized for studies of 

home ranges (Gitzen et al. 2006, Laver and Kelly 2008), but is not well understood for studies of 

WVCs. 

I propose a new approach for parameterizing KDEs to delineate WVCs into hotspots 

without relying on subjective choices for bandwidths and isopleths. I suggest using measures of 

variation (i.e., variance) in the landscape surrounding locations of WVCs to inform non-

subjective parameterization of KDEs. Attributes of the landscape provide a useful measure 

because WVCs are influenced by the landscape (Huijser et al. 2008). Specifically, variation of 

the landscape can inform how WVCs should be grouped based on the amount of dispersion (i.e., 

dissimilarity) identified in attributes of the landscape among proposed groups of WVCs. If 

variation among a set of proposed groups is low, then these groups are not easily distinguishable 

from each other. As variation increases, the groups become more distinguishable and 

independent, based on the landscape.  

Examining for maximum variation is a concept developed for understanding scales of 

animal movement (i.e., first-passage time; Fauchald and Tveraa 2003, Williams et al. 2012), but 

can be expanded to identify independent hotspots of WVCs. I suggest using variation in 

attributes of the landscape as a means to objectively group WVCs into independent hotspots. 

Groups of WVCs that are associated with the greatest amount of variation in the landscape can 

be considered the most independently delineated groups possible. The amount of independence 

is informed by the landscape, and not by subjective measures of distance between WVCs. 
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The purpose of my paper is to explore an objective approach for grouping locations of 

WVCs into independent hotspots. Specifically, I used attributes of the landscape to inform KDE 

parameterization for grouping locations of WVCs into hotspots. I sought to explore the 

robustness of this approach by comparing it to previously used methods for delineating hotspots 

under a variety of conditions. Specifically, I compared my approach to 3 different methods that 

have been used for 3 species of wildlife, respectively, including 1) island foxes (Urocyon 

littoralis) on San Clemente Island, California, USA, 2) white-tailed deer (Odocoileus 

virginianus) in Onondaga County, New York, USA, and 3) moose (Alces alces) in the western 

region of Maine. This combination of species represented a gradient of animal space-use in a 

variety of landscape types. 

2.2 METHODS 

2.2.1 Study area 

The subspecies of island fox, (U. l . clementae), is found on San Clemente Island (146 km
2
). The 

island is the southernmost California Channel Island, located approximately 109 km west of San 

Diego, California (Figure 2.1A). Vegetation on the island was comprised primarily of 2 cover 

types: maritime desert scrub (54.4%) and grassland (32.8%; Thorne 1976, Sward and Cohen 

1980). The island contained 613.5 km of roads for an overall road density of 4.2 km/km
2
. White-

tailed deer are found throughout Onondaga County, NY (2,085 km
2
). The county is located in 

the central region of New York State (Figure 2.1B). Vegetation throughout the county was 

comprised of a mix of forest (35%) and agriculture (33%) with small and large residential and 

commercial development (19%). The county contained 6,107 km of roads, for an overall road 

density of 2.9 km/km
2
. Moose are found throughout the Western Mountains biophysical region 
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of Maine (10,721 km
2
). This region is located in the northern reach of the Appalachian 

Mountains (Figure 2.1C). Vegetation in Western Maine was mostly comprised of deciduous, 

conifer, or mixed forests (85%) with interspersed shrub wetlands (6%). Western Maine contained 

2,474 km of roads, for an overall road density of 0.2 km/km
2
.  
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Figure 2.1 Study areas, roads, and locations of wildlife-vehicle collisions for: A) island foxes on 

San Clemente Island, CA, USA (2006–2010), B) white-tailed deer in Onondaga County, NY, 

USA (2005–2006), and C) moose in Western Mountains biophysical region, ME, USA (1993–

2010). 
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2.2.2 Data collection 

I compiled records of island fox-vehicle collisions from 2006–2010, provided by the United 

States Navy and Colorado State University (Snow et al. 2011). Data were collected at accident 

sites using a handheld Global Positioning System device. I used a database of white-tailed deer-

vehicle collisions from 2005–2006, provided by the State University of New York (Nystrom 

2007). These data were compiled from law enforcement records and field observations. The 

deer-vehicle collision locations were verified and recorded using a handheld Global Positioning 

System device. Lastly, I used recorded locations of moose-vehicle collisions from 1993–2010, 

provided by the Maine Department of Transportation. These data were assimilated from law 

enforcement information at accident sites, and compiled with an estimated accuracy of 160 m (D. 

Brunell, Maine Department of Transportation, personal communication). Post hoc, I evaluated a 

2-year subset of the moose-vehicle collision data (2008–2010) to represent the most recent 

collisions. 

 I used the 2006 Coastal Change Analysis Program for San Clemente Island, CA and 

western Maine to describe the land cover and land use (National Oceanic and Atmospheric 

Administration Coastal Services Center 2012). I used the 2001 National Land Cover Database 

for Onondaga County, NY (Homer et al. 2007). Land-cover and land-use maps were based on 

data collected with Landsat 7 Thematic Mapper with 30-m resolution with 85% overall 

classification accuracy for the Coastal Change Analysis program  and 85.3% for the National 

Land Cover Database (Wickham et al. 2010, National Oceanic and Atmospheric Administration 

Coastal Services Center 2012). I reclassified land-cover and land-use types based on habitat 

requirements for each species (Table 2.1). For San Clemente Island, I used a 10-m digital 

elevation map from the United States Geological Survey, National Elevation Dataset (Gesch et 
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al. 2002, Gesch 2007), and shapefiles depicting urban areas (Gould and Andelt 2011). For 

western Maine, I used shapefiles depicting human development based on 1:24,000 quadrangles 

(Maine Office of GIS 2010). 

Table 2.1 Reclassified land-cover and land-use types for 3 species of wildlife: A) island foxes on 

San Clemente Island, CA, USA (2006–2010), B) white-tailed deer in Onondaga County, NY, 

USA (2005–2006), and C) moose in western Maine, USA (1993–2010). 

A) San Clemente 

Island, CA   

B) Onondaga 

County, NY   

C) Western Mountains, 

ME 

Class %   Class %   Class % 

Grassland 75.37 

 

Forest 44.07 

 

Deciduous-mixed forest 57.62 

Scrub/shrub 20.61 

 

Agriculture 29.73 

 

Coniferous forest 27.70 

Disturbed   3.04 

 

Open water 12.20 

 

Shrub wetland   6.14 

Other   0.98 

 

Rangeland   7.42 

 

Open water   3.90 

   

Developed   5.81 

 

Developed   3.55 

   

Wetland   0.66 

 

Agriculture   0.88 

   

Barren   0.12 

 

Other   0.21 

            Cutover forest       0.0001 

 

2.2.3 Landscape metrics 

I characterized the landscape surrounding each WVC using multiple spatial extents based on the 

reported area requirements for each species (Leptich and Gilbert 1989, Peek 2007, Quinn et al. 

2012, Resnik 2012). I used ArcGIS (v9.3, Environmental Systems Research Institute, Inc., 

Redlands, California) to construct 3 buffers around each WVC. The buffers corresponded to 

core-use areas, small home ranges, and large home ranges for each species (Table 2.2). I also 

included 1 additional buffer for moose to represent an extra-large home range size because they 

occasionally migrate (Hundertmark 2007).  

I characterized the landscape surrounding each WVC location using a variety of 

landscape metrics (Table 2.2). I used a variety of different metrics for each species based on their 

reported habitat requirements. For island foxes, I focused on their reported use of grass and shrub 

land covers, edges between different types of land covers, urban areas, and canyons (Moore and 
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Collins 1995, Gould and Andelt 2011, Resnik 2012). For deer, I focused on their reported use of 

agriculture and forest land covers, edges between agriculture and forest land covers, and their use 

of fragmented and intermixed landscapes (Quinn et al. 2012). For moose, I focused on their use 

of forested and wetland land covers, their use of intermixed land covers, and their avoidance of 

urban areas (Allen et al. 1987;1988). 

I calculated composition and configuration metrics using the Fragstatsbatch extension in 

ArcGIS (Mitchell 2005), and program FRAGSTATS v3.3 (McGarigal et al. 2002). Composition 

metrics represented the proportions of specific land-cover or land-use types inside each buffered 

area. Configuration metrics included edge density, contrast-weighted edge density (CWED), 

contagion and interspersion/juxtaposition index (IJI). Edge density was the sum of the length of 

borders between cover types divided by the area of the buffered area (km/km
2
). Contrast-

weighted edge density measured edges between agricultural and forested land covers. The 

CWED was the sum of the borders between cover types multiplied by a corresponding contrast-

weight (i.e., weight = 1 for agriculture and forest cover types, and weight = 0 for all other cover 

types) divided by the buffered area (km/km
2
). Contagion was an index of the spatial aggregation 

and interspersion of similar patch types. Interspersion/juxtaposition index is an index of the 

intermixing of different types of patches. 

I used Topography Tools for ArcGIS (Dilts 2010) to calculate the average Topographic 

Position Index (TPI) value within buffered areas. Each TPI value was a measure of the 

ruggedness of the terrain, and represented the difference between the elevation of a central pixel 

and the mean of the surrounding cells. I also used ArcGIS to calculate the distances from each 

WVC to the nearest focal land-cover and land-use type(s).
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Table 2.2 Metrics for data analysis used in kernel density estimation (KDE) for 3 species of wildlife: A) island foxes on San Clemente 

Island, CA, USA (2006–2010), B) white-tailed deer in Onondaga County, NY, USA (2005–2006), and C) moose in western Maine, 

USA (1993–2010). 

  A) Island fox B) White-tailed deer C) Moose 

Landscape areas (km
2
)
a
 0.03, 0.28, and 1.13 0.50, 1.13, and 8.04 0.78, 3.14, 19.63, and 78.54 

Bandwidth range (m)
b
 20–300 100–2,000 100–2,500 

Isopleth range (%)
c
 5–95 5–95 5–95 

No. KDE combinations
d
 285 380 475 

Metrics examined 

Proportion of grassland Proportion of agriculture Proportion conifer forest 

Proportion of shrub/scrub Proportion of forest Proportion forest 

Edge density Contrast weighted edge density Proportion shrub wetland 

Topographic position index Contagion Interspersion/juxtaposition index 

Distance to urban area
e
 Interspersion/juxtaposition index Distance to development

e
 

  

Distance to shrub wetland
e
 

a
Areas of the landscape examined around each WVC location, based on estimates of space-use (i.e., core-use and home range) for 

each species. 
b
Bandwidth intervals were examined every 20 m for island foxes, and every 100 m for white-tailed deer and moose. 

c
Isopleth intervals were examined every 5% for all species. 

d
Represents the overall candidate set of potential delineations of WVCs. 

e
Landscape metric was not associated with a landscape area.
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2.2.4 Data analysis 

I generated a candidate set of grouping scenarios that delineated hard boundaries around groups 

of WVCs (Figure 2.2B). The grouping scenarios represented all permutations of WVC groups 

identified using KDEs (see example Figure 2.3). To create these scenarios, I calculated multiple 

KDEs for each species using the Geospatial Modelling Environment (v0.7.1 RC1, Beyer, H. L.), 

ArcGIS (v10.0), and Program R (v2.12.1, R Development Core Team). Each KDE was 

comprised of a unique combination of bandwidth search area and isopleth percentage 

parameterization (Table 2.2). I examined comprehensive ranges of bandwidths and isopleths to 

ensure that all reasonable grouping scenarios were generated. The smallest bandwidths were 

representative of the core-area requirements for each species, whereas the largest bandwidths 

were the limit at which probability surfaces became overly smoothed (i.e., high probabilities of 

WVCs extended throughout the study areas). I examined all possible values for isopleth 

percentages, from 5–100% by 5% intervals. Within each grouping scenario, WVCs were either 

partitioned into groups or were occasionally solitary (i.e., isolated away from other WVCs). I 

considered WVCs that were not grouped with other WVCs as single-collision events (i.e., not 

hotspots). 

 I then associated groups of WVCs within each grouping scenario to corresponding values 

of landscape metrics (Figure 2.2C). For groups that were comprised of ≥2 WVCs, I averaged the 

corresponding landscape metrics from each WVC to obtain an overall value for the group. I 

scaled and centered the metric values (i.e., subtracted the mean and divided by the standard 

deviation) among all groups and grouping scenarios to allow standardized comparisons among 

metrics and across spatial scales (i.e., buffers). 
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Next, for each grouping scenario I calculated the variation in landscape metrics among 

groups using Program R (Figure 2.2D). I calculated the variation for each spatial scale (i.e., 

buffer size) of the landscape metrics. I examined for peaks in variation among grouping 

scenarios, and identified the bandwidth and isopleth parameterization that delineated groups of 

WVCs with the highest variance (i.e., most disparity) relative to the surrounding landscape. The 

grouping scenario with the most disparity represented groups that were most independent from 

each other, relative to the landscape. I considered the grouping scenario with maximum variance 

as the landscape-based delineation of WVC hotspots (Figure 2.2E). 

Once the landscape-based delineation of hotspots was made, I compared the length of 

road and number of hotspots to those delineated using previous methods for each species. The 

previous methods considered were: 1) every location of a fox-vehicle collision as a unique 

hotspot for island foxes (Snow et al. 2011), 2) locations of collisions buffered with 300 m radii 

and dissolved for white-tailed deer (Ng et al. 2008), and 3) a KDE with 1 km bandwidth and 

50% isopleth for moose (Danks and Porter 2010). I compared the lengths of roads (km) that were 

delineated as hotspots and examined the amount of overlap (km of roads) among methodologies. 

There was no length of roads associated with collision events for island foxes using the previous 

method; therefore I was unable to compare lengths of roads between methods for island foxes. 

Lastly, I examined the number of landscape-based hotspots required to account for 25, 50, and 

75% quantiles of WVCs. 
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Figure 2.2 Conceptual flowchart showing a process for delineating non-subjective hotspots of wildlife-vehicle collisions (WVC) 

using kernel-density estimation (KDEs). Step 1 is to gather accurate locations of WVCs. Step 2 is to generate a candidate set of 

grouping scenarios using KDEs with unique combinations of bandwidth and isopleth values. Additionally, calculate landscape metrics 

for each WVC with user-specified extent(s) of the landscape. Step 3 is to associate the landscape metrics to each grouping scenario, 

and then calculate the variance for each metric among groups of WVCs within each grouping scenario. Step 4 is to identify the 

grouping scenario with the greatest amount to variation. 
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Figure 2.3 Example delineations of San Clemente Island, CA, USA (2006–2010) fox-vehicle 

collision hotspots calculated with kernel density estimation. Each bandwidth and isopleth 

combination produced a unique delineation as part of an overall candidate set of potential 

delineations. This figure shows 10 of the 285 potential delineations that were calculated.
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2.3 RESULTS 

I examined a total of 2,488 records of WVC locations and generated 1,615 grouping scenarios 

using KDEs with unique bandwidth and isopleth combinations for 3 species. I examined the 

variances of 16 landscape metrics (Table 2.2). The count of unique hotspots declined with 

increasing bandwidth and isopleth values as should be expected with KDE parameterization. I 

was able to successfully identify peaks in variation for all landscape metrics except 3. For those 

exceptions (i.e., TPI for island foxes, CWED for white-tailed deer, and distance to development 

for moose), the variance never reached a peak as the bandwidth and isopleth values increased. 

Thus, I considered the maximum variance as being undefined.  

For island foxes, the proportion of shrub land cover at scale of large home ranges showed 

the maximum variance (standardized variance = 1.39; Figure 2.4), and therefore identified the 

most independent groups of WVCs based on a landscape attribute. The peak in variance was 

identified with a 260 m bandwidth and 55% isopleth (Figure 2.5). This combination delineated 

21 hotspots that averaged 0.8 km of roads (SD = 1.4) and accounted for 72% of all collisions on 

San Clemente Island, CA (Table 2.3). The previous method did not delineate hotspots, thus I 

could not compare between the 2 approaches.
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Table 2.3  Number of hotspots and length of roads delineated using a landscape-based approach and currently used methods for 3 

species of wildlife: A) island foxes on San Clemente Island, CA, USA (2006–2010), B) white-tailed deer in Onondaga County, NY, 

USA (2005–2006), and C) moose in western Maine, USA (1993–2010 and 2008–2010). 

Species 

 

No. 

WVCs 

 

Landscape-based  

 

Previous method 

    

No.  

hotspots 

Avg. 

WVCs/

hotspot 

Hotspot 

roads 

(km) 

Single-

collision 

events 

 

No.  

hotspots 

Avg. 

WVCs/

hotspot 

Hotspot 

roads 

(km) 

Single-

collision 

events 

A) Island fox 

 

   132 

 

21  4.6   18.0   36 

 

   0  NA    NA 132 

B) White-tailed deer 

 

   389 

 

51  5.2 830.9 122 

 

 53   1.3 438.6 255 

C) Moose (17 yr.) 

 

1,927 

 

42 43.1 990.5 161 

 

 99 13.0 258.5 635 

C)  Moose (2 yr. subset)      172   20   3.3  60.7 106    29   2.9   64.7   87 
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For white-tailed deer, the proportion of forest land cover at the scale of large home ranges 

was the most informative landscape attribute (standardized variance = 1.33; Figure 2.4) for 

delineating hotspots in Onondaga County, NY. A peak in variance was identified with a 1,600 m 

bandwidth and 50% isopleth (Figure 2.5). The landscape-based approach identified 51 hotspots 

that accounted for 69% of WVCs in Onondaga County, NY. The previous approach identified 53 

hotspots that accounted for 34% of WVCs. The landscape-based approach delineated larger 

hotspots (mean = 13.8 km of road; SD = 34.4) than the previous method (mean = 1.4 km; SD = 

0.9; Table 2.3). It overlapped the previous method along 293 km of roads, but also included 538 

km more roads as hotspots.  

For the full set of moose data (17 years), I found IJI at the landscape scale of core-use 

areas had the maximum variance (standardized variance = 1.33; Figure 2.4) and delineated the 

most independent groups of WVCs based on a landscape attribute. I identified a peak in variance 

at a bandwidth of 2,300 m and isopleth of 80% (Figure 2.5). The landscape-based approach 

identified 42 hotspots that accounted for 92% of WVCs in western Maine (Table 2.3). The 

previous approach identified 99 hotspots that accounted for 67% of WVCs. The mean length of a 

hotspot was 22.5 km (SD = 49.1), whereas those identified by the previous method were 

substantially shorter (mean = 2.6 km; SD = 3.6). The landscape-based approach overlapped all 

roads designated as hotspots by the previous method (i.e., 263 km), plus an additional 727 km.  

 For the subset of moose data (2 years), IJI had the maximum variance (standardized 

variance = 1.17) at the scale of large home ranges. The peak in variance occurred at bandwidths 

of 2,400 and 2,500 m and an isopleth of 20% (Figure 2.5). Using this combination I delineated 

20 hotspots with a mean length of 2.8 km (SD = 1.8), that accounted for 38% of WVCs in 

western Maine. The previous approach identified 29 hotspots (mean = 1.2 km; SD = 0.8), that 
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accounted for 49% of WVCs. Overall, the landscape-based approach delineated 61 km of roads 

as hotspots, similar to the previous method that delineated 65 km.
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Figure 2.4 Maximum variance values (standardized) for each landscape metric among hotspots of wildlife-vehicle collisions for: A) 

island foxes on San Clemente Island, CA, USA (2006–2010), B) white-tailed deer in Onondaga County, NY, USA (2005–2006), C) 

moose in Western Mountains biophysical region, ME, USA (1993–2010), and D) moose 2-years subset (2008–2010). 
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Figure 2.5 Peaks in variation were identified at: A) 260 m bandwidth and 55% isopleth for the proportion of shrub landscape metric 

for island foxes on San Clemente Island, CA, USA (2006–2010), B) 1,600 m bandwidth and 50% isopleth for the proportion of forest 

landscape metric for white-tailed deer in Onondaga County, NY, USA (2005–2006), and C) 2,400 or 2,500 m and 20% isopleth for the 

interspersion-juxtaposition index landscape metric for the 2-years subset of moose in the Western Mountains biophysical region, ME, 

USA (2008–2010). 
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2.4 DISCUSSION 

The landscape-based approach provides some clear improvements over the previously used 

methods. First, by using variation in landscape metrics to inform the delineation of hotspots, the 

landscape-based approach ensures that the most independent groups of WVCs are identified 

relative to the surrounding landscape. Previous methods disregard issues with pseudoreplication 

among groups of WVCs by only considering subjective measures of spatial proximity to 

delineate hotspots. Using variation in the landscape as measures of independence provides an 

objective approach for avoiding pseudoreplication in statistical models of WVCs. The previous 

strategies further ignore the ecological processes that influence the arrangement of WVCs, and 

thereby provide little information for reducing pseudoreplication among delineated hotspots. 

Ensuring independent observations is important for studies that use statistical models to examine 

for influences on hotspots of WVCs. Otherwise, the true variation in parameter estimates will be 

underestimated by pseudoreplicated samples (Hurlbert 1984, Heffner et al. 1996). 

Second, the landscape-based approach performs well in a variety of situations and 

thereby provides a flexible, but consistent, methodology for delineating hotspots. Comparatively, 

the previous methods yielded inconsistent delineations of hotspots because of the variety of 

methodologies used (Openshaw and Taylor 1981, Gomes et al. 2009, Okabe and Sugihara 2012). 

Consistent approaches will afford more reliable comparisons among species and environments. 

The landscape-based approach allows for differing degrees of space-use by animals and differing 

complexities of landscapes by incorporating multiple spatial scales and landscape metrics. Using 

multiple scales and metrics also reduces the chances of biasing the delineation hotspots based on 

the researcher’s perceptions. 
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Third, the landscape-based approach uses the landscape to inform hotspots and can be 

expanded to include other influences that affect hotspots. An obvious expansion includes 

examining variation in volume and speed of traffic for delineating hotspots (e.g., Forman et al. 

2003). A critical requirement will be that data on the volume and speed of traffic are available at 

sufficient resolution to calculate variation. To my knowledge, the landscape-based approach is 

the first, flexible approach for using the ecological processes to help determine how hotspots are 

delineated. 

Fourth, the landscape-based approach provided a less subjective and easily identifiable 

means for delineating hotspots. I avoided subjective choices in 3 ways. First, I used variation of 

the landscape metrics as non-subjective criteria for selecting grouping scenarios that represented 

the most unique delineation of hotspots. Second, I used the biology of each species to inform the 

landscape metrics and the scales at which I examined them. These metrics quantified important 

landscape variables for the habitat requirements of each species based on previous literature. I 

examined multiple metrics at multiple scales to avoid bias from human perceptions. Third, I 

examined the entire ranges of bandwidth and isopleth values that could be used in KDE analyses 

to group WVCs, and therefore assured that all possible combinations were tested. By combining 

these techniques, I developed the first-known, landscape-based approach that successfully 

informed the delineation of the most independent hotspots without imposing human perceptions 

about the ecological processes involved. 

Although the landscape-based approach improves upon previous methods, some 

constraints still exist. For most landscape metrics I tested, I easily detected peaks in variance. For 

3 metrics, however, a peak in variance could not be identified because variation appeared to be 

driven by sample sizes of the delineated hotspots (i.e., variance increased linearly with 
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decreasing numbers of hotspots). This suggests that not all landscape metrics are useful for 

informing hotspots. Particularly, metrics that contain very little variation throughout the 

landscape are less useful. I recommend comparing multiple landscape metrics that represent 

varying degrees of heterogeneity within the study area to inform the delineation of hotspots. 

 The temporal scale of WVCs may influence the delineation of hotspots. For moose in 

Maine, the 17-year dataset contained a large sample size of WVCs that occurred on most 

sections of roads, thereby resulting in hotspots that encompassed most roads. However, the more 

sparsely distributed 2-year subset indicated much fewer and smaller hotspots, suggesting that 

temporal scales are important considerations for delineating hotspots. If landscape metrics 

change through time, then delineating hotspots without considering the temporal dynamics of the 

landscape may not be useful. However, if landscape metrics are relatively stable, then using 

locations of WVCs over longer timeframes should delineate more accurate hotspots.  

 The landscape-based approach identified fewer or larger hotspots than the previously 

used methods, providing some important implications for mitigating WVCs. My approach 

suggests that larger contiguous areas may need to be targeted for mitigating WVCs. For example, 

fencing may need to be extended over larger areas to exclude wildlife from roads for some 

hotspots. My approach also indicated that fewer hotspots may need to be targeted to reduce 

WVCs. For example, >20 hotspots accounted for 50% of all WVCs for each species, 

respectively. Managers can use this information to target mitigation efforts in a more cost-

effective way (e.g., Clevenger et al. 2006, Huijser et al. 2009, Conover 2010). My results 

indicate that previous methods may not consider large enough spatial scales for delineating 

hotspots. This finding is similar to recent evidence that scales of effect should be measured at 

larger scales than are previously used for predicting population responses to landscape structure 
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(Jackson and Fahrig 2012). Finally, my approach indicated that hotspots included more WVCs, 

on average, than the previously used methods. Grouping more WVCs into hotspots will reduce 

the chances of analyzing pseudoreplicated collision sites in exploratory models. 

Lastly, my landscape-based approach can be extended beyond hotspots of WVCs. Many 

other ecological studies require objective delineations of hotspots, such as hotspots of bird nests 

(e.g., Hatchwell et al. 1996), insect infestations (e.g., Nelson and Boots 2008), or species 

distributions (e.g., Stohlgren et al. 2001). These hotspots can be delineated without relying on 

human perceptions about the ecological processes to provide the most unbiased estimates and 

inferences. Researchers can examine for peaks in variation from a variety of inputs (i.e., not just 

landscapes) that might inform how hotspots are delineated.  
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UNDERREPORTING AND ASSESSING WILDLIFE-VEHICLE COLLISIONS WITH 

LARGE UNGULATES 
 

ABSTRACT 

Conflicts from wildlife-vehicle collisions (WVCs) pose serious challenges for managing and 

conserving large ungulates throughout the world. Identifying research-based management 

strategies to reduce these conflicts is problematic because up to 60% of WVCs are not reported, 

and are subsequently excluded from study. Our objective was to examine the sensitivity of 

studies to underreporting for exemplary species of large ungulates in different environmental 

settings: white-tailed deer (Odocoileus virginianus) in open landscapes of central Illinois and 

moose (Alces alces) in forested areas of western Maine, USA. We simulated underreporting and 

evaluated for changes in precision, parameter estimates, and prediction in identifying 

relationships between the environment and location of collisions. We found similar effects for 

both species, indicating our findings are widely applicable. Relatively few reports (30%) were 

needed to generate reliable assessments of WVC incidence, likely because WVCs tend to occur 

in non-random patterns (i.e., hotspots) and variability in their influences is low. Shifts in 

parameter estimates were detected only for environmental variables that were unevenly 

distributed in locations biased with less reporting. The predictive capabilities of models were 

stable with few reports (~25%). These findings suggest that reliable inferences are produced 

where the rates of reporting are consistent throughout the study region, even with low rates of 

reporting. To avoid unreliable inferences, studies of WVCs should adopt study designs that 

primarily ensure consistent rates of reporting and secondarily ensure large enough sample sizes. 

Increased reporting will reduce shifts in parameter estimates from biased reporting, but will not 

overcome it. These principles can extend to other studies that experience underreporting, such as 

survey studies. 
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3.1 INTRODUCTION 

High degrees of underreporting for wildlife-vehicle collisions (WVCs) are disconcerting for 

natural resource and transportation managers that strategically plan for reducing collisions. These 

strategies often rely on information about the ecological drivers of collisions to inform cost-

effective solutions (Forman et al. 2003). Obtaining reliable information is challenging because 

only 300,000 of the estimated 1–2 million WVCs are reported in national crash databases each 

year (Huijser et al. 2008). Large amounts of underreporting can reduce the ability to distinguish 

ecological drivers of collisions, or shift the estimated relationships if reporting is not evenly 

distributed (i.e., spatially biased; Groves 2004, Lavrakas 2008). 

Reasons WVCs are not reported include insufficient property damage to warrant 

reporting, motorist decision not to report , or police, natural resource, and transportation agency 

conclusion that the accident does not merit reporting (Huijser et al. 2008). Even if concerted 

actions are taken to locate WVCs (e.g., Clevenger et al. 2001, Sullivan et al. 2004, Ramp et al. 

2005, Snow et al. 2011), underreporting persists because injured animals move away from roads 

following collisions (Snow et al. 2012), are scavenged or decomposed, or are covered by 

roadside vegetation and not detected. Consequently, it is important to determine whether 

underreporting is affecting statistical inferences about WVCs, and what proportion of reports is 

necessary for obtaining reliable inferences. 

The central question prompted by underreporting is whether the many studies conducted 

to date are affected by lack of precision or bias. Studies of WVCs explore environmental 

conditions associated with high probabilities of collisions (e.g., Ng et al. 2008, Grilo et al. 2009, 

Danks and Porter 2010, Snow et al. 2011, Hothorn et al. 2012). Generally, these studies compare 

sites of collisions and non-collisions using logistic regression models and information theoretic 
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procedures to evaluate how the landscape, traffic, and abundance of wildlife influence the 

probability of WVCs. Regression coefficients from these models and associated 95% confidence 

intervals (CIs) are used to determine which variables influence the probability of WVCs (e.g., 

Finder et al. 1999, Danks and Porter 2010, Snow et al. 2011). Then, inferred relationships from 

these variables inform strategies for mitigating collisions. 

Collisions with white-tailed deer (Odocoileus virginianus; Zimmermann, 1780) are 

among the most frequent collisions, estimated at >1 million each year in the United States 

(Conover et al. 1995). Deer-vehicle collisions generate the highest amount of monetary damage 

from WVCs, averaging $6,717 per collision (Huijser et al. 2008). Collisions with moose (Alces 

alces; Linnaeus, 1758) generate the highest rate of human injuries and death. Up to 10% of 

collisions with moose result in human injury or fatality (Huijser et al. 2008). Reporting for these 

collisions is not consistent throughout the United States, with some states prioritizing better than 

others. The Departments of Transportation in Illinois and Maine prioritize compiling accurate 

reports of ungulate-vehicle collisions, respectively. These databases are among the most 

comprehensive reporting of WVCs in the United States. As such, they provide an opportunity to 

independently assess sensitivity to underreporting for 2 species of wildlife with differing 

population abundances, and that lived in environments with differing landscapes and traffic. 

Our objective was to evaluate the sensitivity of statistical models for detecting influences 

of landscapes, traffic, and abundance of wildlife on the probability of WVCs to varying degrees 

of underreporting. Specifically, we examined the potential impacts for1) reduction in precision of 

regression coefficients, 2) shifts in regression coefficients evidenced by significant changes in 

point estimates, and 3)  reduction in the predictive power of models as underreporting increased. 

We sought to identify thresholds in reporting rates where precision, shifts in coefficients, and 
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prediction became unstable and generated unreliable inferences. Our intent was to evaluate 

whether effects of underreporting were generalizable across dramatically different conditions 

associated with different ecoregions, traffic, movement behaviors, and population abundances 

using deer in Illinois and moose in Maine. 

3.2 METHODS 

3.2.1 Study area 

My study area included 50 counties in central Illinois (77,655 km
2
) and portions of 3 counties in 

western Maine (10,721 km
2
; Figure 3.1). The vegetation in central Illinois was characteristic of 

the temperate, Prairie Parkland ecosystem province (Bailey 1980;1995). The landscape contained 

agriculture (74%), development (9%), intermixed deciduous trees (1.5%), and prairies and 

groves (<1%). Row crops are comprised primarily of a corn and soybean matrix (Rosenblatt et 

al. 1999). Central Illinois contains 71,498 km of public roads, for an overall road density of 0.9 

km/km
2
. In 1992, the overall densities of deer were estimated to be 4–5 deer/km

2
, but were 

much higher in forested areas at 30–37 deer/km
2
(Roseberry and Woolf 1998). 

Vegetation in western Maine was characteristic of the Adirondack–New England Mixed 

Forest– Coniferous Forest–Alpine Meadow ecosystem province (Bailey 1980;1995, Maine 

Office of GIS 2010). Vegetation in western Maine was composed of deciduous, conifer, or 

mixed forests (85%), interspersed shrub wetlands (6%), and development (3.5%). Western 

Maine contains 2,474 km of public roads, for an overall road density of 0.2 km/km
2
. In 1999, the 

densities of moose were estimated to be approximately 2.8 moose/km
2
(Morris 1999).
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Figure 3.1 Study area locations of reported A) deer-vehicle collisions in central Illinois, USA during 2011, and B) moose-vehicle 

collisions in western Maine, USA during 2000–2011.
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3.2.2 Data collection 

I used a database of 8,060 deer-vehicle collisions in central Illinois that occurred during 2011, 

provided by the Illinois Department of Transportation. These data were compiled from law 

enforcement officials where ≥$1,500 in property damage or human injury occurred, with an 

estimated location accuracy of ±400 m (C. Adams, Illinois Department of Transportation, 

personal communication). For moose-vehicle collisions, I used a database of 1,067 recorded 

collisions in western Maine during 2000–2010, provided by the Maine Department of 

Transportation. These data were compiled from law enforcement officials at accident sites where 

≥$1,000 in property damage or a human injury occurred, with an estimated location accuracy of 

±160 m (D. Brunell, Maine Department of Transportation, personal communication). For non-

collision sites, I generated 1 set of independent, random sites separately for deer and moose that 

were each ≥1.5 times the number of reported collisions for each species using intervals of 

distance along the networks of roads. I generated sets of random points at intervals of 5,000 m 

for deer (n = 14,306 random points) and 500 m for moose (n = 4,877 random points) using 

ArcGIS (v10.1; Environmental Systems Research Institute, Inc., Redlands, CA). Later, I sampled 

from these sets of random points. 

 I used the 2006 National Land Cover Database to represent land cover and land use 

throughout central Illinois (Fry et al. 2011). For western Maine, I used the National Gap Analysis 

Program (GAP) Land Cover Data-Version 2 (U.S. Department of the Interior | U.S. Geological 

Survey 2012). Both land-cover and land-use databases were based on data collected with Landsat 

7 Thematic Mapper with 30 m resolution. I reclassified the land-cover and land-use databases to 

7 classes for deer (Anderson et al. 1976, Williams et al. 2012) and 11 classes for moose (Allen et 
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al. 1987, Koitzsch 2002, Danks and Porter 2010) based on the reported habitat requirements for 

each species (Table 3.1). 

Table 3.1 Reclassified land-cover and land-use types for 2 study species: A) white-tailed deer in 

central Illinois, USA (2010), and B) moose in western Maine, USA (2000–2010). 

A) Central  

         Illinois   

B) Western 

        Maine 

Class %   Class % 

Agriculture  74.5 

 

Deciduous-mixed forest      57.6 

Forest  15.0 

 

Coniferous forest      27.7 

Developed  8.6 

 

Shrub wetland 6.1 

Water 1.3 

 

Open water 3.9 

Wetlands 0.3 

 

Developed 3.6 

Rangeland 0.2 

 

Agriculture 0.9 

Barren   0.03 

 

Other 0.2 

      Cutover forest       0.0001 

   Forested wetland 0.0 

   Nonwoody wetland 0.0 

 

  Previous research identified that 800 m buffers around observations were useful for 

explaining influences on deer-vehicle collisions (Finder et al. 1999, Ng et al. 2008). Therefore, I 

used 800 m buffers to calculate composition and configuration metrics of the landscapes using 

FRAGSTATS (v4.1, University of Massachusetts, Amherst) for deer in Illinois. I calculated 3 

composition metrics using the proportions of land-cover types, including the proportion of 

agriculture (P_AG), proportion of forest (P_FOR), and proportion of water (P_WAT). I 

calculated 2 configuration metrics, contrast-weighted edge density (CWED) and a contagion 

index (CONTAGION). These metrics represented measures of edge and fragmentation in the 

agro-forested landscape, because deer have higher densities in landscapes with these 

characteristics (Campa et al. 2011, Lovely et al. 2013). Contrast-weighted edge density was a 

measure of the length of edges between agriculture and forested, and rangeland and forested 

classes within each county (km/km
2
). Contagion served as an index of the aggregation and 
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interspersion among all land-cover and land-use patches. A contagion value of 0 represented a 

highly fragmented and intermixed landscape, whereas a value of 100 represented a landscape 

comprised of a single patch. 

 Previous research identified that 2,500 and 5,000 m buffers around observations were 

most useful for explaining influences on moose-vehicle collisions (Danks and Porter 2010). 

Therefore, I used these buffer sizes to calculate metrics of the landscape in Maine. I calculated 4 

composition metrics that influenced landscape-level habitat suitability for moose (Allen et al. 

1987, Koitzsch 2002, Dussault et al. 2006). These included proportion of conifer forest 

(P_CONIF), proportion of cutover forest (P_CUT), proportion of nonwoody wetlands 

(P_NWW), and the Simpson’s diversity index (SIDI) of land cover and land use within the 2,500 

m buffer. The SIDI was a measure of land-cover and land-use richness on a 0–1 scale, where 1 

represents the richest landscape. I calculated 1 configuration metric to represent a measure of 

interspersion of land-cover and land-use patches, which is also important for habitat suitability 

for moose (Dussault et al. 2006). I used an interspersion-juxtaposition index (IJI) to examine the 

complexity of the landscape within the 5,000 m buffer on a 0–100 scale, where a value of 100 

represents high interspersion of patches. 

For moose, I used some other measures of the landscape that were associated with 

moose-vehicle collisions (Danks and Porter 2010). I used ArcGIS to calculate the nearest 

distances to 3 landscape features: distance to the nearest shrub-wetland land-cover patch 

(D_SHBW), distance to the nearest stream (D_STR), and distance to the nearest developed area 

(D_DEV). I used shapefiles depicting streams and human development based on 1:24,000 

quadrangles (Maine Office of GIS 2010). I also calculated the degree slope (SLOPE) using a 10-
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m digital elevation map from the United States Geological Survey, National Elevation Dataset 

(Gesch et al. 2002, Gesch 2007).  

 I used characteristics of traffic and the abundance of wildlife to examine for influences on 

WVCs. I used estimates of annual average daily traffic (TRAFFIC), provided by Illinois and 

Maine Departments of Transportation for deer and moose, respectively, at each observation. For 

deer, I used estimates of the numbers of registered vehicles per county (REGISTERED_VEH) 

provided by the Illinois Secretary of State. I also estimated the relative abundance of deer using 

estimates of antlered deer harvested by county provided by the Illinois Department of Natural 

Resources (ABUNDANCE). The numbers of harvested moose did not influence moose-vehicle 

collisions in Maine (Danks and Porter 2010), thus I did not include this variable in my analyses. I 

used speed limits (SPEED) at each observation point for moose. 

3.2.3 Study design and data analysis 

To mimic common situations in which model certainty and underreporting are unknown (e.g., 

Ng et al. 2008, Danks and Porter 2010, Snow et al. 2011), and to evaluate how underreporting 

affected models with differing predictive capabilities, I examined 2 predictive models for deer 

and moose. One model was considered to have good predictive capabilities, and one model had 

poor capabilities. My criteria for the predictive capability was based on area under the receiver 

operating characteristic function (AUC) where good models had a value of ≥ 0.7 and poor 

models had a value of <0.7 (Hosmer et al. 2013). The models I evaluated were: 

Deer model (good): p = TRAFFIC + ABUNDANCE + CWED + CONTAGION + P_AG +  

        P_FOR 

Deer model (poor): p = REGISTERED_VEH + ABUNDANCE + P_WAT 

Moose model (good): p = TRAFFIC + D_DEV + D_SHBW + IJI + P_CUT + P_CONIF +  
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       SPEED 

Moose model (poor): p = D_STR + SIDI + SLOPE 

where p was probability of a site being a WVC. 

I conducted an intercorrelation analysis of the data and excluded the less biologically  

interpretable explanatory variable(s) from any correlated pair (i.e., |r| ≥ 0.70; Program R v2.15.1; 

R Development Core Team). I scaled and centered the remaining variables (i.e., subtracted the 

mean and divided by the standard deviation) to allow standardized comparisons among 

regression coefficients. I examined for influences on locations of deer- and moose-vehicle 

collisions by comparing attributes of reported collisions to sites of non-collisions using a 

maximum-likelihood approach with generalized linear models following a binomial error term 

and logit-link function in Program R. I examined the logistic regression coefficients ( β̂ ) and 

95% confidence intervals (CIs) to ascertain the strength and directionality of the potential 

influences from each environmental variable on the probability of a location reportedly being a 

deer- or moose-vehicle collision.  

3.2.4 Evaluating sensitivity in precision 

I considered the total number of reports for deer- and moose-vehicle collisions to represent 100% 

reporting rates. I used these 100% reporting scenarios to estimate the true relationships between 

the environmental variables and the probabilities of deer- and moose-vehicle collisions. Then, I 

evaluated the effects of underreporting by randomly excluding reports of deer- and moose-

vehicle collisions, and examining for deviation from the true relationships. I randomly excluded 

points by sampling collision locations without replacement for deer- and moose-vehicle 

collisions using the sample function in Program R. I sampled collisions to represent levels of 0–

95% underreporting in increments of 5% (n = 20 levels of underreporting). At each level, I 
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resampled and evaluated 10,000 Monte Carlo simulations for each of the 2 models for deer- and 

moose-vehicle collisions. 

I randomly sampled new sets of non-collision sites for every simulation because sites of 

non-collisions are dependent on where the sites of deer- and moose-vehicle collisions were 

sampled. I used a 2-step process to sample non-collision sites for deer and moose. First, I 

excluded any random locations that were within 500 m from the reported locations of collisions 

to avoid confounding sites of collisions and non-collisions. Then, I sampled without replacement 

equivalent numbers of non-collision sites as numbers of collision sites that were sampled to 

represent the different levels of underreporting. 

I plotted the mean regression coefficients and 95% CIs from the 10,000 simulations to 

evaluate their sensitivity to different levels of underreporting. I evaluated the precision of the 

regression coefficients by examining the spread of the 95% CIs and examining for any changes 

in statistical significance (i.e., lost or gained significance) as underreporting increased. I 

considered any reduction of the true precision by a factor of 2 (i.e., doubling of the spread of 

95% CIs) as a conservative cutoff to identify undesirable situations for making statistical 

inferences. 

3.2.5 Evaluating sensitivity to biased reporting 

Reporting of WVCs may not be consistent among geographic jurisdictions (Knapp et al. 2005). 

Therefore, I conducted similar analyses as described above, but I included a spatial bias in 

reporting for deer- and moose-vehicle collisions based on jurisdictions of county boundaries. I 

biased the reporting rates to be lower throughout 10 of the 50 counties in central Illinois, and 1 of 

the 3 counties in western Maine (Figure 3.1). These counties represented approximately 20% of 

each study area. I selected these counties because they had the lowest densities of roads and 
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thereby represented the least urban counties, respectively, for each study area. Urbanization has 

been identified as an important, county-level, predictor for the incidenceof WVCs with ungulates 

(Finder et al. 1999, Iverson and Iverson 1999, Farrell and Tappe 2007). For these counties only, I 

sampled deer- and moose-vehicle collisions to represent levels of 0–100% underreporting in 5% 

increments. The remaining counties were held constant at 100% reporting. I randomly sampled 

non-collision sites as described above. I conducted 10,000 Monte Carlo simulations of the 

logistic regression models for each level of underreporting. I plotted the mean parameters 

estimates and 95% CIs to evaluate their sensitivity to underreporting and determine whether 

reporting bias changed or weakened the statistical significance of each explanatory variable. 

3.2.6 Evaluating sensitivity in model prediction 

For each of the simulations I used to evaluate precision, I randomly withheld 10% of the sampled 

deer- and moose-vehicle collisions and 10% of the sampled non-collision sites to predict and 

validate the models. I input these data into the logistic regression models and examined how well 

the models correctly classified the withheld data into sites of collisions or non-collisions. I used 

the pROC package in Program R (Robin et al. 2011) to calculate the AUC values and their 95% 

CIs using for determining the predictive capabilities of the models. I plotted the mean AUC 

values and 95% CIs from the 10,000 Monte Carlo simulations for each analysis. 

 For all the simulations used to evaluate bias, I randomly withheld 2 sets of data to 

compare how well the biased models predicted: 1) new-biased data, and 2) new-true data. The 

first set of withheld data included 10% of the sampled deer- and moose-vehicle collisions that 

were spatially biased, and an equivalent number of non-collision sites. The second set included 

randomly sampled deer- and moose-vehicle collisions from the true dataset (i.e., not spatially 

biased), and an equivalent number of non-collision sites. Both sets were constrained to have the 



43 

 

same sample sizes at each level of underreporting. I plotted the mean AUC values and 95% CIs 

from the 10,000 Monte Carlo simulations for both sets of data. 

3.3 RESULTS 

Overall, I conducted 1,640,000 Monte Carlo simulations of logistic regression models to 

evaluate the sensitivity of precision, shifts in regression coefficients, and prediction of statistical 

models to underreporting of deer- and moose-vehicle collisions. When underreporting occurred 

randomly for deer-vehicle collisions, I found that the precision of regression coefficients 

remained relatively stable until ≥70% of collisions were unreported (Figure 3.2). After this, the 

amount of uncertainty doubled. For 2 of 9 variables (CONTAGION and REGISTERTED_VEH), 

the 95% CIs began overlapping zero (i.e., lost statistical significance) when ≥90% of deer-

vehicle collisions were unreported. The point estimates of the coefficients remained stable up to 

95% of deer-vehicle collisions being unreported.  

I found similar results for moose-vehicle collisions when underreporting occurred 

randomly. The precision of regression coefficients was stable until ≥70% of collisions were 

unreported (Figure A.1). For 1 of 10 variables (D_SHBW), the 95% CIs began overlapping zero 

when ≥60% of moose-vehicle collisions were unreported. Five other variables (P_CONIF, IJI, 

D_DEV, D_STR, and SIDI) lost significance after ≥85% of moose-vehicle collisions were 

unreported. The point estimates of the coefficients remained stable up to 95% of moose-vehicle 

collisions being unreported. 

The 10 least urban counties in central Illinois contained 1,458 deer-vehicle collisions, 

representing18% of the total records. When underreporting was spatially biased, I found the 

point estimates of regression coefficients for 2 of 9 variables (ABUNDANCE in both models) 

shifted at 40% of deer-vehicle collisions being unreported (Figure 3.3). This shift became 
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stronger as fewer collisions were reported. The average values of ABUNDANCE were 

substantially higher in the less urban counties compared to the 40 more urban counties (Table 

3.2), suggesting that the abundance of deer was unevenly distributed throughout the study area. 

Point estimates for 5 other variables also changed slightly as fewer collisions were reported 

(P_AG, P_FOR, CWED, CONTAGION, REGISTERTED_VEH), although these shifts did not 

change statistical inferences. The average values for these 5 variables were also unevenly 

distributed throughout the study area (Table 3.2). 

Table 3.2 Averaged values for environmental variables in counties used to examine influences 

on the probabilities of deer-vehicle collisions in central Illinois (2010) and moose-vehicle 

collisions in western Maine (2000–2010). Biased counties represented counties in which the 

rates of reporting for collisions were simulated to be lower than unbiased counties. 

Central Illinois 

 

Western Maine 

Environmental 

variable (deer) 

 

Biased 

counties 

Unbiased 

counties 

 

Environmental 

variable (moose) 

 

Biased 

counties 

Unbiased 

counties 

TRAFFIC 

 

956 3,301 

 

TRAFFIC 

 

1,357 1,684 

CONTAGION 

 

65.5 74.0 

 

D_DEV (m) 

 

3170 2493 

CWED (km/km
2
) 

 

34.2 18.1 

 

D_SHBW (m) 

 

289 408 

ABUNDANCE
a
 

 

1,043 633 

 

D_STR (m) 

 

444 412 

P_AG 

 

0.60 0.77 

 

IJI 

 

50.0 54.3 

P_FOR 

 

0.29 0.13 

 

P_CONIF 

 

0.27 0.28 

P_WAT 

 

0.03 0.01 

 

P_CUT 

 

0.02 0.02 

REGISTERED_VEH 

 

16,810 59,291 

 

SIDI 

 

0.59 0.58 

     

SLOPE (degree)
 a

 

 

5.9 8.2 

          SPEED (km/hr)   75.8 72.9 
a
Represents variables with shifting regression coefficients from logistic regression models as 

fewer collisions were reported. 

TRAFFIC = annual average daily traffic, CONTAGION = contagion index of land-cover and 

land-use types, CWED = contrast-weighted edge density among land-cover and land-use types, 

ABUNDANCE = index for abundance of deer from estimated harvest of antlered deer, P_AG = 

proportion of agriculture, P_FOR = proportion of forest, P_WAT = Proportion of water, 

REGISTERTED_VEH = number of registered vehicles, D_DEV = distance to nearest developed 

area, D_SHBW = distance to nearest shrub wetland, D_STR = distance to nearest stream, IJI = 

interspersion/juxtaposition index of land-cover and land-use types, P_CONIF = proportion of 

conifer forest, P_CUT = proportion of cutover (harvested) forest, SIDI = Simpson’s index of 
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diversity for land-cover and land-use types, SLOPE = degree of slope, SPEED = posted speed 

limit. 

 

 I found similar results for moose-vehicle collisions when underreporting was spatially 

biased. The least urban county in western Maine contained 229 moose-vehicle collisions, 21% of 

the total records. Point estimates for 1 of 10 variables (SLOPE) shifted as fewer collisions were 

reported (Figure A.2). The average degree of slope was substantially lower in the least urban 

county (Table 3.2), indicating an uneven distribution throughout the study area. The other 

variables were evenly distributed, thus resulting in point estimates that remained stable. 

The predictive capabilities of both good and poor models for deer-vehicle collisions were 

similarly affected by underreporting of collisions. When underreporting occurred randomly, the 

estimated AUC values were not affected by underreporting (Figure A.3). The AUC values 

remained constant for predicting deer-vehicle collisions (i.e., ~0.80 for the good model and 

~0.60 for the poor model), and for predicting moose-vehicle collisions (i.e., ~0.87 for the good 

model and ~0.67 for the poor model). However, imprecision around the AUC values doubled 

after approximately ≥75% of collisions were unreported for deer and moose. When 

underreporting occurred with spatial bias, the predictive capabilities of the biased models were 

mostly similar between the new-biased and new-true reports of deer- and moose-vehicle 

collisions (Figure 3.4). The only simulation in which prediction differed was for the poor model 

at 100% underreporting of deer-vehicle collisions in the least urban counties. Here, the ability to 

predict true data was reduced, indicating that the biased model was substantially affected by 

underreporting. 
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Figure 3.2 Average parameter estimates and 95% confidence intervals from 10,000 Monte Carlo 

simulations at different levels of underreporting for deer-vehicle collisions in central Illinois, 

USA, during 2011. The model with good predictive capability included: TRAFFIC = annual 

average daily traffic, ABUNDANCE = abundance of deer per county indexed by antlered 

harvest, P_AG = proportion of agriculture land-cover within 800 m buffer, P_FOR = proportion 

of forest land-cover within 800 m buffer, CWED = contrast-weighted edge density within 800 m 

buffer, CONTAGION = contagion index within 800 m buffer. The model with poor predictive 

capability included: REGISTERTED_VEH = the number of registered vehicles per county, 

ABUNDANCE, and P_WAT = proportion of water land-cover within 800 m buffer. 
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 Figure 3.3 Average parameter estimates and 95% confidence intervals from 10,000 Monte 

Carlo simulations of logistic regression analyses including spatial biases in reporting for different 

levels of underreporting for deer-vehicle collisions in the most rural counties in central Illinois, 

USA, during 2011. The model with good predictive capability included: TRAFFIC = annual 

average daily traffic, ABUNDANCE = abundance of deer per county indexed by antlered 

harvest, P_AG = proportion of agriculture land-cover within 800 m buffer, P_FOR = proportion 

of forest land-cover within 800 m buffer, CWED = contrast-weighted edge density within 800 m 

buffer, CONTAGION = contagion index within 800 m buffer. The model with poor predictive 

capability included: REGISTERTED_VEH = the number of registered vehicles per county, 

ABUNDANCE, and P_WAT = proportion of water land-cover within 800 m buffer. 
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Figure 3.4 Average receiver operating characteristic function (AUC) and 95% confidence intervals for logistic regression analyses 

including spatial biases in reporting for the least urban counties for deer-vehicle collisions in central Illinois, USA, during 2011 and 

moose-vehicle collisions in western Maine, USA during 2000–2011. The AUC values were calculated from 10,000 Monte Carlo 

simulations at different levels of underreporting. 
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3.4 DISCUSSION 

I sought to determine the proportion of WVCs that should be reported in order to support 

statistical analyses for investigating the relationships between environmental variables and the 

probabilities of WVCs. I identified similar effects from underreporting for deer-vehicle collisions 

in central Illinois and moose-vehicle collisions in western Maine. These similarities in results 

across such large differences in landscape, traffic, movement behavior, and population 

abundance suggest that the effects of underreporting can be generalized across studies of WVCs. 

Consequently, I suggest my results are widely applicable. A common feature of WVCs, their 

tendency to occur in non-random patterns (i.e., hotspots; Huijser et al. 2008, Ng et al. 2008, 

Danks and Porter 2010), can likely explain these similarities. The existence of hotspots indicates 

that variation in how environmental variables influence WVCs is low. Therefore, underreporting 

of WVCs is mostly unproblematic until identification of the influences of hotspots is not possible 

for most studies of WVCs. 

When underreporting occurs randomly, my findings indicate that studies of WVCs are 

robust to underreporting. Estimates of precision for the regression coefficients were stable until 

>70% of WVCs were unreported. If more WVCs were unreported, the small sample sizes caused 

reduced statistical power (Krebs 1999) and difficulty in detecting some relationships between the 

environmental variables and the probability of WVCs. Relatively few reports are necessary for 

identifying the influences of high incidence locations (~30%) because WVCs occur in easily 

identifiable patterns. For instance, hotspots occur on roads with intense traffic that intersect 

animal movement corridors (e.g., Ramp et al. 2005, Brockie 2007, Gomes et al. 2009, Grilo et al. 

2009), and identifying the environmental variables that influence these hotspots does not require 

vast amounts of reports. Reporting rates for deer-vehicle collisions are estimated to be 42–50% 
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(Decker et al. 1990, Romin and Bissonette 1996, Marcoux and Riley 2010), exceeding the 30% 

threshold I identified. Reporting rates for moose are unknown, but I expect > 30% are reported 

because collisions with such large animals result in high property damage or human injury. 

When reporting rates were simulated to be spatially biased, my findings indicate that 

models of WVCs are less robust to underreporting. I detected shifts in 2 of 9 estimates of 

regression coefficients for deer and 1 of 10 estimates for moose, only for variables that were 

unevenly distributed throughout the study areas. For example, ABUNDANCE was substantially 

higher (1,043) in the 10 counties I selected to have lower reporting than in the other 40 counties 

(633). This discrepancy changed the statistical influence of ABUNDANCE, because fewer 

collisions were reported in regions that had higher abundances of deer. My analysis showed that 

uneven rates of reporting combined with uneven distribution of environmental variables in ≤20% 

of the study area were enough to result in shifted inferences. However, the shifts were less 

noticeable at higher rates of reporting. Higher reporting can reduce shifts in regression 

coefficients, but not eliminate it. Similar types of unreliable inferences have been identified in 

survey studies from measuring subsets of reports (Groves 2004, Lavrakas 2008). Unreliable 

inferences are observed when some groups or locations are sampled less, and therefore 

incomplete information is used in data analyses. Study areas with uneven landscapes (i.e., 

variable land cover and land use, topography, etc.) are at risk of shifted regression coefficients 

for WVCs if reporting is also uneven, because uneven reports may not accurately characterize 

the true environmental influences of collisions.  

The performances for good- and poor-predictive models were similarly affected by 

underreporting. When underreporting was random, the precision of AUC values remained stable 

until ≥75% of WVCs were unreported. When underreporting was spatially biased, the predictive 
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capabilities of the models were stable (i.e., predicted new-biased and new-true data similarly), 

indicating a high degree of robustness to spatially biased underreporting. The one exception in 

which true data were not accurately predicted suggests that the robustness of models is related to 

the relative importance of each variable. For instance, the relative importance was low for 

ABUNDANCE in the good model for deer-vehicle collisions, but was high in the poor model. In 

both cases, the strength and directionality of effects for ABUNDANCE were increasingly shifted 

as fewer deer-vehicle collisions were reported. Yet, the good model was capable of predicting 

true data and the poor model was not, when reporting was low. This is because the low relative 

importance for ABUNDANCE in the good model suggested that ABUNDANCE had little to no 

impact on the probability of WVCs, even with a high degree of bias in reporting. Therefore, 

ABUNDANCE had little to no influence for predicting collisions in the good model, relative to 

the other variables. 

I recognize that the biological inferences from my logistic regression models may be 

afflicted by the same underreporting I evaluated in this study. The data I defined as true for my 

purposes here (i.e., 100% reporting), were not actually true. I used the best datasets (to my 

knowledge) for accurately representing the majority of WVCs, and therefore my analysis 

represents the best relative effects of underreporting. Using this method identified conservative 

estimates of thresholds because I based the thresholds on the number of reported collisions as 

opposed to the unknown larger number of true collisions. I also recognize that the WVCs used in 

this study were relatively common events, thus produced large sample sizes. Underreporting for 

studies of rare events will likely generate more uncertain inferences, and should be analyzed with 

caution. 
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 Findings from this research provide useful implications for studies of WVCs. If 

underreporting is random, I found only 30% of reports were necessary for reliable inferences. 

Underreporting may be random if reports are generated based on non-space-related criteria. For 

instance, reports of deer- and moose-vehicle collisions were generated for collisions involving 

certain amounts of property damage or injury, not by where the collisions occurred. For studies 

that systematically search roads for WVCs, searches should aim to record ≥30% of collisions. If 

reporting of WVCs is spatially biased, or if the degree of spatial bias is unknown, researchers 

should examine the distribution of environmental variables to determine whether shifts in 

regression coefficients might be generated. For unevenly distributed variables, the estimated 

relationships with WVCs may be unreliable. Increasing the rate of reporting would be helpful to 

reduce shifts in regression coefficients, but cannot overcome it. Therefore, even rates of 

reporting throughout the study area are the most efficient methods for generating reliable 

estimates. This principle should be considered in studies that use reports of WVCs across 

different municipalities. Some municipalities may not prioritize collecting reports with the same 

rigor, thus spatial biases in underreporting may exist. Discerning whether reports of WVCs are 

spatially biased requires in-depth understanding of how each municipality collects the reports. 

The current rates of reporting for deer-vehicle collisions in Illinois and moose-vehicle 

collisions in Maine are sufficient for producing highly reliable findings. For other species, the 

maximum cost-benefit ratio for producing reliable findings will be achieved by evenly collecting 

reports at rates of ≥30% of collisions. This study design may also be applied to other studies 

(e.g., survey studies) that use incidence reports to assess risk, particularly if the incidences occur 

in hotspots. Even reporting, even if rates are low, is sufficient for reliable findings. 
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DYNAMIC SPACE-TIME ANALYSIS OF WHITE-TAILED DEER-VEHICLE 

COLLISIONS THROUGHOUT THE MIDWEST UNITED STATES 

 

ABSTRACT 

During the last half-century, human changes to landscape structure and wildlife management 

throughout the United States have dramatically altered densities of white-tailed deer (Odocoileus 

virginianus) and traffic patterns. Today, deer-vehicle collisions (DVCs) represent one of the 

most persistent, widespread, costly, and dangerous human-wildlife conflicts. Yet, it remains 

unclear how specific factors influence the frequency of DVCs across the range of deer and 

through time. I examined how traffic volume, abundance of deer, and land cover influenced 

DVCs through a 12 year period (2000–2011) across 3 eco-zones (Northern Forest, Forest-

Agriculture Matrix, and Agriculture) that intersect 4 Midwestern states (n = 355 counties from 

Iowa, Illinois, Michigan, and Wisconsin). I applied a new, temporally dynamic Bayesian model 

to assess whether the influences of DVCs changed through time and space. I found that the 

frequencies of DVCs were influenced by the suburb effect– a unique combination of features 

generated in suburban environments that coalesce to increase the frequencies of DVCs. These 

include: 1) intermediate to high traffic, 2) high abundances of deer, and 3) fragmented 

landscapes (i.e., intermixed and low aggregation of land covers) containing high proportions of 

agriculture. The suburb effect was strongest in the Forest-Agriculture Matrix where large cities 

with adjacent outlying suburbs occur. The Agriculture and Northern Forest eco-zones, where 

suburbanization is less prevalent, experienced similar but weaker influences. I found no changes 

in factors that influenced DVCs over time, indicating long durations of DVC predictability. 

DVCs should be expected to increase in all eco-zones where suburbanization occurs unless 

effective mitigation can be implemented. These findings should be considered in urban and road 

development planning to minimize the substantial impacts associated with DVCs. This research 
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provides new justification for incorporating long-term mitigation measures (e.g., underpasses) in 

infrastructure development or redevelopment in suburban environments to reduce future DVC 

occurrence for many years. Harvesting more deer in suburban environments will also reduce 

collisions. 

4.1 INTRODUCTION 

Vehicular collisions with white-tailed deer (Odocoileus virginianus) are one of the most 

widespread and persistent human-wildlife conflicts throughout the United States (Conover 

2010). An estimated >1 million deer-vehicle collisions (DVCs) occur each year in the United 

States (Conover et al. 1995) and are rising  (Huijser et al. 2008). Since 1990, fatal collisions with 

wildlife (mostly deer) have increased 104% (Sullivan 2011) and DVCs comprised one of the 

largest sources of economic loss from wildlife, averaging $6,717 per DVC (Huijser et al. 2008). 

The Midwest region of the United States records the highest reports of DVCs compared to other 

regions. Deer-vehicle collisions have become prolific enough that states are prioritizing keeping 

the frequency of DVCs below publicly tolerable levels. In 2008, Illinois implemented a deer-

management objective to keep the rate of DVCs at ≤207 DVCs per billion of miles traveled 

(University of Illinois Extension 2013). 

 Changes in landscape structure and wildlife management during the past several decades 

have led to historic levels of population abundance for deer (Coulson 1999) and increases in 

DVCs. Meanwhile, human populations have increased and dispersed away from centralized 

cities (i.e., suburbanization; Jordan et al. 1998, Alig et al. 2004, Baum-Snow 2007). Suburban 

environments reportedly maintain high abundances of deer by providing refuge from hunting 

(Harden et al. 2005, Lovely et al. 2013). Agricultural activities throughout the Midwest also 

maintain high densities of deer (Roseberry and Woolf 1998) especially when coupled with 
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interconnected patches of forests (Walter et al. 2009). Additionally, future changes in the 

environment from increasing suburbanization (Alig et al. 2004) and climate change (i.e., lower 

winter severity and reduction in old growth forests; Thompson et al. 1998) may continue to 

increase densities of deer and DVCs throughout the Midwest region.  

I hypothesized that large-scale, environmental characteristics associated with the volume 

of traffic, abundance of deer, and configuration and composition of the landscape influence the 

frequencies of DVCs throughout the Midwest. New developments in dynamic process, Bayesian 

modeling (Gelfand et al. 2005, Finley et al. 2012) have unlocked the ability to examine for these 

spatiotemporal processes. Dynamic models incorporate temporal processes by using previous 

information to inform current and future events. An important complement to these models has 

been the long-term reporting of DVCs, traffic, indices for abundance of deer, and mapping of 

land use and land cover across the Midwest during the last 2 decades. This combination of 

dynamic modeling with large datasets provides new opportunities for comprehensive studies of 

DVCs over large spatial and temporal extents. 

Currently, a number of unanswered questions about the influences of DVCs limit our 

ability to understand their frequencies throughout the range of deer and through time. My 

objective was to examine the dynamic influences of DVCs and answer 2 important questions: i) 

is the frequency of DVCs influenced by the dynamic nature of environmental variables though 

time, and ii) do environmental variables influence the frequency of DVCs differently across 

space?  I attempted to answer these questions by examining the spatiotemporal influences of 

DVCs in 3 eco-zones (i.e., Northern Forests, Forest-Agriculture Matrix, and Agriculture) 

throughout 12 years in the Midwest. 
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4.2 METHODS 

4.2.1 Study area 

My study area (584,493 km
2
) was comprised of 355 counties from Illinois, Iowa, Michigan, and 

Wisconsin (Figure 4.1). Overall, this region included approximately 981,765 km of roads for an 

overall road density of 1.68 km/km
2
. I divided the region into 3 eco-zones: Northern Forests, 

Forest-Agriculture Matrix, and Agriculture based on the province divisions of ecoregions for the 

United States (Bailey 1983;1995). The Northern Forests lies within the Laurentian mixed forest 

ecosystem province. The land cover of this province was dominated by stands of conifers, 

deciduous, and mixed conifer-deciduous trees; such as balsam fir (Abies balsamea), pines (Pinus 

spp.), spruce (Picea spp.), eastern white cedar (Thuja occidentalis), maples (Acer spp.), yellow 

birch (Betula alleghaniensis), and American beech (Fagus grandifolia). The average human 

density during 2000–2011 was estimated to be 16.5 people/km
2
(United States Census Bureau 

2012). The average road density per county was 1.47 km/km
2
. The average density of deer 

harvested per county during 2000–2011 was 1.30 deer/km
2
(e.g., Fawley 2012). The Forest-

Agriculture Matrix ecoregion lies within the eastern broadleaf forest (continental) ecosystem 

province. The land cover and land use of this province was a mix of oak (Quercus spp.) –hickory 

(Carya spp.) stands with maples and American beech trees; and corn, soybean, wheat, and 

livestock production. The average human density was estimated to be 104.7 people/km
2
. The 

average road density per county was 2.19 km/km
2
. The average density of deer harvested per 

county was 1.74 deer/km
2
. The Agricultural eco-zone lies within the prairie parkland (temperate) 
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ecosystem province. This province was dominated by corn, soybean, alfalfa, and livestock 

production; and intermixed patches of native grasslands. The average human density was 

estimated to be 27.7 people/km
2
. The average road density per county was 1.33 km/km

2
. The 

average density of deer harvested per county was 0.58 deer/km
2
.
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Figure 4.1 Study area for examination of dynamic, space-time influences of deer-vehicle collisions at the county level throughout the 

Midwest, USA during 2000–2011. 
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4.2.1 Data collection 

Descriptions and sources of data are provided in Table A.1. All data were compiled annually at 

the county level for the states of Illinois, Iowa, Michigan, and Wisconsin during 2000–2011. I 

excluded Menominee County, WI because no reports of DVCs were obtained. Deer-vehicle 

collisions were considered as the reported numbers of traffic accidents involving deer during 

each year. Counts of DVCs were biased low because not all collisions were reported. Reporting 

rates of DVCs have been estimated to be 42–50% (Decker et al. 1990, Romin and Bissonette 

1996, Marcoux and Riley 2010). Snow et al. (unpublished report) determined that models 

regarding the influences of WVCs were robust to random underreporting if >30% of collisions 

were reported. Therefore, I used the reported number of DVCs per county as relative indices for 

the true frequency of collisions. Collisions with deer were reported when they resulted in human 

injury or death, or exceeded a certain amount of property damage. The amounts of property 

damage varied by state and year (Table A.1), but the average amount of damage from DVCs 

exceeded the minimum amounts required for reporting in all cases (Huijser et al. 2008). 

 I compiled records of antlered and antlerless deer harvested in each county each year. No 

restrictions were placed on the number of individuals that may purchase licenses to hunt antlered 

deer, which the majority of hunters preferred to harvest over antlerless deer (Fawley and 

Rudolph 2014). Therefore, in the absence of consistently developed annual deer populations at 

the county level, the number of antlered deer harvested during year t was used as an index to 

represent the abundance of deer during year t (ABUNDUNCE). Antlerless permits were more 

regulated with intent to remove a number of female deer to achieve desired impacts on 

population abundance (Brown et al. 2000). Therefore, I used the number of antlerless deer 
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harvested during year t-1 as an index for the effect of management on the population of deer 

during year t (ANTLERLESS_LAG). 

 I compiled shapefiles depicting locations of all roads in each state to identify all public 

roads using ArcGIS (v10.1; Environmental Systems Research Institute, Inc., Redlands, CA). I 

used National Functional Classification categories to exclude private roads from this analysis 

(Michigan Department of Transportation 2013). Using the Geospatial Modeling Environment 

program (v0.7.2.1, Spatial Ecology LLC), I calculated the length of roads inside each county, 

and then calculated the road density for each county as the total length of roads divided by the 

area of the county (km/km
2
). Estimates of annual vehicle miles traveled (TRAFFIC) were used 

to measure the volume of traffic in each county during each year. Because traffic may be highest 

in heavily urbanized areas that are mostly devoid of suitable deer habitat, I also examined 

TRAFFIC
2
 to identify any non-linear effects from traffic. The interaction (TRAFFIC x 

ABUNDANCE) was also considered to examine the interacting relationships between the 

volume of traffic and the abundance of deer on the frequency of DVCs. Lastly, I compiled the 

numbers of registered vehicles in each county (VEH_REGISTERED) to provide an index of the 

number of vehicles on roads. 

 I used ArcGIS to reclassify the 2001 and 2006 National Land Cover Database (Homer et 

al. 2007, Fry et al. 2011) from 16 to 7 classes (agriculture, forest, developed, rangeland, 

wetlands, water, and other; Table 4.1) that represented important land-cover and land-use classes 

for deer (Anderson et al. 1976). I used the 2001 database to represent the time period 2000–2005, 

and the 2006 database to represent 2006–2011. I calculated 5 landscape metrics using program 

FRAGSTATS (v4.1, University of Massachusetts, Amherst) to quantify important land covers 

and configurations for deer in each county. I calculated the proportions of agriculture (P_AG), 
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forest (P_FOR), and developed (P_DEV) land covers in each county. The contrast-weighted 

edge density (CWED) represented the sum of the borders between cover types multiplied by a 

corresponding contrast-weight (i.e., weight = 1 for agriculture, rangeland, and forest cover types, 

and weight = 0 for all other cover types) divided by the area of the county (km/km
2
). Contagion 

was an index of the spatial aggregation and interspersion of similar patch types. A contagion 

value of 0 represented a highly fragmented and intermixed landscape, whereas a value of 100 

represented a landscape comprised of a single patch. 

Table 4.1 Proportion of reclassified land-cover and land-use types for 3 eco-zones in the 

Midwest United States from the 2001 and 2006 National Land Cover Databases. 

Class  

Northern 

Forest 

 

Forest-

Agriculture 

Matrix 

 

Agriculture 

  2001 2006   2001 2006   2001 2006 

Agriculture 

 

0.16 0.16 

 

0.56 0.56 

 

0.78 0.78 

Forest 

 

0.68 0.67 

 

0.24 0.24 

 

0.10 0.10 

Developed 

 

0.05 0.05 

 

0.13 0.13 

 

0.08 0.08 

Rangeland 

 

0.05 0.05 

 

0.02 0.02 

 

0.03 0.03 

Wetlands 

 

0.02 0.02 

 

0.01 0.01 

 

0.00 0.01 

Water 

 

0.03 0.03 

 

0.02 0.02 

 

0.01 0.01 

Other 

 

0.00 0.00 

 

0.00 0.00 

 

0.00 0.00 

4.2.1 Study design and data analysis 

I used counties as my spatial units of observation and years as my temporal units of observation. 

Each county was associated with an annual response variable (count of DVCs) and 10 annual 

explanatory variables (TRAFFIC, TRAFFIC
2
, ABUNDANCE, ANTLERLESS_LAG, 

TRAFFIC x ABUNDANCE, VEH_REGISTERED, P_AG, P_FOR, P_DEV, CWED, and 

CONTAGION). Post hoc, I considered the interaction of CONTAGION x ABUNDANCE. I 

conducted an intercorrelation analysis of the explanatory variables to examine for correlation 

among variables. I excluded the less biologically interpretable variable(s) from any correlated 



63 

 

pair (i.e., |r| ≥ 0.60; Program R v2.15.1; R Development Core Team). The remaining variables 

were used in subsequent models. 

I used a Bayesian modeling framework to develop a dynamic, space-time model for each 

eco-zone to examine the influences of DVCs at the county-level. I used the OpenBUGs program 

(v3.2.2, Members of the OpenBUGs Project Management Group; Medical Research Council, 

UK; and Imperial College, UK) and Program R to construct dynamic models that varied by year 

(Finley et al. 2012). I used the road density (km/km
2
) as an offset for each county to account for 

differences in the total lengths of roads and areas of counties. I incorporated normally distributed 

random intercepts for each state to account for the differences in reporting among states. I also 

included normally distributed, temporal random effect to account for the higher than expected 

variability (i.e., overdispersion) in the distribution of reported DVCs for my Poisson model 

(Kéry 2010). The full dynamic, Poisson generalized linear mixed model with a log-link was used 

to estimate the count of DVCs at year (t) in county (c), as:  

    ( )                                 ;  

 s =          

where αs,t represented the random intercept at year (t) for state (s). The random time intercept 

included a Markovian time-dependent process in the specification of the normally distributed 

priors, so that the prior of the intercept for year (t) was informed by the posterior of year (t-1). 

The xt were vectors of the environmental variables at year (t). The regression coefficients βt 

included a Markovian time-dependent process in the specification of normally distributed priors, 

so that the prior for the predictor of year (t) was informed by the posterior of year (t-1). The εt 

were the temporal-random effects to account for overdispersion for year (t). I examined 4 Monte 
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Carlo Markov chains of 100,000 iterations with burn-ins of 95,000 iterations. Combined, I made 

inferences based on 20,000 iterations from 4 converged chains.  

I examined the median and 95% credible intervals (CIs) from the distributions of the 

estimated regression coefficients to identify influences from the environmental variables on the 

frequency of DVCs. Specifically, I examined the CIs for overlap of zero to ascertain which 

environmental variables had clear effects on the count of DVCs. I used the final year of the 

analysis (2011) to examine effect plots for each of the environmental variables. The final year 

included the most information from the time-evolving priors, and was most pertinent for current 

management strategies. Effect plots were constructed for the range of data values for each 

environmental variable in each eco-zone. I used models without the interaction terms to construct 

effect plots for the main effects of each variable. 

 I validated the models by randomly withholding 10% of the reported number of DVCs 

during 2011 from the datasets for each eco-zone. I predicted the number of collisions, and 

compared to the number of observed DVCs. Finally, I examined residuals from the models for 

each eco-zone for evidence of spatial autocorrelation using a semivariogram (package geoR v 

1.7-4; Ribeiro and Diggle 2001). 

4.3 RESULTS 

Overall, 1,387,948 DVCs were reported during my 12-year study averaging approximately 

115,662 DVCs per year within the 3 eco-zones. The average number reported per county was x̄ = 

385.3 (SD = 275.5) in the Northern Forest, x̄ = 471.0 (SD = 458.6) in the Forest-Agriculture 

Matrix, and x̄ = 158.9 (SD = 122.8) Agriculture eco-zone. I found that ABUNDANCE and 

ANTLERLESS_LAG were highly correlated (r = 0.83), therefore I excluded 

ANTLERLESS_LAG from further analysis. TRAFFIC was highly correlated with 
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VEH_REGISTERED (r = 0.83) and P_DEV (r = 0.84), therefore I excluded 

VEH_REGISTERED and P_DEV from further analysis. CONTAGION and CWED were highly 

correlated (r = -0.65), therefore I excluded CWED from further analysis. Also, P_AG and 

P_FOR were highly correlated (r = -0.91), therefore I excluded P_FOR from further analysis. 

The remaining explanatory variables I examined were: TRAFFIC, TRAFFIC
2
, ABUNDANCE, 

TRAFFIC x ABUNDANCE, P_AG, CONTAGION, and CONTAGION x ABUNDANCE).  

 The estimates of regression coefficients and their 95% CIs for each variable were mostly 

stable throughout the 12 years for each eco-zone (Figure 4.2). The interaction (TRAFFIC x 

ABUNDANCE) did not influence the count of DVCs in any eco-zones during any years. The 

interaction (CONTAGION x ABUNDANCE) had a positive influence on the frequency of DVCs 

for 1 year in the Northern Forest, 5 years in the Forest-Agriculture Matrix, and 7 years in the 

Agriculture eco-zone. The 3D effect plots for CONTAGION x ABUNDANCE indicated that the 

frequency of DVCs increased most strongly in the Forest-Agriculture Matrix where counties had 

highly fragmented landscapes and high abundances of deer (Figure 4.3). In the other 2 eco-

zones, DVCs increased as abundances of deer increased.  

 I found a negative quadratic effect from TRAFFIC
2
 during 9 years in the Northern 

Forest, 2 years in the Forest-Agriculture Matrix, and 12 years in the Agriculture eco-zone (Figure 

4.2), suggesting that intermediate levels of traffic increased the frequency of DVCs during those 

years. Otherwise, the frequency of DVCs increased in counties that had higher levels of traffic. 

The frequencies of DVCs also increased in counties with higher abundances of deer during all 

years in all eco-zones. The effect plots indicated that the Forest-Agriculture Matrix was most 

strongly influenced by TRAFFIC and ABUNDANCE, but this eco-zone also experienced the 

highest values from both variables (Figure 4.4). 
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 The proportion of agriculture had a positive effect on the frequency of DVCs during only 

1 year in the Northern Forest, during all 12 years in the Forest-Agriculture Matrix, and during no 

years in the Agriculture eco-zone (Figure 4.2). CONTAGION had a positive effect during all 

years in the Northern Forest; and a negative effect during all years in the Forest-Agriculture 

Matrix and during 1 year in the Agriculture eco-zone. A negative effect from CONTAGION 

indicated that the frequency of DVCs increased in more fragmented habitats. The effect plots 

showed that the Forest-Agriculture Matrix was most strongly influenced by the characteristics of 

the landscapes, although lesser influences were noticeable for the other eco-zones (Figure 4.4). 

 Model validation indicated that the models predicted the counts of DVCs with reasonable 

accuracy for all eco-zones, especially for counties with lower counts of DVCs (e.g., <500 

DVCs/year; Figure 4.5). Prediction became more variable with higher counts of DVCs, 

particularly in the Forest-Agriculture Matrix. The residuals from the models for each eco-zone 

showed no indication of spatial autocorrelation among counties; therefore, no correction for 

autocorrelation in my models was required.



67 

 

Figure 4.2 Estimates of regression coefficients and 95% CIs from dynamic models for examining the influences of environmental 

variables on the frequencies of deer-vehicle collisions (DVCs) at a county level throughout the Midwest, USA during 2000–2011. 

CONTAGION = an index of fragmentation among land covers per county per year where lower values represent more fragmented 

landscapes. 
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Figure 4.3 Effect plots (medians and 95% CIs) for the interaction term of CONTAGION x ABUNDANCE for examining the 

influence on the frequency of deer-vehicle collisions (DVCs) in 3 eco-zones in the Midwest, USA during 2011. CONTAGION = an 

index of fragmentation among land covers per county per year where lower values represent more fragmented landscapes. The density 

of observed data points are plotted to indicate levels of confidence for the predicted surface. Red = high density of observed points. 

Blue = low density of observed points. No color = extrapolated effects. 
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Figure 4.4 Effect plots (medians and 95% CIs) for environmental variables for examining the influences on the frequency of deer-

vehicle collisions (DVCs) in 3 eco-zones in the Midwest, USA during 2011. CONTAGION = an index of fragmentation among land 

covers per county per year where lower values represent more fragmented landscapes.  
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Figure 4.5 Predicted vs. observed number of deer-vehicle collisions (DVCs) for 10% of 

withheld data for model validation in 3 eco-zones in the Midwest, USA during 2011. 
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4.4 DISCUSSION 

The results from this research signify the first known, empirical explanation for the large-scale 

processes driving the frequencies of DVCs throughout the Midwest United States. Throughout 

the Midwest, the highest annual reports of DVCs are in the Forest-Agriculture Matrix eco-zone. 

My research shows that the frequencies of DVCs are highest where unique combinations of 

traffic volumes, abundance of deer, and landscape characteristics coalesce to increase the 

frequencies of DVCs– the suburb effect. A smaller-scale study in Michigan found similar 

influences on DVCs, but did not connect the process to the suburb effect (Sudharsan et al. 2005). 

Specifically, I describe the suburb effect as such: 

1. Counties with intermediate to high levels of traffic, indicative of the roadways that 

facilitated suburbanization extending away from cities (Baum-Snow 2007). These 

roadways connect suburban and urban developments by traversing through mixtures of 

urban and rural landscapes. 

2. Counties with high abundances of deer, consistent with suburbs providing refugia from 

hunters (Roseberry and Woolf 1998, Lovely et al. 2013). 

3. Counties with relatively high proportions of croplands that are not highly aggregated and 

are intermixed with other land-covers (i.e., fragmented landscape). These attributes of the 

landscape are relics of converting croplands and forests into developed areas for 

suburbanization (Harris 1943, Alig et al. 2004). These landscapes provide high quality 

forage and shelter habitats for deer (Roseberry and Woolf 1998, Walter et al. 2009). 

 The influence of suburban environments was strongest in the Forest-Agriculture Matrix 

because suburbanization was most prevalent here. The largest cities were located in this eco-zone 

(i.e., Chicago, Detroit, Flint, Grand Rapids, Lansing, Madison, Milwaukee) and suburbanization 
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extend out from city centers (Baum-Snow 2007). According to my findings, areas where DVCs 

are most common are within these suburban environments. The effect plots indicated that the 

highest frequencies of DVCs were observed in the Forest-Agriculture Matrix where counties had 

>10,000 million vehicle miles traveled in a year, in counties with >4,000 antlered deer harvest in 

a year, in counties with >50% agriculture, and in counties with a contagion index of <60. These 

empirical results provide new information for urban planners, transportation managers, and 

natural resource managers to identify regions that experience the highest frequencies of DVCs 

and identify the root causes of those frequencies. 

The Agriculture eco-zone had fewer cities and a lower density of humans because most 

of the landscape was designated as working farms. The influences of DVCs in this eco-zone 

were similarly indicative of suburban environments, but with less strong effects than the Forest-

Agriculture Matrix. The Agriculture eco-zone had similar human populations and traffic as a 

prior study in Arkansas that identified urban components as increasing DVCs, but did not 

connect the process to the suburb effect (Farrell and Tappe 2007). The Northern Forest eco-zone 

had the lowest density of humans, indicating the least amount of suburbanization. The proportion 

of agriculture was not important for increasing DVCs in this eco-zone because it contained the 

least amount of agriculture, mostly located in counties in the southern portion of the eco-zone 

(Figure 3.2). In the Northern Forest eco-zone, counties with more fragmented landscapes had 

lower counts of DVCs which was contrary to the relationships found for the other eco-zones. 

This was likely the case because fragmentation was more closely tied to the presence of wetlands 

and water in the Northern Forest eco-zone. Fewer roads and deer exist in environments with 

more wetlands and water. 
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 Higher abundances of deer represented the strongest relationship for increasing DVCs 

among all eco-zones. Similar trends have been identified elsewhere (Hothorn et al. 2012). A 

study in Illinois found that lethal control (i.e., sharpshooting) of white-tailed deer reduced DVCs 

in a localized area (DeNicola and Williams 2006). This research indicates that reducing deer 

abundance throughout suburban environments may reduce DVCs on larger scales (e.g., DeNicola 

et al. 2000). Hunting deer in suburban environments could present opportunities for reduction to 

occur on larger scales.  

My finding suggests that emphasis should also be placed on other components of the 

suburb effect to reduce DVCs. Traffic, agriculture, and partitioning of the landscape influenced 

the frequencies of DVCs. Counties where the frequencies of collisions were highest would 

benefit from other types of mitigation that reduce collisions, such as fences and underpasses 

(Clevenger et al. 2001, Glista et al. 2009). The need to consider these components together may 

represent a primary reason why few simple options exist for reducing DVCs on large scales (e.g., 

Huijser et al. 2008).  

The influences of collisions were stable throughout the Midwest United States during the 

last 12 years. This demonstrates the existence of spatiotemporal hotspots for DVCs. Other 

studies have identified spatial hotspots of wildlife-vehicle collisions, demonstrated by their 

tendency to occur in non-random, spatial patterns (Huijser et al. 2008, Ng et al. 2008, Danks and 

Porter 2010, Snow et al. 2014). However, no studies have identified this predictability through 

both space and time. Likely, my 12-year study was too short to notice new effects from 

suburbanization. Also, the available land-cover and land-use data for this region were limited to 

2 time periods (2001 and 2006), and may have limited the ability to detect influences from 

metrics of the landscape. Suburbanization has occurred throughout the United States during 
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much of the last century (Harris 1943), and the process likely takes >12 years to generate 

noticeable effects at the county scale. Also, the economic recession of 2007-2008 restricted new 

construction (Stock and Watson 2012), limiting my ability to detect changes from new 

development. These findings indicate that DVCs should be expected to increase in all eco-zones 

where suburbanization occurs unless effective mitigation can be implemented. 

Likely, the suburb effect is not exclusively associated with deer. Other species of wildlife 

exist in suburban and urban environments and are affected by collision with vehicles. Coyotes 

(Canis latrans) inhabit urban environments and are commonly killed by vehicles (Grinder and 

Krausman 2001, Gehrt 2004). Turtles and other reptiles and amphibians inhabit ponds and 

drainages from suburban developments (Spinks et al. 2003, Conner et al. 2005). The distribution 

of Virginia opossums (Didelphis virginiana) has been linked to the characteristics of suburbia 

(Kanda et al. 2009). Collisions with these species are typically unreported, but anecdotal 

evidence suggests that they occur regularly. 

A limitation of the current statistical approach is the inability to explicitly account for 

spatial structure among the counties for each eco-zone. Accounting for spatial autocorrelation 

would improve the performance of this model for predicting the counts of DVCs (Banerjee et al. 

2004, Finley et al. 2009). Spatial autocorrelation can be captured most effectively using 

hierarchical models (e.g., Finley et al. 2007) and represents an important line of future research 

for understanding DVCs. 

4.5 MANAGEMENT IMPLICATIONS 

The multiple components of the suburb effect in counties (i.e., higher traffic, higher abundance 

of deer, higher proportion of agriculture, more fragmentation) imply that reducing DVCs on 

large scales requires multifaceted tactics. Reducing the abundance of deer in suburban 
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environments will be an effective option because fewer deer will be on heavily trafficked roads. 

Any means of reducing deer (e.g., hunting or sharpshooting) should reduce collisions. However, 

the long term continuity in spatiotemporal hotspots provides opportunities for more targeted 

mitigation. Underpasses with high-fencing along the roadsides is an effective option (e.g., 

Clevenger et al. 2001), but requires substantial financial investment (Reed et al. 1982, Huijser et 

al. 2009). The spatiotemporal predictability provides justification for constructing more of these 

permanent structures to reduce collisions for the long-term. A cost-effective approach will be 

strategically placing these structures on roads that transport commuters between their suburban 

homes and urban destinations (i.e., locations where traffic and fragmentation are highest). Urban 

planning for new development and road construction (or reconstruction) projects should consider 

mitigating future collisions that result from new development.  
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EPILOGUE 

 

I sought to address 3 deficiencies that exist in current research studies for understanding the 

influences of WVCs. My goal was to provide more objective and realistic approaches for 

understanding the influences on WVCs, and thereby enhance our ability to effectively manage 

them. In Chapter 1, I addressed the issue of inconsistency and subjectivity in delineating hotspots 

of WVCs. In Chapter 2, I addressed the issue of underreporting and its effects on inferences 

made from logistic regression modeling regarding influences of WVCs. In Chapter 3, I addressed 

the issue of understanding the dynamic influences of WVCs over large spatial and temporal 

extents.  

The collective works in these chapters contribute 3 primary conclusions for better 

understanding ecological relationships for WVCs. First, attributes of the landscape surrounding 

locations of WVCs can be used to objectively delineate hotspots. This new approach indicates 

that hotspots are larger than previously reported. Second, analyses of WVCs are highly robust to 

underreporting likely because WVCs occur in highly predictable patterns (i.e., hotspots). 

Therefore, relatively few reports are required for reliably understanding the environmental 

influences on where hotspots occur. Third, the large geographic and temporal drivers that 

increase the frequency of DVCs are driven by suburbanization. The suburb effect consists of a 

unique combination of intermediate to high traffic volume, high abundances of deer, and a highly 

fragmented landscape with high proportions of croplands. These influences did not change 

through the last 12 years, indicating high spatiotemporal predictability for DVCs.  

Chapter 1 addressed the issue of subjectivity in delineating hotspots of wildlife-vehicle 

collisions. The current methods for delineating hotspots are inconsistent and rely on subjective 

choices by the researchers. This inconsistency can generate non-reproducible results and possibly 
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pseudoreplicated hotspots. I developed an objective approach for delineating hotspots that can be 

used across regions and species, using variation in the landscape. The landscape-based approach 

provides an improvement over currently used methods because it is informed by the ecological 

processes that influence where hotpots exist, and not by human perceptions about the scales of 

hotspots. 

Chapter 2 addressed the issue of underreporting in studies of WVCs. Large proportions of 

WVCs are unreported; therefore studies of WVCs typically rely on incomplete data. I identify 

thresholds in the numbers of WVCs that need to be reported to obtain reliable information about 

the environmental influences of collisions. My simulations indicated that studies of WVCs are 

highly robust to underreporting. Only >30% of WVCs are needed to produce reliable, statistical 

inferences. Shifts in inferences were detected only if the rate of reporting and the environmental 

variables were unevenly distributed throughout the study area. I speculated that robust 

assessments of WVC incidence are generated with relatively few reports because they tend to 

occur in non-random patterns (i.e., hotspots) and variability in their influences is low. However, 

the most reliable inferences will be produced where the rates of reporting are consistent 

throughout the study region, even with low rates of reporting. 

Chapter 3 addressed the lack of understanding in large geographic and temporal 

influences on the frequencies of DVCs. This lack of understanding reduces our ability to broadly 

manage DVCs across large extents and plan for future changes in their frequencies. My findings 

suggested that DVCs are associated with a suburb effect– a unique combination of features 

generated in suburban environments that coalesce to increase the frequencies of DVCs. The 

influences of collisions were relatively stable throughout the Midwest United States during the 

last 12 years. These findings indicate that DVCs should be expected to increase in all eco-zones 
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where suburbanization occurs unless effective mitigation can be implemented. The suburb effect 

provides the first empirical explanation for why the frequencies of DVCs vary spatially across 

the Midwest. 

The findings from these chapters satisfy the impetus for this dissertation. I sought to 

improve our ability to understand where wildlife-vehicle collisions occur. The collective works 

suggest that understanding hotspots is critical for effectively managing WVCs. The landscape-

based approach for delineating hotspots indicates that they are larger than previously known. The 

existence of these hotspots allows for analyzing fewer reports of collisions to determine the 

ecological relationships associated with the locations of collisions. Environmental influences on 

collisions are unlikely to change through time, but examining them across large geographic and 

temporal scales can inform expected trends for the future. Increases in suburbanization will 

likely expand the size and intensity of hotspots, particularly for deer-vehicle collisions. 

The implications of my results suggest that identifying the most critical locations to 

mitigate can be accomplished with relatively few reports of collisions if collected in a consistent 

manner. Large hotspots associated with suburban landscapes account for the highest frequencies 

of collisions, therefore these locations should be targeted for mitigation. Managers should 

consider investing in long-term mitigation strategies (i.e., underpasses) to reduce WVCs for 

many years, because the influences of hotspots do not change. 
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Figure A.1  Average parameter estimates and 95% confidence intervals from 10,000 Monte 

Carlo simulations at different levels of underreporting for moose-vehicle collisions in western 

Maine, USA, during 2000–2011. The model with good predictive capability included: TRAFFIC 

= annual average daily traffic, SPEED = speed limit (km/hr.), P_CUT = proportion of cutover 

forest land-cover within 2,500 m buffer, P_CONIF = proportion of conifer forest land-cover 

within 2,500 m buffer, IJI = interspersion-juxtaposition index within 5,000 m buffer, D_DEV = 

distance to development (m), D_SHBW = distance to shrub-wetland land-cover (m). The model 

with poor predictive capability included: SLOPE = degree of slope, D_STR = distance from 

stream (m),  SIDI = Simpson’s diversity index within 5,000 m buffer. 
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Figure A.2  Average parameter estimates and 95% confidence intervals from 10,000 Monte 

Carlo simulations of logistic regression analyses including spatial biases in reporting for different 

levels of underreporting for moose-vehicle collisions in the most rural county in western Maine, 

USA, during 2000–2011. The model with good predictive capability included: TRAFFIC = 

annual average daily traffic, SPEED = speed limit (km/hr.), P_CUT = proportion of cutover 

forest land-cover within 2,500 m buffer, P_CONIF = proportion of conifer forest land-cover 

within 2,500 m buffer, IJI = interspersion-juxtaposition index within 5,000 m buffer, D_DEV = 

distance to development (m), D_SHBW = distance to shrub-wetland land-cover (m). The model 

with poor predictive capability included: SLOPE = degree of slope, D_STR = distance from 

stream (m),  SIDI = Simpson’s diversity index within 5,000 m buffer. 
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Figure A.3  Average receiver operating characteristic function (AUC) and 95% confidence intervals at different levels of 

underreporting to depict the predictive capabilities of 4 models as fewer WVCs were reported. The AUC values were calculated from 

10,000 Monte Carlo simulations at different levels of underreporting for deer-vehicle collisions in central Illinois, USA during 2001 

and moose-vehicle collisions in western Maine, USA during 2000–2011. 



84 

 

Table A.1  Description and sources of data used to examine the dynamic, space-time influences of deer-vehicle collisions (DVCs) 

throughout the Midwest, USA during 2000–2011. 

Location Data
a
 Description Data source 

ILLINOIS DVCs Vehicle crashes involving deer with >$500 in property 

damage (2000-2009), >$1,500 for insured drivers and 

>$500 for uninsured drivers (2009-2012), or bodily 

injury 

Illinois Department of Transportation 

Deer harvest Estimated number of antlerless and antlered deer 

harvested by firearm and archery 

Illinois Department of Natural 

Resources 

Traffic Estimated annual vehicle miles traveled on roads by 

all vehicles 

Illinois Department of Transportation 

Registered 

vehicles 

Total number of registration counts Illinois Secretary of State 

Roads 2011 shapefile of roads with federal functional 

classification representing public roads 

Illinois Department of Transportation 

IOWA DVCs Vehicle crashes involving deer with >$1,000 in 

property damage (2000- June 2010), >$1,500 (July, 

2010-2012), or bodily injury 

Iowa Department of Natural Resources 

Deer harvest Estimated number of antlerless and antlered deer 

harvested by firearm and archery 

Iowa Department of Natural Resources 

Traffic Estimated annual vehicle miles traveled on roads by 

all vehicles 

Iowa Department of Transportation 

Registered 

vehicles 

Total number of registration counts Iowa Department of Transportation 

Roads 2006 shapefile of roads with federal functional 

classification representing public roads 

Iowa Department of Natural Resources 

Geographic Information Systems 

Library 

Continued on next page 
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Table A.1 (cont’d) 

 

Location Data
a
 Description Data source 

MICHIGAN DVCs Vehicle crashes involving deer with >$400 in property 

damage (2000-2003), >$1,000 (2003-2012), or bodily 

injury 

Michigan State Police 

Deer harvest Estimated number of antlerless and antlered deer 

harvested by firearm and archery 

Michigan Department of Natural 

Resources 

Traffic The estimated total number of miles traveled annually 

by motor vehicles on Michigan trafficways 

Michigan Department of 

Transportation 

Registered 

vehicles 

Total number of registration counts excluding trailers 

and trailer coaches 

Michigan State Police, Office of 

Highway Safety Planning 

Roads 2012 shapefile of roads with national functional 

classification representing public roads 

Michigan Center for Geographic 

Information 

WISCONSIN DVCs Vehicle crashes involving deer with >$1,000 in 

property damage (2000-2012) or bodily injury 

Wisconsin Department of 

Transportation 

Deer harvest Estimated number of antlerless and antlered deer 

harvested by firearm and archery 

Wisconsin Department of Natural 

Resources 

Traffic The estimated total number of miles traveled annually 

by motor vehicles on Wisconsin trafficways 

Wisconsin Department of 

Transportation 

Registered 

vehicles 

Total numbers of current and non-expiring 

registrations 

Wisconsin Department of 

Transportation, Bureau of Vehicle 

Services 

Roads 2013 shapefile of roads with roadway categories 

representing public roads. 

Wisconsin Department of 

Transportation 

Continued on next page 
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Table A.1 (cont’d) 

 

Location Data
a
 Description Data source 

REGION County 

boundaries 

2010 seamless national file with no overlaps or gaps 

between parts, designed to stand alone as an 

independent data set, or can be combined to cover the 

entire nation 

U.S. Census Bureau (TIGER/Line 

Shapefile) 

Land-cover and 

land-use maps 

30 m resolution land use and land cover maps for the 

conterminous United States generated from remote 

sensing with 79% (2001) and 78% (2006) overall 

accuracy 

U.S. Geologic Survey (2001 and 2006 

National Land Cover Database) 

 
a
The response variable was the number of deer vehicle collisions (DVCs) per county/yr. Explanatory variables were the numbers of 

antlered deer harvested per county/yr. as an index of deer population, annual vehicle miles traveled (TRAFFIC) per county/yr. as an 

index of traffic volume, number of registered vehicle per county/yr. as an index of the number of motorists, maps of all public roads 

for each county to calculate the densities of roads per county (km/km
2
), maps of the boundaries of counties, and maps of the land 

cover and land use for each county.
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