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ABSTRACT

Balancing Lifting Values to Improve Numerical Stability of

Polyhedral Homotopy Continuation Methods

By

Mengnien Wu

Polyhedral homotopy continuation methods exploit the sparsity of polynomial sys-

tems so that the number of solution curves to reach all isolated solutions is optimal

for generic systems. The numerical stability of tracing solution curves of polyhe-

dral homotopies is mainly determined by the height of the powers of the continuation

parameter. To reduce this height we propose a procedure that operates as an interme-

diate stage between the mixed-volume computation and the tracing of solution curves.

This procedure computes new lifting values of the support of a polynomial system.

These values preserve the structure of the mixed-cell configuration obtained from the

mixed-volume computation and produce better-balanced powers of the continuation

parameter in the polyhedral homotopies.
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Introduction

During the last two decades, homotopy continuation methods have proven to be

reliable and efficient to compute numerical approximations to all isolated zeros of

polynomial systems. To exploit sparsity of polynomial systems, polyhedral homotopy

continuation methods emerged in [HuSt95, VVC]. For generic polynomial systems,

the number of solution curves to be traced is optimal. We refer to [Li97] for a survey

on recent advances in homotopy continuation methods for polynomial systems.

Polyhedral homotopies are nonlinear in the continuation parameter. Powers of

the continuation parameter too close to zero can be scaled away from zero by a

suitable scalar multiplication. After scaling, if very high powers exist in a polyhedral

homotopy, small step sizes must be taken in order to successfully trace a solution curve

of the polyhedral homotopy. Although the end of the solution curve can be reached as

long as the required step size is not smaller than the available machine precision, the

efficiency of the curve-tracing is greatly reduced. A more serious problem occurs when

the continuation parameter, starting from 0, is not yet close enough to 1, some terms

of the polyhedral homotopy with high powers of the continuation parameter have

values smaller than the machine precision and some solution curves may come close

to “valleys” where the values of the homotopy are numerically zero, but no solution

curves exist inside the “valleys”. This situation can easily cause the curve-tracings to

be trapped in these “valleys” with no chance of reaching the ends of solution curves

unless the curves are retraced with smaller step sizes.



Two known geometric approaches to control the numerical stability of polyhedral

homotopy continuation methods are recursive liftings (as in Bernshtein’s algorithm

[Bern, WC]) and dynamic liftings [VGC]. However, because of using multiple liftings

or flattenings, these approaches both require more expensive construction of subdi-

visions and create more homotopy curves which need to be traced than a random

floating-point lifting.

To minimize the height of the powers of the continuation parameter in polyhedral

homotopies, we search in the cone of all lifting vectors that induce the same mixed-

cell configuration to obtain better-balanced powers of the continuation parameter of

polyhedral homotopies. This idea can also be found in the proof of Proposition 1.11

in [St96].

This dissertation is organized in the following manner: In Chapter 1, we start

with the polyhedral homotopy method and its numerical stability; in Chapter 2, the

idea originated from the construction of the polyhedral homotopy to balance lifting

values is given, followed by the setup of the linear programming model for balancing

lifting values as well as the reduction of the size of this LP model; and finally, some

numerical experiments are presented in Chapter 3.



CHAPTER 1

Polyhedral Homotopy

To solve a polynomial system P(x) = (p1(x), - . - ,pn(x)) in C" by the homotopy

continuation method, the homotopy H(x, t) : C" x [0,1] —> C" needs to posess the

following properties:

0 Property 1 (Triviality). The solutions of H(x, 0) = 0 are known.

0 Property 2 (Smoothness). The solution set of H(x, t) = 0 for 0 S t _<_ 1 consists

of a finite number of smooth paths, each parametrized by t E [0, 1).

0 Property 3 (Accessibility). Every isolated solution of H(x, 1) = P(x) = 0 can

be reached by some path originating at t = 0, i.e. this path starts at a solution

of H(x,0) = 0.

When H(x, t) = 0 defines a homotopy that satisfies above properties, the number of

isolated zeros of H(x, 0) must be no fewer than the number of isolated zeros of P(x).

Unfortunately, the former is in general much greater than the later, resulting in a

considerable waste of computational effort in following extraneous paths in practice.

The Bernshtein theory on root count of polynomial systems is essential for our at-

tempt to reduce the number of homotopy curves need to be traced when the homotopy

continuation method is employed to find all isolated zeros of polynomial systems.



In the first section of this chapter, the Bernshtein theory on root count in (0)",

where C“ = C\ {0}, as well as its extension to root count in C” are presented. In the

second section, the polyhedral homotopy, based on the Bershtein theory, for finding

all isolated zeros of a polynomial system is introduced. In the last section, we will

discuss the method to solve a binomial system, so that initial solutions of a polyhedral

homotopy can be identified.

1.1 Bernshtein Theory

Let the given polynomial system be P(x) = (p1(x), - - - ,pn(x)) E C[x], where x =

(9:1, - - - ,2"). With xq = :c‘fl . - - 2:3," where q =(q1, - - - ,qn), write

191(3‘) = ch’qxq,

(1651

(1.1)

pn(x) : Z Cquq’

qESn

where 31,- - - ,5a are fixed subsets of N” with cardinals kj = #Sj, and cm 6 C“ for

q E Sj, j = 1, - - - ,n. We call 33- the support of pJ-(x), denoted by spt(pj), its convex

hull Qj = conv(S,-) in R" the Newton polytope of 17,-, and S = (8'1, - - - ,3“) the support

of P(x), denoted by spt(P).

We now embed the system (1.1) in the system P(c,x) = (p1(c,x), . ~ . ,pn(C,x)),

where

p1(c, x) = Z Cquq,

‘1651

(1.2)

pn(C,X) = Z cfliqxq)

£165..

and the coeficients Cm with q E 5,, for j = 1, - - - ,n in the system are taken to be a

set of M := k1 + - -- + kn variables. Namely, the system P(x) in (1.1) is considered



as a system in (1.2) corresponding to a set of specified values of coefficients c = (cm)

or P(x) = P(c,x).

We shall refer to the total number of isolated zeros, counting multiplicities, of a

polynomial system as the root count of the system.

Lemma 1 [Hu96] For polynomial systems P(c,x) in (1.2), there exists a polynomial

system G(d) = (gl(d),---,g,,(d)) in the variables (1 = (dm) for q E Sj and j =

1, - - . ,n such that for those coefficients c = (cm) for which G(d) d = c 75 0, the root

count in (C‘ )" of the corresponding polynomial systems in (1.2) is a fixed number.

And the root count in (C‘)” of any other polynomial systems in (1.2) is bounded above

by this number.

Remark 1 Since the zeros of the polynomial system G(d) in the above lemma form

an algebraic set with dimension smaller than M, its complement is open and dense

with full measure in CM . Therefore, with probability one, G(d) 75 0 for randomly

chosen coeficients d = (din) E CM . Hence, polynomial systems P(c, x) in (1.2) with

G(c) 76 0 are said to be in general position.

Theorem 1 (([Bern], Theorem A)) The root count in (0)" of a polynomial sys-

tem P(x) = (p1(x), . . . , pn(x)) in general position equals to the mixed volume of its

support.

The terminology in this theorem needs explanation. For non-negative variable

A1, - - - , A“ and the Newton polytopes Q; ofpj, for j = 1, ~ - -,n, let AIQI + - - - +AnQn

denote the Minkowski sum of A1621, - - - , AnQn, that is,

A1Q1+"'+AnQn= {A1T1+"'+An7‘n rjEQj,j=1,°--,n}.

It can be shown that the n—dimensional volume vol,,()‘1Q1 + + AnQn) of this

polytope is a homogeneous polynomial of degree n in A1, - - - , A". The coefficient of
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the term Al x x A" in this homogeneous polynomial is called the missed volume

of the polytopes Q1, - - - ,Qn, denoted by M(Q1, - - - ,Qn), or the mixed volume of the

support of the system P(x) = (p1(x), - - - ,pn(x)), denoted by M(Sl, - - - ,5“) where

51- = spt(pj) for j = 1, - - - ,n. Sometimes, when no ambiguities exist, it is called the

mixed volume of P(x).

In [CaRo], this root count was nicknamed the BKK bound after its inventors,

Bernshtein [Bern], Kushnirenko [Ku76] and Khovanskii [Kh78]. In general, it provides

a much tighter bound compared to variant Bézout bounds [MoSo, Shat]. An apparent

limitation of the theorem is that it only counts the isolated zeros of polynomial systems

in (C’ )" rather than all the isolated zeros in the affine space C". For the purpose of

finding all the isolated zeros of a polynomial system in C", a generalized version of

the theorem which counts the roots in C" is strongly desirable. This problem was

first attempted in [CaRo] where the notion of the shadowed sets was introduced and

a bound for the root count in C” was obtained. Later, a significantly much tighter

bound was discovered in the following theorem.

Theorem 2 ([LiWa96]) The root count in C" of a polynomial system P(x) =

(p1(x),--- ,pn(x)) with supports Sj = spt(pj), j = 1,-~ ,n, is bounded above by the

mixed volume M(.5'1 U {0}, . . . , 3,, U {0}).

In other words, the root count in C" of a polynomial system P(x) 2

(p1 (x), - - - , pn(x)) is bounded above by the root count in ((C‘ )" of a polynomial sys-

tem in general position with support equal to spt(pj) U {0} for all j = 1, - - - ,n. As

a corollary, when 0 E spt(pj) for all j = 1,--- ,n, namely, all pJ-(x) in P(x) have

constant terms, then the mixed volume of P(x) also serves as a bound for the root

count of P(x) in C", rather than in (0)" as Theorem 1 asserts.

This theorem was further extended in several different ways [HuSt95, RoWa].



1.2 Polyhedral Homotopy

In light of Theorem 2 given in the last section, to find all isolated zeros of a given

polynomial system P(x) = (p1(x),---,p,,(x)) in C" with support 5' = ($1, - - - ,3“),

we first append the monomial x° = 1 to those pj’s which do not have constant terms.

Followed by choosing coeficients of all the monomials in the system generically, a new

system with support A = (A1, - - . ,An) is obtained, where, of course, Aj = Sj U {0}

for j = 1, - - - ,n. In this section, we may assume 0 E A,- := spt(pj) and write

Pl(x) = Z Cquq,

qEAi

P(x)-_- 5 (1-3)

pn(x) = Z Cniqxq!

qun

with all generically chosen coefficients cm for q E A,- and j = 1, - . - ,n, this system

may be considered as a system in general position. Namely, there exists a polynomial

system

G(d) = (9101),” - ,9m(d)) (1-4)

in the variables d = (dm), for q E Aj, j = 1, - - - ,n, such that polynomial systems

with coefficient c = (cm) for which G(d) d _ c # 0 reach the maximum root count

in (C‘ )“ for the support A = (A1, - - - ,A").

Let t denote a new complex variable and consider the polynomial system P(x, t) =

(fidx, t), - - - , fin(x,t)) in the n + 1 variables (x, t) given by

51(x, t) = Z claxthil‘fi,

qEAi

P(x, t) = (1 5)

§n(x,t) = Z cu,qxqt“’"(“),

qEAn

where each wj : A,- -—> IR for j = 1, - - - ,n, known as a lifting is chosen generically on



Aj. For a fixed 7, we rewrite the system in (1.5) as

51(X,T) = Z<c1.qul(q))xqi

(1641

fin(x,7-) = Z(Cn’qun(Q))xq.

qEAn

This system is in general position if for G(d) in (1.4),

def .

9(r) = G(d)ld ___ (Cj,qT“”(q)) 7f 0, for q E Aj and j = 1, - . - ,n.

The system 9(t) = 0 can have only finitely many solutions since 9(1) 2 G(c) # 0

implies 9(t) is not identically 0. Let

t1 = rle’o‘, -- «, tk = rke’o"

be all solutions of 8(t) = 0. Then, for any 6 7f 0,, j = 1,---,k, the systems

F(x1t) = (filb‘i t): ° ' ' il—7n(xi t» given by

131“,” : 2(cl’qew1(Q)9)xth1(Q),

qEAi

P(x, t) =

1‘9"(x,t) = 2(Cn’qeiwn(Q)9)xthn(Q),

qun

are in general position for all real t > 0 because

Cj qewfiqwtwflfl = Cj q(tei0)“”'(9)

and

G(d)|d = (c,-,.,(te"0)w.-(q)) = G(tew) 75 0’

Therefore, without loss of generality (choose an angle 6 at random and change the

coefficients cm into cj,qe“"i(“)9 if necessary), we may suppose the systems P(x, t) in

(1.5) are in general position for all t > 0. Together with Lemma 1 given in the last

8



section, it follows that for all t > 0 the systems P(x, t) in (1.5) have the same number

of isolated zeros in (C‘ )". This number, say It, should equal to the mixed volume of

the support of P(x) in (1.3) by Theorem 1. We shall skip this fact temporarily and

will reach this assertion at the end of this section.

Now consider P(x, t) = 0 as a homotopy, known as the polyhedral homotopy, de-

fined on (C‘ )" x [0, 1]. We have P(x, 1) = P(x), and the zero set of this homotopy is

made up of k homotopy paths, say, x1(t), - - - ,x"(t), since for each 0 < t S 1, P(x, t)

has exactly k isolated zeros from the argument given above. Since each fJ‘J-(x, t) has

nonzero constant term for all j = 1, - ~ - ,n, by a standard application of generalized

Sard’s Theorem [ChMPYo], all those homotopy paths are smooth with no bifurca-

tions. Therefore, both Property 2 (Smoothness) and Property 3 (Accessibility) men-

tioned at the beginning of this chapter hold for this homotopy. However, when t = 0,

P(x,0) E 0. Consequently, the starting points x1(0), - - - ,x"(0) of those homotopy

paths can not be identified, causing the breakdown of the standard homotopy con-

tinuation algorithm. This major obstacle can be overcome by the devise we describe

below.

   

e
t
-

II

O H
-

H

H

(
*
v

Figure 1.1: Solution curves of P(x, t) = 0



For a = (a1, - - - , an) E IR", consider the transformation x = yt" defined by

$1 = 3111501,

(1.6)

23,, = ynta".

For q = (q1,- - - ,qn) E N", we have

x‘l := 2:? - - - 233,"

= (y1t“1)‘“---(ynt°'")"“ (1.7)

_ y‘lll , , , g» t01¢11+"-+0nqn

— yq flaw!) .

Here, (-, ) stands for the usual inner product in IR“. Substituting (1.7) into (1.5)

yields, forj = 1,---,n,

def A a
’ w-

h?(yit) = pj(yt ,t) = Z Cj,qut(a q)t 1(Q)

QEAJ'

: Z Ci.qut((°’1)ilqij(Q))
)

(1.8)

QEAJ'

= Z cj.qut(a’a),

QEAj

where a := (q, w,-(q)) for q E A,- and 67 := (a, 1) E Rn“. The new homotopy

Ha(yit) = (h?(ytt)1...1h:(Y)t)) = 0

retains most of the properties of the homotopy P(x, t) = 0, in particular, H“(y, 1) =

P(y, 1) = P(y) and both Properties 2 (Smoothness) and 3 (Accessibility) stand. Let

and define the homotopy

flaky, t) : (Hf(yit)i ' ' ' fizb’, t» = 0

10



on (0‘)" X [0,1], where, forj = 1,-~-,n

5,9030 = t'm’hj-‘(LU = Z thyqt‘a’al‘m”

(1645

q q <5 ii>-m- (1'9)

: 2: cm" + 2: Ciqy t ' 1'

QEAJ' QEAJ'

(Eva)=mj (6.6))"1j

Evidently, for any path y(t) defined on [0, 1], we have, for all t > 0,

H (Mt) = 0 «=> Hams») = 0.

Therefore, the zero set of Ha(y, t) = 0 consists of the same homotopy paths of the

homotopy Hc'(y, t) = 0 in (1.8). The difference is, the starting points of the homotopy

paths considered in the homotopy Ha(y, t) = 0 are solutions of the system

E101(3’1 0) : Z cl,qu = 0a

4641

(5.¢’i>=M1

Irila'(}',0) = 5 (1-10)

H:(Yi0) = Z cu,qu:0°

(£822...

As shown below, when this system is in certain desired form, its isolated nonsingular

solutions that lie in (C‘ )" can be constructively identified. In those situations, Prop—

erty 1 (Triviality) becomes partially valid for those homotopy paths of Ha(y, t) = 0

that emanate from those nonsingular solutions of (1.10) in (C‘ )", and we may follow

those paths to reach a partial set of isolated zeros of P(y) at t = 1.

The system (1.10) is known as the binomial system if each h;(y,0) consists of

exactly two terms, that is,

5:03 0) = cly“ + 6’13““! = 0,

(1.11)

530', 0) = cnY‘" + C’ny‘i = 0,

where a,-,a;- E Aj, c,- = cjm and c; = cm; for j = 1, - - - ,n. And in this case,

C = ({a1,a’1},---,{a,,,a:,}) is called a mixed cell ofA with inner normal (1, or

11



C = ((31,31},---,{3,,,§’n}) is a lifted mixed cell with inner normal 6 = ((1,1).

Alternatively, we say 0: supports cell 0 or 3 supports lifted cell C. Ha(y, t) = 0 is

called the polyhedral homotopy on cell 0 induced by w and a. The collection of all

mixed cells is called the mixed cell configuration Mu, induced by w.

Proposition 1 The binomial system in (1.11) has

I

a1 —al

kc, := det E (1.12)

  
nonsingular solutions in (C‘)“.

The number ha is called the volume of the mixed cell ({a1,a’1},-- -,{a,,,a;,}).

The proof of this proposition is constructive and therefore provides an algorithm for

solving the binomial system (1.11) in (0)". We will come back to this matter in the

next section.

In summary, for given a = (011,- -- ,an) E R", by changing variables x = yt“,

as in (1.6), in the homotopy P(x, t) = (1’51(x, t),---,fn(x,t)) = 0 in (1.5), the ho-

motopy H"(y,t) = (h‘f(y,t), - - -,h:(y,t)) = 0 in (1.8) is obtained, where h?(y, t) =

@(yta, t). Followed by factoring out the lowest power th' oft among all monomials in

each individual hfly, t) = 0 for j = 1, - - - ,n we arrive at the homotopy H°(y, t) = 0

in (1.9). When the start system Ha(y, 0) = 0 of this homotopy is binomial, its non-

singular solutions in (C‘ )“, lea (as given in (1.12)) of them, become available. We may

then follow those homotopy paths of Ha(y, t) = 0 originated from those he, regular

solutions of Ha(y,0) = 0 in (0)", and reach k0, isolated zeros of P(y) at t = 1.

Worth notifying here is the fact that the system P(x), or P(y), stays invariant at

t = 1 during the process.

Now, the existence of a E IR" for which the start system Ha(y, 0) = 0 is binomial

is warranted by the following

12



Proposition 2 For all the real functions wj : Aj —-> R, j = 1, - - - ,n being generically

chosen, there must exist a E R", for which the start system Ha(y,0) = 0 of the

homotopy Haw, t) = 0 in (1.9) is binomial with a nonempty set of nonsingular

solutions in (0')”, i.e., ha 76 0 in (1.12).

The assertion of this proposition was proved implicitly in [HuSt95] with terminolo-

gies and machineries developed in combinatorial geometry, such as, random liftings,

fine mixed subdivisions, lower facets of convex polytopes, etc., see also [Li97]. Here,

we elect to reinterpret the result without those specialized terms.

Now, different a E IR” given in Proposition 2 lead to different homotopy

Ha(y,t) = 0 in ( 1.9). Henceforth, following homotopy paths of those different ho-

motopies will reach difierent sets of isolated zeros of P(y). By taking the Puiseux

series expansions of those homotopy paths of Ha(y, t) = 0 originated at (C‘ )" into

consideration, it is not hard to see that those different sets of isolated zeros of P(y)

reached by different sets of homotopy paths are actually disjoint from each other.

Most importantly, it can be shown that every isolated zero of P(y) can be obtained

this way by following certain homotopy curve of the homotopy Ha(y, t) = 0 associ-

ated with certain a E R" given by Proposition 2. Thus the total number of isolated

zeros of P(y) must equal to the sum of those ka’s corresponding to all the possi-

ble a’s provided by Proposition 2, respectively. In [HuSt95], it was shown that this

sum actually equal to the mixed volume of P(y). This yields an alternative proof of

Theorem 1, it is very different from Bernshtein’s original approach [Bern].

Solving Binomial Systems

Another major step in solving polynomial systems by using the polyhedral homo-

topy method as we described in the previous section is finding the solutions of the

13



corresponding binomial system

clyIll + Glyn; : 0‘)

(1.13)

cnyan +C’nya; : 0)

produced by the mixed cell ({a1,a'1}, - - - , {an,a:,}) as in (1.11). We now discuss the

method for solving (1.13) in (0')". Let

, o

vj=aj—a,-a J=1,---,n,

and, with y E (C‘ )" in mind, we rewrite the system (1.13) as

 

yvl = bl)

(1.14)

yvn = bni

where b_,- = —-C-1 forj= 1,---,n. Let

i

V:],,1T]... v5] (1.15)

and for brevity, write

yV=(yvl,.H,yvn) and b:(bli'”1bn)-

Then, (1.14) becomes,

yV = b. (1.16)

With this notation, it is easy to verify that for an n x n integral matrix U, we have,

by)” = 34"”)-

Now, when the matrix V in ( 1.15) is an upper triangular matrix, i.e.,

' ]
v11 v1n

  

14



then the equation in (1.16) becomes

ylm : b1,

yUIva22 = b2,

1 2 (1.17)

yi‘"y§”"---yi’.“" = b...

By forward substitutions, all the solutions of the system (1.17) in (C‘ )" can be found,

and the total number of solutions is |v11| x x |v,,,,| = |det V].

In general, we may upper triangularize V in (1.15) by the following process. Recall

that the greatest common divisor d of two nonzero integers a and b, denoted by

gcd(a, b), can be written as

d := gcd(a, b) = ka + (b,

for certain nonzero integers k and Z. Let

11: Z

B =

_9 2

d d

We have det(B) = 1, and

a k f a d

B = =

b —3 g b 0

Similar to using Givens rotation to produce zeros in a matrix for its QR factorization,

the matrix B may be used to upper triangularize V as follows. For v E Z", let a and

b be its ith and the jth (nonzero) components where i < j, that is,

  



Let d := gcd(a, b), and

 

 

F1 '

I

k 8 2th

1

Ugj I: (1.18)

l

b a, 'th
_3 d J

1

1 .l    
Evidently, U,,- is an integeral matrix with |det Uijl = 1 and

d ith

U,,-v=

  
Thus a series of matrices in the form of U,,- in (1.18) may be used to successively

produce zeros in the lower triangular part of the matrix V in (1.15), resulting in an

upper triangular matrix. In simple terms, we may construct an integeral matrix U ,

as a product of those Uij,s, with |det U | = 1 and UV is an upper triangular integeral

matrix.

Now, as mentioned above, the solutions of the system

(zU)V = zUV = b (1.19)

in (C‘ )" can be found by forward substitutions, since UV is an upper triangular

integeral matrix. And the total number of solutions in (0')" is

|det(UV)| = |det U| - |det V] = |detVl.

By letting y = zU for each solution 2 of (1.19) in (C’ )", we obtain all the solutions

of the system (1.19) in (C‘ )", and hence, solve the system (1.13) in (0‘)".
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1.3 Numerical Stability of Polyhedral Homot0pies

To solve a specific polynomial system P*(x) of support spt(P*) = A = (A1, - - - ,A),

where A,- C Z", 3' = 1, - - - ,n, we first solve a corresponding generic system P(x) with

spt(P) = spt(P*), and then use the linear homotopy H(x, t) = (1 — t)P(x) +tP*(x) =

0 to solve P*(x) = 0. To solve the generic system P(x) = 0, we use the polyhedral

homotopy method.

Let’s briefly recall the procedure: A random lifting w = (w1,--- ,wn) will induce

the mixed cell configuration M“, of support A. For a cell 0 = (C1, . . . , C") E M“, with

inner normal 0:, the corresponding polyhedral homotopy Holy, t) = 0 yields that

Ha(y,0) is a binomial system with support 0’ and Ha(y, 1) = P(y). If powers of t

in the polyhedral homotopy Ha(y, t) = 0 are too high or too close to zero, instability

might occur in tracing solution curves of Holy, t) = 0 unless very small step sizes are

taken. For the standard prediction-correction method [AlGe93] in tracing a curve,

the number of steps required for homotopy curves with high powers of t is usually

much greater than those for other curves. This may severely reduce the efficiency of

the algorithm. A more serious problem can occur when curve-tracings are trapped

into “valleys” where the values of the polyhedral homotopy are numerically zeros, but

no solution curves exist inside the “valleys”.

Example 1 Consider the polynomial system P(x) = (p1(x),p2(x)) = 0 with x =

(x1, x2), where

p1(x) = c1x§+ c2x§ + c3 = 0,

p2(x) = c4x§xg + c5x1 + c6332 = 0,

with support A = (A1,A2), where A1 = {(2,0), (0,2), (0,0)} and A2 =

{(3,3), (1,0), (0, 1)}. This system has mixed volume M(A) = 12.

17



Choose a random lifting w = (021,022) where col : A1 —> IR and 022 : A2 —+ IR with

01((2, 0)) = 0.655416, w1((0, 2)) = 0.200995, 01((0, 0)) = 0.893622,

02((3,3)) = 0.281886, w2((1,0)) = 0.525000, w2((0,1)) = 0.314127.

Then the mixed cell configuration Mw in the fine mixed subdivision of A induced by

(12 consists of two mixed cells:

C = ({(2,0), (0,2)}, {(3,3), (1,0)}) with inner normal (1,

C" = ({(0, 2), (0, 0)}, {(1,0), (0, 1)}) with inner normal 6.

To construct the system P(x) = 0, we choose the following set of randomly generated

coeficients,

c1 = —0.434847 — 0.169859i, c2 = 0.505911 + 0.405431i,

c3 = 0.0738596 + 0.177798i, c4 = —0.0906755 + 0.208825i,

c5 = 0.175313 — 0.163549i, c6 = 0.527922 — 0.364841i.

The polyhedral homotopy induced by w,a,C is Ha(y,t) = (hf(y,t),h2°(y,t)) = 0,

where

What) = clyi + 629% +C3t5°'63523,

H(y,t) = C4yl’yg + 65311 + c6y2t2.

There are ten solution curves of Ha(y,t) = o emanating from ten solutions of

Ha(y, 0) = 0. At t = 0.65, five of those ten curves have phase space tangent vectors

(iv; a;

dt ’ dt

standard prediction-correction method, starting at these points, the prediction step

) all roughly pointing to y = (0,0) at the points on the curves. For the

with step size 0.025 will give the predicted points close to (y, t) = (0,0, 0.675) for all

those five curves. Since t50'63523 is about 10‘9 for t = 0.675, the function values of

H(y, t) in a very small neighborhood of (0,0,0.675) (the “valley”) are almost zero.

Starting from these predicted points at t = 0.675, Newton iterations for the correction

step will converge to the “valley” rather than the points on the curves at t = 0.675.

But there are no solution curves of H“(y, t) = 0 passing through the “valley”. [I
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CHAPTER 2

Balancing the Powers by the

Sandwich Model

Given the mixed cell configuration Mu, induced by a generic lifting w = (wl, - - - ,wn),

assume C = (C1, - - - ,Cn) E Mw. We shall use the short hand notations:

6 == (9. Lia-((1)), q E A.- for a lifted point,

A,- := {ii I q E A,} for a lifted support,

C, := {Ein E C,-}, and C := (C1, - - -,C,,) a lifted cell.

For a vector 8 := (a, 1) E Rn“, we say “6 supports C”, “0: supports C”, or

a is the inner normal of C when the hyperplane with inner normal 3 supports

conv(A1), - - - ,conv(A,,) at C1, - - - , C“, respectively.

2.1 A Fundamental Observation

When constructing the polyhedral homotopy for cell C with inner normal 0, we

actually execute the following transformations:
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(here vectors are regarded as in columns)

 

   

 

  

exponents of (x, t) in f,- (y,t) in h,“ (y,t) in h:

A A U A A S,‘ A A

q 6 «41- i——> (9, (01.9)) +—-+ (<1. (cm) - mi). (2-1)

( see (1.5) (1.8) (1.9) )

where

1 0 0

U := . . , S,- : shift of the last coordinate of elements

0 1 0 in UA, by m,- := minqu,(c’i,q).

al . . . an 1

1 . -0 o 0

Clearly, detU = 1, U-1 = ' ' , and u-Ta =

0 1 0 0

1

_al . . . _an 1 ‘ "

I. .-   
When a vector 3 := (8,1) E IR"+1 supports another cell C’, then

I 51 - 01 .

U-TB‘ =

.87: — an

  
with the last coordinate > 0. For

Si 2:

  
we have U'ls, = 3,. Now, for any 37, ii, we have (’7‘, (’i) = (U'TA, U’ci). It follows that

(U'T’i, SeUfi) = (U'T’U Uii - Si)

= (U’T’IUii) - (U'Ti Si)

= (3,3) - (EU‘lsi)

= (330) - (3,5,),
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So,

' UJA SiUA = ' AtA — A, i-gfl 7, q) $136 (1) (7 8)

Therefore, U'TEE supports UC (thus, (SIUC1,...,S,,UC,,)), and at the same time,

U'TB also supports UC’ (thus, (SlUCi, . . . , SnUC;)). El

It is not clear how powers of t will be distributed in the homotopy Ha until S,-U

transformations applied. The consequence of applying U is to “turn cell C horizontal”

without changing existing mixed cells. When the powers of t in homotopy Ha are

considered as another sets of liftings, obviously it gives the same mixed cells. On

the other hand, if we slightly alter lifting values, mixed cell configuration can still

be the same but powers of t may become more desirable. Accordingly, there may

exist better liftings that preserves the mixed cell configuration previously found but

induces polyhedral homotopies with more balanced powers of t.

Example 2 Given a polynomial system P = (p1, p2) with

spt(p1)= A1 = {a,b,c}, d a = (0,1), b = (0,0), c = (1,0),

an

spt(p2) = A2 = {d, e, f}, d = (0,1), e = (1,0), f = (1,1).

A lifting w =(w1,w2),w1:A1——>IR, (.122 :A2—>IR,

011(3): 1.1, 01(5) = 1, 01(6) = 11,

w2(d) = 12) (02(8) : 21: w2(f) = 2a

will result in two mixed cells:

C = ({a,b}, {d,f}) with inner normal a = (10, ~01),

C' = ({b,c}, {e,f}) with inner normal 3 = (—10,0.1).

Since 8 = (10, —0.1,1) supports C, in the homotopy H“ = (h‘l’,h‘2’) induced by a,
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the distribution of powers of t are as follows:

a: ((10, —0.1, 1), (0,1,1.1)) = 1 0

b : ((10,—0.1,1), (0, 0,1)) = 1 in hi". 0 in E"

c: ((10,—0.1,1), (1,0,11)) = 21 20

d: ((10,-01,1), (0,1,12)) = 11.9 0

e: ((10,—01,1), (1,0,2.1)) = 12.1 in ht. 0.2 in R?

r: ((10,—01,1), (1,1,2)) = 11.9 0

Namely, we have

RICKY: t) = Cay. + beb + ccyct20’

H2O(y,t) = cdyd + c.y°t°'2 + cfyf.

Since 3 = (—10, 0.1, 1) supports C’, in the homotopy H” = (hf, hg) induced by 5,

the distribution of powers of t are

a: ((—10,0.1,1), (0,1,1.1)) = 1.2 0.2

b : ((—10,0.1,1), (0, 0, 1)) = 1 in hi, 0 in EB

c: ((—10,0.1,1), (1,0,11)) = 1 0

d: ((—10,0.1,1), (0,1,12)) = 12.1 20

. . —fi

e: ((—10,0.1,1), (1,0, 2.1)) = -—7.9 m hf, 0 m h2

= <f (—10,0.1,1),(1,1,2))= —7.9 0

That is,

H50. t) = c.)"t°'2 + beb + ccy",

hf(y, t) = cdy‘lt20 + cey" + nyf.

We wish to have certain lifting w, : A,- ——) IR that induces polyhe-

q H wi(¢l) = wq

dral homotopies in which every power of t lies between 1 and some ,1 :

1 S ((0: 1), (01%)) — ((0:1): (81%)) S It,

1 S ((a,1),(e,we)) _ ((011)1(d1wd)> S p)
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where a is the solution to

«a: 1)! (a, ‘08)) : ((011)1(131 wt)»:

(2.2)

((0, 1), ((1,916)) = ((05 1), (13%)),

i.e. 0: supports cell C = {{a,b}, {d,f}}, and

1 _<- «,5, l),(a,w.)) — ((311)1(bawb)> S ”1

1 S ((H, 1), ((1,924)) - ((fi, 1), (6,925)) S u,

where B is the solution to

((fl,1),(b,wb)> = ((fi,1),(c,wc)>, (2.3)

((fl, 1), (61%)) = ((6,1),(f,wr)>.

that is, 6 supports 0’ = {{b,c}, {e,f}}. Hence, C and C’ remain mixed cells.

Consider a linear programming problem with the variables y and wq’s:

LPO : min 12

(exponents of t)

st. 1 _<_ ((a, 1), (c, we» — ((a,1),(a,w.)) g u,

1 S ((0 1) (6 we)>- ((0,1),(d,wd)> S It,

1 S ((5,1) (8 W.» - ((5,1),(bwbl) S u,

1 S ((3,1),(d,wd)> - ((3,1) (e we» < u,

where a is the solution of (ma— 1))) : :23;w.dby (2. 2),

fl is the solution of (fie : c)) :ww: __S: by (2.3),

variables: p3w87%)wC)wdtwetwf°

The powers of t in H“ can be regarded as another lifting which induces the same

mixed cells C and C’ with C staying “on the ground”. By restricting 02., wb, wd, (10“ =

0, we have a = (0, 0)T in LPG and obtain a new linear programming model LPl:
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LPl : min a

(exponents of t)

s.t. l g wc S u,

1 S we S ll.

1 S (5.8) - (Ab) S )1,

1 S (16. d) - ((6.1).(e.we)) S #1

we
where 6 is the solution of { Eg:::;)> : _we by (2.3),

variables: [1, we, 02..

LPl is of course preferable if its optimal solution p and corresponding exponents of

t are better than the ones in LPO. I]

2.2 Setup of The Sandwich Model

As indicated in the last section, generic random liftings can induce highly nonlinear

polyhedral homotopies which may produce numerical instabilities. To overcome this

problem, our strategy is to find a new lifting function V = (V1, . . . , 11,.) where V,- : A,- —+

IR for i = 1,. . . ,n, based on the already computed mixed-cell configuration M2,. The

mixed-cell configuration My induced by the new lifting u will be the same as Mw,

but the highest power of the continuation parameter t in the polyhedral homotopies

induced by u is the smallest among all those polyhedral homotopies induced by liftings

which keep the mixed-cell configuration M“, invariant. In this way, reidentifying the

mixed-cell configuration M”, which is very time consuming, becomes unnecessary.

Let C = (C1,...,C,,) E M“, where C,- = {a,,b,-} C A,-, i = 1,...,n. To keep Mu,

invariant, we impose on any new lifting function V = (V1, . . . , 11,.) the conditions:

<0.1).<a.-.u.<a.->>> = <0.1>.<b.-,u.-<b.-)>>. i: 1 n

<0.1>.<a.-.u.-<a.-)>> < <0.1).<q.u.<q)>>. v q e A.\{a.-,b.},
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or,

(84.7) + Vi(ai) = (bi17l + with). (2-4)

(3137) + 14(84) < (Q17) + Vi(q)i V q E A1\{au bi}, (25)

for i = 1,... ,n, where ('7, 1) is the inner normal of C in My.

From (2.4), we have (a,- — b,-,'y) = 11,-(bi) — V,(a,-) for i = 1,...,n. Since C =

(C1, . . . ,0") is a mixed cell in the fine mixed subdivision Sm the edges spanned by

{a,, b,}, i = 1, . . . ,n, determine a full-dimensional parallelepiped in IR“. Equivalently,

the matrix
1- -

81 —b1

  b an — bn -

is nonsingular, and so, 7 can be expressed uniquely as a linear combination of the

lifting values 11,-(m) and u,(b,-), i = 1,. . . ,n. Namely,

1- III )- u

’71 V1(b1) — 1’1 (81)

7T 2 = A—1 ° (26)

    I. 7n J L Vn(bn) _ Vn(a-n) A

As in (1.9), the polyhedral homotopy induced by lifting u = (V1, . . . , V") and mixed

cell C = ({a1,b1}, . . . , {a,,,b,,}) with inner normal (7, l) is

3.70.0 = Quay." + any“ + Z c..qy"t‘i. 2‘: 1.... ,n.

where eg, the powers of t, are given by

e; := (q, '7) — (any) + Vi(Q) — Vi(ai)! V q E A,\{a.-,b.-},

and they are always positive according to (2.5). By (2.6), 7 may be removed from
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the symbol e21. We denote the resulting expressions by eq. More explicitly,

P

V1031) — V1(a1) W

eq 1: (q — adA-l 5 + V101) — Vi(a«')- (2-7)

  _ Vn(bn) — Vn(an)

To avoid the powers e,l being too large or too small, it is natural to consider the

following minimization problem LPO:

 

LPO: min ,u

s.t. 1 Seq 3p VqE A,\{a,-,b,-}, i: 1,...,n,

V C = ({a1,b1},. . . , {an,b,,}) E M...

with 6,, defined in (2.7).

(2.8)

  
 

Apparently, the lifting function V = (111,” . , V,,) with values obtained by the so-

lution of this minimization problem satisfies (2.4) and (2.5) with '7 defined in (2.6).

Therefore, the mixed-cell configuration My induced by V coincides with M”. More-

over, the powers of the continuation parameter t in the polyhedral homotopies induced

by V will be much better balanced.

2.3 Reducing the Size of the Sandwich Model

LPO has 1+Zr=1 #A, unknowns, namely, a as well as V,-(q) for q E A,-, i = 1, . . . ,n,

and 2(#Mw)2?=1(#l41' — 2) inequalities. For practical considerations, we wish to

reduce both the number of unknowns and the number of inequalities in LPO. In

the following, we will show that for a fixed mixed cell C = ({51,bl},.. . ,{an,B,,}),

where {55.3.} C A,-, i = 1,... ,n, in the mixed-cell configuration M... with inner

normal ((3,1), we may set V,—(§.-) and V,-(b,-) to be zero for i = 1,...,n in LPO, so

the number of unknowns is reduced by 2n. But the solution of the new minimization

problem defines a lifting function V’ = (V{,. . . , V,’,) which induces the same mixed-cell

configuration as M“.
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For the fixed mixed cell C = ({51,b1},...,{§,,,b,,}) E M“, with inner normal

(5, 1), we define a lifting function 02’ = (02], . . . ,wg), where w,’ : A,- —+ IR, i = 1,. . . ,n,

asfollows: fori= 1,...,nanquA,,

wr’I‘l) i: mic!) — @154) + wr(Q) — wi(5i)' (2-9)

Then to: vanishes at both 5,- and E, i = 1, . . . ,n. Let M”: be the mixed-cell configu-

ration in the subdivision 5“,: of A = (A1, . . . , A”) induced by w’.

Lemma 2 M“): = Mm. More precisely, C = (01,. . . ,0") E M... with inner normal

(0, 1) with respect to to if and only if C = (C1, . . . ,Cn) E M“): with inner normal

(01 — ,6, 1) with respect to w’.

PROOF: Let C,- = {ahbi} C A,- for i = 1,. . . ,n. Then, C E M“, with inner normal

(01,1) 4:)

((a, 1)1(aivwi(ai))) = ((a,1),(b,,w,(b,~))),

((0: 1)1(aiiwi(ai))) < ((0.1).(q.w.(q))>. V q E Ai\{aiibi}1 z 1’ ’n

01'.

(0.81 - b,-) = Mlbi) — “Mail: 2 = 1’ ,n

(a, cl — at) > wi(ai) — WM): V q E Ar\{aerbi},

On the other hand, 0 e M”. with inner normal (01 — s, 1) <=>

((0 — 16:1):(aiawl(ai))> = ((0 — fl11)1(biiwi(bi)))i i: 1, . . . ,n.

((0 — 3.1)r(airwl(31))> < ((01 - :61 1), (q, WWI)», V q E Ai\{aii bi}.

Or, by (2.9),

(a — 5131' - b.) = wai) — wi(a1')

= (firth) — (3.54) + («(131) — “1454)

-(<fl.ar> - (flit) + wr-(ar) - cur-(54))

= f—flrar' — b,) + w,(b,-) — 0148;),
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i.e.,

(aia-i _bi> :wi(bi) _wi(ai)i 2: 1,...,n

and) for q E A1\{aiibi}a

(0 — H. q — a.) > «II-(8r) - 91201)

= (Brat) - (5,54) +w,(a,~) — w,(a,-)

-(<fl.q} - 0.5.) +e.-<q> — w.<a.-))

= f—fi, q — 8i) + 011(81') — 01:01).

i.e.,

(anti-at) >wr(ae) -w.-(<1). 2': 1..-..-n

So, the proof of the assertion is achieved. El

Most importantly, a straightforward calculation shows that the polyhedral homo-

topy, as in (1.9), induced by the cell C = (Cl, . . . ,C,,) in M“, with inner normal (01, 1)

is exactly the same as the one induced by cell C = (C1, . . . ,0") in M”: with inner

normal (0: —- fl, 1). So, we may solve P(x) = 0 by using the polyhedral homotopies

produced by mixed cells in M”: together with corresponding inner normals.

Now, with the lifting 02’, we consider the minimization problem LPl :

 

LPl : min a

s.t. 1 S (7.9 - a.) + 14(9) - 14(31) S A V q E As\{an be},

V C = ({alibl}i ° ° ' i {anibn}) 6 MW”

14(55): 115(35) = 0, 2: 1,. . . ,n.

(2.10)

  
 

Here, '7 can be expressed, as in (2.6), as a linear combination of the values of 11,-’82

r' H P -—1- q

’71 a1 — b1 V1(b1) - V1(al)

      771 an _ bn Vn(bn) — Vn(an)
b d I - b u
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This problem has 2n fewer unknowns than LPO, and its solution yields a lifting

function V’ = (V1,. . . ,Vl). As before, the mixed-cell configuration My: induced by

the lifting V’ is the same as M21.

The following proposition shows the feasibility of this problem.

Proposition 3 LP1 has an optimal solution.

PROOF: Apparently, the values of the lifting function 02’ = (02], . . . ,wg) satisfy

0 < (a,q—a,) +wi(q) —wi(ai)i 7': 11'°'1n1 (211)

for all C = ({a1,b1},...,{a,,,b,,}) E M“): with inner normal (0:, 1) and q E

At\{aiabi}i Where

u—lp 1

(11 I 81 — b1 01,1(b1) — w((a1)

a

tnl

It follows that the function values of V“) := [02’ for Z > 0 also satisfy (2.11). There

      _ an — bu . _ w1.(bn) - wj,(a,,) ]

exists to > 0 such that

_ , (lo) (‘0) - _

for all C = ({81,b1},...,{&n,bn}) E Mo)’ and q E A1\{a.',bi}. Let #0 be the

maximum of the right-hand side of (2.12). Then (VUO), no) is a feasible solution of

LP1. So LP1 has an optimal solution with the value of )2 between 1 and #0. Cl

Remark 2 The pair (V(‘°), ,uo) constructed in the proof can serve as a starting point

of standard simplex algorithms for solving LP1.

The number of variables in each double inequality of LP1 is no greater than 2n+ 2

which is usually much smaller than the number of variables in LP1. This sparsity

of the linear programming problem LP1 is exploited in our algorithm and results

29



in a remarkable speed-up. Some of the inequalities in the constraints of LP1 are

exactly the same, and they can easily be detected by comparisons and deleted when

the constraints are being generated.

In the rest of this section, we will show that the constraints in LP1 can also be

derived from circuits [GKZ, MiVe] of the support A = (A1, . . . ,A). For a mixed cell

C = ({a1,b1}, . . . , {an,b,,}) E M“, with inner normal (a, 1) and q E A,-\{aj,bj}, we

have

(a: 31') + wj(aj) < (a: Q) + WM),

or,

(a, q — a,) + wJ-(q) — wJ-(aj) > 0. (2.13)

We will call this inequality the normal inequality with respect to C and q. This

inequality serves as the building block in our sandwich model LP1 in (2.10).

Note that (a, 1) is also the normal of the n-dimensional subspace H of IR"+1

spanned by the vectors

(h1 — a1,w1(b1) — w1(a1)),---,(b,, — a..,e.,(h,,) — e,(a,,)).

Let (q - a,-, s) be the projection of the vector (q — aj, wj(q) — wJ-(aj)) on the subspace

H along the direction of its last coordinate. Then ((a, 1), (q — a,-, s)) = 0, or,

(a,q-—aj) +3: 0

and (2.13) becomes

“60!) - “0(a) — 3 > 0.

So, the left-hand side of (2.13) measures the distance between the points

(q — aj,w,-(q) — wj(aj)) and (q - a,-, s) as shown in Figure 2.1.

On the other hand, the Cayley embedding of A,- into IR2"“1 is

X.- = {(a,e,-_1)|a e 21,-}, 2': 1,...,n,
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(a, 1) /7 H

 

 
Figure 2.1: An illustration of normal inequality (2.13)

here co = 0 E IR"‘1 and e,- = (0,...,1,0,...,0) is the ith unit vector in IRn‘l,

i=1,...,n—1.LetA=UA,.DefineLTJ : A—HRby

i=1

$(a,e,-_.1) == (1),-(a), V a E A,-, i = 1, . . . ,n.

Then the lifting £72 induces a regular subdivision of A, denoted by S5.

Proposition 4 (The Cayley 'D'ick [GKZ, St94, VGC]) S“, is a fine mixed sub-

division of A = (A1, . . ., A") if and only if S”; is a triangulation of conv(A). Fur-

thermore, C = (C1, . . .,C,,) E S“, if and only ifUC, E S5.

i=1

By the Cayley embedding, a1,b1,...,a,,,b,, and q are embedded in IR“-1 as

follows:

(31,80); (blieO)i "'1 (anten—l)i (haven-1): (qiej—l)

Since these points are afinely dependent (not necessarily a circuit), there exist

A1,/\’1,...,A,,,/\;,E IR such that

n

20.- +;\£) = 1.

i=1 ,, (2.14)

(qiej—l) = Z (Ai(aiiei—l) + A2(br.e.-_1))-
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From (2.14), as in Theorem 4.1 of [MiVe], we have

A,- + A; = 1,

(2.15)

/\.-+)1£=0 foriyéj.

It follows that

(qiej—l) = Z (Ai(aiiei—l) + A2(br.er—1))

i=1

: 2(Ai(aitei—1)+ A:(aty ei—l) + A:(bi, ei_1) '_ A:(a“ ei—l))

i=1

= (31»ej—1)+ 2 A20).- - a.» 0)

i=1

and so,

= ZAflb, —n,-). (2.16)

i=1

Now, U C,- E S; implies

i=1

a(qrej—l) > Z (Aia(airei-l) + A£a(brrer-1))- (2-17)

i=1

By (2.15) and the definition of £5, (2.17) can be written as

“11(9) — wJ-(aj) > Z A;(w,-(b,-) — £0430):

i=1

or,

0,.(q) — e,(a,-) —Z x.((w,(b —w,-((a,)) > o. (2.18)

i=1

We will call this inequality the circuit inequality with respect to C and q.

Since (q -- aj, s) is in the subspace H and thus can be written as a unique linear

combination of (b,- — a,,w,~(b,-) — w,(a,-)), i = 1,. . . ,n, (2.16) leads to

s = 280.0.) — w.<a.->).
i=1

So, the left-hand side of (2.18) also represents the distance between the point

(q — aj,w,-(q) — wJ-(aj)) and (q — a,-,s). Therefore, the normal inequality (2.13) is

the same as the circuit inequality (2.18).
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Figure 22: Mixed cell configurations of (A1. A2)

Example 3 Let A1 = {a,b,c}, A2 = {d, e, f} be two supports, where

a = (0,1), b = (0,0), c = (1,0),

d = (0,1), e = (1,0), f = (1,1),

Suppose C = ({b,c}, {d,e}) and C’ 2 ({a,b}, {d,e}) are mixed cells induced by

a lifting w = (w1,w2). Let A = A1 U A2 be the Cayley embedding of A1 and A2, as

shown in Figure 2.3. The four points in C = {b, if, d, 3} form a simplex and it follows

that {115, d,’é,f} is an affinely dependent set (but not a circuit), i.e.

1": All; + A’,’é+ A23 + A33

for some A1 + X, + /\2 + A; = 1. Since the third coordinate of both 15 and '5 equals
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E

Figure 2.3: Cayley embedding of A1 and A2

zero, clearly, A2 + X2 = 1 and A1 + X, = 0. So the equation becomes

?— a = x,(e— E) +X,(e'— (‘1'),

i.e.

f—d=A’1(c—b)+X2(e—d). (2.19)

By Proposition 4, the projection of the lower facets of

conv(<5. «210». <6. 00)). (‘6. care». <5. «and». ('6. «one». (5. 0(0))

in IR4 gives a regular triangulation of conv(§, 15,5, 5,33), and

{03.01092 (5.911(6)). (50.0)). <6.wr<e))}

is one of the lower facets. Let (6, 1) E IR4 be its inner normal, then

(8,15) + (01(1)) < (:63?) + 0’2“.)

with

(5.13) + 911(1)) = (A?) + 911(0)

= <315>+w2(d)

= (flag) +w2(e)'
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Hence,

as) > <0.?» — 03.?) + e10)

= <26) — <25) — Xmas — 13> — A5056 — 5) + wr<b)

= new) — «509 + A1010) - wr<b>) + A3020) - 52(3)) + wr<b)

and it follows the circuit inequality

w2(f) — w2(d) > /\’1(w1(c) — w1(b)) + A’2(w2(e) — w2(d)). (2.20)

Equation (2.19) along with (2.20) implies that (f -— d, w2(f) — w2(d)) is “above” the

subspace H spanned by (c -— b, w1(c) — w1(b)) and (e — d, w2(e) — w2(d)). Obviously,

the right-hand side of (2.20) is the projection of (f — d, w2(f) — w2(d)) onto H, which

equals 3 in (2.13). Ultimately, the circuit inequality is equivalent to the normal

inequality. El

Example 4 In the previous example, we have two mixed cells with mixed volume

2. As depicted in Figure 2.2, there is a mixed cell whose volume equals the mixed

volume. Let 7r : A—-> {A1,A2} be the projection onto original supports. Based on

a mixed cell C = ({b,c}, {d,e}) previously found and by Cayley embedding, there

exists a circuit Z := C U {a} = {5,15,53,63 (see Figure 2.4) with two associated

triangulations

T+ == {Z\{5}. Z\{'E}. 2061}.

T- == {Z\{i3}. Z\{'&}}

in R3 such that

«<T+)={ <{b.c}.{d.e}). <{a.b}.{d.e}). ({a.b.c}.{d}) }

(1) = (1.1) type (2) = (1.1) type (3)

and

MT“) = { <{a.c}. {d,e}). ({a.b.c}. {6}) }

(4) = (1.1) type (5)

Apparently, T‘ induces fewer number of mixed cell. D
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Figure 2.4: Circuit Z = {5, :3, 3,3} and projections of T+ and T‘

The above observation stimulates the potential that the number of inequalities in

LP1 can be further reduced by verifying the flip operations that involve mixed cells

as defined in [MiVe]. Namely, one may check whether the mixed-cell configuration

is such that the flips determined by the circuit can be performed. If this is not

the case, then the corresponding circuit is not supported and its inequality can be

discarded provided that the optimal solution of LP1 is not interfered. The problem

of implementing this idea eficiently remains unclear at this stage. Another possible

improvement is to combine the balancing strategy and the flattening method [VGC]

when the optimal value [1 obtained by the balancing method is still too large for

practical computations.
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CHAPTER 3

Numerical Experiments

Our algorithm in balancing the powers of t by solving the linear programming prob-

lem (2.10) has been successfully implemented. In our numerical experiments, the

non-vertex points in the supports of the polynomial systems are deleted before calcu-

lating the mixed-cell configurations, and the mixed-cell configurations M“, are gen-

erated by our implementation of the Lift-Prune algorithm [EmCa] with random real

liftings. The numerical experiments are done on a PC with a Pentium 166MHz pro-

cessor, 16Mb RAM, 256Kb cache and Linux operating system. The numerical results

of applying our algorithm to several well-known polynomial systems as listed below

in Tables 3 and 3.

Polynmial Systems

0 Cyclic-n problem [EmCa] The general formulation goes as follows:

n k

ZHxfi-I-flmodni k = 11°”1n— l

P(x) =

II 231' — 1.

j=l

with variables x = (x1, - - - ,xn).
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o The Cohn-2 system from PoSSo test suite [PoSSo]:

p1(x) = x3y2 + 4x2y22 -—- 2:2sz2 + 288.7:2y2 + 207x2yz + 1152xyzz

+156xy22 + 223 - 3456x2y + 20736xy2 + 19008xyz + 829443122

‘l‘432ittz2 — 49766494] + 62208232 + 29859843,

p2 (x) = y3t3 + 4y3t2 — fat2 + 4th3 — 48y2t2 — 5yzt2

+108yzt + zzt + 144zt - 1728.2,

p3(x) = —x222t + 4x22t2 + 23t2 + x32 + 156x22t + 207x22t + 1152xzt2

+28822t2 + 432322: + l9008$zt — 345622t + 82944mt2

+207362t2 + 6220832 — 497664zt + 29859842,

p4(x) = y3t3 - xyzt2 + 4yat2 + 4y2t3 — 52:th — 48y2t2

+x2y + 108xyt + 144xy — 1728x,

with variables x = (x,y, z, t).

o Cassou-Nogues system [Li97]

p1 = 15b4cd2 + 6b“e3 + 21b4c2d —- 144b2c -—- 8b2c2e

—28b2cde - 648b2d + 36b2d’e + 9b“d3 — 120,

p2 = 30b4c3d — 32cde2 — 720b2cd — 24b2c3e — 432b2c2 + 576cc — 576de

+16b2cdze + 16d2e2 + 16c2e2 + 9b4c‘ + 39b4c2d2 + 18b“cd3

-432l)2d2 + 24bzd3€ - 161226de — 2406 + 5184,

p3 = 216b2cd — 1625242 — 815%:2 + 1008ce — 1008de + 15b2c2de

—15b2c3e — 80cde2 + 408%? + 40c’e2 + 5184,

p4 = 4b2cd - 3b2d2 — 4b2c2 + 22ce — 22de + 261,

with variables b, c, d, e.
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o Planar 4—bar mechanism system [MoWa]:

1).-(X) = aeratix§ + arr-rimsxr + anamixa + annixi + anemia;

+02,sz + 027331323: + ar,8$1$2$3$4 + ai,9$1$2933 + 02109313217421

+ar',11$1$2$4 + ai,12$1$§ + 02135131333334 + 021427133 + 04.15313:

+ar',16$1934 + 04.172323: + 0218332133334 + 06,1ng33 + 0220932173

2 2 2
+0r',21$2$4 + 04,2232 + (0,2332% + ar,24$2$3$4 + 022532-733

+a.-,2o:c223 + ar,27$2$4 + 94,2333 + 02,2933, 2' = 1. - - - , 4

with variables x = (x1, x2, x3, x4) and generic choice of coefficents era-’3 of the

system.

 

Size of LPG Size of LP1

#Mw #va-r #ineq #var #11169

17 31 748 23 690

3 28 114 20 106

4 33 192 25 168

25 33 1000 21 692

126 45 7560 31 4982

297 59 24948 43 16118

 

Polynomial System

Cohn—2 [PoSSo]

Cassou-Nogués [Li97'

Planar 4-bar [MoWaj

Cyclic-6 :EmCa:

Cyclic-7 :EmCa:

Cyclic-8 [EmCaj

 

  
 

 

 
 

  

m
a
d
m
a
n
-
1
1
>
:

             
 

Table 3.1: Sizes of the Linear Programming problems. Here, n is the number of

variables of the polynomial system and #Mw is the number of mixed cells in the

mixed-cell configuration M”.

The data in Table 3.1 are generated by the program with one random lifting

function to for each polynomial system. The fourth and fifth columns give the size of

the linear programming problem in (2.8). The last two columns are the size of the

linear programming problem in (2.10) after all repeated constraints are deleted. For

cyclic-n polynomial systems, about 1/3 of the constraints are deleted, which results

in a considerable speed-up.
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Avg highest power of t Avg CPU time

Polynomial System Before After Finding Balancing

balancing balancing mixed cells method

Cohn—2 [PoSSo] 1391 85 0.21 0.19

Cassou—Nogués [Li97: 251 11 0.05 0.03

Planar 4-bar [MoWa] 429 8 0.17 0.08

Cyclic-6 :EmCa: 425 31 0.46 0.17

Cyclic-7 :EmCa: 3152 139 7.1 1.9

Cyclic-8 :EmCa: 10281 398 81 16.6           
 

Table 3.2: Height of Powers and CPU Time in Seconds. The averages are obtained

from ten different random liftings.

For the data in Table 3.2, we run the algorithm with ten different real random

liftings for each polynomial system. We first scale the powers of t in the polyhedral

homotopies before balancing such that the lowest power of t in the homotopies is one,

and the average of the highest powers of t in the polyhedral homotopies for the ten

random liftings are listed in the second column. The third column lists the average

of the highest powers of t in the polyhedral homotopies for the ten liftings obtained

from the optimal solutions of the corresponding linear programming problems (2.10).

The fourth column gives the average time elapsed for finding all mixed cells. The

last column is the average time elapsed for finding the optimal lifting functions V’,

including the constructing and solving of the linear programming problems (2.10).

Rom these results, we see that the highest powers of t in the polyhedral homotopies

are considerablly reduced. The overall reduced powers of t in the polyhedral homo-

topies greatly limit the chance of running into a “valley” which may cause the failure

of curve-tracing.
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