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ABSTRACT

Balancing Lifting Values to Improve Numerical Stability of
Polyhedral Homotopy Continuation Methods

By

Mengnien Wu

Polyhedral homotopy continuation methods exploit the sparsity of polynomial sys-
tems so that the number of solution curves to reach all isolated solutions is optimal
for generic systems. The numerical stability of tracing solution curves of polyhe-
dral homotopies is mainly determined by the height of the powers of the continuation
parameter. To reduce this height we propose a procedure that operates as an interme-
diate stage between the mixed-volume computation and the tracing of solution curves.
This procedure computes new lifting values of the support of a polynomial system.
These values preserve the structure of the mixed-cell configuration obtained from the
mixed-volume computation and produce better-balanced powers of the continuation

parameter in the polyhedral homotopies.
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Introduction

During the last two decades, homotopy continuation methods have proven to be
reliable and efficient to compute numerical approximations to all isolated zeros of
polynomial systems. To exploit sparsity of polynomial systems, polyhedral homotopy
continuation methods emerged in [HuSt95, VVC]. For generic polynomial systems,
the number of solution curves to be traced is optimal. We refer to [Li97] for a survey
on recent advances in homotopy continuation methods for polynomial systems.

Polyhedral homotopies are nonlinear in the continuation parameter. Powers of
the continuation parameter too close to zero can be scaled away from zero by a
suitable scalar multiplication. After scaling, if very high powers exist in a polyhedral
homotopy, small step sizes must be taken in order to successfully trace a solution curve
of the polyhedral homotopy. Although the end of the solution curve can be reached as
long as the required step size is not smaller than the available machine precision, the
efficiency of the curve-tracing is greatly reduced. A more serious problem occurs when
the continuation parameter, starting from 0, is not yet close enough to 1, some terms
of the polyhedral homotopy with high powers of the continuation parameter have
values smaller than the machine precision and some solution curves may come close
to “valleys” where the values of the homotopy are numerically zero, but no solution
curves exist inside the “valleys”. This situation can easily cause the curve-tracings to
be trapped in these “valleys” with no chance of reaching the ends of solution curves

unless the curves are retraced with smaller step sizes.



Two known geometric approaches to control the numerical stability of polyhedral
homotopy continuation methods are recursive liftings (as in Bernshtein’s algorithm
[Bern, VVC]) and dynamic liftings [VGC]. However, because of using multiple liftings
or flattenings, these approaches both require more expensive construction of subdi-
visions and create more homotopy curves which need to be traced than a random
floating-point lifting.

To minimize the height of the powers of the continuation parameter in polyhedral
homotopies, we search in the cone of all lifting vectors that induce the same mixed-
cell configuration to obtain better-balanced powers of the continuation parameter of
polyhedral homotopies. This idea can also be found in the proof of Proposition 1.11
in [St96].

This dissertation is organized in the following manner: In Chapter 1, we start
with the polyhedral homotopy method and its numerical stability; in Chapter 2, the
idea originated from the construction of the polyhedral homotopy to balance lifting
values is given, followed by the setup of the linear programming model for balancing
lifting values as well as the reduction of the size of this LP model; and finally, some

numerical experiments are presented in Chapter 3.



CHAPTER 1

Polyhedral Homotopy

To solve a polynomial system P(x) = (pi(x),-:-,pa(x)) in C* by the homotopy
continuation method, the homotopy H(x,t) : C* x [0,1] — C™ needs to posess the

following properties:
e Property 1 ( Triviality). The solutions of H(x,0) = 0 are known.

e Property 2 (Smoothness). The solution set of H(x,t) = 0 for 0 < ¢t < 1 consists

of a finite number of smooth paths, each parametrized by ¢ € [0, 1).

e Property 3 (Accessibility). Every isolated solution of H(x,1) = P(x) = 0 can
be reached by some path originating at ¢ = 0, i.e. this path starts at a solution

of H(x,0) = 0.

When H(x,t) = 0 defines a homotopy that satisfies above properties, the number of
isolated zeros of H(x,0) must be no fewer than the number of isolated zeros of P(x).
Unfortunately, the former is in general much greater than the later, resulting in a
considerable waste of computational effort in following extraneous paths in practice.

The Bernshtein theory on root count of polynomial systems is essential for our at-
tempt to reduce the number of homotopy curves need to be traced when the homotopy

continuation method is employed to find all isolated zeros of polynomial systems.



In the first section of this chapter, the Bernshtein theory on root count in (C*)",
where C* = C)\ {0}, as well as its extension to root count in C" are presented. In the
second section, the polyhedral homotopy, based on the Bershtein theory, for finding
all isolated zeros of a polynomial system is introduced. In the last section, we will
discuss the method to solve a binomial system, so that initial solutions of a polyhedral

homotopy can be identified.

1.1 Bernshtein Theory

Let the given polynomial system be P(x) = (pi1(x),---,pa(x)) € C[x], where x =
(z1,-+*,Zn). With x3 = z{ ... 2% where q = (g1, *,qn), Write

D (x) = Z cl,qxq’

q€ES)

(1.1)

Il

2 Cn,qXY,

q€ESn

where Sy, -, S, are fixed subsets of N* with cardinals k; = #Sj, and c;q € C* for

Pa(x)

q€ Sj,j=1,---,n. We call S; the support of p;(x), denoted by spt(p;), its convex
hull Q; = conv(S;) in R* the Newton polytope of p;, and S = (Sy,-- -, S,) the support
of P(x), denoted by spt(P).

We now embed the system (1.1) in the system P(c,x) = (pi(c,x),---,pa(c, X)),

where
ple,x) = ) eqxd,
qES)
(1.2)
pn(crx) = z c‘n.qxq7
qQESn
and the coefficients cjq with q € Sj, for j = 1,.--,n in the system are taken to be a

set of M := k; + - -+ + k,, variables. Namely, the system P(x) in (1.1) is considered



as a system in (1.2) corresponding to a set of specified values of coefficients ¢ = (c; q)
or P(x) = P(c,x).
We shall refer to the total number of isolated zeros, counting multiplicities, of a

polynomial system as the root count of the system.

Lemma 1 [Hu96] For polynomial systems P(c,x) in (1.2), there exists a polynomial
system G(d) = (g1(d),--,gn(d)) in the variables d = (djq) for q € S; and j =
1,---,n such that for those coefficients ¢ = (c;q) for which G(d) d=c # 0, the root
count in (C*)* of the corresponding polynomial systems in (1.2) is a fized number.
And the root count in (C*)™ of any other polynomial systems in (1.2) is bounded above

by this number.

Remark 1 Since the zeros of the polynomial system G(d) in the above lemma form
an algebraic set with dimension smaller than M, its complement is open and dense
with full measure in CM. Therefore, with probability one, G(d) # 0 for randomly
chosen coefficients d = (d;q) € C™. Hence, polynomial systems P(c,x) in (1.2) with

G(c) # 0 are said to be in general position.

Theorem 1 (([Bern], Theorem A)) The root count in (C*)"* of a polynomial sys-
tem P(x) = (p1(x),...,Pn(x)) in general position equals to the mixed volume of its

support.

The terminology in this theorem needs explanation. For non-negative variable
A1+, An and the Newton polytopes Q; of p;, for j =1,---,n,let \;Q1+ -+ AuQn
denote the Minkowski sum of X\1Q1,- -, A\nQn, that is,

A1Q1+""+'A1'1Q'n={/\17"1'*""'*"A'nrn rJ'EQJ':j:l)"'an}'

It can be shown that the n-dimensional volume vol,(A\@Q; + -+ + AnQn) of this

polytope is a homogeneous polynomial of degree n in Ay,---,\,. The coefficient of
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the term A; X --- x A, in this homogeneous polynomial is called the mized volume
of the polytopes @, - -, Qn, denoted by M(Q;,---,Q,), or the mixed volume of the
support of the system P(x) = (p;(x),-:-,pn(Xx)), denoted by M(S;,---,S,) where
S;j = spt(p;) for j = 1,---,n. Sometimes, when no ambiguities exist, it is called the
mixed volume of P(x).

In [CaRo], this root count was nicknamed the BKK bound after its inventors,
Bernshtein [Bern], Kushnirenko [Ku76] and Khovanskii [Kh78]. In general, it provides
a much tighter bound compared to variant Bézout bounds [MoSo, Shaf]. An apparent
limitation of the theorem is that it only counts the isolated zeros of polynomial systems
in (C*)" rather than all the isolated zeros in the affine space C*. For the purpose of
finding all the isolated zeros of a polynomial system in C*, a generalized version of
the theorem which counts the roots in C" is strongly desirable. This problem was
first attempted in [CaRo] where the notion of the shadowed sets was introduced and
a bound for the root count in C* was obtained. Later, a significantly much tighter

bound was discovered in the following theorem.

Theorem 2 ([LiWa96]) The root count in C* of a polynomial system P(x) =
(p1(x), -+, pn(x)) with supports S; = spt(p;), j = 1,---,n, is bounded above by the
mized volume M(S; U {0},...,S, U {0}).

In other words, the root count in C* of a polynomial system P(x) =
(p1(x), -+, Pa(x)) is bounded above by the root count in (C*)" of a polynomial sys-
tem in general position with support equal to spt(p;) U {0} for all j = 1,---,n. As
a corollary, when 0 € spt(p;) for all j = 1,---,n, namely, all p;(x) in P(x) have
constant terms, then the mixed volume of P(x) also serves as a bound for the root
count of P(x) in C", rather than in (C*)" as Theorem 1 asserts.

This theorem was further extended in several different ways [HuSt95, RoWa).



1.2 Polyhedral Homotopy

In light of Theorem 2 given in the last section, to find all isolated zeros of a given
polynomial system P(x) = (p;(x),---,pn(x)) in C* with support S = (S, -+, Sn),
we first append the monomial x® = 1 to those p;’s which do not have constant terms.
Followed by choosing coefficients of all the monomials in the system generically, a new

system with support A = (A,,---,A,) is obtained, where, of course, A; = S; U {0}

for j =1,-.-,n. In this section, we may assume 0 € A; := spt(p;) and write
(
n(x) = 2 €1,qX%,
qcA
P(x) = 4 : (1.3)
Pa(x) = D cngx?,
. qE€An

with all generically chosen coefficients c;q for q € A; and j = 1,---,n, this system
may be considered as a system in general position. Namely, there exists a polynomial
system

G(d) = (gl(d))"'igm(d)) (14)

in the variables d = (d;q), for q € A;, j = 1,--+,n, such that polynomial systems
with coefficient ¢ = (c;q) for which G(d) deoc # 0 reach the maximum root count
in (C*)" for the support A = (Ay,---,As).

Let t denote a new complex variable and consider the polynomial system ﬁ(x, t) =
(P1(x,t),- -+, Pn(x,t)) in the n + 1 variables (x, t) given by

(

pi(x,t) = Z €1,gX 1@
Q€A
P(x,t) = ¢ : (1.5)
\ qE€An
where each w; : A; = R for j = 1,---,n, known as a lifting is chosen generically on



A;. For a fixed 7, we rewrite the system in (1.5) as

4

Px,m) = Y (e1,q™@)xs,
qeA

P(x,7) = ¢

Pa(x,7) = Z(Cn,q‘r“’"(q))xq-
\ qEAn

This system is in general position if for G(d) in (1.4),
def .
9(7') - G(d)ld _ (cj'q'r“’i(q)) # 0, fOI' q € AJ and ] = 1’ RN (8

The system O(t) = 0 can have only finitely many solutions since ©(1) = G(c) # 0

implies O(t) is not identically 0. Let

t; = rle‘o‘, ey t, = Tketoh

be all solutions of ©(t) = 0. Then, for any § # 6;, j = 1,---,k, the systems

ﬁ(x’ t) = (ﬁl(xa t)a toe ’ﬁn(xv t)) given by

4
p(x,t) = Z(Cl’qewl(q)o)xthl(Q)’
Q€A

P(x,1) = |

p.(x,t) = E(c,,,qe“”"(“)")x"t‘”"(“),
\ qQ€An

are in general position for all real ¢ > 0 because

¢ qeiw,'(Q)atwj (@ — ¢ q(teiO)wj(Q)

and

G(d)ld _ (cj'q(teia)u,(q)) = e(tefe) #0,

Therefore, without loss of generality (choose an angle # at random and change the
coefficients c; q into c;qe*(®? if necessary), we may suppose the systems ﬁ(x, t) in

(1.5) are in general position for all ¢ > 0. Together with Lemma 1 given in the last
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section, it follows that for all £ > 0 the systems ﬁ(x, t) in (1.5) have the same number
of isolated zeros in (C*)™. This number, say k, should equal to the mixed volume of
the support of P(x) in (1.3) by Theorem 1. We shall skip this fact temporarily and
will reach this assertion at the end of this section.

Now consider I3(x, t) = 0 as a homotopy, known as the polyhedral homotopy, de-
fined on (C*)" x [0,1]. We have P(x, 1) = P(x), and the zero set of this homotopy is
made up of k homotopy paths, say, x!(t),---,x*(t), since for each 0 < ¢ < 1, ﬁ(x, t)
has exactly k isolated zeros from the argument given above. Since each p;(x,t) has
nonzero constant term for all j = 1,--.,n, by a standard application of generalized
Sard’s Theorem [ChMPYo], all those homotopy paths are smooth with no bifurca-
tions. Therefore, both Property 2 (Smoothness) and Property 3 (Accessibility) men-
tioned at the beginning of this chapter hold for this homotopy. However, when ¢t = 0,
ﬁ(x, 0) = 0. Consequently, the starting points x!(0),---,x*(0) of those homotopy
paths can not be identified, causing the breakdown of the standard homotopy con-
tinuation algorithm. This major obstacle can be overcome by the devise we describe

below.

P(x,0)=0 P(x)=0

Figure 1.1: Solution curves of ﬁ(x,t) =0



For a = (a;,-+,a,) € R*, consider the transformation x = yt* defined by

r = yltalf
(1.6)
T, = yYnt".
For q = (q1,---,¢s) € N", we have
x? = zf'... .z
= ()" (gaton)" (L7)
= yf ...y trntotanen '
= ydtlaa

Here, (-,-) stands for the usual inner product in R*. Substituting (1.7) into (1.5)
yields, for j =1,---,n,

he(y.t) & Byt t) = Y ¢yt @Vees@
qEA;

= Z ¢j.qy i@ ilaws@) (1.8)
qEA;

= Z Cjtqut(a,q)’
quj

where @ := (q,w;(q)) for q € A; and @ := (a, 1) € R**!. The new homotopy

Ha(Ya t) = (hclx(yit)v T hﬁ(Yat)) =0
retains most of the properties of the homotopy ﬁ(x, t) = 0, in particular, H*(y,1) =
ﬁ(y, 1) = P(y) and both Properties 2 (Smoothness) and 3 (Accessibility) stand. Let

m; ¥ min(@,§), j =1 n
] acA; 14/ ) )

and define the homotopy
_H—a()'7t) = (Ela(y’t)v tet )E:(y?t)) =0

10



on (C*)* x [0,1], where, for j =1,---,n

H;‘(y’t) — t‘-"ljh;l(y’t) — Z Cj,qut(?x,a)—m:'

qEA;
§ : q Q4(8,8)—m; (1.9)
= cjvqy + Z chqyt .
QE.Aj qGAJ'
(@Q)=m; (@,q)>m;

Evidently, for any path ¥(t) defined on [0, 1], we have, for all ¢ > 0,
H (y(t),t)=0 <« H(y(t)t)=0.

Therefore, the zero set of H' (y,t) = 0 consists of the same homotopy paths of the
homotopy H*(y,t) = 0in (1.8). The difference is, the starting points of the homotopy

paths considered in the homotopy H °(y,t) = 0 are solutions of the system

( T a
hi(y,0) = D c,qy?=0,

q€Ay
(a8.q)=m,

H%(y,0) = ¢ : (1.10)

ha(y,0) = D cnqy?=0.

q€An
\ (8,Q)=mn

As shown below, when this system is in certain desired form, its isolated nonsingular
solutions that lie in (C*)" can be constructively identified. In those situations, Prop-
erty 1 ( Triviality) becomes partially valid for those homotopy paths of H (y,t) = 0
that emanate from those nonsingular solutions of (1.10) in (C*)", and we may follow
those paths to reach a partial set of isolated zeros of P(y) at t = 1.
The system (1.10) is known as the binomial system if each E; (y,0) consists of
exactly two terms, that is,
hi(y,0) = cy™ +cjy® =0,
(1.11)
ha(¥,0) = cay™ +coy™ =0,
where a;,a; € Aj, ¢; = cja; and ¢; = Cjal for j = 1,---,n. And in this case,

C = ({a1,a}}, -+, {an,a]}) is called a mixed cell of A with inner normal a, or

11



C = ({a1,a,},---,{8n,&.}) is a lifted mized cell with inner normal @ = (a, 1).
Alternatively, we say a supports cell C or a supports lifted cell C. H(y,t) =0is
called the polyhedral homotopy on cell C induced by w and a. The collection of all

mixed cells is called the mixed cell configuration M, induced by w.

Proposition 1 The binomial system in (1.11) has

!
81 _al

ko = |det : (1.12)

nonsingular solutions in (C*)".

The number k, is called the volume of the mixed cell ({a;,a}},: -, {ans,a}}).
The proof of this proposition is constructive and therefore provides an algorithm for
solving the binomial system (1.11) in (C*)". We will come back to this matter in the
next section.

In summary, for given a = (a;,---,a,) € R*, by changing variables x = yt°,
as in (1.6), in the homotopy ﬁ(x, t) = (p(x,t), - ,Pn(x,t)) = 0 in (1.5), the ho-
motopy H*(y,t) = (h§(y,t), -+, ha(y,t)) = 0 in (1.8) is obtained, where A{(y,t) =
p;(yt,t). Followed by factoring out the lowest power t™i of ¢ among all monomials in
each individual h$(y,t) = 0 for j = 1,---,n we arrive at the homotopy Hy,t)=0
in (1.9). When the start system H *(y,0) = 0 of this homotopy is binomial, its non-
singular solutions in (C*)®, k, (as given in (1.12)) of them, become available. We may
then follow those homotopy paths of ﬁa(y,t) = 0 originated from those k, regular
solutions of H(y,0) = 0 in (C*)", and reach k, isolated zeros of P(y) at t = 1.
Worth notifying here is the fact that the system P(x), or P(y), stays invariant at
t = 1 during the process.

Now, the existence of @ € R for which the start system H °(y,0) = 0 is binomial

is warranted by the following

12



Proposition 2 For all the real functionsw; : A; = R, j =1,---,n being generically
chosen, there must erist a € R", for which the start system H (y,0) = O of the
homotopy H’(y,t) = 0 in (1.9) is binomial with a nonempty set of nonsingular

solutions in (C*)", i.e., ko # 0 in (1.12).

The assertion of this proposition was proved implicitly in [HuSt95] with terminolo-
gies and machineries developed in combinatorial geometry, such as, random liftings,
fine mized subdivisions, lower facets of convez polytopes, etc., see also [Li97]. Here,
we elect to reinterpret the result without those specialized terms.

Now, different a € R" given in Proposition 2 lead to different homotopy
H%(y,t) = 0 in (1.9). Henceforth, following homotopy paths of those different ho-
motopies will reach different sets of isolated zeros of P(y). By taking the Puiseux
series expansions of those homotopy paths of H °(y,t) = 0 originated at (C*)" into
consideration, it is not hard to see that those different sets of isolated zeros of P(y)
reached by different sets of homotopy paths are actually disjoint from each other.
Most importantly, it can be shown that every isolated zero of P(y) can be obtained
this way by following certain homotopy curve of the homotopy H °(y, t) = 0 associ-
ated with certain a € R" given by Proposition 2. Thus the total number of isolated
zeros of P(y) must equal to the sum of those k,’s corresponding to all the possi-
ble a’s provided by Proposition 2, respectively. In [HuSt95), it was shown that this
sum actually equal to the mixed volume of P(y). This yields an alternative proof of

Theorem 1, it is very different from Bernshtein’s original approach [Bern].

Solving Binomial Systems

Another major step in solving polynomial systems by using the polyhedral homo-

topy method as we described in the previous section is finding the solutions of the
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corresponding binomial system

ay® + cy* =0,
(1.13)

c'ny." +(‘Jny.“ = 0)
produced by the mixed cell ({a;,a}},--,{a,a,}) as in (1.11). We now discuss the
method for solving (1.13) in (C*)”. Let

! .
vj=a;—a;, j=1,--,n,

and, with y € (C*)" in mind, we rewrite the system (1.13) as

yvl = b11
(1.14)
y™ = bn,
where b; = —E’; for j=1,---,n. Let
J
V=[v{| : vg] (1.15)
and for brevity, write
yvz(yvl,_“’yv") and b=(bl,"’abn)*
Then, (1.14) becomes,
y' =b. (1.16)

With this notation, it is easy to verify that for an n x n integral matrix U, we have,

(y")7 =y¥9.
Now, when the matrix V in (1.15) is an upper triangular matrix, i.e.,

[ 1

Vi1 - Vin

0 Unn

14



then the equation in (1.16) becomes

¥ = by,
Ny = by
v (1.17)
VYR Y = b

By forward substitutions, all the solutions of the system (1.17) in (C*)" can be found,
and the total number of solutions is |vy1| X « -+ X |vp,| = |det V|.

In general, we may upper triangularize V in (1.15) by the following process. Recall
that the greatest common divisor d of two nonzero integers a and b, denoted by

gecd(a, b), can be written as
d :=gcd(a,b) = ka+ £b,

for certain nonzero integers k and £. Let

k¢
B =
_b a
d d
We have det(B) = 1, and
a k ¢ a d
B == =

b -2 2110 0

Similar to using Givens rotation to produce zeros in a matrix for its QR factorization,
the matrix B may be used to upper triangularize V' as follows. For v € Z", let a and

b be its i*® and the j'* (nonzero) components where i < j, that is,

s th

15



Let d := gcd(a, b), and

- 1 -
1
k ) ;th
1
U,'j = (118)
1
b a > th
—d d J
1
1

Evidently, U;; is an integeral matrix with |det U;;| = 1 and
d ith

U,‘jV =

Thus a series of matrices in the form of U;; in (1.18) may be used to successively
produce zeros in the lower triangular part of the matrix V in (1.15), resulting in an
upper triangular matrix. In simple terms, we may construct an integeral matrix U ,
as a product of those U;;’s, with |det U| = 1 and UV is an upper triangular integeral
matrix.

Now, as mentioned above, the solutions of the system
(zY)Y =2V =0 (1.19)
in (C*)* can be found by forward substitutions, since UV is an upper triangular
integeral matrix. And the total number of solutions in (C*)” is
|det(UV)| = |detU| - |det V| = |det V|.

By letting y = zU for each solution z of (1.19) in (C*)", we obtain all the solutions

of the system (1.19) in (C*)", and hence, solve the system (1.13) in (C*)".
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1.3 Numerical Stability of Polyhedral Homotopies

To solve a specific polynomial system P*(x) of support spt(P*) = A= (A;,---,A4,),
where A; C Z*, j = 1,-- -, n, we first solve a corresponding generic system P(x) with
spt(P) = spt(P*), and then use the linear homotopy H(x,t) = (1—t)P(x)+tP*(x) =
0 to solve P*(x) = 0. To solve the generic system P(x) = 0, we use the polyhedral
homotopy method.

Let’s briefly recall the procedure: A random lifting w = (wy, -+ ,wy,) will induce
the mized cell configuration M,, of support A. Foracell C = (Cy,...,C,) € M, with
inner normal a, the corresponding polyhedral homotopy H *(y,t) = 0 yields that
H®(y,0) is a binomial system with support C and H “(y,1) = P(y). If powers of ¢
in the polyhedral homotopy Fa(y, t) = 0 are too high or too close to zero, instability
might occur in tracing solution curves of Fa(y, t) = 0 unless very small step sizes are
taken. For the standard prediction-correction method [AlGe93] in tracing a curve,
the number of steps required for homotopy curves with high powers of ¢ is usually
much greater than those for other curves. This may severely reduce the efficiency of
the algorithm. A more serious problem can occur when curve-tracings are trapped
into “valleys” where the values of the polyhedral homotopy are numerically zeros, but

no solution curves exist inside the “valleys”.

Example 1 Consider the polynomial system P(x) = (p1(x),p2(x)) = 0 with x =
(z1,z2), where

p1(x) = a1z? + 222 + ¢c3 = 0,

p2(x) = cazdzd + 521 + ce72 = 0,
with support A = (A;,A;), where 4, = {(2,0),(0,2),(0,0)} and A, =
{(3,3),(1,0),(0,1)}. This system has mixed volume M(A) = 12.
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Choose a random lifting w = (w;,w;) where w; : A; — R and w; : A; — R with

w1((2,0)) = 0.655416, w;((0,2)) = 0.200995, w;((0,0)) = 0.893622,
w2((3,3)) = 0.281886, w2((1,0)) = 0.525000, w2((0,1)) = 0.314127.
Then the mixed cell configuration M,, in the fine mixed subdivision of A induced by
w consists of two mixed cells:
C = ({(2,0),(0,2)},{(3,3),(1,0)}) with inner normal a,
¢’ = ({(0,2),(0,0)},{(1,0),(0,1)}) with inner normal S.
To construct the system P(x) = 0, we choose the following set of randomly generated

coefficients,

c; = —0.434847 — 0.169859:, c; = 0.505911 + 0.405431¢,
cs = 0.0738596 + 0.177798:, c4 = —0.0906755 + 0.2088251,
cs = 0.175313 — 0.163549:, cg = 0.527922 — 0.364841:.

The polyhedral homotopy induced by w,a,C is H(y,t) = (h; (y,t), ks (y,t)) = 0,

where

Ela(y’t) = Clyf + czy% + C3t50'63523,

Ry (y,t) = cayiyd +csyr + copat®.
There are ten solution curves of H (y,t) = 0 emanating from ten solutions of

ﬁa(y, 0) = 0. At t = 0.65, five of those ten curves have phase space tangent vectors
(B2

dt’ dt
standard prediction-correction method, starting at these points, the prediction step

) all roughly pointing to y = (0,0) at the points on the curves. For the

with step size 0.025 will give the predicted points close to (y,t) = (0,0, 0.675) for all
those five curves. Since ¢3%63523 js about 10~? for ¢ = 0.675, the function values of
H(y,t) in a very small neighborhood of (0,0,0.675) (the “valley”) are almost zero.
Starting from these predicted points at t = 0.675, Newton iterations for the correction
step will converge to the “valley” rather than the points on the curves at ¢t = 0.675.

But there are no solution curves of H*(y,t) = 0 passing through the “valley”. g
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CHAPTER 2

Balancing the Powers by the
Sandwich Model

Given the mixed cell configuration M,, induced by a generic lifting w = (wy, -+, wy),

assume C = (C},---,C,) € M,. We shall use the short hand notations:

q := (q,wi(q)), q € A; for a lifted point,
A; = {d|q € A;} for a lifted support,
C::={d|qe Ci}, and C := (C,,---,C,) a lifted cell.

For a vector a := (a,1) € R**!, we say “@ supports C”, “a supports C”, or
a is the inner normal of C when the hyperplane with inner normal & supports

conv(.zl), e, conv(.;f,,) at 61, e ,5n, respectively.

2.1 A Fundamental Observation

When constructing the polyhedral homotopy for cell C with inner normal a, we

actually execute the following transformations:
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(here vectors are regarded as in columns)

exponents of (x,t) in p; (y,t) in A2 (y,t) in h,
q € -A1 —> (q’ <a’q>) — (q1 (a)q> - mi)) (21)
( see (1.5) (1.8) (1.9) )
where
1 0o
U:= . ' , S;: shift of the last coordinate of elements
0 110 in UA; by m; := minge 4, (@, q).
ay 0 Qp 1
1 .-
0 |o .
Clearly, detU = 1, U-! = ’ “|, and UG = | °
0 1 |0 0
1
-y c —Qgn 1 - =

When a vector E := (B,1) € R**! supports another cell C' , then

[ B — oy ]

U3 = :
.Bn — Qg
e 1 -
with the last coordinate > 0. For
F o
§; = : )
0
= m“ -

we have U~!s; = s;. Now, for any 7, q, we have (7,q) = (U-7%,Uq). It follows that
(U-"%,8,Uq) =(U"%,Uq-s;)
=(U"9,Uq) — (U""7,s:)
=(¥,q@) — (7, U™'sy)
=& - (7,8,
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So,
min(U™"%,8,Uq) = min(7,q) — (7,s:)-

Therefore, U-"a supports uc (thus, (SlUél, .. .,S,.Ua,,)), and at the same time,
U"'E also supports uc’ (thus, (SlUéi,. .. ,SnU@,)). a

It is not clear how powers of ¢ will be distributed in the homotopy H* until S;U
transformations applied. The consequence of applying U is to “turn cell C horizontal”
without changing existing mixed cells. When the powers of ¢ in homotopy H " are
considered as another sets of liftings, obviously it gives the same mixed cells. On
the other hand, if we slightly alter lifting values, mixed cell configuration can still
be the same but powers of ¢ may become more desirable. Accordingly, there may

exist better liftings that preserves the mixed cell configuration previously found but

induces polyhedral homotopies with more balanced powers of ¢.

Example 2 Given a polynomial system P = (p;, p;) with

spt(p1) = A1 = {a,b,c}, 4 a=(0,1), b=(0,0), c=(1,0),
an
spt(p2) = A2 = {d, e, f}, d=(0,1), e=(1,0), f=(1,1).

A lifting w = (wy,ws), wy : A — R, wp : A—R,

wi(a) =11, wi(b)=1, wi(c)=11,
wa(d) =12, wq(e) =2.1, wy(f) =2,
will result in two mixed cells:

C = ({a,b},{d,f}) with inner normal a = (10,-0.1),
C' = ({b,c}, {e,f}) with inner normal § = (-10,0.1).

Since a@ = (10,-0.1,1) supports C, in the homotopy H* = (h$, h$) induced by «,
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the distribution of powers of ¢ are as follows:

[ a:((10,-01,1), (0,1,1.1)) = 1 0

¢ b:{(10,-0.1,1), (0,0,1)) =1 inh§, < o inhy
| c:((10,-01,1), (1,0,11)) = 21 | 20
(d:((10,-01,1), (0,1,12)) = 11.9 (0

¢ e:((10,-0.1,1), (1,0,2.1)) = 12.1 in kg, { 0.2 inh,
| £:((10,-0.1,1), (1,1,2)) = 11.9 0

Namely, we have

By (¥,t) = ca¥® + cuY® + ccy°t?,
Ry (¥,t) = cay? + cay®t°? + cry.
Since ﬁ = (-10,0.1,1) supports C', in the homotopy H? = (hf,hg) induced by S,

the distribution of powers of ¢ are

[ a:((=10,01,1), (0,1,1.1)) = 1.2 (0.2

{ b:((~10,01,1), (0,0,1)) =1 ink, { o inkl

| c:((~10,0,1), (1,0,11)) =1 0

[ d:((=10,0.1,1), (0,1,12)) = 12.1 (20

{ e:((~10,0.1,1), (1,0,2.1)) = —7.9 in 3, 1o i Ry

| £:((-10,01,1), (1,1,2)) = -7.9 K

That is,
By (¥,2) = cay™t"? + cuy® + cey®,
'ﬁf (¥,t) = cay9t?® + coy® + cry’.
We wish to have certain lifting w;: A4; — R that induces polyhe-

qQ — wiq) =wq
dral homotopies in which every power of ¢ lies between 1 and some u :

1< ((@1),(c,we)) = ((a,1), (a,wa)) < py
1< (1), (e,we)) = ((@,1),(d,wa)) < p,
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where a is the solution to

((ar 1)’ (a7 wl)) = ((a» l)v (b, wb»v

(2.2)
((a’ l)v (ded)) = <(a’ 1)7 (fv (Uf)),
i.e. a supports cell C = {{a,b}, {d,f}}, and
1< ((B,1),(a,wa)) — ((8,1), (bun)) < p,
1< ((8,1),(d,wa)) — ((8,1),(e,we)) < p,
where (3 is the solution to
((8,1), (b,wn)) = ((8,1), (¢, we)), (23)

((,61 1)) (e)we)) = ((:3) 1)) (f: wf)))

that is, B supports C' = {{b,c}, {e,f}}. Hence, C and C’ remain mixed cells.

Consider a linear programming problem with the variables ;1 and wg’s:

LPO : min g
(exponents of t)
st. 1< ((ey1),(c,we)) — ((@,1), (a,wa)) < p,
1< ((ey1),(e,we)) — ((,1),(d,wa)) < g,
1< ((8,1), (a,wa)) — ((B,1),(b,wn)) <y,
1 < ((:31 l)v (d7wd)) - ((:Bv 1)’ (e) we)) < K,
where a is the solution of Eg:?l:?)) - ::_’ ::;: by (2.2),
(3 is the solution of gg:::;)) - 5: _ ::: by (2.3),

variables: U, wa, Wy, We, Wd, We, Ws-
The powers of t in H* can be regarded as another lifting which induces the same
mixed cells C and C’ with C staying “on the ground”. By restricting wa, wy, wq,ws =

0, we have a = (0,0)” in LP0 and obtain a new linear programming model LP1:
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LP1: min u
(exponents of t)
st. 1< We < u,

1< We < u,

1< (ﬁ)a)—(ﬁ,b> S“a

1 S <ﬂ) d) - ((:37 1)1 (e) we)) S K,

. . (B,b—c)= w,
where B is the solution of { (B.e—f) = _";Ue by (2.3),
variables: u,w,,we.
LP1 is of course preferable if its optimal solution x4 and corresponding exponents of

t are better than the ones in LPO. O

2.2 Setup of The Sandwich Model

As indicated in the last section, generic random liftings can induce highly nonlinear
polyhedral homotopies which may produce numerical instabilities. To overcome this
problem, our strategy is to find a new lifting function v = (v, ...,v,) where y; : A; —
R for i = 1,...,n, based on the already computed mized-cell configuration M,. The
mixed-cell configuration M, induced by the new lifting v will be the same as M,
but the highest power of the continuation parameter ¢ in the polyhedral homotopies
induced by v is the smallest among all those polyhedral homotopies induced by liftings
which keep the mixed-cell configuration M,, invariant. In this way, reidentifying the
mixed-cell configuration M,,, which is very time consuming, becomes unnecessary.
Let C = (Cy,...,C,) € M, where C; = {a;,b;} C A;,i=1,...,n. To keep M,

invariant, we impose on any new lifting function » = (v4,...,v,) the conditions:

((7) 1)1(81', Vt(at))) = ((71 1)»(bi; Vi(bi))>1 i=1.. . .n
((7) 1)’ (ai: Vt(a!))) < ((7’ 1)? (q’ V.‘(Cl))), v q € At\{an bi}7
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or,

(ai,7) +vi(as) = (by,7) + vi(by), (2.4)
(ai,7) +ui(a) < (@,7) +u(q), VaqeA\{a;,b;}, (2.5)
fori=1,...,n, where (,1) is the inner normal of C in M,,.

From (2.4), we have (a; — b;,7) = v;(b;) — vi(a;) for i = 1,...,n. Since C =
(Ch,...,Cy) is a mixed cell in the fine mixed subdivision S, the edges spanned by
{ai,bi}, i =1,...,n, determine a full-dimensional parallelepiped in R*. Equivalently,

the matrix

a; — b,

an—bn

is nonsingular, and so, vy can be expressed uniquely as a linear combination of the

lifting values v;(a;) and y;(b;), ¢ = 1,...,n. Namely,

- - - -

N Vl(bl) - (81)
F=|:[=4" : : (2.6)

L Tn L Vn(bn) - Vn(an) i

Asin (1.9), the polyhedral homotopy induced by lifting v = (4, ..., v,) and mixed
cell C = ({a1,b1},...,{as, b,}) with inner normal (v,1) is
Rl(y,t) = GaY™ +any™ + Y, Gay'tS, i=1,...,n
q€A;\{a; b}

where e, the powers of ¢, are given by

eq = (a,7) — (&,7) +vi(q) —vi(a), V qe€ A\{a;, b},

and they are always positive according to (2.5). By (2.6), ¥ may be removed from
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the symbol ). We denote the resulting expressions by eq. More explicitly,

-

vi(b1) — vi(a1) W
eq:=(q—a;)A™" : +v4:(q) — vi(ay). (2.7)

| Vn(bn) - Vn(an) j

To avoid the powers eq being too large or too small, it is natural to consider the

following minimization problem LPO:

LPO: min p
st. 1<eq<p VqeA\{a,b}, i=1,...,n,
VC = ({a1,b1},...,{an,ba}) € M,
with eq defined in (2.7).

Apparently, the lifting function » = (1,...,v,) with values obtained by the so-
lution of this minimization problem satisfies (2.4) and (2.5) with v defined in (2.6).
Therefore, the mixed-cell configuration M, induced by v coincides with M,,. More-
over, the powers of the continuation parameter ¢ in the polyhedral homotopies induced

by v will be much better balanced.

2.3 Reducing the Size of the Sandwich Model

LPO has 1+ )", #A; unknowns, namely, u as well as v;(q) forq € A;,i =1,...,n,
and 2(#M,) Y i, (#A; — 2) inequalities. For practical considerations, we wish to
reduce both the number of unknowns and the number of inequalities in LP0. In
the following, we will show that for a fixed mixed cell C = ({&;,b1},...,{@x, ba}),
where {&;,b;} C A;, i = 1,...,n, in the mixed-cell configuration M, with inner
normal (8,1), we may set v;(&;) and v;(b;) to be zero for i = 1,...,n in LPO, so
the number of unknowns is reduced by 2n. But the solution of the new minimization
problem defines a lifting function v’ = (14,...,v],) which induces the same mixed-cell

configuration as M,,.
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For the fixed mixed cell C = ({&;,b,},...,{&,,ba}) € M, with inner normal
(8,1), we define a lifting function v’ = (wj,...,w}), where w] : 4, 2 R, i=1,...,n,

as follows: fori =1,...,n and q € A;,
wi(q) := (6,q) — (6, &) + wi(q) — wi(F). (2.9)

Then w! vanishes at both &; and b;, i = 1,...,n. Let M, be the mixed-cell configu-
ration in the subdivision S, of A = (A,,...,.A,) induced by w'.

Lemma 2 M, = M,,. More precisely, C = (C,...,C,) € M, with inner normal
(a,1) with respect to w if and only if C = (C,,...,C,) € M, with inner normal

(a — B,1) with respect to w'.

PROOF: Let C; = {a;,b;} C A, fori =1,...,n. Then, C € M, with inner normal

(a,1) <=

<(a’ 1)1 (a,,w.(a,))) = ((a1 1)1 (bi)wi(bi)»»

i1=1,...,n
(e, 1), (a5, wi(a))) < {(a,1),(q,wi(a))), VY q€ A\{a;bi},
Or,
(a,a; — b;) = w;i(b;) — wi(ay),
i=1,...,n
(a,q — &;) > wi(a;) —wi(q), Vqe A\{a;b},
On the other hand, C € M, with inner normal (a — 3,1) <
((a = B,1), (a;, wi(a:))) = ((a@ — B,1), (bi,wi(bs))), T

((@—B,1), (a;,wj(a:)) < ((@—B,1),(q,wi(q))), Vaqe A\{a;bi},
Or, by (2.9),
(a—pBa,—b)) = wi(b;)—wi(a)
= (B,b:) — (3, &) + wi(bi) — wi(a)
—((8, &) — (B, ) + wi(a;) — wi(a))
= (=B,a — by) + wi(b;) — wi(ay),
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ie.,

(a,a.- —b"> =w,-(b.~) —w,-(a,'), 1= 1,...,11

and, for q € A;\{a;, b;},

! /

(a-Ba—a) > wi(a)—wi(q)
= (B,a) — (B,q) + wi(a;) — wi(&)
~(B,@ - (8,8) + wil@) - wi(@))
= (-B,q—a;) +wi(a;) —wi(q),
ie.,

(a,q—a;) > wi(ay) —wi(q), i=1,...,n.

So, the proof of the assertion is achieved. O
Most importantly, a straightforward calculation shows that the polyhedral homo-
topy, as in (1.9), induced by the cell C = (C},...,C,) in M,, with inner normal (a, 1)
is exactly the same as the one induced by cell C = (C,,...,C,) in M, with inner
normal (a — 3,1). So, we may solve P(x) = 0 by using the polyhedral homotopies
produced by mixed cells in M, together with corresponding inner normals.

Now, with the lifting ', we consider the minimization problem LP1 :

LP1l: min p
st. 1<(y,q-a)+u(a) —u@)<p VqeA\{a;,b},
VC = ({a1,bi},...,{an,ba}) € Moy,
vi(&) =u(b) =0, i=1,...,n

(2.10)

Here, v can be expressed, as in (2.6), as a linear combination of the values of v;’s:

r - P --1p -

T a;— b, v1(b1) — vi(ay)

Tn a, — bn i Vn(bn) - Vn(an) i
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This problem has 2n fewer unknowns than LPO, and its solution yields a lifting
function ' = (v},...,V),). As before, the mixed-cell configuration M, induced by
the lifting »' is the same as M,,.

The following proposition shows the feasibility of this problem.
Proposition 3 LP1 has an optimal solution.
PROOF: Apparently, the values of the lifting function o' = (v, ...,w)) satisfy
0< (a,q—a;) +wi(q) —wi(a;), i=1,...,n, (2.11)

for al C = ({aj;,b;},...,{as,bs}) € M, with inner normal (a,1) and q €
At\{aubl}a where

- - - - -1 p -

(03] a; — bl w’l(bl) — wi (81)

a
L "

| an=ba | | wi(ba) - w(an) |

It follows that the function values of v(¥) := fu' for £ > 0 also satisfy (2.11). There

exists eo >0 SllCh that
1< (bha,q—a;) + V' (q) — v (a), i=1,...,n 2.12
—<0 q ) i (Q) i ( )1 t 1ol ( )

for all C = ({a;,b1},...,{as,bs}) € M, and q € A;\{a;,b;}. Let uo be the
maximum of the right-hand side of (2.12). Then (v(%), ) is a feasible solution of

LP1. So LP1 has an optimal solution with the value of ; between 1 and y,. |

Remark 2 The pair (%), ug) constructed in the proof can serve as a starting point

of standard simplex algorithms for solving LP1.

The number of variables in each double inequality of LP1 is no greater than 2n+2
which is usually much smaller than the number of variables in LP1. This sparsity

of the linear programming problem LP1 is exploited in our algorithm and results
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in a remarkable speed-up. Some of the inequalities in the constraints of LP1 are
exactly the same, and they can easily be detected by comparisons and deleted when
the constraints are being generated.

In the rest of this section, we will show that the constraints in LP1 can also be
derived from circuits [GKZ, MiVe] of the support A = (A,,...,.A,). For a mixed cell
C = ({a1,b1},..., {an,bs}) € M, with inner normal (a,1) and q € A;\{a;,b;}, we
have

(a,8;) + wj(a;) < (a,q) +wj(a),
or,

(a,q — a;) + wj(q) — wj(a;) > 0. (2.13)

We will call this inequality the normal inequality with respect to C and q. This
inequality serves as the building block in our sandwich model LP1 in (2.10).
Note that (a,1) is also the normal of the n-dimensional subspace H of R"!

spanned by the vectors

(bl — a;,wy(by) — wl(al)) R (bn — 8, wn(by) — wn(an))-

Let (q —a;, s) be the projection of the vector (q — a;,w;(q) —w;(a;)) on the subspace

H along the direction of its last coordinate. Then ((a,1),(q — aj,s)) =0, or,
(a7q_aj> +s8=0
and (2.13) becomes
wi(@) - wi(@) - s > 0.
So, the left-hand side of (2.13) measures the distance between the points
(q — aj,w;(q) — w;(a;)) and (q — a;, s) as shown in Figure 2.1.
On the other hand, the Cayley embedding of A; into R?"~! is
A ={(a,e;.1)|ac A}, i=1,...,n,
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Figure 2.1: An illustration of normal inequality (2.13)

here ¢ = 0 € R*! and ¢; = (0,...,1,0,...,0) is the i*® unit vector in R"*?,
i=1,...,n—1 Let A=| JA. Define & : A— R by
i=1

w(a,e;_1) =w;(a), Vac A4, i=1,...,n.
Then the lifting w induces a regular subdivision of A, denoted by S5.

Proposition 4 (The Cayley Trick [GKZ, St94, VGC]) S, is a fine mized sub-
division of A = (Ay,..., A,) if and only if S5 is a triangulation of conv(A). Fur-
thermore, C = (Cy,...,C,) € S, if and only ifUé.- €S;.

=1

By the Cayley embedding, a;,by,...,a,,b, and q are embedded in R?>"~! as
follows:
(a1,€0), (b1,€0), ..., (an,€n-1), (bn,€n-1), (q,€j-1)
Since these points are affinely dependent (not necessarily a circuit), there exist

A1, - oy Any AL, € R such that

n

Y+ x) =1,
=1 . (2.14)
(q,ej-1) = Z (/\i(ai,ei—l) + ’\:(biaei—l))-

=1
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From (2.14), as in Theorem 4.1 of [MiVe], we have

/\j + /\; =1,
(2.15)
Ai+ A =0 fori#j.
It follows that
(q,ej-1) = Z (/\i(ai:ei-—l) + A (b;, ei—l))
i=1
= Z (/\i(az’,ei—l) + /\:(ai,ei—l) + /\:(bi, €i_1) — /\:(aiaei—l))
i=1
= (aj,e;1) + Y (b —a;,0)
1=1
and so,
q-a;=) X(bi—a) (216)
i=1
Now, UE’. € g;, implies
i=1
S(ae) > (,\.-a(a,.,e,-_l) + ,\ga(b..,e.-_l)). (2.17)
=1
By (2.15) and the definition of @, (2.17) can be written as
n
wj(Q) — wj(a;) > D N(wi(b;) — wi(ay),
=1
or,
wji(@) — wj(a;) — D N(wi(bi) — wi(a:)) > 0. (2.18)

=1

We will call this inequality the circuit inequality with respect to C and q.
Since (q — a;, 8) is in the subspace H and thus can be written as a unique linear

combination of (b; — a;,w;(b;) — wi(a;)), : =1,...,n, (2.16) leads to
5= Mwi(b) - wi(a).
i=1
So, the left-hand side of (2.18) also represents the distance between the point

(q — aj,wj(q) — w;(a;)) and (q — a;,8). Therefore, the normal inequality (2.13) is

the same as the circuit inequality (2.18).
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(bedel | e

{a,b}+{e,f} {b,c}+{d,f} {a,c}+{d,e}
Figure 2.2: Mixed cell configurations of (A;,.A4;)

Example 3 Let A; = {a,b,c}, A; = {d,e,f} be two supports, where
a=(0,1), b=(0,0), c¢=(1,0),
d=(0,1), e=(1,0), f=(1,1),

Suppose C = ({b, c},{d, e}) and C' = ({a,b}, {d, e}) are mixed cells induced by
a lifting w = (w;,ws). Let A= .Zl U .Zg be the Cayley embedding of A; and A3, as
shown in Figure 2.3. The four points in C = {E, ¢, d, €} form a simplex and it follows

that {b,¢,d,&,f} is an affinely dependent set (but not a circuit), i.e.
f=Mb+ NS+ Aod + N8
for some A; + X, + A2 + A, = 1. Since the third coordinate of both b and € equals
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c

Figure 2.3: Cayley embedding of A; and A;

zero, clearly, A2 + A\; =1 and A; + A} = 0. So the equation becomes
f—d=M)N(@E-b)+ME-d),

ie.
f-d=M\(c—b)+(e—d). (2.19)

By Proposition 4, the projection of the lower facets of

conv ( (&, w1 (@), (B,w1 (b)), (& wi(c)), (d,wa(d)), (&, wa(e)), (F,wa(F)))

~

in R* gives a regular triangulation of conv(a, b, ¢, d, &, f), and
{(B,r(B), € w1(c)), (@ w2(d)), & wale)) }
is one of the lower facets. Let (8,1) € R? be its inner normal, then
(B,b) +wi(b) < (B,) + wa(f)

with
(8,b) +wi(b) = (8,8) +wi(c)
= <,B’ a) + w2(d)

= <ﬂ’§) + w2(e)'
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Hence,

wa(f) > (B,b) — (B,£) +wi(b)
= (8,b) — (8,d) — N,(8,€ — b) — Xy(8,& — d) + wi(b)
= wy(d) — wi(b) + N (wi(€) — wi(b)) + Xy(wa(e) — wa(d)) + wy(b)

and it follows the circuit inequality
wa(f) — wa(d) > Aj(wi(c) — wi(b)) + Ay(wa(e) — wa(d)). (2.20)

Equation (2.19) along with (2.20) implies that (f — d, wz(f) — wz(d)) is “above” the
subspace H spanned by (c — b,w;(c) —wi(b)) and (e — d,w2(e) — wz(d)). Obviously,
the right-hand side of (2.20) is the projection of (f — d, wa(f) — we(d)) onto H, which
equals s in (2.13). Ultimately, the circuit inequality is equivalent to the normal

inequality. (]

Example 4 In the previous example, we have two mixed cells with mixed volume
2. As depicted in Figure 2.2, there is a mixed cell whose volume equals the mixed
volume. Let m: A—» {Ai, Az} be the projection onto original supports. Based on
a mixed cell C = ({b,c},{d,e}) previously found and by Cayley embedding, there
exists a circuit Z := C U {a} = {&,b,¢,d, &} (see Figure 2.4) with two associated
triangulations

T+:= {2\{&}, 2\{&}, 2\{&}},

7= {2\{b}, 2\{d}}

in R3 such that

n(@*) ={ ({beh{de}), ({ab}{de}), ({abchid}) }

(1) : (L1) type  (2) = (1,1) type (3)
and
n(T)={ (ach{de}), ({abechie}) }
(4) : (1,1) type (5)
Apparently, T~ induces fewer number of mixed cell. d
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Figure 2.4: Circuit Z = {a, b, ¢, a,'é} and projections of T and T~

The above observation stimulates the potential that the number of inequalities in
LP1 can be further reduced by verifying the flip operations that involve mixed cells
as defined in [MiVe]. Namely, one may check whether the mixed-cell configuration
is such that the flips determined by the circuit can be performed. If this is not
the case, then the corresponding circuit is not supported and its inequality can be
discarded provided that the optimal solution of LP1 is not interfered. The problem
of implementing this idea efficiently remains unclear at this stage. Another possible
improvement is to combine the balancing strategy and the flattening method [VGC]
when the optimal value u obtained by the balancing method is still too large for

practical computations.
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CHAPTER 3

Numerical Experiments

Our algorithm in balancing the powers of ¢ by solving the linear programming prob-
lem (2.10) has been successfully implemented. In our numerical experiments, the
non-vertex points in the supports of the polynomial systems are deleted before calcu-
lating the mixed-cell configurations, and the mixed-cell configurations M, are gen-
erated by our implementation of the Lift-Prune algorithm [EmCa] with random real
liftings. The numerical experiments are done on a PC with a Pentium 166MHz pro-
cessor, 16Mb RAM, 256Kb cache and Linux operating system. The numerical results
of applying our algorithm to several well-known polynomial systems as listed below

in Tables 3 and 3.

Polynmial Systems

e Cyclic-n problem [EmCa] The general formulation goes as follows:

n k
ZHz(Hj)modm k=1,---,n-1

P(x)=q i1

H:Bj - 1.
i=1

with variables x = (z;,- -+, z,).
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e The Cohn-2 system from PoSSo test suite [PoSSo]:

p(x) = z39% + 42?y?z — z?yz? + 288z%y% + 2072%yz + 1152zy%2
+156zy22 + x23 — 34562%y + 20736zy? + 19008zyz + 82944y%2
+432z2% — 497664y + 62208z 2 + 2985984z,

p2(x) = 333 + 4312 — y22t? + 4y%t3 — 48y%t? — 5yzt?
+108yzt + 2%t + 1442t — 1728z,

p3(x) = —z22%t+ 422°8 + 2382 + 232 + 15622t + 20722 + 1152228
+28822t2 + 43222z + 19008z 2t — 345622t + 82944xt?
+207362t% + 622082 — 4976642t + 29859842,

pa(x) = P33 — zy?t? + 4y3t? + 4y*t3 — Szy?t — 48y°%t?
+z2y + 108zyt + 144zy — 1728z,

with variables x = (z,v, 2, t).
e Cassou-Nogues system [Li97)

p1 = 15b%cd? + 6b%c® + 21b%c?d — 144b%c — 8b*ce
—28b%cde — 648b%d + 36b%d%e + 9bd® — 120,

pa = 30bcdd — 32cde? — T20b%cd — 24b%c3e — 432b%c? + 576¢ce — 576de
+16b%cd?e + 16d%e? + 16c%e? + 9bict + 39b%c*d? + 18b%cd®
—432b%d? + 24b%d%e — 16b*c?de — 240c + 5184,

ps = 216b%cd — 162b%d* — 81b*c? + 1008ce — 1008de + 15b%cde
—15b%c3e — 80cde? + 40d%e® + 40c%e? + 5184,

ps = 4b%cd — 3b%d? — 4b*c? + 22ce — 22de + 261,

with variables b, c, d, e.
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e Planar 4-bar mechanism system [MoWa]:

_ 2,2 2 2 2.2 2
Pi(X) = @;173%5 + 0, 273234 + @i 3TIT3 + G 4TITE + G4 5TTT4
2 2 2
+a;6Z] + i 7T1ZT2T3 + A 8T1T2T3T4 + A4,9T1T2Z3 + G4 10T1T2T
2 2
+@;11T1T2T4 + G;,12T1T3 + @;13T1T3T4 + @;14T1Z3 + @;15T1T]
) 22 o2 2 2.2
+a,,16T1%4 + @;,17T3Z3 + G;18T2T3T4 + G4,19T3T3 + G4,20T3T
2 2 2
+a;21T3T4 + @;,22T3 + @; 23T2T3 + Qi 24T2T3T4 + @ 25T2T3
+a; 2 4 a; . 0o T2 + Q; 99T ;=1 4
Q;26T2T4 + @i 27T2T4 + Qi 28T3 + Qi 20Ty, t=1,...,
with variables x = (z,, z3, Z3,Z4) and generic choice of coefficents a; ;s of the

system.

Size of LPO Size of LP1
#M, || #var | #ineq | #var | #ineq
17 31 748 23 690
3 28 114 20 106
4 33 192 25 168
25 33 1000 21 692
126 45 7560 31 4982
297 59 | 24948 | 43 | 16118

Polynomial System

Cohn-2 [PoSSo
Cassou-Nogues [Li97
Planar 4-bar [MoWa

Cyclic-6 [EmCa

Cyclic-7 [EmCa

Cyclic-8 [EmCa

e NN Y I I ]

Table 3.1: Sizes of the Linear Programming problems. Here, n is the number of
variables of the polynomial system and #.M, is the number of mixed cells in the
mixed-cell configuration M,,.

The data in Table 3.1 are generated by the program with one random lifting
function w for each polynomial system. The fourth and fifth columns give the size of
the linear programming problem in (2.8). The last two columns are the size of the
linear programming problem in (2.10) after all repeated constraints are deleted. For
cyclic-n polynomial systems, about 1/3 of the constraints are deleted, which results

in a considerable speed-up.
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Avg highest power of ¢ Avg CPU time
Polynomial System Before After Finding | Balancing
balancing | balancing | mixed cells | method
Cohn-2 [PoSSo| 1391 85 0.21 0.19
Cassou-Nogues [Li97 251 11 0.05 0.03
Planar 4-bar [MoWa] 429 8 0.17 0.08
Cyclic-6 [EmCa 425 31 0.46 0.17
Cyclic-7 [EmCa 3152 139 71 1.9
Cyclic-8 [EmCa 10281 398 81 16.6

Table 3.2: Height of Powers and CPU Time in Seconds. The averages are obtained
from ten different random liftings.

For the data in Table 3.2, we run the algorithm with ten different real random
liftings for each polynomial system. We first scale the powers of ¢ in the polyhedral
homotopies before balancing such that the lowest power of ¢ in the homotopies is one,
and the average of the high%t powers of ¢ in the polyhedral homotopies for the ten
random liftings are listed in the second column. The third column lists the average
of the highest powers of ¢ in the polyhedral homotopies for the ten liftings obtained
from the optimal solutions of the corresponding linear programming problems (2.10).
The fourth column gives the average time elapsed for finding all mixed cells. The
last column is the average time elapsed for finding the optimal lifting functions v/,
including the constructing and solving of the linear programming problems (2.10).
From these results, we see that the highest powers of ¢ in the polyhedral homotopies
are considerablly reduced. The overall reduced powers of ¢ in the polyhedral homo-
topies greatly limit the chance of running into a “valley” which may cause the failure

of curve-tracing.
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