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ABSTRACT

Multigrid methods for solving reaction-diffusion systems

By

Hsiu—Chuan Wei

A Multigrid method as an iterative method is pr0posed to solve a reaction-diffusion

system. The model we are concerned in this thesis is a system of parabolic partial

differential questions for two chemical species. A fully implicit finite difference scheme

is used to discretize the differential equations. A V—cycle scheme with one smoothing

step per grid is then applied to the Helmholtz equations [54] arising at each time step.

The convergence of the V-cycle scheme for solving the linear system at each time step

is obtained. The stability and convergence of the fully implicit scheme along with

V-cycle as the iterative solver are proved. Numerical results for a reaction-diffusion

system are presented.
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Introduction

Reaction-diffusion systems are systems of parabolic partial differential equations.

They have been used successfully to model chemical and biological processes which

involve pattern formation in morphogenesis. Since all models for spatial pattern

generation are necessarily nonlinear, analytical solutions are generally not available.

Numerical solutions of such equations are thus important for computer simulation of

patterns and data analysis. In this thesis, general two-dimensional reaction diffusion

systems are considered. A multigrid method is pr0posed for solving the system.

Analysis and applications will be discussed.

Fascinating spatial patterns, such as animal coat patterns and butterfly wing pat-

terns, are exhibited on living creatures. The development of pattern and form in

embryology is known as morphogenesis. It begins from a more or less homogeneous

egg. The final complexity of pattern and form are generated during its development.

How the patterns are established is still unknown. Although the process of the devel-

Opment is genetically determined, the genes themselves cannot generate the pattern

since the genetic material in most cells of an organism can be assumed the same [39].

Much research has tried to determine the mechanisms that can explain the gener-

ation of patterns developed from less structured tissues. Therefore any mechanism

assumed to explain this development must be capable of generating spatial patterns

from almost homogeneous initial conditions. Several mechanisms have been proposed

as possible pattern formation mechanisms in morphogenetic situations. Among these,



the most powerful mechanism for forming coat patterns is a reaction diffusion mecha-

nism proposed by Turing [3]. A. M. Turing first suggested in 1952 that some patterns

that occur in chemistry result from interaction between chemical reaction and diffu-

sion. Since then a substantial amount of research has been done on this subject. See

[41] for a survey of related developments.

According to Turing’s chemical prepattern approach, the first step of development

in the morphogenetic process is the creation of a morphogen concentration spatial

pattern. The underlying prepattern is believed to be laid down in the very early

stages of the embryogenesis. Consider the case of the zebra. The gestation is about

360 days with the prepattern laid down about 3-5 weeks. After the prepattern is once

established, the cells differentiate accordingly to produce melanin to reflect the spatial

pattern of morphogen concentration. For example, the pattern of the giraffe could

be generated when the morphogen concentration level is greater than some threshold

level.

When applying Thring’s theory of morphogenesis, an important step is to identify

the chemical elements for the morphogens. For example, calcium has been identified

as a morphogen for hair initiation in Acetabularia. In this thesis, we will assume that

the pattern is generated when one of the morphogen concentrations is above some

threshold level. Now let us consider the following two-dimensional reaction-diffusion

system:

at = DuAu+f(u,v)

(0.1)

vt = DvA’U +g(u,v),

92 _ a -0
an an _ an an — ’  

where u(:1:,0) and v(a:,0) are given.

Here we take the rectangular domain : Q = [0, L1] x [0, L2] C R2, 09 is the boundary

of Q, and u and v are considered as two morphogen concentrations; f (u,v) and

2



g(u,v) are reaction kinetics which describe the interrelation between morphogens.

The diffusion terms, DuAu and DvAv, reflect that each molecule can move around

randomly with diffusivities Du > 0 and D” > 0.

Reaction-diffusion mechanisms suggest that spatial patterns are evolved from

diffusion-driven instability. Turing also demonstrated that, under certain conditions,

two interactive morphogens could form a stable inhomogeneous concentration pat-

tern. He suggested that without diffusion, u and v tend to a uniform steady state

— no pattern will form. In the presence of diffusion, the system is unstable to small

disturbances but the instability will be bounded by nonlinear reaction terms. Thus

the inhomogeneous steady state is obtained and spatial patterns are generated [52].

All that is required for the creation of pattern is some sort of nonlinear activator-

inhibitor mechanism [26]. The analysis of whether or not the systems are able to

generate spatial patterns and how the pattern and mode is selected can be found in

[41].

To formulate the mathematical model, we need initial and boundary conditions.

Since the formation of the underlying prepattern could arise from instability to small

perturbations in the featureless tissue, a natural way to simulate this situation in

numerical computations is by introducing a small random perturbation about the

uniform steady state. In the system given above, we assume initial conditions are

given. As for the choice of boundary conditions, we take zero flux boundary conditions

because it implies no external forces.

Under certain conditions, the reaction-diffusion system described above has a

unique solution. The proof of the existence and uniqueness of the solution can be

found in [11]. The system is useful for modeling patterns in chemistry and biology. A

few examples can be found in [13]. In these examples, the concentration of nutrient

and the concentration of buffer satisfy a reaction-diffusion system as given in (0.1).

Since the reaction term, f and g, in (0.1) is nonlinear, one can not hope in general

3



to obtain analytical solutions. Numerical solutions with preliminary linear analyses

are required in studying the patterns generated by a given reaction-difl'usion system.

Attempts have been made to demonstrate the patterns formed by such mechanisms

and compare them with the mammalian coat patterns [3] [41]. Since the spatial

patterns are generated by diffusion-driven instability, the system has to be unstable.

Because of this nature, highly stable numerical methods are necessary for computer

simulations of these patterns to ensure that the patterns obtained by computer simula-

tions are formed by the instability of the original system, not by numerical instability.

One approach is an ADI (alternating direction implicit) type of scheme [13] [14].

Other numerical methods that have been used to solve reaction-diffusion systems are

finite element techniques, monotone iterative methods and explicit finite difference

schemes [21] [27] [40] [46] [56]. Finite difference schemes have been used due to

their simplicity. Explicit finite difl'erence schemes are especially easy to implement

but the conditional stability forces small step size in time in numerical experiments.

Consequently, the explicit schemes require long runtime. Another intuitive approach

is using a fully implicit scheme which is unconditionally stable. The discrete problem

arising from a fully implicit finite difference scheme is a large sparse system of linear

equations. Existing methods for solving linear systems can be grouped into two

branches: direct methods and iterative methods. Although direct methods produce

exact solutions in a finite number of steps (regardless of roundoff errors), they can not

be applied here because the complexity needed to invert the matrix is of cubic order,

and because the inverse of a sparse matrix may not be sparse. The computation time

and computer memory for a solution obtained by direct methods are much too great.

We therefore consider using iterative methods.

Our concern about the numerical scheme now turns to its convergence rate in

practice. In order to obtain the inhomogeneous solutions, the computations have to

be carried on until equilibrium is reached. Even though the unconditional stability



of fully implicit finite difference schemes enable us to take a much greater step size

in t, it still requires thousands of steps in t to reach the steady state. Thus in these

numerical computations, we need to solve a pair of large linear systems at each time

step for at least thousands of time steps. Therefore, the running time mainly depends

on the efficiency of the iterative method used for solving the linear system at each time

step. Unfortunately, the classic iterative methods, namely Jacobi, weighted Jacobi

and Gauss-Seidel methods, have unsatisfactory convergence rates. They have been

known to be able to remove the high frequency modes in an error efficiently, but are

unable to damp the low frequency modes. Finding a fast solver for a large linear

system becomes an important issue. In this thesis, a multigrid method is proposed

for solving this problem. Consider that the smooth components which are efficiently

approximated on coarse grids and the oscilatory components are fast to converge on

fine grids. Multigrid techniques could eliminate all frequency components.

Multigrid methods as iterative methods have been known to be a fast solver for

linear systems arising from the discretization of partial differential boundary-value

problems [4] [35]. Numerous works about numerical experiments and theoretical

understanding of the convergence prOperties of these methods have appeared in the

past three decades [2] [4]-[8] [20] [29]-[38]. Reported numerical experiments suggest

that these methods are very efficient for a wide range of practical problems [10] [54].

There are many convergence proofs to multigrid algorithms. One approach to

these methods is local Fourier analysis [22] [28] [54]. It is not generally rigorous. Local

Fourier analysis gives realistic quantitative results on the convergence behavior yet

assumes an unbounded domain in space. Thus it can be regarded as an analysis only

for problems with periodic boundary conditions. With Neumann boundary condition

in our model problem (0.1), we can view the multigrid as a single operator and study

the norm of the operator. Some of the proofs have been given in [16]-[18] yet these

proofs require a sufficiently large number of relaxation sweeps. In practice, multigrid



is used only with one or a few relaxation sweeps. In our numerical computations

(Chapter 5), only one presmoothing and one postsmoothing are needed in almost

every example.

Other proofs are based on the approach for variational formulation. Intensive re-

search into the convergence of multigrid methods for variational problems can be seen

in [4] [7]-[9] [29]-[38]. These proofs usually require a ‘regularity and approximation’

assumption. Convergence rates have been guaranteed with any amount of smoothing

for solving linear systems An: = b, with A symmetric positive definite. The linear

system arising from discretization of (0.1) is unfortunately nonsymmetric. Then re-

defining an inner product and its corresponding norm by the midpoint rule [13] is

proposed to formulate a variational-like problem and construct the proof of the V-

cycle algorithm. Variational framework is a natural formulation when finite element

discretization is used. In this thesis, since finite difference discretization is used and

a new inner product is defined, more attention needs to be paid to the constructions

of the transformations between grids. For the choice of the smoother, a red-black

Gauss-Seidel method is applied because it has been used extensively as a smoother in

multigrid methods [54] [60]. The convergence of this smoother under the norm used

in this thesis is discussed in Chapter 3. The rigorous proof of the convergence of a

V-cycle algorithm is also given with any amount of smoothing.

This thesis focuses on the construction of the multigrid algorithm that can be ap-

plied to our model problem and the proof of the convergence of the algorithm followed

by the demonstration of the efficiency of the algorithm. In the numerical computa-

tions, two reaction systems have been used to demonstrate the V-cycle algorithm.

They are able to generate spots and stripes on rectangular domains. We should note

that even the analysis has been discussed on a general rectangular domain due to its

simplicity. We believe the V-cycle algorithm constructed in this thesis is also valid

for domains in other shapes. Thus the pattern on the surface of a cone has been



simulated in numerical experiments. Finally, we compare the running time of the

V-cycle algorithm with that of the computations carried out only on the fine grid to

demonstrate the high efficiency of the former.

The outline of this thesis is as follows. In Chapter 1, the finite difference scheme

is constructed. In Chapter 2, the two-grid algorithm is developed and its convergence

is proved. In Chapter 3, we extend the two-grid algorithm to a V-cycle algorithm and

its convergence is obtained. In Chapter 4, we discuss the stability and convergence of

the fully implicit finite difference scheme along with the V-cycle algorithm described

in Chapter 1 and 3. Finally in Chapter 5, the experimental results for the numerical

solutions to two reaction-diffusion systems are presented.



CHAPTER 1

Fully implicit discretization

In this section we begin our study of the fully implicit finite difference dis-

cretization of the reaction-diffusion system (0.1). For simplicity, consider a uni-

form rectangular mesh on a rectangular domain 9 = [0, L1] x [0, L2] with mesh size

h = Ll/Nl = L2/N2. Let (33,-,yj) E Q be a grid point then any-+1 = as, + h and

3/,“ = y]- + h. The increment in t, t"+1 — t", will be denoted by At, and we adopt

the standard notation ufj z u(:r,-, yj, t").

The basic idea of the finite difference discretization is to approximate the deriva-

tives in a differential equation by the difference quotients. For example,

n+1 n

—($iayj9t ) —

3t At

can be seen from the derivative formula

Bu u(:r, y, t + e) — u(a:, y, t)

— :c, ,t = lim .8t( 3/ ) HO 5
 

Similarly, the second order derivative %(z,, y], t") can be approximated as follows:

8%
it ~ 71 _ n n

791:2 (313,5,yj,t )— ui+1j 21% + ui—l
j.

Here we propose to use a fully implicit scheme. We approximate (0.1) by the



backward-time central-space scheme [53]. We have

 

u".+l—u?. Arh11" A u?

—J——LAt : Du( h 211— + 14,12__1__+1)+ f(unU2], Uznj) (11)

v?.+1—v?. Arhv‘zH Ayh’vu:Jn+l ’Un .

At : DU( )3 + 1,2” ) + 9(unuijavzj’)

where A1,, and Ayh are the centered second order difference operators such that

(Ax), + Ayh)21?j = (21?+1]— 221"]-z + 21, 1j)+(21[3+1—221,'-;+ 21,]; 1).

The zero flux boundary condition is approximated by

”fix/2+1 = 213,24, 21:24) = 21,21, for all 2,71,

213,11,”- = 217,114,, 24:1”. = 21?], for all j,n

The boundary treatment for 21 can be defined in the same way. Let 21" =[21?j] and

21" =g[v] be the vectors obtained by the usual ordering. Then (1.1) can be written

in the following matrix forms:

(1 + 711w“ = 21" + Atf" (1.2)

(I + T'A)2)"+l = 21" + Atg", (1.3)

where T = DuAt/h2,T' = DvAt/hz, A is the standard matrix resulting from the

discretization operator —-Axh — Ayh, f" = [f(21§3,v{‘j)], and g" = [g(21,-j,v,-’;)]. Let

A = I + TA and A’ = I + T’A. Then (1.2) and (1.3) become

A21"+1 = 21"+Atf" (1.4)

A'v"+1 = 21"+Atg". (1.5)



A can be represented by the matrix

F W —2TI

—7'I W —TI

—TI W —TI

—TI W —TI

—2TI W  L.

with I the (N1 + 1) x (N1 + 1) identity matrix and

)- -1

1+ 47' —2T

—7' 1+ 47' —T

—7' 1+4T —1'

—'r 1+47' —T

  —2T 1 + 47' J

a (N1 +1) x (N1 +1) matrix. Note that the operators A and A’ are five-point stencils.

The following lemma establishes the consistency of this fully implicit finite differ-

ence discretization.

Lemma 1.1 Let 21(23,, 3),, tn“) and 27(1ri, yj, tn“) be the exact solutions of (0.1). As-

sume that 21 and 27 are of class C4. If the partial derivatives fu, fv, gu, and 9,, are

continuous and uniformly bounded, then

~ttv+l_~n. ~n+l
u‘ At"1 : Du(AIhU?1+1+‘Aflyhfi—W)+f(uij,@$)+rn'+l

fifth-n. A "1+ A h-"tl

111751 = 1911(4",,321--+”—h‘L—)+g('u,-,-,2?'?,)+8’-‘,+1

10



where

0(At + h?) if ij is an interior index,

r11.“ 31!.“ -_—
23 ’ 1.7

0(At + h) if ij is a boundary index.

Proof: Use the Taylor series expansion

{1;} = 22".“ —At(u)"-+1+O(At2)

to obtain

713'“ _ {fl}. +11] _ ~ n . .

T— (ut),j + 0(At) for all z] .

Consider the Taylor series expansions

h2 h3
n+1 + (axxx)%+l+0(h4)

71?:111' = 11:3“ + h(aat)?j+l + 3(firxlz‘j "'6—

and

~ 1 ~ 1 ~ 1 hz ~ 1 ha 1 4
uff1j= 113+ -h(ux)?j+ + 3w”)? — Emma)? + 0(h ).

Add the equations above and use the approximation for the zero flux boundary con-

dition to obtain

(ii-an)”+1 + 0(h2) ifi is an interior index,
Axhflg+1 :

(u$1)”*ln + 0(h) ifi is a boundary index.

Similar expansions also hold for Ayhun+1 as well as the other concentratlon func-

tion 17. Also,

f(fl?j+1’fiilj+1) : f(flij’ fiij) + fu(<n+11n?j+l)(<i1j+l_ ~ij) + fv(<?+11n?j+l)(nrj+l— ~znj)1

"*1 ,v"+1) and (uij, 2113-). Since un-H— i1- : 0(At), we
1

where (C"+1,77,"j+1)18 between (a,

~_n __ n 1 ~71 _ ~n ~n

_ 0(At)' Thus f(uz]+ 1 vii-+1) — f(uij1 vij) +
=O(At) and 77?“—have ("+1— ~unj-

0(At). We have

{tn-+1 _ an A hflnfi-l A hand-1

I] z] ___ I z] y

At Du( hg +—_’12—_)+ f(unuij”UUilj)

0(/_\t + h?) if ij is an interior index,
+

if ij is a boundary index.0(At + h)

11



This proves the consistency of this discretization. [:1

Normally (1.4) and (1.5) are large systems of linear equations and the matrices A

and A’ are banded and sparse. Then direct methods are often impractical because the

cost for inverting these two matrices is too expensive. Therefore we pr0pose to use

an iterative method to solve (1.4) and (1.5). However the classical iterative methods

seem to have unsatisfactory convergence properties. Typically the high frequency

components of the error damp out quickly while there is a very slow decay of the

error on low frequency components. Then a multigrid technique becomes a natural

way to accelerate the convergence.

12



CHAPTER 2

Two-grid algorithm and its

convergence

In this chapter, we describe the fundamental multigrid idea. To this end, we

construct a two-grid algorithm which is the basis of the multigrid method. There are

many iterative methods that are directly relevant to the multigrid method. Within

the two-grid method we will use the Gauss-Jacobi iteration as the smoother.

Let {9k}:: be a nested sequence of vector spaces :

QOCQI C...CQJ.

The vector space (2,, corresponds to the spatial discretization size, hk = hk_1 /2. Let

mu, = Ll/h,c and mgk = Lg/hk. Then 9;, is a mesh containing (mlk +1) x (m2;c +1)

points.

To define a multigrid algorithm, we need to define the linear projectors transferring

vectors between vector spaces. There are various choices of such projectors [54]. Here

13
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Figure 2.1: Grids for 52k and Qk_1.

we use the full weighting restriction Pf‘l : $2,, ——> qu whose stencil is

l1

1—6 2

 

 
and

17; 0

 0

4

O

1

2

4

0

q

 

 

 d

for an interior point,

for a boundary point with index j = 0,

for the corner point with index i, j = 0.

This restriction takes fine grid vectors and produces the coarse grid vectors according

to the rule Pf‘lu = v for u E 0k and u E Qk_1, where

1

vij = filu2i+u2j+l + U21+1,2j-1 + u2i-l,2j+1 + U21—1,2j—1 + 2(u2i,2j+1 + ”21,2341

+ U21+1,2j + u?i—1,2j)+ 4U2i,2j]a 1 S i S (mlk—l — 1) and 1 3.7 S (m2k—1_1)a

1

003' = I6[2u1,2j+1 + 2Ul,2j—1 + 2u0,2j+1 + 2”0,2341 + 4U1,2j + 4710,21],

14



1S j S (m2k—1 _1)1

and

1

’Uoo = 1—6[4u00 + 4u01 + 4u10 + 4u11].

The values um, um,,_,,j, u,,m2k_,, ”mu—1,0, vomqu, and ”m1k_1,m21-1 are defined analo-

gously.

This operator is represented by the (mug/2 + 1)(m2k/2 + 1) x (m1,c + 1)(m2,c + 1)

  

matrix _

l 21",, 21",c

PIC-1 : i ik 2i]: A;

k 16 ,

2i",c 21",c J

where lk is the (mm/2 +1) x (m1,c +1) matrix

2 2

~ 1 2 1

1,, —

2 2   

For the prolongation, we use the bilinear prolongation QLI : Qk_1 —> 9k. Its

15



stencil notation is given by

and

  

1 2 1

i 2 4 2 for an interior point,

1 2 1

- r

1 2 1

1 . . . . _

:4- 2 4 2 for a boundary pomt w1th Index ] — 0,

  j 0 O 0

0 2 1 l

i O 4 2 for the corner point with index i, j = 0.

0 0 0   

If u E (2;, and u E Qk_1, then Qle = u with the components of u given by

U2z',2j

U21+1,2j

u2i,2j+1

and

u2i+l,2j+1

vij, 0 S Z S mlk—l and 0 S j S m2lc—la

1 . .

5(7111' + Ui+1,j)a 0 S 3 S 7nlk—1_1 and 0 S J S m2k—1,

1 . .

5(013' + vi,j+1)a 0 S 2 S mlk—l and 0 S J S m2k—1_11

1 .

10% + ’Uz‘+1,j + vi,j+1+ vi+l,j+l)1 0 S 2 S mlk—l — 1

and Ogjgm2k_1-1.

16



The operator is represented by the (muc + 1) (mg;c +1) x (Talk/2 +1)(m2k/2 +1) matrix

1- -|

2.];c

J], J],

2i,c

Q2—1=i jk jk 1

  
Jk Jk

2.7,c J

where L, is the (m1;c + 1) x (mm/2 + 1) matrix

- :

2

1 1

2

jk = 1 1

1 l

. 2 .1  
From the matrix forms of I), and Pf”, we see that the rank of Pf'l is (m1),c /2 +

1)(m2k/2 +1) and so is that of QLI.

Next define the coarse grid operator Ak_1: Qk_1 ——> Qk_1, by Ak_1 =

Pf—lAing—i-

17



If

5k

and

then Ak__1 has the same form as that of A, with dimension the number of points on
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Gk

5k

2T;c
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218k
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.6}:
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fit
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ilk

0k
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3k

Tk

T, 5,,

2Tk

file

file Gk

Zflk

7k

‘71: file

271:
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the grid Qk_1 and with components

01H = (36m, + 96/3,c + 6470/64,

,8k_1 = (60k + 32fik + 327k)/64,

7k—1 2 (Ok '1' 8flk + 167k)/64.

Recall that the fine grid Operator AJ = A is five-point. The transformation leads

to a nine-point stencil for AJ_.1. Fortunately, the coarser grids continue to have the

nine-point stencils as shown above. This increases the computation cost somewhat.

However the choices of the operators defined previously lead to nice properties by

which the convergence of the multigrid process is guaranteed.

Now A in (1.4) is symmetric and nonnegative definite with respect to the discrete

L2 inner product (-, .)J on L2(QJ) determined by the midpoint rule [12]

k,l=N

(u9v)J : [2371”? Z uklvkl’

k,l=0

where 7,- : 1 /2 if i = O or i = N, and 7,- : 1 otherwise, and hJ = h. The correspond-

ing norm is H u “,2 ‘/(u,u)J.

We also define the inner product on each (2,, in the same way. The matrix A =

I + TA is SPD (symmetric positive definite) with respect to (-, )J. Furthermore we

have (Pf—lu, v)k_1 = (u,Q',§_.1v),c for every u E Q], and v E Qk_1. It will be shown in

the following lemma that each A, is also SPD with respect to (., ~)k.

Lemma 2.1 If Ak is SPD with respect to (~, -)k, then Ak_1 is SPD with respect to

(-,-)k_1. Therefore (A1,_1)‘l exists.

Proof: Let x E Qk_1 and x aé 0. Then

(‘4k—133a-le—l '—' (Pf—lAkQLflJfi—l

= (Asz—lxa Q:_1$)k ( positive )

: (Qt—lxiAkQIt—lxlk
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= ($2 Pt—lAsz—lxht—l

= (x, Ak_1x)k_1. (symmetric)

Now Ak_1 is SPD with respect to (-, -)k_1. Consider the linear system Ak_1x = 0 with

x 6 91,4. Note (Ak_1x,x)k_1 = (0,x)k_1 = 0. But (Ak_1x,x)k_1 > 0 unless x = 0.

But x = O is the only solution to Ak_1x = 0. Thus (Ak_1)‘1 exists. Cl

Since AJ is SPD, from Lemma 2.1, Ah is SPD for 1 g k 3 J and (A,,)‘1 exists.

Now we can define an inner product by A(u,u) = (Aku, u)k, with corresponding

norm |||u||| :2 (/A(u, u) for u, u E 5%.

We recall the following well known properties of real symmetric matrices. The

proof can be obtained by following the same procedure as for the standard 2-norm

[1]-

Lemma 2.2 (a) Let B be a (m1k+1)(m2k+1) x (m1k+1)(m2k+1) matrix, symmetric

with respect to (~, -)k. Then II B “k: p(B), where p(B) is the spectral radius of B.

(b) Let C be a (m1;c +1)(m2;c +1) x (m1,C +1)(m2;c +1) matrix, symmetric with

respect to A(-, ). Then |||C|H = p(C).

For the purpose of analysis, we define an auxiliary operator Sf‘l : (2,, —> Qk_1

by Sf'l = (Ak_1)”lP(°-1Ak. So, we have

21,431;—1 = Pf‘lAk.

Next, we shall construct a two-grid scheme for the linear system in (1.4). Let

DJ be the diagonal matrix which consists of the diagonal elements of A = AJ, f} =

u" + Atf", and x"+1 be the exact solution of (1.4). So (1.4) becomes

AJx"+1 = f} (2-1)

The Gauss-Jacobi method can be expressed as follows. Let AJ = BJ + DJ,

DJUMI) = _BJu(i) + f?,
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Dyna“) = (DJ—AJ)U(i)+fy,

u<i+1> = (DJ)_1(DJ—Aj)u(i)+(DJl—lf91

21““) = u“) — (DJ)"AJu“’ + (DJ)"f5‘,

um'l) = u(i)+(DJ)—l(fy—AJu(i)).

The two-grid algorithm for solving (2.1) is given below.

Algorithm 2.1

Step]. W = u"+(DJ)-1(fy—Aju").

Step2. um = u(0)+Qj_1q,

AJ_1q = Pf‘1(f}‘ — AJu‘”).

Step3. u"+1 um + (DJ)_1(f}' — AJU(1)).

Where Step1 is a pre—relaxation sweep using the Gauss—Jacobi iteration on the fine

grid. Step2 is coarse grid correction which solves the coarse grid problem exactly.

Step3 is a post-relaxation sweep on the fine grid.

To establish the convergence of the two-grid algorithm, we need the following

lemma.

Lemma 2.3 (a)Sk+1Q',:+l———

(b) QLISS’I is symmetric with respect to A(-,-), i.e. for u,v E 0k,

A(Qk—15 41” v): A(u,Q’,:_ISf’1v).

(c) Q’;_15,f_1 is idempotent, i.e. (Q’,§_IS,':"1)2 =Qk_18k 1, so its eigenvalues are

0and1.

Proof: (a) The result follows directly from the definitions of Ak and S}:+1.

Sk+1Qi§+1=(Akl’1Pf+1Ak+1Qi+l = (AU—1M0 = 1k-
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(b) Let u, v E Qk, we have

A(QLle'lvw) = (AkQ:_IS,’:_1v,u)k

= (Sf‘lv,P,:‘—1Aku)k_1

= (Sf’lv, Ak_lS,’§_1u)k_1

= (Ak_1Sf_1v,S,’:—1u)k_1

= (Pf—lAkv,S,f_1u)k_1

= (Akvaz—ISf-lu)k

= A(v,Ql§_13f‘1U)-

(c) It follows from part (a) that ((2524354)? = Q£_le—1Q’,§_ISL°_1 =

(Q,’§_11k_lS,’§‘1) = ( £4554). An idempotent matrix is similar to a diagonal

matrix of the form diag(1, ..... , 1,0, ..... 0) [59]. CI

Let x"+1 be the exact solution of the linear system (2.1) and an“ be the numerical

solution obtained by the two-grid algorithm described above. Let the initial error be

e0 2 x"+1 — u" and the error after the two-grid scheme be el = x"+1 — un“.

Theorem 2.1 The error el 2 K80, and lllellll _<_ |||K||| . |||eo||| where K is the error

operator with |||K||| < 1. The two-grid scheme is convergent.

Proof: Since

61 = x — u

= 2:“ — — (Do-1v: — Aw‘”)

= x"+1— um — (D1)“1AJ(x"+1 —— um)

= (1 -(DJ)-1AJ)(z"+l — u‘”)

= (I — (DJ)“AJ)(x”+‘ — — 625-1(AJ-1)-1Pj-‘AJ(x"+l — u‘°’)>

= (I — (Db-Wm — Q5_1(AJ—1)"Pf“AJ)(x"“ — u“”)
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= (I — (DJ)‘1AJ)(I — 625-.(AJ-1>-1AJ_ISJ-1)<x"+1— u‘”)

= (I —(DJ)-1AJ)(I — Q5-.Sj'1)(x"+‘ — u‘°’)

= (I — (Du-1AM — 625455-110 — DJ‘AJW“ — u")

2 (I — (DJl—IAJXI— 625—1554)” —(DJ)_1AJ)80a

We have K = (I - (DJ)-1AJ)(1 — Q5_,s;,’-1)(I — (DJ)-1AJ). Next we shall verify

that |||K||| < 1.

Since A is strictly diagonally dominant, p(I —— (DJ)"1AJ) < 1. Also from

Lemma 2.3(c), p(I — Qj_lSj"l) = 1. Since DJ is symmetric with respect to (~, ')J,

I — (DJ)“1AJ is symmetric with respect to A(-, -.) From Lemma 2.3(b), I—QLlSj’l

is also symmetric with respect to A(-, -), so we have [III—DlejHl = p(I—D'J'IAJ) < 1

and ”II - Qj—ISj-llll = p(1 - Q5_15§_1)=1-

Thus MK!” 3 HI! — (0.1)-12411111111 — 62213541111111 wan-1.4.1111 < 1. This

completes the convergence of two-grid algorithm. [II

To see that the coarse grid correction Step2 in the two-grid algorithm reduces

the norm of the error, assume that after Step1, the initial error e0 becomes e“). Let

x = QLlSj’le“) and y = (I-Qj_lSj‘1)e(1), so em = x+y. From Lemma 2.3, parts

(b) and (c), we have that A(x, y) = 0 and QLISj'1 is an A-orthogonal projector. We

have Illemlll2 = |||x|||2 + |||y|||2. After Step2, the norm of error |||e(1)||| is altered to

|||(I — Q5_ISJJ'1)e(1)||| = |||y|||, i.e. the coarse grid correction eliminates component

errors in Range(Q§_lSj—1).

Two-grid methods, however, usually are not used in practice. Note that (1.4) and

(1.5) are large systems. Even if we reduce the number of grid points by 1/2 in each

direction in coarse grid correction, the resulting system in the next coarser grid is

still large. Consequently, in the coarse grid correction step, we still need to invert a

matrix of large size. To solve this problem, as we have pointed out, two-grid scheme
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serves only as the basis of the multigrid methods. Thus instead of solving the grid

J — 1 problem exactly as in Step2 in the two-grid algorithm, we can modify Step2

as a recursive procedure which suggests a V-cycle algorithm. In the next chapter, we

will further discuss the V-cycle algorithm which is used to solve (1.4) and (1.5) for

the examples given in Chapter 5.
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CHAPTER 3

V—cycle and its convergence

In this chapter, we shall construct a V-cycle algorithm to solve (2.1) and prove

its convergence. Let (Rk)‘1 be the smoothing matrix for solving the linear system

Akuk = 9k:

(Rs-1.159 = ((Rk)-*—Ak>u§.“"+g.,

(Rs-Inf." = (R.>-‘u§.“”+g.—A.u§:‘”,

i i— i—l

U56) = u), 1)+Rk(gk—Aku§c )).

The V-cycle algorithm is given below.

Algorithm 3.1 If k = 1, solve Alul = g1 exactly. We may assume that Bl =

(All—l-

For k > 1, solve Aku;c = gk by the algorithm described below with g = fJand

Bk is defined in terms of Bk_1.

Step1. ulcl) u?) + Rk(gk — AWE)”,

with 115,“) = 0 if]: < J and 111°): u" z‘fk = J.

Step2. ”53) = ”is” 'l' Q§_1Bk_1gk-1,

where g.-. = Pt—‘(gk — Anti").
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Step3. Bkg,c = u)? + Rk(g,c — Aku(2)).

For the smoother Rk, it is sufficient to choose a convergent iterative method. Here

we will use the red-black Gauss-Seidel method because of its good smoothing rate

for elliptic problems [54] [60]. Let ((Rk)‘1)‘ be the adjoint of (1‘2,,)‘1 with respect to

(-, -)k. It can be verified that ((Rk)‘1)t = Ak + Dk — (RU-1, where D, is the diagonal

matrix which consists of the diagonal elements of Ak. In the following lemma, we

will show that (R,,)’1 + ((Rk)‘1)‘ — Ak = D, is positive definite. Thus red-black

Gauss-Seidel method is convergent with respect to I” ' |||.

Lemma 3.1 (a) The diagonal elements of Ak are positive for 1 g k S J, so D1, is

positive definite.

(5) ”III: - RkAklll <1 -

Proof: (a) Since A1, is SPD, (Akeh e), is positive and so is the ith diagonal element

of Ak for 0 g i g mk, where e,- is the vector with ‘1’ on the ith position and ‘0’ at all

other entries. Thus D, is also positive definite.

(b) For u, v E Ok, we need first to show that A(RkAku,v) = A(u, (Rk)‘Akv) and

((Rkltl—l =((Rk)'1)‘- NOW

A(RkAku,v) = (RkAku,Akv);c

= (Aku, (Rk)tAkv);c

1' A(u, (Rk)tAkU).

But

(Uwh = (Rk(Rk)‘1u,v)k

= ((Rkl—lua(Rk)tv)k

= (u,((Rk)’l)‘(Rk)‘v)k-

Since ((Rk)“)‘(Rk)‘ = 1k, we have ((Rk)‘1)‘= ((Rk)‘)‘l-
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Next we will prove the inequality in part (b).

0 S A((I;c — RkAk)u, (1k — RkAk)u)

= A((Ik — (Rot/1km — RkAk)u, u)

= A([Ik —— (Rut/4,. — RkAk + (Rk)‘AkRkAk]u, u)

= A(v, u) — A([(Rk)‘Ak + RkAk — (Rk)‘AkRkAk]u, u)

= A(v,u) — A([mky(rm-Inna,c + (Bowman-lam. — (Rk)‘AkRkAk]u,u)

= A(U, U) — f1((1‘?Ic)tl(Rk)_1+((Rk)t)—1 — AkleAIcu, U)

= A(Uau) - ((Rk)‘[(Rk)‘1+((Rk)‘)‘l — AkleAku,AkU)k

= A(Uflt) — ([(RkY1 + (midi)—1 - AkleAku, Ric/11:10::

= A(u, u) — (DkRkAku, MAW».

< A(u,u).

Since DC is positive definite, (DkRkAku,RkAku)k > 0 if u is not zero. So

|||I,c — RkAklll < 1 and the red-black Gauss-Seidel smoother is convergent for each

k. [II

For analysis purposes we will define the following Operators:

55 = Sf+15f121”°5§‘1,

k_ k Ic+1 J-l

PJ—Pk+1Pk+2”°PJ ’

and

J J J—l k 1

Qk = QJ—IQJ—2 ' " k+ -

Then we have the following lemma.

Lemma 3.2 (a) (Pffvyw),c = (v,Q,{w)J ifv 6 OJ and w E 9k.

(b) Ak -—- PfAJQi.
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(C) 14ka = PfAJ.

(d)35Q1{= Ik-

Proof: To prove part (a),

(vawh (P:+1P:—:21 "°Pf"1v,w)k

= (131321 ' ° 'Pj—1ani+lw)k+1

= (v,Q.‘i_1QiI$'“Qi§+IW)J

(’U, in)J

For part (b),

I: J _ k k+1 J—l J J—l k+1

PJAJQI: — Pk+1Pk+2 "'PJ AJQJ—lQJ—z ' " k

k J—2 J—l k 1

: Pk+1"'PJ—1AJ—1QJ—2 ’ " k+

= PIf+1Ak+1QZ+l

= Ak.

For part (c),

AkS§ = AkS£+1S£izl - - '55”

= AkAzlPt+1AK+1$£ié - - ' 85‘1

= Pt+1Ak+IS£i%-~Sf“

= Pf+1PtfiAk+1-~Sf“

= lawn-vim

= 105.4,.

For part (d),

sin = sis...---si:3s5-1Qi_.c25:;-~

= Sf+1°--Si:iIJ—1Q5:é~- Z“
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_ k J—2 J—l k+1

— Sk+1"’SJ—1QJ—2”' k

_ k k+1_ Sk+1°'°IJ-2"° k

_ k Ic+1

— Ska

[:1

Next we want to find the relation between the errors before and after the V-cycle.

Let 2:], be the solution of Akxk = 9;, and uh be the numerical solution obtained at

Step3 in the V-cycle algorithm. Then

(I): — Bic/1k)“

= $1: — Bkgk

= 3,, — uk

= 33,, — v22) — RIC/luau, — u?)

(2)

= (Ik—RkAkXxk—u )

(1)

= (1k - RkAk)(Ik — QLin—1Pf—1Akx33k — “k )

(1)

= (1k — RkAkXI. — Qt-lBk_1Ak_ISt‘—‘)(xk — u. )

(0)

= (1,. — Raoul. — Q£_.Bk-1Ak-ls,’:-‘)(Ik — RkAkxxk — uk ). (3.1)

Fork<J,u)cO)=0,

(1k — Bic/1k)“ = (1k — RkAk)(Ik '- Q:_1Bk—1Ak—IS£_1)(II: — RkAk)$k-

Thus

I]: - BkAk = (1k - RkAk)(Ik — Qz—lBk—lAk—IS£_1)(Ik - RkAk)- (3-2)

For k = J , let 510"“ = x1. Then Aan+1= f} = u" + Atf". Let un+1 = m, where

u] is obtained by the V-cycle algorithm. Then
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= $J—UJ

= (IJ — RJAJ)(IJ — Qj_1BJ_1AJ_1Sj—l)(lj — RJAJ)(.7}n+1— U"). (3.3)

Next, we

have

n+1
will show that :r — if“ can be witten as a product of operators. We

I. — QtB..A..S§

= IJ — Q1155 + Q1155 — QinAkai

= I. — 62.185 + 62,1(1. — B.A..>S§

= I. — «2.185

+Qt<1k — R..A.)(I.. — Q2-.Bk_1A._ls,’:-1)(I. — RkAk)S’j. (3.4)

Here we used (3.2) to rewrite (I,c — BkAk) .

Next, using 5"} i = Ik, we have

Similarly

QiUk — RkAk) = Q: " QiRkAk

= Q: — QiRkAkSSQi

= (IJ — QiRkAkS§)Qi'

(1k — RkAk)S§ = S"; — RkAkS'j

= 5.]; — SSQiRkAkSS

= 550'. — QngAksj).

Rewrite the last term of (3.4) to obtain

QiUk — RkAk)(Ik - Qi-lBk-lAk—ISIf—lxlk — 31.14055

(1.1 — QiRkAkS§)QI{(Ik — Qz—lBk—lAk—IS£_1)S§(IJ — QiRkAkSS)

(IJ — QiRKAkSiWQiSi — Q,{_,Bk_1Ak_IS’j‘1)(IJ — QZRkAka).
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Thus we have

[J — QinAkS'JC

= (I. — 155)

+(IJ — Qi’RkAkSiXQiSIJC — Qi_1Bk—1Ak—15.’i_l)(1J — QiRkAkSil (3-5)

Again, since S’jQfl = 1k,

(IJ — QiS§)QiRkAkS§ = 0

and

QlcleAkS§(IJ - Q1155) = 0.

with

(IJ — Qisile — QiRkAksi) = (IJ — Q1155)

and

(IJ - QiRkAkSSXIJ — Q1135) = (IJ - Qisil

Thus

(IJ — QiRkAksile — QiS§)(1J — QiRkAkS‘JC) = (IJ — Qisil (3-6)

Then from (3.4), (3.5), and (3.6),

[J — QinAksj = (IJ — QszAkSEXIJ — QLlBk—iAk—155—1XIJ — QiRkAkS’JC)

Let

TJ = IJ—RJAJ,

T}, = (11— ,{RkAkS’fl forzgng—l,

T1 = IJ—Qisi-

Then

I. — QgBkAks’j .—. m1. — Q,{_,B,,_,A,,_ls§-1)Tk, 2 g 1.: 3 J. (3.7)
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Now we can write sun“ — an“ as a product of operators. From (3.3) and (3.7),

1"“ — an“ = (I. — RJAJ)(1. — Q5_,B._1AJ_lsj-1)(IJ — R,A.)(.;"+1— u")

= TJ(IJ — Q5_1RJ_1AJ_ISj—1)Tj(xn+l — u")

= TJTJ_,(IJ — Qj_,RJ_2AJ_Qsj-2)TJ_1TJ(x"+1 - u")

= TJTJ—l "'T2T1Tz'"73—17301?"+1 — U")

= K(:z:"+1 — u”),

where K = TJTJ_1 ° ' ' T2T1T2 ° ° ' TJ_1TJ.

Since TJ = IJ — RJAJ and since we have shown that IHTJHI < 1 in Lemma 3.1,

the convergence will be obtained if we can show |||Tk||| = Hle — QiRkAkSflll S 1 .

Lemma 3.3 (a) For 1 S k S J, QiSf is symmetric with respect to A(-, ).

(b) The eigenvalues of QflSf are 0’s and 1’s, for 1 S k S J.

(c) For u, v E 9k, A(u,v) = A(Qiu,Q,{v).

((1) ”Milk - RkA/clll <1. thenlllb - QngAksjlll S 1-

Proof: The proofs of (a) and (b) and are similar to those of Lemma 2.3, parts (b)

and (c).

To prove part (c), let u, v E 9),. Then

A(Qiani’U) = (QiuyAJinlJ

= (U, PfAJQi’Ulk

= (U. 14141)]:

= A(u,v).

For part ((1), let u 6 (L. Then

0 < A((IJ — QiRkAkSS)U, (IJ — QszAk55)u)

= A(v, u) — A(v, QngAksju) — A(ankAksfiu, u)
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+A(Q{RkAksju, QngAksy.)

= A(u, u) — (AJU,QiRkAkS§U)J - (QiRkAiju, AJU)J

+A(R,.A,,sf;u, RkAksju)

= A(u, u) — (PfAJu, Rk.4kS§v)k — (RkAkS’ju, PjAJU)k

+A(R,,A,,s§u, RkAksju)

= A(u, u) — (AkS'ju, rah/1,352.), — (RkAkS'ju, Aij‘u)k

+A(R,,A,,s§u, RkAkS’ju)

= A(u, u) — A(S’jv, RkAkS’ju) - A(RkAksju, 5’52.)

+A(R,,A,,s§u, RkAksfu)

= A(u, v) — A(Sfu, S’ju) + A(Sfu, Sfu)

—A(S’ju, RkAkau) — A(RkAkS’ju, 35..) + A(RkAksju, RkAksju)

= A(u, u) — A(S'ju, Sfu) + A((I,c — RkAk)S’jv, (I,c — RkAk)S'ju)

g A(u, u) — A(ssu, 352.) + A(S’ju, $5..)

= A(u, it).

Since 0 S A((IJ — QiRkAkSfim, (IJ —- QiRkAkS’jM) S A(u, v),

IllUJ-QiRk/lksfllll S 1- D

Theorem 3.1 Let co = 23"“ — u" be the initial error and el = 13"“ — an“ be the

error after the V-cycle algorithm. Then el = Keo with |||K||| < 1. Therefore the

V-cycle scheme is convergent.

Proof: Since |||I — RkAklll < 1 for 1 S k S J, lllTkIHZIHIJ — QiRkAkS’jlll 31

by Lemma 3.3 (d). We also have HITJIH 2 III] -- RJAJHI < 1 and

|||T1|H = p(Tl) = p(I — QIJSD = 1. Thus we have |||K||| < 1. The V-cycle

scheme is convergent. C]
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CHAPTER 4

Stability and Convergence

Consider the linear systems (1.4) and (1.5). For each time step n, we solve each

of (1.4) and (1.5) with m V-cycles. Let |||u|||A = A(u,u) and |||v|||AI = A’(u,u).

For a V-cycle applied to (1.4) and (1.5), we have the convergent rates |||K|||A < 1

and |||K’|||Ar < 1 respectively. Consider w = (a) on the vector space 0 x Q with

v

u E Q and v E {2. We can define a norm for w E Q x Q by |||w||| = lllvlllA + HIleAI.

It can be verified that I” - ||| satisfies the following prOperties:

lll’w|||>O z'f waéO.

|||w|||=0 Z'f w=0,

lllcw|||=|c||||w||| for any complex number c,

|||w1+w2||lSlllw1|||+|||w2|||-

To show the stability and convergence of the scheme we need the following lemma.

B1

Lemma 4.1 Let B = , where 81 and 32 have the same size as that of

0 B2

A-Thenll|B|||=max{ mam... mam. }.

Proof: Note that

  Bw
Bu + By

lllB||l=maxm I”: MI” 1 III. III 2 III...
we lllwlll w... Illummllvm.

34



But

 
_ max

IIIUIIIA+IIIUIHAI HIUIIIA’ lllvlllA'

max{ Imam... mam. }.

lllBIUHIA+|||B2v|||A' < IIIBIUIIIA |||B2’UIIIA' }

|
/
\

Therefore

IIIBIIISmax{ mam... |||B2IIIA' }.

We want to study the stability of the fully implicit discretization with V-cycle

scheme as a solver. The following theorem shows that the scheme is unconditionally

stable. Then any instability exhibited in computation should come from the original

reaction-diffusion system.

Theorem 4.1 Let u" and v" be the numerical solution of (1.4) and {1.5) with the

0

ii

of (1.4) and (1.5) with the initial values a9, and 27?]. Let w = (u) and w = (If). If
v v

initial values u = u0(2:,-j) and v9,- = v0(:1:,-j). Let u" and .7" be the numerical solution

the partial derivatives fa, fv, gu, and gv are continuous and uniformly bounded, then

lllw" - IVIII S (1+ CAI5)"|||w° - w°|||,

where C > 0 is a constant independent of h and At .

Remark: The general definition of stability for finite difference schemes can be found

in [51].

Proof: Let K and K’ be the error operator for a V-cycle (see Chapter 3) performed

on (1.4) and (1.5) respectively. For each n, let x", 5:", y", and g" satisfy

Ax" 2 un‘1 +Atf""1,

AIL” ___ 2171-1 + Atfn—l,
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Alyn : Un_1+Atgn-l,

A’g" -.—. in—1+Atg"-1,

and u", a", v", and v" be the numerical solutions after m V-cycles are applied to the

above linear systems respectively. So

gn __ {In = (Kl)m(gn _ fin—l).

In Chapter 3, we have shown that |||K|||A <1. So |||K’|||Ar < 1 as well.

Since

and

we have

(96" - 11")

u" — it"

u" — a"

u" -— 21"

Since

“ally ij

III" ___ A—lun—l + AtA—lfn—l

in : A—lan—l + AtA—lfn—l,

(1 — Km)(.:" — 5:") + Km(u"-1— a“),

(1 — Km)A-1(u"-1— an~1)+ At(I — Km)A-1(f"-1 — fn-l)

+K'"(u" — an“),

(A-1+ Kmu — A-1))(u"-1- ran-1)

+At(1 — Km)A-1(f"-1— fn-l). (4.1)

— M222}. 27:3) = minim; - 22:3) + f.(C.-’;. 773)(v?j — 6:3,)
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ijvv'
where ( 3,773) is between (u 21') and (113,173.), (4.1) can be expressed as

u" — a" = (A-1 + Km(1 — A-1))(u"-1— a"—1)+ At(1 — Km)A-IB;',(u"-1— a“)

+ At(1 — Km)A—IB;:,(U"-1 — a“), (4.2)

where 8?, and Big are diagonal matrices depending on the values of fu and f,,.

Similarly,

22“ — = (<A’>-1+<K')m<1 — (A'r‘ncvn-l — a“)

+ At([ __ (K,)m)(A,)_lBgl(un—l _ fln—l)

+ At(1 — (K’)"’)(A’)‘IB§‘2(v"‘1 —— "(T—1), (4.3)

where 33, and 832 are diagonal matrices depending on the values of gu and gv.

Combining (4.2) and (4.3), we have

A‘1 + Km(I — A“) 0

0 («‘1’)‘1 + (K’)"‘(1 - (A’)"‘)

(I — K"‘)A‘IB{‘1 (I - K'")A‘IB{‘2

(1 - (K’)"‘)(A’)‘1331 (1 - (K’)’")(A')“B§'2

Because of the properties of fu, fv, gu, and gv,

I —— Km A‘IB" I — Km A‘IB"( ) 11 ( ) 12 S 0,,

(1 - (K’)'")(A’)‘135'1 (1 - (K’)'”)(A’)‘IB£‘2

where C’ 2 O is a constant independent of h and At. But A‘1 is symmetric with

respect to H] - ”IA and INA-1|”); g 1, and moreover |||K||lA < 1 andlllK'lHAI <1.

Thus ifm is large enough, (lllKlllAlm < C'At and |||(K’IIIA:)’" < C’At. Thus

IIIA“+K"‘(I-A’1)IIIA S IIIA“|||A+IIIK’"(1-A“)|||A

s ll'A-IIIIA+(HIKHIA)mH|I—A—1H|A

g 1+C’At.
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Similarly,

III(A’)“ + K’"(I — (Av-1)”)... 3 1+ C’At.

Using lemma 4.1, we have

A—1+K’"(I — A”) 0

$1+C'At.

0 (.4’)‘1 + Km(I — (A’)-1)

Set C 2 20'. Then

lllwn-wnlll S (1+C'At)lllw"’1-ID"’1H|+C'Atl||w"'1-1D""1|||

= (1+CAt)lllw"’l-ID"'1|||

S (1+ CAt)"lllwo - a°|||.

There is the well known Lax’s equivalence theorem that guarantees that for a

consistent finite difference scheme, stability is equivalent to convergence [51]. This

theorem is only valid for linear equations. So, for our problem, we have to investigate

the convergence of the scheme separately.

Theorem 4.2 Assume that a solution (21,1?) of (0.1) is of class C4, and let (u,v)

denote the numerical solution for (0.1). Define the errors E3 = a" — u" and E3 =

~n

v -— v". Then for T > 0 fixed and any n such that nAt g T, we have

IHEZHIHA S IIIESIIIA +AtZ(|||fj - fjHlA +63“)

i=0

and

n

|||E3+1|||AI S IIIESIIIAI + AtZflllb’ - g’lllw +53“),

i=0

where ej = 0(At + h3/2).
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Proof: Again, we only establish the estimates for u, since the estimates for v follow

similarly. Lemma 1.1 shows that

Ax?“ = a" + Atf" + AtRn“,

n+1

where R"+1 is a vector whose components are r,,- as in Lemma 1.1. Thus

21"“ = AM" + AtA-lf" + AtA‘an“.

Set Assn“ = u" + Atf". Then 27"“ = A'lu" + AtA"1A‘lf". Let K be the error

operator defined in Chapter 3 and assume m V—cycles are performed at each time

step. Then 1”“ — u“1 = K"‘(:z:"+1 — u"). Moreover

un+1 : (1_Km)xn+l +Kmun

= (1 — Km)(A-1u" + AtA"1f") + Kmu”

= Km(I — A‘1)u" + A'lu" + (I — Km)AA‘1f”

and

an+1— u"+1 = A-1(a" — u") — K’"(I — A-1)u" + AtA“(f" — f") + KmAtA-lf"

+AtA‘1R"+1

= A-Iw” — u") + Km[AtA“lf" — (1 — A—1)u"] + AtA“1(f" — f”)

+AtA‘1Rn“.

Recall that MIA-1|“); S 1, |||I— A‘llllA S 1, and |||K|||A <1. Thus we may assume

(HIKIHA)m S (At)2- But then

Illa"+‘—u"+‘IHA s Illa"—u"III.+AtHIf"—f"IIIA+(HIKIHMHIMIH.

+(IIIK1II.)'"AtIIIf"IIIA+AtIHR"+‘IHA

< Illa"—u"IIIA+At|IIf"—I"IHA+(Atfllluvll.+(At)3lllf"lll..

+AtlllR"“H|A

= Illil" - unlllA + A73(lllf‘.“ - f"|||A + AItIIIU’illlA + 5'“). (4.4)
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where e"+1=(At)2lllf"|||A +|||Rn+1|llA + Atlllu"|||A. We have

 

n 1 A(Rn+lu, Rn+1u)

IIIR + IIIA = I535: A(u,u)

(ARfl't-lu, Rn+1u)J

u¢0 (AU,U)J

x (AR"+1u,R"+lu)J(R”+1u,R"+lu)J

u¢0 (R"+1u,R"+1u)J (Au, U)J

 

 

Since A 2 AJ are SPD with respect to (-, ')J, (Au,u)J Z Am,n(A)(u, '11)] and

(ARn+lu,Rn+IU)J

< A .
(R"+1u,R"+1u)J —” ”J

Therefore |||R"+1IIIA S (lll A “J H R"+1 ”J and

 

2

HR" ll3= Z h2(.;;)2+ Z tweak (0(At+h3/2)).
1:069 mean

since there are only 0(1/h) boundary points where r?)- = 0(At + h). Thus 6"“ =

AtlllntHA +HIRn+1H|A + AtllluanA = 0(At + h3/2). This together with (4.4) gives

Illa"+1 - un'HlllA S III210 - UOIHA + NZUIIP - fjlllA + 6j“)

1:0

and

lllEZHHIA S IIIEBIHA + AtZUllfj - fjHlA + 6’“)-

i=0

Tl

Corollary 4.1 Let E" = (g?!) with E3 and E3 defined in Theorem 4.2. If the

U

partial derivatives fu, fv, gu, and g,, are continuous and uniformly bounded, then for

T > 0 such that nAt = T, we have

lllE"||| S BCTUIIEOIII +8").

where e" = T0(At + h3/2).
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Proof: From the properties of fu, f,,, g,,, and 9,, and the proof in Theorem 4.1, we

obtain

fj_. j j 1

f. f = B11 Bl? (1.13.1 _ wj),

g] — 9] Bil Biz

with

Bj Bj

11 12 SEC).

Bi». Biz

Here Bu, Ba, 82), and 822 are defined in Theorem 4.1 and the constant C is inde-

pendent of h and At. Therefore

fi‘fi le—wjmmejm
gJ__gJ

and

[HF - fjHlA + I”? ‘9jHlA’ S ClllEjlll-

Hence

"—1 n—l

lllE"||| S HIEOIH +01“): HIEJIH +At 26’“-

i=0 J—O

Let e" 2 At 2?:1 61 = TO(At + h3/2). Then ej S e" for 0 g j g n and

n—1

IIIE"||| S |||E°||| +6" +046: IIIE’III

i=0

n-2

= |||E°||| +6" +CAtlHE"“III +0415: IIIE’III

j=0

n—2 n—2

S IIIEOIH+6"+CAt(|l|E°H|+6”"1+CAt |||EJ|||)+CAtZ|||E’|H

j=0 j=0

n—2 . n-2 .

S |||E°|||+6"+CAt(|||E°||l+6"+CAtZ|||EJ|||)+CAtZ|HE’|||

j=0 j=0

n—2

= (1+CAt)(lllE°lll+e")+(1+CAt)(CAtZIIIE’III)
j=0

n—2 _

= (1+CAt)(|||E°|H+8"+XIIIEJIII)

j=0

S (1+ CAt)”‘1(HIE°|H + 8" + CAtIIIEOIII)
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S (1+ CAt)"(HIEOIII + e")

|
/
\

eXpC"A‘(|||E°||| + e")

= expCT(|||E°|l| +8")-

[I

Remark: The number m of V-cycles applied to (2.1) is assumed to be large in

the proof above in order to obtain the stability and convergence theory. However,

in the practical computations, one or two V-cycles performed at each time step are

sufficient for the desired accuracy. This efficient scheme will be demonstrated in the

next chapter.
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CHAPTER 5

Experimental Results

In this chapter, two reaction-diffusion systems are used to demonstrate the ef-

ficiency of the fully implicit finite difference discretization with V-cycle as a solver.

The first example is a substrate-inhibition reaction-diffusion mechanism experimen—

tally studied by Thomas(1976). It has been shown to be able to form patterns on

animal coats [42]. First, we do a linear stability analysis on a rectangular domain to

predict the possible pattern on this domain. Then a numerical simulation is carried

out to verify this estimated pattern. Finally, we use this system to generate spots

and stripes by numerical simulations. To demonstrate that this numerical scheme is

valid for other shapes of domains in practice, the pattern on a cone surface is also

carried out.

There are many other systems which has been used to study spatial patterns [3]

[26] [42]. All these systems are capable of generating animal coat markings. The

second example we use is the Schnakenberg( 1979) reaction [41]. It is used to generate

spots, horizontal and vertical stripes in our numerical computations.

For each numerical simulation, the computer program terminates when the nu-

merical solutions u and v reach their equilibrium. In the simulation of the pattern

on a tail, it requires two V-cycles at each time step for the numerical solution to con-

verge to the equilibrium. Each of other simulations requires only one V-cycle at each
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time step for the numerical solution to converge. Thus at the end of this chapter, we

compare the running time needed in using the multigrid technique with that needed

in using a classical iterative method on the fine grid alone. The results show that

multigrid technique is much more efficient.

5.1 The Thomas System

The example we consider here is taken from [41], the Thomas system. It is a

substrate inhibition system:

U, = DUAU+F(U, V)

Vt = DVAV+G(U, V),

 

 

where

ksUV
FUV :1. —k —

(’ ) 1 2U k6+k7U+k8U2

and

k5UV
V :1. —k — .

Gw’ ) 3 4V k6+k7U+k8U2

Here U and V are the concentrations of two chemical species with U a substrate and V

an inhibitor. The constants DU and DV are positive diffusion coefficients and F(U, V)

and G(U, V) are the kinetics with the positive rate constants ks. The nondimensional

system is given by

u, 2 Au + 7f(u,v)

2). = dAv+79(U.v).

where

f(u.v) = 0““fl

and (5.1)

9(u.v) = 0(1) — ’U) — Fifi—17

. . . Bu 8v . . . . .
w1th zero flux boundary condltlon -—— = — = 0 and 11111313] condltlon u(2:, y, 0)

an an an an  

and v(a:, y,0) given on Q.
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Let us choose 0 as [0, 2.1] x [0,1.2] and parameter values d = 10, ’y = 20, a = 1.5,

K = 0.1, p = 18.5, a = 92, and b = 64. The parameter values determine a steady

state u, = 9.934 and v3 = 9.289. To form inhomogeneous spatial patterns, a reaction

diffusion system must undergo diffusion driven instability or Turing instability. The

uniform steady state is stable to small disturbance when the diffusion terms are absent

but unstable to small spatial disturbance in the presence of diffusion. With the above

parameter values, linear theory gives the range of modes k2 that are driven unstable:

2 2

1 . < k2 = 2 m— n— < .05_ 7r(2.12+1.22)_1025,

which means

m2 n2

1.0637 < — — < 1.9507,

— 2.12 + 1.22 _

where m and n are integers. Details in deriving the range of unstable modes can be

found in [41]. The above range of unstable wavenumbers admits only the wavenumber

m = 2, n 2 1. The solution which involves exponentially growing modes about the

uniform steady state us and v, is given as

2 27m 7r

02,1810: )‘ cos —— cos i .2

2.1 1.2’ (5 )

where Cm is determined by initial conditions. Figure 5.1 is the pattern obtained from

( 5.2) to predict the pattern that could be formed. The values on the dark regions

are greater than zero. The top graph is obtained with 02,1 < 0 and the bottom with

02,1 > 0. Which of these two solutions is obtained thus depends on the bias in the

initial conditions.

Turing(1952) suggested that, under certain conditions, the homogeneous steady

state was unstable to small spatial perturbations and the stable nonuniform spatial

patterns could evolve by diffusion driven instability. In the numerical experiments,

the initial conditions are taken as random perturbations confined to a small region

about the steady state. Figure 5.2 shows the concentrations in the morphogen u.
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0.5 1 V is 2

Figure 5.1: Possible patterns estimated by linear stability analysis.

The dark regions represent u < us. There are two patterns formed by using different

seeds in the function calls of random number generator. They agree with the patterns

suggested by linear stability analysis.

The next three figures are obtained by numerical simulations of different patterns

generated with different parameter values of 7 and different geometry. Each example

is computed until the equilibrium is reached.

The computing details of the simulation are as follows. In Figure 5.3, the pattern

(top) of morphogen concentration u < uo = 10 in system ( 5.1) is computed on a

grid of 65 x 257 points with 'y = 8. The graph of the residual (bottom) shows that

morphogen u reaches the equilibrium at t z 400.

In Figure 5.4, the pattern of morphogen concentration u < uo = 10 in system

( 5.1) is computed on a grid of 65 x 225 points with 7 = 48. The graph of the residual

shows that morphogen it reaches the equilibrium at t z 60.

In Figure 5.5, the pattern of morphogen concentration u < no 2 10 in system
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Figure 5.2: Turing’s patterns obtained by numerical simulation.
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Figure 5.3: Numerical simulation of Turing pattern of ( 5.1) and residual plot with

'y = 8.
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Figure 5.4: Numerical simulation of Turing pattern of ( 5.1) and residual plot with

7 = 48.
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Figure 5.5: Numerical simulation of Turing pattern of ( 5.1) and residual plot on a

cone surface.
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( 5.1) is computed on a grid of 65 x 225 points with 7 = 35. The graph of the residual

shows that morphogen u reaches the equilibrium at t z 120.

Rings of pattern typical of many spotted animal tails are generated when the

reaction diffusion domains are tapering cylinders. Rings are at the tip and spots are

obtained as the circumference increases. Although the domain is not rectangular,

V-cycle algorithm could still be applied analogously.

5.2 The Schnakenberg System

The main forms of patterns generated by a reaction-diffusion system are spots

(Figure 5.4 and Figure 5.7), rings (Figure 5.5), horizontal stripes (Figure 5.8), and

vertical stripes(Figure 5.3 and Figure 5.6). In this section, we choose another reac-

tion kinetics. It is the simplest class of two—species reaction mechanism studied by

Schnakenberg(1979) in limit cycle solutions of two-species reaction systems. It has

also been shown to be able to generate animal coat markings [41]. Its nondimension-

alization gives

U: = A7~t+’7f(u,’U)

v; = dAv+7g(u,v),

where

f(u,v) = a—u+u2v

and (5-3)

g(u,v) = b—u2v,

with parameter values (1 = 50, a = 0.2, and b = 2. Thus the uniform steady state is

uo = 2.2 and v0 = 0.413.

Next we demonstrate the V-cycle algorithm with this reaction-diffusion system.

We change the scale factor 7 and the domain to obtain different forms of pattern.

The computing details follow.
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Figure 5.6: Numerical simulation of Turing pattern of ( 5.3) and residual plot of with

7 = 15.

In Figure 5.6, the pattern of morphogen concentration u < uo = 2.2 in system

( 5.3) is computed on a grid of 65 x 225 points with 7 = 15. The graph of the residual

shows that morphogen u reaches the equilibrium at t z 54.

In Figure 5.7, the pattern of morphogen concentration u < uo = 2.2 in system

( 5.3) is computed on a grid of 65 x 217 points with 7 = 30. The graph of the residual

shows that morphogen u reaches the equilibrium at t z 100.

In Figure 5.8, the pattern (top) of morphogen concentration u < uo = 2.2 in

system ( 5.3) is computed on a grid of 65 x 225 points with 7 = 50. The graph of the

residual (bottom) also shows that morphogen u reaches the equilibrium at t z 26.
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Figure 5.7: Numerical simulation of Turing pattern of ( 5.3) and residual plot with

7 = 30.
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Figure 5.8: Numerical simulation of Turing pattern of ( 5.3) and residual plot with

7 = 50.
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5.3 Comparison

We end this thesis by demonstrating the robustness of the V-cycle algorithm. We

compute the solution of system ( 5.1) with 7 : 25 on the domain [0, 1.6] x [0, 1.6]. We

discretize ( 5.1) with different spatial and time step sizes. Both the V-cycle algorithm

and direct iterative method using red-black Gauss-Seidel iteration are applied to each

case. In each case, the solution is obtained when the morphogen concentrations u

and v reach their equilibrium. The number of iterations at each step, the number

of time steps needed for the morphogen concentration to reach its inhomogeneous

steady state, and the running time for each case are recorded in the following tables.

Notice that when the spatial step size in each direction is refined by half (see Table

1 and Table 2) in order to keep the same ratio of %, time step size is changed into a

factor of %. Comparing the running time between these two cases it does not show the

power of the V-cycle algorithm. Since the fully implicit finite difference discretization

is unconditionally stable, we could exploit this advantage by increasing the step size

in time to reduce the running time. Thus in Table 3, we double the time step size.

Then only one V-cycle is needed, so the running time for V-cycle algorithm is reduced

by about half. But the direct iterative method suffers from its limitations because

of the change of the ratio %. Thus the number of iterations at each time step must

be increased in order to have convergence. Even if the fully implicit finite difference

scheme is unconditionally stable, the direct iterative method seems to be unable to

take advantage of it. In Table 4, we can see when the spatial grid size is even finer

— the running time for direct iterative method is almost 10 times that needed for

V-cycle algorithm.
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Figure 5.9: Numerical simulation of Turing pattern on a square.

 

 

 

    
 

 

 

 

    
 

 

 

 

h = 0.05 number of iterations number of CPU

At = 0.01 at each time step time steps time

Red-black Gauss-Seidel iteration 25 3000 39.78 seconds

V—cycle 1 3000 10.8 seconds

Table 5.1: Comparison between single grid and multigrid with h = 0.05 and At =

0.01.

h 2 0.025 number of iterations number of CPU

At = 0.0025 at each time step time steps time

Red-black Gauss-Seidel iteration 22 12000 607.54 seconds

V-cycle 1 . 15000 219.18 seconds

Table 5.2: Comparison between single grid and multigrid with h = 0.025 and At =

0.0025.

h = 0.025 number of iterations number of CPU

At = 0.005 at each time step time steps time

Red-black Gauss-Seidel iteration 45 5600 569.86 seconds

V-cycle 1 7000 103.43 seconds    
 

Table 5.3: Comparison between single grid and multigrid with h = 0.025 and At =

0.005.
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h = 0.0125 number of iterations number of CPU

At = 0.0025 at each time step time steps time

Red-black Gauss-Seidel iteration 85 11000 8205.23 seconds

V-cycle 1 14000 857.52 seconds
 

Table 5.4: Comparison between single grid and multigrid with h = 0.0125 and At =

0.0025.
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