
i
.

a
.

..

.

:
3
3
5
.

i
..

é
u
é
u
t

:

.
3
3
:
1
.
.
.
L

.
.
1
3
,

.
1

.

7
O
R

O
t
a
.
.
i
.
~
v
.

3
2
.
1
5
:
.
.
.

1
:
»
t
r

u
.
.
.
5
:
.
E

r
.

i

t
a
.

.
‘

g
r
;

.
.
.
.
fi
w
&
:
§
.
.
fi

‘

3
7
.
.
.
.
.
.
E
,

I
.
t

6
.
.

g
i
g

g
,

THESIS

30°" LIBRARY 1

I Michigan State “‘3

University

 ___l

This is to certify that the

thesis entitled

ARTIFICIAL NEURAL NETWORKS

FOR BRANCH PREDICTION

presented by

Brian Adam Dazsi

has been accepted towards fulfillment

of the requirements for

Master's degree in Electrical Eng

Owen
MZjor professdr/

Date 55/9 /°(

I j/

0-7639 MSU is an Aflinmm've Action/Equal Opportunity Institution

PLACE IN RETURN Box to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 c:/CIRC/DateDue.p65-p.15

ARTIFICIAL NEURAL NETWORKS FOR BRANCH PREDICTION

By

Brian Adam Dazsi

AN ABSTRACT OF A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

2001

Dr. Richard Enbody

ABSTRACT

ARTIFICIAL NEURAL NETWORKS FOR BRANCH PREDICTION

By

Brian Adam Dazsi

Current microprocessor technology is being enhanced at an amazing rate. According

to “Moore’s Law”, microprocessor transistor count and clock speed doubles every 18

months. With the speed that superscalar microprocessors can execute multiple

instructions out-of-order, it is imperative that an extremely efficient branch predictor is

implemented on the microprocessor, to keep the frequency of recovering from

mispredicted instructions low. With current transistor counts in microprocessors being so

high, more complex microprocessor components can now be considered, such as multiple

pipelines, larger caches, and more complex branch predictors.

Artificial Neural Networks have recently been Showing amazing usefulness in the

areas of pattern recognition. They have also been used rather well for prediction

applications. Through the use of C programming, the SPEC95 benchmarks, and a

microprocessor simulator called SimpleScalar, this thesis explores the possibility of using

artificial neural networks for branch prediction. The feed-forward, back-propagation

artificial neural network coded for this thesis did not perform as well as expected;

however, the area of Artificial Neural Networks is a rapidly growing field, and this thesis

is just the beginning of the possibilities for using Artificial Neural Networks in branch

prediction.

For my parents, who have helped me become the man I am today,

and my wife, who will continue life’s journey with me.

iii

ACKNOWLEDGEMENTS

There are many people throughout the years who have helped me get to where I am

today. All of my professors and teachers over the years, and all of my family and friends

have made this educational journey a bearable trip. To them I am eternally grateful. There

are also a few special people who have helped me with this thesis - the toughest obstacle

I had to overcome in all my education. I would like to thank them here.

My thanks go to Dr. Richard Enbody for his extreme patience. There were times that I

doubted that I would get this thesis completed, but he never let me think that was an

option. I would also like to thank him for his enthusiasm and teaching ability. His

Advanced Computer Architecture class was my favorite graduate class - it was the most

fun and most rewarding challenge. It instilled the desire to learn and explore further -

hence this thesis.

Mark Brehob assisted me with using the SimpleScalar simulator. His few minutes of

help here and there saved me from hours of wild goose chasing when I ran into problems

that weren't really problems at all, or had simple solutions. His help is priceless.

I would like to thank Jackie Carlson for her endless support, encouragement and great

C reference. Without her help I would not have had all the resources I needed to complete

this project. Her time to Sit and talk put my mind at ease and helped me get through the

day-to-day struggles of this thesis and other things that distracted me from the thesis.

Dr. Fathi Salam introduced me to Artificial Neural Networks. His Neural Network

classes were a wonderful learning experience, and helped me develop the idea for this

thesis. For that I thank him.

iv

My undying love and thanks goes to my wife, Sara, for putting up with me, and

helping me through it all. I could not have done it without her support and love. Together

we can accomplish anything.

I am thankful to my parents for absolutely everything. For obvious reasons, none of

this would be possible without them; but they have also always been a guiding light for

me. They have always being there for me - they have never let me down. They have

always been tremendous role models. They have instilled in me the personal

characteristics and responsibility that have guided me through my education and this

thesis. Without those traits, I could never have overcome all of life’s struggles to get this

far.

I would like to thank God, for the opportunity to Share my talents.

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ... x

INTRODUCTION... 1

Chapter 1: Branch Prediction .. 4

1.1 Microprocessor Architecture ... 4

1.2 Branch Prediction .. 7

1.2.1 Two-bit Predictor ... 7

1.2.2 Two-level Adaptive Branch Prediction .. 8

1.2.3 The Branch-Target Buffer .. 16

1.2.4 Hybrid or combinational predictors ... 17

1.3 Current Branch Prediction Methods.. 18

1.3.1 AMD K-6 2 .. 18

1.3.2 Pentium III.. 18

1.3.3 Power PC 630... 18

Chapter 2: Artificial Neural Networks .. 19

2.1 The Neuron.. 19

2.1.1 Biological Model .. 19

2.1.2 Mathematical Model .. 21

vi

2.1.3 Activation functions ... 22

2.1.4 Directed Graphs.. 25

2.2 Learning .. 26

2.2.1 Description ... 26

2.2.2 Hebbian Learning ... 27

2.3 The Perceptron and Multilayer Perceptrons .. 28

2.4 Feedforward and Backpropagation ... 30

Chapter 3: SimpleScalar .. 33

3.1 SimpleScalar.. 33

3.1.1 Software Architecture .. 33

3.1.2 Hardware Architecture ... 34

3.1.3 Instruction Set Architecture ... 34

3.1.4 Running SimpleScalar.. 35

3.1.5 Branch Prediction ... 35

3.2 Using the SPEC95 benchmarks... 37

Chapter 4: Methodology.. 39

4.1 Programming the Neural Network .. 39

4.2 Verifying the FFBPANN Code ... 41

4.2.1 The XOR Problem.. 41

4.2.2 Predicting Sunspots .. 43

4.3 Adding a new predictor to SimpleScalar... 44

4.4 The new predictor.. 45

4.4.1 Design... 45

vii

4.4.2 Training the FFBAPNN ... 46

Chapter 5: Results and Discussion .. 49

5.1 Training ... 49

5.2 Discussion ... 50

5.3 Branch Predictor Results ... 59

Chapter 6: Conclusions and Future Work ... 64

6.1 Conclusions ... 64

6.2 Future Work .. 64

6.2.1 Other inputs .. 64

6.2.2 Other Neural Networks and Training methods .. 65

6.2.3 BTB .. 69

6.2.4 State Output.. 69

6.2.5 Hardware Feasibility .. 7O

BIBLIOGRAPHY ... 72

viii

Table 1.1:

Table 3.1:

Table 3.2:

Table 3.3:

Table 4.1:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

LIST OF TABLES

Two-Level Branch Predictor Variations .. 9

Branch Prediction Types .. 36

Branch Prediction Options ... 37

Two-Level Branch Prediction .. 37

Sunspots Test Program Output .. 44

Limitations of Branches Recorded ... 51

Branch Data.. 54

Branch Predictor Results — 2-1evel ... 59

Branch Predictor Results - Bimodal... 60

Branch Prediction Results - Hybrid ... 60

ix

Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure 1.4:

Figure 1.5:

Figure 1.6:

Figure 1.7:

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 2.8:

Figure 2.9:

Figure 3.1:

Figure 3.2:

Figure 3.3:

LIST OF FIGURES

The Post-RISC Architecture ... 5

Two-bit prediction method states ... 8

Generic Two-Level Branch Prediction ... 9

Global Adaptive Branch Prediction Methods ... 11

Per-Address Adaptive Branch Prediction Methods .. 13

Per-Set Adaptive Branch Prediction Methods .. 15

Branch Target Buffer .. 17

A Neuron .. 19

Model of a Neuron .. 22

Activation Functions... 24

Signal-Flow Graph of a Neuron ... 25

Architectural Graph of a Neuron .. 26

The Taxonomy of Learning .. 27

A Single Layer Perceptron .. 29

Multilayer Perceptron ... 30

Signals in a Multilayer Perceptron ... 31

SimpleScalar Software Architecture... 33

Out-of-Order Issue Architecture ... 34

Instruction Format .. 35

Figure 3.4:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 5.8:

Figure 5.9:

Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 6.4:

Two-level Predictor Layout .. 36

XOR Classifications ... 42

Multi-layer network for solving the XOR Problem.. 43

FFBPANN Structure ... 46

Mgrid Training Progress ... 52

Mgrid Training Error .. 53

Mgrid Training Progress Zoom .. 54

Geo Training Progress .. 56

Go Training Progress .. 57

“Opposite” Gcc Training Progress ... 58

Prediction Rate by Predictor ... 61

Prediction Rate by Simulation .. 62

Overall Predictor Performance ... 63

the taxonomy of learning .. 65

Recurrent network .. 66

Boltzmann Machine .. 68

Competitive learning network .. 69

xi

INTRODUCTION

Background

The number of transistors in a microprocessor is growing at an enormous rate and how

to use all those transistors is a topic of much debate. The number of, and Specialization

of, the execution units in the microprocessor pipeline are increasing. As a result, out-of-

order instruction processing is standard practice. Since so many instructions are being

fetched and executed out-of-order, when a branch instruction is encountered, it is

important that the next instruction fetched is really the instruction that would be fetched if

the correct answer to the branch decision was already known (at least two clock cycles

are needed in order to process a branch instruction and calculate the branch decision). If

the wrong path is chosen, then instructions start being executed that should not be

executed and the microprocessor will have to recover from executing those invalid

instructions. Therefore, it is imperative to have a good branch predictor.

Artificial Neural Networks are becoming more useful in the areas of pattern

recognition and prediction. ANNS are starting to be used alongside standard statistical

prediction models used for years in the fields of finance and marketing. The ANNs are

performing as well as, if not better than, the statistical models [West]. Because of their

success in these fields, an Artificial Neural Network might perform well as a

microprocessor branch predictor.

§_O_al.§

When this thesis was started, there was no readily available documentation published

about using a neural network for branch prediction. The goal of this thesis was to obtain a

working simulation to compare a neural network branch predictor with current branch

prediction technology. In order to achieve that goal, four tasks were established:

0 Develop an Artificial Neural Network

Before an ANN could be used for branch prediction a set of tools and structures needed

to be defined. The ANN was to be programmed in C, so that it could be incorporated into

SimpleScalar.

0 Modify the SimpleScalar simulator to accept an ANN branch predictor

To gather branch predictor performance data and add another predictor to the simulator,

the coding for SimpleScalar needed to be explored.

0 Train the Neural Network

Training data was to be gathered from a normal run of SimpleScalar and train the neural

network. In order to obtain the working simulation in a reasonable amount of time, a

feed-forward, back-propagation neural network using Hebbian learning would be used.

0 Evaluate the ANN branch predictor

Finally, information about branch predictor performance was to be gathered by mnning

SimpleScalar for each branch predictor. The branch predictor performance could then be

plotted and examined.

Thesis Organization

The rest of the thesis is organized as follows. Chapter 1 discusses the background

behind Branch Prediction. The Post—RISC architecture is discussed to Show the

importance of branch prediction in the microprocessor pipeline. Artificial Neural

Networks are discussed in Chapter 2. A brief introduction of neural networks from a

biological and mathematical perspective is given, and the Hebbian learning algorithm is

talked about. Chapter 3 briefly discusses the SimpleScalar microprocessor Simulator, its

components and how it was utilized in this project. Chapter 4 discusses the

methodologies used to add a new branch predictor to SimpleScalar and programming,

verifying and training the neural network. Chapter 5 examines the results of the neural

network training and the branch predictors’ performance. Finally, the possibilities of

future work using Artificial Neural Networks for Branch Prediction are examined in

Chapter 6.

Chapter 1: Branch Prediction

1.1 Microprocessor Architecture

To understand the importance of branch prediction, an examination of the overall

microprocessor must be done. Most microprocessors today are of a superscalar design,

meaning that they execute multiple instructions at once. The Post-RISC architecture

[Brehob] is worth a brief examination Since most current microprocessors Share much in

common with this superscalar architecture [Hsieh]. Figure 1.1 [Brehob] Shows the

generic layout of a Post-RISC processor pipeline.

IVIE I‘v‘IC) RY

PREDECODE 1

__

INSTRUC TICIN CACHE 1

FETCHI‘FLOW 2

DEC ODEIBRANCH 3

4

5

cOMPLETED INSTRUCTION 5

BUFFER

6

RETIRE UNIT

Figure 1.1: The Post-RISC Architecture

From examining Figure 1.1, there are six important steps in the processor pipeline.

First, instructions are read from memory in the Predecode stage and Stored into the

Instruction Cache (I-Cache). In the superscalar architecture, multiple instructions are read

into the cache at one time (for most current processors, four instructions are read

[Hsieh]). As a part of predecoding, extra bits are appended to the instructions in order to

assist in decoding in a later stage. During the Fetch/Flow stage of the pipeline, which

instructions are fetched from the I-Cache is decided. However, it is not until the third

pipeline stage, the Decode/Branch stage, that a prediction on a branch instruction is

actually made. At this point, “not taken” branches are discarded from the pipeline, and

decoded instructions are passed on to the Instruction Dispatch and Reorder Buffer stage.

In the Instruction Dispatch and Reorder Buffer stage, instructions are queued up and wait

to move on to an available execution unit in Stage five. Examples of execution units are

load/store units, branch units, floating point units and arithmetic logic units. Which types

and how many of each of these execution units is decided by the designers of the

microprocessor. At this point in stage five, after the appropriate calculations are done for

a branch instruction, the Fetch/Flow stage of the pipeline is informed of branch

mispredictions so that it can start recovering from mispredictions. The Branch/Decode

stage is also informed of mispredictions so that it can update its prediction methodology

(typically, updating of tables or registers). After an instruction is successfully executed it

is sent on to the Completed Instruction Buffer (stage six) and the Retire Unit successfully

updates the state of registers based on the completed instruction (usually at a rate equal to

that of Predecode stage instruction fetching). Instructions could be waiting in the

Completed Instruction Buffer until information about a branch instruction becomes

available so that they can be retired or erased. Figure 1.1 Shows that branch prediction

effects multiple stages of the pipeline.

1.2 Branch Prediction

An examination of the superscalar structure presented in Section 1.1 shows the

importance of a good branch predictor. With multiple instructions being executed out-of-

order in parallel, recovering from a misprediction can be extremely difficult and can cost

valuable processor time and resources. Instructions that have been placed in the pipeline

that Should not have been, have to be nullified, and the correct instructions have to start

being fetched. This recovery period is referred to as a stall.

In order to prevent misprediction Stalls, a good branch predictor is needed. A few easy

methods exist to provide branch prediction. First, a branch could always be assumed

“taken” or always be assumed “not taken”. In these static cases, the logic for the

prediction is extremely simple, but also allows for an average 50% misprediction rate.

This is just not acceptable. A more dynamic approach is to use a branch prediction buffer,

which can be used to keep track of prediction history. In the simplest form, this history

table is referenced by the lower portion of the branch instruction address and uses a 1-bit

counter to record if the branch was recently “taken” or not. This simple method also does

not provide for very accurate predictions [Hennessy]. However, a slight modification by

adding another bit helps overcome the one-bit method’s shortcoming.

1.2.1 Two-bit Predictor

In this method, two bits are used to keep track of the prediction history. Only after two

consecutive mispredictions iS the prediction state changed from predict taken to predict

not taken. Figure 1.2 [Hennessy] shows how this is achieved in a state diagram.

Predict

Taken

Not Taken

Predict

Not Taken

MotTaken

Figure 1.2: Two-bit prediction method states

While this-method provides fairly good prediction accuracy, it is still not as ideal as

current technology needs, nor as good as current technology can provide.

1.2.2 Two-level Adaptive Branch Prediction

This prediction method, introduced by Tse-Yu Yeh and Yale N. Patt, is one of the

most successful prediction methods used today. It provides the most accurate predictions

[Yeh93]. In the two-level prediction scheme, two levels of branch history are stored. In

the first level, a record of the last n branches is stored in the Branch History Table

(BHR). In the second level, the branch behavior of the last x occurrences of a Specific

pattern in the BHR is recorded. The second level table (is called the Pattern History Table

(PI-IT). Figure 1.3 [Driesen] Shows the general layout of the two-level method.

Global History Pattern Branch History Table

x targets Address

‘— ——————————y

Key (concatenate)

Figure 1.3: Generic Two-Level Branch Prediction

There are three manners in which information is kept in these tables: globally, per-

address and per-subset (which was introduced by Pan, So and Rahmeh [Yeh93]). When

referring to the Branch History Table, these methods are labeled as GA, PA, SA,

respectively. When referring to the Pattern History Table, these methods are labeled as g,

p, and s, respectively. This gives rise to nine different variations of the Two-Level

Adaptive Branch Predictor, as shown in Table 1.1 [Yeh93].

Table 1.1: Two-Level Branch Predictor Variations

Variation Description

GAg Global Adaptive Branch Prediction using one global pattern history table.

GAp Global Adaptive Branch Prediction using per-address pattern history

GAS 33:; Adaptive Branch Prediction using per-set pattern history tables.

PAg Per-Address Adaptive BTan'ch Prediction using one global pattern history

PAp tPileli‘l-erliiddress Adaptive Branch Prediction using per-address pattern history tables.

Variation Description

PAS Per-Address Adaptive Branch Prediction using per-set pattern history

SAg $3.38; Adaptive Branch Prediction using one global pattern history table.

SAp Per—set Adaptive Branch Prediction using per-address pattern history

SAS Iii-Z: Adaptive Branch Prediction using per-set pattern history tables.

Figure 1.4, Figure 1.5, and Figure 1.6 Show how the pattern history tables are

referenced in the variations of each type of Two-level Adaptive Branch Prediction.

10

11

Figure 1.4: Global Adaptive Branch Prediction Methods

.%

“r. .

III"..-

In the Global Adaptive Branch Prediction methods, the global history of the last k

branches is recorded. Therefore, the history of all branches influences each prediction,

Since each prediction uses the same history register [Yeh93].

12

13

Figure 1.5 : Per-Address Adaptive Branch Prediction Methods

 P
A
:

P
c
r
-
a
d
d
r

B
r
a
n
c
h

H
i
s
t
o
r
y

(
P
3
3
7
?

3

 Lll ~. 1 l-----l U U II

(
EC
a
b
a
l

P
a
l
m

H
i
s
t
o
r
y

W
e

(
G
P
H
I
)

r
—
I 1

 P
A
S

P
A
p

P
e
m
d
d
r

P
e
r
-
a
c
t

P
e
r
a
d
d
r

P
e
m
d
d
r

In the Per-Address Adaptive Branch Prediction methods, the first-level branch history

accesses the pattern history of the last k occurrences of the same branch address [Yeh93].

Each prediction is, therefore, only influenced by the history of its branch address, and not

by other branches.

14

(ii-Inna..-

IE-

Figure 1.6: Per-Set Adaptive Branch Prediction Methods

15

For per-subset references, the set attribute can be any of the following: the branch

opcode, the branch class (which is assigned by the compiler), or the branch address. In

this way, the behavior of a branch effects other branches of the same type, or subset. The

first-level of Per-set Adaptive Branch Prediction refers to the last k occurrences of a

branch of the same set attribute. The second level can be accessed either globally, by a

subset of a set, or by branch address [Yeh93].

1.2.3 The Branch-Target Buffer

To further improve prediction methods, the branch-target buffer (or cache) is

introduced. In the BTB, the branch address and respective predicted address (or branch

target) are stored. The branch address is used as a reference to the BTB to predict what

the branch target should be. If the branch address is not in the table, then the branch is

predicted “not taken”. Using a BTB in combination with the Two-bit predictor increases

prediction accuracy significantly [Driesen].

16

You: unnumbmmpm mum

PCflroddbomoduttunoxtPG

Figure 1.7: Branch Target Buffer

1.2.4 Hybrid or combinational predictors

Another solution when using more resources (transistors) on a microprocessor chip for

branch prediction is to combine multiple dynamic branch predictors [Driesen]. When

using two predictors at the same time a special Branch Predictor Selection Table, or

metapredictor, must be used to choose which predictor to use for a given situation. This

metapredictor is similar to the two-bit predictor discussed above. It uses a two-bit counter

to keep track of which predictor is more accurate for a specific branch address.

There are a couple of variations of this metapredictor. One variation uses run-time or

compile-time information to choose which predictor outcome to use. Another variation is

to use an n-bit confidence counter to keep track of the success rate of a predictor over the

last 2'”l prediction requests [Driesen].

1.3 Current Branch Prediction Methods

1.3.1 AMD K-6 2

AMD'S K-6 2 microprocessor contains a 2-level branch predictor with an 8192 entry

Branch History Table, a 16 entry BTC, and a 16 entry RAS.

1.3.2 Pentium III

The branch predictor methodology in Intel's Pentium III microprocessor is referred to as

"deep" branch prediction. It contains a 512 entry Branch-Target Buffer.

1.3.3 Power PC 630

Motorola's Power PC 630 uses a Branch-Target Buffer and a two-bit predictor.

l8

Chapter 2: Artificial Neural Networks

2.1 The Neuron

2.1.1 Biological Model

The basic model of the neuron is founded upon the functionality of a biological

neuron. "Neurons are the basic signaling units of the nervous system" and "each neuron is

a discrete cell whose several processes arise from its cell body" [Kandel].

Cel Axon

= Ody

\

,\

Dendrites

Figure 2.1: A Neuron

The neuron has four main regions to its structure. The cell body, or soma, has two

offshoots from it, the dendrites, and the axon, which end in presynaptic terminals. The

cell body is the heart of the cell, containing the nucleus and maintaining protein

synthesis. A neuron may have many dendrites, which branch out in a treelike structure,

and receive signals from other neurons. A neuron usually only has one axon which grows

out from a part of the cell body called the axon hillock. The axon conducts electric

Signals generated at the axon hillock down its length. These electric signals are called

19

action potentials. The other end of the axon may Split into several branches, which end

in a presynaptic terminal.

Action potentials are the electric signals that neurons use to convey information to the

brain. All these signals are identical. Therefore, the brain determines what type of

information is being received based on the path that the signal took. The brain analyzes

the patterns of Signals being sent and from that information it can interpret the type of

information being received.

Myelin is the fatty tissue that surrounds and insulates the axon. Often short axons do

not need this insulation. There are uninsulated parts of the axon. These areas are called

Nodes of Ranvier. At these nodes, the signal traveling down the axon is regenerated. This

ensures that the signal traveling down the axon travels fast and remains constant (i.e. very

Short propagation delay and no weakening of the Signal).

The synapse is the area of contact between two neurons. The neurons do not actually

physically touch. They are separated by the synaptic cleft, and electric signals are sent

through chemical interaction. The neuron sending the Signal is called the presynaptic cell

and the neuron receiving the Signal is called the postsynaptic cell. The signals are

generated by the membrane potential, which is based on the differences in concentration

of sodium and potassium ions inside and outside the cell membrane.

Neurons can be classified by their number of processes (or appendages), or by their

function. If they are classified by the number of processes, they fall into three categories.

Unipolar neurons have a single process (dendrites and axon are located on the same

stem), and are most common in invertebrates. In bipolar neurons, the dendrite and axon

are the neuron's two separate processes. Bipolar neurons have a subclass called pseudo-

20

bipolar neurons, which are used to send sensory information to the spinal cord. Finally,

multipolar neurons are most common in mammals. Examples of these neurons are Spinal

motor neurons, pyramidal cells and Purkinje cells (in the cerebellum).

If classified by function, neurons again fall into three separate categories. The first

group is sensory, or afferent, neurons, which provide information for perception and

motor coordination. The second group provides information (or instructions) to muscles

and glands and is therefore called motor neurons. The last group, intemeuronal, contains

all other neurons and has two subclasses. One group called relay or projection

intemeurons have long axons and connect different parts of the brain. The other group

called local intemeurons are only used in local circuits.

2.1.2 Mathematical Model

When creating a functional model of the biological neuron, there are three basic

components of importance. First, the synapses of the neuron are modeled as weights. The

strength of the connection between an input and a neuron is noted by the value of the

weight. Negative weight values reflect inhibitory connections, while positive values

designate excitatory connections [Haykin]. The next two components model the actual

activity within the neuron cell. An adder sums up all the inputs modified by their

respective weights. This activity is referred to as linear combination. Finally, an

activation function controls the amplitude of the output of the neuron. An acceptable

range of output is usually between 0 and 1, or -1 and 1.

Mathematically, this process is described in Figure 2.2 [Haykin].

21

Fixed input x0 = i 1

x0 WkO = bk (bias)

1'2.

xp

Input

signals

Activation

Function

@ vk Output

0

0 Summing

Junction

O m
Synaptic Threshold

Weights

Figure 2.2: Model of a Neuron

From this model the interval activity of the neuron can be Shown to be:

p

Vk :Z wijj (2.1).:__1

The output of the neuron, yk, would therefore be the outcome of some activation function

on the value of vk.

2.1.3 Activation functions

AS mentioned previously, the activation function acts as a squashing function, such

that the output of a neuron is between certain values (usually 0 and l, or -1 and 1). In

22

general, there are three types of activation functions, denoted by (p(0) in Figure 2.2. First,

there is the Threshold Function which takes on a value of 0 if the summed input is less

than a certain threshold value (v), and the value 1 if the summed input is greater than or

equal to the threshold value.

_l1 ivaO

2.2

O ifv<O ()

(0(v)

Secondly, there is the Piecewise-Linear function. This function again can take on the

values of O or 1, but can also take on values between that depending on the amplification

factor in a certain region of linear operation.

[1 v2%

¢(v)= v —-§->v>-§- (2.3)

'10 s ;

Thirdly, there is the sigmoid function. This function can range between 0 and 1, but it

is also sometimes useful to use the -1 to 1 range. An example of the sigmoid function is

the hyperbolic tangent function.

v 1 — exp(—v)

(06’) t h(2 J l + exp(—v) (2)

Figure 2.3 shows these activation functions plotted [Haykin].

23

2 1 r r a fl 1

1.8 - ‘

1'6 r 92(6) .
L4 I- -l

1.2 r r

I u-

0.8 - '

0.6 r
..

0.4 - -

0.2 '-
-

92 -13 -i .03 o 03 i is 2

D

theshold

2 r r r r l I

111 r "

1.6 *- 99(9) .

1.4 ‘- "

1.2 r '

I n

0.8 - ~

0.6 r ‘

0.4 *- -

.‘2 ~ '*

92 —i.l5 vi «0.5 0 0:5 I 1:5 2

D

piecewise-linear

2 u z I . r 1 r r

1.8 ~ "

1'6 '- fit") ‘

1.4 ~ 4

1.2 e '

l I-

0.8 '- '

0.6 - ‘l

(1.4 ~ ‘

0.2 - ‘

910 -8 -6 -4 -2 0 2 4 (i A 10

I}

sigmoid functions

Figure 2.3: Activation Functions

24

In Figure 2.2, two Special values should be noted: the bias and the threshold. These are

optional values that can be used, determined by the specific situation for which the neural

network will be used. The bias can be eliminated from the network by making the bias

weight, wko, equal to zero. The threshold value can also be set equal to zero to eliminate

is effect on the network. For obvious reasons, if a Threshold Activation Function is not

being used, the threshold value is not needed.

2.1.4 Directed Graphs

The neuron model described in Section 2.1.2 can be described in two other manners in

order to simplify discussions. First, there iS the Signal-flow graph of a neuron, Shown in

Figure 2.4 [Haykin], where the symbols used are simplified.

Figure 2.4: Signal-Flow Graph of a Neuron

An architectural graph can also be used to Show the general layout of a neuron, as

displayed in Figure 2.5 [Haykin]. This is useful when describing multilayer networks.

25

Figure 2.5: Architectural Graph of a Neuron

2.2 Learning

2.2.1 Description

One of the most important aspects of Artificial Neural Networks is the ability to learn

and therefore update and improve performance. The definition of this neural network

learning according to Haykin is:

Learning is a process by which thefree parameters ofa neural network are

adapted through a continuing process ofstimulation by the environment in which

the network is embedded. The type oflearning is determined by the manner in

which the parameter changes take place.

Haykin goes on to state three important events that occur during learning:

1. The neural network is stimulated by an environment.

2. The neural network undergoes changes as a result of this stimulation.

3. The neural network responds in a new way to the environment, because of the

changes that have occurred in its internal structure.

Overall, the updating of the neural network is done by changing (or updating) the

interconnected weights between neurons. Mathematically, this is described as follows:

26

ij (n +1) = wkj (n) + Awkj (n) (2.5)

How the update, or Aw, is calculated is determined by a set of rules applied with a certain

paradigm. A general overview of the Artificial Neural Network learning process is Shown

in Figure 2.6 [Haykin].

Learning Process

1

I 1

Learning algorithms (rules) Learning paradigms

1 1

I l l T I l l 1

Error-correction Bolzrnann Thomdike's Hebbian Competetive Supervised Reinforcement Self-organized

learning learning law of learning learning learning learning (unsupervised)

effects learning

Figure 2.6: The Taxonomy of Learning

Learning algorithms are a set of rules by which the network is updated. The Learning

paradigms are the styles or methodology in which the learning algorithm is performed.

There are many different styles of learning, and new algorithms are continuously being

explored and developed. For this thesis, Hebbian learning will be discussed.

2.2.2 Hebbian Learning

Hebbian learning is one of the oldest and most popular learning methods today

[Haykin]. It derives its methodology from the idea that the more often a synapse between

two neurons is fired, the stronger the connection between the two neurons becomes.

Expanding that statement, it can be said that when the connection between two neurons is

27

excited Simultaneously (or synchronously), the connection is strengthened, and when the

connection is excited asynchronously, the connection is weakened [Haykin].

Mathematically, the change of weight in Hebbian learning is a function of both

presynaptic (input) and postsynaptic (output) activities. In defining the weight update, a

parameter called the learning rate is introduced. This learning rate, a positive value,

defined the Speed at which the weight changes. In order to keep the weight from growing

too fast (which may lead to saturation), another parameter called the forgetting factor is

introduced (this is also a positive value). Finally, a formula for the weight update for

Hebbian learning can be defined as:

AW,,,- (11) = 7m (n)x,- (n) - ayk ('1)ij (n) (2.6)

2.3 The Perceptron and Multilayer Perceptrons

The perceptron is the Simplest form of a neural network used for the classification of

linearly separable patterns [Haykin]. Its structure can be easily shown using the signal-

flow graph described above, since a Single layer perceptron operates as a Single neuron.

Figure 2.7 shows this [Haykin].

28

 xp Linear

combiner

Figure 2.7: A Single Layer Perceptron

Multilayer perceptrons are an expansion of the perceptron idea, and can be used to

solve much more difficult problems. They consist of an input layer, one or more hidden

layers and an output layer. The hidden layers give the network its power and allow for it

to extract extra features from the input. Figure 2.8 shows a multilayer perceptron with

two hidden layers [Haykin].

29

Rosie‘s
Aim: at» 4%.:

‘l’ ‘l’ “K
‘ \ /\

Input First Second Output

layer ‘ hidden hidden layer

layer layer

Figure 2.8: Multilayer Perceptron

One of the most popular methods used in training a multilayer perceptron is the error

back-propagation method, which includes two passes through each layer of the network:

a forward pass and a backward pass [Haykin].

2.4 Feedforward and Backpropagation

In error back-propagation, there are two types of signal flow. First, signals are

calculated in a forward manner, from left to right, through each layer. These are called

30

function signals. Second, the error at each neuron iS calculated, from right to left, in a

backward manner through each layer. These are called error signals.

—-—> Function signals

4- - -- Error signals

Figure 2.9: Signals in a Multilayer Perceptron

The goal of the error back-propagation method is to make the average squared error of

the entire network as small as possible. Once the function Signals have been calculated,

the error back be back-propagated though the network. The error is calculated using the

local gradient, 5j(,.)[Haykin]. At the error of the output layer, the local gradient is just

defined as:

51°01) = ej (n)¢j 0’} (72)) (2.7)

When calculating the error for a neuron in the hidden layer, the local gradient is defined

as:

5,(n)=¢j,-(v,<n»2 a,(n)w,,.(n) (,8,

31

The weight correction, AWN"), is defined as the learning rate parameter (1]) times the local

gradient (8) times the input signal of the neuron (I):

iji (n) = 77 ' 5]“ (n) ' y: (n) (2.9)

A momentum term is also used in calculating the weight update.

iji (n) = aAWfi (n —' 1) + 775,- (”DC- (n) (2.10)

32

Chapter 3: SimpleScalar

3.1 SimpleScalar

3.1.1 Software Architecture

SimpleScalar has a modular layout. This layout allows for great versatility.

Components can be added or modified easily. Figure 3.1 Shows the software structure for

SimpleScalar. Most of the performance core are optional modules [Austin].

Pr US“ SimpleScalar Program Binary

ograms

Pr /8' . ‘

Infegrfalcl: SimpleScalar ISA I POSIX System Calls

Functional ‘

Core Machine Definition I Proxy Syscall Handler

I BPred Simulator Stats

Core

PCrformérgc: Resource Dlite !

l Cache Loader l Regs Memory

Figure 3.1: SimpleScalar Software Architecture

33

3.1.2 Hardware Architecture

The Hardware architecture of the SimpleScalar Simulator closely follows the Post-

RISC architecture previously described. Figure 3.2 shows the out-of-order pipeline for

the SimpleScalar hardware architecture.

Fetch ._..p Dispatch _. Scheduler.~ Exec I_.Vi’riteback .u Commit

Memory

Scheduler Mem

I-Cache D-Cache
I-TLB -

(1L1) (DLl) D TLB

I-Cache D-Cache

(1L2) (D L2)
\A/

Virtual Memory

Figure 3.2: Out-of-Order Issue Architecture

3.1.3 Instruction Set Architec ture

The instruction set architecture is based on MIPS and DLX [Patterson] instruction set

architectures, with some additional addressing modes [Austin]. It is a “big-endian”

instruction set architecture definition, which allows for easier porting of the simulator to

new hosts since the Simulator is compiled to match the host’s endian. The instructions are

64-bit. Only 48 bits are currently used; the extra 16 bits allow for expansion or research

of instructions.

34

.164mm

16-annote 16-opcode 8-ru 8-rt 8-rs 8-rd

l l
63 48 32 24 16 8 o

Figure 3.3: Instruction Format

3.1.4 Running SimpleScalar

For this thesis, the Out-of-Order execution Simulator will be used. The correct

command-line format for using the out-of-order simulator is as follows: Sim-outorder

<options> <Sim_binary>. The <options> include the branch prediction configuration.

3.1.5 Branch Prediction

SimpleScalar supports a variety of branch prediction methods. It allows for the static

always “taken” and always “not taken” prediction methods. It also has options for the

Two-Level Adaptive Branch Predictors. It supports a Two-bit Predictor referred to as a

bimodal predictor. SimpleScalar even supports a Hybrid predictor, a combination of the

two-level and bimodal predictors, using a metapredictor to choose between the two

predictors. SimpleScalar also utilizes a branch address predictor through Branch Target

Buffer.

The command line option for Specifying the branch predictor is -bpred <type>. The

types are as described in Table 3.1.

35

Table 3.1: Branch Prediction Types

predictor option Description

nottaken always predict not taken

taken always predict taken

perfect perfect predictor

bimod bimodal predictor: BTB with 2-bit counters

21ev two-level adaptive predictor

comb hybrid predictor: combination of 21evel and bimodal

Figure 3.4 shows the Two-level adaptive branch predictor layout.

‘pattem ' 2-bit

hist__size

Figure 3.4: Two-level Predictor Layout

The configuration options for each predictor are described in Table 3.2.

36

Table 3.2: Branch Prediction Options

configuration parameters Description

-bpred:bimod <Size> the size of the direct mapped BTB

-bpred:21ev <llsize>

<l2size> <hist_size>

llsize - the size of the first level table (number of shift

registers)

l2size - the size of the second level table (number of

counters)

hist_size - the history pattern width (width of shift

registers)
 -bpred:comb <Size> The number of entries in the metapredictor table

Table 3.3Shows how specific 2-level design options may be implemented in the

SimpleScalar simulator. Note that each counter has one BTB entry.

Table 3.3: Two-Level Branch Prediction

type llsize lZsize hist_size

counter based 1 m 0

GAg 1 2"w w

GAp l m(m>2"w) w

PAg n 2"w w

PAp n m(m = 2"(N+W)) w

When selecting the hybrid predictor, both the bimod and 21ev configuration options may

be Specified.

3.2 Using the SPEC95 benchmarks

Available with the SimpleScalar simulator are SimpleScalar binaries of the SPEC95

benchmark suite. These binaries are useless without the input files available only by

37

purchasing the license to use the benchmarks. In conjunction with a PERL script, Run.pl,

written by Dirk Grunwald and Artur Klauser, the SPEC95 benchmarks can be run on the

SimpleScalar simulator. This thesis uses the following SPECint95 benchmarks to test the

branch predictors: 099.go, 126.gcc, 130.1i, 134.perl; and the following SPECfp95

benchmarks: 101.tomcatv, 107.mgrid, 145.fpppp. The correct command-line

implementation used by Run.pl for running the SPEC95 benchmarks on the SimpleScalar

architecture is as follows: Sim-outorder <Sim_options> <benchmark_binary>

<benchmark_options> < <input__file> > <output_file>.

38

Chapter 4: Methodology

4.1 Programming the Neural Network

To more easily integrate the ANN code into SimpleScalar, the neural network was

programmed in C. Also, the error subroutines used in the SimpleScalar package were

used in programming the neural network (Specifically thefatal subroutine for run-time

error messages, which are included in the misc.h and misc.c files).

The two files that define the feed-forward back-propagation artificial neural network

code are a header file and a C code file, ffbpannh and ffbpann.c. Three structures were

created to define the overall design of the FFBPANN: bounds, layer and ffbpann. Bounds

iS a simple template of two integers that define the minimum and maximum number that

will be represented as input to the FFBPANN. These values were used to normalize the

inputs. Layer is a more complicated structure that is used in defining the overall

FFBPANN structure. A layer contains a variable of the number of nodes in the layer, an

array for the error calculations of each node, an array for the output calculations of each

node, a multi-dimensional array for the weights, a multi-dimensional array for

saveweights (used during training of the FFBPANN), and a multi-dimensional array of

deltas (used during back-propagation). The FFBPANN structure itself possesses four

variables: the number of layers in the FFBPANN, the momentum, learning rate and

sigmoid function gain (all used for training of the FFBPANN), and the net error

calculated for the ANN. It also has a pointer to the array of input bounds, a pointer to the

39

input layer, a pointer to the output layer, and a pointer to an array of layers (described

above)

Several functions were defined so that the FFBPANN would behave properly.

Create_ffbpann allocates memory for the entire FFBPANN, and ffbpann_free frees up the

memory allocated for the FFBPANN. Init_ffbpann initializes the FFBPANN weights

either to random numbers, or predefined weights (pre-trained values saved in a text file).

Nnet_random is used to calculate the random values used when initializing a weight

matrix. Calc_ffbpann calculates the output of the FFBPANN given the current weight

matrices. Backprop performs the back-propagation algorithm of the FFBPANN, and is

usually followed by the updateweights function, which calculates the new weight values,

based on the recent back-propagation. Restore_weights and save_weights are used during

training to either revert to the last saved weight matrices or save the currently calculated

matrices, depending on how successful the current epoch of training was. Dump_weights

is the function used to write the current weight matrix to a file. The format of this file is

as follows: the bounds for each input node are at the beginning of the file (one pair per

line); each subsequent line contains a weight value starting with the first node of the first

layer, then the second node of the first layer, and continuing until the last node of the last

(output) layer. Train_ffbpann and learn_ffbpann are short sample functions for setting up

training and testing routines.

To accommodate testing and training, small C programs were used as "wrappers" to

the four main files used for the FFBPANN. The layer and node parameters are defined in

the "wrapper" program so that various FFBPANN configurations could be tested.

40

Examples of these programs programs can be found in Appendix B of technical report

MSU-CSE-Ol-22, and are discussed below.

4.2 Verifying the FFBPANN Code

4.2.1 The XOR Problem

To verify that the FFBPANN code was working properly the standard XOR (exclusive

OR) test was used. The XOR test is a very Specific application of a common problem of

a single-layer perceptron. A single-layer perceptron is incapable of classifying input

patterns that are not linearly separable, as is the case in the XOR problem. To overcome

this limitation, a multi-layer neural network is used to classify the XOR inputs as Shown

in Figure 4.1 and Figure 4.2 [Haykin].

41

(0,1) (1,1)

Output: 1

Output: 0

(0.0) Input x] (1.0)

(a)

(0.1) (1.1)

Output: 1

Output = 0

(0.0) Input x] (1.0)

(b)

(0.1) . (1.1)

Output = 0

Output: 0 Output = 1

(0.0) ’ Input x] (1.0)

(c)

(a) Decision boundary constructed by hidden neuron 1 of the network in Figure 1.2.

(b) Decision boundary constructed by hidden neuron 2 of the network.

(c) Decision boundaries constructed by the complete network.

Figure 4.1: XOR Classifications

42

Input Hidden Output

Layer Layer Layer

Figure 4.2: Multi-layer network for solving the XOR Problem

A 2x1 FFBPANN was trained using the very small data set of the XOR function. The

weights were saved in a file and another short program was used to verify that the saved

weights were correct to solve the XOR problem. The training and test files programs can

be found in Appendix B of technical report MSU-CSE-01-22. The output from the testing

file is as follows:

inputs: 0.000000 0.000000 output: 0.000068

inputs: 0.000000 1.000000 output: 0.999886

inputs: 1.000000 0.000000 output: 0.999923

inputs: 1.000000 1.000000 output: 0.000093

4.2.2 Predicting Sunspots

A second test was used to verify that the FFBPANN used for this experiment could

indeed do prediction. A data set of sunspot levels was discovered [Kutza] and was used to

train and test a 10x1 FFBPANN. The inputs to the FFPBANN were the sunspot levels

from the previous 10 years, and the output is the prediction of the sunspot level for the

current year. The code used follows in programs can be found in Appendix B of

technical report MSU-CSE—01-22. The output of the test program follows in Table 4.1.

43

Table 4.1: Sunspots Test Program Output

Year Sunspots Prediction

1960 0.587 0.547

1961 0.282 0.306

1962 0. 196 0.048

1963 0. 146 0.082

1964 0.053 0.183

1965 0.079 0.153

1966 0.246 0.174

1967 0.491 0.454

1968 0.554 0.620

1969 0.552 0.533

1970 0.546 0.431

1971 0.348 0.473

1972 0.360 0.157

1973 0.199 0.209

1974 0.180 0.121

1975 0.081 0.099

1976 0.066 0.047

1977 0.143 0.076

1978 0.484 0.313

1979 0.813 0.615

4.3 Adding a new predictor to SimpleScalar

To add a new predictor to SimpleScalar the following files in the package had to be

modified: bpred.c, bpred.h, sim-outorder.c, sim-bpred.c and the Makefile. The Makefile

was modified so that the extra FFBPANN code was included during compilation. The

modifications to sim—outorder.c and sim-bpred.c accomplished three tasks. Firstly, so that

additional information (variables) would be sent to the branch predictor functions

specifically for use by the FFBPANN predictor; secondly, to define the FFBPANN

predictor command line options and how the predictor is called; and lastly, to display the

usage information for the command line options. The majority of modifications were

made to the bpred.h and bpred.c files. The predictor structure was defined in bpred.h, and

the predictor functions were coded in detail in bpred.c. For more detailed information, see

Appendix C of technical report MSU-CSE-01-22 for the code listing.

The procedure for adding the new predictor was to add another hybrid predictor to the

code so that there existed two hybrid predictors, but the second one possessed a different

name (the FFPBANN predictor). Then, Slowly, code for the 2-level component of the

new hybrid predictor was modified to accommodate the FFPBANN predictor code. See

the code listing in Appendix C of technical report MSU-CSE-01-22 for more detailed

information, and Section 4.4.1 for a discussion of the predictor design.

4.4 The new predictor

4.4.1 Design

The overall structure of the new predictor (the FFBPANN predictor) is similar to the

Combination (or Hybrid) predictor. In the FFBPANN predictor, a two-bit predictor and a

purely artificial neural network predictor are used in combination, with a meta predictor

used to choose between the outputs of the two predictors.

The purely artificial neural network predictor is the feed-forward back-propagating

artificial neural network described in Section 4.1. There are four inputs to the network

and one output. The inputs are the following variables in the SimpleScalar program: the

branch address, the opcode portion of the instruction, and the RS and RT registers. The

single output is the branch target (“taken” or “not taken”). The number of neurons in each

45

layer can be configured at runtime, and there may be from 1 to 4 hidden layers (the input

and output layers are, of course, required). The only prerequisite for selecting a certain

configuration at runtime is that a weights file must exist for the ANN to function. The

format for the file name of the weights file is comprised of the layer configuration

followed by the string “.weights.dump”. For example, a 4x3x2x1 FFBPANN would have

a weights matrix file named 4x3x2x1 . weights . dump. This weights file can be a set

of randomly generated numbers or a set of trained data. It is recommended that a set of

trained data be used. This file can be created using the dump_weights function. The

FFBPANN will adjust, or update, its weights as SimpleScalar runs, and therefore

improve its predictions. Figure 4.3 Shows a simple network diagram of the ANN used in

this scenario.

branch addr I
branch

decision

Input Layer Hidden Output

Of Source Layers Layer

Nodes (3 shown)

Figure 4.3: FFBPANN Structure

4.4.2 Training the FFBAPNN

To obtain a data set to train the FFBPANN for branch prediction, the SimpleScalar

code was modified to output branch information to a file while it ran a simulation. The

46

branch information consists of data available to the branch predictor function that could

be used as input for the FFBPANN (which was the aforementioned branch address, the

opcode portion of the instruction, and the RS and RT registers), and the correct

prediction.

Wrapper programs, discussed in Section 4.1, were written to train and test a weight

matrix using this branch information. The training data was divided into three portions

for training and testing. The first 60% of the data was used for training, the next 30% was

used for testing the progress of the training routines (used to calculate the stopping

criteria for training), and the remaining 10% was reserved exclusively for testing a

trained FFBPANN.

Several different techniques were used for training. This was done to find the quickest

and most efficient way to train the neural network. This was also done because, early on,

the training was not producing a quality branch predictor. Therefore, modifications to the

training data set, varying the training parameters, and modifying the ANN structure were

tried in the hopes of improving the training procedure. The following procedures were

taken to vary the attempts of finding a weight matrix that would classify the inputs.

0 The whole of the raw training data set was used.

0 Modifications to the raw data set were made to reduce the Size of the data set. The most

common entries in the data set — lines that appeared more than 10 times — were extracted.

This was attempted again for lines that appeared only more that 50 times. This left only

single entries in the resulting data set for the most common entries.

47

0 Another attempt to reduce the data set was to pull the same frequently occurring entries,

described above, out of the raw data set; however, this time the total number of

occurrences was reduced by a fraction instead of being reduced to one entry. Now an

entry occurring 10000 times in the raw data set would only occur 10 times in the reduced

data set.

0 The momentum (alpha) and the learning rate (eta) parameters of the FFBPANN were

varied. These values changed only slightly, as the values initially chosen were suitable

for most cases.

0 Different layer structures were tested. The following four FFBPANN configurations

were tried: 4x3x2x1, 4x4x3x1, 4x4x2x1, 4x3x3x1. Though, the 4x3x2x1 structure was

the one most commonly used for training and testing.

48

.1

Chapter 5: Results and Discussion

5.1 Training

The training data was gathered, as described in the previous chapter, by running a

version of SimpleScalar modified to output the branch information (inputs and output) to

a file. Several experiments to train a FFBPANN branch predictor were done using this

data by varying the training Slightly with each training attempt. None of the training

techniques used produced a neural network branch predictor that performed more

effectively than the other branch predictors already used in the SimpleScalar Simulator.

The results of these training attempts are as follows.

The modifications to the raw data sets did not produce better results than the attempts

on the raw data sets described below. The attempt to reduce the data set by extracting

only unique lines from the data would not help since frequently occurring data (i.e. a

pattern for the ANN to pick out) would not be represented. The other reductions of the

data set just pulled out infrequently occurring lines, but did not help in the training

attempts either. The reason for reducing the Size of the data sets was to Speed up training

so that the following two modification to the training procedures could be tried numerous

times.

The attempts to vary the momentum (alpha) and the learning rate (eta) of the

FFBPANN also did not produce satisfactory results. Again, these values only varied

slightly, since the standard momentum and learning rate were used. Changing these

parameters should help Speed up the training procedure (or give it a little boost).

However, since the training was performing poorly, all that these modifications did was

49

assist the training perform poorly faster. However, changing these values had little or no

effect on the outcome, and at worst would cause the training to finish quicker, but with

poorly calculated weights. The testing of these weights never produced satisfactory

predictions.

Surprisingly, changing the layer structure of the FFBPANN had no effect on the

training of the FFBPANN. With the reduced data sets, multiple layer changes could be

tested more frequently. Since training with the full raw data sets would take so long, the

only way to test multiple later options was to use the reduced data sets. None of the four

FFBPANN architectures tested (4x3x2xl, 4x4x3xl, 4x4x2x1, 4x3x3x1) produced

improved training performance or more accurate prediction results.

5.2 Discussion

One oddity to note occurred while gathering the training data. The SimpleScalar code

was modified to write the selected inputs for the FFBPANN to a file. However, the

branch data for every branch was not captured due to a file size limitation of Solaris 2.6.

The maximum file Size turned out to be about 2 Gigabytes (231 bytes). When this

maximum was reached, subsequent branch prediction information was no longer

gathered. The gcc SPEC95 benchmark was the only benchmark for which the full branch

prediction data was gathered. It is significant to note the importance of gathering the gcc

branch information, since gcc performance is used by the industry to gauge its own

improvements to such components as compilers. The limitation on the amount of the

branch information that could be gathered could be a contributing factor for the poor

50

FFBPANN training. Table 5.1 Shows the amount of branch prediction information that

could be gathered.

Table 5.1: Limitations of Branches Recorded

1 13401 1

127421811 16040941 128871

1 1

176241 1314661

Another possible reason for non-convergence of the FFBPANN weights is that the

training data is too chaotic. An ANN is well suited to pick out patterns from the input. In

this situation, no unique patterns exist for the FFBPANN to effectively classify. Even

though the FFBPANN is much more suited to this task than the human eye given the

amount of inputs examined, using the four inputs available to the predictor the

FFBPANN was still unable to recognize any consistency in the data. Table 5.1 shows that

almost every branch examined for the gcc, fpppp, and go benchmarks had a unique

pattern - all four inputs and the branch outcome were different. However, this does not

necessarily prove that the data is too chaotic for the FFBPANN weights to converge,

since when examining the case of the mgrid benchmark, only about 12% of the branches

were unique. However, during training with the full raw data set from the mgrid

benchmark, something very interesting was noticed.

51

A closer look at the training progress using the mgrid data set Shows that the

FFBPANN was behaving almost exclusively as a “branch-alwayS-taken” predictor. This

is Shown in Figure 5.1. While the output never fully reached the value of “1,” it was

extremely close at a maximum value of 0.969877.

1.2

1 A

M

0.8

0.6

0.4

0.2

[+— Output I Expected Outpufl

Figure 5.1: Mgrid Training Progress

52

Figure 5.2: Mgrid Training Error

Another item to note about the mgrid training data is that the majority of the branches

. The training error shown in Figure 5.2 more clearly shows how often the
“taken”

were

(1 27569741 of 1 3401 9707 recordedbranch Should have been “not taken”. About 95%

branches) of the mgrid branch decisions were “taken”. This could definitely account for

why the FFBPANN appeared to be acting as a “branch-always-taken” predictor. Taking a

closer look at the training output shows how quickly the ANN starts behaving this way.

Figure 5.3 zooms in on the beginning of the mgrid training progress.

53

0.98

 0.96

0.94

0.92 -

0.9 ‘

0.88 1

0.86 ~
0.84

 0.82 0.8

'3888:88R“'K’°§R2329““9382'“3’8"
q-v-v-mcvcvsgcoe wrio moaghhhmggmag

[+Output I Expected Output]

Figure 5.3: Mgrid Training Progress Zoom

Table 5.2 examines how frequently the other SPEC95 benchmarks’ branches were

“taken” or “not taken”.

Table 5.2: Branch Data

Branches Gcc fpppp mgrid go

Caken” 30558126 77594080 127569741 84216932

54

Branches Gcc fpppp mgrid go

“not taken” 19820305 50662550 6449966 46225472

Total 5037843 1 128256630 1 34019707 130442404

Percent “taken” 60.66% 60.50% 95.19% 64.56%

Interestingly enough, while training using the gcc and go benchmark data, which have

a more even distribution of “taken” and “not taken” branches (about 61% and 65%,

respectively), the same training error occurred. The ANN8 produced by those training

attempts also performed very closely to a “branch-alwayS-taken” predictor. Figure 5.4

and Figure 5.5 Show the training progress using the gcc and go branch prediction data,

respectively.

55

1.2

0.8

0.6

0.4

0.2

boutput I expected outputj

Figure 5.4: Gcc Training Progress

56

 1.2

 0.8

0.6

0.4

 0.2

 0 = === = = === == == ==_._-— ---

[+0utput I Expected Outpufl

Figure 5.5: Go Training Progress

Overall, it appears that the FFBPANN predictor is defaulting to a purely “branch-

always-taken” predictor since it cannot pick out any patterns in the training data set. One

idea that is not fully discovered from this data is that the predictor is performing as a

branch always predictor because the majority of the branches were “taken”. Since none of

the benchmarks had more exclusively “not taken” branches, it cannot be determined

whether the predictor would perform exclusively as a “branch-always-not-taken”

predictor if there were more “not taken” branches than “taken” branches in the training

data.

57

However, using the Unix command sed, the gcc training data was modified to create

a data set that had more “not taken” branches that “taken” branches. The lines that had a

branch decision of “not taken” were changed to “taken,” and the lines with “taken”

branches were changed to “not taken.” This would effectively give the opposite training

data set. The training procedure was run again. The training progress that was expected

was that the neural network would very quickly start functioning as a “branch-always-

not-taken” predictor. Figure 5.6 shows the true training progress of this “opposite” run.

 1.2

 0.8 A

 0.6 -

0.4 -

Irv-n u w 71”"

 0.2

 I

1 108 215 322 429 536 843 750 857 9641071117812851392149916061713182019272034214122482355246225882676

[+omnut - expectodomputl

Figure 5.6: “Opposite” Gcc Training Progress

The output of the neural network in this case did trend toward behaving as a “branch-

always-not-taken” predictor. The values started high (around 0.7) and tapered off toward

58

0.3. However, it did not reach these values as quickly as the real gcc data trained toward a

“branch—always” predictor. Also, to truly be classified as a “branch-always-not-taken”

predictor the output should be closer to 0 (such as a value of 0.12) - just as the “branch-

always” predictor trained with the true gcc training data had output values much closer to

1 (about 0.97).

5.3 Branch Predictor Results

For completeness, the other branch predictor results gathered are included here. Table

5.3, Table 5.4, and Table 5.5 Show the results for the 2-level, bimodal, and hybrid

predictors, respectively. The number of instructions and branches are, of course, the same

in each case. The prediction rate is calculated from the total number of successful

branches (total branches minus the mispredictions) divided by the total number of

branches.

prediction rate = branches - mispredictions (5.1)

branches

Table 5.3: Branch Predictor Results - 2-1evel

Simulation Instructions Branches Mispredictions Prediction Rate

fpppp 174687565856 2774271287 177200663 0.9361

gcc 253018428 5037843 1 5476501 0.8920

go 32718301958 48281 19436 941659343 0.8050

li 55389884875 13200007732 519133700 0.9607

mgrid 1 10557152489 1444135667 35077426 0.9757

perl 14237817453 27137 14020 19806753 0.9927

59

Table 5.4: Branch Predictor Results - Bimodal

Simulation Instructions Branches Mispredictions Prediction Rate

fpppp 174687565856 2774271287 216288715 0.9220

gcc 253018428 50378431 5476501 0.8913

go 32718301958 4828119436 880996257 0.8175

1i 55389884875 13200007732 1056731094 0.9199

mgrid 1 10557152489 1444135667 36025665 0.9751

perl 14237817476 2713714028 106292585 0.9608

Table 5.5: Branch Prediction Results - Hybrid

Simulation Instructions Branches Mispredictions Prediction Rate

fpppp 174687565856 2774271287 166465777 0.9400

gcc' 253018428 50378431 4699856 0.9067

go 32718301958 48281 19436 848553348 0.8242

11 55389884875 13200007732 513342336 0.961 1

mgrid 110557152489 1444135667 34751699 0.9759

perl 14237817453 2713714020 19742856 0.9927

Unfortunately, results for the FFBPANN predictor are not included, because the

training did not produce a better branch predictor. Since the FFBPANN appears to have

been behaving as a “branch-always-taken” predictor, the prediction rate would be equal

to the percent of “taken” branches in the benchmark. Except for the mgrid benchmark, in

which 95% of the training data were “taken” branches, the prediction rate would be

significantly poorer compared to the other predictors (i.e. about 60%). Even though the

FFBPANN predictor was actually a hybrid predictor — a combination of a bimodal and a

purely neural network predictor - it would have performed at best as well as the bimodal

60

predictor. Effectively, the FFBPANN predictor was a combination of a “branch always”

predictor and the bimodal predictor.

The more common predictors (2-level and bimodal), used in SimpleScalar, employ

much Simpler techniques for branch prediction — i.e., from a software perspective, shift

registers and tables. They perform very well under most conditions — however,

sometimes performance drops drastically, as in the case of the go benchmark. This can be

easily observed in Figure 5.7, and Figure 5.8. These figures graph the predictor data

presented in the preceding tables. Figure 5.7 shows the predictor performance per

predictor. Figure 5.8 displays how the predictors performed in each of the 6 different

SPEC95 simulations.

I fpppp

gcc

go

I li

a mgrid

P
r
e
d
i
c
t
i
o
n
R
a
t
e

 E perl

Figure 5.7: Prediction Rate by Predictor

61

I hybrid

E bimodal

I 2-level

‘ 21'»:,‘ g,'r’j"'51"',‘W~, .1. g v. ..

" ‘ '.....r 9.11.3.2;'&E_:¢rh.mwaml l I l I l l

0.75 0.78 0.8 0.83 0.85 0.88 0.9 0.93 0.95 0.98 1

Figure 5.8: Prediction Rate by Simulation

Figure 5.9 shows the overall predictor performance by averaging the number of correct

predictions over the total number of branches from all the simulations.

62

Figure 5.9: Overall Predictor Performance

63

Chapter 6: Conclusions and Future Work

6.1 Conclusions

From the results, the hybrid, or combination, predictor performs the best. For branch

prediction to benefit from an artificial neural network, it can safely be Stated that a

combination of a purely ANN predictor and another more common predictor (one that

has Shown consistently good results, such as the bimodal or 2-level predictors) is the

proper solution. The fact remains that artificial neural networks' characteristics lend itself

well to prediction. However, in this case, a purely feed-forward back-prOpagation ANN

did not perform well at all. Two tasks exist to continue on with testing the use of artificial

neural networks for branch prediction. In-depth statistical analysis of branch instruction

behavior is needed to determine if another ANN design is better suited for prediction of

microprocessor branches. Also, the inputs used for the ANN Should be examined closer

to determine which inputs Should be used and not used to successfully train the ANN.

6.2 Future Work

6.2.] Other inputs

Further examination of the variables available in SimpleScalar to be used as inputs

Should be done. Certain inputs may not be desirable and others may have been

overlooked. Specifically, the branch address could probably not be used. This prospect

should also be tied to the following area of exploration: the selection of better training

64

methods and use of other ANN designs. By changing or adding new inputs a different

learning method could be used. For example, if previous branch decisions are taken as

inputs, a recurrent learning method could be utilized. Also, variables from previous

branch instructions could be examined and taken as inputs.

6.2.2 Other Neural Networks and Training methods

The methodology used for training in this thesis was fairly Simple, as the focus was to

obtain a working Simulation. Other methods of training the ANN should be explored.

New training methodologies for Artificial Neural Networks are constantly a topic of

research, and new methods may be found that may allow an ANN for branch prediction

to be successful. Other artificial neural network styles should be explored. Statistical

analysis of branch prediction may hint toward another neural network structure that is

better suited for this task. Figure 6.1 shows other learning processes that could be

explored.

Leaming Process

1

I 1

Learning algorithms (rules) Learning paradigms

l j I T l l I I

Error-correction Bolzmann Thorndike's Hebbian Competetive Supervised Reinforcement Self-organized

learning learning law of learning learning learning learning (unsupervised)

effects learning

Figure 6.1: the taxonomy of learning

A recurrent network Should probabtylbe explored. By choosing a recurrent network,

previous branch prediction performance could be taken into account. An example of a

recurrent network is shown in Figure 6.2.

65

+ Output

 l
r
l

 operators

Unit-delay fl

Inputs<

Figure 6.2: Recurrent network

One such recurrent network is a Hopfield network. However, the Hopfield network is

equivalent to an associative memory or content-addressable memory [Haykin]. Because

of this, the Hopfield network might not be the best choice for branch prediction. Since it

is a form of memory — good at retrieving a pattern from memory — and it has been

determined that there not very many recurring patterns in the branch prediction training

data, the Hopfield network may not improve the neural network as a branch predictor.

One limitation of a Hopfield network is that is does not have any hidden neurons. Also,

the Hopfield network cannot beoperated in a supervised manner, which could impede

training of the network.

66

If using a recurrent network is expanded upon (i.e. lifting the two limitations discussed

for Hopfield networks), one learning method that looks promising is Boltzmann

Learning. Taking a stochastic approach to branch prediction seems reasonable, since the

question that this would answer is: “what is the probability that this branch instruction

will be ‘taken’?” Boltzmann learning should probably Operate in the Clamped Condition

Since the visible neurons should be used to supply the network with inputs from the

environment. The Boltzmann learning is a very different learning method from Hebbian

learning Since there is no error-correction learning [Haykin]. Boltzmann learning has

symmetric connections, which allow for two-way communications between neurons. The

weight update function, therefore, becomes a function of correlations:

i, j=1,2,...,N

iji = ”(p; "p;-), i¢ j

In this gradient descent rule, the two averages P;- and p}, are the conditional and

unconditional correlations, respectively, between the states of neuron j and neuron i

[Haykin]. Figure 6.3 shows a basic Boltzmann machine.

67

Hidden neurons

 1

1

r
K
\
A

\ J J

Y Y

Input Neurons Output Neurons

Figure 6.3: Boltzmann Machine

Another option could be to use a Competitive Learning technique. In this manner, two

output neurons, one representing a “taken” decision, and the other representing a “not

taken” decision, would compete for an active, or “on” state. The weight update function

for a competitive network is determined by which neuron wins the competition:

I 77(x, — w .. if neuron j wins the competition

A = . "

l 0 if neuron jloses the competition

Also, it is assumed that the sum of the synaptic weight for a given node is 1:

2w; =1 forallj

A simple possibility for a competitive learning network is shown in Figure 6.4.

68

Figure 6.4: Competitive learning network

6.2.3 BTB

Another way that an ANN could be used to improve branch prediction within the

SimpleScalar architecture would be to use an ANN for address prediction. The ANN in

this thesis was used just for direction prediction (do not take or take the branch).

SimpleScalar has the capability for branch address prediction through the use of a

Branch-Target Buffer. An ANN could be used to enhance the branch address prediction.

6.2.4 State Output

One possibility that was not explored in this thesis is to train the ANN to be a branch

state predictor — using the state of the bimodal or 2—level predictor as the output for

training. While re-examining the code for SimpleScalar, it was determined that the

coding for the bimodal and 2-level predictors determine which state the predictor is in (0,

1, 2, or 3). When the state is 2 or 3, the prediction is “taken”, 0 and 1 are “not taken”.

Instead of recording the 0 or 1 (“not taken” or “taken”) output, the state output could be

gathered with the appropriate inputs. Then, instead of training for the “taken” or “not

taken” output, the predictor state could be trained for. In essence, this would be training

the ANN to be a better bimodal or 2-level predictor.

69

6.2.5 Hardware Feasibility

This thesis did not explore the hardware implementation of ANNS for branch

prediction. However, both Haykin (in his book, Neural Networks: A Comprehensive

Foundation) and Wang (in his dissertation, CMOS VLSI Implementations of a New

Feedback Neural Network Architecture) state that VLSI implementations of ANNS are

possible, and they are good for real time operations like control, Signal processing and

pattern recognition. A 6 neuron ANN would occupy 2.2 x 2.2 mm2 using 2pm n-well

technology. A 50 neuron CMOS analog chip uses 63,025 transistors and occupies 6.8 mm

x 4.6 mm using 211m CMOS n-well technology [Wang]. The 4x3x2x1 ANN discussed in

this thesis uses 10 neurons. In comparison, Intel’s Pentium 4 microprocessor contains 42

millions transistors [Intel]. So, if an ANN as a branch predictor can be successfully

Simulated, a hardware design could be attainable.

7O

BIBLIOGRAPHY

71

[Anderson]

[Austin]

[Austin97]

[Brehob]

[Dazsi]

[Demuth]

[Driesen]

[Emer]

[Haykin]

[Hsieh]

[Intel]

BIBLIOGRAPHY

Anderson, Paul and Gail Anderson. Advanced C Tips and Techniques.

Indianapolis: Hayden Books, 1988.

Austin, Todd and Doug Burger. SimpleScalar Tutorial. [Online]

Available http://www.cs.wisc.edu/~mscalar/ss/tutorial.html, January

1998.

Austin, Todd. A User’s and Hacker’s Guide to the SimpleScalar

Architectural Research Toolset. January, 1997.

Brehob, Mark, Travis Doom, Richard Enbody, William H. Moore,

Sherry Q. Moore,Ron Sass, and Charles Severance. Beyond RISC - The

Post-RISC Architecture. [Online] Available

http://www.egr.msu.edu/~crs/paperS/postrisc2l, August 2, 1999.

Dazsi, Brian, and Richard Enbody. Artificial Neural Networks for

Branch Prediction. MSU-CSE-01-22. Computer Science and

Engineering, Michigan State University, 2001.

Demuth, Howard and MArk Beale. Neural Network Toolbox User’s

Guide. Natick, Massachusetts: The MathWorks, Inc., 1994.

Driesen, Karel and Urs Holzle. Accurate Indirect Branch Prediction. IhQ

25th International Symposium on Computer Architecture. IEEE, Inc.,

1998.

Emer, Joel and Nikolas Gloy. A Languagefor Describing Predictors

and its Application to Automatic Synthesis. The 24th Annual

International Smposium on Computer Architecture. Association for

Computing Machinery Press, 1997.

Haykin, Simon. Neural Networks: A Comprehensive Foundation. New

Jersey: Prentice-Hall, Inc., 1994.

Hsieh, Paul. Sixth Generation CPU Comparisons. [Online] Available

http://www.azillionmonkeys.com/qed/cpuwar.html, August 2, 1999.

Intel Corporation. Micoprocessor Quick Reference Guide. [Online]

Available http://www.intel.com/pressroom/kits/quickrefyr.htm, August

8, 2001.

72

[Kandel]

[Kutza]

[Patterson]

[SimpleScalar]

[Wang]

[West]

[Yeh93]

[Yeh92]

Kandel, Eric; Schwartz, James; and Thomas, Jessell. Essentials of

Neural Science and Behavior. Appleton & Lange. Norwalk,

Connecticut, 1995.

Kutza, Karsten. Neural Networks at Your Fingertips. [Online] Available

http://www.geocities.com/CapeCanaveral/l 624/, July 2,1999.

Patterson, David A. and John L. Hennessy. Computer Architecture A

Quantitative Approach. San Francisco: Morgan Kaufmann Publishers,

Inc., 1996.

The SimpleScalar Architectural Research Tool Set, Version 2.0

[Software] http://www.cs.wisc.edu/~mscalar/Simplescalarhtml

Wang, Yiwen. CMOS VLSI Implementations of a New Feedback

Neural Network Architecture. diSS. Michigan State University, 1991.

West, Patricia M., Patrick L. Brockett, Linda L. Golden. “A

Comparative Analysis of Neural Networks and Statistical Methods for

Predicting Consumer Choice.” Marketing Science, vol.16, no. 4, 1997,

pp.370-391.

Yeh, Tse-Yu and Yale Patt. A Comparison ofDynamic Branch

Predictors that use Two Levels ofBranch History. The 20th Annufl

International Syr_nposium on Computer Architecture. Los Alimitos, CA:

IEEE Computer Society Press, 1993.

Yeh, Tsu-Yu and Yale N. Patt. Alternative Implementations of2-Level

Adaptive Branch Prediction. The 19th Annual International Sflpposium

on Computer Architecture. Association for Computing Machinery, 1992.

73

