
 

 

 

THE ROLE OF TOPOGRAPHY AND COVER CROPS IN MICHIGAN 

AGRICULTURAL ECOSYSTEMS AND ITS POTENTIAL EFFECT UNDER 

FUTURE CLIMATE SCENARIOS 

 

By 

Juan David Munoz-Robayo 

 

 

 

 

 

 

 

 

 

 

 

A DISSERTATION 

Submitted to 

Michigan State University 

in partial fulfillment of the requirements 

for the degree of 

 

Crop and Soil Sciences - Doctor of Philosophy 

2014 

 

 



 

ABSTRACT 

THE ROLE OF TOPOGRAPHY AND COVER CROPS IN MICHIGAN 

AGRICULTURAL ECOSYSTEMS AND ITS POTENTIAL EFFECT UNDER 

FUTURE CLIMATE SCENARIOS 

 

By 

 

Juan David Munoz-Robayo 

 

The use of cover crops is reported to enhance agro-ecological services in rotational 

crop systems, however their adoption by farmers has remained limited. A challenge to farmer 

uptake is high spatial and temporal variability in cover crop establishment and growth. Since 

the benefits of cover crop use are a function of the amount of cover crop biomass that enters 

the soil, it is important to quantify cover crop biomass production across the field. The ability 

to easily and inexpensively quantify the spatial variability of cover crop biomass is needed to 

better understand and predict its potential as an input to agricultural systems. My study 

demonstrated that hierarchical nonlinear models can adequately predict biomass of the cover 

crop from the easily measured Normalized Difference Vegetation Index (NDVI) data thus 

providing a relatively inexpensive method of obtaining dense cover crop biomass 

measurements.  

Topography plays an important role in spatial processes that ultimately affect plant 

performance, it could be used to quantify and predict cover crop spatial variability and cover 

crop contribution to a subsequent cash crop. However, my results show that the utility of 

topographical information in plant performance predictions depends on the analysis scale. I 

explored the relationships between cover crop biomass and topography at different scales of 

derivation, and demonstrated that neighborhood size greatly affects the strength of the 

prediction performance in multiple regression models. Equipped with resulting information 

on the optimal analyses scales I then studied the effects of topography and cover crop 

biomass on corn yields. Topographic attributes were found to contribute significantly to 



 

explaining the variability in both red clover biomass and corn yields and red clover biomass 

positively influenced corn yield, however, the magnitude of that effect varied both temporally 

and spatially. Resulting better understanding of how variations in topography affect cover 

crops and row-crops will contribute to increased cover crop adoption, allowing producers to 

tailor management to site-specific features of their fields.  

The combined effect of topography and cover crops in row-crops can be implemented 

in a process-based crop simulation model (SALUS) to predict the performance of 

conventional and cover crop-enhanced managements under future climate scenarios. 

Projections of crop performance under 100 years of future climate scenarios showed a 

significant decline in corn yields, in particular for the organic-based treatment. On the other 

hand, soybean and wheat yields showed a slight increment. These simulation outcomes then 

can be used to identify potential strategies for climate change mitigation. 
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Chapter 1: Introduction 

 

 

Agricultural ecosystems use substantial amounts of natural resources to supply food, 

fiber, and fuel to the growing global population. Agricultural ecosystems are managed to 

optimize the yield productivity which is demanded by the markets. However, the intensive 

use of resources in agricultural systems has raise concerns regarding its sustainability 

(Vitousek et al., 1997; Millennium Ecosystem Assessment, 2005; Zhang et al., 2007). For 

example, it has been shown that intensive cultivation tends to deteriorate the biophysical 

capacity of agricultural ecosystems by reducing soil fertility and water quality; and increasing 

soil erosion and nutrient losses (Isse et al., 1999; Dinesh et al., 2001; Snapp et al., 2010). 

Degradation of water quality and soil resources are becoming urgent problems because they 

reduce the potential to achieve optimal yields and the ability to provide other ecosystem 

services. Maintaining ecosystem services in agricultural systems is of major relevance 

especially in upcoming years when facing future climate changes (IPCC, 1995). Examples of 

important ecosystem services that could help mitigate the negative impact caused by climate 

change are soil carbon sequestration and water quality regulation (IPCC, 1995; Lal, 2004). 

The use of cover crops in rotation with the main row crop has been proposed as a 

solution for maintaining and even enhancing ecosystem services (Lal, 2004; Snapp et al., 

2005). The benefits of using cover crops are multiple; it has been shown that cover crops 

increase carbon sequestration, water retention and soil fertility, while reducing soil erosion 

(Kerr et al., 2007; Bhardwaj et al., 2011; Fageria et al., 2011; Dabney et al., 2012). Among 

available cover crops, legume covers are considered the most appropriate plants to enhance 

soil productivity. For example, rotation with leguminous cover crops has been shown to 
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increase availability of soil nitrogen thus lessening the need for chemical fertilizers 

(Meisinger et al. 1991; Miguez and Bollero, 2005). Leguminous cover crops also have a 

positive impact on soil organic matter and thus increasing soil carbon sequestration (Dinesh 

et al. 2001; Fageria et al., 2011). Red clover (Trifolium pratense L.) is among the most 

commonly used legume cover crop in the northeastern United States (Singer and Cox, 1998). 

Red clover is recognized as one of the most effective species in producing substantial 

amounts of residues under Michigan conditions (Snapp et al., 2005); and has been shown to 

have beneficial effects not only in soil fertility, but also on soil porosity and soil structure 

(Papadopoulos et al., 2006). 

 Although many benefits can be derived from legume cover crop use, the adoption by 

Midwest producers has been relatively slow (Snapp et al., 2005; Knowler and Bradshaw, 

2007). One of the main reasons of this slow adoption by farmers is the high spatial and 

temporal variability in the growth and performance of legume cover crops. For example, high 

spatial and temporal variability increases management challenges of cover crop-based 

systems. In addition, the expected contribution of cover crops to row crops becomes more 

difficult to assess because the potential nutrient supply to the main crops varies in space and 

time as well (Nykanen et al., 2008; Hauggaard-Nielsen et al., 2010).  

In order to increase cover crop adoption we first must understand the causes of its 

variability. Several works have shown that topography is a key driver in many biophysical 

processes across the landscape. For example, topography has been shown to affect the spatial 

distribution of soil properties and water redistribution (Boyer et al., 1996, Green and Erskine, 

2004). In addition, the role that topographic attributes play on soil dynamics substantially 

contributes to the spatial distribution of yields in row crops (Kravchenko et al., 2000; 

Kravchencko et al., 2005). Therefore, I consider that topographic attributes can be used to 

explain the spatial variability in cover crop performance. A better understanding of how 
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variations in topography and soil properties affect cover crop performance would contribute 

to more effective cover crop implementation allowing producers to tailor cover crop 

recommendations to site-specific features of their fields.  

However, before the main drivers of this spatial and temporal variability in cover 

crops can be investigated, the variability in production of cover crop biomass across the 

landscape must be quantified first. Unfortunately, not much information is available 

regarding the total biomass production and its spatial variability in agricultural fields; and 

assessment of cover crop biomass is a time- and a labor-consuming data collection process. 

As a consequence our knowledge of the factors affecting cover crop performance in row 

crops still remains limited. Use of non-destructive methods in cover crop biomass assessment 

can greatly decrease data collection costs and time. For example, remote sensing techniques 

have been successfully used for plant biomass estimation on grazing rangelands and in row 

crops (Tood et al., 1998; Flynn et al., 2008). Use of these methods can greatly benefit further 

cover crop research by producing continuous spatial estimations of biomass across the 

landscape. However, there is no standard procedure during the processes of filtering, 

computing, and analyzing remote sensing data. A first challenge in this work was the 

generation of continuous maps that accurately represent the spatial variability in cover crop 

biomass. Since the scale of representation influence the strength of the relationship between 

topography and cover crop biomass (Roecker and Thompson, 2010), an immediate second 

challenge was to find the optimal scale of derivation and representation of these continuous 

maps so that the relationships between topography and cover crop biomass are the most 

favorable. The meaningful relationships that we could discover between cover crop biomass, 

topographic attributes, and row-crop yields will depend on the optimal quantification and 

representation of the spatial information.  
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A particular challenge in studying the role of topography in agricultural ecosystems 

with cover crops lays in the fact that the effects of topographic attributes on row crop yields 

can be both direct and indirect. For example, topography has a direct effect on main crop 

performance by controlling soil and water dynamic across the landscape, but also an indirect 

effect by controlling the spatial performance of cover crops biomass. In practice it is difficult 

to separate the direct effect of topography on crop yields from the effect of cover crop on 

crop yields. In addition, the magnitudes of these direct and indirect topographical influences 

on main row crops have not been addressed before. To assess direct and indirect effects of 

topography on row crop yields I made use of Path Analysis (PA), a procedure that allows 

testing direct and indirect relationships between topography, red clover and corn yield 

(Hoyle, 1995). With PA I studied the contribution of cover crop biomass to the main crop 

while accounting for confounding effects of topographic attributes. 

The main hypothesis in this study is that use of legume cover crops in agricultural 

ecosystems help to enhance or maintain ecosystems services while maintaining the row crop 

productivity. Therefore I consider that legume cover crops could be a promising strategy to 

mitigate the negative effect of climate change. However, almost no testing has been carried 

out on the efficacy of this mitigation strategy. The complex interactions between multiple 

factors that influence agricultural ecosystem make particularly difficult the evaluation of 

mitigation strategies. Crop simulation models are a relevant tool to predict and understand the 

consequences of weather and management perturbations to biophysical systems (Rosenzweig 

and Parry, 1994; White et al., 2008). Therefore, simulation models could play an important 

role in the evaluation of mitigation strategies for agricultural production under changing 

climate (Mall et al., 2004). Evaluation of the role of topography and cover crops through 

simulation could help farmers, resource managers, and decision-makers to be better informed 

on the potential mitigation strategies for agricultural production in future years. 
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Unfortunately, crop simulation models were developed to execute specific tasks; therefore 

most of the available models are not capable to integrate topographic information, rotation 

systems, and cover crop use. System Approach to Land Use Sustainability (SALUS) is a 

program designed to model continuous crop, soil, water and nutrient conditions under 

different management strategies for multiple years (Basso and Ritchie, 2012). I used SALUS 

to integrate the factors of relevance in my study and reproduce the actual performance of 

conventional and organic agricultural ecosystems. I expanded the use of these crop 

simulations by using future climate scenarios to predict the potential role of topography and 

cover crops under climate change.  

The overall goals of my study are to examine the effect of topographic attributes and 

cover crop biomass in row crop agricultural ecosystems; and to assess its potential role under 

future climate scenarios. The dissertation is organized as follows: In Chapter 2, I presented a 

methodology to predict cover crop biomass using Normalized Difference Vegetation Index. 

Chapter 3 highlights the importance of deriving the optimal scale for relating topographic 

attributes and cover crop plant biomass. Chapter 4 studies the effect of cover crop biomass on 

corn growth and yield in agricultural fields with diverse terrain. Chapter 5 presents the results 

of modeling crop rotations under future climate scenarios at different management systems 

and landscape positions. Chapter 6 states the most relevant conclusions from this study.  
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Chapter 2: Predicting cover crop biomass using Normalized 

Difference Vegetation Index and nonlinear hierarchical models  

 

Abstract  

Incorporating cover crops into agricultural systems can improve soil structural 

properties, increase nutrient availability, reduce erosion and loss of agrochemicals, and 

suppress weeds. These benefits are a function of the amount of cover crop biomass that enters 

the soil. The ability to easily and inexpensively quantify the spatial variability of cover crop 

biomass is needed to better understand and predict its potential as an input to agricultural 

systems. Here, I explore the use of Normalized Difference Vegetation Index (NDVI) as a 

source of information for improving accuracy and precision of cover crop biomass prediction. 

I focus on developing models that account for biomass variability within and among fields. 

These models are used to produce digital data layers of predicted biomass and associated 

uncertainty. I propose hierarchical nonlinear models with field random effects and a residual 

variance function to accommodate strong heteroscedasticity. These models are motivated 

using aboveground biomass of red clover (Trifolium pratense L.) measured on three different 

dates in five fields in southwest Michigan. Model adequacy was assessed using the Deviance 

Information Criterion. Given this criterion, the “best” fitting model included field effects and 

a polynomial function to account for non-constant residual variance. Importantly, I 

demonstrate that accounting for heteroscedasticity in the model fitting is critical for capturing 

uncertainty in subsequent biomass prediction. 

Keywords: Red clover, cover crop, NDVI, Bayesian, MCMC, heteroscedasticity. 
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2.1. Introduction 

2.1.1. Importance of cover crops in agricultural systems 

Legume cover crops are considered among the most appropriate plants to enhance soil 

productivity (Kerr et al., 2007). Benefits of cover crops include: increase in carbon 

sequestration and nutrients, reduction in erosion and loss of agrochemicals, and weed 

suppression (Guretzky et al., 2004; Papadopoulos et al., 2006). These benefits are a function 

of the amount of cover crop biomass that enters the soil. However, adoption of cover crop 

usage has been slow. This is primarily due to high temporal and spatial variability in the 

cover crop biomass that is incorporated into the soil (Snapp et al., 2005). Thus potential 

benefits to the main crops are also spatially and temporal variable by extension, making this 

activity unreliable for producers. The ability to easily and inexpensively quantify the spatial 

variability of cover crop biomass is needed to more fully understand and estimate its 

cost/benefit for agricultural systems.  

 

2.1.2. Methods for quantifying biomass  

Assessment of cover crop biomass is a time- and labor-consuming process. Several 

authors compare the use of different techniques to measure biomass (Harmoney et al., 1997; 

Whitbeck and Grace, 2006; Martin et al., 2005; Radloff and Mucina, 2007). Common 

conclusions from these studies are biomass estimates are extremely variable and 

measurement accuracy depends on the technique used, forage type, species, and stage of 

development; thus no single method is effective in all circumstances. Cover crop biomass 

quantification becomes even more challenging as we consider the natural spatial variability 

within fields. Producing spatially explicit measures of cover crop biomass over large fields 

using traditional measurement techniques is prohibitively expensive.  Therefore, my focus is 
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on exploring efficient, inexpensive, and non-destructive methods that use indirect indicators 

to predict biomass. Remotely sensed measures of spectral reflectance and indices derived 

from these measures, such as Normalized Difference Vegetation Index (NDVI), have been 

used successfully to predict agricultural plant biomass. Several such studies use linear 

regression to predict biomass or similar biological parameters (Du Plessis, 1999; Calvao and 

Palmeirin, 2004), others use nonlinear models to explain the NDVI-biomass relationship with 

similar or even better results. Freeman et al.  (2007) explored several common linear and 

nonlinear models that couple NDVI and plant height to predict biomass and forage yield.  

They found that an exponential nonlinear regression was useful for relating biomass to 

NDVI. Xu et al. (2008) compared six models to predict grass yield from NDVI for six 

regions in China. They compared linear, power, exponential, quadratic, cubic, and 

logarithmic function models, among which the exponential nonlinear offered the “best” fit 

based on their minimum residual error criterion. Flynn et al. (2008) also used regression 

models to describe the relationship between NDVI and crop dry matter.  

Along with nonlinear trends in the relationships between NDVI and the biological 

response variable, many studies report greater variability in the response variable at higher 

NDVI – partially due sensor saturation (Thenkabail et al. 2000). In such cases, the 

characteristic “right opening megaphone” shape would be evident in plots of model residuals 

versus NDVI (see, e.g., Figure 2.1). This shape indicates the presence of non-constant 

variance, or heteroscedasticity, and suggests a possible violation of the model assumptions. 

When heteroscedasticity is present, inference about model parameters and the subsequent 

prediction could be wrong. To the best of my knowledge, heteroscedasticity has not been 

accounted for in biomass-NDVI models beyond simple, and often ineffective, transformation 

of the response variable. Even when transformation of the response variable is effective at 

stabilizing the variance, end-users are rarely interested in transformed expressions e.g., log or 
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square-root of biomass. Although, in some cases, back transformation can be used for the 

first moment of the predicted response (e.g., mean), it is often difficult or impractical to back 

transform the associated variance components. 

 

 

Figure 2.1. Model 2b residuals versus NDVI from the population fitted values. 
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2.1.3. Study objectives 

Three study objectives are addressed. First, explore the use of NDVI for predicting 

red clover (Trifolium pratense L.) biomass at a fine spatial resolution within multiple fields in 

southwest Michigan. Second, develop suitable hierarchical models that account for disparate 

sources of variability in biomass and explicitly accommodate heteroscedasticity. Third, 

develop digital data layers of predicted clover biomass with associated measures of 

uncertainty that can be subsequently used as input for growth and yield models in agricultural 

rotation systems.  

 

2.2. Materials and methods  

2.2.1. Data 

The study was conducted at the Kellogg Biological Station (KBS) located in 

southwest Michigan at 42
◦
 24’ N, 85

◦
 24’ W. Annual rainfall averages 890 mm/y and mean 

annual temperature is 9.7 
◦
C. The dominant soil series are Kalamazoo (fine-loamy, mixed, 

mesic Typic Hapludalfs) and Oshtemo (coarse-loamy, mixed, mesic Typic Hapludalfs). Data 

were collected from four large experimental fields (Field 30, 38, 79 and 97) of 5.9, 7.6, 5.8 

and 5.4 ha in size and from 6 small experimental fields (1 ha each) at the KBS Long Term 

Ecological Research (LTER) site.  For the purpose of this study, the small fields at the LTER 

site are viewed as a single field because they are located within 15 to 210 m of each other and 

received the same agriculture management. All studied fields were in corn-soybean-wheat 

rotation with leguminous cover crops and did not receive any input of commercial fertilizer. 

The four large fields were in organic management since 2005, the LTER fields were 

managed organically since 1988. Winter wheat was the main crop on the studied fields, 

planted in October 2006 and harvested in July 2007. Red clover was seeded in February of 

2007 in existing wheat, when the ground was still frozen and finally mowed in May 2008. 
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Red clover biomass was destructively sampled at random locations in these fields on 

August 9, 2007, September 27, 2007, and on May 6, 2008.  The total number of samples 

collected were 20, 56, 12, 42, and 68 in fields 30, 38, 79, 97 and LTER, respectively. Each 

sampling location was georeferenced using a global positioning system (GPS), and biomass 

was removed from a 0.5 x 0.5 m quadrant; all plants were cut at ground level. Biomass 

weight was recorded after drying the samples at 60 
◦
C for 48 h (Corbin and VandelWulp, 

2010). Just prior to biomass removal, NDVI measurements were taken at each sampling 

quadrant using a portable optical sensor device (The GreenSeeker
TM

 optical sensor unit, 

model RT200; NTech industries, Inc., Ukia, CA, USA). The Green Seeker is an active sensor 

which emits and records red (656 nm  25 Full Width Half Magnitude) and infrared 

wavelength (774 nm  25 Full Width Half Magnitude). I used a sensing height of 1 m above 

the ground, which resulted in an approximate field of view of 0.93 by 61 cm at each reading. 

Because of the difference in support between the sensing field of view and the quadrant area, 

15 equally spaced sensor readings were taken over the extent of the quadrant and then 

averaged to produce a single NDVI value. Ideally, the sensor view and extent of the biomass 

measurements would coincide exactly. However, I assume the error attributed to this change 

of support is small relative to other sources of uncertainty in the NDVI-biomass relationship.  

Red clover was the dominant species in the majority of the biomass sampling 

locations. However, in five locations weeds comprised a substantial portion, 10%, of the 

sampled biomass. Because species other than red clover (e.g., grasses and weeds) tended to 

add noise to the NDVI values, these sample locations were marked as potential outliers and 

subsequently excluded from the dataset. The remaining samples were used to fit the 

candidate model defined in Section 2.2.3.  

In addition to this sampling, the Green Seeker
TM

 and GPS were mounted on a cart 
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and pulled through the field twice in north-south and east-west direction. Thus, NDVI values 

were recorded across the entire field approximately every 3.5 m along cart passes with 10 m 

distance between the cart passes. This produced approximately 570 NDVI observations per 

ha. Total field biomass maps were produced by interpolating over predictions at these 

densely spaced NDVI observations.  

 

2.2.2. Data pooling by field 

As noted in Section 2.2.1, the data were collected from five fields and at three dates. 

Figure 2.2(a) shows NDVI versus biomass by date, pooled across field.  Here we see that the 

range of NDVI and biomass is not well represented within any given sample date. The 

August date, corresponding to early stage of plant development, exhibits low biomass and 

corresponding NDVI while the September and May dates offer samples from the middle and 

end of the rotation. The lack of NDVI and biomass coverage within any individual date 

precluded the use of three independent models or allowing date to be a random effect in the 

model. Rather, to capture the NDVI-biomass relationship I chose to pool over date. Using a 

similar experimental design, Flynn et al. (2008) also chose to pool over date to reach a 

sufficient sample size and NDVI-biomass coverage.  

Freeman et al. (2007) showed that fields with different soil conditions and other 

physical attributes can produce statistically different NDVI-biomass model parameter 

estimates. Figure 2.2(b) shows field specific NDVI versus biomass pooled across the 

sampling dates. Here we see the range of NDVI and biomass is fairly well represented within 

each field. By viewing observed fields as realizations from of an infinite population of fields, 

and modeling field as a random effect, I can explore field specific offsets from the 

population’s mean NDVI-Biomass relationship.  

 



17 
 

Figure 2.2: a) NDVI versus biomass by sample date. b) NDVI versus biomass by field. 
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2.2.3. Hierarchical models  

Suppose we observe total biomass and coinciding NDVI at sample locations within 

each of j=1…m fields and index these locations as i=1…nj , where nj  is the number of 

locations observed in the j-th field. Conditional upon a set of location-level measures of 

NDVI, I assume yi,j, the i-th location’s observed biomass in the j-th field, follows a normal 

distribution with a nonlinear mean function. Then modeling field as a random effect, the field 

specific parameters are assumed to be normally distributed and centered on the population 

parameters, αj ~ Normal(α,Σ), where  

 

 

and p is the number of parameters. The initial model is given as 

 

            (1) 

 

where f (NDVI;α) is a function that models the relationship between NDVI and biomass 

given a vector of parameters. I considered two scenarios for the distribution of the errors. 

First, as noted in Eq. (1), I assumed that model measurement errors are independent and 

normally distributed with variance τ
2
. Second, I model variance as a function of NDVI 

values: 
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where fε (NDVIi,j;Φ) returns a positive value given NDVI and Φ is a vector of q function 

parameters. 

I considered two linear models for f (NDVI;α): the exponential model α0 exp(α1NDVI) 

and the Richards model α0 [1-exp(α1NDVI)]
1/(1-

 
α2)

, where α1 ≥ 0 and 0 ≤ α2 < 1. Based on 

preliminary exploration I decided to use a polynomial function to describe the relationship 

between the variance and NDVI by setting fε (NDVIi,j;Φ) to Φ0 + Φ1NDVI
Ф2

 , where 

 

 

 For the collection N = Σ
m

j=1nj observations, the response vector Y = (y`1, y`2,…y`m)`, 

where y`j is the nj x 1 vector of the j-th field’s observations, is normally distributed, 

Normal(μy, Σy). Here the N x 1 vector is 

 

 

and the N x N dispersion matrix Σy is τ
2
IN and  

 

 

for models (1) and (2), respectively. 
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Models 1a and 1b use the exponential and Richards functions to model mean biomass, 

and assume constant residual variance.  Models, 2a and 2b, assume a constant variance, but 

allow for field-level random effects associated with the parameters in the mean function. 

Models 3a and 3b use field invariant parameters in the mean function, same as 1a and 1b, but 

allow for residual variance to increase with increasing NDVI. Finally, models 4a and 4b, 

accommodate field specific offsets for parameters in the mean function and also allow for 

non-constant residual variance.  
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2.2.4. Bayesian implementation  

Given the hierarchical structure of these models and my objective to properly account 

for uncertainty of all model parameters, I choose to use a Bayesian paradigm for model 

fitting and subsequent prediction (see, e.g., texts by Carlin and Louis, 2000; Gelman et al., 

2004). To complete the Bayesian specification I assign a prior distribution to each model 

parameter. In the absence of prior information about the parameters I choose non-informative 

or diffuse prior distributions.  For both the population and field random effect parameters I 

assumed α0 and α1 follow Normal(0, 10
5
) distribution for the exponential model and 

α0~Normal(0, 10
5
), α1~Uniform(0, 10

5
), and α2~Uniform(0, 1) for the Richards model. The 

inverse of the parameters τ
2
 and σ

2
 are assumed to follow a Gamma(0.001, 0.001) 

distribution. Finally, the elements in follow a Uniform(0,10
5
) distribution.  

 

2.2.5. Prediction 

My interest is to make inferences about model parameters and biomass over fields at a 

high spatial resolution. Inference, within a Bayesian paradigm, is based on Markov chain 

Monte Carlo (MCMC) samples (post burn-in) from the parameters’ posterior distribution 

(Gelman et al., 2004). Given posterior samples for a generic parameter I can calculate any 

desired summary statistic, for example the parameter’s posterior mean 

 

 

 

where l is used to index the M post burn-in MCMC samples. Second moment statistics are 

calculated in a similar fashion.  

Point prediction for a new NDVI measurement and associated measures of 
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uncertainty can be calculated from the posterior predictive distribution 

 

 

           (3) 

 

where y
*
 is the biomass for a new measurement of NDVI

*
, Y and NDVI are the observed 

data used to fit the model, and Ω is the collection of model parameters.  In practice I 

approximate Eq. (3) using composition sampling, drawing Ω
(l)

, the l-th MCMC sample from 

the parameters’ posterior distribution, then a corresponding y
*(l)

p(y
*(l)

 | Ω
(l)

, Y, NDVI
*
) (see, 

e.g., Banerjee et al. 2004). The subsequent collection of {y
*(1)

, y
*(2)

,…, y
*(M)

} samples from 

the posterior predictive distribution can be summarized using any point or dispersion statistic 

(e.g., the simple case might be the predicted mean and variance). As an illustration consider a 

prediction for a new NDVI measurement in a new field using the random effects mean 

function and functional variance model; I simply draw first for each parameter posterior α
*(l)

 

~Normal(α 
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, Σ
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), and then y
*(l) 

~Normal(f (NDV I
*
, α

*(l)
),  f (NDV I

*
, Ф

(l)
)) for l = 1…M 

samples from the posterior predictive distribution of the new location.  

 

2.2.6. Model Selection 

To compare several alternative models, I used the Deviance Information Criterion 

(DIC) (Spiegelhalter et al., 2002). DIC compares models based on the trade-off between 

goodness of fit and model complexity. Goodness of fit is expressed as the deviance, whereas 

complexity is measured by an estimate of the effective number of parameters. DIC is easily 

calculated from the MCMC samples and provides a generally accepted, Akaike-like, criterion 

for model comparison. Letting Ω be the collection of parameters in each model; the expected 
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posterior deviance is computed as 

 

 

where L(Data|Ω) is the likelihood from the respective model. The effective number of 

parameters (as a penalty) was computed as  

 

 

where Ω
*
 is the posterior mean of the model parameters. Finally, DIC is given by  

 

 

thus, lower DIC values indicate better models.  

 

2.2.7. Software implementation  

The candidate models were fit using the JAGS software (Plummer, 2010) run on a 

Linux workstation. Convergence diagnostic and posterior inferences were then completed 

using the coda package in R (http://www.r-project.org). Chain convergence was assessed 

using visual inspection of the chain trace plots and the Gelman-Rubin statistic (see Gelman 

and Rubin 1992 for details). There are several common methods for monitoring chain 

convergence (see e.g., Robert 1998). The Gelman-Rubin statistic uses the correlation between 

the within- and among-chain variation. Convergence is achieved when the Gelman-Rubin 

statistic is close to 1 (usually less than 1.2 in practice).  

 

2.3. Results and discussion  

The candidate model parameter estimates, offered in Table 2.1, were based on three 

MCMC chains of 500,000 post burn-in iterations (10,000 samples were discarded as burn-in). 
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The Gelman-Rubin statistic for all parameters was between 1 and 1.2 which indicates 

convergence. A visual inspection of chain trace plots confirmed that they did indeed 

converge (plots not shown).  

Figure 2.2(b) shows a distinct nonlinear pattern in NDVI-biomass relationship, with a 

slow increase in biomass at lower values of NDVI (≤0.25 NDVI), a moderate increment in 

the middle range (from 0.25 to 0.65 NDVI), and a rapid increase in biomass for the largest 

values of NDVI. This plot also suggests that NDVI’s ability to predict biomass weakens as 

NDVI becomes larger. This trend is also noted in other studies, e.g., Carlson and Ripley 

(1997) found NDVI’s sensitivity to leaf area index (LAI) weakens with increasing LAI. This 

study also describes the saturation or asymptotic behavior of NDVI at high values of LAI, or 

in my case biomass.  

I look first to DIC to assess model fit, Table 2.2.  Similar to other goodness of fit 

metrics, lower DIC values suggest better fitting models. Here we see little difference between 

models 1a and 1b, with DIC of 152.1 and 152.3, respectively. Despite similar DIC values, 

Figure 2.3(a) shows the mean fitted curve of the exponential model (1a) overestimates 

biomass at low NDVI values (solid line), whereas Richards model (1b) more closely 

approximates this region (dashed line). This trend persists in the subsequent models, i.e., the 

exponential mean function in 2a, 3a, and 4a fails to adequately model biomass at low values 

of NDVI. In comparison, the Richards model consistently offers better fit both visually and 

based on the DIC criterion.  
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Table 2.1. Parameter credible intervals for each candidate model. Parameter estimates expressed as 2.5%50% 97.5% percentiles. 

Model Parameters 

 α0 α1 α2 τ
2 Ф0 Ф1 Ф2 

1a 
0.070.100.14 3.203.624.07 - 

0.110.130.16 - - - 

1b 
74.05756.842224.92 0.060.120.38 0.530.600.66 0.110.130.16 - - - 

2a 
0.080.110.16 3.033.463.93 - 

0.100.130.16 - - - 

2b 
46.32582.861977.93 0.050.120.46 0.500.590.66 0.100.130.16 - - - 

3a 
0.050.070.10 3.664.084.52 - - 

2.9×10
−3

0.010.03 0.260.430.81 1.362.133.43 

3b 
16.49612.372197.07 0.060.120.79 0.550.590.66 - 

4×10
–5

3×10
-4

1.6×10
–3

 0.350.510.75 1.912.332.75 

4a 
0.050.080.11 3.523.984.49 - - 

2.8×10
−3

0.010.03 0.250.440.86 1.372.203.66 

4b 
34.20569.181931.60 0.060.120.50 0.550.590.63 - 

3.6×10
–5

2.5×10
-4

1.5×10
–3

 0.350.500.74 1.912.342.77 
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Table 2.2. Comparison of model complexity and fit using the effective number of parameters 

(PD) and Deviance Information Criterion (DIC).     

 Model 

 1a 1b 2a 2b 3a 3b 4a 4b 

PD 3.0 3.1 6.2 6.4 6.6 6.5 11.1 10.37 

DIC 152.1 152.3 149.4 147.9 114.2 66.9 112.6 62.87 

 

Results suggest there is little gain in including field-level random effects. Figure 2.3(b) 

shows the population mean curve (solid) surrounded by the field specific offsets. The strong 

similarities in these curves indicate the negligible differences in estimated random effects 

associated with the [αi]
2
i=0. This marginal gain in model fit afforded by including the random 

effects is also reflected in a slightly lower DIC score between model sets 1 and 2, i.e., 152.3 

versus 147.9 for models 1b and 2b, respectively.  

There is extreme non-constant variance seen in the residual diagnostic plot, Figure 2.1, 

which suggests assumptions for models 1 and 2 are not met and parameter estimates and 

subsequent prediction accuracy could be compromised. Figure 2.4(a) illustrates shortcomings of 

the constant variance assumption used in models 1 and 2. Here we see that first moment of the 

biomass-NDVI relationship is adequately captured by the model’s mean function (solid line); 

however, the 95% credible interval produced using the scalar variance parameter, τ
2
, cannot 

accommodate the tapering second moment trend. That is, the model overestimates the variance 

for low biomass and underestimates variance for high biomass values. Explicitly modeling this 

residual heteroscedasticity by including the polynomial variance structure in models 3 and 4 

provides the greatest gain in model fit, Table 2.2.  
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Figure 2.3: a) Nonlinear models for NDVI-biomass relationship. Mean of the posterior fitted 

value distribution for the exponential Model 1a (solid line) and Richards Model 1b (dashed line). 

b) Mean of the posterior fitted values field specific random effects (dashed lines) and population 

(solid line) from Richards model (Model 2b). 
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Figure 2.4: a) Upper and lower 95% credible interval for the population’s posterior predictive 

distribution (dashed lines) along with the associated mean (solid line) for Model 2b. b) Model 

2b, constant variance model, mean residual variance (solid points) calculated within fixed-width 

NDVI intervals (vertical dashed lines) with fitted curve from the Model 3b variance function. c) 

Model 3b upper and lower 95% credible interval for the population’s posterior predictive 

distribution (dashed lines) along with the associated mean (solid line). 
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Figure 2.4. (cont’d). 

 

 

My choice to use a polynomial function to model the non-constant variance was based on 

Figure 2.4(b). This figure was constructed by calculating the constant variance model’s mean 

residual value within 0.1 unit width NDVI intervals. Here these values are illustrated as eight 

points. I noted a trend that could be approximated by a polynomial. A more formal approach 

could be undertaken; however, I felt this ad-hoc approach was adequate. Using the polynomial’s 

parameter estimates, Table 1, I plot the mean and associated 95% credible interval over the 

points in Figure 2.4(b). These lines appear to capture the increasing residual variance and lend 

support to my choice of variance function.  

Importantly, unlike the homogeneous variance model fit, Figure 2.4(a), the 95% credible 

interval of the heterogeneous variance model, Figure 2.4(c), exhibits a more reasonable estimate 

of residual variance, reducing uncertainty in biomass prediction at lower values of NDVI.  

Beyond inferences about the models’ parameters, correctly accounting for the non-

constant variance is critical for predicting biomass for new NDVI values. The final study 
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objective was to produce digital data layers of predicted biomass with associated uncertainty at a 

fine resolution across a given field.  These data layers will serve as input for subsequent 

predictions of the growth and yield of the main crop. Using the dense NDVI measurements taken 

across the entire field described in Section 2.2.1. and following the methods detailed in Section 

2.2.5. I predicted biomass at each sample location for each field using model 2b and 4b. Figure 

2.5 illustrates the mean predicted biomass and associated standard deviation at sample locations 

for field 38 on August 9 using the two models. The predicted values at these sample locations 

were then passed through a deterministic interpolation to produce the surface plots shown in 

Figure 2.5.  

As expected, the two models produce nearly identical mean biomass surfaces, Figure 

2.5(a) and (c). However, the constant variance model is again unable to describe the large 

difference in posterior predictive uncertainty associated with mean biomass across the field as 

illustrated by the near constant standard deviation surface (b). In comparison, the standard 

deviation surface (d) shows the functional variance model more fully express the uncertainty 

associated with the spatial-varying mean biomass.  

I turn again to the discussion of data pooling. An obvious risk in pooling over date is the 

relationship between NDVI and biomass might vary over the growing season.  For instance, 

changes in NDVI at different stages of plant maturity might be partially explained by leaf 

phenology, e.g., compact mesophyll in young leaf versus lacunate mesophyll in older leaves and 

subsequent increase in transmittance as crop matures. Raun et al. (2001) and Teal et al. (2006) 

showed NDVI versus grain yield can change across plant growth stages. To adjust for this 

growth stage dependence, they used a predictor variable called in-season estimated yield 

(INSEY) which is NDVI divided by days from planting or growing degree days.  Following 
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these studies, I too modeled INSEY versus red clover biomass. The results showed a substantial 

decrease in model fit over the non-adjusted NDVI models. I attribute this to the large time lag 

between the 2
nd

 and 3
rd

 sampling visits which make my setting different from those of Raun et 

al. (2001) and Teal et al. (2006) where the sampling dates were shorter and near or at grain 

maturity. Further, red clover plant architecture is very different from wheat and corn, which will 

greatly influence light reflectance. Row-crops architecture results in substantial change in light 

interception at different phenological stages; whereas in red clover these changes are not as 

accentuated. Therefore I do not pursue the use of INSEY or similar adjustments in this study. 

However, the possibility remains that the relationship between NDVI and biomass has a 

temporal component. If this occurs in my setting, my ability to properly capture the true 

relationship between NDVI and biomass will be muddled and the postulated model fit and 

predictive ability will decrease.  

A final, and very important, modeling consideration is that of spatial dependence.  It is 

quite possible the candidate models’ mean function is not able to account for all of the variability 

in the observed biomass.  If this is true, then I can expect spatial dependence among the 

residuals. This would violate the assumptions of models (1) and (2). Ignoring residual spatial 

dependence may result in falsely precise estimates of model parameters and erroneous 

predictions. Hoeting (2009) offers a nice discussion on this topic. Field specific empirical 

semivariograms (plots not shown) did not suggest any spatially structured dependence among my 

candidate model residuals (see e.g., Cressie, 1993). This is likely because the NDVI variable 

itself exhibits strong spatial dependence and therefore accounts for the majority of spatial 

structured variability in biomass. 

 



32 
 

Figure 2.5. Spatial interpolation of observed NDVI and predicted biomass for Field-98 on 

August 9. Mean and standard deviation a) and b) respectively, of the biomass predictive 

distribution estimated with Richards mean function and constant variance (Model 2b). Mean and 

standard deviation c) and d) respectively, of the biomass predictive distribution estimated with 

Richards mean function and functional variance (Model 4b). 
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2.4. Conclusion 

In this study I used NDVI to model red clover biomass. The NDVI-biomass data show a 

clear nonlinear relationship. Other studies have used the exponential function to model similar 

nonlinear trends. Here, I found a Richards nonlinear function more closely approximates the data 

scatter and also produces improved model fit over the exponential function. Further, I explored 

field-to-field variability using random effects on the model’s mean function parameters. 

However, given the paucity of data or small differences in field-level productivity, there was 

little support for the inclusion of random effects. Despite this result, I encourage the use of 

hierarchical structures whenever field variability is relevant, particularly for experiments that 

include fields from different environmental and soil conditions.  

The methods and models presented here are general and can be applied in other settings 

where remotely sensed data is used to describe the variability in biological variables of interest.  

From a statistical standpoint, it is important that we accommodate non-constant variance among 

the residuals. From a practitioners’ perspective, and as seen in my results, addressing 

heteroscedasticity using a functional variance can improve model fit and predictions. These 

spatially explicit predictions of biomass and associated uncertainty are critical data products that 

will ultimately help to quantify the effects of cover crop residuals on main crop yields.  
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Chapter 3: Deriving the optimal scale for relating topographic 

attributes and cover crop plant biomass  

 

Abstract 

The use of cover crops generates a number of agro-ecological benefits for sustainable 

row-crop agriculture. However, their performance across agricultural fields is often highly 

spatially variable and there is insufficient information on factors affecting this variability and on 

tools to manage it. Topography is one of the main factors affecting spatial patterns of plant 

growth in the American Midwest. Digital elevation models are readily available for deriving 

topographic attributes; also sensor digital data can be used to indirectly assess cover crop 

biomass. However, processing procedures for identifying the proper scale of topographic and 

biomass representations are not well defined. The objectives of this study are to examine how 

relationships between cover crop biomass, assessed using the Normalized Difference Vegetation 

Index (NDVI), and topography depend on the neighborhood size used for deriving topographic 

attributes and creating NDVI maps; and identify the optimal neighborhood size for correlation 

and regression analyses. Slope, relative elevation and the potential solar radiation index were the 

variables that contributed the most to explaining variability in NDVI for raw data. However, 

other topographic attributes became significant predictors of NDVI at larger neighborhood sizes. 

I demonstrated that neighborhood size greatly affects some topographic attributes, i.e. curvature, 

flow accumulation, flow length and the wetness index; and changing the neighborhood size in 

both topography and NDVI considerably changes the strength of the prediction performance in 
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multiple regression models. I studied six neighborhood sizes from 1 to 40 m and the original raw 

data. On average, across all studied fields the best performance of multiple regression, as 

determined by the adjusted-R
2
, was obtained at neighborhood sizes 20 and 40 m. Parameters of 

semivariogram models for terrain slope, such as the spatial autocorrelation range and nugget/sill 

ratio, were found to be good indicators of prediction performance and optimum neighborhood 

size for filtering the raw data. The results demonstrate that topographic effects on growth and 

biomass production of cover crops are most pronounced at certain spatial scales, and topographic 

model predictions will be most accurate when used at the optimal scales. 

Keywords: DEM, Topography, Spatial scale, Neighborhood size, NDVI. 

 

3.1. Introduction 

Cover crops are planted between periods of main crop growth typically not to produce 

food but to provide a variety of benefits including improvement in soil quality, weed and disease 

control and reduction in soil erosion. Cover crops are of great importance for today’s sustainable 

agriculture (Snapp et al, 2005). However, they can be relatively difficult to establish and their 

temporal and spatial variability creates problems for achieving consistent performance across 

agricultural fields. In undulating terrain of the Midwestern US, topography is one of the main 

factors driving spatial and spatio-temporal variability of plant growth, along with weather 

patterns. A better understanding of how variations in topography affect cover crops will allow 

producers to tailor cover-crop management to site-specific features of their fields, and therefore 

will contribute to the increased cover-crop adoption.  
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Topographic attributes are widely used to model hydrological and pedological processes 

as well as to study biological and ecological phenomena at landscape scale (McBratney et al. 

2003). Examples of the use of topographic information are found in soil water availability 

applications (Green and Erskine, 2004; Ticehurst et al., 2007), spatial variation of soil chemical 

properties (Goovaerts and Webster, 1994), soil carbon mapping (Huang et al., 2007), and 

vegetation cover properties and plant density (Florinsky and Kuryakova, 1996). Even though a 

large number of studies has been conducted on relationships between topography and a variety of 

row crops, i.e., corn, soybean, and wheat (Kravchenko and Bullock, 2000; Green and Erskine, 

2004; Kravchenko et al., 2005; Huang et al., 2008) and the information about these relationships 

is being utilized in site-specific management (McCann et al., 1996; Lark, 1998; McMillan et al., 

1998; Fraise et al., 2001), relatively little is known about relationships between topography and 

cover crops, e.g., red clover. 

The following topographic attributes are most often used to represent the landscape 

surface: slope, aspect, curvature, flow accumulation, flow length and the wetness index. These 

attributes are commonly derived from digital elevation models (DEMs). However, the quality of 

derived attributes is highly dependent on a number of processing decisions, the DEM source, 

scale and resolution (Bolstad and Stowe, 1994; Florinsky, 1998; Hengl, 2006; Erskine, et al. 

2007; Liu, 2008). Several studies highlight the importance of using appropriate resolution and 

scale for topographic attribute derivation (Curran and Atkinson, 1999; Florinsky and Kuryakova, 

2000; Erskine et al., 2007), and it appears that optimal attribute derivation to obtain the most 

accurate relationships between terrain and biophysical variables varies from landscape to 

landscape (Dobermann et al., 1997; Smith et al., 2006; Wu et al., 2008; Roecker and Thompson, 

2010). For instance, Wu et al. (2008) showed how topographic attributes differed across 
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resolutions, finding that the best model to get correlations between soil properties and 

topography was not always the one with the highest resolution. Since there is no unique 

resolution and scale that would yield the best attribute derivation for all geographical scenarios 

and applications, it is important to develop an approach for identifying such derivations of 

topographic attributes that would provide optimal results for different specific landscapes and 

application scenarios.  

Even though the terms DEM scale and DEM resolution are often used interchangeably, 

they are different concepts (Gallant and Hutchinson, 1997). Resolution is typically defined as the 

pixel size (Curran and Atkinson, 1999; Hengl, 2006), also often called grid size (Florinsky and 

Kuryakova, 2000) or cell size (Erskine et al., 2007). On the other hand, scale is defined as the 

spatial extent at which terrain attributes vary (Gallant and Hutchinson, 1997; Smith et al., 2006). 

A proper digital representation of a terrain attribute should match the scale at which it varies; for 

instance the large scale of a watershed or the small scale of micro-relief observed within a field. 

Fine resolution DEMs derived from sensor-based data (e.g. LiDAR) frequently require pre-

processing steps before their use in most environmental and geomorphological applications 

(Milledge et al., 2009). However, the typical practice of increasing pixel size (i.e. decreasing 

resolution) could mask topographic features at smaller scales, for instance micro-relief variation.  

The effect of changing scale is known as scaling effect (Wu et al., 2008; Roecker and 

Thompson, 2010). Since scale is dependent on the resolution in the DEM source, changing the 

pixel size will affect the scale. According to Gallant and Hutchinson (1997), if we wish to study 

the effect of scale rather than the effect of pixel size, we need to use a method that permits 

changes in scales without changing the pixel size. Changing the neighborhood size in attribute 

derivation is one of the ways of studying the effect of scale (Bian and Walsh, 1993; Roecker and 
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Thompson, 2010). For example, Smith et al. (2006) observed that the neighborhood sizes that 

produce the most accurate results in digital soil survey may vary depending on the landscape, 

thus soils on a gently rolling landscape were most accurately mapped using neighborhood sizes 

of 33–48 m, whereas soils on short, steep backslope positions were most accurately mapped 

using neighborhood sizes of 24–36 m. Roecker and Thompson (2010) suggested that the optimal 

neighborhood size might be specific to the landscape scenarios and that the relative size of 

landforms could serve as a guide for choosing an optimal neighborhood size. To get the greatest 

benefit from the topographic data for predicting biophysical attributes we need to use the 

topographic data with the scale at which IT has the highest influence on the studied attributes. 

Direct measurement of cover crop biomass is a time- and labor-consuming task and even 

more so when the aim is to characterize their spatial variability. Remote sensing tools, e.g., 

GreenSeeker
TM

, a ground-based optical sensor that measures normalized difference vegetation 

index (NDVI), can be used as a proxy for plant biomass estimation (Muñoz et al., 2010). 

However, similar to the DEM data, the remote sensing NDVI data can also be collected with 

different resolutions and processed at different neighborhood sizes. For example, the resolution 

of NDVI obtained from the GreenSeeker device can be set to <1 m. However, such high 

resolution may include noise due to small patches of covertures. Thus it is likely that NDVI 

filtered at a greater neighborhood size might be better for predicting field-scale cover crop 

patterns. For example, Flynn et al. (2008) filtered out the GreenSeeker NDVI data using a spatial 

buffer of 11.43 m in radius, finding better correlations between NDVI and biomass of tall fescue 

[Schenodorus arundinaceus (Schreb.) Dumort]. Determining optimal parameters for processing 

cover crop remote sensing biomass data would improve both the efficiency of data collection and 

the accuracy of cover crop mapping and landscape scale assessments.  
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The objectives of this study are 1) to examine the relationship between cover crop 

prediction using topographic data and the neighborhood size of topographic attribute derivation 

and NDVI measurements; 2) to identify the optimal neighborhood size for correlating them; and 

3) to find criteria that could be used to facilitate optimal neighborhood size. 

 

3.2. Materials and methods 

3.2.1. Study site 

The data were collected from eight agricultural fields of the scale-up experiment at the 

Long Term Ecological Research site of the Kellogg Biological Station located in southwest 

Michigan, USA (42° 24' N, 85° 24' W) (Fig. 3.1). The dominant soil series are the Kalamazoo 

(fine-loamy, mixed, mesic Typic Hapludalfs) and Oshtemo (coarse-loamy, mixed, mesic Typic 

Hapludalfs) (Crum and Collins, 2012). All fields are in a corn-soybean-wheat rotation with a 

winter leguminous cover crop, red clover (Trifolium pratense L.). In each field red clover is frost 

seeded in winter wheat (i.e. March) and then ploughed prior to corn planting in spring the 

following year (i.e. May). Four of the studied fields are in a certified organic management 

system (T4) and receive no chemical inputs, whereas the other four are in a reduced chemical 

input system (T3) and receive banded herbicide and starter nitrogen (N) at planting. Both T3 and 

T4 receive additional post-planting cultivation and T4 is rotary-hoed to control weeds (Simmons, 

2012). Table 3.1 shows the list of the studied fields, their sizes and the years when red clover 

data were collected in them. The fields selected for this study represent diverse topographic 

conditions, ranging from almost flat, e.g. fields 52 and 791 where the difference between 

maximum and minimum elevations is just 3.7 m, to more complex topographic shapes, e.g. field 
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30 where the difference is 10.9 m (Table 3.1). Field 38 has a clear concave “bowl-shaped” 

depression, while gently rolling slopes dominate in field 87. Fig. 3.2 shows the 3D representation 

of relative elevation of the studied fields overlaid with the NDVI map. The map is a 

representation of the spatial variability of cover crop biomass. 

 

Figure 3.1. Location of the Kellogg Biological Station (KBS) in Southwest Michigan. Studied 

fields are marked by red outlines; field ID labels are shown within each field. 
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Figure 3.2. NDVI values of the studied fields plotted over fields’ digital elevation models 

(DEMs). The DEMs show the landscape configuration of each field, whereas NDVI represents 

the spatial variability of cover crop biomass. The map resolution is 1×1 m. 
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Table 3.1. List of the fields used in the study along with the year when NDVI data were collected 

from the field, field size, and the range of elevation values. 

Field Name Year Area (ha) Range of elevation (m) 

30 2007 5.8 10.9 

38 2007 7.4 6.1 

792 2007 5.7 7.0 

97 2007 5.4 6.3 

93 2008 5.6 3.8 

87 2008 4.9 8.3 

52 2008 5.9 3.7 

791 2008 5.7 3.7 

 

3.2.2. Data collection and pre-processing 

Biomass of red clover was indirectly assessed using measurements of NDVI taken just 

before red clover plowing, i.e. the first week of May each year. The data were taken with a 

portable optical sensor device (GreenSeeker model RT200; NTech industries, Inc., Ukia, CA, 

USA) installed on a cart. As the cart was driven through the field, NDVI readings were taken 

approximately every 3.5 m along cart passes with 10 m distance between the passes. The cart 

was driven through the field twice in north–south and east–west directions. This produced 

approximately 570 observations per ha. The height of the sensor (1 m above the plant) ensured 

an approximate field of view of 1×61 cm for each reading. The optical detector measured 

reflectance at two wavelengths (red and near infrared) originally emitted by the same device. 
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Ordinary kriging was used to interpolate NDVI to a continuous map for each field using the 

Geostatistical Analyst in ArcGIS 9.2 (ESRI, 2003). Semivariances were computed with 1 m lag 

for a total of 100 lags. For all fields, the semivariance for the first lag (1 m) was computed based 

on more than 800 data pairs. Raster files were exported to 1 m resolution (Fig. 3.2). 

A LiDAR dataset with altimetry values was used to generate a DEM in each field, with 

vertical accuracy < 15 cm and horizontal accuracy < 1 m. LiDAR-based elevation data points 

were available for the study area with a density of ca. 0.8 points m
-2

. A DEM was generated 

from these LiDAR points using inverse distance weighting interpolation and a raster file was 

exported with 1 m resolution. This file is hereafter referred to as “original DEM”. Topographic 

attributes derived from the DEM included relative elevation, slope, flow accumulation, flow 

length, curvature, and the potential solar radiation index. The detailed descriptions of these 

topographic attributes have been reported in a number of previous studies (Moore et al, 1993; 

Townsend and Walsh, 1996) and I do not repeat them here. Values of the potential solar 

radiation index were derived using the hemispherical viewshed algorithm (Fu and Rich, 2002); it 

is computed using spatial location parameters (latitude and altitude), time configuration (time 

period) for specific days or seasons (i.e. summer) and terrain attributes (slope and aspect).  

The topographic attributes were used to quantify the influence of topography on red 

clover cover crop, specifically on its biomass. As a proxy for the biomass, I use NDVI collected 

at a fine resolution across each field, thus permitting detailed spatial analysis. The use of NDVI 

as a predictor of red clover biomass was previously tested using non-linear hierarchical models 

(Munoz et al., 2010). Thus, the relationship between topography and NDVI will be used in this 

study as a representation of the relationship between topography and red clover biomass. To 
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study the relationship at different scales, the original DEM was filtered at different neighborhood 

sizes. A circle window was drawn around the center of each pixel and the original data value of 

each pixel was replaced by the average value of the neighboring pixels whose centers fell inside 

the circle (i.e. the focal circle filter of ArcGIS 9.2). The window was moved to the next pixel and 

the average was computed again, thus part of the filtering windows for two contiguous pixels 

overlapped. Six sizes of the moving window radius, i.e., 1, 3, 5, 10, 20, 40 m, were applied. 

These sizes are hereafter referred to as NHS (neighborhood size). The topographic attributes 

were derived first from the original DEM and then from DEMs of different NHS values. The 

same approach was followed for NDVI maps.  

DEM and NDVI manipulation and processing were performed using ArcGIS 9.2, and 3D 

representations of terrain surfaces were generated under ArcGIS-ArcScene 9.2 (ESRI, 2003).  

 

3.2.3. Statistical analysis 

Descriptive statistics were obtained for all studied attributes at each NHS. Probability 

density functions were estimated for each topographic attribute and NDVI using the kernel 

density estimation, which is a non-parametric approach that optimizes the representation of a 

histogram (Rizzo, 2008). A kernel weight function was defined based on the sample data, and 

subsequently the optimum bandwidth was selected based on the method of Sheather and Jones 

(1991). Probability densities were estimated for the original layer and 5 and 40 m NHS values.  

The relationships between original topographic attributes, NDVI data, and their filtered 

counterparts at different NHS values were assessed using Pearson’s correlation coefficients (r). 

Multiple regression analyses were performed using NDVI as a response variable and the entire 
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set of topographic attributes as predictors. Significance of the contribution of individual variables 

to the model was evaluated with a t-test (α = 0.05). Residuals were checked for normality using 

normal probability plots. An optimal NHS was defined as the one that produced the highest 

adjusted-R
2
 value of multiple regression. To identify the optimal NHS value I performed the 

analysis of variance with the adjusted- R
2
 as the response variable, and topographic NHS and 

NDVI NHS as fixed factors with 7 levels in each factor (i.e. original layer and 1, 3, 5, 10, 20 and 

40 m NHS). Then, the mean adjusted- R
2
 values among different combinations of the factor 

levels were compared using Tukey’s HSD test for all pair-wise comparisons. Differences among 

levels of each factor were considered statistically significantly at α = 0.05. In order to increase 

computational efficiency and to avoid possible autocorrelation in the datasets, I have extracted 

values of the topographic parameters and NDVI from every 30th pixel in a regular grid (i.e. 

30×30 m). This reduced the number of data points from >60,000 to about 72 per field. Selection 

of every 30th pixel was sufficient to avoid spatial autocorrelation among the data; for example 

the semivariograms of NDVI and topographic attributes showed no evident autocorrelation 

beyond a lag distance of 30 m (data not shown). 

Principal component analysis was performed on the topographic attributes. The loading 

values for each attribute were extracted from the principal components (PCs) with eigenvalues 

larger or equal to 1 (Johnson and Wichern, 2002). The scores in each observation were extracted 

from each PC and the average score in each field was computed. I used these scores as potential 

indicators of the optimal NHS size by regressing them against the mean adjusted-R
2
 from the 

multiple linear regressions between topographic predictors and NDVI. Average PC scores were 

also regressed against the change in adjusted-R
2
 values after filtering with each NHS as an 
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indication of model improvement. The standardized range of topographic variables in each field 

was computed as  

Si = (Ti-X)/D                      (1) 

where Si is the standardized value in field i, Ti is the original value in field i, and X and D are the 

mean and the standard deviation of the topographic attribute across all fields, respectively. Then 

the standardized ranges were regressed against the mean adjusted-R
2
 from the multiple linear 

regressions.  

Semivariogram models were fitted to the studied topographic attributes and NDVI by 

ordinary least squares using GeoR library (Ribeiro and Diggle, 2001) of R (R Development Core 

Team, 2009). The lag size used for variography was equal to 2 m and the maximum distance was 

equal to 100 m. Variogram model selection was based on the lowest Root Mean Square Error 

(RMSE) obtained during cross-validation. I then explored the correlation between semivariogram 

parameters and mean adjusted-R
2
 from multiple linear regressions. These statistical analyses 

were performed using R and proc MIXED, SAS/STAT software version 9.2 (SAS Institute, 

2008).  

 

3.3. Results and discussion 

3.3.1. Effect of scaling on the topographic factors 

Increasing NHS decreased the ranges of all topographic attributes and changed the means 

of some attributes. Fig. 3.3 shows the histograms of the topographic attributes from the original 
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and filtered DEMs. When NHS increased to 40 m the range of relative elevation was reduced to 

82.4% of the original data (Fig. 3.3A). Slope has become substantially smoother, with maximum 

reduced from 9.3% to 4.9% and the mean from 2.2% to 1.4% (Fig. 3.3B). The mean values of 

curvature did not change; however, the range drastically decreased to 2.5% of the original. 

Already at 5 m radius, the smoothing eliminated most extreme curvature values (Fig. 3.3E). 

Similar decreases in the ranges of slope and curvature with increasing NHS were reported by 

Roecker and Thompson (2010). Flow accumulation and flow length increased considerably as 

NHS increased. For example, the mean of flow accumulation changed from 27 to 59 pixels (i.e. 

1.5 to 3.6 in log scale), indicating that the area contributing to water flow increased up to 218% 

in the 40-m filtered map (Fig. 3.3G). Fig. 3.3H shows the original, 5-m filtered and 40-m filtered 

maps of flow accumulation in a portion of field 792, confirming such an effect of filtering. 

Natural barriers in the surface were filtered out; hence water flow paths increased in length and 

on average, the depressed areas received more water as compared to the original flow 

accumulation map (Fig. 3.3H). In addition, the range of flow accumulation decreased with 

increasing NHS. The average flow length of the original DEM was 65 pixels, whereas that of 

NHS = 40m smoothed version increased to 128 pixels (respectively, 7.3 and 40.9 in square root 

scale), indicating longer travel paths (Fig. 3.3C). The range of potential solar radiation somewhat 

decreased, but the change in mean value was relatively minor (Fig. 3.3D). Overall, the relative 

elevation and potential solar radiation were the least sensitive to DEM filtering, followed by 

slope, and then by flow accumulation, flow length and curvature that experienced the greatest 

changes.  

 

 



51 
 

Figure 3.3. Histograms of the original topographic features and NDVI values overlaid with their 

probability density functions at three studied neighborhood sizes (original, 5 m and 40 m). A) 

Relative elevation. B) Slope. C) Square root of the flow length. D) Potential solar radiation 

index. E) Curvature. F) NDVI. G) Log of flow accumulation. H) Illustration of the effect of the 

neighborhood size on the flow accumulation maps for original (ORI), 5 and 40 m neighborhood 

sizes in a portion of field 792. Values in the map are the numbers of contributing pixels. 
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Figure 3.3 (cont’d)  
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To obtain a general quantitative overview of the changes in topographic attributes as a 

function of DEM filtering, correlation coefficients between the original layer and the filtered 

layers (i.e. 1, 3, 5, 10, 20 and 40 m) were computed. Fig. 3.4 shows the average correlation 

coefficients between the original map and the filtered versions from all eight fields. As expected 

the correlations with the original layer were higher at smaller NHS and decreased with increasing 

NHS. The topographic attributes for which the correlation with the original layer decreased the 

least included relative elevation, slope and potential solar radiation (Fig. 3.4A). The correlations 

for relative elevation remained high across the whole range of filtered layers (r = 0.95), 

indicating little change in elevation pattern across studied NHS values. Both slope and potential 

solar radiation were more sensitive to DEM smoothing than relative elevation. They were closely 

correlated to the original DEM up to NHS = 10 m (r = 0.95), after which the correlation 

decreased to 0.68 in slope and to 0.72 in potential solar radiation (i.e. NHS = 40 m). Conversely, 

for flow accumulation, flow length, curvature and the wetness index, the correlation coefficients 

dropped to values lower than 0.4 already when comparing the original DEM layer to the next 

filtered layer (i.e. map derived from 1 m NHS) (Fig. 3.4B). The drop was less drastic for flow 

length. Filtered versions of flow length remained closely correlated to the original map up to 3 m 

NHS (r = 0.78); however, the correlation dropped substantially at 20 and 40 m NHS (r = 0.5). 

These results indicate that substantial care should be taken when using the four DEM derivatives 

that are sensitive to smoothing.  

It is obvious that differences in their values and patterns induced by different smoothing 

settings will lead to different outcomes in terms of prediction and estimation of water and 

material redistribution through the studied fields and to differences in relating topography to 

plant growth parameters. It is possible that original maps might provide the most accurate 
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representation of the fluxes and redistribution patterns on a small scale, while smoother maps 

may provide a better representation of the fluxes and patterns on a bigger scale. It is also likely 

that optimal smoothing settings might vary by the response variable of interest specific to the 

within-field fluxes and patterns. For example the maps that are less smooth might be necessary 

for accurate prediction of vegetation patterns, while a smoother map might be better in predicting 

the soil moisture within a field. 

 

3.3.2. Effect of scaling on the sensor-based variable (NDVI)  

The changes in NDVI with increasing NHS were relatively minor, and became noticeable 

only for the largest neighborhood size, i.e. 40 m. Filtering NDVI using a 40 m radius of 

neighborhood reduced the range of values to 96% of the original range (Fig. 3.3F). The 

correlation between the original layer and filtered layers were generally high, except for the 

largest NHS (40 m) where correlation dropped to ca. 0.7 (Fig. 3.4A). There were substantial 

variations among the fields, for example, filtering affected NDVI maps the most in fields 97 and 

791, and was less pronounced in fields 52 and 87 (Data not shown). This could be related to field 

specific spatial patterns in NDVI distributions. For example, relatively noisy random patches 

were observed on original maps of NDVI values in fields 97 and 791 (Fig. 3.2), while NDVI 

varied more gradually through fields 52 and 87.   
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Figure 3.4. Mean correlation coefficients between the studied variable values obtained at 

different neighborhood sizes and the original layer. Error bars indicate the standard deviation 

across the fields. A) Variables with minor decrease in the correlation coefficient (i.e. relative 

elevation, slope, solar radiation and NDVI). B) Variables with major decrease in the correlation 

coefficient (i.e. flow accumulation, flow length, curvature and wetness index). 
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Figure 3.4. (cont’d) 

 

 

3.3.3. Relationship between topographic factors and NDVI at different scales 

 Table 3.2 shows a list of the topographic attributes that were selected as statistically 

significant predictors for NDVI in the multiple regression analysis for each NHS value in the 

studied fields. Relative elevation, slope and the potential solar radiation index were among the 

significant predictors most often, with relative elevation being a significant predictor in at least 

one of the NHS values in all eight fields, slope in seven fields and the potential solar radiation 

index in five fields. Flow length, curvature and the wetness index tended to become significant 

predictors at larger NHS values (i.e. 5 to 40 m), indicating that importance of different 

topographic variables for cover crop biomass prediction varies with scale. For example, flow 
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length was a significant predictor for NHS > 20 m in six of the studied fields, while in only one 

of the fields it was a significant predictor at the original and NHS = 1 m levels. In field 30, 

relative elevation and slope captured the patchiness in NDVI in the original layer, however the 

prediction performance increased as I included flow length, potential solar radiation and flow 

accumulation (Table 3.2), i.e., the variables that seemed to explain NDVI variability better at 

larger NHS values.  
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Table 3.2. List of topographical variables that were statistically significant predictors (p < 0.05) for NDVI in multiple regression 

analysis for each neighborhood size and each studied field. 

Layers FIELD 30 FIELD 38 FIELD 52 FIELD 87 
RE SL FL FA CU WI SR RE SL FL FA CU WI SR RE SL FL FA CU WI SR RE SL FL FA CU WI SR 

Original x x       x     x  x      x      x 

NHS 1
 x x    x  x x     x  x   x   x      x 

NHS 3  x x   x x x x    x x  x   x   x      x 

NHS 5  x x   x x x x     x  x      x      x 

NHS 10  x x x  x x  x     x      x  x     x x 

NHS 20  x x x x x x x x     x x  x     x     x x 

NHS 40 x  x x  x x x x x    x x       x    x  x 

 FIELD 93 FIELD 97 FIELD 791 FIELD 792 
RE SL FL FA CU WI SR RE SL FL FA CU WI SR RE SL FL FA CU WI SR RE SL FL FA CU WI SR 

Original x x x     x x       x     x x x      

NHS 1 x x x x  x   x   x x   x     x x x     x 

NHS 3 x x x  x   x x  x x    x      x x      

NHS 5 x x x  x   x x   x          x x x  x   

NHS 10 x x x  x   x x   x    x    x  x x x  x   

NHS 20  x   x x  x x   x    x    x  x x x  x  x 

NHS 40 x x x x  x  x x x     x    x x x x x x  x  x 

RE = Relative elevation. SL = Slope. FA = Flow accumulation. FL = Flow length. CU = Curvature. SR = Solar radiation. WI = 

Wetness index. 

Original layers are raw-data derived layers at 1 m resolution without any filtering. 

NHS (Neighborhood size): Layers derived from a filtered DEM and NDVI. Filters used are 1, 3, 5, 10, 20, and 40 m in radius. 
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Fig. 3.5A shows the prediction performance of multiple regression models using only 

significant predictors; the adjusted-R
2
 using the original layer ranged from 0.10 (field 52) to 0.56 

(field 97). The performance of topographic attributes as a set of predictors for NDVI varied 

considerably with the field; the best performance was observed in fields 97 and 792 (adjusted-R
2
 

> 0.45) and the worst performance was observed in fields 52 and 791 (adjusted-R
2
 < 0.15). 

However, the prediction performance in field 52 (i.e. the flattest field in my study, Fig. 3.2) was 

considerably lower across all NHS values, indicating that topography was not an important factor 

of NDVI distribution throughout this field (Fig. 3.5A). Adjusted-R
2
 values increased with 

increasing NHS in all fields (Fig. 3.5A), except for field 52. The increase was relatively small as 

NHS increased from original, to 1–3 m level, becoming greater at larger NHS values (i.e. 10 to 

40 m). At larger NHS the performance of topography as a predictor of NDVI could be regarded 

as acceptable, i.e. adjusted-R
2
 > 0.5, in all fields, except 38 and 791.  

Changes in adjusted-R
2
 values appeared to be related to the changes in significant 

predictors. For example, in the field 87, adjusted-R
2
 increases considerably at larger NHS values 

as curvature and the wetness index become significant predictors. In field 792, adjusted-R
2
 

increased considerably as flow length, curvature and potential solar radiation were included in 

the model at NHS = 10, 20 and 40 m (Fig. 3.5A, Table 2). A similar result was reported by Bian 

and Walsh (1993) in the relationship between topographic attributes and a vegetative index in a 

regional study. Using NHS from 30 to 3300 m, they showed that elevation was a significant 

predictor for the vegetative index at all NHS values; however, the individual R
2
 for slope 
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increased from 0.17 at NHS = 30 m to 0.53 at NHS = 3300 m, indicating that slope becomes an 

important predictor at larger NHS values. This observation points to the effect of the 

neighborhood size when evaluating contributions of different topographic attributes as predictors 

of plant characteristics, since different outcomes and conclusions could be obtained at different 

neighborhood sizes. The effect also should be considered while comparing the results from 

different studies. 
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Figure 3.5. Adjusted-R2 for multiple regression models. (A) Adjusted-R2 as a function of 

neighborhood size in each individual field. B) Mean adjusted-R2 for multiple regression from all 

studied fields as a function of neighborhood size. Different uppercase letters mark significant 

differences between topographic scales (p < 0.05). Different lowercase letters mark significant 

differences between NDVI scales (p < 0.05). Values presented in (A) are for the cases where 

NDVI and topography were filtered at the same neighborhood sizes. Only significant predictors 

were used in the multiple regression models (α = 0.05). 
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Figure 3.5. (cont’d) 

 

 

In order to find the NHS values of topographic attributes and NDVI (hereafter called 

topographic NHS and NDVI-NHS) that maximize the prediction of NDVI from topography, I 

conducted analysis of variance with topographic NHS and NDVI-NHS as two studied factors and 

adjusted-R
2
 as the response variable. The interaction between topographic NHS and NDVI-NHS 

was not significant, indicating that the effect of topographic NHS did not depend on NDVI-NHS. 

Fig. 3.5B shows the mean values of adjusted-R
2
 for topography across all NDVI-NHS values and 

for NDVI across all topographic NHS values. The highest adjusted-R
2
 was observed at NHS of 20 

m, though it was not significantly different from NHS values of 10 and 40 m. The highest 
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adjusted-R
2
 values in NDVI were observed at NHS of 20 and 40 m. Thus using these NHS values 

for both topography and NDVI yielded better predictions across all the fields. Bian and Walsh 

(1993) also reported increases in R
2
 from multiple regression models with increasing NHS, 

reaching an optimal R
2
 value at NHS = 2250 m. They defined the concept of “characteristic” 

scale as the NHS value at which the spatial dependencies of topography and the vegetative index 

converge. In my study the “characteristic” scale between topography and NDVI ranged from 20 

to 40 m. 

3.3.4. Indicators of optimal topographic scale 

The topographic features of each field (i.e. flat, rolling or steep) can potentially serve as 

an indicator of the usefulness of topographic attributes as explanatory variables for cover crop 

biomass prediction. For example, fields 30, 87 and 792 had diverse topographic patterns, 

particularly depression areas and undulating terrain (Fig. 3.2), with wider ranges of relative 

elevation, slope and potential solar radiation. In these fields the choice of topographic NHS most 

significantly affected the performance of the multiple regression models. Conversely, fields 38 

and 52 had lower topographic diversity and performance of regression models was not 

substantially affected by changes in NHS. Overall, I observed positive correlations between the 

mean adjusted-R
2
 and the range of relative elevation, slope and potential solar radiation in each 

field (Fig. 3.6A). 

I explored the use of principle components of the topographic attributes as a potential 

indicator of the fields where topography can be expected to play a significant role as a cover crop 

biomass predictor. Three principal components, PC1, PC2, and PC3, were extracted from 
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topographic attributes. PC1 explained 31.7% of the total variability, PC2 explained 23.5%, 

whereas PC3 explained 20.0%. The major contributors in PC1 were potential solar radiation and 

slope. The major contributors in PC2 were relative elevation and flow accumulation. The major 

contributor in PC3 was curvature. The average value of the scores in each field for PC1 showed a 

larger range as compared to the scores in PC2 and PC3, indicating that topographic differences 

between fields were mainly explained by PC1. I present the PC1 scores as a measure of 

topographic “complexity”. The mean adjusted-R
2
 values from regression analyses in each field 

and the averaged PC1 score were significantly correlated indicating that PC1 was a good 

indicator of the strength in the relationship between topography and NDVI (Fig. 3.7). The fields 

with lower adjusted-R
2
 in the multiple regressions tended to have higher PC1 values; those were 

the fields with flat topography and high values of the potential solar radiation index. Fig. 3.7 also 

shows the change in the mean adjusted-R
2
 of regression models after filtering the original layers. 

For all the fields there was a positive change in the adjusted-R
2
 which was also significantly 

correlated to the PC1 scores, indicating that a better performance in regression models can be 

obtained when filtering topographic attributes in fields with high slope values. On the other hand, 

filtering fields with flat topography and high potential solar radiation will not increase the 

performance of regression models. 

 Among the variogram characteristics the spatial autocorrelation range and the nugget/sill 

ratio appeared to be most promising indicators of the optimal neighborhood size. The range 

parameter reflects the maximum distance of spatial autocorrelation. The nugget/sill ratio is a 

measure of the proportion of micro-variance and/or experimental error in respect to the total 

variance. Small values of this ratio indicate that a significant proportion of the variance can be 
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explained by the spatial dependence, whereas only a minor proportion is attributed to fine-scale 

variation and experimental error. After examining the variograms of all studied topographic 

attributes (results not shown) I decided to use variograms of slope to summarize the spatial 

autocorrelation in topography as it was the most significant attribute across scales and fields. 

Slope variogram models for all fields showed a nested structure that could be typically described 

by two spherical models with the first range parameter varying between 30 and 49 m; and the 

second range parameter varying between 77 and 140 m. Variograms for NDVI also showed 

spherical nested structures in all fields with the first range parameter between 9 and 63 m and the 

second range parameter between 98 and 169 m.  
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Figure 3.6. Indexes for selecting optimum neighborhood size. A) Linear regression between 

multiple regression adjusted-R2 and the standardized ranges of solar radiation, relative elevation 

and slope in the studied fields. B) Linear regression between the change in adjusted-R2 after 

filtering and semivariogram nugget/sill ratios from NDVI maps of the studied fields. C) Linear 

regression between the change in adjusted-R2 after filtering and the semivariogram nugget/sill 

ratio from slope maps of the studied fields. D) Optimal neighborhood size for topography plotted 

versus the partial sill value from semivariograms of the slope maps. 
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Figure 3.7. Correlation between score values of the first principal component (PC1) and the 

mean adjusted-R2 values from multiple regression analyses. Black squares: Before filtering. 

Fields with relatively flat topography had positive values of PC1, while fields with more diverse 

topography had negative values of PC1. Red circles: After filtering. Adjusted-R2 values from 

multiple regressions in the original layers were plotted as a reference with their respective 

change values (White squares). Numbers indicate the field labels. 
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Changes in adjusted-R
2
 values were positively related to the nugget/sill ratios of both 

slope and NDVI variograms (Fig. 3.6B,C). Larger values in the ratio for the slope variogram 

were associated with larger gain in the adjusted-R
2
 from the multiple regression models after 

filtering (Fig. 3.6C). Large values of this ratio indicate a greater topographic “complexity” which 

can be expected to have a greater effect on spatial patterns in NDVI. On the other hand, the ratio 

for NDVI was negatively related to the change in adjusted-R
2
 (Fig. 3.6B), indicating that NDVI 

could be better explained by topography when the ratio was small, i.e., in the cases with overall 

smooth spatial patterns in NDVI. Nugget/sill ratios in both slope and NDVI could serve as a 

potential indicator of those cases in which filtering can improve the performance of the 

predictive models. 

 Although across all fields the best adjusted-R
2
 values were found in NHS values ranging 

from 20 to 40 m, the optimal NHS value in each individual field varied considerably. The best 

possible combination of topographic NHS and NDVI-NHS was different for each field, 

influenced by the field specific topographic “complexity”, e.g. reflected in the PC1 scores (Fig. 

3.7). These results suggest that there is no single optimal scale for all fields, thus the selection of 

NHS might be field specific. Similar results were also reported by Smith et al., (2006) in a study 

that used topographic attributes in soil mapping. They showed that the neighborhood sizes for 

topographic derivation varied from landscape to landscape.  

The optimal NHS value for filtering was also reflected in the partial sill parameter in the 

first spherical structure of slope variograms (Fig. 3.6D). This parameter shows the proportion of 
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the total variability explained by autocorrelation at ranges lower than 49 m. Fields with larger 

proportions of variance explained by slope autocorrelation required larger NHS values to match 

the spatial variation in NDVI. On the other hand, filtering did not have a noticeable impact in 

fields with small proportion explained by the autocorrelation in slope at distances <49 m.  

 

3.4. Conclusions 

I studied the effect of the neighborhood size derivations of topographic data and NDVI for 

red clover cover crop on the strength of the relationship between them. Curvature, flow 

accumulation and flow length were more affected by the scale of derivation than relative 

elevation, slope and the potential solar radiation index. Relative elevation, slope and potential 

solar radiation were significant predictors for NDVI at most studied scales. Conversely, flow 

accumulation, curvature, flow length and the wetness index were significant predictors of NDVI 

mainly at large scales. The strength of the relationship between topographic attributes and NDVI 

readings varied with the scale. Increasing the neighborhood size in topographic and NDVI data 

derivations tended to increase the strength of the relationship. Among the tested scales, i.e., 1, 3, 

5, 10, 20 and 40 m, the scales 20 and 40 m led to the regression models with better prediction 

performance. I conclude that using the original DEM for analyzing the relationships between 

topography and biophysical variables, e.g., cover crop biomass, may not always be appropriate, 

since not all possible associations with topographic attributes are depicted at the small scale of 

the original DEM. Thus, prior to developing predictive regression models I recommend 

exploring the relationships between topography and biophysical variables of interest at a range of 

scales.  
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Topographic “complexity” of the studied terrain expressed as the range of the 

topographic variable values, the loading values of principal components, and the semivariogram 

parameters of the topographic and studied biophysical variables can serve as aids in such 

exploration. I found that slope and the potential solar radiation index were the most relevant 

indicators of the topographic “complexity” in the studied agricultural fields, thus these attributes 

could be used to identify the fields where topography could be successfully used as a predictor of 

cover crop biomass. Partial sill and nugget/sill ratios in terrain slope and NDVI semivariograms 

were good indicators of the optimal derivation scale. Larger nugget/sill ratios for slope and 

smaller ratios for NDVI variograms were associated with high regression prediction performance, 

while smaller ratios for slope and larger ratios for NDVI yielded poor predictions. 

I showed that topographic effects on growth and biomass production of cover crops are 

most pronounced at certain spatial scales, thus predictive models that use topographic attributes 

will be most accurate when used at the optimal scales. In this study the effect of scale of 

derivation was demonstrated for the relationship between topography and cover crop biomass; 

however, a similar approach can be utilized when relating topography with hydrological, soil and 

other biophysical variables. 
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Chapter 4: Cover crop effect on corn growth and yield in 

agricultural fields with diverse terrain 

 

Abstract 

The use of cover crops is reported to enhance agro-ecological services in rotational crop 

systems, however their adoption by farmers has remained limited. A challenge to farmer uptake 

is high spatial and temporal variability in cover crop establishment and growth. The spatial and 

temporal performance uncertainty reduces the potential for benefits to be derived from cover 

crops. Since topography plays an important role in spatial processes that ultimately affect plant 

performance, it could be used to quantify and predict cover crop spatial variability and cover 

crop contribution to a subsequent cash crop. In this 3-year study conducted in southwest 

Michigan I assessed the effects of topography and cover crop (red clover) biomass on corn 

yields. I used path analysis within a Bayesian framework to identify direct and indirect 

relationships among topography, red clover biomass, and corn yield, while taking into account 

the effects of agricultural management practices, multiple years, and multiple experimental 

fields. I observed that topographic attributes, e.g. terrain slope and flow accumulation, contribute 

significantly to explaining the variability in both red clover biomass and corn yields.  

However, the cover crop was affected by topography differently than the main crop, corn. 

Higher red clover biomass was produced in flat locations, whereas higher corn yield was 

produced in areas with high curvature. Red clover biomass positively influenced corn yield, 

however, the magnitude of that effect varied both temporally and spatially. Notably, the positive 
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effect of red clover on corn yields was significant only in the years with average precipitation; 

and the magnitude of the effect was more pronounced at summit and slope topographical 

positions, than in topographical depressions. My results indicate that efforts to ensure a good 

cover crop stand will be most beneficial to subsequent corn crop at summit and slope positions. 

Accounting for variability in fields and years has significantly improved analysis of the 

interactive relationships between topography, red clover, and corn yields.  

Keywords: cover crops, agro-ecological services, topography, hierarchical models, Bayesian 

path analysis 

 

4.1. Introduction 

The use of cover crops in row crop systems has been reported to improve agro-ecological 

services provided by the ecosystems including enhanced carbon (C) sequestration, reduced 

erosion, increased nutrient supply, increased weed suppression, and reduced losses of 

agrochemicals (Snapp et al., 2005; Bhardwaj et al., 2011). It is assumed that these benefits 

mainly depend on the amount of cover crop biomass that is produced and incorporated into the 

soil (Kuo et al., 1997; Queen et al., 2009; Fageria, et al. 2011). For example, it has been 

demonstrated that cover crops, when incorporated into the soil, can increase or maintain the 

concentration of soil C and nitrogen (N) (McVay et al., 1989; Kuo and Sainju, 1998; Sainju et 

al., 2002; Mazzoncini et al., 2011), and improve nutrient use efficiency in agricultural systems 

(Fageria et al., 2011; Dabney et al., 2012). Cover crop use has also been reported to influence 

soil physical conditions and water retention (Drury et al., 2003; Papadopoulus et al., 2006). For 

example, cover crops reduce bulk density and increase porosity (Ess et al., 1998); enhance root 

activity and C inputs, which improve soil aggregation (Miller and Dick, 1995); improve soil 
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hydraulic conductivity and infiltration by modifying soil structure and aggregate stability 

(Murphy et al., 1993); and preserve soil moisture (Gallager, 1977; Smith et al., 1987). 

Use of leguminous cover crops can be particularly advantageous. Benefits of using 

legumes include increased N supply and reduced amount of N fertilizer required for the next 

crop (Meisinger et al. 1991), increased microbial biomass (Jokela, et al., 2009), and increased N 

mineralization rates (Dinesh et al., 2001). In addition, legumes possess the ability to absorb 

scarce nutrients in the soil profile. Therefore, legume biomass incorporation will increase 

nutrient concentration in the surface layer of the soil (Fageria et al., 2005). A meta-analysis of 

the response of corn yield to cover crops was provided by Miguez and Bollero (2005), who 

analyzed the results from 36 peer-reviewed publications and concluded that legume cover crops 

increase average corn yield by 37%. Red clover (Trifolium pratense L.) is among the most 

commonly used legume cover crops in the northeastern United States (Singer and Cox, 1998), 

and has been shown to provide up to 85 kg N ha
-1

 for a subsequent crop (Vyn et al., 1999). 

Hively and Cox (2001) found that the use of red clover resulted in higher corn yield compared to 

a no-cover crop control. Sarrantonio and Molloy (2003) reported that red clover used in 

rotational systems on sandy loam soils improved corn yield parameters, i.e., plant height, plant 

biomass, and yield.  

Despite all their benefits, adoption of cover crops by farmers remains low, and only a 

very small percentage of the U.S. cropland is planted with cover crops (Dabney et al., 2012). A 

possible explanation for the low adoption rate is that cover crop establishment, growth, and 

subsequent nutrient supply to a cash crop are spatially and temporally variable. High spatial and 

temporal variability increases management challenges of cover crop-based systems. 

High spatial variability of legume and non-legume cover crop biomass within a single 
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field has been reported in several studies (Boyer et al., 1996; Harmoney et al., 2001; Guretzky et 

al., 2004; Guretzky et al., 2005). Legumes in particular are known to have high spatial variability 

in N-fixation patterns in addition to variable biomass production (Boyer et al., 1996; Nykanen et 

al., 2008; Hauggaard-Nielsen et al., 2010). Soil properties may contribute to this variability, 

Boyer et al. (1996) found a positive moderate correlation (r=0.25) between biomass production 

and soil pH. Hauggaard-Nielsen et al. (2010) found that biomass production was correlated to 

soil humus content and total N in the topsoil. They also found that N-fixation at flowering stage 

was negatively correlated to clay content (25-75 cm); however, the authors indicate that it was 

not possible to build a satisfactory regression model to explain biomass and N-fixation due to the 

large spatial variability observed in both variables.  

Topography plays an important role in the spatial distribution of soil particles 

(erosion/deposition), organic matter, nutrients, and hydrologic conditions throughout the 

landscape and has been shown to be correlated with a variety of soil properties. For instance, 

topographic attributes have been used to explain the spatial distribution of soil water content 

(Kang et al., 2003; Green and Erskine, 2004; Ticehurst et al., 2007; Zhu and Lin, 2011), 

hydraulic conductivity (Jiang et al. 2007), soil nutrient content (Aandahl, 1948; Moore et al., 

1993; Wang et al., 2009; Zhang et al., 2011), soil carbon content (Gregorich et al., 1998; Terra et 

al. 2005; Ritchie et al., 2007), soil respiration (Kang, et al., 2003), and soil temperature and 

microclimate conditions (Kang et al., 2000; Kang et al., 2003; Bennie et al., 2008).  

 The effect of topography on performance of row crops has been studied extensively and 

found to be substantial across diverse cropping systems in the U.S. (Simmons et al., 1989; Stone 

et al., 1985; Halvorson and Doll, 1991; Kravchenko and Bullock, 2000; Kravchenko and 

Bullock, 2002; Jiang and Thelen, 2004). In row crops in the Midwestern U.S., studies have 
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shown a significant effect of topography on the spatial distribution of several crop 

characteristics, in particular crop yield (Kravchenko and Bullock, 2000; Kravchenko and 

Bullock, 2002; Jiang and Thelen, 2004; Kravchenko et al., 2005; Huang et al., 2008). 

Considerably less attention has been devoted to the effects of topography on performance of 

cover crops (Harmoney et al, 2001; Guretzky et al., 2004). Since spatial and temporal variability 

in cover crop performance is one of the factors that limit cover crop use by farmers, a better 

understanding of the effect of topography would contribute to more effective cover crop 

implementation, allowing producers to tailor recommendations to site-specific features of their 

fields.  

 Field sites used for agricultural experiments have been traditionally placed on flat land 

with homogeneous soil properties. This allows researchers to minimize variability in crop growth 

and performance conditions external to the study and to maximize detection of the effects of the 

agricultural management treatments considered in the study. However, such experimental 

settings also limit the ability of traditional field research experiments to address the role of 

topography and edaphic factors on variability in crop performance as well as the role of 

interactions between the studied agricultural management practices and other factors affecting 

crop growth. Such interactions can potentially change the practical outcomes of the research 

findings, e.g., when one management practice can outperform another under some but not other 

soil/terrain settings. This is particularly relevant to commercial agriculture that uses large fields 

with diverse topographic and soil conditions which make crop production highly spatially 

variable. The concern about the role of management vs. terrain interactions is especially valid for 

managements involving cover crop use. In commercial cropping systems it may be difficult to 

see the positive effect of cover crops on row-crop yields because variations in soil/terrain settings 
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could mask the cover crop effects. I hypothesize that in the systems with cover crops, the main 

row crop yield will be affected by topography both directly, through topography’s role in water 

redistribution and spatial patterns of soil properties, and indirectly, through the contribution that 

topography makes to spatial patterns in biomass inputs by cover crops. While general effects of 

topography on plant growth cannot be doubted, the magnitudes, temporal patterns, and 

synchronies between these direct and indirect topographical influences on main row crops in 

cover crop based systems have not been addressed before. 

To assess direct and indirect effects of topography on row crop yields I will use Path 

Analysis (PA), a procedure that  allows testing direct and indirect relationships (“paths”) 

between topography, red clover and corn yield (Hoyle, 1995). With PA I can study the 

contribution of cover crop biomass to the main crop while accounting for confounding effects of 

topographic attributes (Gajewski, et al. 2006). I propose the implementation of PA under the 

Bayesian framework as it is particularly advantageous for inferential purposes in studies with 

multiple factors within a hierarchical structure. For example, implementation of linear models 

could be challenging in agricultural studies with several topographical positions within fields, 

and then diverse fields within management systems and years. In addition under this framework, 

I can generate estimates and standard errors that are not based on asymptotic theory, and 

therefore do not rely on the normality assumption (Gelman et al. 2004; Gajewski, et al. 2006). 

This is a desirable property because some variables, e.g. topographical features such as slope, 

flow accumulation, flow length, and curvature, are commonly not normally distributed; and 

because I want to estimate total effects (the sum of direct and indirect effects) and its associated 

standard errors which are particularly challenging to obtain for non-normal distributions (Sobel, 

1982; Gajewski, et al. 2006; Preacher and Hayes, 2004).  
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4.2. Objectives 

The main goal of my study is to examine the influence of cover crops on growth and 

yield of the following row-crop, i.e., corn, on a scale of a typical agricultural field. Since 

topography could affect growth and production of both cover and main crop, it becomes a 

potentially confounding factor that may mask the contribution of the cover crop, thus I aim at 

separating the partial effect of topography from the effect of the cover crop.  The specific 

objectives of the study are 1) to determine the relative significance of direct and indirect effects 

of red clover biomass and topographic attributes on corn biomass and yield using hierarchical PA 

under a Bayesian framework; and 2) to quantify the effect of red clover biomass on corn biomass 

and yield at different landscape positions. 

 

4.3. Materials and methods 

4.3.1. Study site  

The study was carried out at Kellogg Biological Station (KBS) located in southwest 

Michigan at 42° 24' N, 85° 24' W. Annual rainfall averages 890 mm/y and mean annual 

temperature is 9.7 °C. The dominant soil series are the Kalamazoo (fine-loamy, mixed, mesic 

Typic Hapludalfs) and Oshtemo (coarse-loamy, mixed, mesic Typic Hapludalfs). The data were 

collected from a total of ten experimental fields in three different years. A list of the fields along 

with field sizes, years when each field was sampled, and the numbers of samples collected from 

each field in each year are shown in Table 4.1. Five fields were under a certified organic 

management system (T4) that receives no chemical inputs at any time, whereas the other five 

were under a reduced chemical input system (T3) that receives banded herbicide and starter N 
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fertilizer only at planting time for wheat and corn, for a 50% reduction in chemical inputs 

compared to the conventional management. Both T3 and T4 fields receive additional post-

planting cultivation and T4 is rotary-hoed to control weeds (Simmons, 2012). All fields were in 

corn-soybean-wheat rotation with red clover (Trifolium pratense L.) used as a cover crop. The 

rotational system is completed in three years: corn is planted in May and harvested by September 

of year one; soybean is planted in May and harvested by October of year two; winter wheat is 

planted in November of year two and harvested by July of year three; and red clover is frost-

seeded in existing winter wheat in February of year three and mowed by May of the following 

year before planting corn again. In my experiment, red clover was frost-seeded in February of 

2007, 2008, and 2010, and mowed in May of the following year. Corn was planted in May and 

harvested in September 2008, 2009, and 2011. Four fields were sampled in 2008, four fields in 

2009, and five fields in 2011 (Table 4.1). 

 

4.3.2. Data collection 

Red clover biomass was sampled on three dates: immediately after the previous winter 

wheat was harvested (August); in fall (late September); and the following year just before the red 

clover was plowed down and corn was planted (May). The total dataset consisted of 392 

sampling locations randomly selected within each field; each sampling location was geo-

referenced using a global positioning system (GPS) (Fig. 4.1). At each sampling location, red 

clover was cut at ground level from a 0.5 x 0.5 m quadrat. Dry weight biomass values were 

obtained after drying the samples at 60° C for 48 h (Corbin and VanderWulp, 2010).  

Prior to red clover biomass removal, normalized difference vegetative index (NDVI) 

measurements were taken at each sampling location using a portable optical sensor device (The 
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GreenSeeker™ optical sensor unit, model RT200; NTech industries, Inc., Ukia, CA, USA) 

installed on a cart (Munoz et al., 2010). NDVI measurements were also taken for the entire field 

approximately every 3.5 m along Green Seeker™ cart passes with 10 m distance between the 

cart passes. This dataset was used to build continuous maps of red clover biomass for each field. 

 

 

Table 4.1. List of the fields used in the study, along with years when the fields were sampled, 

their agricultural management treatments (T3=Low input and T4=Organic), field sizes, and the 

numbers of samples collected per field.  

Field Years Treatment Area (ha) Samples 

301 2008 and 2011 T3 5.8 20* / 6
¶ 

38 2008 and 2011 T4 7.4 56* / 6
¶ 

79-S 2008 and 2011 T3 5.7 12* / 6
¶
 

97 2008 T4 5.4 42 

93 2009 T4 5.6 56 

87 2009 T3 4.9 57 

52 2009 T3 5.9 61 

79-N 2009 T4 5.7 64 

91 2011 T4 3.3 3 

822 2011 T3 1.4 3 

* Number of samples collected in 2008. 
¶ 
Number of samples collected in 2011. 
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Figure 4.1. Example of topographical and yield information available at two of the studied fields (i.e. field-97 on the left and field-38 

on the right). A) Map showing field topography classified as depression (red), slope (green), summit (blue) positions; vertical gradient 

corresponds to field elevation. B) Sampling points where the cover crop biomass was collected before plowing down in along with 

map of corn yield in 2008. 
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Corn biomass was collected at another set of random locations within each field at 

phenological stage V4. All corn plants were cut at ground level along a 1 m transect in two 

adjacent rows. Corn dry biomass was recorded after drying at 60° C for 72 h. A total of 150 

samples were collected across all three sampling years. Corn was harvested using a combine 

equipped with precision agriculture software to allow yield measurements with coincident GPS 

latitude and longitude data (Robertson et al. 2012). Grain flow rate (lb. sec
-1

) was measured 

across each field with a density of approx. 870 readings per hectare. Yield data were processed 

by removing errors using yield editor software (Sudduth and Drummond, 2007). Point 

observations were interpolated using ordinary kriging, and a raster yield map with 1-m resolution 

was generated.   

Topographic data were derived from a Digital Elevation Model (DEM). High resolution 

elevation data was collected by airborne Light Detection and Ranging (LiDAR) from all fields 

on April 2008 (Kucera International Inc.), with vertical accuracy <15 cm and horizontal accuracy 

<1 m. Point elevation observations were processed for outliers and anomaly data before 

interpolation using ordinary kriging to generate a 1-m resolution elevation maps. Elevation maps 

were filtered for fine-spatial variation by using a neighborhood radius of 20 m (Munoz and 

Kravchenko, 2012). Subsequently, topographic attributes were derived from the filtered Digital 

Elevation Model (DEM), including relative elevation, slope, aspect, wetness index, flow 

accumulation, solar radiation, flow length, and curvature. For descriptions of the above 

mentioned terrain attributes see Moore et al. (1993) and Townsend and Walsh (1996).  

I have used the absolute value of curvature as it was linearly associated to biomass and 

yield. I also prefer to use absolute curvature because it serves as an indicator of topographic 

“complexity” in my agricultural fields. Other metrics derived from topographical features has 
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been shown to be field specific (Timlin et al., 1998; Munoz et al., 2013). Values for each 

topographical attribute and corn yield were extracted for each sample location of red clover. 

Values were also extracted from red clover biomass map for each location of corn biomass at 

stage V4. ArcMap (ESRI, 2003) was used for all topographic data processing. 

 

4.3.3. Landscape classification 

In order to classify the terrain by landscape position I used a total of 193 geo-referenced 

survey points recorded from 27 experimental fields at KBS in early May, 2010. The location of 

each survey point, randomly selected within each field, was categorized as one of three 

landscape positions, namely depression, slope, or summit. A total of 65 locations were recorded 

in depression positions, 72 in slope positions, and 56 in summit positions. For each survey point, 

the values of the topographic attributes were extracted and used as predictor variables in a linear 

discriminant analysis (Venables and Ripley, 2002), using MASS package in R (http://www.r-

project.org). The original dataset was divided into a training subset (130 locations) and a testing 

subset (63 locations). Discriminant functions were computed for each landscape position based 

on the training subset and then used to predict the classification membership in the testing subset. 

Classification results, expressed as the percentage of the samples in the testing subset that was 

correctly classified were:  91.0% for depression, 100% for summit, and 88.0% for slope 

positions, indicating high classification accuracy. The total percentage of correctly classified 

positions using leave-one-out cross-validation was 90.4%. The discriminant functions obtained 

by linear discriminant analysis of the entire dataset were used to predict the classification 

membership in the regular sampling grid (2x2 m) for each of the ten fields. Finally, a continuous 

map of landscape categories was built using the classification membership (Fig. 4.1). 
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4.3.4. Statistical Analysis-Hierarchical path analysis 

In order to examine direct and indirect effects of red clover biomass and topographic 

attributes on corn yield I used Path Analysis (PA), which provides estimates of the magnitude 

and significance of hypothesized causal relationships between sets of variables (Gajewski, et al. 

2006). PA requires a formal specification of a theory-based model. Schematic representation of 

the model used in this study is shown on Fig. 4.2-A. It includes effects of topographical variables 

on red clover and on corn yield and the effect of red clover on corn. Specifically, I hypothesize 

that topography affects growth and performance of both red clover and corn, while red clover 

biomass provides an additional influence on the performance of the following corn crop.  

The magnitudes and directions of the effects are defined by path coefficients. Path 

coefficients are standardized regression coefficients which can be interpreted as the expected 

change in the standard deviation of the response associated with a unit change in the predictor 

(Pedhazur, 1997). They can be also interpreted as the fractions of the standard deviation of the 

dependent variable (with the appropriate sign) for which specific factors are directly responsible 

(Wright, 1934). The magnitude of the path coefficient serves as an indicator of the relative 

importance of each predictor (Wright, 1960). PA allows errors or unexplained variance to be 

specified; therefore enabling estimations of the predictive power in red clover biomass and corn 

yield independently. 
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Figure 4.2. Path diagram for the relationship between topographical attributes, red clover 

biomass and corn yield. A) Basic model structure (M-1). B) Hierarchical model structure with 

varying slopes per year (M-4).  
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Modeling ecological processes using hierarchical statistical model approach has been 

presented as a way to integrate experimental and observational data (Cressie et al. 2009; Ogle, 

2009), facilitating model-based inference. As described by Ogle (2009), this approach provides a 

flexible environment that allows us to acknowledge a richer understanding of the ecological 

systems, and thus permitting multiple hypotheses to be considered. I now present the models 

considered in this study and its supporting hypothesis.  

The main model M-1 (Fig. 4.2-A), which is a representation of my main hypothesis, 

considers two response variables, red clover biomass and corn yield, potentially explained by a 

set of topographic attributes. In addition, red clover biomass is a mediating variable of the 

possible indirect effect of topography on corn yield. M-1 does not consider the effect of 

experimental factors such as years, fields, or agricultural management (Table 4.2). In practical 

terms, M-1 assumes that the relationships between topography, red clover and corn yield 

(magnitude and direction) do not depend on the experimental factors and the path coefficients in 

M-1 are the same across all years, fields, or agricultural management. For example, for the 

inference on corn yield, one general intercept (α) and seven slope coefficients (βt, one for each 

topographical predictor plus red clover) are computed (Fig. 4.2-A).    
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Table 4.2. Summary of the statistical models used to analyze the relationships between corn, red 

clover cover crops and topographical variables. 

Model Structure Experimental factors included 

Fields Years Management 

M-1 All samples pooled 

together  

No No No 

M-2 Hierarchical-data 

pooled by fields 

varying intercepts No No 

M-3 Hierarchical-data 

pooled by fields 

varying intercepts and 

varying slopes 

No No 

M-4 Hierarchical-data 

pooled by fields 

and years 

varying intercepts varying slopes No 

M-5 Hierarchical-data 

pooled by fields 

and managements 

varying intercepts No varying slopes 

 

 

 The advantage of my dataset is that the data represent a diverse set of experimental 

factors: different agricultural fields, management systems and years. Analysis of the contribution 

of these factors is of great interest and importance, first, because it contributes to explaining the 

variance in the response variables and thus reduces model errors, and second, because it could 

serve to identify the potential effects associated with these factors and thus estimate differences 

between treatments (e.g. difference between years). Hierarchical models have been used with 

promising results in similar studies, that is when estimating regression coefficients was 

conducted along with accounting for individual- and group-level sources of variation (Gelman 
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and Hill, 2007; Cressie et al. 2009). However, implementation of hierarchical structures is not 

readily available in PA software packages, and including multiple factors in the model often 

induces lack of identification of the latent variable model. In other words, the number of 

parameters in the model can quickly become too large to be supported by the data. An 

unsatisfactory solution is to ignore the factors and pool all the observations without considering 

effects of field, management system and year (as in M-1). Implementation of PA under the 

Bayesian framework addresses this problem as the inference in each parameter is based 

individually on its posterior probability distribution, which describes the probability of the 

parameter given the data (Schneider et al., 2006).  

Models M-2 through M-5 (Table 4.2), are hierarchical models that consider the effect of 

experimental factors. These models are a generalization of the model M-1, where intercepts, and 

possibly slopes, are allowed to vary by group (i.e. by factor’s level). Including one experimental 

factor implies the estimation of regression coefficients for every level of this factor, thus 

increasing model complexity. These hierarchical models could have varying intercepts, varying 

slopes, or varying intercepts and slopes (Gelman and Hill, 2007). For example, the most complex 

model representing the effect of individual fields (ten fields used in this study) will require the 

estimation of ten intercepts and seventy slopes. Agricultural managements (T3 and T4) and years 

of data collection (2008, 2009 and 2011) can be also included in a similar fashion. I explored 

several candidate models that include the effect of each experimental factor and combinations of 

two factors (as varying intercepts and/or slopes). However, I only present here the four most 

relevant candidate models as they serve to highlight important points in my discussion. A model 

that considers all three experimental factors was not fitted because of insufficient number of 

observations in all possible groups. The systems of equations for all five studied models are 
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summarized in the Appendix. 

Model M-2, is a hierarchical model with varying intercepts per field, thus data is pooled 

by fields (Table 4.2). M-2 allows each field to have an independent regression line for the 

relationships between topography, red clover and corn yield (lines with different intercepts); 

however M-2 does not allow a different regression slope (magnitude) in the effects for each field 

(all lines have the same slope). In practical terms, M-2 is a model that recognizes that every field 

could have a different effect on the response variables (for example due to differences in 

fertility), but at the same time assumes that the effects of topography on red clover and corn yield 

do not depend on the field.   

Model M-3, is a hierarchical model with varying intercepts and varying slopes per field, 

thus as in M-2 data is pooled by field (Table 4.2). M-3 is similar to M-2 in that independent 

intercepts can be fitted for each field; however they differ in that M-3 allows different magnitude 

in the effects for each field (varying slopes). In practical terms, M-3 is a model that recognizes 

that each field could have an effect on the response variables, and also the magnitude of the 

effects, between topography, red clover and corn yield, could vary from field to field. In other 

words, the effects of topography on red clover and corn yield now can depend on the field. 

Model M-4, is a hierarchical model with varying intercepts per field and varying slopes 

per year, thus data is pooled by field and year (Table 4.2). M-4 is similar to M-2 in that 

independent intercepts can be fitted for each field; however, M-4 allows different magnitude in 

the effects for each year. In practical terms, M-4 is a model that recognizes the possible variation 

from field to field, and also assumes that the magnitude of the effects depends on the year. In 

other words, the effect of topography on red clover and corn yield could be different from year to 

year. Regression lines in M-4 could have different intercepts for each field; however, fields 
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coming from the same year follow the same regression slope. 

Model M-5, is a hierarchical model with varying intercepts per field and varying slopes 

per management system, thus data is pooled by field and management (Table 4.2). M-5 allows 

independent intercepts to be fitted for each field, and allows different magnitude in the effects for 

each agricultural management system. In practical terms, M-5 is a model that recognizes 

variation from field to field, but also assumes that effects depend on the management system. 

Regression lines in M-5 could have different intercepts for each field; however, fields coming 

from the same management system will have the same regression slope. 

Given the hierarchical structure of these models I chose to use a Bayesian paradigm for 

model fitting and prediction (Carlin and Louis, 2000; Gelman et al., 2004). I assigned non-

informative prior distributions to each model parameter. For both the population and field 

random effect parameters I assumed αi and βi to follow Normal(0,10
5
) distribution. Variances 

are estimated based on the parameter τ
2
, which it is assumed to follow a Gamma(0.001; 0.001) 

distribution. Inference, within a Bayesian paradigm, is based on Markov Chain Monte Carlo 

(MCMC) samples (post burn-in) from the parameters' posterior distribution (Gelman et al., 

2004). Given posterior samples for a generic parameter θ, I can calculate any desired summary 

statistic, thus point predictions and associated measures of uncertainty can be calculated from the 

posterior predictive distribution. To compare all candidate models, I used the Deviance 

Information Criterion (DIC) (Spiegelhalter et al., 2002). DIC compares models based on the 

trade-off between goodness of fit and model complexity. Goodness of fit is expressed as the 

deviance, whereas complexity is measured by an estimate of the effective number of parameters. 

DIC is calculated from the MCMC samples. The expected posterior deviance (D*(Ω)) of the 

collection of parameters (Ω) is computed as EΩ|y{-2logL(Data|Ω)}. The effective number of 
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parameters, which is used as a penalty, is computed as PD = D*(Ω)−D(Ω*), where Ω* is the 

posterior mean of the model parameters. Finally, DIC is given by D*(Ω)+PD; therefore, lower 

DIC values indicate better models. The candidate models were fit using the software WinBUGS 

(Lunn, et al., 2000). Convergence diagnostic and posterior inferences were implemented in the 

package ‘coda’ in R (R Development Core Team, 2008). 

 

4.3.5. Statistical Analysis-Analysis of covariance 

Hierarchical path analysis allows us to identify the relative importance of red clover 

biomass on corn yield; however it does not help to quantify the magnitude of this effect. In order 

to quantify how much red clover biomass contributes to the increase in corn biomass and yield at 

different landscape positions I used analysis of covariance (ANCOVA), which is a general linear 

model that combines analysis of variance and regression analysis. Corn yield is the response 

variable, red cover biomass is the continuous predictor (covariate), and topographical position is 

the categorical factor with three levels (depression, summit or slope). The effect of field, year 

and management system were considered in ANCOVA, and model selection was based on DIC. 

The best goodness of fit was achieved with the model that included the factors landscape 

position and field, thus only results from this model are reported further. 

 

4.4. Results and discussion 

4.4.1. Relationship between topography, red clover biomass and corn yield 

Model selection was achieved by comparing goodness of fit statistics among all candidate 

models (Table 4.3). Model M-1, which does not consider effects of experimental factors, had the 

largest MSE (0.79) and Deviance Information Criteria (DIC) (971.1). Goodness of fit increased 
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considerably as I included experimental factors, as evidenced by the lower total MSE and total 

DIC of the hierarchical models (M-2 to M-5). Among experimental factors, field was the factor 

that improved model fit the most. Including the effect of field as a factor reduced MSE to 0.40 

and 0.28, and DIC to 818.5 and 833.2 (models M-2 and M-3 respectively) (Table 4.3); no other 

single factor reduced MSE and DIC as much as the field (data not shown). This is an indication 

that field-to-field variation explains an important portion of the total variance. Model M-3 

showed the lowest MSE (0.28) among all tested models, but this model also showed the largest 

PD (124.4), indicating that the model could be over-specified because it included excessively 

large number of parameters. For example, for the relationship between topography and red 

clover biomass, at least six regression intercepts and six regression slopes were estimated 

individually for each field. Based on the DIC, model M-2 is preferable to M-3 because it is more 

parsimonious, that is, model M-2 conveys equivalent information with fewer assumptions than 

model M-3.  

Presence of substantial field-to-field differences is well documented in the literature. 

However, in most of the studies the authors tend to fit an individual model to each individual 

field instead of considering between-field variation as a factor in a global statistical model that 

applies to the complete dataset. For example, Green et al. (2007) studied the relationship 

between winter wheat yield and topographic attributes by using multiple linear regressions. They 

reported individual statistical models for each field with substantial differences in the number of 

predictors and predictive power. Kravchenko and Bullock (2000) studied the association between 

yield and topography across eight different fields, and found that correlations between 

topographic attributes and corn yield were field-specific. Similarly, Jiang and Thelen (2004) 

studied the effect of topography on corn yield and reported notable differences between the 
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predictive models for two fields, even though the fields were adjacent.  

In addition to the field effect, inclusion of the year and management system effects also 

improved model fit (when combined with field as in M-4 and M-5). MSE was reduced once the 

effect of either year or management system was included. However, goodness of fit only 

improved when the year was included as evidenced by the DIC values (Table 4.3), indicating 

that the effect of year was relatively more important than the effect of the management system. 

MSE dropped from 0.40 (M-2) to 0.33 and to 0.39 as year (M-4) and management system (M-5) 

factors were included respectively (Table 4.3). The lowest DIC observed in model M-4 (798.9) 

compared to models M-2 (818.5) and M-5 (826.0) indicates that including independent intercepts 

per field and independent regression slopes per year produces the most parsimonious model. This 

result does not mean that M-2 and M-5 are incorrect options; it only suggests that model M-4 

produces the best balance between the amount of information and the number of assumptions.  

This result indicates that the relationships between topography, red clover biomass, and 

corn yields may change substantially from year to year. Variability from year to year is a 

common feature of agronomical research. The relationships between topography and crop 

performance has been found to vary substantially between years. For example, in a 4-year study, 

Kravchenko and Bullock (2000) reported substantial changes in the magnitude and significance 

of correlation coefficients between yield and topographic features. In a 6-year study, Jiang and 

Thelen (2004) reported that slope terrain was correlated to crop yield only in four years. 

However, no significant correlation was found for the other two years. In a 2-year study, Iqbal et 

al. (2005) showed that elevation was a significant predictor of cotton yield only in the first year 

of the study; and that the predictive power of the regression model changed substantially from 

0.40 to 0.21 in the second year. Differences between years were also reported for the distribution 
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of legumes (Guretzky et al., 2004), where substantial changes in the significant topographical 

predictors were observed from year to year.  

 

Table 4.3. Fit statistics for each studied model. MSE: mean squared error. pD: penalized 

deviance. DIC: deviance information criteria.  

Model Variable MSE pD DIC R
2 

M-1. Basic structure Corn yield  9.0 494.7 0.27 

Cover crop  8.1 476.4 0.33 

Total 0.79 17.1 971.1  

M-2. Hierarchical structure  

[varying intercepts per field] 

Corn yield  17.2 377.5 0.62 

Cover crop  15.1 441.0 0.46 

Total 0.40 32.3 818.5  

M-3. Hierarchical structure  

[varying intercepts and slopes per field] 

Corn yield  67.8 360.9 0.90 

Cover crop  56.5 472.3 0.78 

Total 0.28 124.4 833.2  

M-4. Hierarchical structure  

[varying intercepts per field and varying slopes 

per year] 

Corn yield  30.7 351.5 0.75 

Cover crop  26.1 447.3 0.57 

Total 0.33 56.8 798.9  

M-5. Hierarchical structure  

[varying intercepts per field and varying slopes 

per treatment] 

Corn yield  23.8 375.0 0.67 

Cover crop  21.1 451.0 0.49 

Total 0.39 44.8 826.0  

 

 

Since model M-4 showed the best goodness of fit of all tested models, I decided to use it 

in the further analysis. Once the effect of the year was included, relationships (paths) among 

topography, red clover biomass, and corn yields became more evident in path analysis (Fig. 4.2-

B). Parameter estimates from M-4 along with their credible intervals are shown in Table 4. The 
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R
2
-values for the prediction of red clover (0.57) and corn yield (0.75) increased considerably, 

indicating a better predictive power of model M-4 (Table 4.3). Significant topographic predictors 

for red clover now included not only flow accumulation and curvature, but slope as well; 

interestingly, all topographic attributes became significant predictors for corn yield. This shows 

how pooling the dataset in a model (M-1) that does not consider the effect of experimental 

factors (field, year, or management system) could lead to incomplete interpretations of how the 

system functions. Model M-4 highlighted some important relationships between topographic 

attributes, red clover biomass, and corn yield. For instance, from M-4 terrain slope appeared to 

be an important attribute that affects not only corn yield but also red clover biomass production; 

in flatter areas the production of biomass was higher, whereas steep slope areas tended to 

produce lower biomass. The contribution of year-to-year variations was particularly noticeable in 

the portion of the path analysis that predicted corn yield; I noticed that the same parameter was 

not significant in all years. For instance, terrain slope was negatively correlated to corn yield in 

2008 and 2009, indicating that flatter areas produced higher yields than sloped areas in those 

years. On the other hand, elevation, flow length, curvature and solar radiation were significant 

attributes only in 2011, indicating that areas with higher elevation, faster drainage, higher 

curvature and more exposure to solar radiation produced higher corn yields in that year (Table 

4.4). Differences between years can be attributed largely to differences in weather. Precipitation 

for the year 2011 was higher compared to years 2008 and 2009 (Fig. 4.3), leading to visible 

water accumulation on the surface in depression areas of some fields in 2011. Overall, red clover 

biomass and soil water played an important role in corn production during the two years with 

average precipitation (2008 and 2009); however, water re-distribution was more important than 

the effect of red clover in the wet year (2011) (Table 4.4).  
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Figure 4.3. Cumulative precipitation in KBS for the years 2008, 2009 and 2011. The black line is 

the 24-year cumulative precipitation computed as the daily average from 1988 to 2011. Vertical 

gray lines are approximate day of planting, end of vegetative stage and harvesting of corn. Bars 

in the bottom of the figure represent values of daily precipitation. 
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Table 4.4. Parameter estimates and credible intervals for the model with varying intercepts per 

field and varying slopes per year (M-4). Estimates expressed as 2.5%50%97.5% percentiles. 

Node Year 1 Year 2 Year 3 

Inference on Red clover 

Relative elevation -0.48-0.180.13 -0.55-0.210.14 -0.45-0.140.17 

Slope -0.260.040.35 -1.00-0.62-0.25 -0.64-0.34-0.04 

Flow accumulation -0.170.080.33 0.160.390.61 -0.47-0.070.33 

Flow length -0.23-0.0010.23 -0.25-0.040.16 -0.48-0.060.36 

Curvature -0.39-0.21-0.02 -0.35-0.050.24 -0.32-0.070.19 

Solar radiation -0.240.040.33 -0.41-0.090.23 -0.74-0.260.23 
Inference on Corn yield (Direct) 

Relative elevation -0.32-0.090.16 -0.200.110.41 0.050.300.55 

Slope -0.40-0.19-0.05 -0.53-0.25-0.05 -0.150.190.54 

Flow accumulation 0.040.230.43 0.010.120.31 0.440.781.12 

Flow length -0.21-0.030.14 -0.169x10
-4

0.16 -0.77-0.39-0.008 

Curvature -0.090.070.22 -0.33-0.110.13 0.150.370.59 

Solar radiation -0.24-0.020.19 -0.100.140.39 0.030.490.95 

Red clover biomass -0.020.270.57 0.110.240.37 -0.81-0.150.49 
Inference on Corn yield (Total) 

Relative elevation -0.39-0.140.12 -0.270.060.37 0.040.320.61 

Slope -0.41-0.17-0.01 -0.70-0.40-0.09 -0.030.240.52 

Flow accumulation 0.040.260.47 0.030.210.40 0.420.791.15 

Flow length -0.23-0.030.16 -0.18-0.010.15 -0.79-0.38-0.01 

Curvature -0.150.0080.16 -0.36-0.120.12 0.150.380.60 

Solar radiation -0.25-0.010.22 -0.140.120.38 0.060.530.99 
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In my experiment, I noticed a major influence of topography in the wet year and a 

combined influence of red clover and topography in average precipitation years. Similarly, 

Kravchencko and Bullock (2000) concluded that weather conditions influenced the relationship 

topography to crop yields. They reported negative correlations between yield and curvature 

associated with low precipitation periods, and positive correlations in wet periods, which is in 

accordance with my findings. Further, Kravchencko and Bullock (2000) reported negative 

correlations with slope in dry environments, and Kaspar et al. (2004) reported negative 

relationships between corn yields and slope and curvature in dry years, whereas positive 

relationships were observed with elevation and slope in wet years. My results agree with those 

reported by Chi et al. (2009), who studied the effect of topography on wheat and found that grain 

yields were positively correlated to elevation and negatively correlated to flow length in a wet 

year. They reported an opposite trend in a dry year: crop yields were negatively correlated to 

elevation and positively correlated to flow length. Similar to my findings, Halvorson and Doll 

(1991) reported a major influence of topography in wet years. Clearly, there is strong evidence 

that weather conditions can play an important role in the relationship of topography to crop yield. 

The relationship of weather and topography is not always consistent, as Simons et al. 

(1989) and Chi et al, (2009) reported limited influence of topography in wet years. Overall, I 

agree with Kravchenko and Bullock (2000) that the impact of topography is accentuated in 

extreme weather conditions; conversely, on average weather conditions the effect of topography 

is relatively modest as observed in the particular soil and topographical conditions of my study.  

The effect of red clover on corn yield was significant in 2008 and 2009, however not in 

the wet year 2011. Note that the path of red clover biomass on corn yield was significant even 

after considering the partial paths of topography. This positive association was a common feature 



102 
 

observed in all tested models (data not shown). Using path analysis I found a positive effect of 

cover crop biomass on subsequent corn yield, an effect that was independent of topographical 

effects. In the studied agricultural landscapes, topography had a profound effect on all factors 

affecting corn yield, including water redistribution, soil properties, cover crop growth, thus until 

I applied path analysis it was not possible to isolate the specific contribution of cover crops. It 

has been difficult to unequivocally demonstrate that performance of cover crops can have a 

positive impact on the corn yields in fields with diverse topography and soil characteristics. My 

results indicate that site-specific cover crop management is worth exploring – such as high 

density planting of cover crops in field locations where they produce large amounts of biomass – 

as this could increase yield of a subsequent cash crop. 

The effect of topography on corn yield differs from those of red clover. As indicated by 

their paths, red clover biomass and corn yield were affected differently by curvature (Fig. 4.2-A, 

4.2-B). For example, the path of curvature on red clover was negative, indicating that red clover 

biomass decrease when curvature index increased. Conversely, the path of curvature on corn 

yield was positive, indicating that corn yield increased with curvature. These relationships 

indicate that higher red clover biomass was produced in flat locations; whereas higher corn yield 

was produced in areas with high curvature. Different magnitude and direction (sign) in these 

paths can be explained by the fact that the two crops are grown in different seasons. For instance, 

red clover was grown in fall-winter-spring, whereas corn was grown in summer right after 

mowing red clover. Lower red clover biomass in areas with higher curvature can be possibly 

explained by faster water movement and lower water storage. On the other hand, corn yield gains 

in areas with high curvature could be explained by faster water movement during wet summer 

months. Absolute values of curvature also indicate “topographic complexity” within a field. For 
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instance, in my experiment, fields with large range in curvature values were associated with 

complex terrain features. Conversely, flat fields tend to show lower range in values of curvature. 

Therefore, the variation of soil properties could be similar for those fields with similar absolute 

curvature. Hattar et al. (2010) studied the effect of curvature on the variation of soil properties 

along a toposequence. They found that the effect of curvature was more pronounced at the 

summit and shoulder positions. They also found that most soil properties showed similar values 

in the shoulder and the backslopes, which are the areas of highest and lowest values of curvature. 

The authors conclude that toposequence dynamics influence the distribution of soil properties. 

For example, the variation observed in some properties in the backslope position is related to the 

variation in the shoulder position at the same transect. Other differences can be noted using 

model M-4, indicating an advantage of this model over the simple model M-1. For example, 

though elevation had a positive effect on corn yield in the wet year, it had no significant effect on 

red clover biomass. Similarly, solar radiation and flow length had a significant effect on corn 

yield that is not present on red clover. Note that only two topographical features (flow 

accumulation and curvature) showed significant paths on red clover and corn yield in the model 

M-1. Though model M-1 could be useful to highlight some relationships between topography, 

red clover, and corn yield, the interpretation is incomplete compared to the best model (M-4).  

 

4.4.2. Effect of red clover biomass on corn yield at different topographical positions  

The performance of red clover differs significantly at different landscape positions. 

Depression areas tended to produce higher red clover biomass compared to summits and slopes 

through the entire growing season (Fig. 4.4-A). On average, the total production of biomass on 

summits and slopes by the time of plowing (May) was 85% and 72% of the biomass produced in 
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depressions, respectively. The final biomass produced on the summits was higher than on the 

slopes, although this difference was not statistically significant (Fig. 4.4-A). In addition, the 

performance of red clover also differs significantly across years. The final red clover biomass 

produced in 2009 was 75% higher than the final biomass in 2008 and 2011 (Fig. 4.4-B). Biomass 

data for August and September were only available for 2008 and 2009, and no differences were 

observed between these two years. To assess the magnitude of the sole effect of red clover 

biomass on corn biomass and yield, I use an ANCOVA model that considered the effects of 

landscape position and field. Figure 5 shows the effect of red clover biomass on both corn 

biomass (at stage V4) and corn yield, by landscape position. Red clover biomass had a 

significant effect on corn biomass in the stage V4 in all three landscape positions; the global R
2
-

value in this ANCOVA model was 0.67. The regression slopes for all three positions, depression 

(0.05), summit (0.08), and slope (0.15), were significantly greater than zero, indicating that 

increases in red clover biomass had a positive effect in the early stages of corn growth (Fig. 4.5-

A). Comparisons between landscape positions were performed at the lower, median, and upper 

quartile of the covariate, which corresponds to 1.0, 1.8 and 2.6 t ha
-1

 of red clover biomass, 

respectively. Corn biomass differ significantly among the three landscape positions at lower 

values of red clover biomass (1.0 t ha
-1

), with depression areas showing the highest values 

followed by summit and then slope (Fig. 4.5-A). However, corn biomass did not differ between 

summit and slope positions at values of red clover biomass larger than 1.8 t ha
-1

. These results 

indicate that maintaining high biomass of red clover can be especially beneficial on slope 

landscape positions where it can make a strong positive impact on early growth of a subsequent 

corn crop.  
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Figure 4.4. Red clover biomass during the growing season. Biomass values at 3 landscape 

positions combined across studied years (A). Biomass values in different years combined across 

topographical positions (B). Error bars represent standard errors of the mean. Bars with different 

letter within the same sampling date indicate significant differences at p<0.05. 
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Figure 4.5. Effect of red clover biomass on corn traits at three different landscape positions. 

Relationship between corn biomass at stage V4 and red clover biomass (A). Relationship 

between corn yield and red clover biomass (B). Comparisons between landscape positions were 

performed at the lower quartile, median, and upper quartile of the covariate (Vertical gray lines). 

Different letters within the same value of red clover biomass indicate statistically significant 

difference between topographical positions at p<0.05 

* All regression slopes were >0, except the one for depression in the estimation of corn yield.   
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Figure 4.5. (cont’d) 

 

 

Red clover biomass also had a marked effect on corn yields, particularly in slope and 

summit positions (global R
2
-value was 0.63). The regression slopes for summit (0.77) and slope 

(1.06) positions were significantly greater than zero, whereas the regression slope for depression 

areas (0.11) was not different from zero (Fig. 4.5-B). This result indicates that increases in red 

clover biomass in summit and slope areas had a positive effect on corn yield, but no effect in 

depression areas. For example, increasing red clover biomass by 2 t ha
-1

 (from 1 to 3 t ha
-1

) 

increased average corn yield by about 2.1 t ha
-1

 in slope positions and 1.5 t ha
-1

 in summit 

positions, while such an increase did not have a substantial effect on yields in depression. 

Depression areas produced the highest corn biomass and yields regardless of the amounts 
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of red clover biomass incorporated. In contrast, corn biomass production and yield in slope and 

summit positions depended on the amount of red clover biomass provided. These results again 

point to benefits of site-specific cover crop management. For example, efforts to increase red 

clover biomass in summit and slope positions can contribute considerably to corn yield increase, 

therefore helping to reduce the gap in corn yields between unfavorable (summit and slopes) and 

favorable (depression) areas.  

 

4.5. Conclusions 

Topographic attributes have significant explanatory power with respect to the variability 

of both red clover biomass and corn yields; in particular, terrain slope and flow accumulation 

were the most common significant predictors. However, the cover crop and the main crop were 

affected differently by topography. Higher red clover biomass was produced in flat locations, 

whereas higher corn yield was produced in areas with high curvature, which is explained by the 

different growing season in each crop. Attributes associated with water accumulation and water 

availability played an important role in corn production under dry conditions, whereas attributes 

related to drainage and water re-distribution played a more important role under wet conditions.  

 Red clover biomass had a positive effect on corn yield, but, the magnitude of that effect varied 

both temporally and spatially. For instance, the positive effect of red clover was significant only 

in the years with average precipitation, and the magnitude of this effect was clearly more 

pronounced in summit and slope than in depression positions. Since the independent effect of red 

clover biomass on corn performance was more pronounced on slopes and summits, I conclude 

that it is worth the effort to ensure a good cover crop stand on summit and slope areas, because 

this is where it can be most beneficial to the subsequent cash crop. Efforts to increase red clover 
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biomass in summit and slope positions supported gains in corn yield, helping to reduce the gap in 

corn yields between unfavorable (summit and slopes) and favorable (depression) areas.  

Although the positive effect of cover crop biomass on corn yields was observed only in 

summit and slope positions, the positive effect of cover crops at the early stage of corn growth 

occurred at all landscape positions,  consistent with integration of cover crops into field crop 

systems as a means to support improved stand establishment and early growth. Overall, I found 

that accounting for experimental management effects significantly improved model fit; therefore, 

when analyzing the relationships between topography, red clover, and corn yield, it is important 

to consider different sources of variability, in particular the effects of field and year.  
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APPENDIX 

The following are the systems of equations used in the five candidate statistical models: 

M1: The basic structure model in which all samples are pooled together 

       ; and  

M2: A hierarchical structure with random intercepts per field, data pooled by fields 

      ; and 

M3: A hierarchical structure with random intercepts and slopes per field, data pooled by field 

        ; and 

M4: A hierarchical structure with random intercepts per field and fixed slopes per year, data 

pooled by field and year 

      ; and 

M5: A hierarchical structure with random intercepts per field and fixed slopes per management 

system, data pooled by field and management. 

      ; and 

where z is a response variable (red clover biomass); X is the set of predictors (topographic 

attributes); y is a response variable (corn yield), potentially explained by X and z (as a mediating 

variable). The index i correspond to each observation with i:1…n; j is the index for each field 

with range j:1…10; k is the index for year with k:1, 2, 3; and finally l is the index for 

management system with l:1, 2. F is the field effect; Y is the effect of year; and M is the effect of 

management system. The vector α contain parameters associated with the effect of each 

topographic attribute in the prediction of z; whereas β is a vector with parameters associated with 

topographic attributes in the prediction of y. There are two residual terms, the first one on the 

prediction of red clover biomass (e
RC

), the second on the prediction of corn yield (e
C

). 
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Chapter 5: Modeling performance of row crop systems with and 

without cover crops across topographically diverse terrain in future 

climate 

 

Abstract 

Climate change has become a source of concern due to its potential impact on future 

global food production. The simulated responses in crop performance to climate change reported 

in hundreds of studies have produced contrasting results. The final impact of changing climate 

seems to depend not only on the particular region and crop species, but also on a multitude of 

factors associated with the cropping systems. Topography is one of the factors playing an 

important role in Midwest cropping systems. However, the magnitude of topographical 

influences can vary in different management systems. Crop simulation models have been shown 

to be a good tool to investigate the impact of climate change on crop production because they 

integrate our knowledge about biophysical processes of crop growth and development. I studied 

the impact of climate change on a set of management practices while considering the effect of 

topography. I hypothesized that under future climate scenarios topography will play an important 

role in the dynamics of water and nutrient re-distribution that depends on the particular 

management system. I validated crop simulation model SALUS using data from a 6-year 

experiment that includes 10 fields, 3 crops, 3 management systems, and 3 topographical 

positions. Projections of crop performance under 100 years of future climate scenarios showed a 

significant decline in corn yields, in particular for the organic-based management; whereas 
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soybean and wheat yields slightly increased. Corn yield decline is explained by increased 

temperatures and higher nitrogen stress. Increased atmospheric CO2 explained the yield increase 

in the C3 crops (soybean and wheat). However, drought stress in the last third of the century 

would be negatively impacting soybean yields in slope positions; and nitrogen stress would be 

impacting negatively wheat yields in the organic-based treatments. Mitigation strategies for corn 

will require development of new genetic materials matching the new short growing season and 

improved strategies of nitrogen management. 

 

5.1. Introduction 

Increasing atmospheric CO2 has been a source of concern in the last decades due to its 

potential effects on global future climate (IPCC, 1995). These changes in future climate 

characterized by increased temperature and decreased soil moisture suggest a negative impact in 

food production (Long et al., 2006). However, the increasing CO2 could also impact positively 

global food production because of the stimulatory effect of CO2 on photosynthesis (Long et al., 

2006; Schimel, 2006). The responses of crop performance to climate change reported in 

hundreds of studies have produced diverse and variable results (Schimel, 2006; Hatfield et al., 

2011). For example, global assessment of the potential impact of climate change presented by 

Rosenzweig and Parry (1994), showed a decrease in global crop production, although reductions 

were less at the middle and higher latitudes compare to the tropics. Conversely, projections from 

the Intergovernmental Panel on Climate Change (IPCC) showed that cereal agriculture in mid- to 

high-latitude regions will increase as a result of moderate increases in temperature (IPCC, 2007). 

The positive or negative impact of changing climate seems to depend not only on the particular 
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region and crop species, but also on a multitude of factors associated with the cropping systems 

that interact with the climatic variables (Hatfield et al., 2011). Understanding the effect of 

climate change on cropping systems is still a challenge that requires improvements in the 

accuracy of the projections. The accuracy in these projections depends largely on the CO2 

fertilization effect under the particular growing conditions (Long et al., 2006). However, the 

accuracy of projections also depend on the quality of climate scenarios and crop models used 

because future crop yields are typically assessed using simulations from a numerical climate 

model as an input to a crop simulation model. 

A climate scenario is a plausible representation of the future climate (Carter and La 

Rovere, 2001). These scenarios are developed from coherent and consistent ‘storylines’ that 

assume different social, economic, technological, and environmental developments (IPCC, 

1995). Therefore, each scenario represents a projection in greenhouse gas emissions as a function 

of the assumptions in global development. Projections of future climate data is then derived as 

the climate system’s response to varying greenhouse gas emissions obtained through different 

Global Climate Models (GCMs) (Winkler, et al., 2011). Climate projections derived for its use in 

crop models should represent climatic trends at a reasonable time scale resolution to match with 

the biophysical processes of crop growth and development (i.e. daily basis). In addition, the 

climate projection should be uninterrupted in time if we want to assess the sequential 

performance of agricultural systems across the years.  

Crop simulation models have been proved to be a good tool to investigate the impact of 

climate change on crop production (Rosenzweig and Parry, 1994; Parry et al., 2004; Hatfield et 

al., 2011). The System Approach to Land Use Sustainability (SALUS) has been used with 

success to simulate topographic effect, management systems, and rotational systems (Basso et 
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al., 2001; Basso et al., 2006). SALUS is a model designed to simulate continuous crop, soil, 

water, and nutrient conditions under different management strategies (Basso et al., 2006). The 

program simulates plant growth and soil conditions every day for any time period with available 

weather sequences. SALUS is also able to model crop rotational systems without interruption 

which is an important capability to study the sequential synergistic performance of cropping 

systems in time.  

Crop models have been used extensively to produce point estimations of yields in diverse 

crop species and under multiple management scenarios (Tsuji et al., 1998; Ahuja et al., 2002). In 

most of these studies the authors typically used different measures of error to test the validity of 

their predictions, however no model is perfect in the prediction and an off-set between measured 

and observed data is always present. To my best knowledge there are no studies that using crop 

models, consider the different sources of variability involved in crop production. For example, 

the variability in the responses obtained from different fields under a particular management 

system. If we want to use simulated data to formulate conclusions about management systems 

(e.g. differences between two management treatments) we should be able to demonstrate that 

differences obtained from simulated experiments represent closely differences observed in real 

experiments. Comparing the measures of variability observed in real experiments with simulated 

experiments under the same management systems will help to validate crop models as a tool to 

detect effects. This will be of great importance when investigating the potential of mitigation 

strategies using simulation models. In order to claim significant differences between mitigation 

strategies or practices we must assure that the simulated data represent appropriately the mean 

pattern and the variability associated with a mitigation strategy. 
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Topography is one of the factors playing an important role in Midwest rotational 

cropping systems (Munoz et al., 2013). In addition, the role of topography could interact with 

other factors innate of each management system. Unfortunately, field sites used for agricultural 

experiments have been traditionally placed on flat land with homogeneous soil properties. 

Studies used to calibrate crop models were not the exception. These experimental settings limit 

our ability to address the role of topography and edaphic factors on variability in crop 

performance as well as the role of interactions between the studied agricultural management 

practices and other factors affecting crop growth. This is particularly relevant to commercial 

agriculture that uses large fields with diverse topographic and soil conditions. The concern about 

the role of management and topographic interactions is especially valid for managements 

involving cover crop use. For example, cereal crop yields were shown to respond to the influence 

of cover crop biomass across diverse terrain (Munoz et al., 2013), indicating that the final impact 

of management systems under climate change may vary across landscapes.  

I want to study the impact of climate change on a set of management practices and still 

considering the effect of topography. I hypothesize that topography will play an important role in 

the dynamics of water and nutrient re-distribution within a toposequence, that depends on the 

particular management system.  

 

5.2. Objectives 

The objectives in this study are: 1) validate a simulation model that considers the effect of 

management system and topographical position in Michigan row-crop agriculture using crop 

yield data; 2) evaluate the potential use of simulated data to detect effects in agricultural 
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practices under future climate scenarios; and 3) simulate the effect of future climate (i.e. next 

100 years) on three management systems across three contrasting landscape positions.   

 

5.3. Materials and Methods 

5.3.1. Study site and management systems 

The study was carried out at Kellogg Biological Station (KBS) located in southwest 

Michigan at 42° 24' N, 85° 24' W. The historical annual rainfall averages 890 mm/y and the 

mean annual temperature is 9.7 °C. The dominant soil series are the Kalamazoo (fine-loamy, 

mixed, mesic Typic Hapludalfs) and Oshtemo (coarse-loamy, mixed, mesic Typic Hapludalfs) 

(Crum and Collins, 1995). I used three annual crop treatments (T1, T3 and T4) from the Long 

Term Ecological Research (LTER) experiment at KBS. The treatment T1 is a conventional 

system, the treatment T3 is an organic system with reduced chemical input, and the treatment T4 

is a certified organic system. The data were collected from a total of ten experimental fields (Fig. 

5.1). Four fields were under the conventional management (T1) that receives standard levels of 

chemical inputs and is chisel plowed; three fields were under the certified organic management 

system (T4) that receives no chemical inputs at any time; and three were under the reduced 

chemical input system (T3) that receives banded herbicide and starter N fertilizer only at planting 

time for wheat and corn, for a 50% reduction in chemical inputs compared to the conventional 

management. Both T3 and T4 fields receive additional post-planting cultivation and T4 is rotary-

hoed to control weeds. Specific dates of field activities, i.e. tillage practices and chemical input 

application, are available in the agronomic protocol of the LTER experiment (Simmons, 2012). 

All fields were in a three-year rotation that includes corn (Zea mays L.), soybean (Glicine max), 

and wheat (Triticum aestivum L.). Red clover (Trifolium pratense L.) was used as a cover crop in 
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the treatments T3 and T4. The rotational system is completed in three years: corn is planted in 

May and harvested by September of year one; soybean is planted in May and harvested by 

October of year two; winter wheat is sowed in November of year two and harvested by July of 

year three. For the treatments T3 and T4, red clover is seeded in existing wheat in February of 

year three when the ground was still frozen and finally ploughed by May of the following year 

before planting corn again.  

 

5.3.2. Landscape classification and experimental plots  

Field continuous landscape was classified into three topographical positions: depression, 

summit and slope. The classification was performed first in a dataset composed of 193 geo-

referenced survey points recorded from 27 experimental fields at KBS (Munoz et al., 2013). 

Topographic attributes derived from a Digital Elevation Model (Munoz and Kravchenko, 2012), 

were used as predictors in a linear discriminant analysis (Venables and Ripley, 2002). The total 

percentage of correctly classified positions in the testing dataset using leave-one-out cross-

validation was 90.4%. The discriminant functions obtained by linear discriminant analysis were 

used to predict the classification membership in the regular sampling grid (2x2 m) for each of the 

ten fields; and a continuous map of landscape positions was derived (Fig. 5.1). 

 Experimental plots of 10 x 10 m were located at each topographical position within a 

toposequence. A total of 23 toposequences were identified in the 10 fields, therefore a total of 69 

experimental plots (Fig. 5.1). Deep soil cores (7.6 cm dia.) to 1 m depth were collected from the 

center of each experimental plot. Soil cores were taken with the hydraulic probe, Geoprobe 

model 540MT (Geoprobe Systems; Salina, Kansas) in April 2010 (LTER, 2013). From the 

original 69 experimental plots, a reduced number (n=53) were used to monitor crop growth and 
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performance. Fifteen plots were located in depression position, 19 in summit position, and 19 in 

slope position (Table 5.1). 
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Figure 5.1. Location of the experimental fields at KBS (Top). Example of the topographical 

classification for 9 fields (Bottom). Black dots indicate the location of experimental plots for soil 

and yield data collection. 
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Table 5.1. Number of fields and experimental plots used in the validation of the crop model. 

Numbers of plots are presented per agricultural management system and topographical position. 

Agricultural management 

system 

Number of fields Experimental plots per position 

Depression Slope Summit 

Conventional (T1) 4 7 8 8 

Reduced input (T3) 3 4 5 5 

Organic (T4) 3 4 6 6 

 

 

5.3.3. Field data for model validation 

Field data was collected from 2007 to 2012 to validate the crop simulation model. Soil 

data, crop data, weather data, and field operation activities were the main input for the crop 

model. Soil properties were measured from the deep soil cores, which include soil texture, bulk 

density, carbon, and water limits. Field operations (i.e. planting, tillage, fertilization, and 

harvesting) were monitored and dates were recorded for each field in each year. A detailed list of 

field operations from 2007 to 2012 is available in the research protocols of KBS (Robertson and 

Bronson, 2011).  

 

5.3.3.1. Soil data 

Soil core analyses include bulk density, total carbon, total nitrogen, and particle-size 

analysis. Soil analyses were performed by specific depth intervals (0-20, 20-35, 35-50, 50-70, 

and 70-100 cm). Core sections were separated and dried at 60 °C for 48 h. Bulk density was 
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computed based on the total dry weight and the volume of each core section. Subsequently, soil 

samples were ground and sieved using 2-mm mesh sieve, and then cleaned from visible plant 

residues. Soil carbon and total nitrogen was analyzed by dry combustion method using Costech 

ECS 4010 Carbon-Nitrogen analyzer. Particle-size analysis was performed by the pipette-

extraction method (Gee and Bauder, 1986). Figure 5.2 shows the distribution of textural 

classification for each topographical position in the first 20 cm. Soil water limits were estimated 

based on textural, bulk density, and soil carbon data using the equations presented by Ritchie et 

al., (1999). Volumetric upper limit was estimated from sand and clay content, and bulk density. 

Volumetric plant extractable water was estimated from sand content. The lower limit was 

estimated as the difference between the upper limit and the plant extractable water. Estimated 

values were adjusted for coarse fragments and soil carbon (Ritchie et al., 1999). Figure 5.3 

shows mean values of soil properties in depth for each topographical position. Notice the larger 

range of variation in soil properties for depression positions. 

 

5.3.3.2. Crop data 

Crop population density and phenological stage were assessed in each topographical 

position during two years (2010 and 2011). Mean values of population density at each 

agricultural system and topographical position were used as input in the crop model. Corn 

biomass was collected at each experimental plot at phenological stage V4 during July to August 

2011. All corn plants were cut at ground level along a 1 m transect in two adjacent rows. Corn 

dry biomass was recorded after drying at 60 °C for 72 h. Phenological stage and corn biomass 

values were used to check the simulated values of plant growth and performance during the 

growing season. Crop grain was harvested using a combine equipped with precision agriculture 



130 
 

software to allow yield measurements with coincident GPS latitude and longitude data 

(Robertson et al. 2012). Grain flow rate (lb. sec
-1

) was measured across each field with a density 

of approx. 870 readings per hectare. Yield data were processed by removing errors using yield 

editor software (Sudduth and Drummond, 2007). Point observations were interpolated using 

ordinary kriging, and a raster yield map with 1 m resolution was generated. Interpolated yield 

data was extracted in each experimental plot (10 x 10 m) for each year. Crop yields at each 

experimental plot for each year were used to validate the crop model. 

 

5.3.3.3. Weather data 

Historical weather data of solar radiation, rainfall, and air temperature were available 

from the LTER Meteorological Station located at 42° 24' N, 85° 22' W (Bergsma, 2013). 

Precipitation is measured with a weighing bucket rain gauge. Air temperature and solar radiation 

are measured with electronic sensors. Campbell Scientific sensors are connected to a CR1000 

datalogger that records readings every hour. Total precipitation as liquid-equivalent depth is 

reported for each day. Maximum air temperature is the highest of all hourly maxima. Minimum 

air temperature is the lowest of all hourly minima. Average daily solar radiation is computed 

including night hours. 
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Figure 5.2. Distribution of soil texture in the first soil depth (0-20 cm) across all experimental plots. Texture triangle is resented by 

topographical position: Summit, Slope, and Depression. 
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Figure 5.3. Soil properties used as input in the crop simulation model presented by soil depth: a) sand, silt, clay content, and organic 

carbon, b) bulk density, and water limits. Median values from all experimental plots are presented by topographical position. Medial 

value (line) is bounded by the 25th and 75th percentiles (shaded area). DUL is drained upper limit. 

 

 

 

A) 
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Figure 5.3. (cont’d) 

 

 

B) 
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5.3.4. Future climate scenarios 

Future climate scenarios developed for a weather station located in Greenville, Michigan 

(43° 10' N, 85° 14' W) were used as input in the crop simulation model to predict future crop 

performance. Each scenario is composed of daily values of precipitation, solar radiation, 

minimum, and maximum temperature during the years 2000 to 2100. Since I want to capture the 

major sources of uncertainty associated with future data generation I include an ensemble of 

climate change scenarios developed from various projections of future green house gas 

emissions. The ensemble of scenarios was developed using simulations from four different 

GCMs (CGCM2, HadCM3, ECHAM4, and CSM1.2) and two emission scenarios (A2 and B2) 

(Winkler et al., 2011). The two emission scenarios used here represent two different ‘storylines’: 

A1 represent the strong economic values and increasing globalization, B2 represent the strong 

environmental values and increasing regionalization. Figure 5.4 shows the projection of year 

mean temperature and precipitation events for A2 and B2 future climate scenarios. The ensemble 

of climate scenarios used in this study was developed by the Pileus project (Zavalloni et al., 

2005; see www.pileus.msu.edu/climate/). Detailed descriptions of the methods used in 

developing climate scenarios are available in Palutikof et al. (1997) and Winkler et al. (2011). 



135 
 

Figure 5.4. Projection of year mean temperature and precipitation in the future climate scenarios A2 and B2 for the weather station in 

Greenville, Michigan. 
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5.3.5. Crop model and simulation experiments 

SALUS software was used to simulate crop performance under current and future climate 

scenarios. Parameter-input files organized in four main components (soil, management, weather, 

and crop) contain information to initialize the model (e.g., physical soil properties) and supply 

driving variables (i.e., time series of weather). Table 5.2 shows the most relevant input 

parameters used during the period of model validation (years 2007 to 2012). A complete list with 

all the variables required by SALUS is presented by Ritchie et al. (1989), and in the SALUS web 

site (Salus software, 2013). Measured soil, weather and management parameters (except 

population density) were used as input in the initial simulation model (e.g. ‘blind’ simulation). I 

used crop parameters, and population density to ‘tune-up’ the initial simulation and therefore 

increase accuracy of prediction. I modified crop parameters (Table 5.2) to mimic plant 

development in the organic-certified crops (e.g. crops used in the treatment T4). In addition, the 

average value of population density was used to recreate crop populations at each topographical 

position. An independent simulation model was executed for each experimental plot based on its 

own soil and field parameters. Simulated yield values were extracted from each model to be 

compared with corresponding values of measured yields (see section 5.3.6).  

The simulation model that produced the best prediction in the validation period was used 

to simulate crop performance under the future climate scenarios (years 2007 to 2099). Since the 

rotation is completed in 3 years, I ran three independent simulations each time starting with a 

different crop (corn, soybean, wheat) to avoid any effect of year by crop. The dates for field 

operations of planting, tillage, fertilization, and harvesting in the future were automatically 

selected by SALUS based on a set of decision rules. Planting dates were selected based on soil 

temperature and water conditions. Tillage and fertilization operations were initialized on specific 
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days-after-planting to match with phenological stages. Harvesting dates were selected based on 

crop maturity. SALUS environmental module was modified to introduce increments in CO2 and 

therefore mimic the concentration of atmospheric CO2 with the emission scenarios. Crop yield, 

thermal time, drought stress factor, and nitrogen stress factor were exported from each 

simulation. 

 

5.3.6. Statistical analysis 

The best simulation model for the validation period (2007-2012) was selected based on 

the differences between simulated yields from each experimental plot and the corresponding of 

measured yields. Five measures of error were used: the average sum of square error (ASSE) and 

the average absolute error (AAE) are measures of model error (off-set); the average error bias 

(AEB) indicates the direction of model error (bias); the average absolute error standardized 

(AAES) standardized the scale of error for each crop, therefore it can be used to compare model 

accuracy between crops; and the correlation coefficient (r) is a metric of association.  
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where mYi and sYi are the measured and simulated yields respectively. Yield values were 

standardized within crop to bring each crop to the same scale of variation. Therefore S.Yi is a 

standardized value of yield, SmYi and SsYi are the standardized values of measured and 

simulated yields respectively. mŶ and sŶ are the measured and simulated mean yield 

respectively; and σ is the standard deviation. 

Analysis of variance (ANOVA) was used to test significance in the effect of experimental 

factors. A linear mixed model was fitted independently for each crop, where agricultural 

management treatment and topographical position were fixed factors with three levels each one. 

Field, year, and toposequence were included as random factors. The linear mixed model was 

fitted independently for measured yield and simulated yield data as response variables. Mean 

comparisons were reported at α=0.05.   

ANOVA was also fitted on the simulated yields obtained with the future climate 

scenarios. To analyze the effect of climate I divided years of simulation into three climate 

periods: period 1 (2007-2037), period 2 (2038-2069), and period 3 (2070-2099). Climate period, 

topographical position, and management treatment were included as fixed factors in the linear 
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mixed model. A local polynomial regression was fitted to the predicted values of yield for each 

management treatment and topographical position (Cleveland et al., 1992). The function was 

fitted using ‘loess’ function in R (R Development Core Team. 2009). To explain the changes in 

simulated future yields for each crop were compared them with corresponding sources of plant 

stress. Therefore, ANOVA was performed on average stress values (nitrogen, drought, heat) 

where climate period, topographical position, and management treatments were fixed factors.  
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Table 5.2. Relevant model parameters used as input in SALUS during model validation. Units are presented in parenthesis 

Model component Parameter Model component Parameter 

Soil 

(at each soil depth) 

 

Bulk density (Mg m
-3

) Management Planting date (doy
#
) 

Clay content (%) Population density (plant m
-2

) 

Silt content (%) Row distance (cm) 

Drained upper limit (m
3
 m

-3
) Fertilization date (doy) 

Lower limit (m
3
 m

-3
) Amount of fertilizer (kg ha

-1
) 

Organic carbon (%) Tillage date (doy) 

Total nitrogen (%) Tillage depth (cm) 

Sat. hydraulic conductivity (cm h
-1

) Harvest date (doy) 

Weather* Precipitation (mm) Crop Development time (DD/leaf equivalent) 

Maximum temp (Celsius) Potential kernel number (kernels ear
-1

) 

Minimum temp (Celsius) Kernel efficiency (kernels ear
-1

 MJ
-1

) 

Solar radiation (MJ m
-2

 d
-1

) Radiation use efficiency (g MJ
-1

) 

* CO2 values in ppm were also modified in the simulations with future climate. 

# DOY=day of the year
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5.4. Results 

5.4.1. Model validation-measures of error 

Crop performance of corn, soybean, and wheat was closely predicted by SALUS as 

indicated by the measures of model error (Table 5.3). The initial (i.e. ‘blind’) simulation, which 

use measured soil parameters, historical weather, and crop management data was enough to 

produce acceptable model predictions of crop yields. The correlation coefficients between 

measured and simulated yields range from 0.42 to 0.55 (Table 5.3) indicating a moderate 

association. The absolute error bias (AEB) showed that SALUS tend to overestimate corn yields 

(+2.4 t ha
-1

) and slightly underestimate soybean (-0.11 t ha
-1

) and wheat yields (-0.15 t ha
-1

). 

Model prediction considerably improved once the crop parameters and population density were 

modified to represent actual conditions of crop variety and crop density at each topographic 

position. Measures of error in this final validation improved for all crops. The correlation 

coefficients between measured and simulated yields increase considerably, now showing 

stronger associations that range from 0.62 to 0.79 (Table 5.3). Figure 5.5 shows the linear 

association between measured and simulated yields from the final validation model. The AEB 

showed a reduced bias in corn (+1.0 t ha
-1

), soybean (-0.03 t ha
-1

), and wheat (-0.03 t ha
-1

) 

compared to the initial validation. Similarly, the absolute error (AAE) in the final validation 

showed a reduced error in prediction of approx. 2.09, 0.57, and 0.75 t ha
-1 for corn, soybean, and 

wheat respectively. The absolute error standardized (AAES) which allows comparisons of model 

error between crops indicate that the prediction in corn (0.52) and wheat (0.59) was more 

accurate than the prediction in soybean (0.73). These results suggest that the final validated 
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model can be used to produce point estimates of crop yield for a particular condition of 

topography and management that are comparable to measured yields. 

 

Table 5.3. Measures of model error for the initial and final simulations presented by crop.    

Simulation Crop ASSE AEB AAE AAES r 

Initial validation 
Corn 22.3 x10

6 

2401.4  3875.9 0.74 0.51 

Soy 7.2 x10
5
 -109.9  699.6 0.89 0.42 

Wheat 15.2 x10
5
 -148.4  939.0 0.67 0.55 

Final validation 
Corn 6.4 x10

6 

1036.6 2086.8 0.52 0.79 

Soy 4.8 x10
5 

-34.8 570.4 0.73 0.62 

Wheat 
10.1 x10

5 

-27.5 754.0 0.59 0.68 
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Figure 5.5. Measured yield vs. simulated yield from the final validated model for: Corn, Soybean, and Wheat. The 1:1 line is 

presented in red. Dot color represents the agricultural management treatment: T1 (Red), T3 (Green), and T4 (Blue). 
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5.4.2. Model validation-ANOVA 

 Analysis of variance on the simulated yields indicates that the validated model is capable 

to reproduce similar effects to the ones observed in the measured yields. Table 5.4 presents the 

summary of the ANOVA table (only F-value and probability are shown) from the linear mixed 

model fitted on simulated and measured yields of corn, soybean, and wheat. Reported F-values 

and probabilities represent the test of hypothesis for the two-way interaction and the main effects 

of management treatment and topographical position. Hypothesis testing in simulated yields 

match closely the significant effects found in the hypothesis testing in measured yields. This is 

an indication that the validated model not only is capable to reproduce similar point estimates of 

yield, but also is capable to reproduce the variability observed within a particular management 

treatments and topographical position. A significant two-way interaction between position and 

treatment was found in the ANOVA tables of corn and wheat measured yields. However, only 

the main effect of position was significant in the ANOVA for soybean measured yields. Using 

the simulated yield values I was able to detect the same significant terms: the interaction between 

treatment and position in simulated corn and wheat; and the effect of position in simulated 

soybean. Moreover, comparison of simulated yields in topographical positions and management 

treatments produced a similar interpretation of significant differences as the comparisons of 

measured yields. In other words, I was able to reach similar conclusions regarding yield 

differences with either measured yields or simulated yields. Figure 5.6 shows the simulated and 

measured least squares means by treatment and position. Mean separation in simulated yields 

match closely the mean separation in measured yields for all crops, topographical positions, and 

most of the management treatment. For instance, the significant lower corn yields in slope 

positions were clearly detected in the simulate data. Significant differences between management 
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treatments in soybean and wheat yields were also detected in the simulated data. However, with 

the simulated data I was not able to detect the difference in corn yields between summit-T1 and 

summit-T4, and the difference in soybean yields between depression-T3 and summit-T3. The 

overall result from this mean separation is a good indication that I can now use the validated 

model to predict future crop yields and potentially use these predicted yields to analyze 

differences between management treatments and topographical positions under future climates.  

 

Table 5.4. ANOVA F-value and associated probability (Pr>F) for the statistical term in the linear 

mixed model. F-values are presented for the models with measured yield and simulated yields 

respectively. 

Effect Measured Simulated 

F-value Pr > F F-value Pr > F 

Corn 

Treatment  9.91 0.113 1.27 0.423 

Position 76.75 <.0001 30.17 <.0001 

Position*Treatment  3.09 0.021 3.69 0.018 

Soybean 

Treatment  0.78 0.564 7.94 0.162 

Position 7.01 0.028 29.65 <.0001 

Position*Treatment  0.18 0.942 1.29 0.323 

Wheat 

Treatment  0.35 0.740 19.36 0.047 

Position 9.63 0.003 92.97 <.0001 

Position*Treatment  3.62 0.032 5.18 0.001 
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Figure 5.6. Simulated yield and measured yield by topographic position and management treatment for: a) corn, b) soybean, and c) 

wheat. Mean separation based on Fisher’s LSD (alpha=0.05). Upper-case letters compare management treatments within a particular 

topographic position. Lower-case letter compare topographic positions within a particular management treatment. 
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Figure 5.6. (cont’d)  

 

 

 

 

 

 

B) 
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Figure 5.6. (cont’d) 

 

 

 

 

C) 
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5.4.3. Simulation with future climate scenarios  

5.4.3.1. Projections of crop yield  

Projections of crop performance under 100 years of future climate scenarios showed a 

significant decline in corn yields, in particular for the organic-based treatment. On the other 

hand, soybean and wheat yields showed a slight increment (Fig. 5.7). The analysis of variance 

showed a significant change of simulated yields across the climate periods for all three crops 

(Table 5.5). The significant two-way interaction between management treatment and climate 

period indicates that the change in crops yields observed across time depends on the particular 

management treatment. In addition, change in soybean and wheat yields across time also depend 

on the particular topographical position (Table 5.5). Crop yield comparisons between climate 

periods broadly indicate a significant decline in corn yields for treatment T4, and a significant 

increase in T1 and T3 for soybean and wheat (Fig. 5.7). In particular I noticed that for corn 

yields, the treatment T4 (certified-organic) significantly decline after climate period 1 in slope 

and summit position; and decline after climate period 2 in depression position. The total decline 

in corn yields in the climate period 3 of about 1.7, 2.3, and 2.1 t ha
-1

 respects the climate period 

1, represent a loss of 35, 55, and 53% in depression, summit, and slope respectively. For 

soybean, depression and summit position in treatments T1 and T3 increase yields after climate 

period 1. The total increment of soybean yields in by the climatic period 3 range between 230 to 

248 kg ha
-1

, which represent a gain from 5.9 to 6.5% respect the climate period 1. For wheat, the 

treatment T1 slightly increase yields after climate period 1 in summit and slope, whereas 

treatment T3 increase yields in all topographical positions. Wheat yields also decline in the 

treatment T4. Wheat yields increases in treatment T3 represent a gain from 28 to 39%, whereas 

yield declines in treatment T4 represents a loss between 14 to 24%.  
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Yield increase observed in soybean and wheat can be explained by the increased 

atmospheric CO2 using in the simulations. Soybean and wheat are C3 crops that respond 

positively to CO2 fertilization. I used a future climate scenario that have an increment of about 

3.5 ppm of CO2 every year, therefore increasing the concentration of CO2 to 700 ppm by the 

year 2099. Parry et al., (2004) reported about 15% gain in wheat yield when increasing CO2 

from 350 to 750. They also report about 25% gain in soybean yields with the same increment in 

CO2. Similar effect of CO2 has been reported by Long et al., (2006), in soybean and wheat; and 

by Hatfield et al., (2011) in several grain cereals. Therefore, C3 crops can still increase 

photosynthetic activity and grain yields in increased CO2 if this offset is not lost due to any 

stress. However, I noticed lower yields in soybean and wheat in some particular management 

treatments and positions that can be explained by a higher stress factor. For example, lower 

soybean yields in slope positions across all treatments are explained by the higher drought stress 

factor (Fig. 5.8). Projected climate scenarios for the Great Lakes Region have been shown a 

slightly increase in total precipitation by the year 2070; however the frequency of droughts is 

expected to increase (IPCC, 2007); and rain events are expected to be more uneven distributed 

since the number of wet days per year will decline in 13 to 60 days (depend on the climate 

scenario) respect to what is observed today (Winkler, 2006). Therefore, the higher capacity of 

water storage in depression and summit position reduce considerably the stress by drought. 

Similarly, lower wheat yields in the treatment T4 can be explained by the higher nitrogen stress 

experienced in these treatments (Fig. 5.8). Management strategies to improve soybean yields are 
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related to water management in particular for the slope positions. In wheat we must procure an 

improved management of nitrogen in particular for the organic-based system.  

In the case of corn I noticed a general decline in yields, more evident in the treatment T4. 

Maize is a C4 crop in which the respond to CO2 fertilization is considerably small (Long et al. 

2006), therefore the photosynthetic activity in corn does not increased substantially with 

increased CO2 and any gain can easily be overcome by losses caused by stresses. Parry et al., 

(2004) showed that increasing CO2 from 350 to 750 produce a gain of only 7% in corn yields. 

On the other hand, increased temperatures could reduce the life cycle and the duration of the 

reproductive phase which cause a reduction in grain yield. Hatfield et al., (2011) reported a list 

of studies that demonstrated the negative effect of increased temperature on corn yields. For 

example, they reported that an increase of 2˚C in the temperature decreased from 5 to 8% corn 

yields in the Central Corn Belt region. The decline in corn yields are also explained by the higher 

nitrogen stress particularly observed in the treatment T4, and summit and slope positions of 

treatment T3 (Fig. 5.8). Mitigation strategies for corn will require improvements in several 

management practices. For example, corn yield decline is associated to nitrogen stress but also to 

increasing temperatures that reduce the life cycle in hybrids of slow development (i.e. certified-

organic crops). Therefore, developing new materials according to the new short growing season 

and improving management of nitrogen could help overcome the projected decline.  
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Figure 5.7. SALUS projection of crop yields for a) corn, b) soybean, and c) wheat under future climate scenarios. Topographic 

position is color-coded: depression (green), summit (blue), and slope (red). Projection of mean yield in management treatments are 

plotted with different line type: continuous (T1), dash (T3), and dotted (T4). 
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Figure 5.7. (cont’d) 

 

 

 

 

 

 



154 
 

Figure 5.7. (cont’d) 
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Figure 5.8. Relevant stress factors by management treatment, position and climate period in a) nitrogen stress in corn, b) drought stress 

in soybean, and c) nitrogen stress in wheat. Mean stress values with different letters within same treatment and position indicate 

differences between climate periods after Tukey’s HSD (α=0.05). Stress factors range from 0 to 1, where 0 indicates the maximum 

stress and 1 indicates no stress. 
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Figure 5.8. (cont’d) 
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Figure 5.8. (cont’d) 
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Table 5.5. ANOVA F-value and associated probability (Pr>F) for the linear mixed model on 

simulated future yields.  

Effect Corn Soybean Wheat 

F-value Pr > F F-value Pr > F F-value Pr > F 

Treatment 67.39 <.0001 540.50 <.0001 393.78 <.0001 

Position 3.60 0.07 20.39 0.00 22.50 0.00 

Treatment*Position 1.15 0.39 1.01 0.45 6.13 0.01 

Period 19.48 0.00 6.41 0.01 9.44 0.00 

Treatment*Period 28.03 <.0001 32.91 <.0001 102.26 <.0001 

Position*Period 0.13 0.97 23.50 <.0001 3.00 0.04 

Treatment*Position*Period 1.73 0.09 0.28 0.97 0.28 0.97 

 

 

5.4.3.2. Comparison of crop yields in the climate period 3 (2070-2099)   

Figure 5.9 shows simulated crop yields for each topographical position and management 

treatment in the period 3 (years 2070 to 2099). Comparison of projected crop yields across 

management treatments showed significantly lower yields in treatment T4 compare to treatments 

T1 and T3 for all three crops. Surprisingly, no yield differences were found between treatments 

T1 and T3 in soybean and wheat, indicating that T3 is an attractive option of agricultural 

management to reduce the impact produced by conventional systems without losing significant 

amounts of cash crop. Comparison of projected yields across topographical positions is crop 

specific. In corn, slope and summit positions produce considerably lower yields compare to the 
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depression position in the treatment T4. In soybean, significantly lower yields were observed in 

slope position across all management treatments. In wheat, lower yields were observed in slope 

and summit positions compare to depression for the treatment T4; and lower yields were 

obtained in the slopes of treatment T1. Higher drought and nitrogen stress explain the significant 

losses in crop yields in summit and slope positions; therefore I consider that conservation 

strategies can be implemented in these areas to mitigate this negative effect. These results 

indicate that both management treatment and topographical position will play an important effect 

on future crop yields, therefore they should be considered during the definition of mitigation 

strategies for climate change. 
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Figure 5.9. Future simulated yields by topographic position and management treatment in a) corn, b) soybean, and c) wheat. Mean 

separation is based on Tukey’s HSD (α=0.05). Upper-case letters compare management treatments within a particular topographic 

position. Lower-case letter compare topographic positions within a particular management treatment. 
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5.5. Conclusions 

The crop simulation model SALUS have been proved to be an optimal tool to reproduce 

point estimates of crop yields at diverse topographical conditions and agricultural management 

systems in Southwest, Michigan. Moreover, I demonstrated that predictions obtained from the 

simulations are good enough to represent the variability within agronomical treatments and 

topographical positions. Treatment yield differences observed in simulated experiments matched 

closely the differences observed in the real experiments. Therefore, I conclude that predicted 

yields obtained from simulation models can be used to analyze differences between management 

treatments and topographical positions under future climates.  

Projections of crop performance under 100 years of future climate scenarios showed a 

significant decline in corn yields, in particular for the organic-based management; whereas 

soybean and wheat yields slightly increased. Increased temperatures and higher nitrogen stress 

explained the decline in corn yields. Higher temperatures in the late-half of the century will 

reduce the life cycle of corn causing reductions in grain yield. Increased nitrogen stress in corn 

was particularly observed in the organic-based management for corn, therefore explaining the 

larger decline in this treatment. Increased atmospheric CO2 explained the yield increase observed 

in the C3 crops (soybean and wheat) which respond positively to CO2 fertilization. However, 

drought stress in the last third of the century negatively impact soybean yields in slope positions; 

whereas nitrogen stress impact negatively wheat yields after the year 2037 particularly in the 

organic-based treatments. Mitigation strategies for corn will require the developing of new 

materials matching the new short growing season and improving management of nitrogen.  
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Chapter 6: Conclusions 

 

Assessing cover crop biomass across the landscape was required to study the effect of 

cover crops in agricultural ecosystems. Red clover biomass was derived fast and inexpensively 

from the Normalized Difference Vegetative Index (NDVI). I demonstrated that NDVI is a 

reliable source for predicting red clover biomass across the field landscape. The nonlinear 

relationship between NDVI and biomass was adequately represented by the Richards function. 

Moreover, the best model fit was found with the Richard function after accommodating the non-

constant variance observed in the residuals. From a practitioners’ perspective these results 

indicate that addressing heteroscedasticity using a functional variance can improve model fit and 

predictions of red clover biomass. These predictions and associated uncertainty are critical data 

products that will ultimately help to quantify the effects of cover crop biomass on main crop 

yields. In addition, I showed that nonlinear hierarchical models are an interesting alternative to 

model different sources of variability. Future investigations of cover crop effect in agricultural 

systems can take advantage of this approach to include experimental factors in their statistical 

models. I encourage the use of hierarchical structures whenever field variability is relevant, 

particularly for experiments that include fields from different environmental and soil conditions.  

Since my main objective was to relate topography with red clover biomass and corn 

yields, I studied these relationships at different geographical scales. My results indicated that the 

strength of the relationship between topography and biomass varied with the scale of 

geographical derivation. Changes in the strength of the relationship were explained by the 

change of information across geographical scale. For example, curvature, flow accumulation and 

flow length were more affected by the scale of derivation than relative elevation, slope and the 
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potential solar radiation index. As a result, relative elevation, slope and potential solar radiation 

were significant predictors for biomass at most studied scales; while flow accumulation, 

curvature, and flow length were significant predictors for biomass mainly at large scales. I 

concluded that predictive models that use topographic attributes will be most accurate when used 

at the optimal scales. In my study, I showed that increasing the scale tended to increase the 

strength of the relationship. For example, the scales 20 and 40 m led to the regression models 

with better prediction performance across most of the studied fields. Therefore, I conclude that 

using the original DEM for analyzing the relationships between topography and cover crop 

biomass, may not always be appropriate, since not all possible associations with topographic 

attributes are depicted at the smallest scale. Thus, prior to developing predictive regression 

models I recommend exploring the relationships between topography and biophysical variables 

of interest at a range of scales. For future works, a good starting point is to evaluate the 

topographic “complexity” of the area since it brings indication of where filtering is most needed. 

Topographic “complexity” can be assessed by using the loading values of principal components, 

and the semivariogram parameters of the topographic and studied biophysical variables. For 

example, I showed that partial sill and nugget/sill ratios in terrain slope semivariograms are good 

indicators of the optimal derivation scale. 

The previous conclusions regarding biomass prediction and identification of optimal 

scale for derivation were the basis for studying the effect of red clover biomass on crop yields in 

fields with diverse terrain. I derived red clover biomass and topographic attributes maps at the 

optimal scale to study the multiple relationships between topography, red clover biomass, and 

corn yields. I showed that topography has significant effect on red clover biomass and corn 

yields; in particular, attributes associated with water accumulation and water availability played 
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an important role in corn production under dry conditions, whereas attributes related to drainage 

and water re-distribution played a more important role under wet conditions. I also showed that 

red clover biomass had a positive effect on corn yield, but, the magnitude of that effect varied 

temporally and spatially. For example, the positive effect of red clover was significant only in 

the years with average precipitation, and the magnitude of this effect was clearly more 

pronounced in summit and slope than in depression positions. Since the independent effect of red 

clover biomass on corn performance was more pronounced on slopes and summits, I conclude 

that it is worth the effort to ensure a good cover crop stand on summit and slope areas, because 

this is where it can be most beneficial to the subsequent cash crop. Efforts to increase red clover 

biomass in summit and slope positions supported gains in corn yield, helping to reduce the gap in 

corn yields between unfavorable (summit and slopes) and favorable (depression) areas. This 

study also shows that using hierarchical structures to account for the variability within 

experimental factors, in particular for field and year effects, considerably improved the model fit 

and my understanding of the agricultural ecosystems. Therefore, I encourage the use of 

hierarchical models to include different sources of variability when analyzing the relationships 

between topography, red clover, and corn yield. 

The newly generated knowledge about the studied agricultural ecosystems was used to 

simulated crop production in current and future climate scenarios. I showed that simulated values 

closely represent the variability observed within agronomical treatments and topographical 

positions. Therefore, I conclude that predicted yields obtained from simulation models can be 

used to analyze differences between management treatments and topographical positions under 

future climates. Projections of crop performance under future climate scenarios showed a general 

decline in corn yields; while soybean and wheat yields slightly increased. I demonstrated that 
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increased temperatures and higher nitrogen stress explained the decline in future corn yields. 

Therefore, potential strategies for corn will require the development of new genetic materials and 

improving management of nitrogen. On the other hand, increased atmospheric CO2 explained the 

general increase in yields observed in soybean and wheat. However, drought stress in the last 

third of the century negatively impact soybean yields in slope positions; whereas nitrogen stress 

impact negatively wheat yields particularly in the organic-based treatments.  

This study contributes to understand the multiple interactions between agricultural 

management systems and topography. I showed that the use of cover crops substantially 

contribute to the performance of the following cash crop. It is important to highlight the fact that 

agricultural systems are dynamic in space and time; therefore the effect of cover crop biomass 

varied spatially and temporal. Moreover, the potential impact of conservation agricultural 

practices (i.e. use of cover crops) may depend on the particular landscape position, weather 

conditions, and management system. I showed that slope and summit positions will benefit the 

most by the use cover crop practices. This potential effect will be even more important under the 

future climate. For example, crops like corn and wheat will benefit from practices that aim the 

maintaining or enhancing of nitrogen levels in the soils. On the other hand, crops like soybean 

will benefit from practices that improve water storage to mitigate water stress. The use of cover 

crops will certainly contribute to mitigate these sources of stress.   

 


