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ABSTRACT

AQUATIC ENVIRONMENT MONITORING USING ROBOTIC SENSOR NETWORKS

By

Yu Wang

Aquatic environment has been facing an increasing number of threats from various harmful

aquatic processes such as oil spills, harmful algal blooms (HABs), and aquatic debris. These pro-

cesses greatly endanger the aquatic ecosystems, marine life, human health, and water transport.

Hence, it is of great interest to detect these processes and monitor their evolution such that proper

actions can be taken to prevent the potential risks. This dissertation explores four representative

problems in aquatic environment monitoring, which include diffusion processing profiling, spa-

tiotemporal field reconstruction, aquatic debris surveillance, and water surface monitoring.

First, we propose an accuracy-aware approach to profiling an aquatic diffusion process such

as oil spill. In our approach, the robotic sensors collaboratively profile the characteristics of a

diffusion process including its source location, discharged substance amount, and evolution over

time. In particular, the robotic sensors reposition themselves to progressively improve the profiling

accuracy. We formulate a novel movement scheduling problem that aims to maximize the profiling

accuracy subject to limited sensor mobility and energy budget. To solve this problem, we develop

an efficient gradient-ascent-based algorithm and a near-optimal dynamic-programming-based al-

gorithm.

Second, we present a novel approach to reconstructing a spatiotemporal aquatic field such as

HABs. This approach features a rendezvous-based mobility control scheme where robotic sen-

sors collaborate in the form of a swarm to sense the aquatic environment in a series of carefully

chosen rendezvous regions. We design a novel feedback control algorithm that maintains the de-

sirable level of wireless connectivity for a sensor swarm in the presence of significant environment



and system dynamics. Moreover, information-theoretic analysis is used to guide the selection of

rendezvous regions so that the reconstruction accuracy is maximized subject to the limited sensor

mobility.

Third, we develop a vision-based, cloud-enabled, low-cost, yet intelligent solution to aquatic

debris surveillance. Our approach features real-time debris detection and coverage-based rota-

tion scheduling algorithms. Specifically, the image processing algorithms for debris detection are

specifically designed to address the unique challenges in aquatic environment, e.g., constant cam-

era shaking due to waves. The rotation scheduling algorithm provides effective coverage of spo-

radic debris arrivals despite camera’s limited angular view. Moreover, we design a dynamic task

offloading scheme to offload the computation-intensive processing tasks to the cloud for battery

power conservation.

Finally, we design Samba – an aquatic surveillance robot that integrates an off-the-shelf An-

droid smartphone and a robotic fish for general water surface monitoring. Using the built-in cam-

era of on-board smartphone, Samba can detect spatially dispersed aquatic processes. To reduce

the excessive false alarms caused by the non-water area, Samba segments the captured images and

performs target detection in the identified water area only. We propose a novel approach that lever-

ages the power-efficient inertial sensors on smartphone to assist the image processing. Samba also

features a set of lightweight and robust computer vision algorithms, which detect harmful aquatic

processes based on their distinctive color features.
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Chapter 1

Introduction

1.1 Aquatic Environment Monitoring

Aquatic environment has been facing an increasing number of biological, chemical, and physi-

cal threats from various harmful aquatic processes. The last four decades witnessed more than a

dozen major oil spills with each releasing more than 30 million gallons of oil [70], causing severe

attendant environmental damage. Other harmful aquatic processes such as harmful algal blooms

(HABs) [21], e.g., the HABs occurred on two inland lakes in Wisconsin shown in Figure 1.1(a),

also have disastrous impact on public health and ecosystem sustainability. For example, extensive

HABs have been observed in many Ohio’s inland lakes that supply local drinking water, result-

ing in 41 confirmed cases of health impacts to humans in 2010 [69]. Recently, aquatic debris –

human-created waste found in water environment – has emerged to be another grave environmental

issue. The 2011 Japan tsunami released about one million tons of debris that heads toward North

America [44], and some has drifted to U.S. West Coast as shown in Figure 1.1(b). These harmful

processes pose numerous potential risks to our aquatic environment. It is thus imperative to detect

them and monitor their evolution, and alarm the authorities to take preventive actions.

Current approaches to monitoring aquatic environment fall into four basic categories, i.e., man-

ual spotting (e.g., with handhold devices or via patrol boats [3, 9]), in situ sensing (e.g., with fixed

or buoyed sensors [82]), remote sensing (e.g., balloon-board [46], aircraft [39], and satellite imag-

ing [11, 58]), and AUV-based autonomous sensing [25, 102]. Manual sampling [3, 9] is still a
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(a) (b)

Figure 1.1: Representative harmful aquatic processes: (a) HABs on Lake Mendota (top left) and

Lake Monona (right bottom) in Wisconsin, 1999 [33] (Photo Credit: University of Wisconsin-

Madison and WisconsinView); (b) debris from the Japan tsunami arriving at U.S. West Coast,

2012 [73] (Photo Credit: Scripps Institution of Oceanography).

common practice for small-scale monitoring. However, this method is labor-intensive and diffi-

cult to adapt to the dynamics of aquatic environment. An alternative is in situ sensing with fixed

or buoyed sensors [82]. However, since these sensors cannot move around, it can take a pro-

hibitively large number of them to capture spatially inhomogeneous information. More advanced

methods involve remote sensing technologies, e.g., balloon-board [46], aircraft [39], and satellite

imaging [11, 58]. The former method is only effective for one-off and short-term monitoring of

highly concentrated aquatic processes of interest that have been already detected, and the latter

two often have high operational cost and falls short of monitoring resolution. Robotic technologies

have been making significant progress over the past couple of decades and applied to aquatic en-

vironment monitoring. Autonomous underwater vehicles (AUVs) [25, 102] are notable examples

of such technologies, and have been used for various aquatic sensing tasks. However, AUV-based

platforms often have high manufacturing costs (over $50,000 per unit [83]). In summary, these

limitations make remote sensing and AUV-based approaches ill-suited for monitoring spatially

scattered and temporally evolving aquatic processes.

The advances in computing, communication, sensing, and actuation technologies have made it
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Figure 1.2: Prototype of autonomous robotic fish [96].

possible to create untethered robotic fish with on-board power, control, navigation, wireless com-

munication, and sensing modules, which turn these robots into mobile sensing platforms in aquatic

environment. Figure 1.2 shows a prototype of such platforms [96], which costs around $300. Due

to the low manufacturing cost, these platforms can be massively deployed to form a mobile sen-

sor network that monitors aquatic processes of interest, providing significantly higher spatial and

temporal sensing resolution than the existing monitoring methods. Moreover, a school of robotic

fish can coordinate their sensing and movements through wireless communication enabled by the

on-board ZigBee radio, to adapt to the dynamics of evolution. In Chapters 3 and 4, we will em-

ploy this robotic sensing platform to address diffusion process profiling and spatiotemporal field

reconstruction, respectively.

Recently, mobile sensing based on smartphones has received increasing research interest due

to their rich computation, communication, and storage resources. Figure 1.3 shows a prototype of

smartphone-based robotic sensing platform built with a gliding robotic fish [31] and a Samsung

Galaxy Nexus smartphone. The integrated smartphone and robotic fish assemble a promising

platform for aquatic environment monitoring due to the following salient advantages. The robotic

fish [31] is a low-cost (about $3,000 per unit) aquatic mobile platform with high maneuverability
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Figure 1.3: Prototype of smartphone-based robotic sensing platform [111] that integrates a Sam-

sung Galaxy Nexus smartphone in a water-proof enclosure with a gliding robotic fish [31].

in rotation and orientation maintenance, enabling it to adapt to the dynamic aquatic environment.

Moreover, it has stronger resistance to capsizing than robotic boats (e.g., [23]) due to the enhanced

stability from its bionic design. The on-board cameras of smartphone provide an inexpensive

yet high-resolution sensing modality for detecting the harmful aquatic processes. For example,

HABs, as shown in Figure 1.1(a), can be detected using the phone’s built-in cameras based on their

distinctive colors. Moreover, in addition to camera, a few other sensors such as accelerometer and

gyroscope, which are commonly available on smartphone, can assist the navigation and control of

robotic fish. Second, compared with traditional chemical sensors that measure only one location at

a time, camera has a wider sensing range and provides richer information about the aquatic process

such as color and spatial distribution. Such information is often important for the authorities to

conduct hazard analysis and take contingency measures. Third, current smartphones are capable

of running advanced computer vision (CV) algorithms for real-time image processing. Lastly, the

price of smartphone has been dropping drastically in the past few years. Owing to these features,

the smartphone-based robotic sensor represents an energy-efficient, low-cost, yet intelligent mobile

sensing platform for aquatic environment monitoring. In Chapters 5 and 6, we will explore the

usage of this smartphone-based robotic sensing platform.
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1.2 Contribution of This Dissertation

This dissertation is focused on monitoring aquatic environment using the robotic sensors shown

in Figures 1.2 and 1.3. Specifically, we explore four representative problems, i.e., diffusion

processing profiling in Chapter 3, spatiotemporal field reconstruction in Chapter 4, aquatic de-

bris surveillance in Chapter 5, and water surface monitoring in Chapter 6. We propose several

novel algorithms to address the unique challenges in aquatic environment monitoring, which in-

clude a near-optimal sensor movement scheduling algorithm for diffusion profiling [108, 109], a

rendezvous-based swarm mobility control scheme for field reconstruction [106, 107], CV algo-

rithms for on-water target detection [110, 111], a dynamic task offloading scheme to utilize cloud

computing [111], a sensor fusion scheme that integrates multiple sensing modalities [110], etc. In

particular, this dissertation makes the following major contributions:

1) We propose an accuracy-aware approach to profiling an aquatic diffusion process with robotic

sensor networks. We first derive the analytical profiling accuracy based on the Cramér-Rao

bound (CRB). We then formulate a sensor movement scheduling problem for aquatic diffusion

profiling, where the CRB-based profiling accuracy is maximized under the constraints on sensor

mobility and energy budget. To solve this problem, we develop gradient-ascent-based greedy

and dynamic-programming-based radial movement scheduling algorithms.

2) We propose a novel approach to sampling and reconstructing a spatiotemporal aquatic field

using a robotic sensor swarm. This approach features a rendezvous-based mobility control

scheme. Specifically, a feedback control algorithm maintains the desirable level of wireless

connectivity of the sensor swarm in the presence of significant physical dynamics, and an

swarm movement scheduling algorithm guides the selection of rendezvous regions so that the

reconstruction accuracy can be maximized.
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3) We develop several lightweight CV algorithms, including an image registration algorithm that

mitigates the impact of camera shaking and an adaptive background subtraction algorithm that

reliably detects debris objects, to address the inherent dynamics in aquatic debris detection.

Moreover, we propose a novel approach to dynamically offloading these CV tasks to the cloud.

Lastly, we design a robot rotation scheduling algorithm that minimizes the movement energy

consumption while maintaining a desired level of debris coverage performance.

4) We develop Samba - an aquatic robot that integrates an Android smartphone with a gliding

robotic fish [31] for general water surface monitoring. Moreover, we propose an efficient hybrid

image segmentation approach to identifying the area of interest in an image by combining visual

and inertial sensing. Lastly, we enhance the robot situation awareness with the fusion of various

on-board inertial sensors of smartphone.

1.3 Dissertation Organization

This rest of this dissertation is organized as follows. Chapter 2 reviews the related work in aquatic

environment monitoring. Chapter 3 addresses diffusion process profiling. Chapter 4 studies spa-

tiotemporal field reconstruction. Chapter 5 explores aquatic debris surveillance. Chapter 6 presents

Samba – an aquatic robot designed for water surface monitoring. Chapter 7 concludes this disser-

tation.
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Chapter 2

Related Work

Monitoring aquatic environment using networked sensor systems has recently received increasing

interest. Early work focuses on stationary sensor deployment. In [47], positions of sensors are

selected before real deployment to reduce the uncertainty in reconstructing a spatial physical field

that follows the Gaussian process. However, the proposed algorithms are computationally inten-

sive and hence can only be executed offline. Recently, mobility has been exploited to enhance the

adaptability and sensing capability of sensor systems. In [116], a robotic boat supplements a static

sensor network to reduce the error of field reconstruction, where the boat’s movement is guided

by the measurements of the sensor network. Another study [85] develops active learning schemes

for mobile sensor networks, which plan the movements of mobile sensors based on the feedback

of previous measurements. Heuristic movement scheduling algorithms proposed in [92] estimate

the contours of a physical field. In [114], the movement of mobile sensors is directed to reduce the

uncertainties in estimating the field variables at a set of pre-specified locations. The algorithms de-

veloped for placing stationary sensors in [47] are extended to schedule the movement of a mobile

sensor network in reconstructing a Gaussian process [86]. However, the aforementioned studies

do not account for the constraints of low-power robotic sensors, such as the limited motion, com-

putation, and communication capabilities, and usually adopt complicated numerical optimization,

making them only applicable to a small number (e.g., 3 in [90]) of powerful robots. In this work,

we focus on developing movement scheduling algorithms for moderate- or large-scale mobile net-

works that are composed of inexpensive robotic sensors shown in Figures 1.2 and 1.3. Moreover,
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the previous studies generally focus on the open-loop solutions that often fail to adapt to the highly

complex and dynamic aquatic environment. In contrast, we aim to develop practical and adaptive

wireless communication, sensing, and movement control approaches for mobile sensor systems in

aquatic field reconstruction.

2.1 Diffusion Process Profiling

Most previous work on diffusion process monitoring is based on stationary sensor networks. Sev-

eral estimation techniques are adopted by these studies, which include state-space filtering, statisti-

cal signal processing, and geometric trilateration. The state space approach [81,112] uses discrete

state-space equations to approximate the partial differential equations that govern the diffusion

process, and then applies filtering algorithms such as Kalman filter [81, 112] to profile the diffu-

sion process based on noisy measurements. In the statistical signal processing approach, several

estimation techniques such as MLE [64,103] and Bayesian parameter estimation [117] are applied

to deal with noisy measurements. For example, in [103], an MLE-based diffusion characteriza-

tion algorithm is designed based on binary sensor measurements to reduce the communication

cost. In [117], the parametric probability distribution of the diffusion profile parameters is passed

among sensors and updated with sensor measurements by Bayesian estimation. In geometric trilat-

eration approach [15, 62], the measurement of a sensor is mapped to the distance from the sensor

to the diffusion source. The source location can then be estimated by trilateration among multiple

sensors. Such an approach incurs low computational complexities, but suffers lower estimation

accuracy compared with more advanced approaches such as MLE [15].
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2.2 Spatiotemporal Field Reconstruction

Recently, swarm-based systems have been proposed for various sensing applications. Represen-

tative examples include RoboBee [18] and SensorFly [74]. These studies mainly focus on hard-

ware design and system issues. In contrast, we address the field reconstruction problem using a

robotic sensor swarm. Based on key observations from real data traces of robotic sensors’ wireless

communication and field measurements, we formulate the swarm connectivity control and move-

ment scheduling problems, and solve them using control- and information-theoretic algorithms.

Most previous works on maintaining sensor network connectivity adopt the graph theory [114]

and the potential field theory [30], and assume fixed communication range and reliable commu-

nication quality. However, several studies have revealed significant stochasticity and irregularity

in link quality of low-power wireless sensors [14, 59, 75, 118]. Feedback control has been widely

adopted to improve the adaptability of computing systems [1, 35, 54, 56]. Different from these ex-

isting solutions, our control-theoretic connectivity maintenance algorithm specifically deals with

the dynamics caused by movement of robotic sensor swarm and disturbances from the aquatic en-

vironment. Mobility has been used to improve link quality and preserve network connectivity for

robotic sensor systems. In [100], each robotic sensor moves in the gradient ascent direction of its

received signal strength (RSS). However, the movement scheduling algorithm developed in [100]

considers only a single link. Moreover, to obtain an estimate of RSS gradient, the robotic sensor

has to explore the local area, which increases energy consumption in movements. In Chapter 4,

we propose a feedback-control-based approach that aims to adaptively maintain the network con-

nectivity of a robotic sensor swarm in the presence of various environment and system dynamics.

Our control-theoretic algorithm does not require the energy-consuming exploration in local area.
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2.3 Visual Sensing Applications

Several research efforts have explored the integration of cameras with low-power wireless sensing

platforms. Cyclops [76] integrates a CMOS imager hosted by a MICA2 mote [98] and conducts

object detection using a naive background subtraction method. In [102], a low-end camera module

is installed on an AUV for navigation. SensEye [49] incorporates a Cyclops camera into a Stargate

platform [93] to detect objects at a 128×128 resolution. In [97], a camera module is installed on an

XYZ node [57] for gesture recognition at a resolution of 256×64. These camera-based platforms

can only conduct simple image processing tasks at low resolutions due to their limited computation

capabilities. Recently, mobile sensing based on smartphones has received increasing research

interest due to their rich computation, communication, and storage resources. The study in [115]

designs a driving safety alert system that can detect dangerous driving behaviors using both front-

and rear-facing cameras of a smartphone. In [34], a barcode-based visual communication scheme

is implemented on smartphone. In Chapter 5, we design an aquatic debris surveillance robot that

utilizes the built-in camera, inertial sensors, and other resources on smartphone. Different from

existing vision-based systems, we need to deal with several unique challenges in aquatic debris

monitoring, such as camera shaking and sporadic debris arrivals. Moreover, different from the

previous approaches that typically focus on static cameras, we exploit the controllable mobility

of robot to increase the likelihood of capturing debris objects as well as reduce the miss rate in

covering sporadic debris arrivals.

2.4 Inertial Sensing Applications

Inertial sensing has recently been explored in various mobile sensing applications. In [37], a set

of inertial features are extracted from a phone’s built-in accelerometer and used to identify user’s
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transportation mode. In [105], accelerometer and gyroscope readings are employed to model ve-

hicle dynamics and estimate the device’s position inside the vehicle. In [26], smartphones collab-

oratively detect an earthquake using on-board accelerometer. Fitbit [27] helps track the activity

pattern and sleep quality of the user using acceleration features. The FOCUS system [43] detects

shaken and blurred views during video recording based on measured acceleration. In Chapter 6,

we adopt inertial sensing as an energy-efficient alternative to visual sensing in compute-intensive

image processing tasks.
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Chapter 3

Diffusion Process Profiling

3.1 Introduction

Oil spills and other harmful diffusion processes such as chemical or radiation leaks have disastrous

impact on public health and ecosystem sustainability. When such a crisis arises, an immediate re-

quirement is to profile the characteristics of the diffusion process, including the location of source,

the amount of discharged substance, and how rapidly it spreads in space and evolves over time.

This chapter develops an iterative approach to profiling the diffusion process, including the

location of source, the amount of discharged substance, and how rapidly it spreads in space and

evolves over time, using the robotic fish [96] shown in Figure 1.2. There are several main chal-

lenges, however, in using robotic fish for aquatic sensing. First, due to the constraints on size

and energy, they are typically equipped with low-end sensors whose measurements are subject to

significant biases and noises. Therefore, they must efficiently collaborate in data processing to

achieve satisfactory accuracy in diffusion profiling. Second, practical aquatic mobile platforms are

only capable of relatively low-speed movements. Hence, the movements of sensors must be effi-

ciently scheduled to achieve real-time profiling of the diffusion processes that may evolve rapidly

over time. Third, due to the high power consumption of locomotion, the distance that robotic

sensors move in a profiling process should be minimized to extend the network lifetime.

This chapter makes the following contributions:
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1) We propose a novel accuracy-aware approach for aquatic diffusion profiling based on robotic

sensor networks. Our approach leverages the mobility of robotic sensors to iteratively profile

the spatiotemporally evolving diffusion process.

2) We derive the analytical profiling accuracy of our approach based on the Cramér-Rao bound

(CRB). Then we formulate a movement scheduling problem for aquatic diffusion profiling,

in which the profiling accuracy is maximized under the constraints on sensor mobility and

energy budget. We develop gradient-ascent-based greedy and dynamic-programming-based

radial movement scheduling algorithms to solve the problem.

3) We implement the profiling and movement scheduling algorithms on TelosB motes and evaluate

the system overhead. Moreover, we collect real data traces of GPS localization errors, robotic

fish movement, and wireless communication for evaluation for evaluation.

3.2 Preliminaries

3.2.1 Diffusion Process Model

A diffusion process in a static aquatic environment, by which molecules spread from areas of

higher concentration to areas of lower concentration, follows Fick’s law [60]. In addition to the

diffusion, the spread of the discharged substance is also affected by the advection of solvent, e.g.,

the movement of water caused by the wind. By denoting t as the time elapsed since the discharge

of substance and c as the substance concentration, the diffusion-advection model can be described

as

∂c

∂ t
= Dx ·

∂ 2c

∂x2
+Dy ·

∂ 2c

∂y2
+Dz ·

∂ 2c

∂ z2
−ux ·

∂c

∂x
−uy ·

∂c

∂y
, (3.1)
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where D is the diffusion coefficient, u is the advection speed, and the subscripts of D and u denote

the directions (i.e., x-, y-, and z-axis). The diffusion coefficients characterize the speed of diffusion

and depend on the species of solvent and discharge substance as well as other environment factors

such as temperature. The advection speeds characterize the horizontal solvent movement caused

by external forces such as wind and flow. The above Fickian diffusion-advection model has been

widely adopted to study the spreading of gaseous substances [103] and buoyant fluid pollutants

such as oil slick on the sea [63]. For many buoyant fluid pollutants, the two horizontal diffusion

coefficients, i.e., Dx and Dy, are identical, while the vertical diffusion coefficient, i.e., Dz, is in-

significant. For example, in a field experiment [24], where diesel oil was discharged into the sea,

the estimated Dx is 2,000cm2/s while Dz is only 10cm2/s. Therefore, the vertical diffusion coeffi-

cient can be safely ignored and the diffusion can be well characterized by a 2-dimensional process.

In this chapter, our study is focused on buoyant fluid pollutants with the diffusion coefficients

Dx = Dy = D.

Suppose a total of Acm3 of substance is discharged at location (xs,ys) and t = 0. At time

t > 0, the original diffusion source is drifted to (x0,y0) due to advection, where x0 = xs +uxt and

y0 = ys + uyt. Hereafter, by source location we refer to the source location that has drifted from

the original position due to advection, unless otherwise specified. Denote d(x,y) (abbreviated to

d) as the distance from any location (x,y) to the source location, i.e., d =
√

(x− x0)2 +(y− y0)2.

In the presence of advection, the diffusion is isotropic with respect to the drifted source loca-

tion [16]. Therefore, the concentration at (x,y) can be denoted as c(d, t). The initial condition for

Equation (3.1) is an impulse source, which can be represented by the Dirac delta function, i.e.,

c(d,0) = A ·δ (d). The closed-form solution to Equation (3.1) is given by [103]:

c(d, t) = α · exp
(
−β ·d2

)
, d ≥ 0, t > 0, (3.2)
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(a) Elapsed time t=3.5 s (b) Elapsed time t=18.1 s

Figure 3.1: Observations of the diffusion process of

Rhodamine-B solution in saline water.

0.5

1.5

2.5

3.5

2 5 8 11 14 17 20
Elapsed time t (second)

C
o
n
to

u
r

ar
ea

(c
m

2
)

observed from images
predicted by Eq. (2)

Figure 3.2: Observed and predicted

contour area over time.

where α = A/4πDt and β = 1/4Dt. From Equation (3.2), for a given time instant t, the concen-

tration distribution is described by the Gaussian function that centers at the source location. As

time elapses, the concentration distribution becomes flatter. In this chapter, the diffusion profile is

defined as Θ = {x0,y0,α,β}.

We now validate Equation (3.2) with real lab experiments of Rhodamine-B diffusion. We dis-

charge Rhodamine-B solution in saline water, and periodically capture diffusion process using a

digital camera. We assume that the grayscale of a pixel in the captured image linearly increases

with the concentration at the corresponding physical location [99]. Therefore, the evolution of

diffusion process can be characterized by the expansion of a contour given a certain threshold of

grayscale in the captured images. With the measured contour areas along the recorded shooting

times, we can estimate D by linear regression. Our methodology of model validation is to com-

pare the contour area observed in images with that predicted by the model in Equation (3.2). The

detailed derivations are available in [108, 109]. Figure 3.1 plots the captured images with con-

tours marked in white. Figure 3.2 plots the contour areas observed in images and predicted by

Equation (3.2) versus t. We can see that the model in Equation (3.2) well characterizes the diffu-

sion process of Rhodamine-B. Although we only verify the Fickian diffusion model in small scale,
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this model has also been validated using data traces of the large-scale spreading of buoyant fluid

pollutants, e.g., the oil slick in [63].

3.2.2 Sensor Model

Our approach leverages mobile sensing platforms (e.g., robotic fish [96]) to collaboratively profile

an aquatic diffusion process. The nodes form a cluster, and a cluster head is selected to pro-

cess the measurements from cluster members. The selection of cluster head will be discussed in

Section 3.6.2. Moreover, we will extend our approach to address multiple clusters in Section 3.7.2.

Many aquatic mobile platforms are battery-powered and hence have limited mobility and energy

budget. For example, the movement speed of the robotic fish designed in [96] was about 1.8 to

6m/min. We assume that the mobile nodes are equipped with pollutant concentration sensors

(e.g., the Cyclops-7 series [17]) that can measure the concentrations of crude oil, harmful algae,

etc. Lastly, we assume that the sensors are equipped with low-power wireless interfaces (e.g.,

ZigBee radio) and can communicate with each other on water surface.

The measurements of most sensors are subject to biases and additive random noises from the

sensor circuitry and the environment (e.g., wave). Specifically, the reading of sensor i, denoted

by zi, is given by zi = c(di, t)+ bi + ni, where di is the distance from sensor i to the diffusion

source, bi and ni are the bias and random noise for sensor i, respectively. In the presence of

constant-speed advection, the source and the sensors will drift with the same speed and therefore

they are in the same inertial system. As a result, the concentration at the position of sensor i is

given by c(di, t). We assume that the noise experienced by sensor i follows the zero-mean normal

distribution with variance ς 2, i.e., ni ∼ N (0,ς 2). We assume that the noises, i.e., {ni|∀i}, are

independent across sensors. Such a measurement model has been widely adopted for various

chemical sensors [64, 103, 117]. We assume that the biases and noise variance (i.e., {bi|∀i} and
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ς ) are known constants. For example, they are often given in the sensor specification provided

by the manufacturer. Moreover, they can be measured in offline lab experiments. Specifically, by

placing a sensor in the pollutant-free fluid media, the bias and noise variance can be estimated by

the sample mean and variance over a number of readings [2].

In this chapter, we adopt a temporal sampling scheme to mitigate the impact of noise. When

sensor i measures the concentration, it continuously takes K samples in a short time, and computes

the average as its measurement. Hence, the measurement zi follows the normal distribution, i.e.,

zi ∼ N (c(di, t)+bi,σ
2), where σ 2 = ς 2/K.

3.3 Overview of Approach

In this section, we provide an overview of our approach. Our objective is to profile (i.e., estimate Θ)

of an aquatic diffusion-advection process using a robotic sensor network. Our approach is designed

to meet two key objectives. First, the noisy measurements of sensors are jointly processed to

improve the accuracy in profiling the diffusion. Second, sensors can actively move based on current

measurements to maximize the profiling accuracy subject to the energy consumption budget. With

the estimated profile Θ̃, we can learn several important characteristics of the diffusion process

of interest.1 First, we can compute the current concentration contour maps with Equation (3.2).

Second, we can estimate the elapsed time since the start of the diffusion and the total amount of

discharged substance, with t̃ = (4Dβ̃ )−1 and Ã = πα̃β̃−1. Third, we can estimate the original

source location by x̃s = x̃0 −uxt̃ and ỹs = ỹ0 −uyt̃. Moreover, we can predict the evolution of the

diffusion in the future, which is often important for emergency management in the cases of harmful

substance discharge.

1For the clarity of presentation, we denote x̃ as the estimate of x.
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Figure 3.3: The iterative diffusion profiling process.

We assume that the robotic sensors are initially distributed at randomly chosen positions in the

deployment region that covers the diffusion source. For example, the sensors can be dropped off

from an unmanned aerial vehicle or placed by an aquatic vessel randomly. Note that random and

sometimes uniform deployment of sensors around the source location is a good strategy when the

characteristics of diffusion process have yet to be determined. This also avoids the massive loco-

motion energy required to spread sensors for a satisfactory profiling accuracy when the diffusion

process evolves. We assume that all sensors know their positions (e.g., through GPS or an in-

network localization service) and are time-synchronized. In Section 3.7.3.6, we will evaluate the

impact of initial sensor deployment on the profiling accuracy and locomotion energy consumption.

After the initial deployment, sensors begin a diffusion profiling process consisting of multiple

profiling iterations. The iterative profiling process is illustrated in Figure 3.3. In a profiling iter-

ation, sensors first simultaneously take concentration measurements and send them to the cluster

head. Various existing data collection protocols [53,113] can be used to collect the measurements.

The cluster head then adopts the maximum likelihood estimation (MLE) to estimate Θ from the

noisy measurements of all sensors. With the estimated diffusion profile, the cluster head schedules

sensor movements such that the expected profiling accuracy in the next profiling iteration is max-

imized, subject to the limited sensor mobility and energy budget. Finally, the movement schedule

including moving orientations and distances is sent to sensors to direct their movements.
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Our accuracy-aware diffusion profiling approach features the following novelties. First, it starts

with little prior knowledge about the diffusion and progressively learns the profile of the diffusion

with improved accuracy along the profiling iterations. As sensors resample the concentration in

each iteration, such an iterative profiling strategy allows the network to adapt to the dynamics of

the diffusion process while reducing energy consumption of robotic sensors. Moreover, although

the profiling accuracy in each iteration is affected by errors in sensor localization and movement

control, our approach only schedules short-distance movements for sensors in each iteration and

updates their positions in the next iteration, which avoids the accumulation of errors in sensor

localization and movement control. Second, we analyze the CRB of the MLE-based diffusion pro-

filing algorithm and propose a novel CRB-based profiling accuracy metric, which is used to direct

the movement scheduling of robotic sensors. Third, we propose two novel movement scheduling

algorithms, which include a gradient-ascent-based greedy algorithm and a dynamic-programming-

based radial algorithm. The greedy algorithm only incurs linear complexity, while the radial algo-

rithm can find the near-optimal movement schedule with a higher but still polynomial complexity.

3.4 Profiling Algorithm and Accuracy Analysis

In this section, we first present our MLE-based diffusion profiling algorithm, which estimates the

diffusion profile Θ in each profiling iteration. We then analyze the theoretical profiling accuracy

based on CRB. The closed-form relationship between the profiling accuracy and the sensors’ po-

sitions will guide the design of our accuracy-aware sensor movement scheduling algorithms.
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3.4.1 MLE-Based Diffusion Profiling Algorithm

Suppose that a total of N aquatic sensors are deployed in the region of interest. To simplify the

analysis, we define the bias-removed and normalized observation vector z as

z = [
z1−b1

σ
,
z2 −b2

σ
, . . . ,

zN −bN

σ
]⊤.

As the sensor biases and noise variance are known, z can be easily calculated by the cluster head

based on the noisy sensor measurements. By denoting H = [σ−1e−βd2
1 , . . . ,σ−1e−βd2

N ]⊤, z follows

the N-dimensional normal distribution, i.e., z ∼ N (αH,I), where I is an N ×N identity matrix.

The log-likelihood of an observation z given Θ is expressed by [22]:

L (z|Θ) =−(z−αH)⊤(z−αH). (3.3)

MLE maximizes the log-likelihood given by Equation (3.3). Formally, Θ̃(z) = argmaxΘ L (z|Θ).

This unconstrained optimization problem can be solved by various numerical methods, e.g., the

Nelder-Mead algorithm [65].

3.4.2 Cramér-Rao Bound for Diffusion Profiling

CRB provides a theoretical lower bound on the variance of parameter estimators [22], and has

been widely adopted to guide the design of estimation algorithms [64], [117]. This section derives

the CRB of Θ̃(z). CRB is given by the inverse of the Fisher information matrix (FIM) [22]. For

the diffusion profiling, the FIM is defined by J =−E

[
∂

∂Θ

(
∂

∂ΘL (z|Θ)
)]

= α2 ∂H⊤
∂Θ

∂H
∂Θ , where the

expectation E[·] is taken over all possible z. The kth diagonal element of the inverse of J (denoted

by J−1
k,k ) provides the lower bound on the variance of the kth element of Θ̃ (denoted by Θ̃k) [22].
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Formally, Var(Θ̃k) ≥ J−1
k,k . The number J−1

k,k is the CRB corresponding to Θk, which is denoted as

CRB(Θk) in this chapter. Although the CRB can be easily computed via numerical methods, in

order to guide the movements of sensors, we will derive the closed-form CRB.

Even though J is just a 4×4 matrix, deriving J−1 is challenging, because the N-dimensional

joint distribution function in Equation (3.3) leads to high inter-node dependence. To simplify the

discussion, we set up a Cartesian coordinate system with the origin at the source location and let

(xi,yi) denote the coordinates of sensor i. Note that the coordinates of the diffusion source and

sensor i in the global coordinate system are (x0,y0) and (x0 + xi,y0 + yi), respectively. We apply

matrix calculus to derive the closed-form J and then derive J−1 by block matrix manipulations.

Due to space limitation, the details of the derivations are omitted here and can be found in [108,

109]. To facilitate the representation of CRB, we first define several notations, i.e., x̂i, ŷi, LX1
, LX2

,

LY1
, and LY2

. First, x̂i is given by

x̂i =
∑N

j=1 x j(d
2
j −d2

i )e
−2βd2

j

√
∑N

m=1 ∑N
n=1(d

2
m−d2

n)
2e−2β (d2

m+d2
n)
. (3.4)

By replacing x j in Equation (3.4) with y j, we can define ŷi in a similar manner. Moreover, LX1
,

LY1
are 1 × N vectors, and LX2

, LY2
are N × 1 vectors. The ith elements of them are defined

as LX1
(i)=σ−1e−βd2

i (xi+x̂i), LY1
(i)=σ−1e−βd2

i (yi+ŷi), LX2
(i)=σ−1e−βd2

i (xi−x̂i), and LY2
(i)=

σ−1e−βd2
i (yi−ŷi). Based on the above notations, the CRBs for the estimates of x0 and y0 are given
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the number of samples for computing a measurement.

by

CRB(x0) = F−1
1,1 =

(4α2β 2)−1

LX1
LX2

− (LX1
LY2

+LX2
LY1)

2

4LY1
LY2

, (3.5)

CRB(y0) = F−1
2,2 =

(4α2β 2)−1

LY1
LY2

− (LX1
LY2

+LX2
LY1)

2

4LX1
LX2

. (3.6)

We now discuss how well the CRBs can characterize the MLE-based profiling algorithm dis-

cussed in Section 3.4.1. As shown in [38], the variance of a parameter estimated by MLE converges

to its CRB when the number of sensors N approaches infinity. We now evaluate the convergence

under realistic settings of N. Figure 3.4 shows Var(x0) and CRB(x0) versus N, where the sensors

are randomly deployed in a 200× 200m2 region. We can see that Var(x0) approaches CRB(x0)

as N increases. Moreover, we evaluate the impact of sensor sampling scheme on the convergence.

Note that sensor’s signal-to-noise ratio (SNR) increases with the number of samples K. We can

see that MLE shows better convergence for larger K. For example, if K=10 and N≥10, the dif-

ference between Var(x0) and CRB(x0) is insignificant. These results show that the CRB can well

characterize the accuracy of the MLE-based profiling algorithm under realistic setting of network

size.
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3.4.3 Profiling Accuracy Metric

In this section, we propose a novel diffusion profiling accuracy metric based on the CRBs derived

in Section 3.4.2, which will be used to guide the movements of sensors in Section 3.5. Several

previous works [90] adopt the determinant of the FIM as the accuracy metric, which jointly con-

siders all the parameters. Such a metric requires the parameters to be properly normalized to avoid

biases. However, normalizing the parameters with different physical meanings is highly problem-

dependent. Moreover, as the closed-form determinant of the FIM is extremely complicated, the

resulted sensor movement scheduling has to rely on the numerical methods with high computa-

tional complexities [90], which is not suitable for robotic sensors with limited resources. In this

chapter, we propose a new profiling accuracy metric, denoted by ω , which is defined according to

the sum of reciprocals of CRB(x0) and CRB(y0). Formally,

ω =

1
CRB(x0)

+ 1
CRB(y0)

4α2β 2
=(1−ε)(LX1

LX2
+LY1

LY2
) , (3.7)

where ε =
(LX1

LY2
+LX2

LY1)
2

4LX1
LX2

LY1
LY2

. By adopting reciprocals, the accuracy analysis can be greatly simpli-

fied. Note that as α and β are unknown but fixed in a particular profiling iteration, 4α2β 2 in the

denominator of Equation (3.7) is a scaling factor. Therefore, optimizing 1/CRB(x0)+1/CRB(y0)

is equivalent to optimizing ω . As discussed in Section 3.4.1, we adopt the MLE to estimate Θ.

The variance of the MLE result converges to CRB and hence a larger ω indicates more accurate

estimation of x0 and y0. With the metric ω , the movements of sensors will be directed according

to the accuracy of localizing the diffusion source. In the rest of this chapter, the term profiling ac-

curacy refers to the metric ω defined in Equation (3.7). Note that our approach can also be applied

to focus on the profiling accuracy of the elapsed time t and discharged substance amount A, by

applying the same matrix manipulations to obtain CRB(α) and CRB(β ).
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3.4.4 Approximated Profiling Accuracy

The profiling accuracy metric ω proposed in Section 3.4.3 can characterize the profiling perfor-

mance. However, its expression given by Equation (3.7) is still too complex to find efficient move-

ment scheduling algorithms. Hence, we derive the approximation to Equation (3.7). If sensors are

randomly distributed around the diffusion source, ε is close to zero. By assuming a random sensor

distribution and setting ε = 0, the ω can be approximated as:

ω ≈ ∑
N

i=1
ωi, ωi=σ−2e−2βd2

i

(
d2

i − min
j∈[1,N], j 6=i

d2
j

)
, (3.8)

where ωi can be regarded as the contribution of sensor i to the overall profiling accuracy. As ωi

depends on di and the minimum distance to the source from other sensors, Equation (3.8) highly

reduces the inter-node dependence compared with Equation (3.7). Note that the approximation

error (i.e., ω −∑N
i=1 ωi) can be easily calculated by the cluster head with the movement schedule.

We now evaluate the above approximation by Monte Carlo method. We define the relative

approximation error as |ω −∑N
i=1 ωi|/ω . In the Monte Carlo simulations, we generate a large

number of deployments over a disc region with radius of 100m. In each deployment, sensors are

randomly distributed and we then calculate the relative approximation error. Figure 3.5 shows the

cumulative distribution function (CDF) and the average of the relative approximation error given

24



different number of sensors. We can see that the average relative approximation error is only 10%

when 20 sensors are deployed. This approximation assumes that the deployment region is centered

at the diffusion source. In Section 3.7.3.5, we will evaluate the case where the deployment region

is biased from the diffusion source.

3.5 Diffusion Process Profiling using Robotic Sensors

In this section, we formally formulate the movement scheduling problem. Because of the limited

mobility and energy budget of aquatic mobile sensors, the sensor movements must be efficiently

scheduled in order to achieve the maximum profiling accuracy. As the power consumption of

sensing, computation and radio transmission is significantly less than that of locomotion [96], in

this chapter we only consider the locomotion energy. Moreover, as the locomotion energy is ap-

proximately proportional to the moving distance [7], we will use moving distance to quantify the

locomotion energy consumption. To simplify the motion control of sensors, we assume that a

sensor moves straight in each profiling iteration and the moving distance is always multiple of l

meters, where l is referred to as step. We note that this model is motivated by the locomotion

and computation limitation typically seen for aquatic sensing platforms. First, the locomotion

of robotic fish is typically driven by closed-loop motion control algorithms, resulting in constant

course-correction during movement. Second, each profiling iteration has short time duration. As

a result, the assumption of sensor’s straight movement in an iteration does not introduce signif-

icant errors in the movement scheduling. As the estimation and movement are performed in an

iterative manner, we will focus on the movement scheduling in one profiling iteration. Denote

mi ∈Z
+ and φi ∈ [0,2π) as the number of steps and movement orientation of sensor i in a profiling

iteration, respectively. Our objective is to maximize the expected profiling accuracy after sensor
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movements, subject to the constraints on total energy budget and sensor’s individual energy bud-

get. The movement scheduling problem for diffusion profiling is formally formulated as follows.

Suppose that a total of M steps can be allocated to sensors and sensor i can move at most Li meters

in a profiling iteration. Find the allocation of steps and movement orientations for all N sensors,

i.e., {mi,φi|i ∈ [1,N]}, such that the profiling accuracy ω (defined by Equation (3.7)) after sensor

movements is maximized, subject to:

N

∑
i=1

mi ≤ M, (3.9)

mi · l ≤ Li, ∀i. (3.10)

Equation (3.9) upper-bounds the total locomotion energy in a profiling iteration. Equation (3.10)

can be used to constrain the energy consumption of individual sensors. For example, Li can be

specified according to the sensor’s residual energy. Moreover, Li can also be specified to ensure

the delay of a profiling iteration. If sensors move at a constant speed of vm/s and a profiling it-

eration is required to be completed within τ seconds to achieve the desired temporal resolution of

profiling, Li can be set to Li = v · τ . As discussed in Section 3.3, the cluster head adopts MLE

to estimate Θ, and then schedules the movements of sensors such that the expected ω in the next

profiling iteration is maximized, subject to the constraints in Equations (3.9) and (3.10). An ex-

haustive search to the above problem would yield an exponential complexity with respect to N,

which is O(( 2π
φ0

· Li
l
)N) where φ0 is the granularity in searching for the movement orientation. Such a

complexity is prohibitively high as the problem needs to be solved in each profiling iteration by the

cluster head. In the next section, we will propose an efficient greedy algorithm and a near-optimal

radial algorithm that are feasible to mote-class sensor platforms.
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3.6 Sensor Movement Scheduling Algorithms

In this section, we propose an efficient greedy movement scheduling algorithm based on gradient

ascent and a near-optimal radial algorithm based on dynamic programming to solve the problem

formulated in Section 3.5. In both scheduling algorithms, sensors move simultaneously according

to a movement schedule. In comparison with the strategy where sensors move sequentially, our

scheme adapts to the spatiotemporally evolving process, improving the temporal resolution of

profiling.

3.6.1 Greedy Movement Scheduling

Gradient ascent is a widely adopted approach to find a local maximum of a utility function. In

this chapter, we propose a greedy movement scheduling algorithm based on the gradient ascent

approach. We first discuss how to determine the movement orientations for the sensors. Since

the profiling accuracy ω given by Equation (3.7) is a function of all sensors’ positions, we can

compute the gradient of ω with respect to the position of sensor i (denoted by ∇iω), which is

formally given by ∇iω =
[

∂ω
∂xi

, ∂ω
∂yi

]⊤
. When all sensors except sensor i remain stationary, the

metric ω will increase the fastest if sensor i moves in the orientation given by ∇iω . Therefore,

in the greedy movement scheduling algorithm, we let φi = ∠(∇iω). Note that sensors will move

simultaneously when the movement schedule is executed. We now discuss how to allocate the

movement steps. The magnitude of ∇iω , denoted by ‖∇iω‖, quantifies the steepness of the metric

ω when sensor i moves in the orientation∠(∇iω) while other sensors remain stationary. Therefore,

in the greedy algorithm, we propose to proportionally allocate the movement steps according to

sensor’s gradient magnitude. Specifically, mi is given by mi = min
{⌊

‖∇iω‖
∑N

i=1 ‖∇iω‖ ·M
⌋
,
⌊

Li

l

⌋}
. Note

that the
⌊

Li

l

⌋
in the min operator satisfies the constraint Equation (3.10). This greedy algorithm has
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linear complexity, i.e., O(N), which is preferable for the cluster head with limited computational

resource.

3.6.2 Radial Movement Scheduling

In this section, we propose a new movement scheduling algorithm based on the approximations

discussed in Section 3.4.4. From Equation (3.8), the contribution of sensor i, ωi, depends on the

minimum distance between the cluster head and other sensors. Because of such inter-node de-

pendence, it is difficult to derive the optimal distance for each sensor that maximizes the overall

profiling accuracy ω . It can be shown that the problem involves non-linear and non-convex con-

strained optimization. Several stochastic search algorithms, such as simulated annealing, can find

near-optimal solutions. However, these algorithms often have prohibitively high complexities. In

our algorithm, we fix the sensor closest to the estimated source location and only schedule the

movements of other sensors in each profiling iteration. As the sensor closest to the source receives

the highest SNR, moving other sensors will likely yield more performance gain. Moreover, this

sensor can serve as the cluster head that receives measurements from other sensors and computes

the movement schedule. It is hence desirable to keep it stationary due to its higher energy con-

sumption in computation and communication. We note that the sensor closest to the source may

be different in each iteration after sensor movements, resulting in rotation of cluster head among

sensors. By fixing the sensor closest to the source, the distance di that maximizes the expected ωi,

denoted by d∗
i , can be directly calculated by

d∗
i =

√
1

2β
+ min

j∈[1,N]
d2

j , ∀i 6= argmin
j∈[1,N]

d j. (3.11)
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Note that as β is a time-dependent variable, d∗
i also changes with time and hence should be updated

in each profiling iteration. Equation (3.11) allows us to easily determine the movement orientation

of sensor i. Specifically, if di > d∗
i , sensor i will move toward the estimated source location;

otherwise, sensor i will move in the opposite direction. Formally, by defining δ = sgn(d∗
i −di), we

can express the movement orientation of sensor i as φi = ∠([δ · xi,δ · yi]
⊤).

We now discuss how to allocate the movement steps. In the rest of this section, when we refer

to sensor i, we assume sensor i is not the closest to the estimated source location. After sensor i

moves mi steps in the orientation of φi, its contribution to the overall profiling accuracy is

ωi(mi) =
(di +δ ·mi · l)2−min j∈[1,N] d

2
j

σ 2 · e2β (di+δ ·mi·l)2
, (3.12)

where min j∈[1,N] d
2
j in Equation (3.12) is a constant for sensor i, and β can be predicted based on

its current estimate to capture the temporal evolution of the diffusion, i.e., β = (1/β̃ +4 ·D · τ)−1.

Given the radial movement orientations described earlier, the formulated problem is equivalent to

maximizing ∑i ωi(mi) subject to the constraints Equations (3.9) and (3.10), which can be solved

by a dynamic programming algorithm as follows.

We number the sensors by 1,2, . . . ,N −1, excluding the sensor closest to the estimated source

location. Let Ω(i,m) be the maximum ω when the first i sensors are allocated with m steps. The

dynamic programming recursion that computes Ω(i,m) can be expressed as

Ω(i,m) = max
0≤mi≤⌊Li/l⌋

{Ω(i−1,m−mi)+ωi(mi)} .

The initial condition of the above recursion is Ω(0,m) = 0 for m ∈ [0,M]. According to the above

equation, at the ith iteration of the recursion, the optimal value of Ω(i,m) is computed as the
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maximum value of ⌊Li/l⌋ cases which have been computed in previous iterations of the recursion.

Specifically, for the case where sensor i moves mi steps, the maximum profiling accuracy ω of

the first i sensors allocated with m steps can be computed as Ω(i− 1,m−mi) +ωi(mi), where

Ω(i− 1,m−mi) is the maximum ω of the first i− 1 sensors allocated with m−mi steps. The

maximum overall profiling accuracy is given by ω∗ = maxm∈[1,M]Ω(N −1,m).

We now describe how to construct the movement schedule using the above dynamic program-

ming recursion. The movement schedule of sensor i is represented by a pair (i,mi). For each

Ω(i,m), we define a movement schedule S(i,m) initialized to be an empty set. The set S(i,m)

is filled incrementally in each iteration when Ω(i,m) is computed. Specifically, in the ith itera-

tion of the recursion, if Ω(i−1,m−mx)+ωi(mx) gives the maximum value among all cases, we

add a movement schedule (i,mx) to S(i,m). Formally, S(i,m)=S(i−1,m−mx)∪{(i,mx)}, where

mx= argmax0≤mi≤⌊vτ/l⌋ {Ω(i−1,m−mi)+ωi(mi)}. The dynamic programming complexity is

O
(
(N −1)M2

)
, where N and M are the number of sensors and allocatable movement steps in a

profiling iteration, respectively.

3.7 Performance Evaluation

3.7.1 Evaluation Methodology

We evaluate our approach through a combination of hardware experiments and extensive trace-

driven simulations. Specifically, we implement the MLE, greedy and radial algorithms on TelosB

mote platform and evaluate their computation overhead. The results are presented in Section 3.7.2,

and provide insight into the feasibility of adopting the proposed profiling algorithms on mote-class

robotic sensing platforms. Moreover, we evaluate the proposed profiling algorithms in extensive

simulations based on real data traces and present the results in Section 3.7.3.

30



3.7.2 Overhead on Sensor Hardware

We have implemented the MLE and two movement scheduling algorithms in TinyOS 2.1.1 on

TelosB platform [98] equipped with an 8MHz processor. Note that these algorithms are exe-

cuted on the cluster head. We ported the C implementation of the Nelder-Mead algorithm [65]

in GNU Scientific Library (GSL) [32] to TinyOS to solve the optimization problem in MLE (see

Section 3.4.1). The porting is non-trivial because dynamic memory allocation and function pointer

are extensively used in GSL while these features are not available in TinyOS. Our implementa-

tion of MLE requires 19KB ROM and 1KB RAM. When 10 sensors are to be scheduled, the two

movement scheduling algorithms require 1KB and 8.8KB RAM, respectively. Figure 3.6 plots the

average execution time of the MLE, greedy and radial algorithms versus the number of sensors.

We note that the complexity of MLE is O(N). For both movement scheduling algorithms, the exe-

cution time linearly increases with N, which is consistent with our complexity analysis. The radial

algorithm takes about 100 seconds to compute the movement schedule in a profiling iteration when

N = 20. This overhead is reasonable compared with the movement delay of low-speed mobile sen-

sors. The greedy algorithm is significantly faster, and hence provides an efficient solution when

the timeliness is more important than profiling accuracy. For the radial algorithm, 30% execution

time is spent on computing a look-up table consisting of each sensor i’s contribution, i.e., ωi(mi)

in Equation (3.12), given all possible values of mi. There are several ways to further reduce the

computation overhead. First, our current implementation employs extensive floating-point compu-

tation. Our previous experience shows that fixed-point arithmetic is significantly more efficient on

TelosB motes. Moreover, we can also adopt more powerful sensing platforms as cluster head in

the network. For example, the projected execution time on Imote2 [98] equipped with a 416MHz

processor is within 2seconds for computing the movement schedule for 20 sensors.
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We note that the complexity of radial algorithm is O(N3), which can jeopardize the timeliness

of periodical profiling when more sensors are deployed. To reduce the computation delay, in

this chapter we adopt a simple clustering method by randomly assigning N nodes to p clusters.

The average of the profiling results of all clusters is yielded as the final result. The complexity

for a cluster reduces to O(N3/p3). Figure 3.7 plots the execution time and profiling accuracy of

the radial approach when the network is divided into p clusters. The left y-axis is the ratio of

execution time for p clusters with respect to the case of a single cluster. We can see that both the

execution time and profiling accuracy decrease with p. This is because simply averaging results

from all clusters does not fully account for the inter-cluster dependence in the accuracy of dynamic

programming. Nevertheless, the radial algorithm of 2 and 3 clusters still outperforms the greedy

algorithm of a single cluster in profiling accuracy.

3.7.3 Trace-Driven Simulations

3.7.3.1 Trace Collection

We collect three sets of data traces, which include GPS localization errors, robotic fish movement,

and on-water ZigBee wireless communication. First, the data traces of GPS error are collected
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using two Linx GPS modules [55] in outdoor open space. We extract the GPS error by comparing

the distance measured by GPS modules with the groundtruth distance. The average GPS error is

2.29meters. Second, the data traces of movement control are collected with a robotic fish devel-

oped in our lab [96] (see Figure 1.2). The movement of robotic fish is driven by a servo motor

that is controlled by continuous pulse-width modulation waves. By setting the fish tail beating

amplitude and frequency to 23◦ and 0.9Hz, the movement speed is 2.5m/min. We then have the

fish swim along a fixed direction in an experimental water tank, and derive the real speed by di-

viding the moving distance by elapsed time. Third, the data traces of ZigBee communication are

collected with two IRIS motes [98] by measuring the packet reception rate (PRR) of a single link.

The details of PRR trace collection are omitted here and can be found in Section 4.3.1.

3.7.3.2 Simulation Settings and Methodologies

We conduct extensive simulations based on collected data traces to evaluate the effectiveness of our

approach. The simulation programs are written in Matlab. As discussed in Section 3.2.2, the effect

of constant-speed advection is canceled because the sensors and source location are in the same

inertial system. Therefore, we only simulate the diffusion process without advection. The diffusion

source is at the origin of the coordinate system, i.e., x0 = y0 = 0. The sensors are randomly

deployed in the square region of 200×200m2 centered at the origin. The reading of a sensor is set

to be the sum of the concentration calculated from Equation (3.2), the bias bi, and a random number

sampled from the normal distribution N (0,ς 2). Without loss of generality, we assume that the

bias bi is zero in the simulations. As discussed in Section 3.2.2, in each profiling iteration, a sensor

samples K readings and outputs the average of them as the measurement. The amount of discharged

substance is set to be A = 0.7× 106 cm3 (i.e., 0.7m3) unless otherwise specified. The diffusion

coefficient is set to be D = 5,000cm2/s. Note that the settings of A and D are comparable to the
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real field experiments reported in [24] where 2 to 5m3 of diesel oil were discharged into the sea and

the estimated diffusion coefficient ranged from 2,000cm2/s to 7,000cm2/s. The noise standard

deviation is set to be ς = 1cm3/m2, i.e., 1cm3 discharged substance per unit area.2 To easily

compare various movement scheduling algorithms, we let the first profiling iteration always start at

t = 1800s, i.e., half an hour after the discharge. At t = 1800s, the average received SNR is around

10/1. The rationale of this setting is that moving sensors too early (i.e., at low SNRs) leads to little

improvement on profiling accuracy, resulting in waste of energy. In practice, various approaches

can be applied to initiate the profiling process, e.g., by comparing the average measurement to a

threshold that ensures good SNRs. Other settings include step length l = 0.5m, profiling iteration

duration τ = 60s, sensor movement speed v = 2.5m/min and number of sampling K = 2, unless

otherwise specified.

We now discuss how the real data traces are used in the simulations. We compare the perfor-

mance of the greedy and radial algorithms with and without the data traces of movement and local-

ization errors. If the movement/localization traces are used, the movement speed of a robotic sensor

in the simulation is set to be the real speed that is randomly selected from the movement data traces,

and the position reading sent to the cluster head is corrupted by a localization error that is randomly

selected from the GPS error traces. The simulation results with movement/localization traces pre-

sented in Section 3.7.3.3 to 3.7.3.6 are labeled with the prefix “trace-driven”. In Section 3.7.3.7, to

evaluate the communication overhead of our approach, the PRR of a link in the simulation is set to

be the distance-based interpolation of real PRR measurements shown in Figure 4.3.

We compare our approach with two additional baseline algorithms in the evaluation. The first

baseline (referred to as SNR-based) schedules the movements based on the SNRs received by

2As we adopt a 2-dimensional model to characterize the diffusion process, the physical unit of concentration is

cm3/m2. As observed in the field experiments [24], diesel oil can penetrate down to several meters from the water

surface. As a result, the equivalent ς that accounts for the depth dimension ranges from 0.1cm3/m3 to 1cm3/m3. Our

setting is consistent with the noise standard derivation of the crude oil sensor Cyclops-7 [17], which is 0.1cm3/m3.
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Figure 3.8: Movement trajectories of 20 sensors in the first 15 profiling iterations.

sensors. The SNR received by sensor i (denoted by SNRi) is defined as c(di, t)/σ , where di and t

can be computed from the estimated profile Θ̃. In the SNR-based scheduling algorithm, the sensors

always move toward the estimated source location to increase the received SNRs. The movement

steps are proportionally allocated according to sensors’ SNRs. The rationale behind this heuristic

is that the accuracy of MLE increases with SNR. The second baseline (referred to as annealing)

is based on the simulated annealing. For given movement orientations {φi|∀i}, it uses the brutal-

force search to find the optimal step allocation under the constraints in Equations (3.9) and (3.10).

It then employs a simulated annealing algorithm to search for the optimal movement orientations.

However, it has exponential complexity with respect to the number of sensors.

3.7.3.3 Sensor Movement Trajectories

We first visually compare the sensor movement trajectories computed by the greedy and radial

movement scheduling algorithms. A total of 20 sensors are deployed. Figure 3.8 shows the move-

ment trajectories of sensors in the first 15 profiling iterations. For a particular sensor, the circle

denotes its initial position, the segments represent its movement trajectory of 15 profiling itera-

tions, and the arrow indicates its movement orientation in the 15th iteration. The sensor with no
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segments remains stationary during all 15 profiling iterations. We can see that, with the greedy

algorithm, several sensors (e.g., sensor 15, 16, and 17) have bent trajectories. This is because the

movement orientation of each sensor is to maximize the gradient ascent of ω , hence not necessarily

to be aligned along the iterations. In the radial algorithm, sensors’ trajectories are more straight.

This is because the movement orientation is along the direction determined by the current sensor

position and the estimated source location that is close to the true source location. Moreover, we

find that the radial algorithm outperforms the greedy algorithm in terms of profiling accuracy after

the first 15 iterations. In the greedy algorithm, the orientation assignment and movement step allo-

cation are based on the gradient derived from the current positions of sensors. Besides, the greedy

algorithm does not account for the interdependence of sensors in providing the overall profiling

accuracy. As a result, its solution may not lead to the maximum ω after the sensor movements and

the temporal evolution of diffusion.

3.7.3.4 Profiling Accuracy

In the second set of simulations, we evaluate the accuracy in estimating the diffusion profile Θ.

Total 10 sensors are deployed and our evaluation lasts for 15 profiling iterations. Figure 3.9 plots

the profiling accuracy ω (defined in Equation (3.7)) based on the estimated diffusion profile Θ̃. The

curve labeled with “stationary” is the result if all sensors always remain stationary. Nevertheless,

we can see that the profiling accuracy improves over time because of the temporal evolution of the

diffusion. For both greedy and radial, the curves with and without simulated movement control and

localization errors almost overlap with each other. As our iterative approach has no accumulated

error, small movement control and localization errors have little impact on our approach. The

radial algorithm outperforms the greedy and SNR-based algorithms by 16% and 50% in terms of

ω at the 15th profiling iteration, respectively. And the accuracy performance of the radial algorithm
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is very close to the annealing algorithm that can find the near-optimal solution. However, we note

that in each iteration of the annealing algorithm, a new look-up table needs to be computed due

to changed movement orientations. Hence its execution time highly depends on the number of

iterations that can be very large. Therefore, the annealing algorithm is infeasible on mote-class

platforms.

Figure 3.10 plots the average of Var(x̃0) and Var(ỹ0) in each profiling iteration under various

settings of the discharged substance amount A. In order to evaluate the variances in each profiling

iteration, the sensors perform many rounds of MLE, where each round yields a pair of (x̃0, ỹ0). The

Var(x̃0) and Var(ỹ0) are calculated from all rounds. From Figure 3.10, we find that the variances

may increase (for the SNR-based scheduling algorithm) or fluctuate (for other approaches) after

several iterations. This is because the variances are time-dependent due to the involving of α and

β in CRB(x0) and CRB(y0). Moreover, we can see that the variances decrease with A. As sensors

receive higher SNRs in the case of higher A, our result consists with the intuition that the estimation

error decreases with SNR. Compared with the SNR-based algorithm, the radial algorithm reduces

the variance in estimating diffusion source location by 36% for A = 0.7× 106 cm3. Compared

with the greedy algorithm, the reductions are 12% and 18% for A = 0.7×106 and 1.4×106 cm3,

respectively.
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The MLE algorithm also estimates the initial substance amount A and elapsed time t. There-

fore, we additionally evaluate the performance of our movement scheduling algorithms on profil-

ing A and t. Figure 3.11 plots t̃ versus the groundtruth time. We can see that the elapsed time

can be accurately estimated. For example, the relative error of t̃ for radial algorithm is only 1.0%.

Figure 3.12 plots the relative error of Ã, which is calculated as |(Ã−A)/A|. We can see that both the

radial and greedy algorithms give comparable profiling performance with the annealing algorithm.

The relative error is less than 1.4%. Moreover, the result shows that the greedy algorithm achieves

a slightly better profiling performance than the radial algorithm. As discussed in Section 3.4.3,

the accuracy metric adopted in this chapter is defined to characterize the accuracy of localizing

the diffusion source. Therefore, it is possible that radical algorithm yields larger error than greedy

algorithm in profiling A.

3.7.3.5 Sampling Scheme, Source Bias, and Network Density

We characterize the profiling error after 15 iterations by the average of Var(x̃0) and Var(ỹ0). Except

for the evaluations on network density, a total of 10 sensors are deployed. In the temporal sampling

scheme presented in Section 3.2.2, a sensor yields the average of K continuous samples as the

measurement to reduce noise variance. Figure 3.13 plots the profiling error versus K. We can
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see that the profiling error decreases with K. The relative reductions of profiling error by the

radial algorithm with respect to the greedy and SNR-based algorithms are about 18% and 30%,

respectively, when K ranges from 2 to 20.

The approximations discussed in Section 3.4.3 assume that the sensors are randomly deployed

around the diffusion source. In this set of simulations, we evaluate the impact of source location

bias on profiling accuracy. Specifically, the diffusion source appears at (δ ,0), where δ is referred

to as the source location bias. Figure 3.14 plots the profiling error versus δ . To jointly account for

the impact of random sensor deployment, for each setting of δ , we deploy a number of networks

and show the error bars. We find that the radial algorithm is robust to the source location bias.

Moreover, we note that the radial algorithm is consistently better than other algorithms.

Figure 3.15 plots the profiling error versus the number of sensors. When more sensors are

deployed, the profiling error can be reduced. The radial algorithm is consistently better than the

other algorithms. For all algorithms, the profiling error is reduced by about 40% when the number

of sensors increases from 10 to 15. Moreover, the relative reduction of profiling error decreases

with the number of sensors.
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3.7.3.6 Impact of Sensor Deployment

In this section, we evaluate the impact of initial sensor deployment on the profiling accuracy and

energy consumption in locomotion. We fix each di and randomly deploy sensors in one, two

adjacent, three and four quadrants of the plane originated at the source location, resulting in four

sensor deployments. We compute the upper bound of ω , in which sensors’ angles with respect to

the source location are exhaustively searched to maximize the profiling accuracy. Note that the

sensor deployment with maximized profiling accuracy is still an open issue. Figure 3.16 plots the

upper bound of ω as well as the profiling accuracy of four sensor deployments. We can see that the

profiling accuracy of the four-quadrant deployment is the closest to the upper bound. Figure 3.16

also plots the minimum total distance that the sensors in a deployment have to move to achieve

the upper bound ω . We can observe that if sensors are not deployed around the source location,

spreading sensors first can significantly improve the profiling accuracy. However, if sensors have

limited energy for locomotion, it is more beneficial to deploy sensors around the source to avoid

energy-consuming spreading movements.
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3.7.3.7 Communication Overhead

In each profiling iteration, the communication overhead is mainly affected by the packet loss

caused by the unreliable on-water wireless communication. Hence, we employ the total num-

ber of transmissions in collecting all sensor measurements as the evaluation metric. Specifically,

we choose the shortest distance path as the routing path from a sensor to the cluster head, where the

distance metric of each hop is PRR−1, i.e., the expected number of (re-)transmissions on the hop.

The PRR is set to be the distance-based interpolation of real measurements shown in Figure 4.3.

When a node transmits packet to the next hop, the packet is delivered with a success probability

equal to the PRR. The node re-transmits the packet up to 10 times before it is dropped. In the

simulations, 30 sensors are randomly deployed. The packet to the cluster head includes sensor ID,

current position and measurement. The packet to each sensor contains the movement schedule that

includes movement orientation and distance. Our simulation results show that the number of (re-

)transmissions in a profiling iteration has a mean of 158 and a standard deviation of 28. Even if all

these transmissions happen sequentially, the delay will be within seconds, because transmitting a

TinyOS packet only takes about 10milliseconds on typical mote-class platforms. This result shows

that our approach has low communication overhead under realistic settings.

3.8 Conclusion

This chapter proposes an accuracy-aware profiling approach for aquatic diffusion processes using

robotic sensor networks. Our approach features an iterative profiling process where the sensors

reposition themselves to progressively improve the profiling accuracy along the iterations. We

develop two movement scheduling algorithms, including an efficient greedy algorithm and a near-

optimal radial algorithm. We implement our algorithms on TelosB motes and evaluate them using
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real traces of GPS localization errors, robotic fish movement, and ZigBee wireless communica-

tion.
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Chapter 4

Spatiotemporal Field Reconstruction

4.1 Introduction

This chapter addresses an important problem in aquatic environment monitoring – reconstruc-

tion of spatiotemporal field. Many physical and biological phenomena in aquatic environment,

including HABs [21], lake surface temperature [114], and plume concentration of chemical sub-

stance [20], can be modeled as spatiotemporal aquatic field that usually follows a certain distribu-

tion such as the Gaussian process. The reconstructed aquatic field allows one to study fine-grained

spatial distribution and temporal evolution of physical and biological phenomena of interest. For

example, the reconstructed HAB field is helpful for understanding the development of emerging

HABs and guiding authorities to take future preventive actions.

Aquatic sensor networks composed of robotic fish [96] are a typical Cyber-Physical System

(CPS) whose efficient operation depends on the tight coupling and coordination between cyber

(sensing, communication, and information processing) and physical components (mobility control

and environment). Compared with terrestrial sensor networks, there are several unique challenges

associated with aquatic sensor networks, including uncontrollable disturbances from the underly-

ing fluid medium (e.g., waves and flows), inherently dynamic profiles of aquatic processes, and

significant errors in motion control. Therefore, both sensing and mobility control of robotic fish

must account for the spatial variability and temporal evolution of aquatic processes. Moreover,

our measurements show that aquatic sensors equipped with ZigBee radio have highly variable link
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quality and only about half of the communication range of the terrestrial radio. Such characteristics

must be explicitly considered in the design of the network. Finally, the operation of these sensors

has to be very energy-efficient due to the limited power supply.

This chapter makes the following contributions:

1) We propose a new approach to the sampling and reconstruction of spatiotemporal aquatic field

using a sensor swarm composed of inexpensive, low-power, and collaborative robotic sensors.

Our approach features a rendezvous-based mobility control scheme, where sensors in a swarm

gather and sense the environment in a series of carefully chosen rendezvous regions, reducing

the overhead of inter-sensor coordination during movement.

2) We design a novel feedback control algorithm that maintains the desirable level of wireless

connectivity of a sensor swarm in the presence of significant physical dynamics. Based on a

wireless signal propagation model, the control-theoretic algorithm adjusts the radius of ren-

dezvous region adaptively to ensure a bound on the PRR between sensors.

3) We present a new analysis of spatiotemporal field reconstruction accuracy based on mutual

information and posterior entropy. Our analytical results are used to guide the selection of

rendezvous regions so that the reconstruction accuracy can be maximized subject to the limited

sensor mobility.

4.2 Overview of Approach

4.2.1 Background and Challenges

Our objective is to reconstruct an aquatic scalar field that follows the spatiotemporal Gaussian pro-

cess using a group of robotic sensors. The design of our approach is motivated by the following
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major challenges in reconstructing a spatiotemporal field. First, the physical and biological phe-

nomena of interest often affect large spatial areas. For example, HABs can spread over the water

area of a dozen to tens of square kilometers. However, the number of robotic sensors available

in practice is often small (e.g., a few dozens). In addition, as the robotic sensors in aquatic en-

vironment often have short communication ranges, the area that networked robotic sensor system

can sample at any given time is limited. Second, because of the complex environment dynamics

(e.g., wave and wind) and the limited motion capabilities of the robotic sensors, accurate move-

ment control of an aquatic sensor system is often challenging. Third, the link quality and network

connectivity of robotic sensors are highly dynamic due to physical uncertainties. The resulted data

loss can significantly affect the accuracy of field reconstruction.

4.2.2 Approach Overview

A simple approach to reconstructing the field using robotic sensors is to send sensors to regions

that evenly divide the whole aquatic field and each sensor only samples its own region. Because

the aquatic process typically covers a large area as discussed in Section 4.2.1, under this simple

approach, the sensors would not be able to communicate with each other. Therefore, this non-
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Figure 4.2: The iterative sampling process of a robotic sensor swarm.

collaborative approach has the following two drawbacks. First, each sensor can only reconstruct

the field based on its own measurements, and the field reconstruction based on all sensor mea-

surements cannot be performed until sensors complete their sampling and gather at some location.

Second, the accuracy of the whole field reconstruction would be significantly undermined if some

sensors experience failures.

To address the challenges discussed in Section 4.2.1, we adopt a novel rendezvous-based swarm

scheme as illustrated in Figure 4.1. We assume that all sensors know their positions and are time-

synchronized, e.g., through GPS or in-network localization/synchronization services. The robotic

sensor system iteratively samples the aquatic field. As shown in Figure 4.2, in each sampling

iteration, robotic sensors move into a rendezvous circle, form a swarm and sample the environment.

In the swarm, a sensor serves as the swarm head, which collects the measurements of other sensors

via wireless communications as well as schedules the movements of sensors in the next sampling

iteration. To simplify the data collection process and reduce the communication overhead, the

swarm adopts a single-hop star network topology centered at the swarm head. In our approach, the

movement scheduling at the swarm head is executed as follows:

1) The swarm head first assesses the quality of network connectivity based on the received data

and then determines the radius of the rendezvous circle (referred to as swarm radius) in the
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next sampling iteration, such that the network connectivity in the next sampling iteration can

achieve a desirable level.

2) Given the projected swarm radius, the swarm head conducts information-theoretic analysis to

select the location of the next rendezvous circle, in order to maximize the improvement of the

field reconstruction accuracy.

3) The swarm head generates random target positions within the next rendezvous circle and as-

signs the positions to each sensor to minimize the total movement distance. The target positions

are finally sent to the sensors. Under this random target position approach, small motion con-

trol errors can be tolerated as long as the final positions of sensors fall within the rendezvous

circle. Moreover, as proved in Section 4.4.5, under this approach, there is no crossing between

sensors’ moving paths and hence the robotic sensors would not collide.

After receiving target position in the next sampling iteration, each sensor straightly moves toward

its destination to minimize the energy consumption of locomotion. To initiate the above process,

the swarm is initially dropped at a venue within the region affected by the physical/biological

process of interest. Note that to balance the energy consumption of sensors, the swarm head role

can rotate among all sensors. The communication overhead of our approach is low because sensors

coordinate with each other only when they gather in a rendezvous circle. In summary, our swarm

scheme allows the robotic sensors to efficiently collaborate in sensing a large dynamic aquatic

field and avoid heavy coordination overhead. Therefore, it is practical and energy-efficient for

low-power aquatic robotic platforms [96, 116].

Our approach has the following two key novelties:

First, it features control-theoretic connectivity maintenance. Data loss of wireless communi-

cation can significantly affect the quality of sensing. A key goal of our system is to ensure that
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the swarm head reliably receives the measurements from all sensors. However, this is challenging

because the on-water wireless links have highly dynamic quality due to the impact of fluid medium

and changing positions of sensors during movement. We develop a control-theoretic algorithm to

maintain desirable connectivity of a sensor swarm in the presence of these dynamics by adaptively

adjusting the swarm radius. Specifically, the swarm head first estimates the quality of network con-

nectivity based on the average of PRRs of all links. As the swarm average PRR generally decreases

with the swarm radius, the swarm head calculates a new swarm radius based on a wireless signal

propagation model and the current swarm average PRR, such that the expected connectivity in the

next sampling iteration can be maintained at a desirable level. A control problem is formulated to

address this procedure and its solution gives an adaptive algorithm for tuning the swarm radius.

Second, it features information-theoretic movement scheduling. Due to limited power supply

and high power consumption in locomotion, the sensor swarm must efficiently schedule the move-

ment of sensors to sample the field. Specifically, the swarm head must find the location of the

next rendezvous circle subject to energy budget, such that the improvement of the field reconstruc-

tion accuracy can be maximized with the newly obtained sensor measurements. In this chapter,

we employ information-theoretic analysis to guide the selection of rendezvous circle locations.

Moreover, two information metrics (i.e., mutual information and posterior entropy) with different

computational complexities can be integrated with our analysis, which hence allow the system

designer to choose desirable trade-offs between the system overhead and reconstruction accuracy.

4.3 Swarm Connectivity Maintenance

The wireless connectivity between a robotic sensor and the swarm head is affected by various en-

vironment and system dynamics, which include the stochastic fluctuation of the on-water wireless
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links, the errors of localization and motion control, and the uncertain distance between moving

sensors. In this section, we first study the on-water wireless link dynamics based on real data

traces collected on a lake. We then analyze the swarm connectivity. Finally, we formulate the

connectivity maintenance as a feedback control problem, which aims to maintain the swarm con-

nectivity at a desired level by adjusting the swarm radius based on the quality of all links measured

at runtime.

4.3.1 On-Water Wireless Link Dynamics

We first motivate our approach using PRR traces of on-water ZigBee wireless link. Figure 4.3

plots the PRR measured by two IRIS motes versus distance in an experiment conducted on the

wavy water surface of Lake Lansing, Michigan, on a windy day. Specifically, we placed the two

IRIS motes about 12cm above the water surface and measured the PRR versus the distance be-

tween the two motes. Each PRR measurement was calculated from 50 packets transmitted within

one second. From Figure 4.3, we have the following two important observations. First, the on-

water wireless communication has a limited reliable communication range, which is about 35m

for a typical ZigBee radio. According to our experience, the communication range of IRIS mote
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on water surface decreases by about 50% compared to that on land. Second, the PRR shows signif-

icant variance, especially in the transition range from 25m to 40m. It is mostly caused by the radio

and environment dynamics [118]. The wireless link in wavy water environment is more dynamic

than that in calm water environment, due to the multipath effect and fading. Such highly dynamic

communication quality can lead to increased communication cost in the field sampling and even

loss of sensors due to disconnected network. Therefore, it is critical to maintain satisfactory con-

nectivity under radio and environment dynamics.

4.3.2 Modeling Swarm Connectivity

As discussed in Section 4.2.2, the sensor swarm forms a network with single-hop star topology

in a rendezvous circle. Compared with multi-hop topology, the single-hop topology of sensor

swarm incurs significantly lower overhead in communication and network formation/maintenance.

Suppose the reliable on-water communication range of a typical ZigBee radio is 35m. Under the

single-hop star topology centered at the swarm head, a sensor swarm can spread over an area of

up to 3,800m2. We adopt the average PRR of the links between the swarm head and all sensors as

the metric of swarm connectivity. This metric quantifies not only the average connectivity of the

swarm but also the communication cost in collecting sensor measurements in a sampling iteration.

In this section, we first derive the expression for the average PRR given swarm radius, which allows

us to adaptively control the swarm connectivity by adjusting the swarm radius. We then verify the

closed-form expression using real data traces.

4.3.2.1 Model Derivation

Let Pt (in dBm) denote the power of the wireless signal transmitted by a sensor, and PL(d0) (in

dBm) denote the path loss at reference distance d0. The signal power at the receiver that is d
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meters from the transmitter is Pr(d) = Pt −PL(d0)− 10α log10(d/d0) [78], where α is the path

loss exponent that typically ranges from 2.0 to 4.0. We assume that the noise power (denoted

by Pn) in dBm follows the zero-mean normal distribution with variance ξ 2 [78]. The signal-to-

noise ratio (SNR) at distance d is given by SNR = Pr(d)−Pn. We assume that a packet can be

successfully received if the SNR is greater than a threshold denoted by η [45]. Hence, the PRR of

a single link can be derived as

PRR(d) =
1

2
+

1

2
· erf(a1 log10 d +a2), (4.1)

where a1 =−5
√

2, a2 =
Pt−PL(d0)−η√

2ξ
+5

√
2log10 d0, and erf(·) is the error function.

Based on the single-link PRR model given in Equation (4.1), we now derive the average PRR

over all sensors that are randomly distributed within the rendezvous circle. Our analysis shows that

it is difficult to derive the closed-form formula for the average PRR. We propose an approximate

formula as follows. The expectation of the distance between any sensor and the swarm head

(denoted by E [d]), which are two random points in the rendezvous circle, is a linear function of

the swarm radius (denoted by R), specifically, E [d] = 128R/45π . Based on this observation and

Equation (4.1), we approximate the average PRR over all sensors (denoted by PRR(R)) by

PRR(R)≃ (1− c)+ c · erf(c1 log10 R+ c2), (4.2)

where c1 (c1 < 0), c2 (c2 > 0), and c(0< c < 0.5) are three coefficients. Although Equation (4.2) is

an approximate model, the feedback-based connectivity maintenance algorithm can tolerate minor

inaccuracy in system modeling.
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4.3.2.2 Model Validation

We now use the collected PRR traces of on-water wireless communication (see Section 4.3.1) to

verify the above models. We start from the link PRR model given in Equation (4.1). The least

square fitting of the average of the PRR measurements versus distance is given by

PRR(d) =
1

2
+

1

2
· erf(−7.096log10 d +26.14),

which is plotted in Figure 4.3. We can see that the fitted value for a1 (i.e., −7.096) is very close to

its theoretical value (i.e., −5
√

2 =−7.0711). Moreover, the fitted curve well matches the average

of the PRR measurements. Therefore, the model in Equation (4.1) can characterize the average

performance of on-water link PRR. Although Equation (4.1) only captures the expected PRR, the

control-theoretic connectivity maintenance algorithm presented in Section 4.3.3 accounts for the

variance of PRR measurements.

We then conduct Monte Carlo simulations to verify the accuracy of swarm average PRR model

given in Equation (4.2), and determine the values of the three coefficients. Specifically, for a given

R, we generate a large number (20,000) of random placements of 10 sensors in the rendezvous

circle. In the simulations, the PRR of each link is set to be the distance-based interpolation of

real PRR measurements obtained in the aforementioned on-water experiment. Figure 4.4 shows

the error bar of the swarm average PRR, where the variances are caused by the random sensor

placements and estimation inaccuracy as well as the inherent stochasticity of wireless link. We then

fit the curve defined by Equation (4.2) with the simulation results, as shown in Figure 4.4. From

the figure, we can see that the approximate model for the swarm average PRR is fairly accurate.

The fitted value for the coefficient c1, c2, and c are −1.201, 4.879, and 0.4783, respectively. These

values are also adopted in the performance evaluation in Section 4.5.
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Figure 4.4: Swarm average PRR versus swarm radius. The error bar represents the standard devi-

ation.

4.3.3 Swarm Connectivity Control

Our objective is to maintain the swarm average PRR at a desired level (denoted by δ ) in the

presence of various environment and system dynamics. From Figure 4.4, the swarm average PRR

decreases with the swarm radius. However, the amount of information sampled by the sensors

often increases with the swarm radius. Therefore, there is a trade-off between the amount of

information obtained by the swarm and its connectivity. To avoid the loss of sensors that can have

catastrophic consequence to the swarm, we ensure that the swarm is a well connected network

in each rendezvous circle by setting a relatively high δ , e.g., 0.8 to 0.9. In this section, we first

analyze the control laws based on the connectivity model in Equation (4.2) and then develop the

connectivity maintenance algorithm.

The block diagram of the feedback control loop is shown in Figure 4.5. We denote Gc(z), Gp(z)

and H(z) as the transfer functions of the connectivity maintenance algorithm, the sensor swarm sys-

tem and the feedback, which are expressed in z-transform representation. The z-transform provides

a compact representation for time varying functions, where z represents a time shift operation. We

refer interested reader to [68] for the details of z-transform and [1] for a few representative ap-

plications of discrete-time control theory to networking and computing systems. As shown in
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Figure 4.5: The closed loop for swarm connectivity control.

Figure 4.5, the desired PRR level δ is the reference, and the PRR(R) is the controlled variable.

As PRR(R) is a nonlinear function of R (see Equation (4.2)), we define γ = erf(c1 log10 R+ c2) as

the control input to simplify the controller design. As a result, we have the swarm average PRR

expressed as PRR(γ)≃ (1−c)+c · γ . As this time-domain expression does not contain time shift,

its z-transform is simply Gp(z) = c [68]. In each sampling iteration, to ensure that the swarm head

receives the measurements from all sensors, a sensor retransmits the lost packet until it receives an

acknowledgement from the swarm head. At the end of each sampling iteration, the swarm head

estimates the PRR(R) as 1
N ∑N

i=1
1

CTXi
, where N is the number of sensors in the sensor swarm, and

CTXi is the number of (re-)transmissions of sensor i in the current sampling iteration. Such a pas-

sive estimation approach avoids transmitting a large number of measurement packets for estimat-

ing PRRs. Then, the swarm head updates γ based on the estimated PRR(R), and sets R in the next

sampling iteration accordingly. As the feedback will take effect in the next iteration, H(z) = z−1,

which represents a delay of one iteration. Since the system is of zero order, a first-order controller

is sufficient to achieve the stability and convergence [68]. Hence, we let Gc(z) =
α

1−β ·z−1 , where

α > 0 and β > 0. The settings of α and β need to ensure the system stability, convergence and ro-

bustness. Following the standard method for analyzing stability and convergence [68], the stability

and convergence condition can be obtained as β = 1 and 0 < α < 2/c. The detailed analysis can

be found in [106, 107].

In this chapter, we model three uncertainties that substantially affect the PRR(R) as the distur-

bances in the control loop shown in Figure 4.5. First, as shown in Figure 4.3, the PRR measure-
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ments exhibit variance especially in the transition range from 25m to 40m. Second, the swarm

topology changes with the random sensor positions, hence also causes variance to the PRR(R).

Third, although the estimated PRR based on (re-)transmission number is unbiased, it has variance

because of the limited number of samples. The error bars in Figure 4.4 show the overall standard

deviation versus the swarm radius. From the figure, we find that in order to keep a satisfactory

swarm average PRR around 0.8, the standard deviation is 0.12. We now discuss how to design

Gc(z) to reduce the impact of such random disturbances. From control theory [68], to minimize

the effects of disturbance on the controlled variable PRR(R), the gain of Gc(z)Gp(z)H(z) should

be made as large as possible. By jointly considering the stability and convergence condition, we

set α = 2b/c where b is a relatively large value within [0,1]. In the experiments conducted in this

chapter, b is set to be 0.9.

Implementing Gc(z) in the time domain gives the connectivity maintenance algorithm. Accord-

ing to Figure 4.5, we have Gc(z) = γ(z)/(δ −H(z)PRR). From H(z) and Gc(z), the control input

can be expressed as γ(z) = z−1γ(z)+2bc−1(δ − z−1PRR), and its time-domain implementation is

γk = γk−1 +2bc−1(δ −PRRk−1), where k is the index of sampling iteration. The swarm radius to

be set in the kth sampling iteration is given by Rk = 10(erf−1(γk)−c2)/c1 .

4.4 Information-Theoretic Movement Scheduling

In this section, we first briefly introduce the Gaussian process model that characterizes many phys-

ical/biological phenomena, and present the field reconstruction algorithm. We then present the

information-theoretic analysis for selecting the location of rendezvous circle in the next sampling

iteration, which aims to maximize the accuracy of field reconstruction.
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4.4.1 Physical Field

4.4.1.1 Spatiotemporal Gaussian Process Model

We assume that the monitored physical phenomenon follows the spatiotemporal Gaussian pro-

cess [79]. Let Z(p, t) denote the field variable at point p ∈ R
2 and time t ∈ [0,+∞]. For example,

the surface phytoplankton population density is an important field variable of HABs. A Gaussian

process can be fully characterized by the mean function, denoted by M (p, t), and the covariance

function, denoted by K ((p, t),(p′, t ′)), where (p, t) and (p′, t ′) are two time-space coordinates. In

this chapter, we adopt the following covariance function that has been widely adopted [21,47,114]:

K (d,∆t) = σ 2 · exp

(
− d2

2ς 2
s

)
· exp

(
−∆t2

2ς 2
t

)
, (4.3)

where d =‖ p − p′ ‖ℓ2
, ∆t = |t − t ′|, σ 2 is the prior variance of any field variable, ςs and ςt

are the spatial and temporal kernel bandwidths, respectively. Therefore, the covariance func-

tion can be rewritten as K (d,∆t). The vector composed of the field variables at N time-space

coordinates {(pi, ti) | i ∈ [1,N]}, denoted by Z, follows the multivariate Gaussian distribution,

i.e., Z ∼ N (m,Σ), where m and Σ are the mean vector and covariance matrix. Specifically,

m = [M (p1, t1), . . . ,M (pN, tN)] and the (i, j)th entry of Σ is given by K (‖ pi − p j ‖ℓ2
, |ti − t j|).

Sensor measurements can be corrupted by noises from the sensor circuitry and environment [114].

The reading at time-space coordinates (p, t), denoted by R(p, t), is given by R(p, t) = Z(p, t)+W ,

where W is a zero-mean Gaussian noise with variance of σ 2
w.

4.4.1.2 Model Verification

We now verify the Gaussian process model using real temperature traces collected on Lake Ful-

mor, California [66]. The temperature readings on the lake surface were collected by 8 robotic
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Figure 4.6: ln(K /σ 2) versus d2 and ∆t2.

boats over several hours. Applying logarithm to the covariance function K (d,∆t) yields −2 ·

lnK (d,∆t)/σ 2 = d2/ς 2
s +∆t2/ς 2

t . Therefore, the quantities ln(K /σ 2), d2, and ∆t2 are expected

to exhibit linear relationships. Figure 4.6 plots ln(K /σ 2) versus d2 and ∆t2, respectively. We can

observe from the figure that the quantities exhibit linear relationships with small variations caused

by the random noise W . The hyperparameters are estimated as ςs = 6.42 and ςt = 7.15. There-

fore, the adopted K (d,∆t) well characterizes the spatiotemporal covariance of the water surface

temperatures.

4.4.2 Field Reconstruction using a Robotic Sensor Swarm

In this section, we present how to reconstruct the field using measurements collected by the sensor

swarm. To facilitate the expression, we define H as a row vector composed of all measurements,

i.e., H = [R(p1, t1), . . . ,R(pN, tN)], m as a row vector composed of the corresponding prior mean

values, and T as the time duration of each sampling iteration. Therefore, each ti (i ∈ [1,N]) is

always multiple of T . The Hc is a 3×N matrix, where each column is the time-space coordinates

of the corresponding measurement in H. The objective of reconstructing a Gaussian process field

is to estimate the posterior mean and variance at any time-space coordinates (p, t) given H, which
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are denoted by E [Z|H] and Var[Z|H]. The estimates are given by [77, 79]:

E [Z|H] = M (p, t)+ Σ̃[(p, t),Hc] · Σ̃−1[Hc] · (H−m)⊤, (4.4)

Var[Z|H] = σ 2 − Σ̃[(p, t),Hc] · Σ̃−1[Hc] · Σ̃⊤[(p, t),Hc], (4.5)

where Σ̃ is a matrix calculated from the covariance matrix Σ of the field variables at Hc. Specif-

ically, the (i, j)th entry of Σ̃ is given by Σ̃i j = Σi j + θi j
σ2

w

σ , where θi j = 1 if i = j, and otherwise

θi j = 0. There are three interesting observations from Equations (4.4) and (4.5). First, because

of the spatiotemporal correlation, the posterior variance (i.e., the uncertainty) is reduced given the

measurements H. Second, from Equation (4.5), the posterior variance does not depend on the prior

and posterior means. As our movement scheduling algorithm aims to reduce the variance, it does

not need the knowledge of means. Third, the dimension of Σ̃ increases along the accumulation of

sensor measurement. As a result, the high dimensional Σ poses substantial computation overhead

to calculate its inversion in Equations (4.4) and (4.5) on resource-constrained robotic sensors.

From the above three observations, an important design of our approach is to separate the

following two tasks:

The first task is sensor movement scheduling. This task is executed on the swarm head in each

sampling iteration, which aims to reduce the variance given in Equation (4.5). Section 4.4.3 to

Section 4.4.5 will present the details of our sensor movement scheduling algorithms. In particu-

lar, as the sensor movement scheduling involves calculating the inversion of Σ̃ in Equation (4.5)

on the swarm head, in Section 4.4.4, we propose two measurement truncation schemes that can

significantly reduce the computation overhead.

The second task is field reconstruction. This task computes Equations (4.4) and (4.5) based
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on collected measurements. It can be executed on either on the swarm head if it has sufficient

computation capability, or a remote data processing center after measurements are fetched back.

4.4.3 Information-Theoretic Swarm Center Selection

We now discuss the selection of the center of the next rendezvous circle (referred to as swarm cen-

ter), which aims to improve the accuracy of the field reconstruction algorithm (i.e., Equations (4.4)

and (4.5)).

4.4.3.1 Problem Formulation

Suppose that the swarm has N robotic sensors and will schedule the sensor movements for the

next (i.e., the kth) sampling iteration. Let V denote the region to be reconstructed and the time of

reconstruction, and S denote the set of target time-space coordinates for all sensors.1 Hence, S can

be represented as ({p1, p2, . . . , pN},kT ), where pi is the target position of sensor i. Let p′c and pc

denote the swarm center in the (k−1)th and kth sampling iteration, and Rk is the scheduled swarm

radius for the kth iteration by the connectivity maintenance algorithm. The optimal solution of S

maximizes the following information-theoretic metric:

Ω(S) =H [V\S |Hc]−H [V\S |Hc∪S], (4.6)

subject to

‖ p′c − pc ‖ℓ2
≤ L;

‖ pi − pc ‖ℓ2
≤ Rk,∀i ∈ [1,N];

(4.7)

1To simplify the presentation, V refers to both the set of field variables and the corresponding time-space coordi-

nates. So do S and Hc.
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where the H [·] denotes entropy and quantifies the uncertainty. In Equation (4.6), the term V \S

represents the set of ungauged sites in the current iteration, and the term Hc ∪S represents the set

of visited time-space coordinates after the current iteration. Therefore, H [V\S |Hc] represents the

uncertainty at the ungauged sites (i.e., V \ S) given the historically visited positions, and H [V \

S |Hc ∪S] represents the uncertainty at the ungauged sites after additionally sampling the field at

S. As a result, the above problem aims to maximize the drop of entropy at the ungauged sites after

the current iteration by sampling the field variables at S given the historical measurements at Hc.

The above problem formulation adopts the drop of entropy as the performance metric, which is

defined by Equation (4.6). The constraint in the first part of Equation (4.7) specifies the reachable

area of the swarm due to limited sensor movement speed. For example, we can set L = v ·T , where

v is the maximum speed of the robotic sensors. The constraint in the second part of Equation (4.7)

ensures the scheduled swarm radius. These constraints are also illustrated in Figure 4.1.

Note that the posterior entropy for the ungauged sites [104] is another widely adopted perfor-

mance metric in field reconstruction studies. We now identify the relationship between posterior

entropy and our metric defined in Equation (4.6). Suppose the current iteration is the kth itera-

tion of the sampling process. By cumulating Equation (4.6) of each iteration, we can approximate

the accumulative entropy reduction (denoted as ∑k
i=1 Ω(Si)) as: ∑k

i=1 Ω(Si) ≈ H [V \S1]−H [V \

Sk |Hc∪Sk], where Si is the set of sampling positions in the ith iteration and Hc = S1∪S2 . . .∪Sk−1

represents all the gauged sites till the kth iteration. In particular, the term H [V\Sk |Hc∪Sk] denotes

the posterior entropy after the kth iteration. Note that H [V \S1] is a constant. Therefore, there is

a simple linear relationship between the posterior entropy and the accumulated entropy reduction.

From this relationship, the minimum posterior entropy is achieved when the entropy reduction in

each iteration is maximized.
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4.4.3.2 Swarm Center Selection Algorithm

A similar problem without the condition Hc and the constraints in Equation (4.7) has been proven to

be NP-hard [48]. Hence, the above problem has prohibitively high complexity that is not practical

for robotic sensing platforms. In this chapter, we propose a heuristic approach that approximates

the whole swarm by its center, which is selected from a set of discrete candidate points. By such

an approximation, we avoid the complex inter-point dependence given by Equation (4.3), hence

largely reduce the computation overhead. We will evaluate the performance of this approximation

in Section 4.5.1.8. Under the proposed heuristic approach, we adopt mutual information (MI)

and posterior entropy (PE) to quantify the information reward. As these two metrics differ in

computation overhead and the resulted reconstruction accuracy, they allow the system designer to

choose desirable trade-off between the overhead and accuracy subject to the budget of computation

resources of robotic sensors.

We first discuss the MI-based metric. The MI of a random variable X given a set of random

variables Y can be expressed as I [X ;Y] =H [X ]−H [X |Y], where

H [X |Y] =
1

2
log(2πe ·Var[X |Y]) ,

Var[X |Y] = Var[X ]−Σ[X ,Y] ·Σ−1[Y] ·Σ⊤[X ,Y]. (4.8)

The Σ[X ,Y] is a row vector composed of the covariances of X with each variable in Y, and Σ−1[Y]

is the inverse of the covariance matrix of Y. Given available measurements at Hc, the MI-based

information reward for the swarm centered at position pc, denoted by ΩMI(pc,kT ), is defined as

ΩMI(pc,kT )=I [V\ (pc,kT );(pc,kT ) |Hc]=H [(pc,kT ) |Hc]−H [(pc,kT ) |V∪Hc \ (pc,kT )].
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The above information reward metric characterizes the drop of uncertainty about the region other

than pc given all historical measurements if the swarm is centered at pc in the next iteration. The

swarm center selection is hence to maximize ΩMI, subject to the constraints in Equation (4.7).

The complexity for computing ΩMI for a certain pc is O(|V|3). However, as the aquatic phe-

nomenon of interest (e.g., HABs) often affects a large spatial area, computing ΩMI can incur high

overhead. To reduce the computation overhead, we propose another information reward metric

based on PE:

ΩPE(pc,kT ) =H [(pc,kT ) |Hc].

Different from ΩMI, ΩPE characterizes the uncertainty drop at the swarm center pc in the next

iteration given the historical measurements. For each certain pc, the complexity of computing ΩPE

is O(|Hc|3), which is much smaller than that of ΩMI. Although such a metric does not necessar-

ily lead to the maximum uncertainty drop for the ungauged sites, it can reduce the computation

overhead by only considering the most uncertain positions.

4.4.4 Truncating Historical Measurements

Both the metrics ΩMI and ΩPE involve storing and inverting the covariance matrix Σ[Hc] when

computing Equation (4.8). This imposes substantial challenges to the robotic sensing platforms

with limited computation resources. For example, a TelosB mote equipped with 10KB RAM can

store at most a 50×50 covariance matrix. Moreover, matrix inversion is a computation-intensive

operation with at least cubic complexity with respect to the number of historical measurements. To

develop practical information-theoretic movement scheduling algorithms for robotic sensors, we

propose two schemes for truncating the historical measurements. Both schemes select K measure-

ments to compose the covariance matrix.
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The first scheme selects K historical measurements with the largest covariances regarding a

candidate swarm center. This scheme is referred to as cov-trunc. The rationale of cov-trunc

is as follows. As we only use a subset of historical measurements, the conditional variance in

Equation (4.8) will increase. The cov-trunc scheme maximizes each element in Σ[X ,Y], and hence

can efficiently suppress the undesired increase of the conditional variance caused by the trunca-

tion. The drawback of cov-trunc is that it needs to truncate the historical measurements for each

candidate swarm center when maximizing ΩMI and ΩPE. As a result, a matrix inversion opera-

tion is needed for each candidate swarm center, which results in high computation overhead for the

swarm head. To address this issue, we propose another truncating scheme, referred to as time-trunc.

The time-trunc selects the most recent K historical measurements. As the most recent sampling

positions are generally in the proximity of the swarm in the next iteration, time-trunc can well

approximate cov-trunc even though it ignores the spatial correlation. The time-trunc scheme has

the following two advantages. First, it only needs a matrix inversion operation for each sampling

iteration. Second, the swarm head only needs to maintain a first-in-first-out historical measurement

buffer with size of K. This buffer can be easily migrated in the swarm head rotation process for the

purpose of balancing energy consumption. However, we note that the performance of these trun-

cation schemes depends on the properties of the underlining aquatic processes, such as the kernel

bandwidths (i.e., ςs and ςt) and the affected region (i.e., V). In Section 4.5.1.6, we will evaluate

the impact of historical measurements truncation on reconstruction accuracy.

4.4.5 Sensor Movement Scheduling

As discussed in Section 4.2, once the swarm center and radius are determined, the swarm head

randomly selects N positions (denoted by p′) in the rendezvous circle. We let p denote the current

positions of robotic sensors. To prolong the lifetime of the robotic sensor swarm, we find the
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element mapping from p to p′, such that the sum of sensors’ movement distances is minimized.

Under this movement scheduling scheme, there is no crossing between sensors’ moving paths.

The proof can be found in [107]. Therefore, our movement scheduling scheme is collision-free.

This element mapping problem can be solved by existing algorithms such as Munkres assignment

algorithm [12] with a complexity of O(N3). Once the mapping is found, the swarm head sends the

target position to each robotic sensor, which then moves toward the target position. While moving

toward the target position, the robotic sensor can adopt a feedback-based motion control algorithm

that adaptively corrects the motion errors based on the localization result, using a potential function

approach [6]. The motion control of robotic fish is beyond the scope of this chapter and the details

can be found in [6].

4.5 Performance Evaluation

We evaluate the performance of the proposed algorithms by trace-driven simulations and imple-

mentation on hardware. First, we evaluate the connectivity maintenance and the swarm movement

scheduling algorithms using extensive simulations based on real data traces of water surface tem-

perature field [66] and on-water ZigBee wireless communication. Second, we implement one of

the proposed swarm movement scheduling algorithms on TelosB sensing platform and evaluate

its overhead. The results provide insights into the feasibility of adopting advanced information-

theoretic movement scheduling algorithms on mote-class robotic sensing platforms.
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4.5.1 Trace-Driven Simulations

4.5.1.1 Simulation Methodology and Settings

In the simulations, 10 robotic sensors are used to reconstruct a scalar field in a square region.

The hyperparameters of the Gaussian process are set to be [σ 2,ςs,ςt ] = [9,6,8], unless otherwise

specified. Note that these settings are consistent with [86, 116] and obtained from real on-water

temperature traces [66]. Initially, the robotic sensors are randomly deployed in a small region

with radius of 10m. In each sampling iteration, the PRR of each link is set to be the distance-based

interpolation of real on-water PRR traces measured by two IRIS motes on Lake Lansing, Michigan

(see Section 4.3.2). Other settings include: desired swarm connectivity level δ = 0.9, sampling

iteration duration T = 5min, sensor movement speed v = 0.2m/s, and L = v×T = 60m.

4.5.1.2 Swarm Connectivity Maintenance and Communication Overhead

We first compare our connectivity maintenance algorithm with a heuristic baseline algorithm. The

heuristic algorithm adopts the Kalman filter to update the coefficient c in Equation (4.2) based on

the recently estimated PRR(R). The next swarm radius is then obtained by solving Equation (4.2).

Recall that our approach assigns a fixed value to c and tunes the swarm radius directly. Figure 4.7

plots the PRR(R) in the first 10 sampling iterations. The range of swarm radius after 10 iterations is

[24,36]. The error bars, calculated from 20 runs, are caused by the various disturbances discussed

in Section 4.3.3. We can see that the swarm average PRR controlled by our algorithm quickly

converges to the desired connectivity level. In contrast, the heuristic algorithm diverges from

the reference. This is because the Kalman filter does not tune the swarm radius directly, and

incorrectly updates the coefficient c in the control cycle. To evaluate the response of our algorithm

to the sudden changes of the wireless link quality, we artificially reduce the PRR measurements by
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Figure 4.8: Impulsive and step responses (at

the 7th and 14th iterations) of our algorithm.

20% only in the 7th iteration (i.e., the left arrow in Figure 4.8) and continuously reduce the PRR

measurements by 10% after the 14th iteration (i.e., the right arrow in Figure 4.8). For both types of

changes, our algorithm can converge within a few iterations.

In each sampling iteration, the communication overhead is mainly caused by the packet loss.

Hence, we employ the total number of transmissions in collecting all sensor measurements as the

evaluation metric. When a node transmits a packet to the swarm head, the packet is delivered with

a success probability equal to the PRR. The node re-transmits the packet up to 20 times before

it is dropped. The packet to the swarm head includes sensor ID, spatiotemporal coordinates and

measurement. The packet to the sensor contains the target position in the next rendezvous circle.

Consider a typical sampling iteration, e.g., the 4th iteration in Figure 4.8 where a swarm radius

around 32m yields a swarm average PRR about 0.9. Our simulation results show that for a swarm

consists of 10 nodes, the number of transmitted packets (for two-way communications) has a mean

of 38 and a standard deviation of 8. Even if all these packets are transmitted sequentially, the delay

will be within a second, because transmitting a TinyOS packet only takes about 10 milliseconds on

typical mote-class sensor platforms. Therefore, our approach has low communication overhead.
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Figure 4.9: Trajectories of a robotic sensor swarm with 10 sensors in the first 6 sampling iterations

in the reconstruction of a 300×300m2 field.

4.5.1.3 Effectiveness of Swarm Center Selection

We now compare the two swarm center selection approaches presented in Section 4.4.3.2 (referred

to as MI and PE) with three other baseline approaches. The first baseline (referred to as MI-MC)

finds the next swarm center according to the metric Ω(S) in Equation (4.6), where S is a set of

random sensor placements within the rendezvous circle. For each candidate pc, 100 random sensor

placements are generated (i.e., Monte Carlo trials) and the average Ω is used as the information

reward relating to pc. The second baseline (referred to as PE-MC) is similar to the MI-MC, ex-

cept that the metric is given by H(S |Hc). These two Monte Carlo baselines give the near-optimal

swarm centers regarding the MI and PE metrics, respectively. However, due to the high computa-

tion overhead of Monte Carlo method, these two baselines are not suitable for mote-class sensor

platforms. A random walk approach is employed as the third baseline (referred to as RW). Specif-

ically, the swarm head selects a random position as pc subject to the constraints in Equation (4.7).

We first show the swarm trajectories scheduled by various approaches. Figure 4.9 plots the

trajectories of a sensor swarm in the first 6 sampling iterations. Note that the swarm radius is

controlled by the connectivity maintenance algorithm. We can see that, for all approaches, two

consecutive rendezvous circles can overlap. This is because the correlation of the Gaussian process
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exists in both spatial and temporal domains, moving to a farther location does not necessarily

increase the overall information reward. Note that, if only spatial correlation is considered, the

swarm will move to the farthest unexplored areas. From Figure 4.9(a), PE and PE-MC output

different trajectories. As the next swarm location is affected by historical sensor positions which

were randomly generated, the trajectories can be different under different approaches, and even

different under the same approach in different simulation runs. However, they follow the similar

trend of spreading out in the field.

We then compare the effectiveness of various approaches based on the criterion Ω given in

Equation (4.6), which quantifies the drop of uncertainty at the ungauged sites at current time.

Note that in each sampling iteration, the position of the rendezvous circle is determined by the

specified information reward metric, and the radius is chosen to maintain the swarm connectivity.

Figure 4.10 plots Ω versus the index of sampling iteration. The error bar represents the standard

deviation over multiple simulation runs. We can see that Ω increases over time as more measure-

ments are taken. From the figure, we find that the MI and MI-MC outperforms the PE by 10%

and 19%, respectively, in the 5th sampling iteration. However, they have much higher computation

overhead than PE. Specifically, MI and MI-MC take about 20 and 8000 times of the execution

time of PE, respectively. The RW approach yields the worst accuracy. Moreover, the gap between

our approach and the corresponding Monte-Carlo-based baseline (e.g., PE and PE-MC) gives the

performance loss caused by approximating the rendezvous circle with the swarm head. Due to the

large number of Monte Carlo trials, the baseline approaches achieve the better performance with

substantially heavier computation overhead that is infeasible on mote-class platforms.
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Figure 4.10: Information reward versus sam-

pling iteration.
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Figure 4.11: Impact of sensing failure on in-

formation reward (FR shorts for failure rate).

4.5.1.4 Impact of Sensing Failure

We now evaluate the impact of sensing failure on reconstruction performance. Sensing failure

means that the robotic sensing platform cannot sample the field temporarily. In this set of simula-

tions, we take the PE approach as an example and introduce random sensing failures. Specifically,

each sensor has a sensing failure rate (10%, 20%, and 30%) in a sampling iteration. For sensors

that experience sensing failure, their sampling positions will not be used in computing the drop

of uncertainty Ω and scheduling the swarm movement in the next iteration. We adopt the PE-MC

and PE approaches with zero failure rate as baselines, in which the PE-MC approach gives the

near-optimal swarm center regarding the PE metric. For each failure rate, we conduct 6 runs of

simulations. The average information rewards are plotted in Figure 4.11. We can observe that

our approach can achieve comparable reconstruction performance in the presence of relatively

low sensing failure rate (e.g., 10%). As the sensing failure rate increases, the reconstruction per-

formance drops. This is because the decreased sampling diversity leads to inaccuracy in swarm

position selection. Note that, in addition to sensing failure, sensors are also subject to hardware

failure, motion and control failure. In particular, hardware failure means that the robotic sensing

platform completely fails and the swarm will lose the failed node. Since a swarm consists of a
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limited number of nodes, the robotic sensing platform should be designed to have a low hard-

ware failure rate to ensure long-term monitoring. Motion and control failure is caused by errors

in swarm size control and sensor motion control such that the node cannot communicate with the

swarm head. We have specifically presented two recovery mechanisms in [106, 107] to address

such failures.

4.5.1.5 Effectiveness of Random Position Selection

In this section, we analyze the effectiveness of random sensor position selection regarding in-

formation reward. In our approach, the position of each sensor in the next sampling iteration is

randomly selected by the swarm head within the rendezvous circle. We note that the proposed

MI/PE-based metrics can also be used to guide the sensor position selection. Specifically, the

swarm head sequentially selects each sensor’s position based on the MI/PE-based metrics, such

that each added sensor maximizes the information reward metric. We refer to the PE-based se-

quential sensor position selection approach as PE-Seq. This set of simulations only evaluate the

PE-based approaches, which help us understand the impact of random sensor position selection

scheme. To make a fair comparison, we set the swarm radius of PE-Seq identical to that of PE in

each iteration. Figure 4.12 plots Ω versus the index of sampling iteration for PE-MC, PE-Seq, and

PE, respectively. From the figure, we can see that the random sensor position selection (i.e., PE)

gives comparable performance with the metric-guided sensor position selection (i.e., PE-Seq). The

slightly better performance of PE-Seq is achieved at the cost of intensive computation overhead in

determining each sensor’s position. Due to the sequential execution process, this scheme cannot

be executed on low-power sensing platforms at runtime. Therefore, within a rendezvous circle,

the random placement of sensors does not significantly affect the information reward. Hence, our

approach that combines metric-based swarm center position selection and in-swarm random sen-
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sor position selection, not only is an effective solution in terms of information reward, but also

simplifies the motion control of the sensor swarm as well as reduces the computation overhead of

swarm head.

4.5.1.6 Impact of Historical Measurements Truncation

In this set of simulations, we compare the performance of various combinations of the MI/PE-based

metrics and the two truncation schemes presented in Section 4.4.4. The number of used historical

measurements, i.e., K, is set to be 20 or 40. The robotic sensor swarm is deployed in a 1000×

1000m2 square region. Figure 4.13 plots the performance criterion Ω at the 15th sampling iteration

under various settings. Without the truncation scheme, all historical measurements are used and

hence a greater Ω is achieved. Moreover, we can see that Ω increases with K. An interesting

observation is that the truncation schemes with K = 40 yield almost the same performance obtained

by using all historical measurements. In addition, the time-trunc and cov-trunc schemes have

comparable performance. Therefore, the time-trunc scheme with a small K can achieve satisfactory

performance.
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the approximation performance.

4.5.1.7 Impact of Kernel Bandwidth

The kernel bandwidths are important hyperparameters of the Gaussian process. We focus on the

impact of the spatial kernel bandwidth ςs while keeping the temporal kernel bandwidth ςt fixed.

Figure 4.14 plots performance criterion Ω versus K, under various settings of ςs. We can observe

that Ω increases with ςs. This is because the stronger spatial correlation introduced by the larger ςs

can lead to a greater posterior entropy drop at the ungauged sites. Moreover, we can see from the

figure that the performance becomes saturated after K is greater than 20 for various settings of ςs.

4.5.1.8 Approximation Performance

In this section, by taking the PE approach as an example, we evaluate the performance of our

heuristic that approximates the whole swarm by its center. As discussed in Section 4.5.1.3, the

PE-MC approach gives the near-optimal swarm center regarding the PE metric. We assess the

approximation performance in terms of the relative loss in Ω, which is calculated as (ΩPE-MC −

ΩPE)/ΩPE-MC. In the first set of simulations, we consider the impact of kernel bandwidth. Specifi-

cally, we vary the spatial kernel bandwidth ςs while keeping the temporal kernel bandwidth ςt and

the swarm radius R fixed. The results are plotted in Figure 4.15. We can observe that the relative
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loss decreases with the kernel bandwidth. This result is consistent with the intuition that, when

nearby positions are more correlated (i.e., a larger kernel bandwidth), the swarm center is a better

representation of nearby positions. In the second set of simulations, we consider the impact of

swarm radius. Specifically, we vary the swarm radius while keeping the kernel bandwidths fixed.

Figure 4.16 shows the impact of swarm radius on the relative loss. From the figure, we can see that

the relative loss increases with the swarm radius. This result is consistent with the intuition that,

the swarm center can better represent the whole swarm when the swarm size is smaller.

4.5.1.9 Information Reward versus Swarm Connectivity

As discussed in Section 4.3.3, there is a trade-off between the amount of information obtained by

the sensor swarm and its connectivity level. In this set of simulations, we quantitatively evaluate

the trade-off. Specifically, we vary the desired swarm connectivity level, i.e., δ , and compare the

resulted information rewards. Other settings are consistent with those presented in Section 4.5.1.1.

For each δ , the control-theoretic algorithm adaptively tunes the radius of rendezvous circle to

maintain the swarm connectivity. According to Equation (4.2), a larger δ generally requires a

smaller rendezvous circle, which will result in less information reward. Figure 4.17 plots the

achieved information reward after 5 sampling iterations versus the desired swarm connectivity
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Figure 4.18: Temperature field reconstruction using a robotic sensor swarm. The numbers in the

circles represent the sequence of the rendezvous circles.

level. The decreasing relationship between drop of uncertainty and desired swarm connectivity

level shown in Figure 4.17 verifies the trade-off.

4.5.1.10 Accuracy of Field Reconstruction

In this set of simulations, we reconstruct a field using 10 robotic sensors. We first generate a

temperature field based on the temperature data [66] collected at 8 locations on the surface of Lake

Fulmor, California, which has an area of about 3 acres. We have verified that temperature data

follows the spatiotemporal Gaussian process in Section 4.4.1. However, the data at 8 locations

are not sufficient to drive the simulations. Therefore, we use an existing tool [29] to fit a 200×

200m2 (≃ 10acres) Gaussian process field based on the traces, as shown in Figure 4.18(a). For
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the ease of illustration, the field does not change with time, although our approach can deal with

temporal evolution of the field. The movement of the swarm is scheduled by PE without truncation.

Sensor measurements in the simulation are corrupted by zero-mean Gaussian noise with variance

of 0.15 [48, 114]. In the reconstruction, the mean function M (p, t) is set to be a fixed value of the

average temperature in Figure 4.18(a). Figure 4.18(b) and Figure 4.18(c) show the reconstructed

field after the 3rd and 7th sampling iteration, as well as the trajectories of the swarm. Figure 4.18(d)

plots the mean squared error (MSE) of the reconstructed temperature filed versus the index of

sampling iteration. For comparison, we also include the MSE under MI approach. Due to space

limitation, the corresponding reconstructed fields and swarm trajectories are omitted here. From

Figure 4.18, we can see that the reconstruction accuracy is improved along with the movement of

the swarm.

4.5.2 Overhead on Sensor Hardware

We have implemented the PE-based time-trunc swarm center selection algorithm and the sensor

movement scheduling algorithm in TinyOS 2.1 on TelosB platform. We ported the C implemen-

tation of Cholesky decomposition algorithm in GNU Scientific Library [32] to TinyOS to invert
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matrix in the swarm center selection algorithm. We also implement the Munkres algorithm in

TinyOS to schedule each sensor’s movement. Figure 4.19 and Figure 4.20 plot the execution times

of the two algorithms in one sampling iteration, respectively. We can see that the PE-based time-

trunc algorithm takes about one minute when 40 historical measurements are used. The Munkres

algorithm for position assignment only takes 4.5 seconds when 25 robotic sensors are deployed.

As our current implementation employs extensive floating-point computation, the above processing

delays can be further reduced by using fixed-point arithmetic. Nevertheless, a delay of about one

minute is acceptable since the duration of each iteration can be much longer than that. Note that

the MI metric and the cov-trunc scheme result in very long processing delays on TelosB platform

because of large search space and repeated matrix inversion operations.

4.6 Conclusion

This chapter proposes a cyber-physical approach to spatiotemporal aquatic field reconstruction us-

ing inexpensive, low-power, mobile sensor swarms. Our approach features a rendezvous-based

mobility control scheme where a sensor swarm collaborates to sense the environment in a series

of carefully chosen rendezvous regions. We design a novel feedback control algorithm that main-

tains the desirable level of wireless connectivity of a sensor swarm. We present new information-

theoretic analysis to guide the selection of rendezvous regions such that the field reconstruction

accuracy is maximized. We evaluate our approach by extensive trace-driven simulations and im-

plementation on real sensor hardware. Our results show that the connectivity of robotic sensors can

be maintained robustly in the presence of significant physical uncertainties. Moreover, despite the

limited mobility, a sensor swarm can accurately reconstruct large dynamic aquatic fields, which
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validates the effectiveness of our information-theoretic movement scheduling algorithm. Lastly,

our mechanisms incur low overhead on resource-constrained sensor motes.
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Chapter 5

Aquatic Debris Surveillance

5.1 Introduction

Recently, aquatic debris has emerged to be a grave environmental issue. Figure 1.1(b) shows

the debris from Japan tsunami arriving at U.S. West Coast, 2012. Inland waters also face severe

threats from debris. Over 15 scenic lakes in New Jersey still suffer debris resulted from Hurricane

Sandy after one year of cleaning [40]. The debris fields pose numerous potential risks to aquatic

ecosystems, marine life, human health, and water transport. For example, the debris has led to a

loss of up to 4 to 10 million crabs a year in Louisiana [101], and caused damages like propeller

entanglement to 58% fishing boats in an Oregon port [13]. It is thus imperative to monitor the

debris arrivals and alarm the authorities to take preventive actions for the potential risks.

This chapter presents SOAR (SmartphOne-based Aquatic Robot), a low-cost vision-based de-

bris surveillance robot system that integrates an off-the-shelf smartphone and a robotic fish plat-

form. Figure 1.3 shows a prototype of SOAR built with a gliding robotic fish developed in our

previous work [31] and a Samsung Galaxy Nexus smartphone. Various salient advantages of

smartphone and gliding robotic fish make the integration of them a promising platform for debris

monitoring. First, recent smartphones are powerful enough to execute advanced CV algorithms

to process the images captured by the camera to detect debris objects. Meanwhile, the price of

smartphones has been dropping drastically in the last five years. Many low-end Android phones

(e.g., LG Optimus Net with 800MHz CPU and 2GB memory) cost only about $100 [52]. Second,
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besides visual sensing, various built-in sensing modalities such as GPS and accelerometer can be

used to facilitate the navigation and control of the robot and enable situation awareness to improve

the debris detection performance. Third, the long-range communication capability of smartphone

makes it possible to leverage the cloud to increase robot’s intelligence and reduce energy consump-

tion by offloading intensive computation. Lastly, as a commercial off-the-shelf platform, smart-

phone provides an integrated sensing system and diverse system configurations, which can meet

the requirements of a wide spectrum of embedded applications. Moreover, it offers user-friendly

programming environment and extensive library support, which greatly accelerates the develop-

ment process. The gliding robotic fish, which is a low-cost aquatic mobile platform with high

maneuverability in rotation and orientation maintenance, provides SOAR the mobility to adapt to

the dynamics of debris and water environment. Owing to these features, SOAR represents an un-

precedented vision-based, cloud-enabled, low-cost, yet intelligent aquatic mobile sensing platform

for debris monitoring.

However, the design of SOAR still faces several unique challenges associated with aquatic

debris monitoring. First, due to the impact of waves, SOAR cannot acquire a stable camera view,

thereby making it highly difficult to reliably recognize the debris objects. A possible solution is

image registration [42] that aligns multiple images into a common coordinate system. However,

water environment often lack detectable features such as sharp corners that are commonly used

for image registration. Second, SOAR is powered by small batteries due to the constraints on the

form factor and cost budget, while both aquatic movement of the robot and image processing on

the smartphone incur high energy consumption. Lastly, debris arrivals are often sporadic in a large

geographic region [9, 19], making them highly difficult to be captured using smartphone cameras

that typically have limited field of view.

This chapter makes the following contributions:
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1) We develop several lightweight CV algorithms to address the inherent dynamics in aquatic

debris detection, which include an image registration algorithm for extracting the horizon line

above water and using it to register the images to mitigate the impact of camera shaking, and

an adaptive background subtraction algorithm for reliable detection of debris objects.

2) We propose a novel approach to dynamically offloading the computation-intensive CV tasks

to the cloud. The offloading decisions are made to minimize the system energy consumption

based on in situ measurements of wireless link speed and robot acceleration.

3) We analyze the coverage for sporadic and uncertain debris arrivals based on geometric models.

Using the analytical debris arriving probability, we design a robot rotation scheduling algorithm

that minimizes the movement energy consumption while maintaining a desired level of debris

coverage performance.

5.2 Overview of SOAR

SOAR consists of an off-the-shelf Android smartphone and a gliding robotic fish. The smartphone

is loaded with an app that implements the CV, movement scheduling, and cloud communication

algorithms. The gliding robotic fish is capable of moving in water by beating its tail that is driven

by a servo motor. The motor is manipulated by a programmable control board, which can com-

municate with the smartphone through either a USB cable or short-range wireless links such as

ZigBee. Various closed-loop motion control algorithms based on smartphone’s built-in inertial

sensor readings can be implemented on either fish control board or smartphone.

SOAR is designed to operate on water surface and monitor floating debris in nearshore aquatic

environment, such as public recreational beaches, where wireless (cellular or WiFi) coverage is
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available. We focus on monitoring static or slow-moving on-water objects, and filter out other

objects such as boats and swimmers based on the estimated speed. When a long shoreline needs

to be monitored, multiple SOAR nodes can be deployed dispersedly to form barrier coverage. In

this case, the number of needed nodes is the ratio of the length of the monitored shoreline to the

coverage range of the smartphone’s built-in camera. In this chapter, we focus on the design of

debris detection and mobility scheduling algorithms running on a single SOAR node. The sensing

results of multiple nodes can be sent back to a central server via the long-range communication

interface on smartphones for fusion and human inspection. SOAR has a limited sensing area due

to the angular view of the built-in camera on smartphone1, which makes it difficult to capture the

debris arrivals that are likely sporadic [9, 19]. Mobility can be exploited to address this challenge.

The gliding robotic fish is capable of both rotating and moving forward. As a rotation can be

achieved by beating the fish tail once, it consumes much less energy than moving forward that

requires continuous tail beats. Thus, this chapter exploits the rotation mobility of the robotic

fish and assumes that the SOAR remains relatively stationary in water. In still water or slow

water current, feedback motion control can maintain SOAR’s station. In the presence of fast water

current, an anchor can be used together with motion control to reduce the energy consumption for

maintaining station.

After the initial deployment, SOAR begins a debris surveillance process consisting of multiple

monitoring rounds. In each round, SOAR executes a rotation schedule, which includes the camera

orientation and an associated monitoring time interval. Specifically, SOAR rotates to the desired

orientation at the beginning of a round and starts to take images at a certain rate, which is deter-

mined by a sleep/wake duty cycle. For each image, SOAR uses several CV algorithms to detect the

1Extra optical components like fisheye lens can be used to broaden the camera view. However, the integration

of these components to SOAR will complicate the system design. In particular, additional complex and energy-

consuming image processing algorithms (e.g., distortion rectification) are often needed.
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existence of debris objects in real time. Between two image captures, SOAR sleeps to save energy.

At the end of a round, SOAR computes the rotation schedule for the next round based on the de-

tection results to ensure a desired level of debris coverage. SOAR is designed to achieve long-term

(up to a few months) autonomous debris monitoring. In addition to duty cycling, it adopts a novel

offloading approach to leveraging the cloud for battery power conservation. Specifically, SOAR

comprises the following two major information processing components.

First, it features real-time debris detection. This component aims to extract debris objects from

the taken images. It consists of three lightweight image processing modules, i.e., image registra-

tion, background subtraction, and debris identification, which can effectively deal with various

environment and system dynamics such as shaking and internal noise of the camera. Specifically,

SOAR first registers each frame by exploiting the unique features in aquatic environment, e.g.,

the coastline for inland waters and the horizon line for marine scenarios. Then, background sub-

traction in HSV color space is performed on the registered frame to identify the foreground pixel

candidates. Finally, the foreground is passed to debris identification for noise removal and debris

recognition. At runtime, SOAR minimizes the battery power consumption by determining if the

above image processing tasks should be locally executed or entirely/partially offloaded to the cloud

depending on the current network condition, e.g., the cellular network availability and link speed.

Second, it features coverage-based rotation scheduling. On the completion of a monitoring

round, SOAR analyzes the debris coverage performance based on the estimated debris movement

orientation and the surveillance history. It then adaptively configures the camera orientation and

monitoring time interval for the next round. Because of the limited energy supply and power-

consuming movement in water environment, SOAR must efficiently adjust its orientation while

maintaining a desired level of debris coverage performance. To this end, we propose a scheduling
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Figure 5.1: Real-time debris objects detection.

algorithm that minimizes the rotation energy consumption in a round by dynamically configuring

the rotation schedule, subject to a specified upper bound on miss coverage rate for debris arrivals.

5.3 Real-Time Debris Detection

The image processing pipeline of SOAR is illustrated in Figure 5.1. Although it is based on a

collection of elementary CV algorithms, it is non-trivial to optimize these computation-intensive

synergistic algorithms for smartphones given the limited resources and stringent requirement on

system lifetime. Specifically, SOAR consists of the following image processing components. The

image registration aligns consecutive frames to mitigate the impact of camera shaking caused by

waves. In this chapter, we focus on the marine environment as an example, although our techniques

can adapt to other environment. In a marine scenario, the horizon line can be used as a reference to

register the frames. To deal with the high computation overhead of horizon line extraction, SOAR

offloads a portion of computation to the cloud based on the network link speed and shaking levels
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indicated by the smartphone’s inertial sensor readings. The registered frames are then compared

with a background model to extract the foreground. Lastly, the debris identification removes the

salt-and-pepper noises from the foreground image and then identifies the debris objects.

5.3.1 Horizon-Based Image Registration

Image registration is the process of aligning images taken at different time instants into one co-

ordinate system [42]. In debris detection, image registration is necessary to mitigate the impact

of camera shaking caused by waves, such that subsequent pixel-wise processing can be executed

properly. Registration is performed by establishing correspondence between images based on their

distinguishable features. However, a key challenge is that there are few detectable image features

in typical water environment that can guide the image registration. A novelty of our approach is

to leverage the horizon line, which segments the sky and water areas, for image registration, as

shown in Figure 5.1(a).

We employ Hough transform [41] to extract the horizon line. Hough transform has been widely

used to identify the positions of lines in an image. We assume that the majority of an image is either

sky or water area, which are separated by the horizon line. As the sky and water areas typically

have distinct colors [19], Hough transform is able to extract the horizon line accurately. For each

frame, we first convert it to a grayscale image and detect edges using a Sobel operator [42]. The

Sobel operator detects an edge point according to the local intensity of gradient magnitude. Hough

transform then finds the horizon line through a voting process based on the number of edge points

that each candidate line passes through. The result of Hough transform is a line expressed as

r = x · cosφ +y · sinφ in the Cartesian coordinate system originated at the bottom-left corner of an

image. The horizon line is parameterized by r and φ , which are the distance from the horizon line
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to the origin and the angle between the horizon line’s orthogonal direction and x-axis, respectively.

An illustration of the extracted horizon line is shown in Figure 5.1(a).

Based on the extracted horizon line, we register each video frame to mitigate the impact of cam-

era shaking. Specifically, for two consecutive frames, we register the successor frame according

to the registered predecessor by aligning their extracted horizon lines. Let ∆y denote the vertical

shifting at the midpoint of the horizon lines, and η denote the angle that the horizon line rotates

in these two frames. We assume that the midpoints of the horizon lines in the two frames corre-

spond to the same point in the world plane. Such an assumption is motivated by the observation

that the closed-loop motion control algorithms can maintain the robot’s orientation and position

by adaptive course-correction. Therefore, ∆y and η define the affine transform between these two

consecutive frames. First, we shift the successor frame to align the midpoint of its horizon line

with that of the registered predecessor frame by x′ = x and y′ = y+∆y, where (x,y) are the coor-

dinates of a pixel in the unregistered frame, and (x′,y′) are the corresponding coordinates of (x,y)

after shifting. Then, we rotate the frame by




xr

yr


=




cosη sinη x0(1− cosη)− y0 sinη

−sinη cosη x0 sinη − y0(1− cosη)


 ·

[
x′ y′ 1

]⊤
,

where (xr,yr) denote the coordinates of the underlying pixel in the reference frame, and (x0,y0)

denote the coordinates of horizon line midpoint in the successor frame after shifting and serve as

the center of rotation. For those pixels without their correspondents in the original unregistered

frame due to the rotation, we adopt bilinear interpolation to fill the color data (i.e., RGB) for them.
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5.3.2 Background Subtraction

To reduce the energy consumption in image processing, we adopt a lightweight background sub-

traction approach to detecting the foreground debris objects. We first convert the representation of

an image to HSV (Hue, Saturation, and Value) model. In HSV, hue represents the color, saturation

is the dominance of hue, and value indicates the lightness of the color. The HSV representation

is robust to illumination changes and hence more effective in interpreting color features in the

presence of reflection in water environment.

The background of a pixel is represented by a Gaussian mixture model (GMM) [42]. The GMM

comprises K three-dimensional Gaussians, where each Gaussian characterizes the three channels

of HSV color space. When a new frame is available, each pixel is compared with its background

model. If the HSV vector of a pixel in the new frame does not fall within a certain range from

any mean vector of the K Gaussians, this pixel is considered a foreground pixel candidate; other-

wise, it is classified as background. Therefore, the color difference between the foreground and

background affects the classification accuracy. In our implementation, the range is chosen to be

2.5 times of the standard deviation of the corresponding Gaussian. Under this setting, the im-

age segmentation can tolerate minor inaccuracy introduced by noises and accommodate certain

environmental condition changes.

Any labeled pixel will be used to update the GMM. In GMM, each Gaussian has a weight that

characterizes the fraction of historical pixels supporting it. If none of the existing K Gaussians

match this pixel (i.e., the pixel has been classified as foreground), the distribution with the lowest

weight is replaced by a new Gaussian, which is assigned with a large variance, a small weight, and

a mean vector equal to this newly arrived pixel; otherwise, the weight, mean, and variance vectors

of the matched Gaussian are updated based on the new pixel value and a user-specified learning
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rate. The details of GMM update can be found in [94]. This scheme allows the GMM to adapt to

environmental condition changes, enhancing the robustness of background subtraction.

We now discuss the impact of the number of Gaussians (i.e., K) in the GMM on background

substraction performance. As shown in [94], the background model with K = 1 can only deal with

static background. Therefore, more Gaussians are needed in aquatic debris detection to account for

the dynamics from camera shaking, reflection, and noises. A larger K can enrich the information

maintained by the GMM and hence improve its robustness. However, it also imposes additional

computation overhead for the smartphone. In Section 5.6.1.3, we will evaluate the trade-off be-

tween system overhead and detection performance through experiments, which guides the setting

of K. We note that it may require a large K to describe the environment with more complex and

dynamic background. Our approach can be easily extended to employ existing online algorithms

that maintain a GMM with variable K adaptive to background changes, such as the reversible

jump Markov chain Monte Carlo method [80] and its variant [95] that has been used for video

processing.

5.3.3 Debris Identification

The binarized foreground image often contains randomly distributed noise pixels, as depicted in

Figure 5.1(b). Because the background subtraction is conducted in a pixel-wise manner, the label-

ing of foreground and background can be affected by camera noise, resulting in false foreground

pixels. To deal with these noise pixels, we adopt the opening operation in image morphology [42].

The opening operation, which consists of erosion followed by dilation, eliminates the noise pix-

els through erosion while preserving the true foreground by dilation. After the noise removal, we

employ region growing to identify the debris objects from the foreground image. It uses the fore-
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ground pixels as the initial seed points and forms connected regions that represent candidate debris

objects by merging nearby foreground pixels.

We note that the extracted foreground candidate objects may contain objects that can move

actively, e.g., boats and swimmers. SOAR adopts a threshold-based approach to filter out these

non-debris objects. Specifically, the robot estimates the object movement speed based on the

pinhole camera projection model (see Section 5.4.4). When the estimated speed is higher than a

threshold, SOAR will save the image and periodically transmit back to a central server for human

inspection. The threshold on speed is chosen to exclude the non-debris objects with active mobility.

Similar heuristics based on object moving orientations can be applied to improve the accuracy of

debris recognition. We use another threshold-based method to remove the small objects. The small

object size in the image usually indicates a false alarm or a distant debris object. Ignoring them

does not affect the system accuracy since distant real debris objects will likely be detected when

they approach closer to the camera. Note that the shape of debris object has little impact on the

debris detection performance, as the false negatives in detection are mainly caused by the high

color similarity between foreground and background and the long distance between object and

camera.

5.3.4 Dynamic Task Offloading

A key advantage of smartphone-based robots lies in their capability of leveraging the abundant

resources of the cloud. To prolong the smartphone battery lifetime, SOAR dynamically offloads

the entire/partial image processing to the cloud when there is network coverage. As the typical

coverage of a cellular tower is up to several miles [89], cellular networks can be available in

nearshore water surface. The offloading decision mainly depends on two factors: 1) the overhead

of image processing algorithms, e.g., the power consumption, when they are executed locally;
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and 2) the wireless network condition, e.g., the uploading speed, which determines the energy

consumption for uploading images to the cloud. In our design, SOAR has three offloading schemes,

i.e., cloud, local, and hybrid processing, and dynamically chooses a scheme with the lowest energy

consumption. The energy consumption of these schemes are analyzed as follows.

We first analyze the energy consumption of the local and cloud processing schemes, where

all the processing on the original frame is conducted either in the cloud or on the phone. When

a new frame is available, SOAR checks the network (cellular or WiFi) link speed and estimates

the delay to upload this frame. The energy consumption for uploading the entire image is given

by ecloud = pc(γ) · s/γ , where s is the frame size, γ is the measured link speed, and pc(γ) is the

uploading power consumption under the link speed γ . Alternatively, the frame can be processed

on the phone. Let tl denote the delay to process a frame locally, including image registration,

background subtraction, and debris identification. Our measurements show that these modules

have similar CPU power consumption, which is denoted by pl . The energy drain for processing a

frame on the phone is thus given by elocal = pl · tl.

In addition to the above two options, we propose a hybrid solution that offloads the Hough

transform in image registration to the cloud and conducts the rest of processing locally. Such a

design is motivated by the observation that the Hough transform incurs nearly 70% processing

overhead for a frame (see Section 5.6.1.1). Moreover, as the energy consumption for offloading

is largely determined by the uploading volume, we propose to upload a rectangular part of the

original frame, which contains the horizon line. As the camera is shaking, the selection is based

on the horizon line in the reference frame and the accelerometer readings. Specifically, we adopt

the accumulated linear vertical acceleration (denoted by ∑az) over the time duration from the

predecessor reference frame to the current frame to quantify the camera shaking. In theory, if

∑az<0, the horizon line will shift upward in the current frame; otherwise, it will shift downward.
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Figure 5.2: Energy consumption per frame on Samsung Galaxy Nexus.

Therefore, from the sign of ∑az, we can estimate whether the horizon line in the current frame

is in the upper or lower part divided by the horizon line in the reference frame. We verify this

hypothesis using 20 video sequences with each consisting of 30 frames. The results show that this

hypothesis holds for 576 frames out of all 600 frames. In our hybrid scheme, the rectangular part

to be uploaded has the original frame width and a height (denoted by hc) from the horizon line

midpoint in the unregistered reference frame to either width depending on the sign of ∑az. Let

h0 denote the original frame height, and th denote the delay to conduct Hough transform locally.

The energy consumption for hybrid processing is given by ehybrid = hc

h0
ecloud +

tl−th
tl

elocal. Note

that this formula ignores the low-probability cases where the above hypothesis does not hold. In

these cases, the cloud will fail to identify the horizon line and the original frame will be processed

locally.

By comparing elocal, ehybrid, and ecloud, SOAR chooses a scheme with the lowest energy con-

sumption. All the parameters except the height hc in hybrid scheme and the link speed γ can

be obtained using offline measurements. In our current prototype, we use WiFi to upload video

frames to the cloud, although the implementation can be easily extended to cellular network. We

measure the power consumption of a Samsung Galaxy Nexus using an Agilent 34411A multime-

ter when the smartphone is uploading video frames under various WiFi link speed settings and
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locally processing the frames. Figure 5.2 plots the energy consumption per frame under the three

schemes. Note that for the hybrid scheme, we set hc/h0 = 50%. We can observe that when the link

speed is high, it is preferable to offload the entire/partial image processing to the cloud for energy

conservation.

5.4 Coverage-Based Rotation Scheduling

In this section, we first introduce camera sensing and debris arrival models, and analyze the ef-

fectiveness of covering debris arrivals. We then present a rotation scheduling algorithm that aims

to minimize the rotation energy consumption while maintaining a desired coverage rate for debris

arrivals.

5.4.1 Camera and Debris Models

The field of view (FOV) is a widely used concept to characterize a camera’s sensing area, in which

any object with dimensions larger than pre-defined thresholds can be reliably detected from the

taken images. A camera’s FOV is typically represented by a sector originated at the camera’s

pinhole with an angular view α and a radius R [42], where α is hardware-dependent and R can be

measured through experiments for a specific application. For example, in pedestrian detection, the

camera’s FOV has a radius of up to 40 meters [28]. For the objects within the FOV, image sensing

is insensitive to their dimensions as long as they are larger than a certain size. For example, our

on-water experiments show that any floating object with a cross-sectional area over 0.28m2 (e.g.,

a five gallon water bottle) can be reliably detected at 40 meters away from a smartphone’s camera.

We note that FOV is a conservative approximation to the camera’s sensing area because the objects

outside FOV may also be detected by the camera. This approximation simplifies the analysis of the
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Figure 5.3: Illustration of FOV, surveillance region, thickness, debris arriving angle β , debris

movement orientation θ and its estimation, and the cut-off region.

coverage of debris arrivals. In Section 5.4.2, we will show that the rotation scheduling algorithm

does not depend on the value of R.

Since we focus on the nearshore debris arrival monitoring, the surveillance region for SOAR is

defined as the semi-circular area originated at the robot with a radius of R. We define the camera

orientation by its optical axis. Because of the limited angular coverage of FOV, SOAR needs to

constantly adjust its orientation to maintain a desired coverage level for debris arrivals over the

defined surveillance region. In this chapter, we assume that the adjustments of camera orientation

only occur at time instants that are multiples of a fixed time interval unit, which is referred to as

slot.

In the nearshore water environment, debris objects often passively drift with water current that

moves straightly in a fixed direction [19]. We set up a Cartesian coordinate system with x-axis,

y-axis, and z-axis, which are parallel, horizontally perpendicular, and vertically perpendicular to

the shoreline, respectively. We assume that the positions of debris objects on the water surface at a

given time instant follow the Poisson point process, which has been verified in previous studies [9,

19]. Our analysis (omitted due to space limit) shows that the number of debris objects that arrive at

the surveillance region frontier, as illustrated in Figure 5.3, follows the Poisson process. A Poisson
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process is characterized by an arrival rate, denoted by λ , and a time interval, denoted by τ . The

λ is the expected number of arriving debris objects at the surveillance region during a slot, and τ

is the number of slots. The probability that there is at least one object arriving at the surveillance

region during the interval τ is

Pa = 1− e−λτ . (5.1)

As the occurrences of debris objects are rare events, the Poisson process has a small λ . In

Section 5.4.4, we will describe an approach to estimating λ based on the historical detection re-

sults and envision a cloud-based approach that leverages the publicly available information about

aquatic debris.

5.4.2 Debris Arrival Coverage

In the rotation scheduling, an arriving debris object is covered by SOAR if the arrival position at

the surveillance region frontier falls into the camera’s FOV. A rotation schedule aims to cover as

many newly arriving debris objects as possible. Accordingly, our rotation scheduling algorithm

controls the orientation of SOAR based on the statistics of the historical debris arrival observa-

tions. Therefore, it is important to model the arrivals of debris objects at the surveillance region.

We note that whether a debris object covered by the camera’s FOV can be eventually extracted

from the taken images is determined by the performance of the CV algorithms (see Section 5.3).

However, it is desirable to maximize the coverage rate, which improves the overall debris mon-

itoring performance. We define the coverage rate for debris arrivals provided by SOAR as the

ratio of the number of trajectories hitting camera’s FOV frontier to that hitting surveillance region

frontier. However, one immediate challenge is that lines are uncountable. We employ thickness in

geometric probability [88] to measure the set of trajectories. Specifically, the thickness of an arc
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frontier, denoted by T , is defined as the length of its projection to the line perpendicular to debris

movement orientation, as illustrated in Figure 5.3.

The thickness allows us to directly evaluate the debris coverage performance. We first analyze

the probability of miss coverage based on thickness. Let θ denote the debris movement orienta-

tion, which is the angle between the debris’ trajectory and x-axis. Let β denote the debris arriving

angle, which is the angle between the radius from debris’ arrival position at the surveillance re-

gion frontier and x-axis. Both θ and β are illustrated in Figure 5.3. To simplify the discussion,

we discretize the possible arriving angles by 1◦, and define arrival frontier as the 1◦ arc cen-

tered at the arrival position. Let T (β ) and T0 denote the thickness of arrival frontier and the

thickness of the whole surveillance region frontier, respectively. Based on the geometric relation-

ship, we have T (β ) = 2Rsin0.5◦ cos(β − θ) and T0 = (1+ sinθ)R. Therefore, the probability

that a debris object hits the arrival frontier defined by β conditioned that its trajectory intersects

with the surveillance region frontier, is given by g(β ,θ) = T (β )/T0, which is independent of R.

As the probability that at least one debris object arrives at the surveillance region is Pa given in

Equation (5.1), the probability that at least one debris object reaches the arrival frontier defined

by β (denoted by Pa(β )) is Pa(β ) = Pa ·T (β )/T0 = Pa · g(β ,θ). We note that if β is not cov-

ered by the FOV during an interval τ , Pa(β ) represents the probability of missing debris arrivals.

We then derive the miss coverage rate, which will be used to schedule the rotation of SOAR. Let

tr(β ) denote the end time instant of the most recent slot when β was covered by the camera’s

FOV, and t denote the end time instant of interval [tr(β ), t], during which the arrival frontier de-

fined by β remains uncovered. The miss coverage rate at arriving angle β and time t, denoted by

ω(β , t | tr(β ),θ), is defined as the probability of missing debris arrivals during interval [tr(β ), t].
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Formally,

ω(β , t | tr(β ),θ) = Pa(β ) | τ=t−tr(β ) = (1− exp(−λ (t − tr(β )))) ·g(β ,θ). (5.2)

Note that the miss coverage rate does not depend on the specific value of R, but the ratio of

thicknesses, i.e., g(β ,θ). Thus, the coverage-based rotation scheduling algorithm presented in

Section 5.4.3 will not rely on R.

5.4.3 Coverage-Based Rotation Scheduling

Because of the limited angular coverage and energy budget, the rotation of SOAR needs to be

carefully scheduled to achieve the desired coverage rate for debris arrivals. In this section, we

formulate the problem of coverage-based robot rotation scheduling. Our objective is to schedule

the next camera orientation and corresponding monitoring interval to minimize the overall energy

consumption, subject to an upper-bounded miss coverage rate at all arrival angles.

As the rotation energy consumption is approximately proportional to orientation change [51],

we adopt the changed orientation to characterize the consumed energy in rotation. Let θ̃ denote the

estimated debris movement orientation (see Section 5.4.4). Suppose the current camera orientation

and time instant are β ′
0 and t ′. The next rotation schedule, including the camera orientation β0 and

end time instant of monitoring interval t, minimizes the average rotation rate v:

v =
|β0−β ′

0|
t − t ′

, (5.3)

subject to

ω(β , t | tr(β ), θ̃)< ξ , ∀β ∈ [0,β0−α/2]∪ [β0 +α/2,π ], (5.4)
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where ξ is the maximally tolerable miss coverage rate. The constraint in Equation (5.4) upper-

bounds the miss coverage rate ω at each uncovered β . Note that for β within the camera’s FOV,

i.e., β ∈ [β0−α/2,β0+α/2], it has zero miss coverage rate. The above problem can be efficiently

solved by searching a set of discrete candidate orientations. During surveillance, SOAR keeps a

map of ω at each β , and updates it before each new scheduling to account for system dynam-

ics, which includes the error in orientation adjustment, the updated θ̃ (see Section 5.4.4) and λ .

With the updated map of ω , SOAR adaptively schedules the next orientation and the associated

monitoring interval.

Equation (5.4) ensures an upper bound on ω for uncovered arriving angles. Given a certain

θ , there always exists a cut-off region as illustrated in Figure 5.3. Specifically, the arrival position

of a debris object will never fall into the frontier of this cut-off region. To avoid the unnecessary

rotation, SOAR can exclude this cut-off region. Our analysis shows that v is reduced by about 25%

after excluding this cut-off region when θ = π/3.

5.4.4 Debris Movement and Arrival Estimation

From Equation (5.2), the miss coverage rate ω depends on the debris movement orientation θ .

Before deployment, SOAR can be configured with a coarsely estimated θ from prior knowledge

about the water movement direction in the deployment region. Once SOAR detects a debris object,

θ can be accurately estimated based on the pinhole camera projection model and the positions of

the object in images. Figure 5.4 shows the pinhole projection model. Specifically, Figure 5.4(a)

illustrates how real-world distance along y-axis is projected to vertical axis h in the image. It can

be obtained that |y1 − y2|= f H · |1/h2 −1/h1|, where y1 and y2 are distances between SOAR and

the debris object in two frames; h1 and h2 are the vertical pixel distance equivalents of y1 and

y2; f is the camera focal length; and H is the mounting height of smartphone on SOAR. Similarly,
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Figure 5.4: Pinhole camera projection model.

Figure 5.4(b) illustrates how real-world distance along x-axis corresponds to horizontal axis d. The

following relationship holds |x1 − x2| = H · |d2/h2 − d1/h1|, where x1, x2, d1, and d2 are similar

measures to y1, y2, h1, and h2. Based on the geometric relation shown in Figure 5.3, the estimated

debris movement orientation θ̃ is given by

θ̃ = arctan

∣∣∣∣
y1 − y2

x1 − x2

∣∣∣∣= arctan

(
f ·
∣∣∣∣

h1 −h2

d2h1 −d1h2

∣∣∣∣
)
+θr, (5.5)

where θr is the heading direction of SOAR and can be obtained from the built-in digital compass of

smartphone. We will evaluate the accuracy of θ̃ in Section 5.6.1.2. Moreover, the object movement

speed can be estimated by (|x1−x2|2+ |y1−y2|2)1/2/|t1− t2|, where t1 and t2 are the time instants

when the object is at (x1,y1,0) and (x2,y2,0), respectively.

We then describe two approaches to estimating the debris arrival rate λ . First, λ can be es-

timated based on the historical detection results by SOAR. Suppose the robot detects n debris

objects in the rotation schedule specified by β0 and t. As discussed in Section 5.4.2, the probabil-

ity that an arriving debris object is covered by the camera’s FOV conditioned that it arrives at the

surveillance region is given by the ratio of their thicknesses, i.e., TFOV/T0. Hence, the expecta-

tion of debris arrivals at the whole surveillance region during one slot, i.e., λ , can be estimated by

nT0/(PdTFOV(t− t ′)), where Pd is the lower bound on detection probability for the FOV and t− t ′

97



counts the monitoring slots. Second, the long-range communication capability of SOAR makes

it possible to exploit the available web resources to estimate λ . For example, the Marine Debris

Clearinghouse [67] is a representative online tool for aquatic debris tracking. Based on satellite

images, on-site reports, and aquatic field simulations, it can estimate the intensity of incoming

debris over large areas.

5.5 SOAR Prototype

We have built a proof-of-concept prototype of SOAR for evaluation. The vision-based debris

detection algorithm presented in Section 5.3 is fully implemented on smartphone platforms running

Android 4.3 Jelly Bean. System evaluation is mainly conducted on two representative handsets,

a Samsung Galaxy Nexus (referred to as Galaxy) and a Google Nexus 4 (referred to as Nexus4).

The implementation takes about 1.99MB storage on the phone, and requires about 10.2MB RAM

when the frame resolution is set to be 720× 480. When a new frame is available, SOAR checks

the current WiFi condition using Android API WifiInfo.getLinkSpeed(). Based on the

measured link speed and horizon line position, it determines whether this newly arrived frame is

locally processed or entirely/partially uploaded to the cloud, following the scheme proposed in

Section 5.3.4. Our initial implementation of image processing modules in Java incurs extensive

delays on current Android system. To boost the frame processing performance, we use OpenCV

libraries and interface them with Java using Java Native Interface on Android. In particular, we

adopt OpenCV’s native implementation of the Hough transform, which is more efficient than other

implementations in our tests.

We integrate the smartphone to a gliding robotic fish developed in our previous work. The fish

platform weights 9kilogram and represents a hybrid of underwater gliders and robotic fish with
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advantages of both. It is equipped with a ZigBee radio for wireless communication, two 75W · h

on-board batteries, and a circuit board for mobility control, localization, and navigation. On the

control board, we implement a closed-loop proportional-integral-derivative (PID) controller that

adaptively configures the tail beat based on the discrepancy between the scheduled and actual

orientations. In our current implementation, we use a host computer to relay the communication

between the smartphone (using WiFi) and the fish (using ZigBee). In the future, we will establish

direct connection between them, and migrate the PID controller to the smartphone to reduce the

physical size and cost of the fish control board. Figure 1.3 depicts our prototype system that

integrates a Galaxy in a water-proof enclosure with a gliding robotic fish.

5.6 Performance Evaluation

We evaluate SOAR through testbed experiments and simulations based on data traces collected

from the prototype. The testbed experiments validate the feasibility of SOAR by evaluating the

computation overhead, effectiveness of each module, and the overall performance of a fully inte-

grated SOAR. The simulations extensively evaluate the performance of SOAR working under wide

ranges for parameter settings.

5.6.1 Testbed Experiments

We evaluate SOAR in controlled lab experiments to fully understand its performance. We conduct

extensive experiments using our prototype in a 15 feet × 10 feet water tank in our lab. Along one

side of the tank, we vertically place a piece of white foam board above the water surface to imitate

the sky area. The line where the foam board intersects with the water surface produces an artificial

horizon line. In the experiments, we set the camera frame rate to be 0.25fps. The setting is based on

99



the fact that debris usually has a slow drifting speed and hence does not require a rapidly updated

background model. Moreover, a low frame rate helps prolong the battery lifetime. The GMM

comprises 3 three-dimensional Gaussians (i.e., K = 3), unless otherwise specified. We test the

debris detection performance under various environmental conditions and experimental settings,

which include different camera shaking levels, with and without registration, and different settings

of GMM. For each scenario, we conduct 9 runs of experiments. For each run, we calculate the

detection probability as the ratio of frames with correct detections to the total frames with debris,

and the false alarm rate as the ratio of frames with false detections to the total frames without

debris.

5.6.1.1 Overhead on Smartphone Hardware

We first evaluate the overhead of vision-based detection algorithms on smartphone platforms.

Specifically, we measure the computation delay of each image processing module, i.e., image

registration, background subtraction, and debris identification on Galaxy and Nexus4, respec-

tively. Galaxy has an 1.2GHz dual-core processor and 1GB memory, and Nexus4 has an 1.5GHz

quad-core processor and 2GB memory. They are representative mid- and high-end mainstream

smartphone platforms. The computation delay is measured as the elapsed time using Android API

System.nanoTime(). The results are plotted in Figure 5.5. We can see that background sub-

traction takes the least time, followed by debris identification combined with debris movement

orientation estimation. Image registration incurs the longest delay. Breakdown shows that this

long delay is mostly caused by the Hough transform. The overall computation delay is within 3.7

and 3.3 seconds on Galaxy and Nexus4, respectively, which well meet the real-time requirement

of debris monitoring as debris arrivals are typically sporadic [9, 19].
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5.6.1.2 Accuracy of Debris Movement Orientation Estimation

We then evaluate the debris movement orientation estimation presented in Section 5.4.4. Initially,

the debris movement orientation θ is unknown to SOAR. After a debris object is successfully

detected in two frames, SOAR can estimate θ based on Equation (5.5). In the experiments, an

object (a can) is fastened to a rope. We drag the object using the rope to simulate the movement

of debris object. We define the relative estimation error as |θ − θ̃ |/θ , where θ̃ is the estimated

orientation from Equation (5.5) and θ is the ground truth obtained by using a protractor. Figure 5.6

plots the CDF and the average of the relative estimation error for the approaches with and without

image registration. We can see that the approach with registration can accurately estimate θ , with

an average relative estimation error of only about 7%. In contrast, the approach without registration

results in an average relative estimation error of around 43%.

5.6.1.3 Impact of Mixed Gaussians

We now evaluate the impact of the number of mixed Gaussians (i.e., K) on detection performance.

Section 5.3.2 discusses the trade-off between the detection performance and system overhead

caused by K. The detection probability and execution time on Galaxy are plotted in Figure 5.7.
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We can see that the detection probability increases with K. Moreover, Figure 5.8 evaluates the

false alarm rate versus K, where the error bar represents the standard deviation. It can be observed

that the false alarm rate decreases with K. A larger K imposes heavier computation overhead in

both image segmentation and background model update. When the GMM adopts 2 Gaussians,

the computation delay is about 30% of that with 6 Gaussians. We also find that K = 3 achieves

a satisfactory trade-off between detection performance and computation delay. Therefore, we set

K = 3 in other testbed experiments.

5.6.1.4 Effectiveness of Image Registration

As discussed in Section 5.3.2, the background subtraction is conducted in a pixel-wise manner,

hence its performance is sensitive to camera shaking. Figure 5.9 shows a sample of background

subtraction. Specifically, Figure 5.9(a) is the original frame where the red and black dashed lines

represent the extracted horizon lines for this frame and the registered predecessor frame, respec-

tively. Figure 5.9(b) shows the background model, where each pixel is the mean vector of the

Gaussian with the largest weight in the GMM. Figure 5.9(c) is the result of background subtraction

without image registration. Figure 5.9(d) is the result with image registration before subtraction.

We can see that our horizon-based registration effectively mitigates the impact of camera shaking,
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 horizon line of predecessor frame
 horizon line of current frame

(a) Original frame (b) Gaussian with the largest weight

(c) Without registration (d) With registration

Figure 5.9: Sample background subtraction outputs for approaches with and without horizon-based

image registration.

and hence the detection algorithm can more accurately pinpoint the foreground object location in

the image. Figure 5.10 plots the detection probability for approaches with and without image reg-

istration under different camera shaking levels. In the experiments, we generate different levels

of waves by controlling a feed pump connected to the tank. The az reported in Figure 5.10 is the

average linear vertical acceleration (i.e., excluding gravity) measured by the built-in accelerometer

on smartphone, and hence characterizes the camera shaking levels. We can see that the image

registration not only improves the average detection performance, but also decreases the variance

in detection probability in the presence of camera shaking. It effectively mitigates the impact of

shaking, leading to a smaller degradation in detection probability as camera shaking increases.
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5.6.1.5 Integrated Evaluation

In this set of experiments, all modules of SOAR (vision-based debris detection, θ estimation, rota-

tion scheduling, and PID-controlled orientation adjustment) are integrated and evaluated. Similar

to previous experiments, we drag a can to simulate a debris object. The debris movement orienta-

tion θ is 0.156π , which is unknown to the system before deployment. We set the slot duration as

1 minute. At time t = 0, SOAR is deployed perpendicularly to the tank length. At time t = 1min,

it starts the first monitoring round as discussed in Section 5.2. In this experiment, SOAR achieves

83.3% detection probability and 5.8% average relative θ estimation error. We further study the

performance of rotation scheduling and orientation adjustment of SOAR. It is unlikely for SOAR

to rotate to the exact scheduled orientation due to complex fluid dynamics and compass inaccu-

racy. This orientation adjustment error and minor inaccuracy in θ estimation affect the rotation

scheduling for the next round. For evaluation, we compare the actual rotations of SOAR with the

real-time scheduled rotations during this experiment (referred to as expected schedule), and those

in an ideal simulation (referred to as simulated schedule) where we assume both orientation ad-

justment and θ estimation are accurate and thus feed the scheduling algorithm with ground truth.

We note that the differences between the actual rotations and expected schedule characterize the
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performance of the PID-controlled orientation adjustment. The deviations between the expected

schedule and simulated schedule indicate the robustness of the rotation scheduling algorithm to the

control and estimation errors. The results are shown in Figure 5.11 and Figure 5.12. We find that

the orientation adjustment errors vary for different expected orientations due to different levels of

fluid obstruction. For example, in the 3rd scheduling round, SOAR is subject to a higher level of

fluid obstruction when it targets an expected orientation perpendicular to the water movement di-

rection. Our PID controller can generally maintain an orientation adjustment error lower than 15◦.

Moreover, as shown in Figure 5.12, the expected monitoring intervals well follow the simulated

schedule because the temporal scheduling is mainly determined by the debris arriving intensity

over time.

5.6.2 Trace-Driven Simulations

To more extensively evaluate SOAR under realistic settings, we conduct simulations driven by

real data traces collected using our prototype in the water tank. The data include error traces

of SOAR orientation adjustments and video traces of debris arrivals. First, the error traces of

SOAR orientation adjustments are collected using our prototype system. The camera orientation
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is represented by the heading direction of SOAR. We collect the error traces by measuring the

discrepancy between the desired orientation and actual heading direction. Second, we use our

prototype to collect two distinct sets of video traces of an arriving bottle. In our prototype, the

phone is mounted about 3 inches above the water surface. Trace 1 is collected in calm environment,

and has 1495 frames in total. Trace 2, with a total of 1275 frames, is collected in the presence of

persistent waves generated by the feed pump. To provide ground truth data, the foreground debris

object in each frame is manually labeled.

In the simulations, SOAR is deployed to monitor debris objects arriving in a semi-circular

surveillance region. The arrival rate λ is set to be 9, unless otherwise specified. The debris move-

ment orientation is θ = π/3, and we assume that θ is known to the robot. We set the FOV angular

coverage α to be 5π/18 based on our measurements of Galaxy. Initially, the robot is deployed

perpendicular to the shoreline. It is allowed to adjust its orientation after the first slot. For each

orientation adjustment, the actual direction is set according to the collected traces, which is thus

subject to discrepancies from the desired orientation.

5.6.2.1 Impact of Frame Rate

Figure 5.13 plots the detection probability versus frame rate. We can observe that the detection

probability increases with frame rate. This is because a higher frame rate enables the GMM to be

more timely updated to capture the environmental condition changes. However, the improvement

gained by increasing frame rate is fairly limited. The reasons are two-fold. First, debris objects

usually drift slowly with water current. The GMM can thus be updated with a low rate. Second,

our horizon-based image registration effectively mitigates the impact of camera shaking, which is

the major affecting factor for debris detection. Hence, a low frame rate can achieve satisfactory
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debris detection performance. Moreover, in terms of system overhead, a low frame rate is desirable

for smartphone platforms that have constraints on resources and energy supply.

5.6.2.2 Coverage Effectiveness

We compare the coverage effectiveness of our approach with a heuristic baseline approach that

uniformly scans the surveillance region. Specifically, the baseline approach evenly partitions the

semi-circular surveillance region into ⌈π/α⌉ sub-regions. In this scheme, the robot sequentially

scans the sub-regions by making an orientation adjustment each slot. For our approach, the desired

upper bound on miss coverage rate is set to be 0.3. We evaluate the coverage effectiveness by

examining the maximum miss coverage rate (denoted by ωm) among all arriving angles. The ωm

characterizes the worst-case debris coverage performance for a rotation schedule. Figure 5.14 plots

the ωm versus index of scheduling rounds. We can observe that our approach can guarantee the

upper bound on miss coverage rate, since it adaptively allocates surveillance slots based on the ω at

each β , while the uniform scan cannot bound the ωm. Moreover, we evaluate the average rotation

rate v, where a larger v indicates higher power consumption. Figure 5.14 also plots the v versus

index of scheduling rounds. As the uniform scan approach continuously adjusts the orientation, it

consumes more power than our approach.
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5.6.2.3 Impact of Arrival Rate

Figure 5.15 plots the average rotation rate v versus index of scheduling rounds under different

settings of debris arrival rate λ . We can see that the robot has a higher v when λ is higher. This

is consistent with the intuition that the robot needs to rotate faster when debris arrives more fre-

quently. Figure 5.15 also plots the total monitoring time versus index of scheduling rounds. We

can see that for a higher λ , the rotation scheduling has to be conducted more frequently to meet

the upper-bounded miss coverage rate ω , as ω at the uncovered arriving angles increases with λ .

The robot is scheduled to rotate less frequently under a lower λ , resulting in a lower v and a longer

monitoring interval at each orientation. Overall, the results in Figure 5.15 demonstrate that our

approach can adaptively control the robot rotation to achieve the desired coverage performance

while minimizing the energy consumption.

5.6.2.4 Impact of Estimation Errors

This set of simulations evaluate the impact of estimation errors of debris movement orientation

θ on debris coverage performance. Let ε(·) denote the relative estimation error with respect to

ground truth. Figure 5.16 plots the maximum miss coverage rate ωm versus index of scheduling

rounds under various estimation error levels for θ . We note that the estimation error in θ affects

the scheduling of camera orientation, as θ determines the distribution of debris arriving probability

at the frontier of surveillance region. From the figure, we can see that our rotation scheduling

algorithm generally maintains ωm below the desired upper bound of 0.3, as long as the relative

estimation errors for θ is below 15%. As shown in Section 5.6.1, ε(θ) is only about 7%. Thus,

SOAR can tolerate practical inaccuracy in estimating θ . Moreover, our analysis (omitted due to
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Figure 5.17: Projected lifetime and daily en-

ergy consumption breakdown of SOAR.

space limit) validates that SOAR shows similar tolerance to the inaccuracy in estimating debris

arrival rate λ .

5.6.2.5 Projected Lifetime

Finally, we evaluate the lifetime of SOAR based on its power consumption profile. The major en-

ergy consumption of SOAR is due to the smartphone during the wake periods and the fish rotation.

According to our results from the integrated evaluation (see Figure 5.12), a monitoring round lasts

for 5 minutes averagely, and SOAR can rotate to the scheduled orientation within 15 seconds. We

can thus calculate the upper bound on daily (12 hours of daytime) energy consumption for fish

rotation as (12×60/5)×(15/3600)× pr W ·h, where pr is the battery power consumption for fish

rotation. The energy drain on smartphone can be calculated using offline power consumption mea-

surements and the duty cycle. The total battery capacity of SOAR is 170W ·h, including a backup

13.5W · h and two main 75W · h batteries on the fish, and a 6.48W · h battery on the smartphone.

Figure 5.17 plots the projected lifetime under various duty cycle settings, when all the CV tasks

are conducted on the smartphone. The duty cycle is defined as the ratio of wake time to the total

time. As expected, the lifetime decreases with duty cycle. Note that a low duty cycle will decrease

the temporal sensing granularity of SOAR. For example, during a 5 minutes monitoring interval,
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it can capture and process about 20 and 50 frames under 20% and 50% duty cycles, respectively.

The breakdown of SOAR daily energy consumption is also shown in Figure 5.17. We find that the

majority of energy is consumed by the wake periods and fish rotation. Moreover, Figure 5.17 also

plots the projected lifetime when smartphone runs the hybrid scheme under a link speed of 2Mbps.

The hybrid scheme reduces the power consumption for smartphone during the wake periods by of-

floading the intensive Hough transform to the cloud. It can be seen that the hybrid scheme leads to

9.1% to 21.5% improvement on lifetime under different duty cycles.

5.7 Conclusion

This chapter presents SOAR – a new vision-based robotic sensor system designed for aquatic

debris monitoring. SOAR integrates an off-the-shelf Android smartphone and a gliding robotic

fish. The vision-based debris detection algorithms of SOAR effectively deal with various dynamics

such as camera shaking and reflection. A rotation scheduling algorithm adaptively guides the

rotation of SOAR to capture the images of arriving debris objects. Moreover, SOAR dynamically

offloads the entire/partial image processing to the cloud for energy conservation.
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Chapter 6

Water Surface Monitoring

6.1 Introduction

This chapter presents Samba (Smartphone-based aquatic monitoring robotic platform), a robot

system that is based on SOAR (see Chapter 5) but has more exciting features for water surface

monitoring. Specifically, Samba and SOAR fundamentally differ from each other in four aspects.

First, Samba achieves much higher energy efficiency by integrating inertial sensing with visual

sensing through a learning-based scheme. According to our experiments, Samba consumes 97%

less energy than SOAR in processing an image frame. Second, the generic design of Samba en-

ables the monitoring of either moving or static aquatic processes such as oil spill and HABs;

however, SOAR detects moving debris objects only while treating all the static targets as back-

ground. Moreover, SOAR identifies debris objects using a pixel-based approach, while Samba

detects target aquatic processes based on their color features without modeling each pixel. As a re-

sult, compared with SOAR, Samba drastically decreases the overhead of robot mobility control, as

it does not rely on robot mobility to maintain the pixel-level correspondence across frames in dy-

namic aquatic environment. Lastly, Samba adopts a feedback-control-based algorithm that adapts

the robot’s movement based on the detected dynamics of the target, while the movement of SOAR

is primarily driven by prior knowledge such as the arrival model of the debris objects.

To monitor aquatic processes on the water surface, we need to address several major challenges.

First, aquatic processes are often scattered as patches over large geographic regions and spatiotem-
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Figure 6.1: A sample image captured by the Samba prototype in an inland lake, where the water

and non-water areas are separated by a shoreline; the trees exhibit similar color with the algal

patches in the water area.

porally evolving [11, 71], which create challenges for fine-grained monitoring. Continuous visual

sensing can track their evolution, which, however, imposes significant energy and computation

overhead to smartphone. Second, phone’s built-in cameras have limited field of view. Although

the controllable mobility of robot can help improve the sensing coverage, aquatic locomotion may

incur high energy consumption. Lastly, existing vision-based detection algorithms using back-

ground subtraction [84] perform poorly on the images captured in the aquatic environment. For

example, the patches of the target aquatic process present in the camera view often block the

background, making it difficult to differentiate between the foreground and the real background.

Moreover, the target detection may be greatly affected by various dynamics such as blurred images

caused by waves, highly variable illuminance, and complex non-water area in the image. These

uncertainties can lead to excessive false alarms. Figure 6.1 shows a sample image captured by a

Samba prototype in an inland lake, where the trees on the shore exhibit similar green color with

the algal patches on the water, potentially resulting in false detections.

This chapter makes the following contributions:

1) We propose an inertial-sensing-assisted image segmentation approach to identifying the water

area in the image. By focusing on the water area, Samba can reduce the false alarms caused by

the non-water area. A key novelty of this approach is to leverage the energy-efficient inertial
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sensing to replace the compute-intensive algorithms for visual feature extraction used in image

segmentation. Specifically, Samba first learns the mapping models that project inertial sensor

readings to visual features. It then uses these models and real-time inertial sensor readings to

estimate the visual features (e.g., the shoreline in Figure 6.1) for image segmentation without

actually extracting them from the images.

2) We propose several lightweight and robust CV algorithms to detect harmful aquatic processes

in dynamic environment. Our vision-based detection algorithms, consisting of back projection

and patch identification, detect the existence of a target process based on its distinctive color

features. The algorithms are specifically designed to address the dynamics in aquatic monitor-

ing such as the highly variable illuminance and camera noise.

3) We design a feedback-based robot rotation control algorithm that increases coverage and main-

tains a desired level of monitoring resolution on the evolving aquatic process, e.g., the area

expansion of an algal patch between two consecutive observations during the rotation. Based

on the dynamics of the target process, the control algorithm adapts the rotation speed of Samba

to meet user’s requirement on monitoring resolution.

6.2 Overview of Samba

Samba integrates an off-the-shelf Android smartphone with a robotic fish. The phone loads an app

that implements the image processing and mobility control algorithms, including hybrid image

segmentation, aquatic process detection, and adaptive rotation control. The robotic fish propels

Samba by beating its tail, and communicates with the phone via a USB cable. Samba is designed

to operate on water surface and monitor harmful aquatic processes such as oil spill and HABs.
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These processes typically disperse as patches in the aquatic environment and exhibit distinctive

colors [11,71]. To monitor a large affected region, multiple Samba robots can be deployed to form

a surveillance network. Their local observations can be sent back to a central server via the long-

range communication interface on smartphones and stitched into a global map. In this chapter,

we focus on the design of a single Samba robot. Due to the limited angular view of the phone’s

cameras, it is challenging to monitor the scattered patches of the target process. Although extra

optical components like fisheye lens can be used to broaden the camera view, their integration to

Samba will complicate the system design by introducing additional computation overhead due to

the distorted images [84]. We leverage mobility to increase the sensing coverage. Specifically,

Samba can rotate by performing discrete tail beats. We focus on the rotation mobility, because it is

much more energy-efficient than moving forward that requires continuous tail beats.

Before deployment, Samba is trained by some sample images of the target aquatic process

(TAP). The sample images are close-up photos of the TAP and can be provided by domain scien-

tists. Samba can monitor multiple TAPs simultaneously when provided with their sample images.

Samba conducts aquatic monitoring at a set of orientations, which are selected to ensure a full

coverage of surrounding region given the angular coverage of Samba’s on-board camera. After

the initial deployment, it begins a TAP surveillance process consisting of multiple rounds. In each

round, Samba keeps monitoring toward an orientation for a certain time interval. At the beginning

of a round, Samba rotates to a new orientation and starts to capture images at a certain rate. For

each image, it identifies the water area and executes several CV algorithms to detect the existence

of TAP in real time. At the end of this round, Samba estimates the dynamics of TAP (e.g., evo-

lution rate) and computes the monitoring interval for the next round. For example, if the TAP

evolves rapidly, Samba will shorten the monitoring interval such that it can rotate back to the cur-

rent orientation sooner, keeping smooth track of the TAP evolution; and vice versa. When drastic
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Figure 6.2: The aquatic environment monitoring pipeline when Samba keeps an orientation. Samba

periodically adjusts its orientation to adapt to the dynamics of surrounding target aquatic process

(TAP) patches.

evolution of the TAP is detected, Samba can alert the user by using the communication interface

(cellular/WiFi) on smartphone. A primary design objective of Samba is to realize long-term (up

to a few months) autonomous monitoring. Between two image captures, Samba sleeps to reduce

energy consumption. One novel feature of Samba is the inertial-sensing-assisted image processing

scheme that can lead to significant energy savings. In particular, Samba uses the learned models

that partition an image based on inertial sensor readings, without actually extracting the visual

features from the images using compute-intensive algorithms. Specifically, Samba comprises the

following three major components.

First, it features hybrid image segmentation. By partitioning an image into water and non-

water areas, Samba performs aquatic process detection in the water area only, thus reducing de-

tection false alarms and computation energy consumption. Samba adopts a novel hybrid image

segmentation framework as illustrated in Figure 6.2(a). Specifically, it uses both vision-based and

inertia-based segmentation modes. This hybrid approach learns regression-based mapping models

that project the inertial sensor readings to the visual features for image segmentation. Therefore,

Samba can partition an image based on the visual features mapped from the inertial sensor read-
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ings, avoiding executing the compute-intensive CV algorithms continuously. Samba switches to

vision-based segmentation if the mapping models need to be updated, e.g., when the accuracy of

inertia-based segmentation drops or Samba rotates to a new orientation.

Second, it features real-time TAP detection. This component detects TAP in the segmented

images. As illustrated in Figure 6.2(b), it consists of two lightweight image processing modules,

i.e., back projection and patch identification. First, Samba extracts the robust color features of TAP

in HSV color space, and performs back projection to identify the candidate pixels of TAP in each

segmented image. The projected image is then passed to patch identification for probability thresh-

olding, noise removal, and patch recognition, which effectively deal with various environment and

system dynamics such as the highly variable illuminance and camera’s internal noise.

Third, it features adaptive rotation control. Samba monitors the surrounding TAP patches at

fine spatiotemporal granularity while meeting energy consumption constraints. To adapt to the

dynamics of TAP that is primarily affected by environmental conditions, we develop a feedback

control algorithm to maintain the desired monitoring granularity. On the completion of a round,

Samba estimates the dynamics of TAP (e.g., diffusion of oil slick and growth of HABs) based

on detection results, and then calculates a new rotation speed such that the expected monitoring

granularity in the next round can be maintained at the desired level.

6.3 Hybrid Image Segmentation

Image segmentation is the process of partitioning an image into multiple parts [84]. In aquatic

monitoring, we adopt image segmentation to remove the non-water area from the captured images,

and thus perform the detection of TAP in the water area only. This can avoid the false alarms

that occur in the non-water area (e.g., those caused by trees in Figure 6.1) and reduce computation
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Figure 6.3: The overall structure of hybrid image segmentation where Samba switches between the

vision-based and inertia-based segmentation modes. In the online learning phase, Samba jointly

uses inertial and visual sensing to learn regression-based mapping models, which project the cam-

era Euler angles (obtained from the inertial sensors) to the extracted visual features (obtained from

the camera). In the estimation phase, Samba utilizes the learned mapping models to estimate the

visual features and conducts the image segmentation accordingly.

in subsequent image processing tasks. Image segmentation is usually conducted based on visual

features. For example, the shoreline can be used to identify the water area in inland lakes. However,

most visual feature extraction CV algorithms are compute-intensive. According to our experiments

(see Section 6.7.2.1), the Hough transform [84] for line extraction consumes more than 95% of the

energy for processing an image. Moreover, the vision-based segmentation may fail due to the lack

of differentiating color features and blurred images caused by waves. In this section, we propose a

robust approach to overcoming the above limitations of vision-based segmentation.

6.3.1 Overview

In this chapter, we develop a novel hybrid image segmentation approach that utilizes both camera

and inertial sensors on the phone, as illustrated in Figure 6.3. Inertial sensors provide camera’s

transient pose, which can be used to guide the segmentation of captured images. To characterize

a camera’s projection, the visual sensing approach is susceptible to the quality of captured image

and blocked line of sight, while inertial sensing will not be affected by these factors. Moreover, the
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energy consumption of inertial sensing is much lower than that of visual sensing. Our experiments

show that the computation delay of inertia-based segmentation is only 2% of that of vision-based

segmentation (see Section 6.7.2.1). The proposed hybrid approach aims to leverage these two

heterogeneous sensing modalities. Specifically, it consists of an online learning phase and an

estimation phase. The vision-based image segmentation is executed in the learning phase, and

the inertia-based image segmentation is executed in the estimation phase. In our design, Samba

switches between the two modes to save system energy while maintaining segmentation accuracy.

In the learning phase, images are segmented based on the extracted visual features, as shown

in Figure 6.3(a). Meanwhile, the inertial sensor readings are converted to Euler angles, which

describe the camera’s orientation with respect to the world coordinate system. These angles, along

with the corresponding visual features, are then used to learn the mapping models via regression.

In the estimation phase, the learned mapping models estimate the visual features based on the

inertial sensor readings and guide the image segmentation, as shown in Figure 6.3(b). Therefore,

the compute-intensive visual feature extraction CV algorithms are avoided. The hybrid approach

periodically calibrates the inertial sensors and updates the mapping models in the learning phase,

thus adapting to the possible environmental condition changes.

6.3.2 Measuring Camera Orientation

A key step in the hybrid image segmentation is to relate the inertial sensing results with the cor-

responding visual sensing results, which relies on the camera projection model. The camera’s

orientation characterizes its projection. Therefore, it is critical to accurately measure the camera’s

orientation. There are typically no built-in physical orientation sensors on Android smartphone1.

Hence, we need to implement our own virtual orientation sensor based on other available inertial

1The orientation sensor API has been deprecated in Android since version 2.2 [4].
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Figure 6.4: Workflow of virtual orientation sensor.
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Figure 6.5: PDF of orientation measurement error.

sensors such as accelerometer and geomagnetic field sensor. However, inertial sensor readings are

often inaccurate and volatile. Studies have shown that the mean error of orientation measurements

computed based on inertial sensor readings by a simple algorithm can be up to 30◦ [8]. According

to our experiments, the inaccuracy in orientation measurements mainly results from bias. To deal

with the bias and random noise, we smooth and calibrate the sensor readings. Figure 6.4 shows

the workflow of our virtual orientation sensor. It first uses inertial sensor readings to compute the

rotation matrix that bridges the device coordinate system to the world coordinate system, and then

obtains the phone’s orientation. Figure 6.5 plots the error distribution of orientation measurements

on a Google Nexus 4 phone, where the ground truth is measured using a protractor. We can see

that our virtual sensor yields fairly accurate orientation measurements.

6.3.3 Feature Extraction

In order to establish the mapping models, Samba needs to extract features from both camera ob-

servations and inertial sensor readings for the same frame. In this chapter, we focus on the lake

environment where the shoreline can help identify the water area. We assume that the shoreline is
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the longest visible line to Samba. This is reasonable as the shoreline usually crosses the captured

images horizontally, as shown in Figure 6.1. Note that the shoreline is not static to Samba because

of waves and Samba’s rotational movements. Our approach can be easily extended to address

other scenarios with different visual references for image segmentation. For frame i, let ki and

hi denote the shoreline slope and average vertical coordinate in the image plane, as illustrated in

Figure 6.3(a). The phone can extract the shoreline using Hough transform [84] and thus obtain ki

and hi. With these two parameters, frame i can be partitioned accordingly. Therefore, we define

(ki,hi) as the visual features of frame i.

The camera’s orientation, represented by Euler angles, is measured by the virtual orientation

sensor. At runtime, we synchronize the orientation measurements with visual features obtained

from the camera using the timestamps. We now derive their relationship based on the camera

perspective projection model [84]. We set the world coordinate system originated at the camera.

Let αi, βi, and γi denote the yaw, pitch, and roll angles of the camera when frame i is taken, and

P = (x,y,z) denote the coordinates of an observable point on the shoreline in the world coordinate

system. We first project P to the Cartesian coordinate system that is originated at the camera

and rotated by (αi,βi,γi) with respect to the world coordinate system. The projected coordinates,

denoted by P′ = (x′,y′,z′), are given by

P′ = P ·




1 0 0

0 cosγi sinγi

0 −sinγi cosγi



·




cosαi 0 −sinαi

0 1 0

sinαi 0 cosαi



·




cosβi sinβi 0

−sinβi cosβi 0

0 0 1



.

Based on the similar triangles [84], we then project P′ to the 2D image plane using the following
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formula:

[
x′′ y′′

]
=

[
x′ y′

]
·




fx ·g(z′) 0

0 fy ·g(z′)


 .

where (x′′,y′′) denote the corresponding coordinates in the image plane, fx and fy are hardware-

dependent scaling parameters, and g(z′) is a scaling factor determined by z′.

The above transforms allow us to relate the camera’s orientation (αi,βi,γi) to the visual fea-

tures (hi,ki). We first derive ki that represents the slope of the shoreline. Suppose (x′′1,y
′′
1) and

(x′′2,y
′′
2) are two points on the extracted shoreline in frame i, and (x1,y1,z1) and (x2,y2,z2) are the

corresponding points in the world plane. The shoreline slope in the image plane, i.e., ki, can be

computed as

ki =
y′′1 − y′′2
x′′1 − x′′2

=
fy

fx
· (x1 fi,3− y1 fi,4)− (x2 fi,3 − y2 fi,4)

(x1 fi,1− y1 fi,2)− (x2 fi,1 − y2 fi,2)
= ω1 ·

fi,3 −ω2 fi,4

fi,1 −ω2 fi,2
, (6.1)

where ω1 = fy/ fx and ω2 = (y1−y2)/(x1−x2) are two unknown but constant coefficients that are

determined by the camera hardware and the shoreline slope in the world coordinate system. The

4-tuple ( fi,1, fi,2, fi,3, fi,4) can be computed based on the camera’s orientation by

fi,1 = cos(αi) · cos(βi),

fi,2 = cos(αi) · sin(βi),

fi,3 = sin(αi) · cos(βi) · sin(γi)− sin(βi) · cos(γi),

fi,4 = sin(αi) · sin(βi) · sin(γi)+ cos(βi) · cos(γi).

They interpret the camera projection model using orientation measurements. The above 4-tuple

are defined as inertial features, which are related to the visual feature through the mapping model
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given by Equation (6.1). Similarly, we can derive the mapping model between another set of

inertial features (with 3 unknown coefficients) and the vertical position of the shoreline in the

image plane (i.e., hi). Due to space limitation, we omit the details here. With the mapping models,

we can estimate the shoreline purely based on the inertial sensor readings and conduct image

segmentation.

6.3.4 Learning Mapping Models

With the extracted visual and inertial features, Samba can learn the mapping models that project the

latter to the former. Based on Equation (6.1), we adopt a regression-based approach to estimating

the unknown coefficients ω1 and ω2. Specifically, the training data instance from frame i can be

expressed as (ki, fi,1, fi,2, fi,3, fi,4), in which ki is obtained from the camera and ( fi,1, fi,2, fi,3, fi,4)

are computed based on inertial sensor readings. Suppose the training dataset consists of N frames.

We define the feature set, denoted by F, as an N × 4 matrix that contains the inertial features

extracted from the N frames

F =




f1,1 f1,2 f1,3 f1,4

...
...

...
...

fN,1 fN,2 fN,3 fN,4




N×4

.

Moreover, we define the observation vector, denoted by K, as an N × 1 vector that contains the

visual features (i.e., the shoreline slope), i.e., K = [k1, . . . ,kN]
⊺. We then employ multivariate

nonlinear regression to learn ω1 and ω2 with F and K. Using the estimated ω1 and ω2, we can

infer the shoreline slope from the inertial sensor readings based on the mapping model given by

Equation (6.1).
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We now discuss the impact of training dataset size (i.e., N) on system performance. The N

training frames can be evenly selected from an updating period. Therefore, the value of N defines

the frequency at which Samba switches between the vision-based and inertia-based segmentation

modes. In order to perform regression, N should be no smaller than the number of coefficients to be

learned (i.e., 2). In aquatic monitoring, N is expected to be larger than this lower bound to account

for the dynamics resulted from camera shaking and sensor noises. Intuitively, a larger training

dataset can enrich the diversity of training data and hence improve the regression accuracy. How-

ever, it also imposes additional computation overhead for the phone. Specifically, with a larger N,

visual feature extraction has to be conducted more frequently to meet the need of observation vec-

tor used for learning mapping models. Moreover, the computation overhead of the regression also

increases with N. In Section 6.7.2.4, we will evaluate the trade-off between regression accuracy

and system overhead. At runtime, Samba can assess inertia-based segmentation accuracy in the

learning phase by comparing it with vision-based segmentation, and adaptively configure N.

6.4 Aquatic Process Detection

The real-time TAP detection pipeline of Samba is illustrated in Figure 6.2(b). Although our ap-

proach is based on elementary CV algorithms, it is non-trivial to customize them for detecting

TAP and efficiently implement on smartphone. Samba consists of two major image processing

modules, i.e., back projection and patch identification. The back projection models the TAP by ex-

tracting its color histogram, which is built using selected channels in HSV. The HSV representation

is more robust to the highly variable illuminance than the RGB color space [61]. It then detects

candidate pixels of TAP in the image segment of water area. The patch identification removes the

salt-and-pepper noises from the projected segmented image and then identifies the TAP patches.
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6.4.1 Back Projection

Back projection is a CV technique that characterizes how well the pixels of a given image fit a

histogram model [84]. In this chapter, we adopt back projection to identify the existence of TAP

in the captured frames given its unique features. The patches of TAP are often scattered over

large water area. For example, the HABs occurred at Lake Mendota in Wisconsin produce algal

patches spread over 15 square kilometers water area [33]. Therefore, the robot may have a camera

view dominated by the TAP patches when deployed in an affected region. The widely used target

detection approach based on background subtraction is thus not applicable, as it needs to build a

background model without the TAP. Moreover, this approach requires all the captured images to be

aligned and thus has limited feasibility in uncalm waters. Our proposed approach is motivated by

the fact that a TAP usually maintains featured and nearly constant colors. For example, oil slicks

often appear to be brighter than the surrounding water surface [11], and the typical color of HABs

is green or red [71]. Therefore, to perform detection, we can match the pixels in a new frame with

the histogram model constructed with offline sample images of the TAP.

Back projection constructs the histogram model based on sample images as follows. Let I0 de-

note a sample image of the TAP. We first convert the representation of I0 to HSV model. In HSV,

the hue channel represents the color, the saturation channel is the dominance of hue, and the value

channel indicates the lightness of the color. The hue and saturation channels are robust to illumi-

nation changes [61] and hence effective in interpreting color features in the presence of reflection

on water surface. Thus, we adopt the hue-saturation histogram and calculate it from I0. We equally

divide the range of hue [0,360) and the range of saturation [0,1] into [0,h2,h3, . . . ,hp−1,360) and

[0,s2,s3, . . . ,sq−1,1], respectively, to compute the color histogram Mq×p. Specifically, the (i, j)th

entry of M is the frequency of pixels in I0 with saturation within [si,si+1) and hue within [h j,h j+1).
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Note that the color histogram can be obtained based on multiple images by repeating the above pro-

cess. Let M̃ denote the normalized histogram where each element quantifies the probability that

the corresponding color represents the TAP. Therefore, M̃ depicts the tonality of the TAP, which is

used as its histogram model. Figure 6.2(b) shows a sample image of HABs occurred in the Gulf of

Mexico [91] and the extracted hue-saturation histogram model.

When a new segmented frame (denoted by It) is available, we leverage the histogram model M̃

to detect the existence of TAP. For each pixel pm,n in It , we first extract its hue hm,n and saturation

sm,n, and locate the corresponding element in M̃, i.e., M̃(sm,n,hm,n). We then construct a projected

frame I′1 that is in the same size of It but replaces each pixel pm,n with M̃ (sm,n,hm,n). Note that

M̃(sm,n,hm,n) characterizes the probability that pm,n in It represents a pixel of TAP. Visually, the

brighter a pixel in I′1 is, the larger probability that the corresponding pixel in It is the TAP. An

example of the projected frame I′1 is shown in Figure 6.6(a).

In back projection, each pixel in the new frame is classified based on how well it matches the

color histogram obtained from TAP sample images. Therefore, the similarity in color between

the TAP and water area affects the detection performance. In this chapter, we adopt a color simi-

larity [87] metric to measure the color resemblance. It quantifies the similarity between any two

colors based on their proximity in the cylindrical HSV model. For two colors indexed by (hi,si,vi)

and (h j,s j,v j), the color similarity, denoted by η , is given by

η = 1−
√

(vi − v j)2 +(si coshi − s j cosh j)2 +(si sinhi − s j sinh j)2

5
.

The η ranges from 0 to 1, where the lower bound 0 indicates the highest level of color contrast and

the upper bound 1 represents the same color. Therefore, a larger value of η suggests a stronger

color resemblance between the TAP candidate and water area, and hence the TAP candidate is less
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(a) Projected frame (b) Binarized frame

(c) Opening morphology (d) Detected result

Figure 6.6: Sample patch identification process.

likely to be identified by the patch identification module in Section 6.4.2. In Section 6.7.2.5, we

will evaluate the impact of η on detection performance.

6.4.2 Patch Identification

As illustrated in Figure 6.6, patch identification works on the projected image and identifies the

TAP patches. In the projected frame shown in Figure 6.6(a), each pixel maintains a value within

[0,1], which represents the probability that it belongs to the TAP. We adopt a threshold-based

approach to removing the pixels with extremely low probabilities. Specifically, for any pixel with

a value higher than a threshold, we consider this pixel as a candidate TAP pixel and round its value

to 1; otherwise, it is classified as a pixel that represents the water area and set to 0. To determine this

threshold, we try various settings and find that, with a setting of 0.1, the detected TAP boundary is

most similar to visual observation. The binarized frame, as shown in Figure 6.6(b), often contains

randomly distributed noise pixels. This is because the back projection is conducted in a pixel-wise
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manner where the labeling of candidate TAP pixel can be affected by camera’s internal noise. To

remove these false alarms, we apply the opening morphology operation [84]. It consists of an

erosion and a dilation, in which the former eliminates the noise pixels and the latter preserves the

shape of true TAP area. Figure 6.6(c) depicts the resulted frame after noise removal. We then

perform region growing [84] to identify the TAP patches. In particular, it uses the detected pixels

as initial seed points and merges connected regions to obtain the candidate TAP patches. Finally,

we apply another threshold to exclude the small patches. The patch with a small area in the frame

usually indicates a false alarm. Figure 6.6(d) depicts the final detection result. We note that the

detected TAP patches can be larger than the ground truth due to the reflection of trees on the water

surface. One possible approach to addressing this is to improve the histogram model accuracy by

using more selective sample images of TAP.

6.5 Adaptive Rotation Control

To monitor the surrounding TAP patches at fine spatiotemporal granularity, Samba needs to pe-

riodically adjust its orientation. However, this is challenging because the evolution of an aquatic

process is heavily affected by changeable and even unpredictable environmental conditions. For

example, the diffusion of oil slick can be affected by water salinity and temperature [50], and the

growth of HABs is sensitive to local nutrient availability [36]. To adapt to such dynamics, we

propose a rotation control algorithm, which maintains the monitoring granularity (e.g., the area

expansion of an algal patch between two consecutive observations during robot rotation) at the

desired level by adjusting the monitoring interval in each round.
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6.5.1 Dynamics of Aquatic Process

The sensing coverage of a camera is described by its field of view (FOV) where any target with

dimensions greater than some thresholds can be reliably identified [84]. FOV is typically modeled

as a sector at the camera with an angular view θ and a radius R, in which θ depends on lens and

R can be measured for a particular application. Since a TAP is likely to be scattered over a large

region [11, 71], we define the surveillance region of Samba as the circular area originated at the

robot with a radius R. Limited by θ , Samba needs to change its orientation to cover all the TAP

patches within its surveillance region. As the TAP evolves (e.g., diffusion of oil slick), it has to

continuously rotate to achieve the desired temporal coverage of each orientation.

The robot rotation initiates a monitoring round. Each round has a camera orientation and an

associated monitoring interval. In our design, we equally divide the circular surveillance region

into several sectors based on camera’s angular view θ such that the surveillance region can be

fully covered by these discrete orientations. During a round, Samba remains stationary toward

an orientation and conducts hybrid image segmentation and TAP detection following the user-

specified sleep/wake duty cycle. For each frame, the severeness of TAP can be measured by the

total area of detected patches in the frame. The TAP and robot will drift at a similar speed and

therefore remain in the same inertial system. Thus, the expansion of TAP patches characterizes the

its dynamics. Using frames captured at different time instants, Samba can estimate the dynamics

of TAP under current environmental conditions by computing the change in severeness.

To achieve fine spatiotemporal monitoring granularity with limited energy budget, the rotation

of Samba needs to be carefully scheduled. Samba controls the monitoring interval of each round

to adapt to the dynamics of TAP. We define rotation speed, denoted by ρ , as the rotated angle

over a monitoring interval. Note that the rotated angle for each round is fixed. For simplicity
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Figure 6.7: The closed loop for robot rotation control.

of exposition, the following discussion focuses on rotation speed. If the TAP spreads fast, ρ is

expected to be large to capture the evolving dynamics. When the evolution of TAP slows down,

Samba may decrease ρ accordingly to save energy. Let ε denote the dynamics of TAP measured

by the camera. We define the monitoring resolution ∆s as the change in severeness between two

consecutive observations toward a certain orientation. Therefore, ∆s depends on the dynamics of

TAP and ρ . For example, the spread of diffusion process is approximately linear with time [16],

i.e., ∆s = ε · 2π/ρ . In Section 6.5.2, a robot rotation control algorithm is designed based on this

model, and it can be easily extended to address other models of TAP dynamics.

6.5.2 Robot Rotation Control

Our objective is to maintain a desired resolution on severeness change, denoted by δ , under various

environment and system uncertainties. To save energy, Samba remains stationary as long as it can

provide the required resolution. The setting of δ describes how smooth the user aims to keep track

of the TAP. Figure 6.7 shows the block diagram of feedback control loop, where Gc(z), Gp(z), and

H(z) represent the transfer functions of the rotation scheduling algorithm, the dynamics model of

TAP, and the feedback, respectively. In particular, the desired resolution δ is the reference, and

the actually detected severeness change ∆s is the controlled variable. Because ∆s is a nonlinear

function of ρ , we define τ = 2π/ρ as the control input to simplify the controller design. Thus,

∆s = ε · τ , and its z-transform is Gp(z) = ε . In each round, Samba updates τ for the next round

129



0

0.5

1

0 5 10 15 20
Robot rotation error (deg)

P
ro

b
ab

il
it

y
CDF

average

Figure 6.8: CDF and average of Samba orien-

tation adjustment errors.

0

0.5

1

0 0.2 0.4 0.6 0.8 1
Relative error for severeness

P
ro

b
ab

il
it

y

CDF
average

Figure 6.9: CDF and average of relative errors

for detected severeness.

and sets ρ accordingly. As the feedback control will take effect in the next round, H(z) = z−1,

representing the delay of one orientation adjustment. Given that the system is of zero order, it is

sufficient to adopt a first-order controller to maintain the stability and convergence of the control

loop [68]. Therefore, we set Gc(z) =
a

1−b·z−1 where a > 0 and b > 0. Following the standard

method for analyzing stability and convergence [68], the stability and convergence condition can

be obtained as b = 1 and 0 < a < 2/ε .

The uncertainties are modeled as disturbances in the control loop shown in Figure 6.7. First,

Samba has rotation errors. It may not head exactly toward the desired orientation due to complex

fluid dynamics. Figure 6.8 evaluates this error by the discrepancies between desired and actual

orientations, where we collect the data using our prototype (see Section 6.6). Second, the detected

severeness of TAP exhibits variance. We define the relative error for ∆s as the absolute error to the

ground truth of TAP area in the image. As the detection of severeness is based on CV algorithms

that work in a pixel-wise manner, it can be affected by dynamics like camera noise. In light of these

disturbances, we design the controller Gc(z) to mitigate their impact. From control theory [68],

the effects of injected disturbances on the controlled variable ∆s can be minimized if the gain of

Gc(z)Gp(z)H(z) is set as large as possible. By jointly considering the stability and convergence,

we set a = 2c/ε where c is a relatively large value within [0,1]. In the experiments, we set c to be

0.85.

Implementing Gc(z) in the time domain gives the robot rotation scheduling algorithm. Accord-
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ing to Figure 6.7, we have Gc(z)= τ(z)/(δ −H(z)∆s). From H(z) and Gc(z), the control input can

be expressed as τ(z) = z−1τ(z)+2bε−1(δ − z−1∆s), and its time-domain implementation is given

by τk = τk−1 + 2bε−1(δ −∆sk−1) where k is the count of orientation adjustments. The average

rotation speed to be set for the kth round is thus given by ρk = 2π/τk.

6.6 Samba Implementation

We have built a proof-of-concept prototype of Samba for evaluation. The hybrid image segmen-

tation, TAP detection, and adaptive rotation control algorithms presented in Sections 6.3 – 6.5 are

implemented on Android. The app takes about 6.24MB storage on the phone after installation,

and requires about 10.8MB RAM allocation while running on a frame resolution of 720× 480.

To exploit the multi-core computation capability, the visual feature extraction, mapping models

learning, and TAP detection are implemented in separate threads.

On initialization, Samba extracts the hue-saturation histogram of TAP based on sample images.

When a new frame is available, it first conducts image segmentation to identify the water area.

After the mapping models are learned, Samba switches between the vision-based and inertia-based

segmentation modes according to the frequency specified by N (see Section 6.3.4). Then the

robot executes the TAP detection algorithms on the segmented frame. During the implementation,

we find that the Hough transform, which is used to extract the shoreline, incurs excessive delay.

To address this issue, we use OpenCV’s implementation through Java Native Interface. We also

examined the frame processing performance when the app uses the new runtime option ART [5],

which is introduced in Android 4.4 and pre-complies the Java code into system-dependent binaries.

According to our measurements, ART can reduce the system delay by about 20% over Dalvik.
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6.7 Performance Evaluation

We evaluate Samba through field experiments, lab experiments, and trace-driven simulations. The

field experiments thoroughly test Samba’s performance in detecting real HABs in an inland lake.

The lab experiments evaluate system overhead, monitoring effectiveness under a wide range of

environmental conditions, as well as the overall performance of a fully integrated robot. The trace-

driven simulations examine the performance of adaptive rotation control with varied settings. Our

results show that Samba can achieve reliable detection performance in the presence of various

dynamics, while maintaining a lifetime up to nearly two months.

6.7.1 Field Experiments

To test the detection performance of Samba in real world, we deploy our prototype in an inland

lake with an area of 200,000 square feet on September 22, 2014. Part of the lake is covered by

patches of filamentous algae [10] that exhibit pale green color, as shown in Figure 6.1. During the

experiments, the average illuminance is around 1,082lux. The impact of significant illuminance

change is evaluated in Section 6.7.2.6. We set the frame resolution to be 720×480 and the frame

rate to be 0.5fps. The hybrid image segmentation updates the mapping models every 20 frames,

i.e., N = 20. Because the HABs at the test site were in a stable stage, we focused on evaluating

the detection performance while disabling the robot rotation. Samba runs the hybrid image seg-

mentation and TAP detection algorithms consecutively on each frame. A total of 5,211 frames

were captured and processed. For each frame, we manually pinpoint the boundary of algal patches

to provide the ground truth. For comparison, we adopt a baseline approach that uses the same

sample images but constructs the color histogram model in the RGB color space. The RGB-based

baseline is executed offline using the captured frames. The purpose of our field experiments is
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Figure 6.10: Sample HABs detection in the field experiments.

three-fold. First, we test the detection performance of Samba in a real aquatic environment with

complex background and colors. Second, we evaluate the real-time execution of hybrid image

segmentation and TAP detection algorithms. Lastly, we validate that Samba can effectively reduce

the false alarms caused by the non-water area through image segmentation.

6.7.1.1 Sample HABs Detection

Figure 6.10 depicts a sample HABs detection in the field experiments. An image of the algal patch,

as shown in Figure 6.10(a), is used as the sample image for the detection pipeline. Figure 6.10(b)

shows the normalized hue-saturation histogram, in which each element characterizes the proba-

bility that the corresponding color represents the HABs. Therefore, a majority of colors in the

histogram are of near-zero probability. For each frame, Samba first extracts the water area by

locating the shoreline through hybrid image segmentation. Figure 6.10(c) shows a typical frame
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Figure 6.12: False alarm rate under various

negative overlap ratios.

captured by Samba, where the red and black dashed lines represent the shorelines obtained by the

vision-based and inertia-based image segmentation, respectively. As we can see, the inertia-based

approach yields a fairly accurate estimation of shoreline, which is partially due to the calm water

during field experiments. In Section 6.7.2.3, we will evaluate the performance of hybrid image

segmentation under more dynamic environment. On the segmented water area, Samba executes

the TAP detection algorithms. Figure 6.10(d) presents the detection result after back projection

and patch identification. We can observe that our TAP detection algorithms effectively identify the

algal patches in the segmented frame.

6.7.1.2 Detection Performance

We now evaluate the detection performance of Samba quantitatively. For each frame, we define

the positive overlap ratio as the ratio of the overlap area between detection and ground truth to

the actual TAP area. Hence, the positive overlap ratio characterizes the effectiveness of detection

algorithms in a frame. Given a threshold on positive overlap ratio, we calculate the detection rate as

the ratio of the frames with positive overlap ratio larger than this threshold to the total frames with

TAP patches. Figure 6.11 plots the detection rate versus positive overlap ratio for our approach

(i.e., using hue-saturation histogram) and the RGB-based baseline, respectively. When the positive
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overlap ratio is lower-bounded at 0.8, Samba can achieve detection rate up to 94%. Moreover,

our approach yields consistently higher detection rate than the baseline. In the field experiments,

the HABs and water area have a color similarity η of 0.88, which represents a rather strong color

resemblance (see Section 6.4.1). In Section 6.7.2.6, we will evaluate the impact of η on detection

performance.

6.7.1.3 Effectiveness of Image Segmentation

In TAP detection, we define the negative overlap ratio as the area with false detections to the

actual TAP area in each frame. A false alarm occurs when the negative overlap ratio exceeds a

given threshold. We calculate the false alarm rate as the ratio of the frames with false alarms

to the frames without TAP. In the field experiments, the false detections mainly result from the

captured shore area. In particular, the trees on the shore, sharing a color similarity η with the

target filamentous algae of up to 0.97, are the major contributor. Figure 6.12 plots the false alarm

rate versus negative overlap ratio for our approach and the RGB-based baseline, respectively. We

find that our approach achieves consistently lower false alarm rate than the baseline, as it can

characterize the TAP color features more effectively. We then validate the effectiveness of image

segmentation by evaluating the reduction in false alarms. Image segmentation allows Samba to

perform HABs detection in the water area only. Figure 6.13 compares the false alarm rates for our

approach and the RGB-based baseline, respectively, with and without image segmentation. The

reported values are calculated by upper-bounding the negative overlap ratio at 0.5. We can see

that by applying image segmentation, the false alarm rate of our approach is reduced by over 90%.

Moreover, the baseline also benefits from image segmentation, but still yields a higher false alarm

rate than our approach.
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6.7.2 Lab Experiments

The objective of lab experiments is to evaluate Samba under more dynamic environment. The

experiments were conducted in a 15 feet × 10 feet water tank in our lab. We vertically place a white

foam board along one side of the tank to produce an artificial shoreline. The settings of Samba are

consistent with those in the field experiments, unless otherwise stated. We test the performance

of hybrid image segmentation and TAP detection algorithms under a wide range of environmental

conditions and system settings such as training dataset size, wavy water, illuminance change, and

color similarity between the TAP and water area.

6.7.2.1 Computation Overhead

We first evaluate the overhead of image segmentation and TAP detection algorithms on phone.

Specifically, we measure the computation delay of each module, i.e., vision-based segmentation,

inertia-based segmentation, and TAP detection, on Galaxy and Nexus4, respectively. The com-

putation delay is measured as the elapsed time using Android API System.nanoTime(). The

results are plotted in Figure 6.14. We can see that the vision-based segmentation incurs the longest

delay, which is mainly due to the compute-intensive Hough transform. In contrast, the inertia-
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Table 6.1: Samba Power Consumption Profile.

Voltage (V) Current (A) Power (W)

Galaxy wake 3.7 0.439 1.624

Galaxy sleep 3.7 0.014 0.518

Servo motor 6 0.5 3

based segmentation is drastically efficient, achieving over 98% reduction in computation delay.

Note that in the hybrid segmentation, Samba learns the mapping models every N = 20 frames.

Thus, the measured overhead of inertia-based segmentation provides an overhead upper bound of

the proposed hybrid approach. The TAP detection algorithms take about 80 and 50 milliseconds

on Galaxy and Nexus4, respectively. Therefore, our aquatic monitoring solution is efficient on

mainstream smartphones and can well meet the real-time requirement. Compare with SOAR [111]

which typically takes more than 3 seconds to process a frame, Samba reduces the computation

delay by about 97%.

6.7.2.2 Projected Lifetime

We now evaluate the lifetime of Samba based on its power consumption profile as shown in Ta-

ble 6.1. Smartphone computation, standby, and fish rotation consume the highest powers. The

energy drain on phone can be calculated using offline measurements and duty cycle. Specifically,

we measure the power consumption of Galaxy using an Agilent 34411A multimeter when the

phone is executing the TAP detection algorithms with vision-based and hybrid segmentations. Ac-

cording to the integrated evaluation, a monitoring round lasts 5 minutes on average, and Samba

can rotate to the scheduled orientation within 15 seconds. We can thus upper-bound the daily

consumed energy for fish rotation by (12× 60/5)× (15/3600)× pr W · h, where pr is the motor

power consumption for beating the tail. Figure 6.15 shows the projected lifetime of Samba when

running the vision-based and hybrid segmentations, respectively. We can see that the system life-
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time is almost doubled by switching vision-based segmentation to hybrid approach. Figure 6.15

also evaluates the impact of duty cycle, which is defined as the ratio of wake time to the total time.

As expected, the system lifetime decreases with duty cycle. In our current prototype, Samba has a

total of 170W ·h battery capacity, including a backup 13.5W ·h and two main 75W ·h batteries on

the fish, and a 6.48W · h battery on the phone. Even with half of the battery capacity, Samba can

achieve a lifetime of nearly a month with hybrid segmentation and 30% duty cycle. Moreover, the

breakdown of daily energy consumption is plotted in Figure 6.15. We find that a majority of energy

is actually consumed by the sleep periods and fish rotation. Owing to the high efficiency of hybrid

image segmentation and TAP detection algorithms, the wake periods consume the least amount

of energy. Therefore, the lifetime of Samba can be further extended if the phone is powered off

during the sleep periods.

6.7.2.3 Image Segmentation Accuracy

We then evaluate the accuracy of hybrid image segmentation. To create dynamics, we generate

waves by connecting a feed pump to the tank. As a result, the shoreline slope (i.e., ki) varies

up to 20◦, and the average vertical coordinate (i.e., hi) varies up to 170 pixels. We define the

estimation errors of visual features as |ki− k̃i| and |hi− h̃i|, where k̃i and h̃i are the estimated visual
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Figure 6.18: Impact of training dataset size N

on estimation accuracy.

features by the inertia-based approach, and ki and hi are the ground truth measured by the camera.

Figure 6.16 plots the CDF and average of the estimation errors for ki. We can see that the inertia-

based segmentation can accurately estimate ki, with an average estimation error of about 2.3◦.

Moreover, Figure 6.17 plots the CDF of the estimation errors for hi. As shown in this figure, the

average estimation error is around 18 pixels. This set of experiments validate that the proposed

hybrid image segmentation can achieve satisfactory performance under wavy water environment.

6.7.2.4 Impact of Training Dataset Size

In this set of experiments, we study the impact of training dataset size N. Section 6.3.4 discusses

the trade-off between estimation accuracy and system overhead caused by N. In Samba, the setting

of N determines the size of the buffer that stores the training data for mapping models learning.

Figure 6.18 plots the estimation errors of ki and hi under various settings of N. It can be observed

that the average estimation accuracy of both ki and hi increases with N. This is because a larger

N improves the diversity of training data, resulting in mapping models that account for a wider

range of dynamics. Moreover, we find that the variance of estimation errors decreases with N.

Meanwhile, the setting of N contributes to the system overhead. As shown in Figure 6.19, the

computation delay of hybrid segmentation increases with N. This is mainly because the visual
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features are extracted more frequently under a larger N. The computation overhead of mapping

models learning also increases with N. According to our measurements, such delay is in the order

of millisecond and thus has limited impact on computation delay. Figure 6.19 also compares the

accumulative computation delay of vision-based and hybrid approaches. We can see that the delay

is notably shortened with the hybrid image segmentation.

6.7.2.5 Impact of Color Similarity

This set of experiments evaluate the impact of color similarity η between the TAP and water area

on detection performance. We adopt three boards in different colors as TAB patches. For each

colored patch, we conduct 10 runs of experiments. For each run, we calculate the detection rate

by lower bounding the positive overlap ratio at 0.8. Figure 6.20 shows the detection rate under

various η , where the error bar represents standard deviation. We can see that the detection rate

decreases with η . As η quantifies the proximity of two colors in the cylindrical HSV model, the

increase in η reduces the likelihood of identifying the TAP patches from water. We can also find

that our TAP detection algorithms achieve satisfactory detection performance under high color

similarity. For example, when η = 0.83, the detection rate is about 84%. Moreover, our approach
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yields consistently better detection performance than the RGB-based baseline since the HSV model

differentiates similar colors more effectively.

6.7.2.6 Impact of Illuminance

As discussed in Section 6.4.1, we adopt two designs to enhance Samba’s robustness to illuminance

change. First, the color histogram is built in the HSV model and excludes the value channel that

is sensitive to lighting condition. Second, we normalize the color histogram before applying it to

back projection. In the experiments, we create various lighting conditions by using different com-

binations of three compact fluorescent lamps and a Power Tech LED light [72]. We use the patch

with η = 0.64 and conduct 10 runs of experiments for each lighting condition. Figure 6.21 plots

the detection rate under various lighting conditions, where the reported illuminance is measured

by the phone’s built-in light sensor. We can see that our TAP detection algorithms maintain consis-

tently satisfactory performance under different illuminance levels, while the RGB-based baseline

is sensitive to illuminance change.
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6.7.2.7 Integrated Evaluation

In this set of experiments, all modules of Samba, i.e., hybrid image segmentation, TAP detection,

and adaptive rotation scheduling, are integrated and evaluated. Moreover, on the control board

of robotic fish, we implement a closed-loop PID controller that adaptively controls the tail beats

based on the discrepancy between the scheduled and actual orientations. We imitate the evolution

of TAP by gradually uncovering the board’s surface (with η = 0.64). Based on the angular view of

Galaxy, we select the camera orientations as {0,π/4,π/2,3π/4,π} with respect to the tank’s side

to ensure that the semi-circle can be fully covered when Samba slides over these orientations. At

t = 0, Samba is deployed in parallel to the tank’s side and starts the aquatic monitoring. We set the

initial average rotation speed as 6 deg/min. Therefore, the first monitoring round has an interval of

7.5 minutes. After the first round, Samba adaptively schedules its rotation speed to maintain the

detected severeness change at the desired level, which is set to be 595 pixels, until it is parallel to

the tank’s side again. Throughout the experiments, Samba achieves the detection rate of around

97% and false alarm rate of about 5%. Figure 6.22 plots the detected severeness changes in the

first 5 rounds, which are well maintained at the desired level. Moreover, Figure 6.22 shows the

total monitoring time versus index of robot rotation. We can see that the monitoring time varies

across rounds, and it has a 5-minute length on average. During the experiment, we also find that

our PID controller can generally direct Samba to the desired orientation with an error lower than

7◦.

6.7.3 Trace-Driven Simulations

We evaluate the adaptive rotation control of Samba through trace-driven simulations, given the

difficulty in accessing an actively evolving TAP. To simulate realistic settings, we collect Samba
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rotation errors and real chemical diffusion process. First, the error traces of rotation are collected

using our prototype in the water tank. We measure the rotation error by the discrepancy between

the desired orientation and actual heading direction of Samba. Second, we record the diffusion

traces of Rhodamine-B, which is a solution featuring red color, in saline water using a camera.

Hence, the evolution of diffusion process is characterized by the expansion of the red area over

time. The diffusion traces contain the detected Rhodamine-B area and corresponding timestamp.

In the simulations, Samba monitors TAP within its circular surveillance region. According to

our measurements, the camera on Galaxy has an angular view of 5π/18. Hence, we partition the

surveillance region into 8 sectors such that a full coverage can be achieved by a complete scan. For

each rotation, the actual direction is set based on the collected error traces and thus is subjected

to errors. For each orientation, the monitoring interval is determined by the scheduled rotation

speed. We use the collected diffusion traces as severeness measurements, based on which the

robot estimates the dynamics of TAP and schedules the rotation speed. Other settings include the

desired resolution δ = 25 and controller coefficient c = 0.85.

Figure 6.23 plots the detected severeness change ∆s in the first 10 rounds. We can see that ∆s

quickly converges to the desired severeness resolution δ . Figure 6.23 also shows the scheduled
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rotation speed, which is scheduled based on the current dynamics of TAP and δ . We further

evaluate the response of our algorithm to the sudden changes in TAP evolution. Specifically, we

artificially reduce the severeness measurements by 30% at the 7th rotation (i.e., the left arrow in

Figure 6.24) and continuously since the 14th rotation (i.e., the right arrow in Figure 6.24). For both

types of changes, our algorithm converges within a few rounds of rotation. Therefore, the proposed

algorithm can effectively adapt the rotation of Samba to the evolving dynamics of TAP.

6.8 Conclusion

This chapter presents Samba – a novel aquatic robot designed for monitoring harmful aquatic

processes such as oil spill and HABs. Samba integrates an off-the-shelf Android smartphone and

a robotic fish. Samba features hybrid image segmentation, TAP detection, and adaptive rotation

control algorithms. The hybrid image segmentation effectively reduces the false detections by

removing the non-water area and significantly decreases the overhead of continuous visual sensing

by integrating inertial sensing via a learning-based approach. The TAP detection algorithms are

lightweight and robust to various environment and system dynamics such as illuminance change

and camera noise. The adaptive rotation control enables Samba to maintain the desired monitoring

granularity on the spatiotemporally evolving TAP by adjusting the rotation speed.
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Chapter 7

Conclusion

This dissertation explores four representative problems in aquatic environment monitoring. First,

we propose an accuracy-aware approach to profiling an aquatic diffusion process such as oil spill.

In our approach, the robotic sensors collaboratively profile the characteristics of a diffusion process

including its source location, discharged substance amount, and evolution over time. In particular,

the robotic sensors reposition themselves to progressively improve the profiling accuracy. We

formulate a novel movement scheduling problem that aims to maximize the profiling accuracy

subject to limited sensor mobility and energy budget. To solve this problem, we develop an efficient

gradient-ascent-based algorithm and a near-optimal dynamic-programming-based algorithm.

Second, we present a novel approach to reconstructing a spatiotemporal aquatic field such as

HABs. Our approach features a rendezvous-based mobility control scheme where robotic sensors

collaborate in the form of a swarm to sense the aquatic environment in a series of carefully chosen

rendezvous regions. We design a novel feedback control algorithm that maintains the desirable

level of wireless connectivity for a sensor swarm in the presence of significant environment and

system dynamics. Moreover, information-theoretic analysis is used to guide the selection of ren-

dezvous regions so that the reconstruction accuracy is maximized subject to the limited sensor

mobility.

Third, we develop a vision-based, cloud-enabled, low-cost, yet intelligent solution to aquatic

debris surveillance. This approach features real-time debris detection and coverage-based rota-

tion scheduling algorithms. Specifically, the image processing algorithms for debris detection are
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specifically designed to address the unique challenges in aquatic environment, e.g., constant cam-

era shaking due to waves. The rotation scheduling algorithm provides effective coverage of spo-

radic debris arrivals despite camera’s limited angular view. Moreover, we design a dynamic task

offloading scheme to offload the computation-intensive processing tasks to the cloud for battery

power conservation.

Finally, we design Samba – an aquatic surveillance robot that integrates an off-the-shelf An-

droid smartphone and a robotic fish for general water surface monitoring. Using the built-in cam-

era of on-board smartphone, Samba can detect spatially dispersed aquatic processes. To reduce

the excessive false alarms caused by the non-water area, Samba segments the captured images and

performs target detection in the identified water area only. We propose a novel approach that lever-

ages the power-efficient inertial sensors on smartphone to assist the image processing. Samba also

features a set of lightweight and robust computer vision algorithms, which detect harmful aquatic

processes based on their distinctive color features.

Using our prototype systems, we conduct extensive field experiments, lab experiments, and

trace-driven simulations. The evaluation results demonstrate that the proposed algorithms can

effectively deal with various dynamics in aquatic environment and achieve satisfactory sensing

performance. Moreover, they incur low computation overhead on resource-constrained sensing

platforms, meeting the real-time requirements for aquatic environment monitoring.

146



BIBLIOGRAPHY

147



BIBLIOGRAPHY

[1] T. Abdelzaher, Y. Diao, J. Hellerstein, C. Lu, and X. Zhu, “Introduction to control the-

ory and its application to computing systems,” in Performance Modeling and Engineering.

Springer, 2008, pp. 185–215.

[2] S. Alag, K. Goebel, and A. Agogino, “A methodology for intelligent sensor validation and

fusion used in tracking and avoidance of objects for automated vehicles,” in Proceedings of

the American Control Conference, 1995, pp. 3647–3653.

[3] J. Ammerman and W. Glover, “Continuous underway measurement of microbial ectoen-

zyme activities in aquatic ecosystems,” Marine Ecology Progress Series, vol. 201, pp. 1–12,

2000.

[4] Android 2.2 highlights. http://developer.android.com/guide/topics/sensors position.

[5] ART and Dalvik. http://source.android.com/devices/tech/dalvik/art.html.

[6] J. Baras, X. Tan, and P. Hovareshti, “Decentralized control of autonomous vehicles,” in

Proceedings of the 42nd IEEE Conference on Decision and Control, 2003, pp. 1532–1537.

[7] D. Barrett, M. Triantafyllou, D. Yue, M. Grosenbaugh, and M. Wolfgang, “Drag reduction

in fish-like locomotion,” Journal of Fluid Mechanics, vol. 392, no. 1, pp. 183–212, 1999.

[8] J. Blum, D. Greencorn, and J. Cooperstock, “Smartphone sensor reliability for augmented

reality applications,” in Proceedings of the 10th International Conference on Mobile and

Ubiquitous Systems: Computing, Networking, and Services, 2013, pp. 127–138.

[9] R. Boland and M. Donohue, “Marine debris accumulation in the nearshore marine habitat

of the endangered Hawaiian monk seal,” Marine Pollution Bulletin, vol. 46, no. 11, pp.

1385–1394, 2003.

[10] B. Boyd, Introduction to Algae. Prentice Hall, 2003.

[11] C. Brekke and A. Solberg, “Oil spill detection by satellite remote sensing,” Remote Sensing

of Environment, vol. 95, no. 1, pp. 1–13, 2005.

148



[12] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems, Revised Reprint. So-

ciety for Industrial and Applied Mathematics, 2009.

[13] California Environmental Preotection Agency. http://waterboards.ca.gov/water issues.

[14] Y. Chen and A. Terzis, “On the implications of the log-normal path loss model: an efficient

method to deploy and move sensor motes,” in Proceedings of the 9th ACM Conference on

Embedded Networked Sensor Systems (SenSys), 2011, pp. 26–39.

[15] J.-C. Chin, D. Yau, N. Rao, Y. Yang, C. Ma, and M. Shankar, “Accurate localization of low-

level radioactive source under noise and measurement errors,” in Proceedings of the 6th

ACM Conference on Embedded Networked Sensor Systems (SenSys), 2008, pp. 183–196.

[16] J. Crank, The Mathematics of Diffusion. Oxford University Press, 1975, vol. 2, no. 3.

[17] Cyclops-7 User’s Manual. http://turnerdesigns.com.

[18] K. Dantu, B. Kate, J. Waterman, P. Bailis, and M. Welsh, “Programming micro-aerial ve-

hicle swarms with karma,” in Proceedings of the 9th ACM Conference on Embedded Net-

worked Sensor Systems (SenSys), 2011, pp. 121–134.

[19] J. Davies, J. Baxter, M. Bradley, D. Connor, J. Khan, E. Murray, W. Sanderson, C. Turnbull,

and M. Vincent, Marine Monitoring Handbook. Joint Nature Conservation Committee,

2001.

[20] C. Detweiler, M. Doniec, M. Jiang, M. Schwager, R. Chen, and D. Rus, “Adaptive decen-

tralized control of underwater sensor networks for modeling underwater phenomena,” in

Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems (SenSys),

2010, pp. 253–266.

[21] J. Dolan, G. Podnar, S. Stancliff, E. Lin, J. Hosler, T. Ames, J. Moisan, T. Moisan, J. Higin-

botham, and A. Elfes, “Harmful algal bloom characterization via the telesupervised adaptive

ocean sensor fleet,” Robotics Institute, Carnegie Mellon University, Tech. Rep., 2007.

[22] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2012.

[23] M. Dunbabin and A. Grinham, “Experimental evaluation of an autonomous surface vehicle

for water quality and greenhouse gas emission monitoring,” in Proceedings of IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2010, pp. 5268–5274.

149



[24] A. Elliott, “Shear diffusion and the spread of oil in the surface layers of the North Sea,”

Ocean Dynamics, vol. 39, no. 3, pp. 113–137, 1986.

[25] C. Eriksen, J. Osse, R. Light, T. Wen, T. Lehman, P. Sabin, J. Ballard, and A. Chiodi,

“Seaglider: a long-range autonomous underwater vehicle for oceanographic research,” IEEE

Journal of Oceanic Engineering, vol. 26, no. 4, pp. 424–436, 2001.

[26] M. Faulkner, M. Olson, R. Chandy, J. Krause, M. Chandy, and A. Krause, “The next big

one: detecting earthquakes and other rare events from community-based sensors,” in Pro-

ceedings of the 10th ACM/IEEE International Conference on Information Processing in

Sensor Networks (IPSN), 2011.

[27] Fitbit. http://fitbit.com.

[28] T. Gandhi and M. Trivedi, “Pedestrian protection systems: issues, survey, and challenges,”

IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 3, pp. 413–430, 2007.

[29] Gaussian surface fit. http://bit.ly/1jph1yB.

[30] M. Gennaro and A. Jadbabaie, “Decentralized control of connectivity for multi-agent sys-

tems,” in Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp.

3628–3633.

[31] Gliding robotic fish. http://nbcnews.to/1fGAomj.

[32] GNU Scientific Library (GSL). http://gnu.org/software/gsl.

[33] HABs and Lake Mendota. http://blooms.uwcfl.org/mendota.

[34] T. Hao, R. Zhou, and G. Xing, “COBRA: color barcode streaming for smartphone systems,”

in Proceedings of the 10th International Conference on Mobile Systems, Applications, and

Services (MobiSys), 2012, pp. 85–98.

[35] T. He, J. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: a stateless protocol for real-time

communication in sensor networks,” in Proceedings of the 23rd International Conference

on Distributed Computing Systems (ICDCS), 2003, pp. 46–55.

[36] R. Hecky and P. Kilham, “Nutrient limitation of phytoplankton in freshwater and marine

environments: a review of recent evidence on the effects of enrichment,” Limnology and

Oceanography, vol. 33, no. 4, pp. 796–822, 1988.

150



[37] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based transportation mode detec-

tion on smartphones,” in Proceedings of the 11th ACM Conference on Embedded Networked

Sensor Systems (SenSys), no. 13, 2013.

[38] B. Hoadley, “Asymptotic properties of maximum likelihood estimators for the independent

not identically distributed case,” The Annals of Mathematical Statistics, vol. 42, no. 6, pp.

1977–1991, 1971.

[39] C. Hu, F. Müller-Karger, C. Taylor, D. Myhre, B. Murch, A. Odriozola, and G. Godoy,

“MODIS detects oil spills in Lake Maracaibo, Venezuela,” Eos, Transactions, American

Geophysical Union, vol. 84, no. 33, pp. 313–319, 2003.

[40] Hurricane Sandy. http://usat.ly/LWoxTI.

[41] J. Illingworth and J. Kittler, “A survey of the Hough transform,” Computer Vision, Graphics,

and Image Processing, vol. 44, no. 1, pp. 87–116, 1988.

[42] A. Jain, Fundamentals of Digital Image Processing. Prentice Hall, 1989, vol. 3.

[43] P. Jain, J. Manweiler, A. Achary, and K. Beaty, “FOCUS: clustering crowdsourced videos by

line-of-sight,” in Proceedings of the 11th ACM Conference on Embedded Networked Sensor

Systems (SenSys), no. 8, 2013.

[44] 2011 Japan tsunami. http://marinedebris.noaa.gov/tsunamidebris.

[45] G. Judd, X. Wang, and P. Steenkiste, “Efficient channel-aware rate adaptation in dynamic

environments,” in Proceedings of the 6th International Conference on Mobile Systems, Ap-

plications and Services (MobiSys), 2008, pp. 118–131.

[46] S. Kako, A. Isobe, and S. Magome, “Low altitude remote-sensing method to monitor marine

and beach litter of various colors using a balloon equipped with a digital camera,” Marine

Pollution Bulletin, vol. 64, no. 6, pp. 1156–1162, 2012.

[47] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Near-optimal sensor placements:

maximizing information while minimizing communication cost,” in Proceedings of the

5th ACM/IEEE International Conference on Information Processing in Sensor Networks

(IPSN), 2006, pp. 2–10.

[48] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in gaussian pro-

cesses: theory, efficient algorithms and empirical studies,” Journal of Machine Learning

Research, vol. 9, pp. 235–284, 2008.

151



[49] P. Kulkarni, D. Ganesan, P. Shenoy, and Q. Lu, “SensEye: a multi-tier camera sensor net-

work,” in Proceedings of the 13th ACM International Conference on Multimedia (MM),

2005.

[50] G. LaRoche, R. Eisler, and C. Tarzwell, “Bioassay procedures for oil and oil dispersant

toxicity evaluation,” Journal of Water Pollution Control Federation, pp. 1982–1989, 1970.

[51] N. Leonard and J. Graver, “Model-based feedback control of autonomous underwater gli-

ders,” IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 633–645, 2001.

[52] LG Optimus Net. http://amzn.to/Y4BvO9.

[53] C.-J. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao, “RACNet: a high-fidelity data center

sensing network,” in Proceedings of the 7th ACM Conference on Embedded Networked

Sensor Systems (SenSys), 2009, pp. 15–28.

[54] S. Lin, J. Zhang, G. Zhou, L. Gu, J. Stankovic, and T. He, “ATPC: adaptive transmission

power control for wireless sensor networks,” in Proceedings of the 4th ACM Conference on

Embedded Networked Sensor Systems (SenSys), 2006, pp. 223–236.

[55] Linx GPS Receiver User’s Manual. http://linxtechnologies.com.

[56] H. Liu, J. Li, Z. Xie, S. Lin, K. Whitehouse, J. Stankovic, and D. Siu, “Automatic and

robust breadcrumb system deployment for indoor firefighter applications,” in Proceedings of

the 8th International Conference on Mobile Systems, Applications and Services (MobiSys),

2010, pp. 21–34.

[57] D. Lymberopoulos and A. Savvides, “XYZ: a motion-enabled, power aware sensor node

platform for distributed sensor network applications,” in Proceedings of the 4th ACM/IEEE

International Conference on Information Processing in Sensor Networks (IPSN), 2005, pp.

449–454.

[58] T. Mace, “At-sea detection of marine debris: overview of technologies, processes, issues,

and options,” Marine Pollution Bulletin, vol. 65, no. 1, pp. 23–27, 2012.

[59] R. Maheshwari, S. Jain, and S. Das, “A measurement study of interference modeling and

scheduling in low-power wireless networks,” in Proceedings of the 6th ACM Conference on

Embedded Networked Sensor Systems (SenSys), 2008, pp. 141–154.

[60] N. March, M. Tosi, and N. March, Introduction to Liquid State Physics. World Scientific,

2002.

152



[61] R. Maree, P. Geurts, J. Piater, and L. Wehenkel, “Random subwindows for robust image

classification,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2005, pp. 34–40.
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