V-

11



50\

_LIBRARY
Miehigan State
University

——— e ———— e
—

This is to certify that the

dissertation entitled

THREE ESSAYS ON ECONOMETRICS

presented by

CHIROK HAN

has been accepted towards fulfillment
of the requirements for

Ph.D.  gegreein _ ECONOMICS

o SO J—

Major professor

Date_ JUNE 14, 2001

MSU is an Affirmative Action/Equal Opportunity Institution 0-12T1



PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

ZPR T 0 2006

601 C/CIRC/DateDue.p65-p.15



THREE ESSAYS ON ECONOMETRICS
By

Chirok Han

AN ABSTRACT OF A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Economics

2001

Professor Peter J. Schmidt



ABSTRACT

THREE ESSAYS ON ECONOMETRICS
By

Chirok Han

This dissertation contains three unrelated essays in econometric theory.

The first chapter considers Generalized Method of Moment-type estimators for which
a criterion function is minimized that is not the “standard” quadratic distance measure,
but instead is a general Ly distance measure. It is shown that the resulting estimators are
root-n consistent, but not in general asymptotically normally distributed, and we derive the
limit distribution of these estimators. In addition, we prove that it is not possible to obtain
estimators that are more efficient than the “usual” Ly-GMM estimators by considering
Lp-GMM estimators. We also consider the issue of the choice of the weight matrix for
Lp-GMM estimators.

The second chapter is concerned with the asymptotic properties of the instrumental
variable estimators with irrelevant instruments. The estimator is neither consistent nor
asymptotically normal, but converges in distribution to a random variable which depends
on the covariance of the regressors and the error term. The density of the asymptotic
distribution is calculated and it is shown that the mean of the asymptotic distribution is
equal to the probability limit of the OLS estimator.

The last chapter is an extension of Ahn, Lee and Schmidt (2001) to allow a parametric
function for time-varying coefficients on the individual effects. It is shown that the main
results of Ahn, Lee and Schmidt (2001) hold for our model, too. Least squares is consistent,

given white noise errors, but less efficient than a GMM estimator.
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Chapter 1
The Properties of L,—~GMM Estimators

1.1 Introduction

Since Lars Peter Hansen’s (1982) original formulation, Generalized Method of Moment
(GMM) estimation has become an extremely important and popular estimation technique in
economics. This is due to the fact that economic theory usually implies moment conditions
that are exploited in the GMM technique, while typically economic theory is uninformative
about the exact stochastic structure of economic processes. GMM estimation provides an
estimator when a certain set of moment conditions Fg(y,6y) = 0 is a priori known to
hold. When the number of moment conditions exceeds the number of parameters, we
cannot hope to obtain an estimator by setting the empirical equivalent §(f) of our moment
condition equal to zero, but instead we will need to make §(6) as close to zero as possible in
some sense. The usual GMM formulation minimizes a quadratic measurement of distance.
Hansen (1982) established the large sample properties of these GMM estimators under mild
regularity conditions.

The above exposition raises the natural questions of what happens if distance measures
other than a quadratic one is used and whether or not those other distance measures can give
better estimators. The answer to the latter question is no, as Chamberlain (1987) has shown

that the optimal GMM (in the usual sense) estimators attain the efficiency bound. Apart



from this general remark on the efficiency of optimal GMM estimators, there have been at-
tempts such as Manski (1983) and Newey (1988) to directly treat the use of non-quadratic
measures of distance between population and empirical moments. In those articles results
are stated that imply that under mild assumptions, estimators that minimize a general dis-
crepancy function are consistent and asymptotically normally distributed. Based on these
results, Newey (1988) concludes that (under regularity conditions) estimators using two
different measures of distance are asymptotically equivalent if the corresponding Hessian
matrices are asymptotically equal. This implies that it is impossible to obtain better esti-
mators by modifying the quadratic criterion function, given the assumptions of that paper.
This conclusion gives a direct argument for the use of quadratic distance measure beside
Chamberlain’s general argument.

However, when considering L,-GMM as defined below, it turns out that only the Lo
norm satisfies the assumptions of Manski (1983) and Newey (1988), and other values of
p in [1,00) do not. The problems are the following. When p = 1, the L, norm is not
differentiable at 0; when p € (1,2), it is continuously differentiable but is not twice dif-
ferentiable at 0; when p € (2, 00), it is continuously twice differentiable, but the Hessian
matrix evaluated at the true parameter becomes zero (and therefore singular). Therefore,
the papers by Newey and Manski have no implications for L,-GMM for values of p other
than 2. When considering L,-GMM, it turns out that the “standard” asymptotic framework
will fail. Also, the least absolute deviations type asymptotic framework also does not di-
rectly apply. Linton (1999) has recently pointed out in an example in Econometric Theory
that the estimator minimizing the L; distance of the sample moments from zero can have
a non-normal limit distribution. In this chapter, we will establish the limit distribution of
general L,-GMM estimators, and we show that L,-GMM estimators are root-n consistent,

but in general need not have an asymptotically normal distribution. In addition, we prove



a theorem that shows that L,-GMM estimators cannot be more efficient than Ly-GMM
estimators, thereby strengthening Newey’s conclusion to L,-GMM estimators. Finally, we
discuss the problem of ﬁnding. the optimal weight matrix for L,-GMM estimators.
Section 1.2 defines our estimator and gives the main theorem for consistency and
asymptotic distribution, whose proof is given in the Mathematical Appendix (Section 1.A).
Section 1.3 discusses the efficiency of Ly-GMM among all L,-GMM estimators. Section
1.4 describes the problem of the selection of the weight matrix. In addition, this section
gives some interesting results for the case when p = 1 and p = 3, including Linton’s (1999)
example. The conclusions section (Section 1.5) is followed by a Mathematical Appendix

in which all the proofs are gathered.

1.2 Main theorem

In this section, the main result of this chapter on which the remainder of our discussion of
this chapter is based will be stated. Let y1, y2, . . . be a sequence of i.i.d. random vectors in
R™. Let g(y;, 0) be a set of ¢ moment conditions with parameter § ¢ © C R*, that is, let

9(y;, 0) be a random vector in R? that satisfies
Eg(y;,0p) = 0. (1.1)

Let §(6) = n=1 -7, g(y;,6). The Ly norm || - ||y is defined as

q
lellp = O la; )M (12)

j=1

for p € [1,00). The L,-GMM estimator 0,, is assumed to satisfy
§(6n)|lp = inf l3(0)]l,. .
5(6n)llp = inf 1l3(6)llp (1.3)

Let ‘1| = max; j I:J:”] if £ is a k; x kg matrix. Let Q= Eg(yi,O())g(yi,Bo)’, and D =

E(0/08")g(y;, 8g). The regularity assumption below will be needed to establish our results:



Assumption 1.1.
(i) © is a compact and convex subset in Rk ;
(i1) Qg isan interior point of ©;
(iii) Eg(y;,0) = 0 iff @ = 6y, i.e., 0y uniquely satisfies the moment conditions;
(iv) g(y,0) is continuous in 6 for each y € R™, and is measurable for each § € O;
(v) Esupgee |g(ys, 0)] < oo;
i) Q= Eg(y;,60)9(yi,00)" is finite;

(vii) g(y, 0) has first derivative with respect to § which is continuous in § € O for each
y € R™ and measurable for each § € ©, E supgcg |(8/06)g(y;,0)| < oo, and D

is of full column rank.
(viii) ||z + DE||p achieves its minimum at a unique point of € in R for each x € RY.

Note that part (viii) of Assumption 1.1 is nonstandard and far from innocent in the L; case.
Consider for example sequences of random variables ;3 and ;9 that are independent of

each other and are N (0, 1) distributed, and consider the L,-GMM estimator that minimizes
1 — 6] + |2 = 0. (1.4)

Part (viii) of Assumption 1.1 will not hold in this case, because any value in the interval
[min(gy, ¥), max(y, J2)] will minimize the criterion function. Therefore, our result does
not establish the limit distribution of the Ly-GMM estimator for this case. However, if we

consider the weighted criterion function

g1 — 6 + c|ga — 0] (1.5)



for any ¢ € [0, 00) except for ¢ = 1, part (viii) of Assumption 1.1 will be satisfied.
The following theorem now summarizes the asymptotic properties of L,-GMM esti-
mators. Note that we do not yet explicitly consider weight matrices at this point, but such

a treatment can be easily done with the result below at hand.

Theorem 1.2. Let Y be a random vector in R? distributed N (0, 2). Then under Assump-
tion 1.1, 8, — 0g a.s., and
nl/2(6,, — 65) LN argmin ||Y" + DE||p. (1.6)
£ERK
The proof of this theorem, like all the proofs of this chapter, can be found in the Appendix
(Section 1.A). As a special case of the above theorem, the usual Lo-GMM estimator can
be considered. ||Y + DE||3 = (Y + D¢)'(Y + D¢) is minimized by £ = —(D'D)~'D'Y,

so applying Theorem 1.2, we get
nY2(6, — 6) % —(D'D)~LD'Y ~ Nj0,(D'D)"'D'QD(D'D)"Y]  (1.7)

which coincides with usual analysis.
In examples below, we will show that for general values of p, normality need not result
for the L,-GMM estimator. We will be able to establish though that the limit distribution

is symmetric around O and possesses finite second moments.

1.3 Efficiency of L,-GMM

In this section and in the remainder of this chapter, we consider L,-GMM estimation with
a weight matrix W, i.e., L,-GMM estimators that minimize the distance from zero of
“weighted” average of moment conditions | W g(6)(|p, where W is a ¢ x ¢ nonrandom and
nonsingular matrix. It is straightforward to extend our analysis to the case of estimated

matrices W, and we will not pursue that issue here. Clearly, whenever Eg(y;, 0g) = 0 we



will have EW g(y;,6p) = 0, and therefore our previous analysis applies. Below, we will
keep using the notations Y, D, and {2 defined previously.

Let £ minimize |W(Y + D&)||p- Applying Theorem 1.2, we see that 0y, which mini-
mizes ||Wg(80)||p. is strongly consistent (since W g(y;, 6p) is also a set of legitimate moment
conditions) and n}/2(6,, — 6;) LR £.

To facilitate the efficiency discussion, we need to show asymptotic unbiasedness of Lp-
GMM estimators. This is established by noting that the limiting distribution of nt/ 2(9n -

fp) is symmetric and has a finite second moment. The following theorem states the unbi-

asedness result:

Theorem 1.3. Under Assumption 1.1, L,,-GMM estimators are asymptotically unbiased.

Because of the asymptotic unbiasedness of our estimators, we can compare weighted L-
GMM estimators by their asymptotic variances. This property is crucial to prove the fol-
lowing theorem. This result states that optimal Lo-GMM estimators are asymptotically

efficient among the class of weighted L,-GMM estimators.

Theorem 1.4. Under Assumption 1.1, an optimal Lo-GMM estimator is asymptotically
efficient among the class of weighted L,-GMM estimators, i.e., the asymptotic variance

of an optimal Lo-GMM estimator is less than or equal to that of any weighted L,-GMM

estimator.

The above theorem provides us with the knowledge that the central message from the result
by Newey (1988)—that there is no potential for efficiency improvement by considering
discrepancy functions other than quadratic—can be extended towards L,-GMM estimators.
Basically, Theorem 1.4 is obtained by noting that the expression for the limit distribution
can be viewed as a finite sample estimation problem in its own right, for which the Cramér-

Rao underbound applies.



1.4 Further remarks on weight matrices

In this section, we will discuss various issueé involving the choice of the weight matrix
W and discuss several examples. We will not be able to prove optimality of a particular
nonsingular weight matrix for general L,-GMM, but instead we will sketch some of the
issues below.

It is well-known that the optimal weight matrix W for p = 2 satisfies WQW’' = I (or

W'W = Q~1). This result can be easily obtained using our first theorem too, for

W (Y + D)3 = (Y + DEYW'W (Y + De) (1.8)
is minimized by
£=—-(DWWD) ' DWWy (1.9)

and its variance is minimized when W'W = Q™. Therefore the optimal Lo-GMM esti-

mator has the asymptotic distribution
n12(6, - 60) % Njo, (D'Q"1D)71). (1.10)

Can this efficiency be attained for p other than 2?7 In general, the answer is yes. It can be

achieved for general p by weighting cleverly. Consider
W*=@Q7'D ¢ Wy (1.11)

where Wy is of size ¢ x (g — k), chosen to be orthogonal to D, i.e., W3 D = 0 and chosen

such that W* is nonsingular. This weight matrix always exists when g > &.! Then

p
i D'Q~ (Y + D¢)
|W*(Y + D¢)||h = ,
WY + D9 /|
'This weight matrix needs W;D = 0 and |W*| # 0, so there are (g — k) + 1 restrictions. But
W?* has q(q — k) free parameters. The number of parameters is greater than or equal to the number
of restrictions when q > k.




= || D'Q~y + D'Q " De|h + Wiy b (1.12)

is minimized by £ = —(D'Q™1D)~1D'Q-1y ~ N[0,(D'Q?~1D)~1] for any p > 1. So
the W*-weighted L,-GMM estimator 6,, with W* chosen as in Equation (1.11) has the
asymptotic distribution (1.10), and therefore the weight matrix W* is optimal for any p.
For p = 2, there are two different types of optimal weights. One is given by (1.11)
(say, D' 1 type) and the other is characterized by WQW' = I (note that a scalar mul-
tiplication of an optimal weight matrix is again optimal). In general, each of these neither
implies nor is implied by the other, but they give one and the same asymptotic distribution.
Furthermore, the optimal weight of the second type is not unique, since any orthogonal
transformation of an optimal weight is again optimal. (When WQW' = [,V = HW
also satisfies VQV' = I provided H'H = HH' = I.) This is, of course, because the

W -weighted Lq distance ||W |2 = (z/W'W x)1/2 depends only on the product W'W but

not W itself.
But when p # 2, two different orthogonal transformations W and V' of Q~1/2 are not
expected to give equivalent asymptotic distribution, even though both WQW’ = [ and

VQV' = I hold. Here are a few examples.

(i) Our first example is for p = 1, ¢ = 2, and k = 1. Suppose that it is known that
(Y13, y9;) is i.i.d. across i with mean (6, 26)) and covariance /. Then the moment
condition is E(y1; — 0p, yo; — 26p)’ = 0, and therefore D = —(1 2)’,and Q = 1.

Consider two weight matrices: W = I and

V=— . 1.13
V3 (1.13)

It can be seen that V' is an optimal weight matrix here for p € [1, oc), since the same

limit distribution as for optimal Lo-GMM is obtained using V. In the case W = [,



the W-weighted L1-GMM estimator can be obtained by minimizing the criterion
function

ly1 — 6] + |y2 — 26}, (1.14)
and the minimizer equals (1/2)g3. This implies that the rescaled and centered W -
&eighted L1-GMM estimator is asymptotically distributed as N(0, 1/4), while the
rescaled and centered V-weighted Lp-GMM estimator is asymptotically distributed

N(0,1/5).

(i) Here is a more interesting example forp = 1, ¢ = 3, and k = 1. Suppose that yy;, y2;
and ys; are mutually independent and i.i.d. across 7, have a mean 6, and a variance

of 1. Then, the moment condition is

E(y1; — 60, y2; — 80, y3i — 6p)' =0,

implying that D = —(1,1,1)" and Q = I. Consider the two weight matrices W = [

and

V3 V3 1V3
V=1 190 1/V2 -1/v2]|- (1.15)
—V2/3 1/V6 1/V6

Again, V' can be shown to be an optimal weight matrix in this example. In the case

of W = I, this situation could result when we are minimizing the criterion function
ly1 — 0] + g2 — 6] + |y3 — 0. (1.16)

Note that both W and V" are chosen to be orthogonal. The W -weighted Lj-GMM es-
timator (after centering and scaling) converges in distribution to argming || N (0, I3)+
D¢||1. The minimizing argument €, which is the (unique) median of three indepen-

dent standard normal random variables, has distribution

PE<z)=6 /I ®(t)[1 — (t)](t)dt = ®()%[3 — 28(x)] (1.17)

J =00



(see Linton (1999)). This distribution is not normal, and simulations for three stan-
dard normals illustrate that the density of the median has sharper center and thicker
tail than a (properly rescaled) normal (N (0, 2/3)). The result of using V" as the weight
matrix is different. We have VD = (—v/3 0 0) and the V-weighted L;-GMM
estimator (after centering and scaling) converges in distribution to argming{||Z +
VD€L = |21 — V3E| + | Za| + | Z3]} where Z = (Z1, Zo, Z3)" ~ N(0,I). Note
that basically, this optimal weight matrix will eliminate two out of three absolute
value elements of the criterion function of Equation (1.16). The solution £ is dis-
tributed N(0,1/3). This example shows that two weight matrices W and V' that
satisfy WQW' = I and VQV’ = [ can give asymptotics different not only in vari-
ance but in the type of limit distribution, since the one distribution is non-normal,

while the other is normal.

(iti) The only tractable example for p > 2 that we could find is the following. Consider
the above case of ¢ = 3,k = 1,2 = I,and D = —(1 1 1)’. The weight matrix V/
of (1.15) is again optimal and the V' -weighted L3-GMM estimator is asymptotically
normal. In the case when the weight is W = I so the objective function to be
minimized is

1 — 01 + o2 = 61° + Iy — 617, (1.18)
the W-weighted L3-GMM estimator (after centering and rescaling) converges in dis-
tribution to £ = argming ||[Y + DE||3 where Y = (Y1,Ys,Y3) ~ N(0,1I3). Let
(Y(l), }’(2), Y(3)) be the order statistic of (Y1, Y2, Y3), and (6(1), (5(2), (5(3)) be the or-

der statistic of (|Y7 — Y3/, |Y2 — Y3/, |¥3 — Y1|). Then it turns out that

£ = Y+ sgn(Y{1) + Y(3) — 2¥(9))[(2/3)(4(3) + d(2)) - (26(3)6(2))1/2]

= Yig) —sgn(¥y) + Yz — 2Y(2))l6(3) — (263)52))"/] (1.19)

10



where sgn(a) = 1{a > 0} — 1{a < 0} and Y = (Y1 + Y5 + Y3)/3. In simulations,

this distribution cannot be distinguished from a normal.

The natufa] question now arises whether we can get optimality by a nonsingular weight
matrix W satisfying WQW’ = I. In short, the answer is yes provided D'Q2~1D equals a
scalar or a scalar matrix (a scalar times the identity matrix). The question here is whether
we can construct (Q71D i Wy)' (where WjD = 0) by an orthogonal transformation
of Q~1/2, that is, whether there exists an orthogonal matrix H of size ¢ x q such that
HQ™1/2 = \(Q™1D  W,) and WD = 0. If such a weight matrix H is exist, it will have
the form H = )\(Q"l/zD 91/2W2)’ for which (a) W2'D = 0, (b) H is nonsingular, i.e.,
|H| #0,and (c) HH' = I, i.e.,
D'QID  D'w, I 0
HH' = )\? = : (1.20)
WD WyQW 0 I
(a) imposes (g — 1)k restrictions, and (b) imposes 1 extra restriction. When k = 1, (c)
is equivalent to WjQW, = (D'Q~1D)I,_; due to (a), which imposes (¢ — 1)(g — 2)/2
more restrictions. Therefore, when k = 1, we have g(¢ — 1) + 1 free parameters (for W
and \)and (g — 1) + 1+ (¢ — 1)(¢ — 2)/2 = q(¢ — 1)/2 + 1 restrictions. So the number
of parameters to be set is greater than or equal to the number of restrictions, whence we
conclude that we can find W satisfying (a), (b), and (c). When k£ > 1, (c) can not be
satisfied unless D’QQ~1 D is a scalar matrix, but if D’Q~1D is so, W5 and ) satisfying (a),
(b), and (c) can be found. The V matrices in the examples above are constructed in this
way and are optimal for those problems.
Note that this rule does not depend on the specific value of p, and that the reason the
weight W satisfying WQW’ = I is optimal for p = 2 does not lie in that the optimal

weight of type D’Q2~! can be obtained by an orthogonal transformation of Q~1/2 but in

the specific properties of Lo distance.

11



1.5 Conclusion

In this chapter we derived an abstract expression for the limit distribution of estimators
which minimizes the L; distance between population moments and sample moments, as

follows:

Vn(6n — 6g) 4, argmin ||Y + D¢||p (1.21)
£ERF

where Y ~ N[0, Eg(y;,00)9(vi,6p)'] and D = E(8/86')g(y;, 6p)- This asymptotic repre-
sentation allows a generalization of the well-known GMM framework of Hansen (1982) to-
wards the L, distance. As mentioned in the introduction, Manski (1983) and Newey (1988)
generalized GMM to allow arbitrary distance (or, more generally, discrepancy) function.
But unfortunately they need the second order differentiability of the distance functions and
the nonsingularity of a Hessian matrix evaluated at true parameter. Only the Lo distance
satisfies these conditions among all L, distances.

However, our analysis can not give an explicit form for the asymptotic distribution, but
only allows the above abstract representation in terms of the argmin functional. Nonethe-
less, our method directly supports the result of Chamberlain (1987) that the optimal Lo-
GMM estimator is efficient among the class of L,-GMM estimators. Interestingly, our
analysis reduced the analysis of efficiency issues of L,-GMM estimators to the analysis of
the small sample properties of estimators minimizing the Ly, distance between Y and — D¢,
ie., argming gk [|Y + DE|lp.

As a final remark, note that it is interesting to consider potential robustness properties
of the L,-GMM procedure. The asymptotic results that were presented in this chapter
all rely on central limit theorems and existence of second moments, so in this sense, we
probably should not expect the L,-GMM method to have robustness properties of any

type. However, since the objective function in the case of L1-GMM effectively puts less

12



weight on “outlier” moments, one might expect that L;-GMM may be less vulnerable to
the inclusion of an incorrect moment condition than “standard” Lo-GMM estimators. No

attempt will be made however in this chapter to formalize this intuition.
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1.A Mathematical Appendix

In order to establish the theorems, we will need several results that will be stated as lem-
mas. Lemma 1.5 is used to prove Theorem 1.3 (the asymptotic unbiasedness of L,-GMM

estimators).

Lemma 1.5. Let a random vector Y in RY with finite q¢ have a normal distribution. Let
D be a real nonrandom matrix of size q x k (q > k) with full column rank. Then for any
p € [1,00),

¢ = argmin [|Y + D¢||p (1.22)
E€Rk

will have a well-defined finite covariance matrix.

Proof. First note that, because D’ D has full column rank under Assumption 1.1,

€€ < &D'Dé/Anin(D'D)
< (1Y + DEll2 + 1Y 112)*/Amin(D'D)
< Y + DEllp + 1V )2/ Amin( D' D)

(312)72)(2”YH11)2/)‘1712'71(D/D) (1.23)

IN

where the first inequality follows from full column rank of D, the second inequality is the

triangle inequality, the third is the inequality
: 1/ ! 1
oBYE < e h> iP)P (1.24)

which is a consequence of Loéve’s ¢, inequality (see Davidson (1994, p. 140), Equation
(9.63)), and the fourth follows by the fact that ||Y + D¢||p is minimized at £ = f . The result

then follows because all moments of the normal distribution are finite. 0O

The first step towards the proof of Theorem 1.2 is the strong consistency proof for Lp-

GMM estimators, which can be accomplished by invoking several theorems from Bierens

14



(1994).
Lemma 1.6. Under Assumption 1.1, the Lp-GMM estimator é,l is strongly consistent.

Proof. First, conditions (i) and (iv) of Assumption 1.1 ensure the existence and measurabil-
ity of On by Theorem 1.6.1 of Bierens (1994). The above conditions together with condition
(v) of Assumption 1.1 imply that g(6) converges to Eg(y;, #) almost surely uniformly on
© by Theorem 2.7.5 of Bierens (1994). Hence, ||g(0)||p = ||Eg(y;,6)||p a.s. uniformly on
O since || - ||p is continuous. Finally, this uniform convergence result and the uniqueness of
o by condition (iii) of Assumption 1.1 give the stated result by Theorem 4.2.1 of Bierens

(1994). a

To prove the main assertion of Theorem 1.2, we will use Theorem 2.7 of Kim and Pollard

(1990). We restate Kim and Pollard’s theorem as our next lemma.

Lemma 1.7. Let Q,Q1,Q2,- - - be real-valued random processes on R¥ with continuous

paths, and t:n be random vector in ]Rk, such that
(i) Q(§) — oo as [€] — ooy
(if) Q(-) achieves its minimum at a unique point in RF;
(iii) Qyp converges weakly to Q on any set = = (- M, M]k;
(iv) én = Op(1);
() &, minimizes Qn(£).
Then én i) argminéeRk Q).

Proof. See Theorem 2.7 of Kim and Pollard (1990).
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To apply Kim and Pollard’s theorem and show that its conditions are satisfied in our sit-
uation, we need the following three lemmas. For these lemmas, we need the following

definitions. Define
én=n'%(6n - 6p), forn=1,2, (1.25)
where 6, is Lp-GMM estimator. Define R?-valued random functions h, k1, h, . .. by

n!/25(00 + en=1/2), if gy + en-1/2 ¢ ©
hn(€) := (1.26)
nl/ 25(69), otherwise
where 00 = argmaxgeg ||g(0)||p, forn = 1,2,.. ., and h(€) = Y + D¢ where Y is a

R?-valued random vector distributed N (0,9). Let

Qn(é) = ”hn(f)”p and Q(§) = ”h(f)”p (1.27)
The lemmas that we need for the proof of our central result are then the following:

Lemma 1.8. Suppose the conditions of Assumption 1.1 are satisfied. Then nl/ 2(6,, — 6y) =
Op(1).
Proof. The Taylor expansion of §(6) around 8 = 6 implies that
3(6n) = §(60) + (9/96")3(6) (6 — 60), (1.28)

where 6,, is a mean value in between 0, and p. From the above Taylor series, from the
triangular inequality for the Ly norm, and from the fact that 6,, minimizes 15(0)]p, we
have

1n1/%(8/06)3(6n) 6 — 80)lp < I /25(6n) lp + I1n"/*5(60) 129

< 2/|n"3(8) -

But condition (vi) of Theorem 1.2 implies that nl/ 2§(00) converges in distribution by cen-
tral limit theorem, and therefore is Op(1). Therefore,

InY/2(8/06')3(6) (6 — 60)llp = Op(1). (1.30)
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Condition (vii) of Theorem 1.2 implies that (5/9¢") §(0) follows a strong uniform law of
large numbers, which combined with the consistency of @ implies that (8/06')5(6,,) 25
E(0/06")9(y;,89) = D. Now let D — (0/96")g(6n). Then it follows that D'D 254 p/p.
Since D'D is strictly positive definite, D’ D becomes strictly positive definite for n large

enough. Therefore, for n large enough,

~ ~ ~ A

n(fn — 00)l(0n —b) < ”(én - 00)’D,D(0n - 00)/;\mina (1.31)

where :\min is the smallest eigenvalue of D'D. Because :\,m'n LN Amin > 0 where
Amin is the smallest eigenvalue of D’ D, we get :\,m-n 2 0.5Amin eventually (for n large
enough) almost surely. Therefore, as n increases, the right hand side of (1.31) eventually
becomes less than 4n (6, — 6y)' D’ D(b, - 60)/ Amin- By Equation (1.30) and because of
the equivalence of Lp and Ly norms for p,q € [1,00), this expression is Op(1), which

completes the proof. u

Lemma 1.9. Consider random functions Q, Q1,Q2, . . . defined by (1.27). Under Assump-
tion 1.1, the finite-dimensional distributions of Qn converge to the finite-dimensional dis-

tributions of Q.

Proof. With fixed ¢, condition (ii) of Assumption 1.1 (6 is an interior point of ©) ensures

that fy + £n—1/2 belongs to © for n large enough. When this happens, by the Taylor

expansion,
ha(€) = n'/2G(8g + en=1/2) = n1/2g(60) + (3/06')3(00 + En~ /P, (1.32)

with §~ lying in between £ and 0. Condition (vi) of Assumption 1.1 (finiteness of the second
moment of g(y;, 6p)) implies that n!/25(8;) 4, Y, and condition (vii) of Theorem 1.2

implies that (9/86)§(8p + £n~1/2)¢ — DE a.s. similar to the proof of Lemma 1.8.
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To conclude the proof and show the convergence of the finite-dimensional distributions
of hy, to h, we can use the Cramér-Wold device (see for example Billinsley (1968), Theorem

7.7), which states that

(hn(&1)" -+ hu(&))) 4, (h(&1)" - h(&)" (1.33)
if and only if
3" Miha(€)) 25 3 Xin(g) (1.34)
i=1 =1

foreach A\ € R?,..., A, € R?. And (1.34) is to be easily shown using the result of the
first part of this proof.
Finally, note that since || - || is continuous, the finite-dimensional distribution of @, =

l|hn||p converge to those of @) = ||h||,, by the continuous mapping theorem. a

Lemma 1.10. Under Assumption 1.1, Qy,(.) defined by Equation (1.27) is stochastically

equicontinuous on any set = = [—- M, M]¥.

Proof. Using the triangular inequality for || - ||, we have

|Qn(€1) — Qul&)|
= | |hn(€)llp = l1hn(&)1lp|

< [hn(&1) — ha(&2)llp

= 11(2/06")g(80 + Exn~2)er — (0/00")5(8p + Ean”AVEall,  (135)

where ¢; lies in between &; and O for = = 1, 2. By the strong uniform law of large numbers

for (8/86')g(6) and the convergence to zero of £;n~1/2 uniformly over all £; and &5,

sup 1Qn(£1) — Qn(&2)] == sup D& — &2)llp (1.36)
§1€5,|€1-&|<6 £1ES, &1 —&|<é
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under the conditions of Assumption 1.1. Therefore, by nonsingularity of D'D, it follows

that forallnp > 0

lim lim sup P( sup lQn(fl) - Qn(&)l > 71) =0, (1.37)
020 nooo  ¢1€Z,|€~6o|<d

which is the stochastic equicontinuity condition. a

Proof of Theorem 1.2. The strong consistency result of this theorem is proven in Lemma
1.6. For the proof of the main assertion of this theorem, we will show that for the Q,, @
and fn as defined above, all the conditions of Lemma 1.7 are implied by the conditions
of Theorem 1.2. First, note that ), @), and én, defined by (1.25) and (1.27), satisfy
conditions (i)—(v) of Lemma 1.7 under the conditions of Theorem 1.2. Condition (v) of
Lemma 1.7 is guaranteed by the definitions of O, &, and Qn. It is also not difficult
to notice that condition (i) of Lemma 1.7 is trivially satisfied since D is of full column
rank. And condition (ii) of Lemma 1.7 is just supposed by condition (viii) of Theorem
1.2. The weak convergence condition is verified by showing stochastic equicontinuity and
finite-dimensional convergence, which together with compactness of the parameter space
is well-known to imply weak convergence. Lemmas 1.8, 1.9, and 1.10 therefore ensure that
the conditions of Lemma 1.7 are all implied by the conditions of Theorem 1.2, and therefore

convergence in distribution of our estimator is proven by invoking Lemma 1.7. O

Proof of Theorem 1.3. By Lemma 1.5, f has a finite mean. And by Theorem 1.2, nl/ 2(9,, —
60) % & = argming [|Y + De]|, where Y ~ N(0,%2) and D = E(8/90')(y;, 0). From
the symmetry of Y/, it follows that ||Y + D¢||, is distributed identically to ||Y + D(—&)|,,

which implies identical distributions of £ and —€. Therefore, the mean of £ is 0. 0
Proof of Theorem 1.4. Let @, be the W-weighted L,-GMM estimator. By Theorem 1.2,

226, — 65) %5 argmin [|W(Y + DE)|lp. (1.38)
¢
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So the problem here is to show that £, = argming 19-1/2(y + D¢ )|l2 has smaller vari-
ance than any other fp = argming [W(Y + DE)||p. Now, let us view the minimization
problem ming ||Y" + D¢|| as generating estimators fp of the unknown parameter £, where
Y ~ N(—D¢, ) with known Q. The result of Theorem 1.3 now states that all L,-GMM
estimators will be asymptotically unbiased, and the argument can be easily extended to
show global unbiasedness of fp for £ (as required for the application of the Cramér-Rao

lower variance bound). The likelihood function
L(Y,D;€) = (2m)" 920" 2exp{-(1/2)(Y + DE)'Q7I(Y + Dg)}  (1.39)

satisfies all the required regularity conditions for Cramér-Rao inequality (see Theil (1971),
p-384). And it now follows that the asymptotic distribution of the optimal Lo-GMM esti-
mator

argmin |Q"Y2(Y + D¢)||p = —-(D'Q" D)~ 1Dy (1.40)
EERF

attains the Cramér-Rao variance lower bound of (D’QQ"1D)~1, since it equals the maxi-

mum likelihood estimator. The result then follows. O
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Chapter 2

The Asymptotic Distribution of the
Instrumental Variable Estimators When
the Instruments Are Not Correlated
with the Regressors

2.1 Introduction

A number of recent papers, including Bound, Jaeger and Baker (1995) and Staiger and
Stock (1997), have considered instrumental variable (IV) estimators when the instruments
are weak, in the sense that the correlation between the instruments and the regressors is low.
In this chapter, we consider the extreme case that the instruments are completely irrelevant.
In this case we can prove the following interesting result: the mean of the asymptotic
distribution of the IV estimator is the same as the probability limit of the OLS estimator.
Thus, as might be expected, irrelevant instruments do not remove the least squares bias.

To be specific, consider the linear model y = X + ¢ (in matrix notation) where ¢ is a
T x 1 random vector with mean zero, X is aT x K random matrix of regressors, and § is
a K x 1 parameter. It is well known that when X} is correlated with ¢;, the ordinary least
squares (OLS) estimator is not consistent. More specifically, under the regularity conditions
that ensure the convergence of the statistics T~1 X’ X and T~! Xe in probability, the OLS

estimator converges in probability as T — oo to Bp+ (E X X;) ~1E Xy¢;, which is different
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from fy, the true parameter, unless E X, ter = 0.

To obtain a consistent estimator, one possibility is instrumental variable estimation.

Good instruments Z (T x L) are those which satisfy:
o) T-17'z converges in probability to a nonrandom, nonsingular matrix;
(i) T-12'x converges in probability to a nonrandom matrix with full column rank;
(i) T-1/27'¢ converges in distribution to a normal random vector with zero mean.

When the instruments are good, the IV estimator is consistent and asymptotically normal.
Here we are concerned with the case that condition (ii) fails. Suppose that L > K, so
that there are enough instruments, but the instruments (Z2) are not strongly correlated with

the regressors (X ). Specifically, let the reduced form for X be:
X=ZI1+V. (2.1

Staiger and Stock (1997) consider the case that [T = Iy = C/VT,withCal x K
matrix of constants. They call this the case of weak instruments. In this case the correlation
between X; and Z; is of order T~/ 2 and condition (i7) fails. Staiger and Stock show
that with weak instruments 1/, the IV estimator, does not have a probability limit but
rather /3 1v — Bp converges to a non-normal random variable. The mean of the asymptotic
distribution of 37y, — [ is non-zero, so that with weak instruments there is asymptotic
bias. This bias is in the same direction as the bias of OLS.

In this chapter we consider the case of irrelevant instruments, which are uncorrelated
with the regressors. This is a special case of Staiger and Stock, corresponding to C' = 0
so that IT = 0 in the reduced form (2.1) for all T. In this case we show that the mean of

the asymptotic distribution of (871 — f) is the same as (plim So 15 — fo), the asymptotic

bias of the OLS estimator.
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2.2 The limit distribution

Consider a linear model in matrix notation
y=X°B+Wry+e (2.2)

where y and X° are respectively a T'x 1 vector of dependent variables and a 7' x K matrix of
the endogenous regressors, W is a T x G matrix of €xogenous regressors, the first column
of which is a vector of ones, ¢ is the vector of errors, and 3 and v are the parameters to be
estimated.

Consider a T' x L random matrix Z° of “instruments.” For any matrix A with full
column rank, let Py = A(A’A)"1A". Let X = (I - Pyy)X°and Z = (I — Py)Z°. Thus
X is the part of the endogenous regressors not explained by the exogenous regressors, and

similarly Z is the part of the “instruments” not explained by the exogenous regressors.

We make the following “high level” assumptions.

Assumption 2.1. T~1X'X, T~1¢'c, and T~12'Z converge in probability to finite, non-

. . — / .
random, nonsingular matrices, and T~1 X' converges to a nonrandom matrix.

Let ¥ = plimT~1(X,¢)/(X,e). It has submatrices Ty y. L xe, and oge, which are
the probability limits of T-1X'X, T-1X’e, and T~ 1¢’e, respectively. Also let Q =
plimT~12'Z. Assumption 2.1 can be regarded as the implication of a law of large num-
bers under more primitive assumptions on the sequences. For example, when the sequence
(et, X7, Z2") is ii.d. and its second moment exists, Ly x = EX X' — EX;W] -
(EW,W!)" 1 EW,XS", Sx. = EX0ey — EXWI(EWsW)) " \EW,e, = EX{ey, 0ce =
Ec,and Q = EZZ' — EZW](EWW]) ' EW,Z;".

Let p = 2}%22 Xsa;gl/ 2 which is a multivariate correlation coefficient. A key as-

sumption is the irrelevance of Z as instruments for X, as follows:
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. - d
Assumption 2.2. T 1/2Z’(X, €) — 91/2(62}(//2\,, 770515/2) where vec(&,n) is a multivari-

ate centered normal with E vec(€) vec(€)' = I, Eny = I and Evec(&)f = p® I

Note that Assumption 2.2 implies 7-12'x 2, 0, which may agree with an intuitive def-
inition of irrelevant instruments. Also, this assumption can be regarded as the implication
of a central limit theorem under more primitive assumptions, as above.

Now let BIV be the estimate of 3 in equation (2.2), when estimation is by IV using

(Z°,W) as instruments. It is readily shown that
Brv — Bo=X'2(2'2)" 12’ X)X 2(2' 2)" 1 7. (2.3)

By dividing Z'Z by T', and Z'X and Z'e by T'/2, we observe that 3 1v — B is a function
pof (T~12'Z, T=1/22'X, T~1/27"¢), where ¢ : REXL x RLXK » RLX1 _, REx1 i
defined by (2, 4,b) = (A'Q~14)"14'Q 15, Obviously, ¢ is measurable and is almost
surely continuous in the limit. Here continuity is assured by the nonsingularity of the limit
of T~1Z'Z and the almost sure full column rank of the limit of T—1/22'X | Therefore, we

apply the continuous mapping theorem to get the following result.

Theorem 2.3. Under Assumptions 2.1 and 2.2,

A > ‘a—1/2 - 1/2
Brv D Pasy = fo + x4 (€€) e madl?, (2.42)
or equivalently,
° 1/2 A —1/2 d = _ / —lgl (24b)
d= EX,Y(ﬁIV — B0)0ee ' * — asy = (€€) 7.

We note that the result in (2.4a) is the same as equation (2.5) of Staiger and Stock (1997,
p.562) when C = 0 (and therefore A = 0 in (2.3a) and (2.3b)).

We now calculate the density of S(wy as follows.
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Theorem 2.4. Under Assumptions 2.1 and 2.2, the density of

asy Is
-1 —(L+1)/2
_ I p I
f(d)=Crg,L-(1-pp) K72\, q) (2.5)
pl 1 d/

where Cy¢ , = 2~ (L=D(K=1)/2 1= K/2 (g—;_1> r (L—K+1)‘1 .

~

Proof. See Appendix. O

Given K (the dimension of X;) and L (the dimension of Z;), the density depends upon
p only. As is mentioned in Phillips (1980), this density is similar to the multivariate ¢
distribution. The first moment of S(wy exists as long as L is strictly greater than K, and more
generally its integer moments exist up to the degree of over-identification. (See Phillips

(1980, p. 870).)
2.3 The relationship with the OLS estimator

We are now in a position to prove our main result.

Theorem 2.5. Suppose L > K. Then under Assumptions 2.1 and 2.2, the mean of Ba sy IS

equal to the probability limit of the OLS estimator.

Proof. We observe that the density of 5asy in (2.4b) is symmetric around p, the correlation

coefficient of the endogenous regressors and the error. Furthermore, if L > K, the mean

of Sasy exists. Therefore, if L > K, Egasy = p. Then

5 -1/2 & 1/2
E,Basy = /30 + E‘YX/ Eéasyaee/

~1/2 172
= ﬂo + 2X4Y POce (2.6)
= fp + E)—(IXEX(;‘
= plim BoLs-
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An alternative proof that does not depend on the exact form of the density of 4, sy IS as

follows. When the mean of 4,5, = (¢/¢)~1¢/ 7 exists,

E(E'e)~'e¢'n = EEe) "¢ B)e) 2.7)

by the law of iterated expectations. But since E vec(§) vec(§)', Evec(€)r', and Enn are

respectively equalto I ® I, p® I, and 1,
Enlvec(§) = () @ (I ® I)"Lvece = ¢p. (2.8)

(For the operations involved with the Kronecker product and vec operators, see Magnus
and Neudecker (1988, Ch. 2).) Hence, E (5’5)“15’11 = p. It follows that EBaSy = [y +
X Bbasyotl® = fo + £3% Sye, which is equal to the probability limit of the OLS

estimator, as in the original proof. O

2.4 Conclusion

In this chapter, we answered some questions about the IV estimator using irrelevant instru-
ments in linear models. We saw that the IV estimator is not consistent but converges to a
nondegenerate distribution which is similar to a multivariate ¢ distribution. When the num-
ber of instruments (excluding the exogenous regressors) is strictly greater than the number

of endogenous regressors, the mean of the asymptotic distribution exists and is equal to the

probability limit of the OLS estimator.
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2.A Proof of Theorem 2.4

First, observe that the rows of the L x (K + 1) matrix (£, 7) are a random sample from

I
N(0,J) where J = (p, f ). Thus, (&;m)'(&,m) has a K + 1 dimensional central Wishart
distribution with L degrees of freedom on the covariance matrix J. When L > K + 1, its

density at the point £'¢ = By, &'n = by, and n'n = by is

9(B1,bg,b3) = 2_L(K+l)/2FK+1(1Lr)'I(1 - p'p)~E/2x

: ] (2.9)
|B|2(L-K~2) exp{—§ tr J 1B}
where B = ( f,zl :3 2) and I'y, is the multivariate gamma function defined as
n .
Ln(a) = 7" D/AT] D(a - 3). (2.10)
J=1

(See Johnson and Kotz (1972, p-162).)
Following Phillips (1980), consider the one-to-one mapping v on the set of K + 1

dimensional, real, symmetric, positive definite matrices defined as

By b ( B BTl
PPN Rl N e 1 2.11)
by, bs \1,531—1 by — by By s
Then the inverse 1)~ 1 is
A Ayd
PN R BN : (2.12)
d a3 d'Ar a3 +d'Ard

whose Jacobian turns out to be |A1|. Therefore, by the change-of-variable technique, the
density of the symmetric random matrix, which is defined such that the upper-left K’ x K
diagonal block is £'¢, the lower-right 1 x 1 diagonal block is n'n — 7/€(¢'€)~1¢'n, and the

upper-right K x 1 off-diagonal block is Sasy = (£'¢)~1¢'n, evaluated at the point such that

€€ = Ay, (€)1 =d, and n'n — '€ = a3, (2.13)
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where Aj is symmetric, positive definite and ag is positive, becomes

h(A1,d,a3) = g(A1, A1d, a3 + d'A1d) - | 4]

2.14)
=2~ LKA (571 - 00" H? - Hy(A1) - Ha(ag)
where
Hi(S) = |S|E B exp{~ e ST+ (1= )L d - p)(d - )]} (215)
and
Hs(z) = x(L_K)ﬂ—lexp{—%x(l ~-op)7 1) (2.16)

The density of Sasy at d is obtained by integrating out A} (symmetric and positive
definite) and a3 (positive) from (2.14). From the definition of the I'( - ) function, the integral

of H3(ag) in (2.14) over all positive a3 is equal to
o0
| ) = 207021 - ) BB/ (L 217)
0

The integral of the matrix argumented function Hy(S) over all symmetric, positive definite
matrices is obtained from the results in James (1964). Equations (25), (26), and (28) of
James (1964, pp. 479-480) imply that for any nonsingular real symmetric K x K matrix
D,

[5 1A exp(— e SDdS = T ()]0~ 2.18)

where the integral is taken over all symmetric, positive definite K x K matrices. Thus, we

have the evaluation

Hy(S)dS = 2L+ D/2p (L3 x

S>0 (2.19)

1+ (1= pp)"Nd - p)(d—p)|"EHD/2

The desired density (2.5) is obtained by combining Equations (2.14), (2.17), and (2.19).
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Chapter 3

Estimation of a Panel Data Model with

Parametric Temporal Variation in
Individual Effects

3.1 Introduction

In this chapter we consider the model:
Yit = X:,,B + Z£7 +M()a; +e4, t=1,...,N, t=1,...,T. 3.1)

We treat T as fixed, so that “asymptotic” means as N — oo. The distinctive feature
of the model is the interaction between the time-varying parametric function A¢(6) and the
individual effect ;. We consider the case that the o; are “fixed effects,” as will be discussed
in more detail below. In this case estimation may be non-trivial due to the “incidental
parameters problem” that the number of a’s grows with sample size; see, for example,
Chamberlain (1980).

Models of this form have been proposed and used in the literature on frontier produc-
tions functions (measurement of the efficiency of production). For example, Kumbhakar
(1990) proposed the case that A\;(f) = [1 + exp(61t + 02t2)]‘1, and Battese and Coelli
(1992) proposed the case that A\;(f) = exp[—68(t — T)]. Both of these papers considered
random effects models in which ¢; is independent of X and Z. In fact, both of these papers

proposed specific (truncated normal) distributions for the «;, with estimation by maximum
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likelihood. The aim of the present chapter is to provide a fixed-effects treatment of models
of this type.
There is also a literature on the case that the A; themselves are treated as parameters.

That is, the model becomes:
yit = XpB+ Ziv+ Moy +ey, i=1,... N, t=1,...,T (3.2)

This corresponds to using a set of dummy variables for time rather than a parametric func-
tion \¢ (@), and now A¢q; is just the product of fixed time and individual effects. This model
has been considered by Kiefer (1980), Holtz-Eakin, Newey and Rosen (1988), Lee (1991),
Chamberlain (1992), Lee and Schmidt (1993) and Ahn, Lee and Schmidt (2001), among
others. Lee (1991) and Lee and Schmidt (1993) have applied this model to the frontier pro-
duction function problem, in order to avoid having to assume a specific parametric function
At(6). Another motivation for th;: model is that a fixed-effects version allows one to control
for unobservables (e.g. macro events) that are the same for each individual, but to which
different individuals may react differently.

Ahn, Lee and Schmidt (2001) establish some interesting results for the estimation of
model (3.2). A generalized method of moments (GMM) estimator of the type considered
by Holtz-Eakin, Newey and Rosen (1988) is consistent given exogeneity assumptions on
the regressors X and Z. Least squares applied to (3.2), treating the «; as fixed param-
eters, is consistent provided that the regressors are strictly exogenous and that the errors
€i¢ are white noise. The requirement of white noise errors for consistency of least squares
is unusual, and is a reflection of the incidental parameters problem. Furthermore, if the
errors are white noise, then a GMM estimator that incorporates the white noise assumption
dominates least squares, in the sense of being asymptotically more efficient. This is also

a somewhat unusual result, since in the usual linear model with normal errors, the mo-
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ment conditions implied by the white noise assumption would not add to the efficiency of
estimation.

The results of Ahn, Lee and Schmidt apply only to the case that the A; are unrestricted,
and therefore do not apply to the model (3.1). However, in this chapter we show that es-
sentially the same results do hold for the model (3.1). This enables us to use a parametric
function A\;(#), and to test the validity of this assumption, while maintaining only weak
assumptions on the ¢;. This may be very useful, especially in the frontier production func-
tion setting. Applications using unrestricted A; have yielded temporal patterns of efficiency
that seem unreasonably variable and in need of smoothing, which a parametric function can
accomplish.

The plan of the chapter is as follows. Section 3.2 restates the model and lists our
assumptions. Section 3.3 considers GMM estimation under basic exogeneity assumptions,
while Section 3.4 considers GMM when we add the conditions implied by white noise
errors. Section 3.5 considers least squares estimation and the sense in which it is dominated

by GMM. Finally, Section 3.6 contains some concluding remarks.

3.2 The model and assumptions

The model is given in equation (3.1) above. We can rewrite it in matrix form, as follows.
Lety; = (yi1,-- ., wi7)s X5 = (Xi1,..., Xy1) s, and €5 = (g1, - .., ;7)) Thus y; is T x 1,
XiisTx K,e;isT x1,Bis K x 1,v1is g x 1, and ¢ is a scalar. (In this chapter, all the
vectors are column vectors, and the data matrices are “vertically tall.”) Define a function
A:© — RT, where © is a compact subset of R?, such that A() = (A\(),..., Ap(8))".

Note that T is fixed. In matrix form, our model is:

yi = X;iB+ 102y + A0)a; +¢;, i=1,...,N. (3.3)
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A(0) must be normalized in some way such as A\(8)'A(8) = 1 or A\;(f) = 1, to rule out
trivial failure of identification arising from A\(6) = 0 or scalar multiplications of \(¢). Here
we choose the normalization A\ (f) = 1.

Let W; = (X]},..., X1, Z])’. We make the following “orthogonality” and “covari-

ance” assumptions.
Assumption 3.1 (Orthogonality). E(W/, «;)'e} = 0.
Assumption 3.2 (Covariance). E<;c’ = o2I7.

Assumption 3.1 says that ¢;; is uncorrelated with o, Z;, and Xj1, ..., X;7, and there-
fore contains an assumption of strict exogeneity of the regressors. Note that it does not re-
strict the correlation between «; and [Z;, X;1, ..., X;7], so that we are in the fixed-effects
framework. Assumption 3.2 asserts that the errors are white noise.

We also assume the following regularity conditions.
Assumption 3.3 (Regularity).
(&) (W/,04,€l) is independently and identically distributed over i;
(i1) €; has finite fourth moment, and Ec; = 0;
(iid) (Wi' , ;)" has finite nonsingular second moment matrix;
(iv) FE W'i(Z{ , @;) is of full column rank;
(v) A(8) is twice continuously differentiable in 6.

The first four of these conditions correspond to assumptions (BA.1)~(BA.4) of Ahn,
Lee and Schmidt (2001), who give some explanation. Condition (v) is new, and self-

explanatory.
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3.3 GMM under the Orthogonality Assumption

Let ujy = uy(B3,7) = yit — Xy — Ziv, and v; = wi(4,7) = (u;1,-.., 7). Since
ujr = Ae(0)a; + €54, it follows that uj; — A¢(6)uj1 = €;¢ — A¢(0)e;1, which does not depend
on «;. This is a sort of generalized within transformation to remove the individual effects.
The Orthogonality Assumption (Assumption 3.1) then implies the following moment con-
ditions:

EW;luit(3,7) = M(@)uir(3,7)] =0, t=2,...,T. (3.4)

These moment conditions can be written in matrix form, as follows. Define G() =
(= A«(0), IT_1), where A« = (Ag,...,A7)". The generalized within transformation cor-
responds to multiplication by G(6)’, and the moment conditions (3.4) can equivalently be

written as follows:
Eby;(3,7,0) = E[G(6) ui(8,7) ® W] = 0. (3.5)

(This corresponds to equation (7) of Ahn, Lee and Schmidt (2001), but looks slightly dif-
ferent because our W is a column vector whereas theirs is a row vector.) This is a set of
(T —1)(TK + g) moment conditions.

Some further analysis is needed to establish that (3.5) contains all of the moment con-
ditions implied by the Orthogonality Assumption. Let Sy yy = F I"ViWi’ s Lwa = EWiay,
and 0621 =F 012 Given the model (3.3), the Orthogonality Assumption holds if and only if

the following moment conditions hold:
Elu;(3,7) ® W; = A(0) ® Zyyq] = 0. (3.6)

We could use these moment conditions as the basis for GMM estimation. Alternatively, we
can remove the parameter Ly, by applying a nonsingular linear transformation to (3.6)

in such a way that the transformed set of moment conditions is separated into two subsets,
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where the first subset does not contain Ywq and the second subset is exactly identified for

LW a- given (8,7, 6). The following transformation accomplishes this.

G'® I,
[, @W; = A ® Zwal =0 3.7

NI d
where d = TK + g for notational simplicity; similarly, G, ) and u; are shortened ex-
pressions for G(6), A(6) and u;(3,v). This is a nonsingular transformation, since (G, )

is nonsingular, and therefore GMM based on (3.7) is asymptotically equivalent to GMM

based on (3.6). Now split (3.7) into its two parts:

E(Gu;@W;) =0 (3.8)

EWNu)W; — VN = 0. (3.9)

Here (3.9) is exactly identified for Ly, given 3, v and 6, in the sense that the number
of moment conditions in (3.9) is the same as the dimension of Zyy,. Also Ywaq does
not appear in (3.8). It follows (e.g., Ahn and Schmidt (1995), Theorem 1) that the GMM
estimates of 3, y and 6 from (3.8) alone are the same as the GMM estimates of /3, v and 6
if we use both (3.8) and (3.9), and estimate the full set of parameters (3,7, 6, Ziyo). But
(3.8) is the same as (3.5), which establishes that (3.5) contains all the useful information
about 3, v and 6 implied by the Orthogonality Assumption.

Let EI(ﬁ, v,0) = N1 ZzNzl b1;(3,7,8). Then the optimal GMM estimator /3, 4, and

0 based on the Orthogonality Assumption solves the problem

gi% Nb1(8,7,0)'Vi7'51(8,7,6) (3.10)
"7y

where V11 = Eby;b}; evaluated at the true parameters. As usual, V11 can be replaced by

any consistent estimate. A standard estimate would be

N
= o (3, 7,0)b1i(8,%,0) (3.11)
11 = ]-V-Zbu(ﬂ, ¥,6)b1i(8,7.9)

1=1
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where (3,7, 0) is an initial consistent estimate of (£, 7, 6) such as GMM using identity
weighting matrix. Under certain regularity conditions (Hansen (1982), Assumption 3) the
resulting GMM estimator is v/N-consistent and asymptotically normal.
To express the asymptotic variance of the GMM estimator analytically, we need a little
more notation. Let Sx be the T(TK + g) x K selection matrix such that X; = (I ®
W;)'Sx, and let Sz be the T(T K +g) x g selection matrix such that 172! = (IT@W;)'Sz.

Sx and Sz have the following forms:
Sx=Ug O -+ OOkxg:0 Ik -+ O Ofxg: - 00 - Ik O](xg)l (3.12)

Sz = (Ogxk -+ Ogui Igi -+ i0gug -+ Ogxk 1g)' = 17 ® (Ogx1r, Ig)" (3.13)

where O’s without dimension subscript stand for Of . Define A, = 0\ (6p)/00'.
The variance of the asymptotic distribution of the GMM estimates of /3, v and 8 equals

(BiVﬁlBl)—l where Vi1 = Eby;b); as above and
B1 =[(G®Tww)'Sx, (G ®Zww) Sz, A+ ® Tyl (3.14)

This result can be obtained either by direct calculation, or by applying the chain rule to By
calculated in Ahn, Lee and Schmidt (2001, p. 251). This asymptotic variance form is ob-
tained from the Orthogonality Assumption only and does not need any further assumption.

A practical problem with this GMM procedure is that it is based on a rather large set
of moment conditions. Some considerable simplifications are possible if we make the

following assumption of no conditional heteroskedasticity (NCH) of ¢;:
E(eic;|Wi) = Zee. (NCH)
Under the NCH assumption,
Vi1 = E[G(60)'e;:G(8) ® W;W]] = G(0p) TeeG(0p) @ S - (3.15)
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Sww can be consistently estimated by Sy = N1 vazl W;W;. Also, for any se-

quence (3, yn) that converges in probability to (g, vo), we have

N
1
N D wi(Bn, )i (Bn, N) B See + 02 (00) (o). (3.16)

i=1

Since G(8)'\(8) = 0, for any initial consistent estimate (/3, 7, 6),

N
GOY | NS w3 9)wi(3,9) | GB) (3.17)
i=1

will consistently estimate G (fy)'X:-G(6p). Thus it is easy to construct a consistent esti-
mate of V77 as given in (3.15).

In order to consistently estimate the asymptotic variance under NCH, we need to esti-
mate Sy, Swa» and G'Sc.G. Estimation of Sy and G'E..G was discussed above.
We can obtain an estimate of £y, from the GMM problem (3.7). A direct algebraic cal-

culation gives us that

N A N
S = %; Wi %;Wi[A'/ZZG(GEZG)‘lé’ml/(ﬁ’b (.19)
where @; = u;(3,%), A = A(d), G = G(f), and )\E;G is a consistent estimate of 'Y, G,
one possibility of whichis N~ "IV | ¥a,ilG.

Finally, under the NCH assumption, the set of moment conditions (3.5) can be con-
verted into an exactly identified set of moment conditions that yield an asymptotically
equivalent GMM estimate. Specifically, we can replace the moment conditions Eby; = 0

by the moment conditions E Bj Vﬁlbli = 0. Routine calculation using the forms of Bj,

V11 and by; yields the explicit expression:

EX!G(G'Se:G) " 1G"u; = 0 (3.19a)
EZ15G(G'EeeG) " G u; = 0 (3.19b)
EXy oSty Wi - Au(G'EeeG) Gy = 0. (3.19¢)

36



These three sets of moment conditions respectively correspond to (21a), (21b), and (21¢)
of Ahn, Lee and Schmidt (2001, p. 229). We can replace the nuisance parameters Y.¢,
Ywea and Zyyw by consistent estimates, as given above (based on some initial consistent
GMM estimates of 3, v and ). The point of this simplification is that we have drastically
reduced the set of moment conditions: there are (T' — 1)(T K + g) moment conditions in
by; (equation (3.5)) but only K + g + p moment conditions in (3.19).

We note that this is a stronger result than the corresponding result (Proposition 1, p. 229)
of Ahn, Lee and Schmidt (2001). In order to reach essentially the same conclusion on
the reduction of the number of moment conditions, they impose the assumption that ¢; is

independent of (W}, «;), a much stronger assumption than our NCH assumption.

3.4 GMM under the Orthogonality and Covariance
Assumptions

In this section we continue to maintain the Orthogonality Assumption (Assumption 3.1),
but now we add the Covariance Assumption (Assumption 3.2), which asserts that Es,;eg =
062]]*.

Clearly the Covariance Assumption holds if and only if
E(uul) = a2 N + o2y (3.20)

Condition (3.20) contains T'(T + 1)/2 distinct moment conditions. It also contains the two
nuisance parameters ag and 052 , and so it should imply T'(T + 1) /2 — 2 moment conditions
for the estimation of /3, v and 6. These are in addition to the moment conditions (3.5)
implied by the Orthogonality Assumption.
To write these moment conditions explicitly, we need to define some notation. Let

H = diag(Hg, Hs, ..., Hy), with Hy equal to the T x (T — t) matrix of the last T — ¢
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columns (the (¢ + 1)th through T'th columns) of I for ¢t < T, and with Hy equal to a
T x (T — 2) matrix of the second through (T — 1)-th columns of I7.! Then we can write

the distinct moment conditions implied by the Orthogonality and Covariance Assumptions

as follows:
Eby; = E(G,ui W;)=0 (3.21a)
Eby; = EH'(G'u; @ u;) = 0 (3.21b)
Mu;
Ebg; = E[G'v; ® /\T)\Z] = (3.21c)

(In these expressions, G is short for G(6), A is short for A(), and u; is short for u;(3,7).)

The moment conditions by; in (3.21a) are exactly the same as those in (3.5) of the
previous section, and follow from the Orthogonality Assumption.

The moment conditions by; in (3.21b) correspond to those in equation (12) of Ahn, Lee
and Schmidt (2001). Note that it is not the case that E(G'u; ® u;) = 0. Rather, looking at a
typical element of this product, we have F(u;; — A¢u;1)u;s, Which equals zero for s # ¢ and
5 # 1. The selection matrix H’ picks out the logically distinct products of expectation zero,
the number of which equals 7'(T — 1) /2 — 1. The selection matrix H plays the same role as
the definition of the matrices U}, plays in Ahn, Lee and Schmidt (2001). We note that the
moment conditions bg; follow from the non-autocorrelation of the ¢;;; homoskedasticity
would not be needed.

The (T — 1) moment conditions in b3; in (3.21c) correspond to those in equation
(13) of Ahn, Lee and Schmidt (2001). They assert that, for t = 2,...,T, E(uj —
Atui1)(Z£=l Ast;s) = 0, and their validity depends on both the non-autocorrelation and

the homoskedasticity of the ¢;;.

'For any matrix B with T' rows, H,B selects the last T — t rows of B for t < T, and H}B
selects the second through (T — 1)-th rows of B. For any matrix B with T columns, B H, selects

the last T — ¢ columns of B for ¢ < T, and B Hr selects the second through (T — 1)-th columns of
B.
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Some further analysis may be useful to establish that (3.21b) and (3.21c) represent all
of the useful implications of the Covariance Assumption. We begin with the implication

(3.20) of the Covariance Assumption, which we rewrite as
E(u; ® uj) = 02(A® A) + o2vecly. (3.22)

Now, let S be the 7% x T(T + 1)/2 selection matrix such that, for a T x 1 vector v,

vech(uu') = S'(u ® u), where “vech” is the vector of distinct elements. Then
ES'(u®@u) = S'[O(Z,(/\ ®A) + UgvecIT] (3.23)

contains the distinct moment conditions.

Now we transform the moment conditions (3.23) by multiplying them by a nonsingular
matrix, in such a way that (¢) the first (T + 1)/2 — 2 transformed moment conditions
are those given in (3.21b) and (3.21c); and (:z) the last two moment conditions are exactly
identified for the nuisance parameters (o?, and 03), given the other parameters. This will
imply that the last two moment conditions are redundant for the estimation of /3, v and
6, and thus that (3.21b) and (3.21c) contain all of the useful information implied by the
Covariance Assumption for estimation of 3, y and 6.

To exhibit the transformation, let G; be the (t — 1)th column of G; let ¢} equal the tth

column of I7_5 and e equal the last column of I'; and define
(HT")' = [-A7Hy, eler, -, er_oTy Or_g)xT)- (3.24)
(HT was defined above.) Then
[Ge® Hy, ..., Gp_1 ® Hp_1, H}*]’S -8 (u; @ ;) = H(G' @ I (u; ® u;), (3.25)

which is the same as in by; in (3.21b). Also, let J{ = It — AN and J/, t = 2,..., T, is

equal to diag{O¢ ¢, \¢IT_;} plus a T x T matrix with zero elements except for the tth row
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which is \’. Then
HilJf . PSS (wy @ ;) = (N ® G (u; @ uy;), (3.26)

which is equal to b3; in (3.21c).

The point of the above argument is that the transformations preceding S’(w; ® u;) in
(3.25) and (3.26), stacked vertically, construct a [T(T + 1)/2 — 2] x T(T + 1)/2 matrix
of full row rank, and yield the moment conditions bg; and b3;. The remaining two moment

conditions that determine the nuisance parameters are

o O R (3.27)
uigi] | Aol
and must be linearly independent of the others (since they involve o2 and 052 while the
others do not).

The asymptotic variance of the GMM estimate is complicated because it depends on
the moments of €;; up to fourth order. However, we can simplify things with the following
“conditional independence of the moments up to fourth order” (CIM4) assumption:

Conditional on (W;, a;), €;; is independent over t = 1,2, ..., T, with mean

zero, and with second, third and fourth moments that do not depend on  (CIM4)

(W;,a;) oront.

This is a strong assumption; it implies the Orthogonality Assumption, the Covariance As-
sumption, the NCH assumption, and more. In Appendix A, we calculate the asymptotic
variance matrix of the GMM estimate based on (3.21) under the assumption (CIM4).

Let A = 9A(6)/00 and note that A, = G'A. Given assumption (CIM4), the mo-

ment conditions (3.19), which are asymptotically equivalent to (3.21a), can be simplified

40



as follows:

EX[Pgu; =0 (3.28a)
EZ17Pgu; =0 (3.28b)
EE'waEﬁ»lWWi N Pgu; = 0. (3.28¢)

That is, in place of the large set of moment conditions (3.21a), (3.21b) and (3.21c), we can
use the reduced set of moment conditions consisting of (3.28), (3.21b) and (3.21c¢).

A final simplification arises if, conditional on (W}, «;), €;4 is i.i.d. normal. In this case,
(3.21b) can be shown to be redundant given (3.21a) and (3.21c). (See Proposition 4 of
Ahn, Lee and Schmidt (2001, p. 231).) Hence, in that case, the GMM estimator using the

moment conditions (3.28) and (3.21¢) is efficient.

3.5 Least Squares

In this section we consider the concentrated least squares (CLS) estimation of the model.
We treat the o; as parameters to be estimated, so this is a true “fixed effects” treatment. We

can consider the following least squares problem:

N
min N7V [y - XiB- 172y = AO)as) [y~ XiB~ 172y = A(6)ev]. (3.29)
i=1

B,7.0,a1,...,an

Solving for aq, . .., ay first, we get
®i(B,7,0) = MO A(B)] T IA(0) wi(8,7) i=1,...,N. (3.30)

where u;(3,7) = y; — X;8 — 17Z]v as before. Then the estimates BLSa YLs. and éLS
minimizing (3.29) are equal to the minimizers of the sum of the squared concentrated

residuals
B N N
C(B,7,0) = NS Ci(8,7,0) = N71Y_wi(8,7) My gy ui(B,7) (3.31)

i=1 =1
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which is obtained by replacing a; in (3.29) with (3.30). From the name of (3.31), we call
B LS> YLs and f 1.5 the concentrated least squares estimator.
Since G'\ = 0, we have MG = G and therefore M, = Pg = G(G'G)~1G’. So the

first order conditions of the CLS estimation become

i i i
aC /s N X/ Pgu; T
B} 2
aC/y | =-%5 2 Z;1 Pgu; =0. (3.32)
i=1
oC /00 | N Pgupl (X' 2)~1 J

Interpreting (3.32) as sample moment conditions, we can construct the corresponding (ex-

actly identified) implicit population moment conditions:

EX[Pgu; =0 (3.33a)
EZ17pPgu; =0 (3.33b)
EN PgusuiA(VA) 7! =o0. (3.33¢)

That is, the CLS estimator is asymptotically equivalent to the GMM estimator based on
(3.33).

The moment conditions (3.33a) and (3.33b) are satisfied under the Orthogonality As-
sumption. However, this is not true of (3.33c). The moment conditions (3.33c) require the
Covariance Assumption to be valid (unless we make very specific and unusual assumptions
about the form of ) and its relationship to the error variance matrix). Thus, the consistency
of the CLS estimator requires both the Orthogonality Assumption and the Covariance As-
sumption. This is a rather striking result, since the consistency of least squares does not
usually require restrictions on the second moments of the errors, and is a reflection of the
incidental parameters problem.

We would generally believe that least squares should be efficient when the errors are

1i.d. normal. However, similarly to the result in Ahn, Lee and Schmidt (2001), this is
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not true in the present case. The efficient GMM estimator under the Orthogonality and
Covariance Assumptions uses the moment conditions (3.21), while the CLS estimator uses
only a subset of these. This can be seen most explicitly in the case that, conditional on
(Wi, a;), the €;; are i.i.d. normal. Then (3.21b) is redundant and (3.21a) can be replaced
by (3.28), so that the efficient GMM estimator is based on (3.28a), (3.28b), (3.28¢c) and
(3.21c). The CLS estimator is based on (3.33a), which is the same as (3.28a); (3.33b),
which is the same as (3.28b); and (3.33c), which is a subset of (3.21c).2 So the inefficiency
of CLS lies in its failure to use the moment conditions (3.28c) and from its failure to use
all of the moment conditions in (3.21c). The latter failure did not arise in the Ahn, Lee and
Schmidt (2001) analysis (see footnote 2).

In Appendix B, we calculate the asymptotic variance matrix of the CLS estimator, under
the “conditional independence of the moments up to fourth order” (CIM4) assumption of

Section 3.4,

3.6 Conclusion

In this chapter we have considered a panel data model with parametrically time-varying co-
efficients on the individual effects. Following Ahn, Lee and Schmidt (2001), we have enu-
merated the moment conditions implied by alternative sets of assumptions on the model.
We have shown explicitly that our sets of moment conditions capture all of the useful infor-
mation contained in our assumptions, so that the corresponding GMM estimators exploit
these assumptions efficiently.

We have also considered concentrated least squares estimation. Here the incidental

*The moment conditions (3.33c) are equivalent to EA'G(G'G)~1b3; = 0. When the number of
parameters in 6 is less than T — 1, the transformation A’G(G’G)~! loses information. This will be
$O in most parametric models for A(6), though it is not true in the model of Ahn, Lee and Schmidt
(2001).
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parameters problem is relevant because we are treating the fixed effects as parameters to
be estimated. An interesting result is that the consistency of the least squares estimator
requires both exogeneity assumptions and the assumption that the errors are white noise.
Furthermore, given the white noise assumption, the least squares estimator is inefficient,
because it fails to exploit all of the moment conditions that are available.

We show how the GMM estimation problem can be simplified under some additional
assumptions, including the assumption of no conditional heteroskedasticity and a stronger
conditional independence assumption. Under these assumptions we also give explicit ex-

pressions for the variance matrices of the GMM and least squares estimators.



APPENDIX

In this Appendix we derive the asymptotic variances of the efficient GMM estimator and
the CLS estimator. We make the “conditional independence of the moments up to fourth

order” (CIM4) assumption of Section 3.4.

3.A The asymptotic variance of the GMM estimator

Under the Orthogonality and Covariance Assumptions, the moment conditions we have
are by; = G'u; @ W;, by; = H'(G'u; ® u;), and b3; = (MA) "IV, ® Gluy. Let 6 =
(8,7,0"). Let Bj = —E(0b;;/6) for j = 1,2,3, evaluated at the true parameters. Let
Tk = Ebjib;ci for 7,k = 1,2,3, evaluated at the true parameters. Define k3 = Ee?t/ag
and kg = E(c}, — 30}) /2. Let pyy = EWj; @ = ®(0) = A\ X, + diag(Mg, ..., A7); and

@y = AN, +diag(A3,. .., M%), where A, = (g, ..., A7)’ After some algebra, we get

V11 = 02(G'G ® Syrw) (3.34)

Vig = 02(G'G ® Syro X H (3.35)

Vi3 = 07 [G'G @ Swa + 3 A(<I> ® uw)] (3.36)

Voo = 02H'[G'G ® (02AN + oI7)|H (3.37)

Vs = o2H' { [( 2 ) G'G+ YX“"(I’] ® /\} (3.38)
*33=a§{( 2 A,i)G’G+2A,Aua<I>+ o } (3.39)

and

B = [(GR®Zww)'Sx, (G®Tww) 'Sz, A+ ® Zyral (3.40)

By = H'(I7_1 ® M[(G ® Zwa)'Sx, (G®Twa)'Sz, 02A]  (341)

B3 =[(G®Lwa)Sx, (G®Twa)'Sz, 02A4l. (3.42)
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With these results, the variance-covariance of the GMM estimator is

_ -] -1
Vii Vi Vis| | Ba

covVN(é - &) = | (B}, B, B3) Vi, Vag Vas| | B . (3.43)
7! 7!

3.B The asymptotic variance of the CLS estimator

By the standard Taylor series expansion technique, we find that the asymptotic variance

will be equal to A9 B, 1AO where

8%¢C; aC; dC;

Ao = Bgeng and Bo=E55 5

(3.44)

evaluated at the true parameter. Let us calculate each of them. Let A = 9\(6y)/06’ =
(Opx1, AL)'. By is the same as in Ahn, Lee and Schmidt (2001, p. 253). Let ¥ =
G(G'G)" & - (G'G)"1¢"; ¥, = G(G'G)~18.(G'G)1G"; and jiq = Ecy;. Then

0C; 0C;

= 402! ' 3.45
88 o ~ Lot Sx(Pe ® Zww)Sx (3.45)
0C; 0C;
aﬁl By 7 = 4025 (Pg ® Sww)Sz (3.46)
9C;0C; . 9
a2 aar T 347
B g = 1025 [Po ® Swa + 35(¥ © mw)| A (347)
0C; 0C; 2 ot
A A 3.48
E5 oy = 10:52(Fc ® Tww)Sz (3.48)
0C; 0C; . 9.
5y o8 ~ 10:57 [PG ®Lwa + /\,/\(‘1’ ® ﬂw)] A (3.49)
9C;0Ci _, 2, o2 o }
= A. .
A is obtained from the following.
32C;
E 3oy = 25x(Pa ® Sww)Sx, Sk(Po ® Zww)Sz, Sx(Pe ® Bwa)A] (.51
82C;
B = US7(Pa @ Sww)Sx, Sz(Pe ® Tww)Sz, Sz(Pe ® Zwa)A]l - (3.52)
82C; ) -
Ea@aé' =2[A(Pg ® 2 )Sx, A (Pg®X% “W )Sz, 05A PgA]. (3.53)
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