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ABSTRACT

SPATIAL ORGANIZATION IN SOIL BACTERIAL COMMUNITIES

By

Christopher B. Blackwood

Spatial variability of soil resources is high due to the heterogeneous arrangement

of pores and mineral and organic matter particles in soil, and due to the activity of plants

and soil fauna. The spatial organization of soil microbial communities was investigated

using terminal restriction fragment length polymorphism (T-RFLP) of eubacterial

ribosomal 168 genes, a molecular genetic technique independent of the cultivation of

microbes outside their natural environment. Methods for Optimal data processing and

multivariate statistical analysis of complex community T-RFLP profiles were

investigated using analytically-replicated datasets. Spatially-defined microbial habitats

were detected by testing the significance of the differences between eubacterial

community T-RFLP profiles. Light fraction and shoot residue (partially-decomposed

organic matter particles) were found to contain communities different from both the

rhizosphere and the soil heavy fraction (soil minerals with associated humified organic

matter). Communities in the external and internal portions of soil aggregates were found

to be slightly different, while those of different aggregate sizes were not different. The

establishment of soil fractions as distinct microbial habitats seemed to be dependent on

the differences in the organic matter contents of different fractions. However, different

cropping systems also caused divergence in communities which could not be explained

on the basis of organic matter contents of samples. Microscopic cell counts were shown

to be primarily sensitive to organic matter contents Of samples, and not to qualitative



 

 

differences between cropping systems, in contrast to community composition. Number

of large cells (>O.18 um3) was significantly affected by both soil fraction and cropping

system. In another approach to understanding spatial organization of soil eubacterial

communities, communities within soil samples of varying sizes and from differing

locations within replicated 1.5x2 m plots were assayed by T-RFLP. The spatial structure

of the communities was investigated using a generalized multivariate extension of

blocked-quadrat analysis and semivariance analyses, integrating analyses based on

varying sampling grain and extent. Significant hierarchical spatial structure was detected

within the eubacterial communities, manifest by phase shifts in the relationship between

community variability and spatial scale. These studies indicate that significant spatial

organization exists in eubacterial communities in soil, which implies that soil

communities are not randomly assembled and may be regulated by mechanisms

analogous to those for plant and animal communities.
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Chapter 1

Introduction



 

 

  

 

  

 



 

The spatial structure of soil is a complex interconnected framework characterized

by pores of various sizes and tortuosity, and zones of varying bulk density and stability,

(Christensen 1996, Young and Ritz 2000). Among the mineral particles are

heterogeneously distributed particles of decomposing plant residue (Parkin 1993, Staricka

et a1. 1991). Plant roots, fungal hyphae, and soil fauna grow through this matrix and

modify its spatial structure by forcing through narrow pores and entangling particles

(Oades 1993, Tisdall 1996). These organisms also process resources and energy, creating

gradients Of organic matter, water, redox potential, and inorganic nutrients (Juma 1994,

Smucker 1993). Soil resources are heterogeneously distributed at larger scales as well,

from one to hundreds of meters (Boomer et a1. 1998, Doberrnann et a1. 1995, Robertson

et al. 1997, Stoyan et a1. 2000).

The major goal in this thesis is to investigate how soil bacterial communities

respond to spatial structure in their environment. The approach taken tests for patterns in

the distributions over all species in an environment. The patterns detected are thus

community-wide, and reflect the strength of interactions and similarities between

different species as well as their individual responses to the environment. This approach

required the use of multivariate statistical techniques. Multivariate hypothesis-testing

methods based on permutation tests were used where possible so that the interpretation of

results is not a subjective matter.

Microbial community composition was assayed using terminal restriction

fragment length polymorphism (T-RFLP) of eubacterial 16S ribosomal sequences

amplified by PCR from environmental genomic DNA extracts. This method is not

dependent on the growth of the bacteria in the laboratory, which is known to result in



severe biases in the species detected (Felske et a1. 1999, Madsen 1996). There are

commonly occurring species in soil that have never been successfully isolated in the

laboratory, but can be detected via molecular methods (Head et a1. 1998, Hugenholtz et

al. 1998).

In Chapter 2 of this thesis, several methods of processing T-RFLP data and

examining relationships between profiles using multivariate statistical methods are tested.

Four sets of T-RFLP profiles are used, representing a wide range in degree of divergence

between samples, from a set of soil samples taken in different regions of the United

States to a set of samples taken from within one meter of each other in an alfalfa field.

Each set contained analytical replicates of the sample profiles. The data processing and

statistical methods were tested for their sensitivity to analytical variability present in T-

RFLP profiles. The methods found to be most robust are used in the remainder of the

chapters, including analysis of Hellinger distance and Jaccard distance between T-RFLP

profiles with the multivariate hypothesis—testing method redundancy analysis.

Chapter 3 is an investigation into the possibility that different microbial

communities are associated with different soil fractions, which could then be classified as

distinct soil habitats. The fractions investigated were hypothesized to contain different

communities due to differences in the age and types of organic matter found within them.

The fractions included the light and heavy fractions, shoot residue > 2 mm, and the

rhizosphere. Communities in all fractions were shown to be different from each other,

except for light fraction and shoot residue, which were essentially the same. The

rhizosphere is well-accepted as a habitat that has a community distinct from the bulk soil.

Detection of the light fraction/shoot residue habitat shows that organization of soil
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microbial communities around organic matter is more general than the rhizosphere — bulk

soil dichotomy. Differentiation of communities due to cropping system shows that other

aspects of the environment critically affect the community present, in addition to the total

amount of organic matter present. This is also shown for the relationship between

organic matter and total number of bacterial cells.

Hierarchical aggregate structure is currently the dominant model of soil structure

and has been shown to be useful in the study of organic matter turnover in soils. In

Chapter 4 the hypotheses that aggregates of different sizes and that layers within

aggregates contain different communities was tested. A new method of isolating the

outer portion of aggregates and its bacterial community was used, resulting in knowledge

of the precise location of the sample within the aggregate. Analysis of individual

aggregates using a split-plot design was found to be the most satisfactory approach for

investigating whether the communities in different aggregate layers were different.

Aggregate layers had communities which were only slightly different. Aggregate-to-

aggregate variability was large. The effect of aggregate size on eubacterial communities

was quite weak. Organization of eubacterial communities due to position within and size

of soil aggregates was not as pronounced as organization by organic matter found in

Chapter 3. Organization by the particular tertiary structure of the soil (arrangement of

aggregates in relation to shoot residue, roots, macrOpores, etc.) is hypothesized to be

more important in the determination of the types of microbial communities present in

aggregates.

Spatial organization is a scale-dependent phenomenon. Hierarchical spatial

organization is one hypothetical way in which organization can change with scale,



incorporating the concept of levels of organization that operate over different scale

domains. Chapter 5 is a test of the hierarchical spatial organization of soil eubacterial

communities. Size and location of soil samples are varied, resulting in two datasets

measuring different aspects of how spatial structure of the communities changes with

scale. These are analyzed and integrated using a generalized multivariate extension of

paired-quadrat analysis and semivariance analysis that is called variability-scale analysis.

The variability-scale analysis is compared to Mantel methods and spatially-constrained

ordination. An approach called the correlation super-matrix is also proposed for

examining how species or T-RF covariance structure changes with scale. Soil eubacterial

communities within 1.5x2 m plots were found to be organized by three hierarchical levels

which are described.
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Chapter 2

Methods of T-RFLP Data Analysis for Quantitative

Comparison of Microbial Communities
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Abstract

Terminal restriction fragment length polymorphism (T-RFLP) is a culture-

independent method of obtaining a fingerprint of the composition of a microbial

community. T-RFLP profiles of complex eubacterial communities were generated

following PCR amplification of the 16S ribosomal gene. Profiles of each sample were

replicated so that the relative utility of different methods of statistical analysis, T-RF

alignment, and computing the difference (or distance) between profiles could be

compared. Four sets of samples were used, representing a wide range in degree of

divergence between environmental conditions. These sets of samples included: soil

samples collected from three regions of the United States, different soil fractions derived

from three agronomic fields at one site, soil samples taken from within one meter of each

other within an alfalfa field, and replicate laboratory bioreactors. All methods of analysis

could be used to differentiate between samples in the most divergent set, but only a

subset were successful on the more similar sets. Ward’s method of cluster analysis was

more effective at finding major groups within sets of profiles, while the average or

UPGMA method of cluster analysis had a slightly reduced error rate in clustering of

replicate profiles and was more sensitive to outliers. Analyses based on Euclidean

distance between profiles of raw T-RF peak heights did not result in clustering of

replicate profiles, while most replicate profiles were grouped together using Euclidean

distance between relative peak height profiles or Hellinger distance between profiles. It

was found that the multivariate hypothesis-testing technique redundancy analysis was

more effective at detecting differences between very similar samples than was cluster

analysis. Redundancy analysis using Hellinger distance was more sensitive than using

 



 

Euclidean distance between relative peak height profiles (Le. a lower p-value was

Obtained in testing the null hypothesis that the profiles of different samples were the

same). Analysis of Jaccard distance between profiles, which only takes into account

presence/absence of a T-RF, was the most sensitive in redundancy analysis, and equally

sensitive in cluster analysis, compared to the other distance metrics, but only if all

profiles had cumulative peak heights greater than 10,000 fluorescence units. It was

concluded T-RFLP was a very sensitive method of differentiating between microbial

communities when the appropriate statistical methods were used.

Introduction

Culture-independent methods of microbial community analysis involve the

analysis of signature biochemicals extracted directly from environmental samples.

Molecular genetic techniques, utilizing extracted genomic or ribosomal nucleic acids,

allow microbial community analysis to be coupled with a comprehensive phylogenetic

framework (Amann et al. 1995, Woese 1987). The use of such techniques has shown that

methods relying on growth of the organisms ex situ reveal a small fraction of the

diversity present in soil microbial communities (e.g. Torsvik et al. 1990, Ward et al.

1992). This uncultured diversity includes both species that are closely related to cultured

organisms and species that represent virtually uncultured phylogenetic lineages (Head et

al. 1998, Hugenholtz et al. 1998, Kuske et al. 1997).

A variety of molecular techniques have been developed for rapidly assaying

community structure. Most methods involve the separation of PCR amplicons based on

differences in DNA sequence of genes of functional or phylogenetic interest, often the



 
 

 

 

 

 



 

16S ribosomal RNA gene. These include denaturing gradient gel electrophoresis

(DGGE, Muyzer et al. 1993), ribosomal intergenic spacer analysis (RISA, Bomeman and

Triplett 1997), single strand conformation polymorphism (SSCP, Simon et a1. 1993),

amplified ribosomal DNA restriction analysis (ARDRA, Massol-Deya et al. 1995), and

terminal restriction fragment length polymorphism (T-RFLP, Bruce 1997, Liu et al.

1997). These methods do not reveal diversity per se unless the community is very

simple, since a fraction of the species revealed by DNA rehybridization rates or sequence

analysis of a clone library can be visualized on a gel (Dunbar et al. 2000, Nakatsu et al.

2000). However, these methods do provide a way to determine the relative abundance of

common species present in a sample, free of the constraint that the organisms must be

amenable to growth in the laboratory. They are valuable as rapid methods of finding

major differences between communities, and testing hypotheses based on a comparison

of samples.

T-RFLP has been shown to be effective at discriminating between microbial

communities in a wide range of environments and has several advantages over other

techniques (Tiedje et al. 1999). T-RFLP involves tagging one end of PCR amplicons

through the use of a fluorescent molecule attached to a primer. The amplified product is

then cut with a restriction enzyme. Terminal restriction fragments (T-RFs) are separated

by electrophoresis and visualized by excitation of the fluor. T-RFLP analysis provides

quantitative data about each T-RF detected, including size in base pairs (bp) and intensity

of fluorescence (peak height). T-RF sizes can be directly compared to a database of

theoretical T-RFs derived from sequence information (e.g. Dunbar et al. 2001, Marsh et



 

al. 2000). In addition, T-RFLP has been found to detect a greater number of operational

taxonomic units compared to DGGE (Marsh et al. 1998, Moeseneder et al. 1999).

T-RFLP profiles have been shown to be relatively stable to variability in PCR

conditions (Osborn et al. 2000, Ramakrishnan et al. 2000). Currently the least well-

defined technical aspect of T-RFLP, as well as many other methods of microbial

community analysis, is the data processing and analysis of profiles. A wide range of

methods have been used in the literature. The goal of this study was to find the optimal

procedure for use in comparing complex environmental T-RFLP profiles, resulting in the

lowest probability of type II errors (not finding differences between profiles when they

are actually different). The possibility of alignment of T-RFLP peaks using non-

hierarchical K-means cluster analysis was also examined.

The sensitivity of statistical methods to pre-analysis data processing or changes in

the statistical procedures is dependent not only on the analytical consistency of replicate

profiles, but also on the degree of divergence between profiles in the dataset. Therefore

four sets of samples were used, representing a wide range in biological complexity and

environmental differentiation. The most divergent set of samples were soil samples

collected from three regions of the United States, with differing levels of environmental

contamination and disturbance. Representing an intermediate level of divergence, soil

samples from one site were divided into chemically and physically distinct fractions.

Two sets of samples were characterized by quite low divergence in environmental

characteristics: a set of replicate laboratory bioreactors, and a set of soil samples taken

from within a 1.5x2 meter area of alfalfa It is expected that microbial communities will

diverge in species composition and relative abundance in accordance with the divergence
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of their habitats. While this is supported by the analyses presented in this paper, the

hypothesis and the nature of the differences, with respect to spatial structure in soil, is

more fully explored in subsequent chapters.

The threshold for including an electropherogram peak as a valid T-RF is often left

unspecified, but has been set to 100 fluorescence units (Franklin et al. 2001, Osborn et al.

2000), 50 units (Kerkhof et al. 2000), and 25 units (Dunbar et al. 2000, Dunbar et al.

2001). Other researchers have limited the number of peaks analyzed by rarefraction

(Hedrick et al. 2000) or by including only those comprising greater than one percent of

relative abundance in a sample (Derakshani et al. 2001, Lukow et al. 2000), or present in

all analytical replicates (Dunbar et al. 2000).

To compare T-RFLP profiles in cases where the community is very simple or the

primers targeted a small group of organisms, a simple inspection of electropherograms,

tables, or barcharts is normally used (e.g. Bernhard and Field 2000, Bruce 1997, Chin et

al. 1999, Flynn et al. 2000, Ramakrishnan et al. 2000). While raw data is sometimes

relied upon to compare complex profiles (e.g. Derakshani et al. 2001, Gonzalez et a1.

2000, Kerkhof et al. 2000, Leser et al. 2000, Liidemann et al. 2000), quantitative

statistical approaches can also be employed. These have included cluster analysis

(Dunbar et al. 2000, Liu et al. 1997, Moeseneder et al. 1999, Scala and Kerkhof 2000),

MANOVA (Lukow et al. 2000), and principal components analysis (Clement et a1. 1998,

Franklin et al. 2001).

Statistical methods for assessing differences between T-RFLP profiles that were

tested in this study include redundancy analysis and the unweighted-pair group method

using arithmetic averages (UPGMA) and Ward’s method of hierarchical cluster analysis.



 

Redundancy analysis is equivalent to a principal components analysis of fitted values

derived from a multiple linear regression of each variable (or T-RF). To test for

differences between experimental groups, the linear regression is performed with a set of

dummy variables indicating group identity for each sample (Legendre and Legendre

1998). The proportion of total variance in the original nonfitted dataset that the canonical

principal components can account for is then calculated, with an associated pseudo-F

statistic. The F statistic is then compared to a distribution generated by random

permutation of the data with respect to the dummy variables to obtain a p-value.

Calculation of a p-value by random permutation avoids the assumptions of

multinorrnality and restrictions on the number of variables that can be analyzed

(Legendre and Anderson 1999).

Cluster analysis is essentially a tool for exploratory data analysis, and should not

be used as final proof in testing of hypotheses (Krzanowski and Marriott 1994). Cluster

analysis summarizes all the variability, and therefore all phenomena affecting the data,

within a dendrogram. The difference between the UPGMA and Ward’s methods of

cluster analysis is in how they calculate the distances between groups of samples (Jobson

1992). The UPGMA method uses the average distance between samples calculated from

all possible pairs of samples from the two groups. Ward’s method uses the distance

between the group centroids, weighted by the total number of samples in both groups.

The distance between group centroids is equivalent to the semi-partial r-squared, or the

proportion of total variance that would be accounted for by joining the two groups.

The statistical methods discussed above must be based on some measurement of

the distance (or difference) between profiles. Cluster analysis or redundancy analysis
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using raw peak heights results is based on Euclidean distance. Several kinds of

transformations can be made to peak height before statistical analysis, resulting in

analyses based on other distance metrics. Use of relative peak height (or height divided

by the cumulative peak height of the profile), is a common method (Bruce 1997, Chin et

al. 1999, Derakshani et al. 2001, Gonzalez et al. 2000, Liidemann et al. 2000,

Ramakrishnan et al. 2000). Legendre and Gallagher (in press) examined several data

transformations that could be performed prior to statistical analysis that result in analyses

based on ecologically appropriate distance metrics instead of Euclidean distance. They

found that use of relative abundance was an improvement but still unsatisfactory for

simulated community composition data. Analyses based on the Hellinger distance can be

performed by finding the Euclidean distance between profiles after the Hellinger

transformation, which is simply a square root transformation of relative abundance

(Legendre and Gallagher in press). Lukow et al. (2000) used this transformation in an

attempt to normalize peak height distribution.

Other studies have based comparison of T-RFLP profiles on binary indicators of

peak presence (Bernhard and Field 2000, Clement et al. 1998, Flynn et al. 2000, Franklin

et al. 2001, Kerkhof et al. 2000, Leser et al. 2000, Liu et al. 1997, Moeseneder et al.

1999, Scala and Kerkhof 2000) or binary indicators after deletion of peaks falling below

a height threshold due to standardization (Dunbar et al. 2000, Dunbar et al. 2001).

Several similarity coefficients can be used to quantitatively compare profiles using binary

indicators; in this study we subtract Jaccard’s coefficient from one to transform it into a

distance metric, and refer to this as Jaccard’s distance. Redundancy analysis using

Jaccard distance requires the alternate procedure, distance-based redundancy analysis, to
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be employed. Any distance metric can be employed in distance-based redundancy

analysis because, prior to the redundancy analysis, principal coordinates analysis is used

to project the distances between profiles into a Euclidean space (Legendre and Anderson

1999). Distance-based redundancy analysis has the disadvantages of being somewhat

more complex and, unlike standard redundancy analysis, the impact of individual

variables (or T-RFs) on the results cannot be determined directly.

Methods

Sample collection

Four sets of samples were used in this study:

1. KBS Soil Fractions. Soil samples were collected from the agricultural field plots of the

Long Term Ecological Research (LTER) site and the Living Field Lab (LFL) at the WK.

Kellogg Biological Station in southwestern Michigan, USA. Three blocks of soil

weighing approximately 350 g were excavated and pooled from each plot. Sampling

depth was 10 cm. Field treatments included continuous alfalfa, conventionally managed

continuous corn, and organically managed first year corn in a com—com-soybean-wheat

rotation with cover crops. Details of the field treatments are described elsewhere (Jones

et al. 1998, http://lter.kbs.msu.edu/Agronomics). The soil was fractionated into

rhizosphere, shoot residue, and light and heavy fractions from various sizes of soil

macroaggregates. Details of the soil fractionation and results from comparison of field

treatments and soil fractions are described in chapters 3 and 4.

2. Bioreactor Samples. Bioreactor samples were taken from a fluidized-bed reactor with

activated carbon as the particulate carrier. The reactor was inoculated with an anaerobic
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enrichment culture and fed continuously with ethanol and essential nutrients. Samples '

were removed, pelleted, and stored at -20°C until needed. Sample collection and T-

RFLP analysis as described below was performed by Dr. Terry Marsh, who kindly

provided the T-RFLP profiles for statistical analysis.

3. KBS Alfalfa Soil Samples. A ten g soil sample was collected from each of five

locations within a 1.5 x 2 m plot within an alfalfa field at the KBS LTER site. Samples

were collected from the layer of soil 2 to 4 cm deep. These samples were part of a larger

study of the spatial structure of soil microbial communities described in chapter 5.

4. Multi-Region Soil Samples. Soils were collected from Sault Saint Marie, MI, Milan,

TN, and Hawthorne NV. Approximateley 500 grams of soil were removed from the top

5 centimeters of soil, homogenized, and aliquoted to 100 ml specimen containers.

Samples were stored at -20°C until needed. Sample collection and T-RFLP analysis as

described below was performed by Dr. Terry Marsh, who kindly provided the T-RFLP

profiles for statistical analysis.

T-RFLP

Mixed community DNA was extracted from the KBS LFL and LTER soil

fractions (0.3 g) and alfalfa soil samples (10 g) using the standard or Large—Scale

Ultraclean Soil DNA extraction kit, respectively, following the manufacturers

instructions (Mo Bio Laboratories, Solana Beach, CA). Genomic DNA was found to be

of sufficient purity to be used directly in PCR reactions. PCR was performed using a

standard reaction mixture of 160 11M of each deoxynucleoside triphosphate, 3 mM

MgC12, 0.05 U/uL Taq DNA polymerase and the appropriate volume of accompanying

10X PCR buffer (Gibco BRL, Gaithersburg, MD), and 0.2 ug/mL bovine serum albumin



 

(Boehringer Mannheim Biochemicals, Indianapolis, IN). Primers used were the general

eubacterial primer 8-27F (AGAG'I'I'I‘GATCCTGGCTCAG, E. coli numbering, Amann

et al. 1995, Integrated DNA Technologies, Coralville, IA) and the universal primer 1392—

1406R (ACGGGCGGTGTGTACA) amplifying the 16S ribosomal gene. PCR reactions

were optimized for each sample of genomic DNA using a master mix with primer

concentrations of 0.4 LLM. PCR was performed in a Perkin-Elmer 9600 therrnocycler

using an initial denaturation step of 95°C followed by 22 cycles of the following

program: denaturation at 94°C for 30 sec., primer annealing at 55°C for 30 sec., and

extension at 72°C for 30 see. A modified hot start procedure was used where PCR tubes

were not placed in the therrnocycler until the block temperature had reached 80°C. A

final extension at 72°C for 7 min. was performed after the programmed number of cycles

was complete. PCR product concentration and specificity was checked by

electrophoresis on a 1% agarose gel, followed by staining with ethidium bromide.

Optimizations were performed by adjusting the amount of genomic DNA extract used

(0.4 to 2 ILL) in order to obtain a strong hand without visible non-specific product.

PCR reactions (50-75 uL) were performed in triplicate for each sample using the

optimal conditions found previously. These reactions were performed using the same

PCR master mix and program described above except that the forward primer was 0.6

uM hexachlorofluorscein (hex)-labeled 8—27F (Integrated DNA Technologies). PCR

replicates were then pooled and purified using the Promega PCR Preps Wizard Kit as

directed by the supplier, except that elution was performed with 19 1.1.1.. of sterile water

heated to 55-65°C. Five uL of purified PCR product was mixed with 5 ILL of restriction

enzyme master mix containing 1.5 U/uL of restriction enzyme and one ILL of the
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accompanying reaction buffer (Gibco). Restriction reactions were incubated for three

hours at 37°C, followed by 16 min. at 65°C to denature the restriction enzyme. Three [.11.

of the restricted PCR product was mixed with one 1.1L of 2500 TAMRA size standard

(Applied Biosystems Instruments, Foster City, CA). DNA fragments were separated by

size by electrophoresis at 1800 V for 14 hours on an ABI 373 automated DNA sequencer

at Michigan State University’s DNA Sequencing Facility. The 5' terminal fragments

were visualized by excitation of the hex molecule attached to the forward primer. The

gel image was captured and analyzed using Genescan Analysis Software 3.1. A peak

height threshold of 50 fluorescence units was used in the initial analysis of the

electropherogram. Negative controls (no genomic DNA) were conducted with every

PCR and run on several Genescan gels. Contamination in PCR reactions was not

detected. Small peaks occasionally appeared in negative control lanes on Genescan gels,

but the cumulative peak height was always below 1000 units.

Amplification of bioreactor and multi-region soil samples were performed as

described above with the following modifications. 16S rRNA genes were amplified from

community DNAs using primers 8-27F and 1492R (5’-GG'I‘TACCTI‘G'I'I‘ACGACTI‘-

3’). The PCR reaction mixture (100 11]) contained 1X PCR buffer, 0.2 mM dNTPs, 1.5

mM MgC12, 0.4 M of 8-27F primer, 0.2 IIM of 1492R primer, 0.] pg BSA/Ill, 0.2 ng

template DNA/pl, 0.05 U Taq polymerase/Ill (PE Amplitaq). Thermocycling was

performed in a GeneAmp 2400 PCR System thermal cycler (Perkin Elmer, Norwalk, CT)

at 94°C for 5 min followed by 30 cycles of 94°C for 50 sec, 55°C for 50 sec, 72°C for 1

min 30 sec, and a final extension step at 72°C for 7 min. Amplifications that checked

positively on a 1.2% agarose gel were cleaned and concentrated using a Microcon YM-



 

100 (Millipore Corp. Bedford, MA). DNA concentrations were determined

spectrophotometrically. Purified PCR products (600 ng/reaction) were digested with

HhaI, MspI, or Rsal restriction endonuclease at 37°C for 3—4 hrs.

Replication experiments

For the set of KBS soil fraction samples, 32 samples were run on two Genescan

gels. Several other samples were also run once. For the remaining sets of samples, two

sets of PCR reactions were performed and pooled separately for each sample. Each of

these were then restricted and run twice on the same Genescan gel, for a total of four

replicate runs per sample.

Profile alignment and statistical analsyses

Peak (or T-RF) heights in fluorescence units and sizes in base pairs (bp) were

transferred to an Excel file. T-RFs were aligned between samples either by inspection of

the electropherogram and manual grouping of peaks into categories, or by use of a

custom algorithm written in SAS (Version 8 ML and Stat components) based on K-

means cluster analysis of the T-RF sizes. The algorithm also separated T-RFs when

multiple T-RFs from the same sample were clustered together. In this event, a new

cluster was generated and any T-RFs from samples with two or more T-RFs present in

the original cluster were placed into the new cluster. The process was then repeated for

the new cluster. The algorithm also allowed a maximum range in bp to be set for all

clusters. Alignments were generated using this algorithm with maximum ranges of from

1 to 10 bp. Computer alignment was only tested on the set of KBS soil fraction samples.

Alignment of peaks by manual inspection was done in Excel and was based primarily on

the size of peaks in bp. The pattern of peaks was also used to determine their alignment
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when groups of overlapping peaks were found between samples. The identities of

samples were concealed during manual alignment.

Hierarchical cluster analysis was performed on aligned T-RFLP profiles using

SAS Version 8. Clustering was performed using the unweighted-pair group method

using arithmetic averages (UPGMA) and Ward’s method (SAS Institute Inc., Jobson

1992). Several methods of data processing were compared. The baseline for including a

peak was set to 50, 100, or 200 fluorescence units. Rarefraction was also used as a

method of determining which small peaks should be included in the analysis, following

the procedure of Hedrick et al. (2000). Clustering was then based on Euclidean distance

between raw or relative peak height, Hellinger distance, or one minus Jaccard’s

coefficient (referred to as Jaccard distance). Hellinger distance is equivalent to the

Euclidean distance between profiles after square-root transformation of relative peak

heights (Legendre and Gallagher in press). Jaccard’s coefficient is based on binary

variables of peak presence and is equal to the ratio of the number of T-RFs present in

both profiles being compared to the total number of T-RFs present in either profile.

Clustering was performed both with and without samples whose peak heights summed to

greater than 10,000 fluorescence units. The cophenetic correlation was calculated for

dendrograms using an algorithm written in SAS IML.

Statistical significance of the difference between samples, and as a corollary the

similarity of replicate profiles, was tested using redundancy analysis with the computer

software Canoco (Microcomputer Power, Ithaca, NY). This analysis compares a pseudo-

F statistic, calculated from the proportion of the total variance explained by sample

identity, to the values of F of 9999 random permutations of the sample identities of the
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profiles (Legendre and Legendre 1998). Distance-based redundancy analysis was used to

determine significance using Jaccard distance (Legendre and Anderson 1999). The

Jaccard distance matrix and its principal coordinates were calculated using an algorithm

written in SAS IML, adapted from original code provided by Dr. Carl Ramm at Michigan

State University.

Results

An example of several T-RFLP electropherograms is shown in Figure l.

Occasionally the baseline fluorescence of the T-RFLP electropherograms was elevated

(i.e. fluorescence did not reach zero between widely-spaced peaks). If the value of the

baseline could be ascertained, the baseline was subtracted from peak height in that

region. If the baseline varied inconsistently the sample was re-run. Evaluation of I

clustering errors was performed using dendrograms showing the hierarchical

relationships between T-RFLP profiles as found by the clustering procedure (see Figures

2-4 for examples). The number of clusters chosen to be examined was equal to the

number required to explain 50 percent of the variance in the entire dataset. An error was

counted when two replicate T-RFLP profiles (i.e. profiles derived from the same DNA

extract) were clustered into different groups. Errors in the dendrograms in Figures 2-4

occur where lines joining analytical replicates cross group divisions. Group colors were

exchanged for the profiles where errors occur in an attempt to allow the degree of error in

the dendrogram to be assessed intuitively.
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I. KBS LTER soilfraction samples

In the first set of samples there were 32 replicated profiles (see Table 1 and

Figures 2-4). Clustering using raw, unstandardized peak height consistently resulted in

the greatest number of errors. Use of relative peak height (peak height divided by the

cumulative peak height of the given sample) resulted in the fewest number of errors.

Clustering using binary variables (Jaccard distance) had an error rate higher than for

relative peak height, but still much lower than for raw peak heights (see Table 1).

Deleting peaks with heights less than 100 fluorescence units, less than one percent of the

cumulative peak height for a given sample, or by rarefraction did not result in

improvement of clustering on any variable, compared to use of all peaks with heights

greater than 50. Deleting all peaks with heights less than 200 increased the number of

errors (see Table 1). Use of the Hellinger transformation resulted in an increase of

between zero and two errors over the analogous dendrogram based on relative peak

height. UPGMA clustering normally contained one to two fewer errors than clustering

by Ward’s method, and also resulted in a higher cophenetic correlation (or correlation

between elements of the original distance matrix and a distance matrix constructed from

the results of the cluster analysis). However, clustering by Ward’s method required

fewer groups to explain 50 percent of the variance in the dataset.

After alignment of T-RFLP profiles by the computer algorithm described in the

Methods, the minimum number of errors present in a dendrogram equaled four (using

Ward’s method; see Table 2). The computer alignment resulting in this dendrogram had

a maximum range of 4 bp and a mean range of 1.3 bp for groups of peaks (i.e. peaks in

different samples considered to represent the same T-RF). The manual alignment had a
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maximum range of 4.4 bp and a mean range of 1.4 bp for groups of peaks. Deletion of '

samples with cumulative peak height less than 10,000 fluorescence units resulted in 22

replicated profiles (see Table 3; the minimum of the full dataset was 4650). Using the

manual alignment of profiles, the number of errors was zero or one for all combinations

of clustering methods and distance metrics (raw peak height was not analyzed). The

number of errors resulting from Ward’s cluster analysis of the computer-aligned profiles

was found to be fewest using a maximum range of 2 bp for groups of peaks (mean = 0.9

bp). However, the number of errors was still higher than that for manually-aligned

profiles.

2. Bioreactor samples

The various methods of data processing and analysis did not greatly affect the

error rate of clustering of bioreactor replicates, and no method appeared to perform the

best (see Table 4). This was consistent for Rsal, MspI, and Hhal digests analyzed

separately, as well as for analysis of all three digests simultaneously. Since there were

four replicate profiles per sample, the error rate of nine out of 18 potential errors, which

is typical for this set of samples, could be generated by a variety of dendrograms. These

could include 1. the clustering of three replicates of each sample into distinct groups, with

the fourth of each sample an outlier, or 2. the perfect clustering of replicates of one

sample, a second sample being split evenly between two groups, and a third with no

replicates in the same group.

The significance of the differences between sample profiles was tested using

redundancy analysis of standardized peak heights, Hellinger-transformed peak heights,

and principal coordinates of Jaccard distance. The sample identities were found to
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explain a significant amount of variance in the dataset for the RsaI and Hhal profiles

analyzed separately and for the RsaI, MspI, and HhaI profiles analyzed together (see

Table 5). Sample identities were significant for the MspI profiles only for Jaccard

distance. P-values for all digests were lowest for analysis of Jaccard distance, and

highest for standardized peak heights, except for the Rsal profile where analysis of

Jaccard distance had the highest p-value. The RsaI dataset included several profiles

where the cumulative peak height was less than 10,000 fluorescence units. Plots of the

first two canonical principal components generated by the redundancy analyses are

shown in Figure 5.

3. Alfalfa soil samples

While clustering Jaccard distance resulted in the lowest number of errors for the

alfalfa soil samples, all dendrograms had error rates that were quite high (see Table 6).

The errors could again be generated by a variety of dendrogram topologies since there

were four replicates per sample. Redundancy analysis detected significant differences

between community profiles when analyzing Hellinger-transformed variables and

principal coordinates of Jaccard distance, but not relative peak height variables.

4. Multi-Regional Soil Samples

No errors were observed in cluster analysis of replicate profiles from the multi-

regional set of soil samples using any method of processing and analysis (data not

shown). This result was consistent for RsaI, MspI, and HhaI digests. In general, two

groups were required to explain 50 percent of the variance in the dataset. This grouping

divided all replicate profiles of one sample from the eight replicate profiles of the
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remaining two samples. Three groups explained 75 to 85 percent of the total variance in

the dataset, with each group being made up by all of one sample’s replicate profiles.

Comparison ofStatistical Methods

The number of errors found in cluster dendrograms was dependent on the set of

samples being analyzed. The error rate was lower using UPGMA compared to Ward’s

method if some profiles had cumulative peak height less than 10,000 fluorescence units

(see Table 1). However, the two methods had essentially equivalent error rates if all

samples had cumulative peak heights greater than 10,000 (see Table 3). UPGMA

clustering was more true to the original distances between samples, as indicated by higher

cophenetic correlation (Jobson 1992). This also leads, however, to an increase in the

number of groups required to explain 50 percent of the total variance in the datasets, and

a greater influence of outliers on dendrogram topology (see Figures 3 and 4).

Redundancy analysis was able to detect significant differences between samples,

and as a corollary significant similarities between analytical replicates, for all datasets

tested. The cause of significant differences can be assessed using plots of canonical

principal components (see Figure 5), although it should be noted that these plots are

biased to show group differences, compared to standard principal components analysis,

due to the nature of redundancy analysis.

Profile Alignment and Peak Height Baseline

Alignment of profiles was shown to be best performed manually, aided by

patterns within the peak positions as well as the putative fragment sizes calculated using

the internal lane standard. Deletion of the smallest peaks using any of a variety of

algorithms was shown to have relatively little effect on the error rate of analyses, except

26



 

that an increase in the number of errors was observed where larger peaks started to be

deleted as well (i.e. peaks with heights between 100 and 200 fluorescence units).

Comparison of Community Distance Metrics

Cluster analyses based on Euclidean distance calculated from raw peak heights

resulted in an unacceptable number of errors for all sets of samples except the most

divergent (for example, compare figures 2 and 3). The Hellinger transformation had

inconsistent results on the number of clustering errors compared to clustering based on

relative peak height, sometimes decreasing and sometimes increasing the error rate. The

Hellinger transformation did consistently result in a greater number of groups being

required to account for 50 percent of the variance in the dataset, although other changes

in the topologies of the dendrograms were minor. However, the Hellinger transformation

also consistently resulted in a lower p-value when redundancy analysis was performed to

test the significance of the differences between samples. This reduction in p-value was

dramatic for the set of closely-spaced alfalfa soil samples. Other data transformations

examined by Legendre and Gallagher (in press) were either discarded in preliminary

analyses (i.e. the chord distance) or because of the heavy weighting of rare T-RFs (e.g.

the chi-square distance). The latter property makes a distance metric inappropriate for T-

RFLP data since rarity of a T-RF might not reflect rarity of the associated genotype, but

simply sampling variability in detection of less-abundant (i.e. low population size or

mean peak heights), but still common, species (see Legendre and Gallagher in press, and

Legendre and Legendre 1998 for discussions on weighting of rare species).

Use of Jaccard distance when some profiles had low cumulative peak height

(<10,000 fluorescence units) resulted in a large number of errors in cluster analysis and a
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higher p-value in redundancy analysis. When all profiles analyzed had cumulative peak

height >10,000, clustering using Jaccard distance was as good as relative or Hellinger-

transforrned peak height, and redundancy analysis was more sensitive (with a lower p-

value).

Discussion

A primary weakness in many microbial community analysis studies is the lack of

quantitative statistical comparison of community profiles. This may be appropriate if the

methodology used only allows for qualitative comparisons, but in such cases conclusions

may be affected by subjective interpretation. This study is designed to aid in the choice

of methods to process and analyze quantitative T-RFLP data. The results may also be

useful for other methods of community analysis such as DGGE or RISA. The results are

based on analytical replicates with the goal of finding a method of data analysis such that

further analyses will not need to be replicated at the analytical level. Analytical

replication may be prohibitive in molecular work if there are a large number of samples

due to the relatively high cost and time involved. Analysis of treatment or field replicates

is always a necessity.

The results of the analyses are different, in absolute terms, for each of the sets of

samples examined because the sets represent a wide range in degree of sample

divergence. The trends in sensitivity of data analysis methods are consistent across this

gradient and resulted in some methods being clearly preferable. As expected, the multi-

regional set of soil samples resulted in the most divergent set of T-RFLP profiles, and the

bioreactor and alfalfa soil samples resulted in the least divergent T-RFLP profiles. This
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gradient was useful in showing the relative sensitivities of the various methods to the

analytical variability present in T-RFLP profiles.

Ward’s method of hierarchical cluster analysis seems to sacrifice some precision

in clustering for the ability to more efficiently identify major groups within T-RFLP

datasets. This efficiency results in Ward’s analyses accounting for a larger proportion of

the total variance with fewer groups compared to UPGMA. Also the scale of the

dendrogram plot is more heterogeneous across different levels in the hierarchy (see

Figures 3 and 4), resulting in the ability to more easily choose the number of major

groups in the dendrogram. Dendrograms constructed from UPGMA analyses could be

plotted using the semi-partial r-squared scale (and perhaps they should be when looking

for natural groups), but inversions will be present. The UPGMA method may be

considered a more conservative method of finding natural groups and outliers within sets

of T-RFLP profiles, which is in agreement with comments by Jobson (1992).

The problems associated with choosing the number of important groups that are

present when comparing dendrograms with differing scales were avoided in the current

study by examining whatever number of groups was required to account for 50 percent of

the total variance. This was done in order to compare error rates of dendrograms on an

equal basis, but is not recommended for applications of cluster analysis other than

assessing error rates since the 50 percent level may not correspond to a biologically

meaningful number of groups.

Redundancy analysis and cluster analysis are fundamentally different types of

methods, and are hence not directly comparable. The goal of redundancy analysis is not

to summarize all variability within the dataset, but to explicitly test whether that
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variability that can be attributed to the differences between experimental groups is

significant. In that case, it would be expected that redundancy analysis detected

significant differences between samples in the less divergent sample sets, while cluster

analysis often failed to show them, because these differences accounted for only 25-40%

of the variance in the datasets.

The failure of our T-RFLP profile alignment algorithm compared to alignment by

hand was a disappointment. Future work should focus on development of computer

algorithms which can take these patterns into account, since at this point manual

alignment of profiles represents the least standardized or objective step of quantitative T-

RFLP analysis.

The fact that deletion of the smallest peaks had relatively little effect on

dendrogram error rate is somewhat surprising because small peaks tend to be the

“noisiest”, with inconsistent presence in replicates of a single sample. An effect of

deletion of small peaks was particularly expected to occur for the analysis of Jaccard

distance since, in that case, small peaks are given equal weight to large peaks. However,

Jaccard distance does weight “common” (or frequently-present) T-RFs more than “rare”

(infrequently-present) T-RFs, and noisy peaks are by definition rare. These results imply

there were a number of T-RFs with generally low peak heights that were important for

distinguishing between samples.

Problems associated with Euclidean distance between profiles (raw peak height)

are likely associated with variability in the amount of DNA loaded into each gel lane.

This can result in variability in absolute peak height and presence of some of the smaller

peaks. Analysis of relative peak height led, in general, to optimal performance in cluster
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analysis (equal to Hellinger distance), but not redundancy analysis. Use of the Hellinger

distance for T-RFLP data is superior based both on the present empirical results and the

theoretical considerations previously discussed (Legendre and Galagher in press).

Jaccard distance performed well in cluster analysis and superior to other distance metrics

in redundancy analysis only when DNA load was uniformly high. The difference in

performance with changes in cumulative peak height may be due to increased stability of

small peaks when DNA load is high.

Conclusions

T-RFLP has been shown to be a valuable method of assaying microbial

community structure. Given statistical analyses that were sensitive enough (low

probabilities of type II error), it was possible to use T-RFLP to reject the null hypotheses

that communities were identical in replicate bioreactors, or in soil samples collected

within two meters of each other. With this level of sensitivity, the utility of T-RFLP in

quantitative comparison of microbial communities is obvious. If the experimental design

is such that appropriate hypotheses can be formulated, redundancy analysis of Hellinger-

transformed peak height and/or distance-based redundancy analysis of Jaccard distance

(if all profiles have a cumulative peak height greater than 10,000) are recommended as

the most sensitive methods to distinguish between groups of profiles. If the goal of

analysis is exploratory data analysis, clustering using both Ward’s method, to find natural

groups, and UPGMA, to identify potential outliers, is recommended. The validity of

clustering results are basically equivalent using relative peak height, Hellinger-

transforrned peak height, or Jaccard distance (if all samples have cumulative peak height
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greater than 10,000). This study was not an exhaustive examination of all multivariate

statistical methods that could be used for T-RFLP data. Future work could examine the

potential of other distance metrics and other methods of data analysis, such as

correspondence analysis, principal coordinates plots, and use of artificial neural

networks. The use of quantitative statistical analysis coupled with molecular methods

creates new opportunities for addressing applied and ecological problems in microbial

community analysis.
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Table l: Dendrogram characteristics for cluster analyses of manually-aligned T-RFLP

profiles of KBS soil fractions using a variety of data processing methods and clustering

algorithms. All profiles included in analysis.
 

 

 

 

 

 

Ward’s UPGMA

Variable Baseline Errors Errors

out of 32 # Groups out of 32 # Groups

50 14 6 l2 9

Height 100 14 6 12 9

200 18 6 12 9

50 2 6 1 10

100 2 6 1 8

Relative Height 200 3 6 5 7

Rarefraction 2 6 l 9

1% 2 6 1 10

50 2 11 l 13

100 2 1 l 1 l3

Hellinger-Transformed 200 7 1 1 5 12

Rarefraction 4 11 2 12

1% 3 11 2 12

50 6 6 5 8

100 11 5 5 7

Jaccard distance 200 8 4 9 4

Rarefraction 7 7 3 9

1% 5 7 4 7
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Table 2: Dendrogram characteristics for cluster analyses of computer-aligned T-RFLP

profiles of KBS soil fractions using a variety of data processing methods.
 

 

 

 

 

. . . Errors

Variable Baseline Maxrmum Range Mean Range out 0f 32

All Samples

Height 50 2 1.1 15

50 2 1.1 5

1% 2 1.1 5

. . 1% 3 1.5 11
Relative Height 1% 4 2.1

1% 7 4 10

1% 10 5.8 12

50 2 1.1

1% l 0.5 11

1% 2 1.1 6

Jaccard distance 1% 3 1.5 10

1% 4 2.1 8

1% 7 4 14

1% 10 5.8 14

Samples with cumulative peak height > 10,000

1% 2 1.1 2

Relative Height 1% 3 1.5 6

1% 4 2 7
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Figure 5: Canonical principal components plots derived from redundancy analysis of

bioreactor sample T-RFLP profiles (RsaI, MspI, and Hhal profiles pooled).

A = bioreactor sample 27; O = bioreactor sample 12; I = bioreactor sample 19
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Chapter 3

Eubacterial Community Structure and Population Size within

the Soil Light Fraction, Rhizosphere, and Heavy Fraction of

Several Agricultural Cropping Systems
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Abstract

Soil fractions were hypothesized to be distinct microbial habitats on the basis of

differences in the age and types of organic matter they contain. This was tested in several

agronomic cropping systems by comparison of the eubacterial community composition

and numbers of bacterial cells present. Terminal restriction fragment length

polymorphism (T-RFLP) profiles were significantly affected by both soil fraction and

cropping system, accounting for 35-50% of the variability in the profiles. There was a

major difference between heavy fraction of soil, which includes the mineral particles and

associated humified organic matter, and the rhizosphere and light fraction/shoot residue

in soil, which includes soil organic matter particles. Differences were not based on

organic carbon content of fractions alone, however, since T-RFLP profiles were also

significantly differentiated by cropping system and by rhizosphere versus light

fraction/shoot residue. Heavy fraction communities were found have the least amount of

random variability in T-RFLP profiles, resulting in the clearest cropping system effects,

while rhizosphere communities were the most variable. Profiles from organically-

managed corn soil were more variable than for either conventionally-managed corn or

alfalfa. The percentage of cells >O.l8 um3 was also better explained by treatment effects

than by organic carbon content of samples. In contrast, total number of bacterial cells/g

fraction was not explained better by treatment differences than by carbon content of

samples. The results show that habitat diversity in soil, related both to the amounts and

types of organic matter, as well as other potential factors, may be important in

maintaining the high soil bacterial species diversity and evenness that is found in soil.
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Introduction

Particles of organic matter isolated by flotation in liquids of varying density are

known as light fraction (LF) and have been shown to be useful predictors of soil

respiration and nitrogen mineralization (Biederbeck et al. 1994, Hassink 1995, Janzen et

al. 1992). Light fraction is sensitive to soil management regimes (Bremer et al. 1994,

Cambardella and Elliott 1993) and has been proposed as an important component of soil

quality (Gregorich et a1. 1994, Yakovchenko et al. 1998). It has also been shown to be

critical in the formation and stabilization of soil aggregates (Golchin et al. 1994a). The

LP is composed of recently deposited organic matter particles (primarily plant residues),

with greater rates of turnover than other soil organic matter fractions (Buyanovsky et al.

1994, Gregorich et al. 1995), higher carbohydrate contents, and higher C:N ratios

(Christensen 1996). This is particularly true for the “free” LF isolated from outside of

soil aggregates (Golchin et al. 1994b, 1995).

The presence of a spatially-distinct component of soil with easily-utilizable

substrates raises the question of whether this fraction is colonized and inhabited by a

community of microorganisms different from other soil fractions. Such habitat diversity

in soil could explain the high microbial species richness and evenness (or non-dominance

by any species) detected by ribosomal sequencing (Bomeman and Triplett 1997, Nakatsu

et al. 2000, Nilsslein and Tiedje 1998) and DNA rehybridization rate studies (Sandaa et

al. 1999, Torsvik et al. 1990). Competitive exclusion will not occur if species remain in

different habitat types and do not interact (Huston 1999). When competing species do

colonize the same habitats, patchiness of the habitat can allow for the coexistence of the
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species through differential dispersal ability (fugitive species), or independently spatially-

aggregated distributions coupled with limited dispersal (Hanski 1995, Pacala and Levin

1997). Plant residues are known to be patchily distributed in soil (Staricka et al. 1991).

Differing limiting resources in patches can lead to differences in local competitive

equilibria, resulting in coexistence of competing species by spatial resource partitioning

(Tilman 1982). Nitrogen limits microbial growth in LF, resulting in N immobilization

during LF decomposition (Janzen et al. 1992, Yakovchenko et al. 1998), whereas

available C generally limits microbial growth in bulk soil (Smith and Paul 1990). These

mechanisms of enhancing species coexistence are not mutually-exclusive. All of them,

except for the spatial-aggregation hypothesis, require some difference in the ability of

species to proliferate in the LF patches compared to other soil fractions. Therefore they

are not supported if the community in LF are not significantly different from those in

other soil fractions. If the LF microbial community is different from that in other soil

fractions, the LF represents a distinct soil habitat that should be considered to contain

potentially unique ecological dynamics.

The rhizosphere, or the region of soil adjacent to and under direct influence of

plant roots, is a well-recognized soil habitat (Bolton et al. 1993). Enhanced microbial

growth is supported by root exudates and sloughed cells (Breland and Bakken 1991,

Rouatt et al. 1960, SOderberg and Biath 1998). The rhizosphere is colonized by and

supports a community different from that in the “bulk soil” (Maloney et a1. 1997,

Marilley and Aragno 1999, Ringelberg et al. 1997). Other ecological dynamics

distinctive of the rhizosphere (compared to the bulk soil) include interactions with other

plant symbionts (Budi et al. 1999, Christensen and Jakobsen 1993, Denton et al. 1999),
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reduced allocation of C to storage molecules (Tunlid et al. 1985), enhanced predation

(Badalucco et al. 1996), increased proportion of species with copiotrophic growth

strategies (Mahaffee and Kloepper 1997), and unique spatial structure (Bowen and

Rovira 1991).

Some microbiological studies have supported the hypothesis that LP or particulate

plant residues are habitats with unique effects on the microbial community. The large

increases in the number and activity of bacterial cells in soil microsites containing

decomposing plant residues has been recognized for a long time (e.g. Thom 1935).

Kanazawa and Filip (1986) found that the LF contained 27-42% of the total numbers of

culturable microorganisms, depending on growth strategy, and 67% of the total soil ATP.

This was similar to the proportion of the total organic C stored in the LF, 42%. Ahmed

and Oades (1984) reported only 0.2-0.4% of the total soil ATP was contained in the LF,

whereas it contained 11-12% of the total soil organic C. This conflict between reports

remains unresolved (Gregorich and Janzen 1996). Experimental additions of plant

residue to soil microcosms has induced localized increases in dehydrogenase activity

(Gaillard et al. 1999, Ronn et al. 1996), microbial biomass (Chotte et al. 1998), soil

microfauna (Gaillard et al. 1999), and bacterial conjugation (Sengelov et al. 2000).

We tested the hypothesis that the LF, HF, and rhizosphere are distinct soil

microbial habitats containing differing eubacterial communities. We also examined the

macroscopic shoot residue that is present in soil and is normally excluded from analysis

because it is larger than 2 mm in diameter. Microbial community analysis was conducted

using terminal restriction fragment length polymorphism (T-RFLP) of the 16S ribosomal

gene which was PCR-amplified from eubacteria. Bacterial number within soil fractions
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was assessed to contribute to the issue outlined above. The responses of the communities

within fractions to differing cropping systems was examined to determine whether

communities in different micro-habitats respond differently to environmental conditions

varying at a larger scale.

Methods

Field Sites and Sample Collection

Samples were collected from two field experiments at the WK. Kellogg

Biological Station in Southwestern Michigan. Soils at the site are Typic Hapludalfs and

approximately 43% sand and 40% silt (Robertson et al. 1997). Two field treatments of

the Living Field Laboratory site were sampled: conventionally-managed continuous corn

and organically-managed first-year corn. The conventionally—managed continuous corn

receives synthetic fertilizer and pesticides on a regular basis. The organically-managed

first-year corn is in a com-com-soybean-wheat rotation, with cover crops planted after

corn and wheat. Organically-managed corn receives compost (dairy manure and

deciduous tree leaves) at the beginning of each growing season. The experiment includes

rotation entry point plots in a randomized block design (with four replicate blocks), so

first-year corn can be sampled every year. Treatments were begun in 1993. Secondary

tillage is used to control weeds in organically-managed corn. Details of the management

of this site can be found in Jones et al. (1998). Samples were collected from within rows,

between corn plants in each of the four replicate fields per treatment.

Samples were also collected from the perennial alfalfa treatment of an adjacent

experiment, the Kellogg Biological Station Long Term Ecological Research site. Alfalfa
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fields were established in 1989, and plants were killed every five years with herbicide

and replanted to maintain stand vigor. This occurred in the spring of 1999, between dates

sampled in this study. Alfalfa plants receive occasional lime amendments and pesticide

application (http://lter.kbs.msu.edu/Agronomics). Samples were collected in September

of 1998 and August of 1999 nearby permanent sampling locations in four of the replicate

fields. Samples were 10 cm deep. In 1998, nine replicate soil cores were collected with a

1.9 cm diameter soil probe from each field. These were pooled in the field and stored in

Whirlpak bags for transportation to the lab. In 1999, three 350 g soil blocks were

excavated per field, and were transferred intact to glass jars for transportation. Samples

were stored at 4°C until fractionation was complete, which was within 3 weeks in 1998

and 8 weeks in 1999.

Soil Fractionation

Density separations are performed in liquids of two different densities in this

study, 1 and 1.7 g/cc. To distinguish between the fractions, the density at which the

fraction was isolated will follow its abbreviation; hence LF isolated using water will be

designated LF-l.

Soil cores from 1998 were mixed by hand and a whole-soil subsample was

removed for weighing and drying at 65°C. Samples were forced through a 2 mm sieve

by gently breaking aggregates along planes of weakness. Roots and shoot residue > 2

mm were removed with forceps. Layers of soil < 1 mm thickness clinging to the roots

and shoot residue were included with those fractions. Density separation was performed

using a procedure modified from Golchin et al. (1994b) to isolate free or inter-aggregate

LF. Bulk soil samples (with roots and shoot residue removed) weighing 50 to 75 g were
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placed in sterile centrifuge bottles. Sterile water was added to a total volume of < 200

mL. Tubes were then inverted by hand 10 times and material clinging to sides of tubes

and caps was washed into the suspension with sterile water. The total volume within the

bottle was brought to 200 mL, and particles were allowed to settle 30 minutes. Bottles

were then centrifuged in a swinging-bucket centrifuge at 3000 rpm for 30 minutes. The

water and floating particles were isolated by aspiration into a filtration flask. This

suspension was rinsed on a 20 um sieve, and then LF-l particles were transferred to filter

paper and collected with forceps. All fractions (roots/rhizosphere, shoot residue, LF-l

and HF-l) were divided into three subsamples. These were: 1. frozen for DNA extraction

2. stored in 4.9% formaldehyde 3. weighed before and after drying at 65°C. Density

separation was also performed on bulk soil samples using a solution of sodium

polytungstate adjusted to a density of 1.7 g/mL.

Samples collected in 1999 were fractionated in essentially the same way except

that whole soil blocks were gently separated along planes of weakness over a nest of

sieves with mesh sizes of 6.3, 4, and 2 mm. Soil clods were broken down until they fit

through the 6.3 mm sieve. The nest of sieves was then shaken by hand until only stable

aggregates that would not fit through the mesh were left on the 4 and 2 mm sieves. This

resulted in isolation of aggregates of sizes 4-6.3, 2-4, and 0-2 mm. The 4-6.3 and 2-4 mm

macroaggregate fractions were subsampled for analysis of aggregate layers, described in

chapter 4. Density separation was performed as described above after macroaggregates

had been forced through a 2 mm sieve. This resulted in a LF-l and HF-l for each

aggregate size class. Isolation of roots/rhizosphere and shoot residue was performed
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during sieving steps. Fractions and whole-soil were subsampled and stored as described

above.

Carbon and Nitrogen Analyses

Carbon and nitrogen contents of dried, ground 1998 samples were obtained using

a Carlo-Erba NA1500 series 2 Nitrogen-Carbon-Sulfur Analyzer.

Direct Microscopy

Samples preserved with formaldehyde were dispersed by blending in a Waring

blender (HF and whole soil), or by vortexing a sample diluted with 5 mL of water for 5

minutes with approximately 1 mL of 1 mm diameter glass beads (LF, rhizosphere, shoot

residue). Bacterial cell numbers were determined microscopically in samples from 1998

following Paul et al. (1999). Briefly, 4 1.1.1.. of diluted fraction was placed in each of five 6

mm diameter wells of an analytical microscope slide (Cel-Line Associates, Newfield, NJ)

and allowed to dry overnight. Dried sample smears were then stained with 5-(4,6-

dichlorotriazin-Z-yl) aminofluoroscein (DTAF) for 40 minutes, followed by rinsing in

phosphate buffer (30 minutes X 3 rinses) and water (30 minutes). Wells were flooded

with type FF immersion oil and then a coverslip was glued in place. Bacteria were

observed with a Leitz Orthoplan 2 microscope at 1000X magnification using a 63X

objective, 10X eyepiece, and 1.6X zoom. Digital images of bacteria were obtained using

a Princeton Instruments CCD microscope camera. Cells were counted and measured by a

script written in the image analysis program IPLab (Princeton Instruments, Trenton, NJ).

Calculations of cell biovolume were based on formulas in Paul and Clark (1996).
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T-RFLP Analysis

T-RFLP was performed essentially as described in Liu (1997) and in Chapter 2.

Community DNA was extracted from samples using the standard Ultraclean Soil DNA

extraction kit (Mo Bio Laboratories, Solana Beach, CA). Genomic DNA was found to be

of sufficient purity to be used directly in PCR reactions. PCR was performed using a

standard reaction mixture of 160 IIM of each deoxynucleoside triphosphate, 3 mM

MgC12, 0.05 U/uL Taq DNA polymerase and the appropriate volume of accompanying

10X PCR buffer (Gibco BRL, Gaithersburg, MD), and 0.2 ug/mL bovine serum albumin

(Boehringer Mannheim Biochemicals, Indianapolis, IN). PCR mastermix, without

primers, and PCR reaction tubes were sterilized for 14 minutes with direct ultraviolet

radiation in a Cleanspot PCR/UV workstation. Primers used were the general eubacterial

primer 8-27F (AGAGTITGATCCTGGCTCAG, E. coli numbering, Amann et al. 1995,

Integrated DNA Technologies, Coralville, IA) and the universal primer 1392-1406R

(ACGGGCGGTGTGTACA). PCR reactions were optimized for each sample of

genomic DNA using a master mix with primer concentrations of 0.4 IIM. Optimizations

were performed by adjusting the amount of genomic DNA extract used (0.4 to 7.5 “USO

ILL reaction) and the number of PCR cycles run (22 or 28) to obtain a strong band without

visible non-specific product. PCR was performed in a Perkin-Elmer 9600 thermocycler

using an initial denaturation step of 95°C followed by 22-28 cycles of the following

program: denaturation at 94°C for 30 sec., primer annealing at 55°C for 30 sec., and

extension at 72°C for 30 see. A modified hot start procedure was used where PCR tubes

were not placed in the thermocycler until the block temperature had reached 80°C. A

final extension at 72°C for 7 min. was performed after the programmed number of cycles
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was complete. PCR product concentration and specificity was checked by

electrophoresis on a 1% agarose gel, followed by staining with ethidium bromide.

PCR reactions (50—75 uL) were performed in triplicate for each sample using the

optimal conditions found previously. These reactions were performed using the same

PCR master mix and program described above except that the forward primer was 0.6

M hexachlorofluorscein (hex)-labeled 8-27F (Integrated DNA Technologies). PCR

replicates were pooled and purified using the Promega PCR Preps Wizard Kit as directed

by the supplier, except that elution was performed with 19 1.1L of sterile water heated to

55-65°C. Five 11L of purified PCR product was mixed with 5 “L of restriction enzyme

master mix containing 1.5 U/uL of restriction enzyme and one ILL of the accompanying

reaction buffer (Gibco). Restriction reactions were incubated for three hours at 37°C,

followed by 16 min. at 65°C to denature the restriction enzyme. Three 1.11.. of the

restricted PCR product was mixed with one [.11. of 2500 TAMRA size standard (Applied

Biosystems Instruments, Foster City, CA). DNA fragments were separated by size by

electrophoresis at 1800 V for 14 hours on an ABI 373 automated DNA sequencer at

Michigan State University’s DNA Sequencing Facility. The 5’ terminal fragments (T-

RFS) were visualized by excitation of the hex molecule attached to the forward primer.

The gel image was captured and analyzed using Genescan Analysis Software 3.1. A peak

height threshold of 50 fluorescence units was used in the initial analysis of the

electropherogram. Negative controls (no genomic DNA) were conducted with every

PCR and run on several Genescan gels. Contamination in PCR reactions was not

detected. Small peaks occasionally appeared in negative control lanes on Genescan gels,
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but the cumulative peak height was always below 1000 units. Samples were re-run if the

cumulative peak height was below 9500 fluorescence units.

T-RFLP profiles for all samples were generated using the restriction enzyme RsaI.

MspI was used to generate additional profiles for replicates 1,2, and 3 of 1998

rhizosphere, LF-l, and HF-l, and in 1999 for all rhizosphere replicates and replicates 3

and 4 of 0-2 mm and 4-6.3 mm aggregate LF-l and HF-l. T-RFs of sizes between 50

and 500 bp were aligned against a previously-defined database with identities of samples

concealed.

Statistical Analysis

Most statistical analyses were performed using SAS Version 8 Stat and [ML

components, Sigmastat, and Excel. Redundancy analysis was performed using Canoco.

All analyses were performed taking into account blocking of replicates in the field and

lab, which was not found to be significant.

Percent C and N was analyzed using one-way analysis of variance (ANOVA) to

test for a significant effect of cropping system. Total numbers of cells and percent of

cells in the largest and smallest size classes were analyzed by two-way ANOVA with

cropping system and soil fraction as factors, as well as by regression against C and N

contents of samples. The significance of the increased fit by more complex ANOVA

models compared to regression models was assessed with a partial F-test.

Relationships between T-RFLP profiles were examined using Hellinger distance

and Jaccard distance (see chapter 2 for a discussion of data analysis of T-RFLP profiles).

Differentiation of eubacterial T-RFLP profiles was tested using redundancy analysis (or

distance-based redundancy analysis in the case of Jaccard’s distance) with dummy
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variables coding for cropping system, soil fraction, and interaction terms. Coding

followed the method described in (Legendre and Anderson 1999). Distributions of

partial pseudo-F statistics were generated with 9999 random permutations of the

identities of profiles in the software Canoco. To test for fraction effects in 1999, four

HF-l and LF-l profiles per cropping system needed to be used, instead of 12, to be

balanced with the number of root/rhizosphere and shoot residue replicates. Aggregate

size class was shown to not be a significant influence on I-IF-l or LF-l profiles in this

dataset (see chapter 4), so 4-6.3 mm aggregates were randomly chosen to represent the

different aggregate size classes in 1999. A 1999 alfalfa shoot residue RsaI profile and a

1999 conventional corn rhizosphere MspI profile were missing due to inability to obtain

adequately strong T-RFLP profiles. These were replaced by the mean vector generated

from the other three replicates of the respective treatment, following the method of

Legendre and Anderson (1999). Relationships between profiles were also examined

using Ward’s method of hierarchical cluster analysis, principal components analysis, and

canonical principal components plots obtained from the redundancy analysis. Percent C

and N were also tested for significant effects on T-RFLP profiles using redundancy

analysis.

The association of individual T-RFs with cropping systems and soil fractions was

assessed using percentages of variability explained by the different factors in redundancy

analysis, followed by examination of indicator values (IndVal) calculated according to

Dufréne and Legendre (1997). These were calculated for each T-RF-treatrnent

combination, with and without interaction between treatments. IndVal is equal to the

proportion of samples within the treatment where the T-RF is present times the mean
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(Hellinger-transformed) T-RF abundance in that treatment divided by the sum of the

mean abundances across all treatments. It is maximum when all occurrences of a T-RF

are within the treatment being examined, and is sensitive to changes in both abundance

and frequency between treatments.

T-RFs that were found to be consistently affected by treatment in 1998 and 1999

were compared to sequences in the Ribosomal Database Project version 8.1

(http://rdp.cme.msu.edu) using the online TAP-TRFLP software (Marsh et al. 2000).

Results

Fraction Mass and C and N Content

The proportion of the total C and N stored in the root/rhizosphere, shoot residue

and LF-l fractions is disproportionate (1-5% in each fraction) compared to the proportion

of the total soil mass they take up (<0.5% in each fraction, see Table 1). The light

fraction isolated using liquid with a specific gravity of 1.0 g/cc (LF-l) was 5 to 10 times

less than that isolated using sodium polytungstate at a density of 1.7 g/cc (LP-1.7).

Percent organic C in LF-1.7 was slightly less than in LF-l. Cropping system had a

significant effect on the proportion of the total soil mass, percent C and N, and proportion

of total C and N present in most soil fractions in 1998, tested using one-way ANOVA

(see Table 1). Alfalfa soil consistently contained the lowest amounts of root/rhizosphere,

shoot residue and LF-l, and conventional corn soil contained the greatest amounts.

Proportion of total soil C and N stored in these fractions followed the same trends. The

organic corn soil contained the greatest amount of LF-1.7, as well as C and N stored in

that fraction. Percent C and N within shoot residue, LF-l, and LF-1.7 increased in the
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order of alfalfa, organic corn, and conventional corn (see Table 1). Percent C and N was

lower in conventional corn HF-l than in the other cropping systems. C to N ratio was

approximately 18 in all fractions except HF-l, where it was 10-11. C to N ratio did not

vary significantly due to cropping system. Proportion of total soil weight in the different

soil fractions was similar for 1999 samples (data not shown), although more variable

within cropping system treatments.

Microscopic Bacterial Cell Counts

Two-way ANOVA found that bacterial cell numbers expressed as cells/g fraction

were significantly different between all fractions (p<0.0001), with cells/g LF-l being the

highest and cells/g HF-l being the lowest (see Figure 1). There were no significant

effects of cropping system or interaction effects between fraction and cropping system on

cell numbers. HF-l contained 94-98% of all bacteria detected in soil, which was

calculated as the weighted sum of the bacteria detected in all soil fractions (see Table 2).

Number of cells detected in bulk soil was almost the same as that in HF-l, indicating that

fractionation did not result in significant loss or destruction of bacteria.

Linear regression of cells/g fraction against percent C was significant at the

0.0001 significance level (R2=0.61, see Figure 2). Variability of cells/g fraction

increased with percent C, with two strong outliers present. Analysis without these

outliers did not change the significance of the regression, but increased the R2 to 0.76.

Both outliers were alfalfa LF-l samples. A partial F-test did not find that the ANOVA

model with significant effects (soil fraction) fit cells/g fraction significantly better than

the regression against percent C (F=1.5, d.o.f.=3,58, p=0.20). Nitrogen content of

samples had no significant effects on any microscopic measurements.
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Despite the overall linear relationship between number of cells per g fraction and

amount of C per g of fraction, the number of cells/pg C was significantly affected by

fraction (p<0.0001) and fraction-cropping system interaction (p=0.0246) in two-way

ANOVA. The number of cells/pg C is significantly greater in HF-l than in other

fractions, and within HF-l the number of cells/pg C is significantly greater in alfalfa than

in either corn system (see Table 2). This can be seen in Figure 2 as a slightly increased

rate of change of numbers of cells with C content in the HF-l range of C content (0-5%)

compared to the rate of change at greater C contents.

The percentage of cells in the largest size class (>0.18 um3) was significantly

affected by both soil fraction (p<0.0001) and cropping system (p<0.01), but there was no

interaction effect (R2=0.53, see Table 2). Alfalfa samples contained a significantly larger

proportion of large cells than either corn system (see Table 2). Percentage large cells

increased with C content of fraction (see Figure 3), although the fit of the two-way

ANOVA model was significantly better (F=3.4, d.o.f.=5,53, p<0.01). The percentage of

cells in the smallest size class (<0.065 um3) followed the inverse of the trends in the

largest size class, except that there was no significant cropping system effect (see Table

2). While cells in the smallest size class constituted the majority of cells in all samples

(50 to 70%), they made up only 10 to 15% of the soil microbial biomass.

Eubacterial Community T-RFLP Analysis

The effects of cropping system and soil fraction were examined in four T-RFLP

datasets: RsaI and MspI profiles of sets of samples collected in 1998 and 1999. There

were 120 T-RFs detected in profiles generated by the restriction enzyme RsaI in 1998,
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and 104 in 1999. There were 124 T-RFs detected in profiles generated by the restriction

enzyme MspI in 1998, and 114 in 1999.

Redundancy analysis indicated that there were significant effects of cropping

system and soil fraction on both RsaI and MspI T-RFLP profiles in both 1998 and 1999

(see Table 3). Interaction effects were also significant, indicating that the effects of soil

fraction were not uniform for different cropping systems, and/or the effects of cropping

systems were not uniform for different soil fractions. Treatment effects together

accounted for 40 to 55% of the total variance in Hellinger-transformed profiles, and 35 to

38% of the total variance in Jaccard distances between profiles (see Table 3). Percent C

and N, and C to N ratio of samples accounted for a significant amount of variation in the

Hellinger-transformed T-RFLP profiles (p=0.0001, 15.5%, data not shown). Effects of

nutrient concentration per se were not analyzed further because the variation between

samples in C and N contents was mainly due to fraction and cropping system differences,

and these treatments accounted for greater proportions of the total variability than did

nutrient contents.

Figure 4 shows partial canonical principal components plots derived from the

redundancy analysis of 1998 Rsal profiles, which are typical of all the datasets. These

plots are efficient ways to examine why the redundancy analysis found overall significant

treatment effects. In Figure 4a the effects of cropping system and the interaction between

cropping system and soil fraction are partialled out, and the separation of samples due to

soil fraction is maximized. A division between I-IF-l and other fractions is the major

cause of variability from soil fraction, and is captured in the first canonical axis.

Rhizosphere samples are separated from LF-l and shoot residue on the second axis. In
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Figure 4b the interaction effects have been shown in addition to the variability due to soil

fraction, with only effects of cropping system partialled out. While the same overall

topology is present, interaction effects cause alfalfa samples to separate from the other

cropping systems, and conventional corn rhizosphere samples become undifferentiated

from other com LF-l and shoot residue samples.

Figure 4c shows the variability due only to cropping system, resulting in

separation of alfalfa and conventional corn samples by the first canonical axis and

separation of organic corn samples from other cropping systems by the second axis.

Including interaction effects in the cropping systems plot had little effect on the grouping

of samples and is not shown. Including all treatment effects results in Figure 4d, where a

division between HF-l of alfalfa and conventional corn from the other samples is

captured on the first axis, along with separation of organic corn LF-l, HF-l, and shoot

residue from other cropping system within each soil fraction. The second axis divides

alfalfa from conventional corn samples in LF-l, HF-l, and shoot residue. Note that other

divisions among the treatments that were evident in plots 4a,b,c are also included in the

ordination including all treatment effects, but are not shown because they occur in higher-

order canonical principal components. The percentage of the total variability accounted

for by individual axes in Figure 4 is relatively low because of the large number of

treatments involved in the dataset, requiring a large number of canonical principal

components to account for all the variability due to treatment effects (see Table 3).

The 1998 MspI, 1999 RsaI, and 1999 MspI clustering dendrograms had the same

general topology as the canonical ordination plots. The major division of samples

evident was between an HF-l group (including whole soil, analyzed in 1999) and another
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group including LF-l , shoot residue and rhizosphere (see Figure 5). Samples from

different cropping systems are separated within each of the major soil fraction groups.

Alfalfa and conventional corn samples are always separated, with organic corn samples

sometimes forming a third group and sometimes being split between groups characterized

by the other cropping systems. Among the fractions, rhizosphere samples were most

often outliers from a cropping system group.

The exception to this pattern is the 1998 Rsal dendrograms (see Figure 6), where

alfalfa and conventional corn are divided first, with organic corn soil samples split

between the groups. Limited grouping of soil fraction and cropping system samples

occurs in smaller clusters.

Twenty Rsal T-RFs in 1998, and 13 in 1999, had at least 20% of the variability in

their Hellinger-transformed peak heights explained by soil fraction in the redundancy

analysis, accounting for variability due to cropping system. Of these, 9 were T-RFs of

the same size, potentially representing the same organisms in both years. Six of these

were associated with the same fraction in each year, as indicated by IndVal scores (see

Table 4). Out of 22 Mspl T-RFs in 1998 and 27 T-RFs in 1999 that were associated with

particular soil fractions, 3 Mspl fragments were affected by soil fraction in both years in

the same way. No sequence was found in the RDP database that would produce both an

Rsal and an MspI T-RF that was found in this study to be consistently affected by soil

fraction in the same way across years. One Mspl fragment of size 405-408 bp that was

found to be associated predominantly with roots/rhizosphere is close in size to the Mspl

fragment that would be generated from the garden pea chloroplast sequence in the

database (404 bp). Hence the 405-408 bp Mspl fragment detected in the rhizosphere may
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be due to the presence of plant DNA in the genomic DNA extract from those samples.

The overall importance of any particular T-RF to the statistical tests and community

ordination described above is small, however, due to the large number of fragments that

were found to be important in separating different fractions (>20 MspI fragments in each

year). Rsal fragments generated from the garden pea chloroplast sequences are outside

the range analyzed (i.e. >500 bp).

Sixteen Rsal T-RFs in 1998, and 18 in 1999, had at least 20% of the variability in

their Hellinger-transformed peak heights explained by cropping system in the redundancy

analysis, after accounting for the variability due to soil fraction. Six of these were the

same size T-RFs and were associated with the same cropping systems across sampling

years (see Table 4). Four Mspl T-RFs were associated with cropping system in the same

way both years, out of 35 in 1998 and 11 in 1999. No sequences were present in the

database that would generate both an RsaI and an Mspl T-RF that was found to be

consistently affected by cropping system across years.

Twenty-four RsaI T-RFs in 1998, and 23 in 1999, had at least 20% of the

variability in their Hellinger-transformed peak heights explained by interaction terms, or

after correcting for the variability due to cropping system and soil fraction. Seven of

these T-RFs were the same size. IndVal scores were low overall for these T-RFs when

calculated for cropping system-soil fraction treatments, and the T-RFs were not strongly

associated with the same treatments in different years. The case was quite different for

Mspl digests, where 28 T-RFs in 1998 and 27 in 1999 had at least 20% of the variability

in their Hellinger-transformed peak heights explained by interaction terms, or by an
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interaction term and cropping system or soil fraction. Seven of these fragments were the

same size and were similarly affected in 1998 and 1999 (see Table 4).

Discussion

The light fraction has been shown to be a physically-defined soil fraction that

harbors a eubacterial community that is distinct from that found in the majority of the

soil, as assayed by T-RFLP. The LF-l community is also different from the rhizosphere

community, although these communities are more similar to each other than to HF-l.

This is not surprising: LF-l and the rhizosphere are both characterized by high amounts

of labile C, increased bacterial growth rates and increased predator populations. They

differ by the formation of mutualistic associations between roots and certain other

organisms (e.g. mycorrhizal fungi, Rhizobium). Also the availability of complex

carbohydrates and lignin contained within plant cell walls is probably much greater in

LF, presenting very different catabolic enzyme requirements to the microbial community.

LF-l, shoot residue, and the rhizosphere had C to N ratios of approximately 18, lower

than that found in plant tissue (60-80), and higher than that in bulk soil or HF-l (10-13).

For LF-l the intermediate C to N ratio is evidence of the microbial biomass present and

the partially decomposed state of the organic particles, since all mineral soil particles are

washed away. For the rhizosphere the increased C to N ratio represents the balance

between the C to N ratios of the soil particles clinging to the roots and the roots

themselves, which were included in rhizosphere in this study.

The shoot residue > 2 mm was the soil fraction with the eubacterial community

that was most like the LF-l ’5. Shoot residue and LF-l are soil fractions that are
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chemically and physically very similar, differing primarily by particle size and artifacts

associated with their isolation. These include time and method of isolation, and the

washing away of mineral soil particles clinging to the organic particles of LF-l but not

shoot residue. The LF-l/shoot residue effect cannot be attributed simply to the steps

involved in fractionation because the communities of these fractions are so similar.

Cropping system also had a large effect on T-RFLP profiles. The increased

variability of the organically-managed corn system, at the field replicate level, was

expected since it involved a plant community that was temporally more diverse than

either of the other two cropping systems. The organically-managed fields also received

composted manure and leaves and more frequent tillage, which may affect the soil

bacterial communities. Previous work at the KBS Living Field Lab has shown that

addition of compost increases the content of particulate (>53 urn) organic matter (Wilson

et al. 2001). It is also probable that the addition of compost increases LF-l in the

organically-managed plots. This may be the cause for the differences in T-RFLP profiles

in organic compared to conventionally-managed soils, as well as the increased variability

in the organically-managed soil. These findings support previous reports of an effect of

cropping system or other agricultural soil management on microbial community structure

at other sites (Bossio et a1. 1998, Lukow et al. 2000, Zelles et al. 1995). In contrast,

Buckley (2000) used 168 ribosomal RNA oligonucleotide probing and did not find shifts

in the composition of the bacterial community due to agronomic treatment at the KBS

LTER site. This difference may be due to the fact that the probes used by Buckley

(2000) detect shifts in relative abundance of phylogenetically very broad groups, whereas

the T-RFLP procedure used in this study can potentially detect shifts in populations of
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individual species. No changes in nitrifier community composition were detected due to

agronomic treatments at the KBS LTER using DGGE of the nitrifier 16S ribosomal genes

(Phillips et al. 2000). Increased ectomycorrhizal fungal species diversity has been

observed in Poplar plots compared to annual crop plots (K. Kosola and EA. Paul, in

preparation). In a comparison of the more divergent environments at KBS, native never-

tilled deciduous forest and agronomic or historically-tilled plots, changes in the relative

abundance of phylogenetically broad bacterial groups and nitrifier species has been

detected (Buckley 2000, Bruns 1999).

The stability of grouping soil fraction samples in dendrograms and ordinations,

and of grouping cropping system within each soil fraction, decreased in the order I-IF- 1,

LF-l/shoot residue, and rhizosphere. Rhizosphere samples were never differentiated as a

fraction-group in dendrograms, and were at times split between the HF-l and LF-l

groups. Rhizosphere samples frequently caused noise in the grouping of cropping

systems. This was the opposite of the expected trend, since the rhizosphere is frequently

cited as exerting a selective pressure on microbial communities. The results here indicate

that there is a group of organisms that are well-adapted to the HF-l habitat, and changes

in this habitat (e.g. due to cropping system) can result in quite stable shifts in community

composition. The temporal scale of the cropping system treatments may be important in

determining the stability of changes within fractions. In this study the treatments had

been in place 6 to 10 years, whereas studies finding greater effects of plant species on the

rhizosphere are often in place one year (e.g. Latour et al. 1996, Maloney et al. 1997).

The rhizosphere community is consistently different from other habitats, but may be

assembled more randomly, perhaps due to proliferation of randomly-encountered
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dormant bacteria in HF-l that have the life history traits enabling them to respond to high

amounts of labile C. The same line of reasoning could apply to the LF-l/shoot residue

habitat, except that it displayed increased stability, and may require more specialized

organisms since the substrate is generally more complex.

Attempts to identify particular T-RFs that were found to be consistently important

in defining differences between treatments were hindered by our use of very broad PCR

primers. These primers amplify the 16S gene from most eubacterial organisms (Amman

1995), resulting in an analysis that broadly assays the community for major structural

changes. The number of sequences that can produce any individual T-RF is potentially

large. We attempted to work around this problem by performing digests with two

restriction enzymes, but no sequences could be found in the database that would match

similarly-acting T-RFs from the different digests. This could be due to the importance of

organisms with no sequences currently represented in the database. It may be necessary

to use more specific primers if the goal is to obtain phylogenetic information about the

very complex communities, as has also been pointed out by Dunbar et al. (2001).

Expressed as a proportion of total numbers of cells in the soil, the bacterial

populations present in LF and rhizosphere in this study may seem low; however they are

very close to the proportion of the total amount of C found in the fractions (see Tables 1

and 2). This proportional relationship between bacterial cells and organic C is similar to

what was found by Kanazawa and Filip (1986). The relationship was further generalized

in this study because it was found that percent C could explain the majority of the

variation in cell numbers across cropping systems and fractions. The slightly increased
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ratio of cells to organic C present in HF-l is probably due to the accumulation of inactive

cells, as indicated by the larger percentage of small cells in this fraction.

These results contrast with those of Ahmed and Oades (1984), who found that

0.2-0.4% of the total soil ATP and 11-12% of the total C was contained in the LF. The

liquid used for density separation by Ahmed and Oades (1984) was ZnBrz at a density of

1.6 g/cc, whereas in the present study and in Kanazawa and Filip (1986) water at a

density of 1.0 g/cc was used. Osmotic pressure or other toxicity exerted by concentrated

ZnBrz may have caused cell lysis and lead to destruction of ATP preferentially in the LF

of Ahmed and Oades (1984), while a large portion of HF cells could have been protected

inside microaggregates. Preliminary experiments with the fluorescent redox indicator 5-

cyano-2,3-ditolyl tetrazolium chloride (CTC) indicated that sodium polytungstate

solution with density of 1.7 g/cc inactivated cells; we therefore recommend the use of

water for isolation of LF for microbiological work until a more complete analysis of the

effects of dense liquids on microorganisms is carried out. The dispersion methods used

by Ahmed and Oades (1984) prior to density separation were also more vigorous than

those used in this study or by Kanazawa and Filip (1986). This could have resulted in the

redistribution of bacterial cells prior to analysis. The alternative explanation is that the

different dispersion technique and density used resulted in the isolation of a soil fraction

with very different microbiological properties than what was isolated here.

Increased growth rate of bacteria in LF and decomposing shoot residue is

supported by the finding in this study that there was an increase in the percentage of large

cells in those fractions (Bath 1994), which was also explained in part by increased C

concentration. While C content explained changes in cell numbers across soil fractions
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and cropping systems, changes in eubacterial T-RFLP profiles and in the percentage of

cells in the largest size class were not explained as well by C content of samples as by

their treatment identities. Hence while C content is important in defining habitats in soil,

other factors must also play a role. These could include the quality of the organic matter,

physical disruption, or species interactions.

The hypothesis that habitat diversity enhances soil microbial diversity is

supported by the detection of unique communities in different soil fractions. Future

studies could examine the individual mechanisms of habitat diversity enhancing

microbial diversity that were outlined in the Introduction. It is necessary to learn how

microbial communities organize themselves to be able to manage the communities to the

degree that is sometimes called for (e.g. Beare 1997, Kennedy 1999, Smith and Paul

1990). If communities are organized into separate habitats, these should be taken into

consideration when looking for management effects because effects may be present in

some habitats and not others. Different habitats may also represent opportunities for

management, such as refuges from competition or locations of enhanced nutrient

availability to be exploited by beneficial organisms.
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Figure 4: Partial canonical principal components plots derived from redundancy analysis

of 1998 RsaI T-RFLP profiles. Circles=HF-1, triangles up=LF-1, triangles down=shoot

residue, squares=rhizosphere, white=alfa1fa, b1ack=conventional corn, grey=organic corn.

Figure 4a: Soil fraction axes (2 of 3) with cropping system and interaction effects
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Figure 4b: Soil fraction and interaction axes (2 of 9) with cropping systems effects
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Figure 4, continued

Figure 4c: Cropping system axes (2 of 2) with effects of soil fraction and interactions

partialled out.
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Figure 4d: All-treatment axes (2 of 11).
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Chapter 4

Eubacterial Community Response to Position within Soil

Macroaggregates and Soil Management
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Abstract

Hierarchical aggregate structure is currently the dominant model of soil structure

and has been shown to be useful in the study of organic matter turnover in soils. The

hypotheses that I . aggregates of different sizes and 2. layers within aggregates contain

different bacterial communities were tested using terminal restriction fragment length

polymorphism (T-RFLP) of the 16S ribosomal gene of eubacteria. Soil aggregate erosion

was used to isolate layers of aggregates with their resident bacteria, resulting in

knowledge of the precise location of the sample within the aggregate. Analysis of

individual aggregates using a split-plot design was found to be the most satisfactory

approach for investigating whether the communities in different aggregate layers were

different. Marginally significant differences between eubacterial T-RFLP profiles of

different aggregate layers were found. Aggregate-to-aggregate variability was large.

Effects of macroaggregate size on eubacterial T-RFLP profiles were not detected. The

major factor affecting T-RFLP profiles was cropping system (continuous conventional

corn, organic com in a crop rotation, and continuous alfalfa) or land management

(conventional or no-till corn and successional vegetation) at field experiments in

Michigan and Ohio, respectively. Organization by the tertiary structure of the soil

(arrangement of aggregates in relation to shoot residue, roots, macrOpores, etc.) is

hypothesized to be more important than aggregate layer or size in the determination of

the types of microbial communities present in aggregates.

Introduction

The most common model of the spatial structure of soil particles at millimeter and
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smaller scales is that of a hierarchical arrangement of soil aggregates (Edwards and

Bremner 1967, Tisdall and Oades 1982, Elliott and Coleman 1988, Ladd et al. 1996,

Christensen 1996). The process of aggregation is dynamic, with microaggregates being

bound together by plant roots, fungi, and plant residues to form macroaggregates, defined

as >250 um in diameter (Elliott 1986, Miller and Jastrow 1990). These organic particles

decompose, leading to formation of new microaggregates and disintegration of the

macroaggregates (Beare et al. 1994b, Golchin et al. 1994). Larger macroaggregates

generally contain more labile organic matter (Beare et al. 1994a, Elliott 1986, Gupta and

Gerrnida 1988) with a more rapid turnover time (Buyanovsky et al. 1994, Monreal et a1.

1997).

Numerous studies have been conducted to determine the effects of aggregate size

class on soil microorganisms, with varying results. These studies generally involve initial

dispersion steps designed to isolate microaggregates. Using various combinations of

chloroform incubation, plate-counting, ATP determination, and enzyme assays, microbial

populations were found to be greatest in < 0.05 mm aggregates by Kanazawa and Filip

(1986), 0.05-0.25 m aggregates by Monreal and Kodama (1997), and > 0.25 mm

aggregates by Gupta and Gerrnida (1988). Mendes et al. (1999, 1998) found the trends in

microbial biomass and number of Rhizobium leguminosarum across aggregate size

classes were not consistent between sampling dates, although number of bacterial cells

was consistent. Differentiation of the microbial community in different aggregate size

classes was not detected in phospholipid fatty acid profiles by Peterson et al. (1997), or in

archaeal 16S ribosomal terminal restriction fragment length polymorphism (T-RFLP)

profiles by Ramakrishnan et a1. (2000). Poly et al. (2000) found some differences in
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restriction fragment patterns of PCR-amplified nifl-I gene sequences from different

aggregate size classes, but the significance of the results is difficult to assess because the

soil fraction data presented is not replicated.

Another common model of intra-aggregate structure is the division of aggregates

into central or internal portions and external portions. Macroaggregates can develop

anaerobic cores due to microbial respiration (Lefelaar 1993, Priesack and Kisser-Priesack

1993, Zausig et a1. 1993), resulting in denitrification (Hojberg et a1. 1994, Sexstone et al.

1985). Exterior and interior layers of macroaggregates have also been found to differ in

age of organic matter, and in contents of organic C and N, phosphorus, cations, and

inorganic N (Santos et al. 1997, Smucker, in preparation). It is also thought that there

may be protection of soil microbes from predators such as nematodes and protozoans in

the centers of aggregates (Elliott et a1. 1980, Elliott and Coleman 1988).

Several studies have addressed the question of whether there are changes in the

microbial community due to the differences in the environments in the external and

internal layers of soil aggregates. Hattori’s (1988) washing-sonication method involves

suspension of soil aggregates in water to separate bacteria located on the outer portions of

aggregates, followed by sonication to isolate those bacteria in the inner portion. Hattori

(1988) showed that bacteria in the outer portions of soil aggregates isolated by this

method were more sensitive to air-drying, HgClz, ethylene dibromide, and protozoan

predation, and were more responsive to addition of substrate. Bacteria introduced into

Sterile aggregates accumulated more rapidly in the outer portion. Populations of Gram

negative bacteria were greater than Gram positives in the inner portion of the aggregates,

whereas the reverse was true for the outer portions. Drazkiewicz (1994) found most
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types of cultivable bacteria had increased populations in the internal portion of aggregates

in a heavy loam, but only a few had significantly increased populations in a silt loam.

Dabek-Szreniawska (1993) examined the effects of keratin-carbamide fertilization on

cultivable bacterial populations, and found no consistent trends in the effects due to

location within the aggregate. Ribosomal intergenic spacer analysis was used by Ranjard

et al. (2000b) to examine the eubacterial community response to Hg(II) Contamination in

outer and inner portions of soil aggregates; however it is difficult to assess the

significance of the results with respect to soil fraction because replicated data were not

presented. Ranjard et al. (2000a) have identified two ribosomal intergenic Spacer

sequences that are only present in the external portion of aggregates and the < 2 urn soil

particle fractions after incubation with Hg(II).

The drawback of the washing-sonication method used in previous studies is that

differential adhesion of bacteria to soil particles and the number and length of washes

will affect which cells are washed out of the soil and counted as being in the outer

portions of the aggregate. It is not clear if this method could be standardized such that

the locations of the communities isolated are less vague. A different method of dividing

the community of an aggregate into internal and external portions is used in the study

presented here. The method is based on the physical erosion of individual aggregates and

has been proven useful in studies of the location of soil organic matter and nutrients

(Santos et al. 1997). Erosion is stopped when the desired proportion of the total

aggregate has been isolated. It has the additional advantage that the soil environment is

isolated with the community, so other aspects such as chemical characteristics can be

studied.
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In this study we test the hypothesis that eubacterial communities differ based on

their position within macroaggregates using both layers from individual aggregates and

pooled aggregate layer samples. The hypothesis that communities differ based on

macroaggregate size class is also tested. T-RFLP of the 16S ribosomal gene is used to

test these hypotheses with respect to the entire eubacterial community. The use of

molecular methods avoids many of the biases and random variability associated with

cultivation-based techniques (Madsen 1996, Muyzer 1998). The finding that eubacterial

communities differ between physical soil fractions would imply that these fractions

comprise spatially-distinct habitats, with implications for the ecology and diversity of soil

microorganisms as discussed in chapter 3.

Methods

Field Sites and Sample Collection

Samples were collected in 1999 from three field treatments at the Kellogg

Biological Station (KBS) as described in chapter 3. Soils at the site are Typic Hapludalfs

and approximately 43% sand and 40% silt (Robertson et a1. 1997). Field treatments

included: conventionally-managed continuous corn, organically-managed first-year corn

(from the Living Field Laboratory, established in 1993), and continuous alfalfa (from the

Long Term Ecological Research site, established in 1988). See chapter 3, Jones et a1.

(1998) and http://lter.kbs.msu.edu/Agronomics for descriptions of the management of

these field treatments. The organically-managed first-year corn is in a com-com-

soybean-wheat rotation, with cover crops planted after corn and wheat. Samples were

collected from within rows, between plants, in corn fields, and nearby permanent
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sampling stations in alfalfa fields. Four replicate fields per treatment were sampled.

Three 350 g soil blocks 10 cm deep were excavated per field, and were transferred intact

to glass jars for transportation. Samples were stored at 4°C until fractionation was

complete.

Samples were collected from three field treatments in Wooster, OH, in 2000.

Treatments included no-till continuous corn, conventionally-tilled continuous corn, and

native successional vegetation. Treatments were started in 1962. Corn plots have been

managed using standard agronomic practices in the region. Soils at the site are silt-loam.

Three replicate plots per treatment were sampled by excavating a soil block 10 cm deep

and storing in a plastic container at 4°C until fractionation was complete.

Soil Fractionation

Whole soil blocks from KBS were gently separated along planes of weakness

over a nest of sieves with mesh sizes of 6.3, 4, and 2 mm, and roots and shoot residue >2

mm were removed. Soil aggregates were separated until they fit through the 6.3 mm

sieve, following recommendations by Jastrow and Miller (1991). The nest of sieves was

then shaken by hand until only stable aggregates that would not fit through the mesh were

left on the 4 and 2 mm sieves. This resulted in isolation of aggregates of sizes 4-6.3, 2-4,

and 0-2 mm. The 4-6.3 and 2-4 mm macroaggregate fractions were subsampled for

analysis of aggregate layers. Density separation was performed on all KBS aggregate

size classes with water, resulting in the isolation of a heavy fraction (HF-1) and light

fraction (LF-l) as described in chapter 3.

Soil samples from Wooster were allowed to air dry completely before

fractionation. Soil blocks were then gently separated along planes of weakness over a
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nest of sieves with mesh sizes of 9.5, 6.3, 4, and 2 mm, and roots and shoot residue were

removed. The sieves were shaken by hand, and 4-6.3 and 2-4 mm aggregates were

isolated for this study.

Four 4-6.3 mm aggregates and four (KBS) or eight (Wooster) 2-4 mm aggregates

from each plot were weighed and placed individually in the upper compartments of

meso-soil aggregate erosion chambers (A. Smucker, personal communication). The

removable upper compartments have textured walls and a screen bottom. Material that is

eroded due to rubbing of the aggregate against the walls falls through the screen and is

trapped in a lower compartment. Chambers were shaken on a horizontal rotary shaker

and upper compartments with aggregates were weighed periodically to determine the

proportion of the aggregate that had been eroded. Weighing was performed as frequently

as every 10 minutes and shaking was at 150 to 250 rpm, depending on the rate of erosion.

After the weight of the aggregate had decreased by 33%, the material trapped in the

bottom of the chamber (the exterior layer of the aggregate) was removed. Erosion was

continued until the weight of the aggregate was reduced by another 33%. The uneroded

portion of the aggregate in the upper part of the erosion chamber (the aggregate interior)

was then isolated. Aggregates that broke into multiple large fragments during erosion

were replaced.

The layers of four 4-6.3 mm aggregates from one plot (replicate 4) of each KBS

treatment were analyzed individually. Aggregate replicates from the remaining plots and

for all 24 mm aggregates were pooled for analysis. Samples were divided into three

subsamples. These were I . frozen for DNA extraction 2. stored in 4.9% formaldehyde 3.

weighed before and after drying at 65°C.
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Fractionation of the 463 mm KBS aggregates from field replicate 4, to be

analyzed individually without pooling of aggregate layers from the same treatment, was

completed 7 weeks after sampling. Fractionation of the remainder of the KBS aggregates

was completed approximately 17 weeks after sampling. To test for an effect of storage

over an extended period, heavy fraction samples were isolated using water for density

separation (HF-1) from whole aggregates after 20 weeks of storage, for comparison to

those isolated after 8 weeks described in chapter 3. Fractionation of Wooster aggregates

was completed within three weeks after sampling.

T-RFLP Analysis

T—RFLP was performed essentially as described in Liu (1997) and in chapter 2.

Community DNA was extracted from samples using the standard Ultraclean Soil DNA

extraction kit (Mo Bio Laboratories, Solana Beach, CA). Genomic DNA was found to be

of sufficient purity to be used directly in PCR reactions. PCR was performed using a

standard reaction mixture of 160 11M of each deoxynucleoside triphosphate, 3 mM

MgC12, 0.05 U/uL Taq DNA polymerase and the appropriate volume of accompanying

10X PCR buffer (Gibco BRL, Gaithersburg, MD), and 0.2 ug/mL bovine serum albumin

(Boehringer Mannheim Biochemicals, Indianapolis, IN). PCR mastermix, without

primers, and PCR reaction tubes were sterilized for 14 minutes with direct ultraviolet

radiation in a Cleanspot PCR/UV workstation. Primers used were the general eubacterial

primer 8-27F (AGAG'I'I'I‘GATCCTGGCTCAG, E.. coli numbering, Amann et al. 1995,

Integrated DNA Technologies, Coralville, IA) and the universal primer 1392-1406R

(ACGGGCGGTGTGTACA). PCR reactions were optimized for each sample of

genomic DNA using a master mix with primer concentrations of 0.4 M. Optimizations

98



3— '-— -— —--w- "w“:"J inf” a”! run“
 

 



were performed by adjusting the amount of genomic DNA extract used (0.4 to 7.5 111150

1.1L reaction) and the number of PCR cycles run (28 to 33) to obtain a strong band without

visible non-specific product. PCR was performed in a Perkin-Elmer 9600 thermocycler

using an initial denaturation step of 95°C followed by 28—33 cycles of the following

program: denaturation at 94°C for 30 sec., primer annealing at 55°C for 30 sec., and

extension at 72°C for 30 sec. A modified hot start procedure was used where PCR tubes

were not placed in the thermocycler until the block temperature had reached 80°C. A

final extension at 72°C for 7 min. was performed after the programmed number of cycles

was complete. PCR product concentration and specificity was checked by

electrophoresis on a 1% agarose gel, followed by staining with ethidium bromide.

PCR reactions (SO-75 11L) were performed in triplicate for each sample using the

optimal conditions found previously. These reactions were performed using the same

PCR master mix and program described above except that the forward primer was 0.6

M hexachlorofluorscein (hex)-labeled 8-27F (Integrated DNA Technologies). PCR

replicates were pooled. The PCR product from aggregates analyzed individually was

purified by washing three times with sterile water in Microcon 100 concentrators, and

then isolated in 17 uL sterile water. PCR product from pooled aggregates samples was

purified using the Promega PCR Preps Wizard Kit as directed by the supplier, except that

elution was performed with 19 uL of sterile water heated to 55-65°C. Five 11L of purified

PCR product was mixed with 5 uL of restriction enzyme master mix containing 1.5 U/uL

of restriction enzyme and one ILL of the accompanying reaction buffer (Gibco).

Restriction reactions were incubated for three hours at 37°C, followed by 16 min. at 65°C

to denature the restriction enzyme. Three 11L of the restricted PCR product was mixed
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with one 1.1L of 2500 TAMRA size standard (Applied Biosystems Instruments, Foster .

City, CA). DNA fragments were separated by size by electrophoresis at 1800 V for 14

hours on an ABI 373 automated DNA sequencer at Michigan State University’s DNA

Sequencing Facility. The 5’ terminal fragments (T-RFs) were visualized by excitation of

the hex molecule attached to the forward primer. The gel image was captured and

analyzed using Genescan Analysis Software 3.1. A peak height threshold of 50

fluorescence units was used in the initial analysis of the electropherogram. T-RFLP

profiles for all samples were generated using the restriction enzyme Rsal. Mspl was used

to generate additional profiles for two replicates of each cropping system/aggregate

layer/aggregate size class combination for the pooled KBS samples. Negative controls

(no genomic DNA) were conducted with every PCR and run on several Genescan gels.

Contamination in PCR reactions was not detected. Small peaks occasionally appeared in

negative control lanes on Genescan gels, but the cumulative peak height was always

below 1000 units. Samples were re-run if the cumulative peak height was below 9500

fluorescence units, accept as noted.

Direct Microscopy

Cells were dispersed in forrnaldehyde-fixed individual aggregate layer samples by

diluting to 2 mL with water and vortexing for 5 min. with 0.5 mL of 1 mm glass beads.

Bacterial cell numbers were quantified in the individual aggregate samples following the

procedure of Paul et al. (1999). Briefly, 4 1.11. of diluted fraction that had been fixed with

formaldehyde was placed in each of five 6 mm diameter wells of an analytical

microscope slide (Cel-Line Associates, Newfield, NJ) and allowed to dry overnight.

Dried sample smears were then stained with 5-(4,6-dichlorotriazin-2-yl)
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aminofluoroscein (DTAF) for 40 minutes, followed by rinsing in phosphate buffer (30

minutes X 3 rinses) and water (30 minutes). Wells were flooded with type FF immersion

oil and then a coverslip was glued in place. Bacteria were observed at 100X

magnification using a 63X objective and 1.6X zoom with a Leitz Orthoplan 2

microscope. Digital images of bacteria were obtained using a Princeton Instruments

digital microscope camera. Cells were counted and measured by a script written in the

image analysis program IPLab (Princeton Instruments, Trenton, NJ).

Carbon and Nitrogen Analyses

Carbon and nitrogen contents of dried, ground samples were obtained using a

Carlo-Erba NA1500 series 2 Nitrogen-Carbon-Sulfur Analyzer.

Statistical Analysis

Statistical analyses were performed using SAS version 8 (Stat and IML

components) and Canoco. All analyses were performed taking into account blocking of

replicates in the field and lab, which was not found to be significant.

Percent C and N of pooled aggregate layers was analyzed using three-way

analysis of variance (ANOVA) to test for significant effects of aggregate layer, aggregate

size class, cropping system, and interaction effects. Percent C and N and microscopic

cell counts in individual aggregate layers were analyzed as a split-plot experimental

design, with each aggregate as a whole plot and aggregate layer as the split plot.

Regression analysis was used to test for an effect of percent C and N on bacterial cell

counts.

T—RLFP profiles were aligned against a database of T-RFs with sample identities

concealed. Cumulative peak height was standardized to 10,000 fluorescence units, with

101



 

  ..E

 



peaks deleted if their height was less than 50 after standardization. Relationships

between T-RFLP profiles were examined using Hellinger distance and Jaccard distance

(see chapter 2 for a complete discussion of data analysis of T-RFLP profiles).

Differentiation of eubacterial T-RFLP profiles was tested using redundancy analysis (or

distance-based redundancy analysis in the case of Jaccard’s distance) with dummy

variables coding for cropping system, soil fraction, and interaction terms. Coding

followed the method described in (Legendre and Anderson 1999). Distributions of

partial pseudo-F statistics were generated with 9999 random permutations of the

identities of profiles in the software Canoco. To test for aggregate layer effects on

individual aggregates, profiles were permuted within individual aggregates as in a split-

plot experimental design. This method was also compared to unrestricted permutation

for pooled aggregate layer profiles since layers of only 4 to 8 aggregates were pooled

together.

Adequately strong T-RFLP profiles were not obtained for the following samples:

an alfalfa whole soil sample, an organic corn whole soil sample, an organic corn 0-2 mm

HF sample, and a conventional com 24 mm LF sample, from KBS, and one successional

vegetation 4-6.3 mm internal aggregate sample from Wooster. Where necessary these

were replaced by the mean vector generated from the other three replicates of the

respective treatment, following the method of Legendre and Anderson (1999). In other

datasets some treatments could not simultaneously tested due to presence of other weak

profiles (see Results).

Relationships between profiles were also examined using Ward’s method of

hierarchical cluster analysis, principal components analysis (with Hellinger distance),
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principal coordinates analysis (with Jaccard distance), and canonical principal

components plots obtained from the redundancy analyses. Percent C and N were tested

for significant effects on T-RFLP profiles using redundancy analysis.

Rams

KBS Aggregate Size Classes and Density Fractions

One aggregate size class made up approximately 38% of the soil mass, but this

was different for each cropping system. In organic corn, 0-2 mm aggregates made up

38% of the soil weight, in conventional corn it was the 2-4 mm aggregates, and in alfalfa

it was the 4-6.3 mm aggregates. Mean proportion of the total soil for other size class-

cropping system combinations was 29-33%. These differences were significant in the 2-

4 mm size class, where alfalfa had significantly increased mass (F=12.6, d.o.f=2,9,

p=0.002).

Aggregate size class did not have a significant effect on T-RFLP profiles in

redundancy analysis of either LF-l or HF-l, but cropping system was significant (see

Table 1). HF-l samples were analyzed with whole soil samples to test the hypothesis that

whole soil sample T-RFLP profiles are equivalent to HF profiles. This was hypothesized

because HF bacteria make up greater than 90% of the bacteria in the soil (see chapter 3).

Results were consistent in analyses performed including whole soil profiles with HF

aggregate size classes, without whole soils (data not shown), and with only the 2-4 and 4-

6.3 mm macroaggregate size classes. Interaction terms were significant when whole soils

were analyzed with aggregate HF-l samples using Jaccard distance. Examination of the

first four canonical principal components showed that this was primarily due to increased

103



”'“Vw~-"— -".""' S'“I".'".,'~‘ 4'"; 1; .»

 

 



separation of cropping systems in the whole soil and 0—2 mm aggregate HF-l profiles

(data not shown).

Redundancy analysis of HF-l profiles from samples that had and had not been

stored at 4°C for an additional 12 weeks showed a marginally significant storage effect

when analyzed with Hellinger distance (p=0.0556), accounting for a small amount of the

total variance in the dataset (5.8%). Two T-RFs (114-115 bp and 443-446 bp) had

greater than 20% of the variation in their Hellinger-transformed abundance explained by

storage, after accounting for effects of cropping system. The variation that storage

accounted for when analyzing Jaccard distance (4.7%) was not significant (p=0.2700).

The twentieth principal coordinate had 19% of its variance explained by storage, which

was the only principal coordinate with greater than 12% explained, after accounting for

cropping system effects. Further analyses of aggregate layer T-RFLP profiles fromKBS

were conducted after deletion of the two T-RFs identified as being affected by storage in

the analysis of Hellinger distance.

Layers ofIndividual KBS Aggregates

Several individual 4-6.3 mm aggregate layers did not produce adequately strong

T-RFLP profiles for analysis. Limiting samples to those with a cumulative T-RF peak

height greater than 7500 fluorescence units resulted in 18 profiles, with 7 aggregates fully

represented by both layers. Three of these were from alfalfa soil, three were from

organic corn, and one was from conventional corn. Redundancy analysis on Hellinger

distance, using each aggregate as a block for purposes of permutation as in a split-plot

design, found that aggregate layer was marginally significant (p=0.0771) and accounted

for 12.5% of the variation in the dataset. Greater than 20% of the variability in Hellinger-
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transformed abundance was explained by aggregate layer for 12 T-RFs. Divergences in

profiles due to the individual aggregate of origin accounted for a large proportion of the

variance in the dataset (47%), but this was not statistically significant due to the large

number of parameters involved (p=0.3583).

Limiting samples to those with cumulative peak height greater than 10,000

fluorescence units for analysis by Jaccard distance (see chapter 2) resulted in 13

acceptable profiles. The set was heavily weighted toward alfalfa samples, and only 4

aggregates were represented by both layers, so exploratory data analysis of Jaccard

distance was used. Figure 1 shows the Ward’s clustering dendrogram based on Jaccard

distance between these 13 samples. While clustering based on cropping system (or plot

in the case of this set of aggregates) is not evident, four of six external-layer samples are

separated from the other samples, accounting for 23% of the variance in the dataset. The

same four external-layer samples are “grouped” on the upper and right edges of the data

cloud in the plot of the first two principal coordinates (see Figure 28). They are grouped

much more clearly, and with an additional external-layer sample, in the upper-left of the

plot of the third and fourth principal coordinates (which account for 23% of the variance

in the dataset, see Figure 2b). The external-layer sample that never groups with the other

external-layer samples is consistently grouped with its complementary intemal-layer

sample of the same aggregate. Other samples are not grouped by aggregate.

There were no significant effects of aggregate layer or cropping system on percent

C or N, bacterial cells per g fraction, or percentage of cells in the smallest (<0.065 um3)

size class in the individual 4-6.3 mm aggregates at the 0.05 significance level (data not

shown). The effects of aggregate layer were significant for the percentage of cells in the
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largest size class (>0.18 um3, F=5.3, d.o.f.=1,9, p=0.047). Proportion of cells >0.18 m3

was 15.4% in aggregate exteriors and 16.7% in interiors. Cropping system had a

significant effect on percentage of cells in the largest Size class in the aggregate interiors

(F=4.29, d.o.f=2,9, p=0.049), with 13.9% of cells in this class in conventional corn

aggregate interiors, 17.9% in organic corn, and 18.2% in alfalfa. Cropping system effects

were not significant in the aggregate exteriors (mean=15.4%) or overall between

aggregates.

Regression analysis showed that the relationship between percent of cells in the

largest size class and percent organic C in the sample was significant (F=6.8, d.o.f=1,22,

p=0.016, R2=24%). The regression of total numbers of bacterial cells on percent C was

not Significant (F=1.56, d.o.f=1,22, p=0.225). Percent C and N did not explain a

significant amount of the variation in the T-RFLP profiles of the individual 4-6.3 mm

aggregates (p=0.3494).

KBS Pooled Aggregate Layers

Effects of aggregate layer and cropping system were tested using all T-RFLP

profiles generated from pooled aggregate layers from KBS. The effect of aggregate size

class was tested after reducing the number of replicates in the 2-4 mm size class to three,

to be balanced with the 4—6.3 mm Size class, where the layers of aggregates of one field

replicate were not pooled. Aggregate layer was found to have a significant effect on

Mspl T-RFLP profiles using Jaccard distance if permutations were restricted to the layers

of corresponding aggregate samples, as in a split-plot design. The variability explained

by aggregate layer was 5.5% of the total variability in Jaccard distances (see Table 2).

The effect of aggregate layer was also marginally significant in the case of Hellinger
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distances between Mspl profiles using the same permutation scheme, but was not

significant for RsaI profiles. Three T-RFs had greater than 20% of the variability in their

Hellinger-transformed abundance explained by aggregate layer in the Mspl profiles after

accounting for effects of aggregate size, cropping system, and treatment interactions:

435-437 bp (23% explained, found only in external layers from corn soil), 439-442 bp

(43%, found only in external layers), and 450-452 bp (25%, found in six internal layer

samples and two alfalfa external layer samples).

Aggregate size class and cropping system were consistently found significant in

both RsaI and Mspl profiles in pooled aggregate layer samples, while interaction effects

were only significant in Mspl profiles (see Table 2). Clustering by treatments was weak

in dendrograms such as Figure 3. Figure 4 shows the separation of samples by aggregate

size class and cropping system in the canonical principal components ordination from the

RsaI Hellinger distance redundancy analysis. While cropping systems are completely

separated in the canonical cropping systems ordination (see Figure 4a), there is some

overlap of aggregate size classes in the size class ordination (see Figure 4b). Treatment

explained greater than 20% of the variation in 21 T-RFs. Their relationships to the

treatments are shown by plotting their canonical principal component scores with the

sample scores in Figure 4.

Percent C in pooled KBS aggregate layers was not significantly affected by

aggregate layer, size class, or interaction effects, as indicated three-way ANOVA. The

ANOVA model was significant overall due to cropping system effects (F=8.3,

d.o.f.=4,37, p<0.0001). Percent C was 1.8% in organic corn, 1.3% in alfalfa, and 0.9% in

conventional corn aggregate layers. Treatment effects on percent N were also significant
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overall (F=3.5, d.o.f.=4,37, p=0.016), with trends due to cropping system following the

same trend as for percent C (p=0.049). Percent N was also significantly increased in the

2-4 mm (0.24%) compared to 4-6.3 mm aggregates (0.11%, p=0.017).

Percent C explained a small but significant proportion of the total variability in T—

RFLP profiles of the pooled aggregate layers from KBS in both RsaI (p=0.0004,

variability explained=6%) and Mspl (p=0.0087, variability explained=9%) profiles.

Percent C was not significant if treatment effects were first partialled out. Effects of

percent N were not significant (p=0.727 for Rsal and 0.4279 for MspI).

Wooster Pooled Aggregate Layers

To achieve balanced replicate numbers of profiles between treatments, two

datasets were used to test different treatment effects on T-RFLP profiles with redundancy

analysis. The 4-6.3 mm aggregate size class was used to test the effects of aggregate

layer and soil management. Aggregate layer (with or without restricted permutations)

and interaction effects were Significant when analyzing principal coordinates of Jaccard

distance between profiles, and soil management was marginally-significant (see Table 3).

The effects of aggregate layer (using restricted permutation) was the only significant

treatment effect when analyzing Hellinger distance between the same profiles. The

significant effects can be seen in the canonical principal components plot derived from

the redundancy analysis of aggregate layer and treatment interaction effects in Figure 5.

The aggregate layers are separated, and all sucessional vegetation samples are separated

from the continuous corn samples. In plots of non-canonical analyses, such as the

Jaccard distance principal coordinates plot in Figure 6, separation of samples due to

management is not evident. Two-thirds of the aggregate interiors group apart from the
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aggregate exteriors. Less structure is evident in Figure 6, the Ward’s clustering

dendrogram of Jaccard distances, the main feature of which is a successional vegetation

aggregate interior as an outlier.

The significance of aggregate Size on Wooster T-RFLP profiles was tested with

no-till and successional vegetation aggregate layers. Significant treatment effects were

only observed when analyzing Jaccard distance. Soil management and treatment

interaction effects were significant and aggregate size was marginally significant (see

Table 3). The absence of any aggregate layer effect implies that 2-4 mm aggregates are

much more uniform than the 4-6.3 mm aggregates.

Discussion

The Strongest influence on the T-RFLP profiles detected in this study was from

land management regimes, accounting for from 10 to 40% of the variance in patterns of

T-RF abundance, depending on the dataset and method of analysis. This is in agreement

with the analyses of other of soil fractions described in chapter 3.

Significant effects of aggregate Size at KBS were detected in pooled aggregate

layer profiles, but not in profiles from HF-l or LF-l from differing aggregate size classes

from subsamples of the same soil. Different communities in aggregate layers may

confound effects of aggregate size in the HF-l and LF-l, where aggregate layers are

combined by default. It cannot be discounted that the differences in T-RFLP profiles due

to aggregate size class in the pooled aggregate layer samples may be due to differential

effects of storage and erosion on aggregate size class since 1. the effects of aggregate

layer were relatively weak, 2. grouping by layer was not observed in the canonical
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ordination plots, and 3. the overall variability accounted for by size class was only 5%. A

small but significant storage effect was detected in HF-l profiles from samples that had

and had not been stored an additional 12 weeks, and the RsaI T-RFs involved were

deleted in other analyses. Aggregate size class was not found to be a significant factor in

profiles from Wooster aggregate layer samples, where length of storage of aggregates

was not as great.

Effects of aggregate layer were detected in Rsal profiles from layers of individual

KBS aggregates using exploratory data analysis of strong profiles (see Chapter 2 for a

discussion of exploratory data analysis of T-RFLP profiles). Within pooled aggregate

layers, effects of aggregate layer on T-RFLP profiles were detected only in Mspl digests,

which were not corrected for storage. The proportion of the total variability accounted

for by layer in the Mspl digests was Similar to the amount accounted for by the storage

effect. Therefore the effects of aggregate layer were probably not significant for these

samples, as indicated by the pooled aggregate layer RsaI profiles.

Aggregate layer effects may have been detected in individual aggregate layers and

not pooled aggregate layers due to high aggregate-to—aggregate variability. Aggregate—to-

aggregate variability was taken into account in the significance testing of individual

aggregate layers by permuting layers only within individual aggregates. This form of

permutation was also required because aggregate layer was nested within cropping

system treatment for individual aggregates. Pooling of aggregate layers was an attempt

to average out this variability. Success in the ability to average out the variability,

however, depends on its strength. If very strong aggregate-to—aggregate variability exists,

pooling of layers from only four aggregates may confound any differences between
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layers, rather than enhancing the ability to detect them. While permuting within field '

replicate of pooled aggregate layers is not strictly correct, it is probable that not enough

aggregates were pooled to average out the aggregate-to-aggregate variability or result in

independence of aggregate layer and cropping system treatments. Note that while the

split-plot design alters the permutation procedure it does not alter the assumption of

redundancy analysis of a linear relationship between T-RFS and treatment. Hence the

effects of aggregate layer must still be consistent across aggregates (corrected for other

treatment and interaction effects) for significant differences to be found.

Permuting using the split-plot design resulted in significant differences between

aggregate layers for the 4—6.3 mm Wooster aggregates, but not when 2-4 mm aggregates

were included in the analysis. This is not surprising since it is likely that differences in

the environments of external and internal aggregate layers are greater when aggregates

are larger. Differences between aggregate profiles based on tillage were not found at

Wooster, although the T-RFLP profiles from successional vegetation were quite different

from those of the continuous corn fields. This result is not consistent with the differences

between profiles due to cropping system at KBS presented here and in chapter 3. The

cropping systems studied at KBS may be more divergent than the tilled and no-till

continuous corn plots at Wooster because many agronomic variables at KBS are varied

besides tillage, including the type and diversity of crops and addition of fertilizers and

compost.

Conclusions

There is high variability in the literature concerning which aggregate size class

contains the greatest numbers and activities of soil microorganisms, as noted in the
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Introduction. Soil aggregate dynamics are dependent on particular site characteristics

such as clay and organic matter content and soil management (Ladd et al. 1996).

Seasonal variability in soil aggregation is also likely important in the field (Mendes et al.

1999, Mendes and Bottomley 1998), and variability in methods of soil fractionation are

likely the cause of many differences between studies (Christensen 1996, Jastrow and

Miller 1991). The results obtained here agree in general with other culture-independent

studies which have found that aggregate size class has small effects on microbial

communities, if any (Peterson et al. 1997, Ramakrishnan et a1. 2000).

The effects of the position of a community within a soil aggregate may be greater

than size class, but is dependent on statistical comparisons within individual aggregates.

Tertiary soil structure, such as proximity of sites to macropores or decomposing shoot

residue, may be essential in determining the composition and activity of microbial

communities within different aggregates and sites within aggregates (Parkin 1993, Young

and Ritz 2000). While some consistent environmental differences may exist between

macroaggregate size classes and layers within aggregates, their turnover time of up to 10

years (Buyanovsky et a1. 1994, Monreal et al. 1997) may be too rapid relative to the low

rates of microbial growth in soil to allow much differentiation of communities to occur

(approximately 3 generations per year, Harris and Paul 1994). More rapid growth in the

rhizosphere, LF, and shoot residue, on the other hand, allows for extensive changes in the

makeup of the community due to differential success of species under different

conditions (see Chapter 3). Dispersal rates relative to rates of habitat turnover and

growth will also affect the differentiation of communities in different soil fractions.

Microbial dispersal is generally viewed as passive and dependent on the soil water status,
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although more study of this phenomenon is greatly needed (Murphy and Tate 1996). If

the structure of soil aggregates is truly hierarchical, differences between microaggregate

size classes, which turn over much more slowly than macroaggregates, may also be

important in determining community composition. Environmental heterogeneity at a

broader scale was found to be important since communities were consistently

differentiated by cropping system or soil management. This shows that the numerically

dominant bacterial community in agricultural soil, those in heavy fraction or aggregates,

is sensitive to long term changes in their environment.
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Table l: Redundancy analysis of HF-l and LF-l isolated from different aggregate size

classes at KBS. Analyses of “all” fractions included 0-2 mm HF-l and whole soil

samples for HF—l analysis, and 0-2 mm LF-l for LF-l analysis. N=4 replicates per

fractioanropping system treatment.

 

 

 

 

 

 

3°11 Cropping Interaction Sum
Fractron System

Hellinger distance

P 0.4731 0.0001 0.1348

HF“: a" % of total variance 20.6 20.6

HF-l, 2-4 P 0.5893 0.0001 0.8249

and 4-6.3 % of total variance 23.8 23.8

P 0.6239 0.0001 0.4269

LF'I’ 3" % of total variance 31.4 31.4

LF-l, 2-4 P 0.4445 0.0001 0.3449

and 4-6.3 % of total variance 34.7 34.7

Jaccard distance

P 0.2697 0.0001 0.01 16

HF'1’ a“ % of total variance 15.4 12.7 28.1

HF-l, 2-4 P 0.7966 0.0081 0.9512

and 4-6.3 % of total variance 10.5 10.5
 

118



 

  

 

     



Table 2: Redundancy analysis of pooled aggregate layer samples from KBS. P-values

generated by 9999 random permutations of sample identity. N=3 replicates per

layerXaggregate sizeXcrop treatment in testing cropping effects and N=4 replicates per

treatment when testing other effects on RsaI profiles. N=2 replicates per treatment for

Mspl profiles.
 

 

 

 

 

Layer Size Crop Interaction Sum

Hellinger Distance

P (unrestricted) 0. 1893

RsaI P (spli“13100 0.1998 0.0003 0.0001 0.0563

% of total variability 5 14.1 19.1

P (unrestricted) 0.5300

Mspl P (split-plot) 0.0648 0.0004 0.0001 0.0338

% of total variability 9.2 18.5 10.9 38.6

Jaccard Distance

P (unrestricted) 0.5203

RsaI P (split-plot) 0.1417 0.0046 0.0001 0.0800

% of total variability 4.4 10.2 14.2

P (unrestricted) 0.2254

MspI P (split-plot) 0.0096 0.0317 0.0006 0.0358

% of total variability 5.5 6.3 13.3 11.3 36.3
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Figure 2: Plots of principal coordinates of Jaccard distance between T-RFLP profiles of

layers of individual 4-6.3 mm KBS aggregates. Lines connect layers of the same

aggregate. Circles=intemal layer, Triangles=extemal layer, White=alfalfa,

Black=conventional corn, Grey=organic corn

Figure 2a: First and second principal coordinates
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Figure 2b: Third and fourth principal coordinates
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Figure 4: Biplots of sample and T-RF scores for the three canonical principal

components (PCs) derived from redundancy analysis of Hellinger distance between

pooled aggregate layers from KBS. T-RFs shown had 20-76% of variability explained by

canonical ordination. Axes are constrained to maximize variation due to cropping system

and aggregate Size. Circles=2-4 mm aggregates, Triangles=4-6.3 mm aggregates,

White=alfalfa, Black=conventional corn, Grey=organic corn.

Figure 4a: Aggregate layer/cropping system axes 1 and 2.
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Figure 4, continued

Figure 4b: Aggregate layer/cropping system axes 2 and 3.
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Figure 5: Aggregate layer and treatment interaction axes of canonical principal

components derived from distance—based redundancy analysis of Jaccard distance

between Wooster aggregate layer RsaI T-RFLP profiles. Circles=aggregate interior,

Triangles=aggregate exterior, White=successional vegetation, Black=conventional-tillage

corn, Grey=no-till corn.
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Figure 6: Principal coordinates derived from Jaccard distance between Wooster

aggregate layer RsaI T-RFLP profiles. Circles=aggregate interior, Triangles=aggregate

exterior, White=successional vegetation, Black=conventional-tillage corn, Grey=no-till
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Chapter 5

Use of Multivariate Spatial Statistics to Test Hierarchical Structure within 81 Soil

Eubacterial Community Analyzed by T-RFLP
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Abstract

The presence of hierarchical spatial organization was investigated in soil

eubacterial communities within three 1.5x2 meter plots. Hierarchical spatial structure is

indicated by changes in spatial organization with changes in scale of sampling. Ten

samples of various sizes, or sampling grains, were collected from each plot, with a

minimum weight of approximately 10 mg. Fifty 10 g samples were also taken in each

plot. Eubacterial community composition was assayed using terminal restriction

fragment length polymorphism (T-RFLP) of the 16S ribosomal gene. Paired-quadrat

analysis and semivariance analysis were adapted to multivariate problems in a

generalized method called variability-scale analysis, where the changes in variability

statistics or community distance metrics due to spatial scale is examined. Analyses based

on changes in sampling grain and extent were integrated. Three hierarchical levels-of

organization in soil eubacterial communities were separated by phase shifts in spatial

organization, where there were significant changes in the slope of the relationship

between variability statistics and spatial scale. These included one level, operating at a

scale of 10 to 100 g or 2 to 25 cm, with minimal change in community variability with

spatial scale. Experimental designs with treatments blocked within these scales should

not violate assumptions of standard (non-spatial) statistics. The extent-based scale-

variability analysis of spatial structure in soil microbial communities was also compared

to Mantel methods and spatially-constrained ordination, with similar results. A method

of examining the variability in covariance structure across spatial scales is proposed

called the correlation super-matrix, based on the correlation between covariance matrices

constructed from samples at different scales. Changes in covariance structure due to
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spatial scale are then investigated using principal coordinates analysis and cluster

analysis of the correlation super-matrix. This method verified conclusions based on the

extent-based analyses of other methods, but was not as useful in the grain-based analysis

because the covariance structures of communities sampled at different grain sizes was

extremely diverse. Soil eubacterial communities displayed significant hierarchical spatial

structure, suggesting they are regulated by mechanisms analogous to those for plant and

animal communities.

Introduction

The complexity of soil microbial communities is reflected in the enormous

amount of microbial diversity that can be detected in soil (Hugenholtz et al. 1998,

Torsvik et al. 1990). Biological, chemical, and physical properties are generally

heterogeneous in soil (Harris 1994, Parkin 1993, Stark 1994). A key question for our

understanding of soil microbial communities is: How much of the heterogeneity in

microbial community composition has a mechanistic ecological basis, and how much is

truly random variability that is historical artifact? More generally, this can be seen as

“the central question of community ecology,” (Roughgarden 1989). There are strong

arguments to be made for either hypothesis. Hraber and Milne (1997) found that the

manifestation of community assembly rules is dependent on the rate of colonization by

new species relative to the rate of operation of the rules. Random variability in soil

bacterial community structure may be likely because it has been shown that bacterial

growth (Harris and Paul 1994, Smith and Paul 1990) and dispersal (Murphy and Tate

1996) are generally low in soil. The major determinant of soil bacterial community
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structure may be the environments serving as sources for bacterial colonizers. However

even this signal could be rapidly diluted since the time frame for a soil bacterial

community to reach equilibrium number of species is less than 200 years (Nfisslein and

Tiedje 1998), while the lifespan of initial colonizers, as well as subsequent arrivals, may

extend to millions of years (Greenblatt et al. 1999). On the other hand, numerous

mechanisms, or assembly rules, can be hypothesized to affect soil bacterial community

composition and diversity in a predictable fashion. Traditional ecology provides a

plethora of potential ecological mechanisms, including competition (Leibold 1995,

MacArthur and Levins 1967), trophic interaction (Holt 1984, Schmitt 1987), disturbance

(Bormann and Likens 1979, Connell 1978), and resource distribution (Grime 1994,

Harrison 1997). In controlled experiments, these mechanisms have all been shown to

have the potential to organize soil microbial communities (Minamisawa and Mitsui 2000,

Griffiths and Bardgett 1997, Beare et al. 1992, and chapters 3 and 4, respectively). It is

unknown, however, how strongly these mechanisms act in the field, or, if they do have

significant impact in the field, whether their interactions result in a general coherent

structure. This lack of basic knowledge is due to the inadequacy of our understanding of

the Spatial structure of soil microbial communities, which is a direct reflection of those

mechanisms, if any, organizing a community.

Recently the heterogeneity of soils has been highlighted, and the spatial structure

quantified, through the use of semivariance analyses of soil nutrients (Boemer et al. 1998,

Doberrnann et al. 1995, Schlesinger et al. 1996), potential rates of biological processes

(Robertson et al. 1993, 1997, Stoyan et al. 2000) and numbers of soil organisms

(Klironomos et al. 1999, Morris 1999, Robertson and Freckman 1995, Rossi et al. 1997).
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Cavigelli et a1. (1995) used semivariance analysis to quantify spatial structure of 56

microbial fatty acids across separation distances from 2 cm to 80 m. They found no

spatial autocorrelation of microbial fatty acids at ranges greater than 20 cm, and for most

fatty acids found no spatial autocorrelation at any scale at all. At the other extreme,

Felske and Akkerrnans (1998) concluded that 168 rDNA DGGE patterns were

qualitatively homogeneous over ranges of 1 to 40 m.

A complete understanding of the spatial structure of ecological phenomena must

involve consideration of both spatial pattern and scale (Levin 1992). Spatial patterns in

community composition are an outcome of the interactions between organisms and their

abiotic and biotic environment. Spatial scale can be used to denote both spatial extent

(maximum size) and grain or resolution (minimum size) of any object or phenomenon

(Schneider 1994). Variability of an environmental characteristic, and patterns caused by

it, will normally be found at some Spatial scales but not at others. Hence the spatial scale

of observation will affect which mechanisms regulating community structure are detected

(Levin 1992, Schneider 1994). Note that scientific observation itself is a biological

phenomenon with a particular spatial scale which will often not coincide with the scale of

the object or phenomena under study (i.e. the scale of a soil core is equal to the

measurement grain; it need not be the characteristic scale of a forest, microbial

population, or any natural phenomenon).

An important distinction must be drawn between a spatial scale, defined above,

and a level of organization, which is a range of conditions, including spatial scales, over

which phenomena affecting the parameter of interest are homogeneous. To deal with the

complexity generated through the interaction of many phenomena operating across a
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wide variety of spatial scales, it has been suggested that mechanisms regulating

communities may form a hierarchy, resulting in spatially nested levels of organization

that operate at particular scales (Allen and Starr 1982, O'Neill et a1. 1986). In formal

hierarchy theory, hierarchical structure was attributed to the separation of ecological

processes by their rates, and the constraining of dynamics at lower levels in the hierarchy

by higher levels. Other treatments of the topic have stressed the separation of ecological

processes by effects on species (Parker and Pickett 1998), or spatial extent (Wu and

Loucks 1995). The detection of such organization would be a powerful method of

summarizing the outcomes of complex phenomena. This approach has proven to be

successful in several communities (see next section).

Ecological studies are often described as global, regional, landscape, or local.

These terms connote both particular spatial scales (i.e. the “regional scale” is about the

size of a large state) and levels of organization (community structure at the “regional

level” is organized by climate and geology). The design of ecological studies around pre-

conceived hierarchies without reference to patterns intrinsic to the organisms is now

under question (Hoekstra et al. 1991, O'Neill et al. 1986). The hierarchy described above

has been shown to be useful in understanding species endemicity in some soil bacterial

culture collections (Cho and Tiedje 2000, Fulthorpe et al. 1998), but not for genetic

structure in Rhizobium leguminosarum (Hagen and Hamrick 1996, Strain et al. 1995, but

see also Souza et a1. 1994). For microbial communities, it seems likely that there are

levels of organization that operate at spatial scales smaller than what is normally

considered the local (field or plot) scale (see Beare et al. 1995), but this has not been

explicitly tested.
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The goal of the current study is to explicitly and quantitatively consider scale and

test for hierarchical structure in an investigation of spatial structure of soil bacterial

communities. This was accomplished using multivariate spatial statistics coupled with

community-level terminal restriction fragment length polymorphism (T-RFLP) of the

16S ribosomal gene. Molecular genetic techniques such as T-RFLP have become well-

established methods to assay in situ community structure of soil bacteria, avoiding the

problems associated with elective enrichment culture (Muyzer 1998, Tiedje et al. 1999).

The specific hypothesis tested is that a soil microbial community is structured by levels

of organization operating at different spatial scales. This is a holistic method of testing

the overall importance of ecological phenomena in community assembly, as opposed to

random assortment as discussed previously. Several new approaches to multivariate

spatial statistics were developed in conjunction with this study, so the theoretical and

historical framework of hierarchy theory and multivariate spatial statistics are briefly

presented prior to a description of the experiment.

Detection of Levels of Ecological Organization: Statistical Approaches

Grain-Based Analysis ofSpatial Structure in Community Ecology

Hierarchy theory is one of the few conceptual approaches in ecology that fully

incorporates the concept of scale (Peterson and Parker 1998). This results in an intuitive

method of recognizing organization in the face of complexity and heterogeneity. As such

it has proved useful as a conceptual basis for ecological mapping (O'Connor et al. 1996),

modeling (Maurer 1990, Palmer 1992), new research methods (Johnson and Gage 1997,

Quinones 1994), and strategies of land management (Eswaran et al. 2000, Hoekstra and

Flather 1987, Jennings and Reganold 1991, Lee and Grant 1995, Palik et a1. 2000). In
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these contexts hierarchy theory is normally used as justification for assuming that one

structure or process is constrained by another (usually spatially—constrained). Empirical

tests of hierarchy theory have focused exclusively on structural components of

ecosystems, namely abundances of species. Several studies have looked for hierarchical

structure among traits of species in a community. These have tested predictions from

hierarchy theory using empirically-suggested (Waltho and Kolasa 1994) or pre-conceived

(Gaedke 1998) levels of organization among aquatic species.

Other studies have investigated the presence of hierarchical spatial structure, and

therefore distinct levels of organization regulating species abundance, in plant

communities. The hierarchical spatial structure is detected by discontinuities in spatial

pattern across. a range of spatial scales. The changes in spatial pattern have most often

been detected using variance analysis. If a quantity is randomly distributed, a plot of log

variance versus log sampling grain has a slope of -1 (Levin 1992, Wiens 1989). If there

is spatial structure, however, the slope will be greater than —1, and will depend on the

particular pattern and strength of autocorrelation. Discontinuities in this slope indicate

phase shifts in spatial structure, and hence changes in organization. O’Neill et al. (1991a)

calculated the variance in percent cover of vegetation across 32 transects radiating from a

single position. Using this method they were able to detect hierarchical structure of

varying degrees in all six landscapes examined. Several other studies have looked at

distributions of single species within communities (Cullinan et al. 1997, Kotliar 1996,

O'Neill et al. 1991b). Where abundance of more than one species was recorded, these

were simply analyzed separately. In these studies, various forms of blocked-quadrat-

variance analysis (BQV) were used to examine effects of sampling grain on spatial
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structure. The BQV approach is basically the same as in O’Neill (1991a), except that

only contiguous blocks of quadrats within a single transect or grid are compared. This

method of generating quadrats of different scales confounds sampling grain with

separation distance between quadrat centers, resulting in an initial increase in variance

with scale rather than a continuous decrease. The BQV methods have a long history in

plant ecology and differ based on how quadrats are blocked and paired for estimation of

variance (Grieg-Smith 1952, Hill 1973, Galiano 1983). The placement of this line of

research into the conceptual context of hierarchy theory represents a leap forward in our

ability to interpret the spatial patterns that have been investigated by ecologists for so

long.

Multivariate studies have been conducted to examine spatial structure

encompassing the entire community. Community structure is dependent on the existence

of non-random associations between species. The debate over causes of such

associations has a long history, ranging from common responses of species to the

environment (Gleason 1939) to the existence of coevolved species complexes (Clements

1936). It is probable that many phenomena are involved (Ricklefs 1987, Roughgarden

1989, Belyea and Lancaster 1999, Wilson 1999); hence holistic methods such as the

study of spatial structure and hierarchy theory are particularly useful.

The simplest form of multivariate analysis of community spatial structure has

consisted of an ordination to derive new variables (ordination axes) that summarize the

majority of the variance in species distributions. Site scores of the first few variables are

then plotted along the length of a transect (Bouxin and Gautier 1982, Shmida and

Whittaker 1981). The variance of these derived variables has also been examined using
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techniques related to BQV (Galiano 1983, Milne 1991). Multiscale ordination is another

method that has been proposed as a way to partition variance of an ordination between

scales (Hoef and Glenn-Lewin 1989, Noy—Meir and Anderson 1971). Covariance

matrices derived from different plot sizes are summed, followed by a principal

components analysis. The variation of each eigenvector can then be partitioned into the

contributions from each scale. However, Wackemagel (1998) writes that if principal

components analysis is performed on a covariance matrix that incorporates dynamics of

mechanisms operating at different scales, the analysis will be invalid because the

orthogonality of principal components will be scale-dependent (i.e. they will be

correlated at some scales). Hence multiple scales of spatial pattern and other sources of

variation may interact to confound the ordination, obscuring dynamics present at any

given scale. In addition, it is assumed that spatial structure will be the primary source of

variation in the dataset and will therefore be reflected in the first few ordination axes.

Depending on the ordination, the majority of the variability in the dataset may be left

unexamined, and weaker spatial patterns will be missed. This problem arises because the

null hypothesis of no spatial structure is not explicitly tested on the entire dataset.

Finally, the ordination axes analyzed are dependent on a particular dataset. This causes

difficulty in the comparison with other samples since it requires the assumption that the

same phenomena are affecting both datasets in the same way, and hence would result in

identical ordinations and comparable axes.

The variance test of Schluter (1984) tests for non-random associations between

species by comparing the variance of total numbers of individuals within samples to the

sum of the variances of each species. If these variances are not equal, then the sum of the
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covariances between species must be different from zero, implying there is some overall

pattern present in the species associations. Yoshioka and Yoshioka (1989) adapted this by

computing variances for each block size (sampling grain) separately. The departure from

random association between species was tested for each scale using nested ANOVA.

This test is invalid if the species abundance data are transformed to relative abundances

prior to analysis, as is often recommended for ecological data and is required if the

variance in total numbers of individuals is not meaningful (i.e. due to analytical

variability or sampling effort). However, the interpretation of the variance and

covariance statistics after transformation is dependent only on variability in community

composition, having removed the variability due Strictly to site productivity. Hence

plotting the sum (or mean) of the species variances against sampling grain will reflect

how the heterogeneity in relative abundance across all species (i.e. the heterogeneity in

community composition) changes with spatial scale. The sum of species covariances

measures the same property of the dataset as the sum of the species variances after

transformation to relative abundances, namely heterogeneity of community composition.

Other methods are required to examine the overall homogeneity of elements within the

covariance matrix across spatial scales (see next section).

The utility of mean variance in describing multivariate patterns becomes obvious

if it is considered that the mean species variance is equal to one half of the mean pairwise

Euclidean distance between samples, which is commonly used as the basis for

community ordination, clustering, and classification methods. Euclidean distance itself

has been recognized as inappropriate for these applications (Legendre and Legendre

1998), but alternative distance metrics can be derived by using an appropriate
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transformation prior to calculating Euclidean distance. The transformation to relative '

abundances is an improvement, but several further transformations have been shown to

be superior by Legendre and Gallagher (in press). In this paper we use the Hellinger

distance because it does not heavily weight rare species and is simple to calculate, being

equal to the Euclidean distance between the square-root of relative abundances. The use

of ecologically-appropriate data transformations and the focus on mean distance (or mean

variance) greatly enhances the flexibility of the types of data and analyses that can be

performed in grain-based approaches to assessing spatial structure. Significance tests can

still be performed using randomization procedures (see below). The generalized concept

of comparing a variability statistic to spatial scale is further developed below, and will be

referred to as variability-scale analysis.

Extent-Based Analysis ofSpatial Structure in Geostatistics

A rich set of methods for analyzing spatial structure based on separation distance

between samples rather than sample grain has been developed within the field of

geostatistics. Examination of the change in variance due to changes in separation

distance is known as semivariance analysis or variography. It is equivalent

systematically varying sampling extent at all locations. Inferences about sampling grain

are also possible (Bellehumeur et al. 1997, Schneider 1994). Identical methods were

independently discovered in community ecology and were known as paired-quadrat-

variance analysis (PQV, Goodall 1974). Comparisons of the extent-based versus grain-

based methods have generally found that the extent-based methods are more sensitive, at

least in part because the BQV variants that have been tested confound extent with grain

(Carpenter and Chaney 1983, Ludwig and Goodall 1979), although this was also noted by
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Schneider (1994). In geostatistics it is standard to fit semivariance to combinations of

variogram functions (Robertson and Gross 1994, Rossi et al. 1992). Typically these

include an intercept called nugget variance. Nugget variance is due to analytical

variability and variability at scales smaller than the sampling grain and minimum

separation distance. Other variance functions of separation distance may increase

unbounded (e.g. the linear model) or reach an asymptote or sill (e.g. the exponential

model). The separation distance at which a sill is reached is the range of influence of the

particular phenomenon causing pattern at the scale. While not often recognized as such,

semivariance analyses are tests of hierarchy theory. Hierarchical patterns are often found

and modeled in the form of nested functions, where variance reaches a sill but then starts

to increase again with further increases in separation distance.

Attempts at combining extent-based methods with multivariate analysis often

involve semivariance analysis of the first few axes of an ordination (Cash and Breen

1992, Jonsson and Mocn 1998, Rossi et al. 1997) or the equivalent multiscale ordination

(Schaefer and Messier 1994). This approach has the same shortcomings as when used

with BQV. Multivariate factorial kriging analysis (FKA) is another procedure that has

been developed by geostatisticians to incorporate spatial structure into principal

components analysis (Wackemagel 1998). This involves fitting each variance and

covariance (or cross-variogram in geostatistical jargon) in a multivariate dataset to a

common basic variogram model, which would include the same functions and ranges.

The fitted model coefficients (nugget, sills) are then used to construct a variance-

covariance matrix, or coregionalization matrix, for each function/range modeled. Hence

a coregionalization matrix represents the complete dynamics, at a given spatial scale, of a

140



 

 

  



set of variables, independent of dynamics at other scales. Principal components analysis

can then be performed on coregionalization matrices for different scales separately. The

goal of the analysis is to assess relationships between complex sets of variables without

averaging over multiple spatial scales. Such averaging causes samples to not be

independent, resulting in principal components that are correlated at some scales

(Wackemagel 1998). It is not unusual to find that variables important in ordination at

one scale are unimportant at another, or that relationships between variables are reversed

at different scales (e.g. Dobermann et al. 1995, Goovaerts 1994, Monestiez et al. 1994).

Multivariate factorial kriging analysis is a highly reductionistic approach to

assessing the degree of spatial organization in communities. First the importance of

spatial scale is examined variable by variable (or species by species) and covariance by

covariance. Then the overall importance to the entire community is built up from each of

these individual analyses, finally expressed as qualitative differences between principal

components analyses. On the other hand, use of a multivariate distance coefficient in a

variability-scale analysis is a holistic method of accomplishing the same goal.

Variability-scale analysis can easily be extended to the extent-based sampling design;

samples at the same grain are taken at varying distances apart, and mean distance

coefficients are calculated over pairs of samples in each category of separation distance.

Again, the approach is not limited to Euclidean distance since transformations can be

performed to result in more ecologically-relevant distances. The choice of distance

coefficient is even more flexible than previously mentioned since any ecological distance

coefficient can be calculated and plotted as a function of sampling grain or extent.

Whittaker (1960) plotted Jaccard’s coefficient as a function of separation distance and
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found that similarity of communities decreased at a steady rate as separation distance

increased until a threshold was reached, at which point the similarity between

communities declined precipitously. The relationship to hierarchy theory is clear: two

levels of organization operated simultaneously but at different spatial scales to organize

the communities. Each distance coefficient has unique advantages and disadvantages

(Legendre and Legendre 1998); in this study we use both Hellinger distance and one

minus Jaccard’s similarity coefficient (hereafter referred to as Jaccard’s distance).

While it may be desirable to use FKA to examine the homogeneity of structure

within the covariance matrix, across spatial scales, instead of the overall strength of

covariance, in many ecological applications it is not practical. Ecological communities

normally contain many species, sometimes numbering in the hundreds. Hundreds to

thousands of variances and covariances would therefore have to be separately modeled

using nonlinear regression to construct the coregionalization matrices of FKA. It is also

unlikely that the majority of these would be adequately fit by a common model, as

required in FKA. We propose a new method, called the correlation super-matrix, to

adapt the goals of FKA to large ecological datasets. As in FKA, variance and cross-

variograrns are calculated for all variables (species) for each distance class separately.

Hence a different variance-covariance matrix can be constructed from empirical data for

each distance class. Rather than model each element of these matrices, however, the

matrices can also be compared using a correlation coefficient. This method of comparing

distance or similarity matrices is known as the cophenetic correlation (Jobson 1992) or

“normalized” Mantel statistic (Legendre and Legendre 1998). By calculating the

correlation for each pair of covariance matrices, a new “super”-matrix can be constructed
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containing the similarities of the Species covariance structures for each pair of distance

classes. The method can be applied to the grain-based methods as well. The significance

of these pairwaise correlations could each be tested using permutation or a normal

distribution approximation, although this could easily result in an excessive number of

pairwise tests. Structure within the correlation matrix could also be investigated using

multivariate exploratory data analysis techniques such as cluster analysis or principal

coordinates analysis. The results would summarize the similarities in species covariances

across the different spatial scales, albeit without explicit hypothesis-testing. An

additional advantage of the correlation super-matrix approach is that it does allow the

differences in relationships to be quantitatively assessed in a single analysis, rather than

qualitatively in separate principal components analyses as in FKA. The correlation

super-matrix approach does not result in the ability to attribute differences between scales

to particular variables; however this can easily be accomplished by carrying out a

principal components analysis on the individual covariance matrix for any particular

scale of interest.

Mantel Procedures and Constrained Ordination

Other holistic methods of assessing the significance of spatial pattern in

community composition include the Mantel test and constrained ordination. These are

both based on separation distance between samples (extent). The Mantel test can be used

to determine whether two distance matrices, one containing spatial distance and the other

calculated using a community distance coefficient, are significantly correlated (Legendre

and Fortin 1989). A positive result implies that communities are more different the

farther apart they are. The normalized Mantel statistic (rM) can also be calculated using a
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series of matrices indicating which sample pairs belong to different separation distance

classes. Plotted against separation distance, this Mantel statistic indicates regions of

positive or negative spatial autocorrelation. It can be interpreted in much the same way

as the semivariogram, where changes in slope represent a change in the spatial pattern

detected. One complicating factor is that the value of rM for each distance class is relative

to the contrasting structure in the remaining distance classes; i.e. changing a value outside

the distance class will change rM.

Community ordination procedures are commonly used to extract major gradients

within community composition from a group of sites. The amount of variability in

community composition that can be correlated with independent measurements or

treatments at the same sites can be determined by constraining the ordination axes to be

linear combinations of environmental variables. If the environmental variables consist of

geographical coordinates, and other polynomial terms derived from them, then the

influence of spatial position on community composition can be determined (Borcard et al.

1992). If redundancy analysis, the constrained version of principal components analysis,

is used then the procedure is analogous to a multivariate trend-surface-analysis. Another

approach is the use of canonical correspondence analysis. The constrained ordination

approach is limited by the ability of the geographical variables to capture the spatial

patterns present. The extrapolation to other scales of sampling grain is also more

difficult.

In presentations of Mantel procedures and constrained ordination, several

characteristics of the procedures have been stressed: the null hypothesis of no spatial

pattern can be explicitly tested using randomization tests, any community distance or
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similarity metric can be used, and the analyses can be used to partition variability in

community composition among various sources (Borcard et al. 1992, Legendre and

Anderson 1999, Legendre and Fortin 1989). The other methods of spatial analysis

described Share these characteristics, if adapted in the same way that Mantel procedures

and constrained ordination have been.

Materials and Methods

Sampling Design

Sampling was performed in three 1 ha alfalfa field replicates at the WK. Kellogg

Biological Station Long Term Ecological Research Site in June of 1999. Plots had been

in agronomically-managed perennial alfalfa for 10 years at time of sampling. Alfalfa was

killed with herbicide every five years and resown to maintain stand vigor.

Approximately two months prior to sampling, 5 year-old stands of alfalfa had been killed

with 3.5 Uha of the herbicide glyphosphate (Roundup). Plots were then fertilized with

2.9 Mg/ha dolomitic lime and re-planted to alfalfa at a rate of 10 kg/ha for each of two

perpendicular passes. Details of the management of this site can be found elsewhere

(http://lter.kbs.msu.edu/Agronomics).

Within each of the three field replicates, a sampling grid with adjacent samples

being 39.6 cm apart was placed over an approximately 1.6 x 2 m area. Ten locations

within each grid were randomly chosen for multiple-grain sampling (see Figure 1). Five

soil samples differing in soil weight were collected at each of these locations to obtain a

set of samples representing a wide range of sampling scales. Approximately 1 and 10 g

samples were collected by pushing sterile sample tubes (5 mL Falcon specimen tubes and
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50 mL Corning centrifuge tubes, respectively) into the soil. Approximately 100 g

samples were collected by pushing the tip of a 6.4 cm hydraulic Giddens tube (soaked in

bleach between samples) into the soil and then excavating the sample with a sterile

laboratory weighing spatula. 100 g samples were then placed in sterile Whirlpack

specimen bags. Smaller samples (10 and 100 mg) were collected using sterile weighing

spatulas and placed in sterile 1.5 mL microcentrifuge tubes. All samples were from the

layer of soil 2-4 cm deep to avoid increased variability at the soil surface.

Two additional 10 g samples were taken 8.5 cm from each of the ten multiple-

grain sampling locations in each grid described above. These were on opposite sides of

the multiple-grain sampling locations. The orientation of these samples within the

artificial coordinate system was determined randomly. If the multiple-grain sampling

location was at the edge of a grid and the orientation of the additional samples was such

that one of them would be placed outside of the grid, this sample was instead located

within the grid 8.5 cm from the other additional sample for that location (see Figure 1).

Twenty additional 10 g samples were collected at each field site to fill in the sampling

grids described above. All 10 g samples were collected as described above for the

multiple-grain sampling locations. The location of the center of each sample was

recorded with respect to the artificial coordinate system constructed.

This sampling scheme resulted in each of the three 1.6 x 2 m sampling grids being

characterized by two sets of samples: I. ten samples at each of five sampling scales (10

mg to 100 g), 2. fifty 10 g samples spaced 8.5 to 200 cm apart. All samples were

immediately frozen and stored with dry ice while being transported to the laboratory,

where they were transferred to -20°C storage. The actual wet weight of all samples was
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recorded in the laboratory and used in statistical analyses. References made hereafter to

sampling scales such as the “10 mg” scale are for convenience.

Eubacterial Community Characterization by T-RFLP

T-RFLP was performed essentially as described in Liu (1997) and in chapter 1.

Community DNA was extracted from 10 mg to 1 g soil samples using the standard

Ultraclean Soil DNA extraction kit (Mo Bio Laboratories, Solana Beach, CA).

Preliminary experiments were performed to determine whether slurrying and

homogenizing 10 and 100 g samples with sterile water had any effect on the variability of

T-RFLP profiles of a set of samples: 1. Eight 10 g samples were slurried with 10 m1. of

sterile water and then homogenized by Shaking on a vortexer. DNA was then extracted

from 0.5 mL subsamples (approximately 5% of sample) using the standard Ultraclean

Soil DNA extraction kit, and from the remainder of each sample using the Large-Scale

Ultraclean kit. 2. Seven 100 g samples were slurried and homogenized with 50 mL

sterile water. DNA was extracted from 0.5 mL subsamples (approximately 1% of

sample) using the standard Ultraclean kit, from 15 mL subsamples (approximately 20%

of Sample) using the Large-scale Ultraclean kit, and from the remainder of each sample

using four large-scale Ultraclean kits which were then pooled together. T-RFLP was

performed and the variability of T-RFLP profiles for each set of samples was assessed as

described below. Based on the results of this experiment (see Results below), remaining

100 g samples were slurried and DNA was extracted from 15 mL subsamples, DNA was

extracted from entire 10 g samples at multiple-grain sampling locations, and 10 g samples

at the remaining 40 locations per grid were slurried and DNA was extracted from 0.5 mL

subsamples.
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Genomic DNA was found to be of sufficient purity to be used directly in PCR

reactions. PCR was performed using a standard reaction mixture of 160 1.1M of each

deoxynucleoside triphosphate, 3 mM MgC12, 0.05 U/pL Taq DNA polymerase and the

appropriate volume of accompanying 10X PCR buffer (Gibco BRL, Gaithersburg, MD),

and 0.2 ug/mL bovine serum albumin (Boehringer Mannheim Biochemicals,

Indianapolis, IN). PCR mastermix, without primers, and PCR reaction tubes were

sterilized for 14 minutes with direct ultraviolet radiation in a Cleanspot PCR/UV

workstation. Primers used were the general eubacterial primer 8-27F

(AGAG'ITI‘GATCCTGGCTCAG, E. coli numbering, Amann et al. 1995, Integrated

DNA Technologies, Coralville, IA) and the universal primer 1392-1406R

(ACGGGCGGTGTGTACA). PCR reactions were optimized for each sample of

genomic DNA using a master mix with primer concentrations of 0.4 M. Optimizations

were performed by adjusting the amount of genomic DNA extract used (0.4 to 15 111150

11L reaction) and the number of PCR cycles run (18, 22, 28, or 33) to obtain a strong band

without visible non-specific product. PCR was performed in a Perkin-Elmer 9600

thermocycler using an initial denaturation step of 95°C followed by 18-33 cycles of the

following program: denaturation at 94°C for 30 sec., primer annealing at 55°C for 30

sec., and extension at 72°C for 30 sec. A modified hot start procedure was used where

PCR tubes were not placed in the thermocycler until the block temperature had reached

80°C. A final extension at 72°C for 7 min. was performed after the programmed number

of cycles was complete. PCR product was checked by electrophoresis on a 1% agarose

gel stained with ethidium bromide.
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PCR reactions (50-75 uL) were performed in triplicate for each sample using the

optimal conditions found previously. These reactions were performed using the same

PCR master mix and program described above except that the forward primer was 0.6

M hexachlorofluorscein (hex)-labeled 8-27F (Integrated DNA Technologies). Negative

controls (no genomic DNA) were conducted with every PCR and run on several

Genescan gels. Contamination in PCR reactions was not detected. Small peaks

occasionally appeared in negative control lanes on Genescan gels, but the cumulative

peak height was always below 1000 units. Samples were re-run if the cumulative peak

height was below 9500 fluorescence units.

PCR replicates were pooled and purified using the Promega PCR Preps Wizard

Kit as directed by the supplier, except that elution was performed with 19 111.. of sterile

water heated to 55-65°C. Five ML of purified PCR product was mixed with 5 [L of

restriction enzyme master mix containing 1.5 U/uL of restriction enzyme and one pl. of

the accompanying reaction buffer (Gibco). Restriction reactions were incubated for three

hours at 37°C, followed by 16 min. at 65°C to denature the restriction enzyme. Three ILL

of the restricted PCR product was mixed with one 11L of 2500 TAMRA size standard

(Applied Biosystems Instruments, Foster City, CA). DNA fragments were separated by

Size by electrophoresis at 1800 V for 14 hours on an ABI 373 automated DNA sequencer

at Michigan State University’s DNA Sequencing Facility. The 5’ terminal fragments (T—

RFS) were visualized by excitation of the hex molecule attached to the forward primer.

The gel image was captured and analyzed using Genescan Analysis Software 3.1. A peak

height threshold of 50 fluorescence units was used in the initial analysis of the

electropherogram. T-RFLP profiles for all samples were generated using the restriction
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enzyme Rsal. Mspl was used to generate additional profiles for all samples in grid 2, and

Hhal and HaeIII profiles were also generated for several samples in grid 2.

The effect of the number of cycles of PCR on variability of the T-RFLP profiles

was assessed using five samples for which optimal PCR conditions had been determined

as 22 PCR cycles and 1.2 11L genomic DNA per 75 1.1L reaction. Optimal PCR conditions

for 1:6 dilutions of these samples was determined as 28 cycles and 0.6 11L genomic DNA

per 75 1.1L reaction. When 1:6 diluted samples were PCR-amplified using 22 cycles and

0.6 1.1L genomic DNA per 75 1.1L reaction, the PCR product was approximately 1/8 the

strength of an optimal reaction. Three analytical PCR replications were then performed

for each of these diluted samples at 28 cycles and 24 replications were performed at 22

cycles using the same master mix. The pooled replicates then had equivalent amounts of

DNA in each sample, differing only by the number of cycles and analytical replicates

used. The 24-replicate pooled samples were concentrated using a Speed-Vac centrifuge.

These test samples were then analyzed by T-RFLP as described above. Variability was

compared between the sets of samples run at different numbers of PCR cycles.

Data Analysis Methods

The details of T-RFLP data processing have been described elsewhere (chapter 2).

Briefly, all T-RFLP profiles were standardized to a cumulative peak height of 10,000

fluorescence units, except for the few profiles that were used that had a cumulative peak

height less than 10,000 fluorescence units. T-RFs with a peak height of less than 50

fluorescence units after standardization were thrown out. This is equivalent to using

relative abundance of T-RFs that were strong enough to have been detected if the
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cumulative peak height had equaled 10,000 fluorescence units in all samples. T-RFS

were aligned in an Excel spreadsheet against a set of categories previously defined for

profiles of the particular restriction enzyme used. Sample identities were concealed

during alignment.

All data analyses were performed using the computer software Microsoft Excel or

SAS version 8 (principally IML and Stat software components) except as otherwise

noted.

Variability Statistics

Statistical analyses were based on several scores designed to describe the

variability or heterogeneity of a set of T—RFLP profiles. Mean variance, or one half of

mean Euclidean distance, was calculated from relative abundances because of its

precedence in studies on spatial structure. Other statistics were used because they have

been shown to be superior to mean variance in comparison of profiles of multi-species

communities. Mean Hellinger variance (HV) was adopted based on the recommendation

of Hellinger distance in Legendre and Gallagher (in press) for use in analysis of species

abundances. Mean Hellinger variance was determined by calculating the mean variance

after a Hellinger-transformation, resulting in:

2

l l " ’2’." _. _ 1" yr-

HV=— _ —L-y. , y .=— "

pj=l n-1;[ yi+ HI] ”I n; yk+

where p is the total number of T-RFS, n is the number of profiles in a set, y is T-RF peak

 

height, and yr. is the sum of all peak heights in profile i. This is also equivalent to one

half of the mean Hellinger distance among samples, which is determined by calculating
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mean Euclidean distance after Hellinger-transforrnation (Legendre and Gallagher in

press).

The Jaccard similarity coefficient takes into account presence-absence data and

only uses information from a variable (T-RF) when it is present in at least one of the two

profiles being compared. It is calculated:

a

S,=

a+b+c

 

where a is the number of T-RFS present in both profiles being compared, and b and c are

the number unique to each profile. The distance complement of the Jaccard coefficient

(JD=1-SJ) was calculated and will be referred to here as Jaccard distance. Mean Jaccard

distance is simply the mean value from a set of pairwise comparisons.

Heterogeneity among T-RFLP profiles was also compared using the mean

absolute deviation of standardized t-scores (MAD-t scores), an index derived from

recommendations in Edgington (1995), and calculated:

yij_yj

Si

where y]. is the mean peak height and Sj is the standard deviation of peak height for T-RF

inns; [1:
p j=l n i=1  

j in the 11 profiles being compared. A MAD-t score equals the mean number of standard

deviations any given peak height is from the mean height for that T-RF. The overall

MAD-t score is calculated by averaging MAD-t scores calculated for each T-RF. Hence

rare and common T-RFs are equally weighted and it is a true index of data “evenness”.

Unlike HV and JD, calculation of MAD-t scores must be based on an entire set of

samples, and not sets of sample pairs.
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DNA Extraction Experiment

For the preliminary DNA extraction experiment conducted on 10 and 100 g soil

samples, mean variance, HV, mean JD, and MAD-t scores were calculated for each set of

DNA extractions. The significance of the differences found in MAD-t scores were

determined using distribution-free random permutation tests as described by Edgington

(1995). The null hypothesis was that the difference in MAD-t scores for a pair of DNA

extraction treatments was not different from that which would be found if the profiles

were randomly associated with the treatments. Empirical differences in MAD—t scores

were compared to a distribution of differences generated by 9999 random permutations of

profiles with respect to their identities in the two treatments being compared. The p-

value for such a test is the proportion of all values, including the empirical value, that are

equal to or greater than the empirical value.

Multiple-Grain Analysis

Variability-scale analysis was performed by calculating mean JD, log HV, and

MAD-t scores for each set of T-RFLP profiles representing samples taken at a given scale

from a given grid. Scores were plotted as a function of log mean soil weight, which

represents the sampling grain. Least-squares regression models of the variability

statistics as a function of log soil weight were generated. MAD-t scores for the Mspl

profiles were shifted above scores for the RsaI profiles; therefore residuals about the

means of Mspl and Rsal MAD-t scores were used in regression. The fit of simple linear

regression (without hierarchical structure) was compared to more complex hybrid models

(indicating hierarchical structure) using partial F-tests.
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T-RF covariance matrices were also constructed for each set of samples from the

Hellinger-transformed peak heights. These were then compared by calculating the

Pearson correlation coefficient between elements of the matrices (also called the

normalized Mantel statistic or cophenetic correlation). A correlation super-matrix was

constructed by pairwise comparison of all covariance matrices. This was then analyzed

by principal coordinates analysis and cluster analysis using average linkage (UPGMA)

and Ward’s linkage methods.

Extent-Based or Separation Distance Analysis

For each set of fifty 10 g samples, the significance of differences in T-RFLP

profiles due to subsets being run on different gels was tested using redundancy analysis in

the software Canoco (Microcomputer Power, Ithaca, NY). This test compares the

amount of variability in the profiles that can be accounted for by external data (such as

gel identity) to a distribution generated by random permutations of the profile identities

(Legendre and Legendre 1998). To perform redundancy analysis on JD, principal

coordinates analysis was first used to derive new variables from the pairwise JD matrix

(Legendre and Anderson 1999). Euclidean distance calculated from these variables

preserves the Jaccard distances of the original matrix. The proportion of variability that

could be accounted for in the T-RFLP profiles was significant for several grids (p=0.0001

to 0.37, 9999 random permutations). Therefore all further extent-based analyses of the

10 g samples were performed on residuals from multiple linear regression accounting for

the gel-effect. Regressions were performed directly on Hellinger-transformed peak

height or on ID principal coordinates. For some grids this had a large effect on the
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analysis, and for some it did not (usually accounting for approximately 10% of the total

variance in the datasets, but for as low as 4% and as high as 22%).

Various different sizes of distance classes (lag distances) were investigated for

grouping pairs of samples. A lag distance of 20 cm was chosen so that there would be

greater than 30 pairs of samples in all distance classes. The distance classes with the two

greatest lag distances were excluded from analyses to avoid edge effects from classes

containing only pairs where both samples were from the edges of the grid. Variability-

scale analysis was conducted by calculating HV and mean JD values for each distance

class and plotting as a function of mean geographic distance. Both isotropic and

anisotropic pairings of samples were used to look for directional differences. Isotropic

values were used in subsequent analyses.

The significance of the spatial autocorrelation within each distance class was

tested by comparison of HV and mean ID to distributions created by 9999 random

permutations of the geographic coordinates of samples. The specific null hypothesis

tested was that the statistic from a distance class was not more different from the mean

value over all sample pairs than would be expected due to chance (i.e. no spatial

autocorrelation, Legendre and Legendre 1998).

Exponential or linear models, with nugget effects, were then fitted to the distance

plots using weighted least-squares regression (Cressie 1985). The forms of these models

are, respectively:

V = C0 + CW (1 - e(""“)) and V = C0 + Cth

where V is HV or mean JD, h is the distance between samples, a is one-third of the

“practical” range of spatial autocorrelation for exponential models, Co is the nugget (or
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unaccounted for variability), and C1 is the sill (or variability associated with spatial

structure) in the exponential model and the change in variability with separation distance

between samples in the linear model.

New distance functions for HV were constructed for alternative sampling grains

from the fitted exponential models using the principals described in Bellehumeur et al.

(1997). Briefly, a theoretical point model was formed by assuming: ap=(3a-L)/3 and

C1(¢,p)p=C1/(1-F), where L is the distance that the edges of samples were brought closer

together by taking real samples instead of “point samples” (i.e. the diameter of the

samples), and F is the proportion of the structural variability that is masked by taking real

samples. F is calculated by stochastic integration of an exponential model (without

nugget) with sill equal to one and range equal to ap. The integration was accomplished

by generating 100,000 random lags (h) between zero and L, constraining the distribution

by the geometry of the sampling area. The exponential portion of the distance model for

an alternative sampling grain was then constructed by finding L and F for the new grain

and rearranging the above equations to solve for C1 and a. The unexplained variability Co

was not discounted as a function of the ratio between the new and original sampling

grains since this procedure assumes that there is no analytical variability contributing to

Co; in fact, preliminary experiments showed analytical variability may be equal to Co

(data not shown), so the Co was not adjusted with sampling grain.

The distance functions for alternative sampling grains were used to estimate HV

of the set of multiple-grain sample locations had they been sampled at the alternative

grains. This was done by finding the number of pairs of samples within this set that fell

into each of the 20 cm lag distance classes. The mean separation distance within each
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class was used to calculate an HV for that class using the new distance function, and the

overall HV for the entire set of multiple-grain samples was calculated by finding the

weighted mean HV of all classes. These estimates were then plotted as a function of log

sampling grain with the empirical multiple-grain location data described above.

T-RF covariance matrices were calculated from Hellinger-transformed peak

heights for each lag distance class. A correlation super-matrix was constructed and

analyzed using principal coordinates analysis and cluster analysis, as described above.

Redundancy analysis was also used to perform multivariate trend-surface analysis

using the computer software Canoco. The external data used were the geographical x,y

coordinates of each sample, and combinations of the coordinates to the third power (x2,

y2, xy, x3, y3, xzy, xyz) as suggested by Legendre and Legendre (1998). The significance

of the variability explained by these geographical variables was tested with 9999 random

permutations. Forward selection of external variables was also used to check the

significance of each geographical term after accounting for the terms that explained more

variability.

Mantel correlograms were constructed from pairwise T-RFLP distance matrices

and a series of similarity matrices indicating presence of pairs in the distance classes

(Legendre and Fortin 1989, Legendre and Legendre 1998). Therefore a negative

normalized Mantel statistic for a distance class indicates positive spatial autocorrelation

at that scale. The normalized Mantel statistic was also calculated between the T—RFLP

and geographic distance matrices to test for an overall effect of separation distance across

all scales (with the opposite interpretation of the sign of the statistic). Mantel statistics

were tested for significance using 9999 random permutations of the geographic
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coordinates of the samples. The null hypothesis tested is therefore that the empirical

Mantel statistics are not more different from zero than would be expected by random

arrangement of the samples (i.e. no spatial structure).

Results

DNA Extraction Experiment

In the DNA extraction experiment, HV, mean JD (data not shown) and MAD-t

scores (Figure 2) were higher for the set of DNA extractions derived from 5%

subsamples of the slurried 10 g samples when compared to the set of 95% subsample

extracts. Random permutation testing of the significance of the difference in MAD-t

scores resulted in a marginally-significant p-value (0.089). It was therefore decided to

extract DNA from whole samples for the 10 g samples from multiple-grain locations.

There were ten such samples from each of the three sampling grids. The remaining forty

10 g samples from each grid were slurried and DNA was extracted from 5% subsamples

to reduce the cost of DNA extraction. It was felt this was justifiable due to the increased

number of samples in this analysis and the relatively weak effect of subsarnpling.

For the 100 g samples, variability statistics decreased in the order of 1%, 80%,

and 20% subsamples (see Figure 2). Random permutation testing found that the

difference in MAD-t scores between the 1% and 20% DNA extracts were marginally-

significant (p=0.069), while neither score was significantly different from that for the set

of 80% DNA extracts. These somewhat contradictory results led to the decision that 100

g samples would be slurried and DNA would be extracted from 20% subsamples.
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PCR Cycles Experiment

The effect of number of cycles on heterogeneity of a set of samples was

contradictory to the hypothesis based on the theory that increased numbers of PCR cycles

increases the number of nucleotide mismatches due to random polymerase mistakes. The

HV was higher for the set of samples amplified using 22 PCR cycles, diluted genomic

DNA and 24 PCR replicates than either the set from 28 PCR cycles, diluted genomic

DNA and 3 PCR replicates or the set from 22 PCR cycles, undiluted genomic DNA, and

3 PCR replicates. The HV of the latter two sets were approximately equal (data not

shown). Pooling of PCR replicates is performed to reduce the significance of PCR

artifacts; however these results indicate that this may also increase the overall

heterogeneity of PCR amplicons.

Grain-Based Analyses

The overall trend for all variability statistics was a decrease with increasing scale

of sampling grain (see Figure 3). The slope of a simple linear regression of log HV on

log soil weight is much closer to zero than -—1 (although it is also significantly different

from zero, p=0.00005). The slope for variance is almost the same as for HV (data not

shown). While this could be taken to imply that there is strong autocorrelation in the

peak heights themselves (i.e. a small-grain sample profile is almost the same as its

corresponding larger-grain sample profile from the same location), that is not the case for

this set of T-RFLP profiles. Based on the fairly noisy profiles we obtained, we suggest

that instead this result implies that there are self-similar (or fractal) patterns across these

scales. However, the fact that there is a significantly negative slope for HV as well as

mean JD and MAD-t implies that pattern from some phenomena (and its accompanying
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variability) are not completely fractal and are not being detected at the larger sampling

grains.

While simple linear regression explained a significant portion of the relationship

between the variability statistics and sampling grain, distinct zones which are

characterized by unique slopes are apparent from the data plots, indicating hierarchical

structure. Partial F-tests indicated that models which include a change in slope (which

will be referred to as hierarchical models) had significantly reduced residual sums of

squares for HV and MAD-t when compared to simple linear regression (see Table 1 and

Figure 3). The hierarchical models were constructed by separate linear regressions in

regions where the slopes appeared to differ. The slope of a regression was discarded

from the model if it was not significantly different from zero. The phase-shift region

where the slope changes is undefined in these models since there is no data describing the

relationship there. The hierarchical model for mean JD was not significantly superior to

the linear model, although it did have a lower residual sum of squares. The HV and mean

JD plots had changes in slope between sampling scales different from where the slope

changed for MAD-t scores. This is not overly surprising since MAD-t scores weight rare

T-RFs much more heavily than HV or JD. Potential outliers were not removed in the

testing of these models. Removal of outliers would cause the hierarchical model to fit the

data significantly better than the linear model for mean JD, remove the hierarchical

relationship for MAD-t, and have no effect on HV.

The correlation between Hellinger covariance matrices from different sampling

grains was uniformly low (ranging from —0.03 to 0.31, mean 0.08), resulting in

uninformative principal coordinates and cluster analyses of the correlation super-matrix.

160

  



 

In general, comparison of covariance structures was not as useful as mean variability of

T-RF peak heights for this dataset.

Extent-Based Analyses

AS expected, HV and mean JD increase as separation distance between samples

increases, as shown for HV in Figure 4. Mean JD plots looked almost identical to HV

plots, except for the scale of the y-axis (data not shown). Hellinger variance for grids 2

(RsaI and Mspl digests) and 3 (RsaI) reach an asymptote between approximately 50 and

75 cm, while the HV plot for grid 1 (RsaI) rises linearly across the entire range of

separation distances. Permutation testing indicated that one or two of the first few

distance classes had HV significantly below the mean HV, indicating significantly

positive spatial autocorrelation at that scale (see Figure 4).

Exponential models were fit to HV plots for grids 2 and 3 and a linear model was

fit for grid 1 (see Figure 4 and Table 2). Spatial structure accounted for 18 to 23% of the

total variance in each grid dataset. Estimates of HV for the multiple-grain sampling

locations based on the fitted exponential models are shown in Figure 5. The range over

which the estimation was made overlaps with two sampling grains for which samples are

available (10 and 100 g). The 10 g samples at multiple-grain locations went into

construction of the models, along with the forty other 10 g samples per grid, and the

empirical HV values are very close to the estimated values. The model estimates for the

100 g samples are quite close to the empirical values for grid 2 digests, but are well-

above the empirical value for grid 3. This may be due to noise within the empirical

values, which are based on fewer samples than the sets from which the models were

constructed (10 versus 50 samples). Between 10 and 1000 g the HV estimates are
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relatively flat, in agreement with the hierarchical least-squares model fitted to the

empirical values in the grain-based analysis (see Figure 3). At scales greater than 1000 g

the slopes change, becoming noticeably steeper. There may be some flattening of the

curve again as soil weight approaches 105 g, although this transition is not completely

represented within the range shown.

Inferences from the extent-based models to other sampling grains outside the

range estimated over in Figure 5 cannot be made since they would involve either I .

smaller sampling grains than that which the model was based on or 2. sampling grains

larger than the area sampled. It should be noted that the estimates for samples larger than

10" g are theoretical since samples taken at such a scale would overlap. However, the

spatial structure reflected in HV estimates, even over theoretical sampling grains, is

certainly real, being based on a model derived from empirical extent-based data. The

construction of estimates and theoretical samples is a convenient way to integrate the

grain-based and extent-based analyses. Hierarchical spatial structure is evident from the

HV estimates since there are two well-defined regions with differing slopes. Hierarchical

structure is not evident and estimates cannot be made, however, from the grid 1 extent-

based analysis since the relationship between HV and separation distance for grid 1 is

linear.

Analysis of the correlation super-matrix describing the relationship between

Hellinger covariance matrices defined by distance classes found that the first distance

class (0 to 20 cm separation distance) had a unique T-RF covariance structure in all four

grids (see Figures 6 and 7 for examples). Cluster analysis also resulted in distance

classes 8, 9, and 10 being clustered separately from classes 2 through 6, with distance
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class 7 being in either cluster depending on the grid. Principal coordinate analysis

showed distance classes 2 through 10 in a gradient without strong hierarchical structure,

although classes 9 and 10 were always somewhat separate from the rest of the gradient.

When covariance matrices from the grain-based analysis were included with those

derived from distance classes, matrices derived from samples taken at alternative

sampling grains were identified as outliers (data not shown).

Redundancy analysis found linear combinations of geographical terms did

account for a significant portion of the variability in Hellinger and Jaccard distances in all

cases except one (see Table 3). When the analysis was limited to those two or three

geographical terms found to be statistically significant using forward selection of

variables, the amount of variation explained dropped from 20-25% to 5-13%.

Geographical terms consistently explained a greater portion of the variability in Hellinger

distances than in Jaccard distances.

Global Mantel tests found weak but significant correlation between geographic

distance and Hellinger distance between T-RFLP profiles for all grids (see Table 3). The

same trend was present but not as strong for Jaccard distance. Mantel correlograms

(where negative values imply positive spatial autocorrelation within a distance class,

relative to the rest of the dataset) indicated that the statistically significant spatial

structure was short-range autocorrelation (<50 cm; see Figure 8). The relationship

between rM and separation distance is essentially linear for the HD-based Mantel

correlograms, as well as the grid 1 JD—based Mantel correlogram. Jaccard distance-based

Mantel correlograms for the other grids reach an asymptote after approximately 70 cm.
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Discussion

Hierarchical Spatial Structure Detected within the Soil Microbial Community

The soil bacterial community was shown to have significant spatial structure in an

area that is relatively small and homogenous from the perspective of the plant

community: the layer of soil at a depth of from 2 to 4 cm, over a 1.5 x 2 m area of soil,

under perennial alfalfa. Furthermore, this spatial structure was shown to be organized by

at least three hierarchical levels. The levels of organization are hierarchical since they

operate within distinct ranges of spatial scale, or scale domains (Wiens 1989), and hence

variability within the lower levels are affected by higher levels, but not vice versa. Note

that while mechanisms operating at low levels within the hierarchy will not affect

variability at scales larger than the level’s scale domain, this does not imply that those

mechanisms will not affect other aspects of phenomena at larger scales. In particular,

mechanisms causing patchiness in T-RF abundance at lower levels may determine mean

abundance in samples taken at larger scales.

While this study was not designed to determine the causes of the hierarchical

spatial structure, it is possible to hypothesize what they may be. The level operating at

smaller scales, 10 mg to 1 g, or 1 to 13 mm, may be regulated by resource heterogeneity

at that scale, such as proxinrity of a site to individual roots, pieces of decomposing shoot

residue, or macropores. These create gradients of water, organic matter, terminal electron

acceptors, and other organisms (see chapter 3). Aggregate structure and disturbance

history (such as by soil fauna or aggregate disintegration) may also affect communities at

this scale (see chapter 4). The scale domain of the highest level detected (1000 to 105 g

or 25 to 220 cm) has been intensively investigated recently (e.g. Boerner et al. 1998,
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Schlesinger et al. 1996, Stoyan et al. 2000). Therefore it is well known that there is

considerable resource heterogeneity at these scales, a large portion of which is generated

by the plants themselves. We suspect heterogeneity of plant density, organic matter,

phosphorus, pH, etc. regulates eubacterial community structure at this level.

The intermediate level (10 to 1000 g or 2 to 25 cm) is interesting because there is

virtually no change in variance with scale. This implies that there are few important

mechanisms regulating eubacterial community structure that operate at these scales. If

strong mechanisms did exist at these scales, variance would decrease with increasing

sampling grain since the spatial patterns generated by the mechanisms would become

increasingly diluted. Instead it appears that the scale is not yet large enough to begin to

decrease the variability due to spatial structure generated at the higher level, but it is large

enough to mask all variability due to spatial structure generated at the lower level. The

implications of this for designing future sampling is discussed below.

Results of this study indicate greater spatial structure in the soil microbial

community than was found previously by Cavigelli et a1. (1995) or Felske and

Akkermans (1998). One difference is that sampling in this study was extended to much

smaller spatial scales. This has also been advocated for more detailed analyses in soil

microbial diversity studies (Grundmann and Gourbiére 1999). The above studies also

skipped quantitative comparison of community profiles altogether (Felske and

Akkermans 1998) or used univariate geostatistics without testing for structure within the

community as a whole (Cavigelli et a1. 1995). Hopefully the statistical methods outlined

here will contribute to the ability to perform true tests of the hypothesis of spatial

structure within a community, microbial or otherwise.
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Comparison ofStatistical Methods

The hierarchical structure was detected by extending previous work on univariate

spatial structure to the use of community distance coefficients under the general name of

variability-scale analysis. It was shown that extent- and grain-based approaches can be

fully integrated if they are based on the same statistic. This was accomplished by

modeling the spatial structure of the statistic in the extent-based approach and then using

the method of Bellehumeur et al. (1997) to derive new models at different sampling

grains. The new models are then applied to the same locations that were sampled using

the grain-based approach. This integration of methods is an important development

because grain- and extent-based methods have the same goal but are practical over

different spatial scales. For example, it would have been unrealistic to use the grain-

based approach at scales much larger than 100 g because of the difficulties in obtaining a

representative DNA extract from large samples. Likewise, using the extent-based

approach to try to examine small-scale structure would have either resulted in an

unmanageable number of samples or much less sensitivity at all scales.

The approach taken here of testing for changes in slope of the variability-scale

plots using regression and partial F-statistics may be questioned since the datapoints are

derived from essentially the same sets of locations and are therefore not independent.

However, as pointed out by O’Neill et al. (1991a), this bias will make the analysis

conservative since successive points will tend to be similar and reduce the likelihood of

finding changes in slope.

Several other extent-based approaches were also used for comparison to the

extent-based variability-scale analysis. Redundancy analysis found that 20-25% of the
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variability in the 10 g samples was due to spatial structure, in agreement with the extent-

based variability-scale analysis (see Tables 2 and 3). A disadvantage of redundancy

analysis is that it requires many geographical terms to detect complex spatial structures,

causing over-parameterization of the analysis and inflating p-values. However, forward

selection of a few terms resulted in a subset that was not adequate to account for as much

variability as the extent-based variability-scale analysis. Maps of the sampling area could

be constructed from canonical principal components scores derived from the redundancy

analysis; however these must be interpreted with caution since they are “best-case”

scenarios, dependent on the geographical terms present, and each map would show only

the portion of the total spatial structure present that its principal component had captured.

Hence the form of the spatial structure is more difficult to ascertain for complex datasets

when using redundancy analysis. Global Mantel tests also showed there was a significant

correlation between geographic distance and Hellinger distance (see Table 3). As has

been pointed out in the past (Legendre and Fortin 1989), this test is most sensitive to

gradients across the sampled area or other simple structures. Mantel correlograms

showed similar forms of spatial structure to those found by extent-based variability-scale

analysis, as well as significant spatial autocorrelation in the same distance classes (see

Figure 8). The strength of this spatial structure (i.e. the amount of variability accounted

for), however, is not readily apparent from the Mantel correlograms for reasons discussed

previously. Neither Mantel correlograms nor redundancy analysis can be fully integrated

with a grain-based approach.

Another statistical method proposed here that can integrate extent- and grain-

based approaches is the exploratory data analysis of a correlation super-matrix. This
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method is loosely based on Mantel procedures since correlation coefficients between

matrices are used. The pairwise correlations from a set of matrices are used to create a

correlation super-matrix which summarizes the relationships between all matrices. The

matrices used here were T-RF covariance matrices. Cluster analysis and principal

coordinates analysis were then performed on the correlation super-matrix to summarize

these relationships. The result is an analysis of the similarities in the covariance

structures for each scale separately analyzed. Scales from both extent- and grain-based

approaches can be used. Analysis of the correlation super-matrix from the extent-based

approach reinforced the general results found in variability-scale analysis. These results

are more general, however, implying not only that communities are more similar when

they are closer together, but also that the interactions between T-RFs are organized

differently at different spatial scales. This was particularly true for the transition between

the 0-20 cm separation distance scale and other scales, but also true for the 140-200 cm

scale compared to other scales (see Figures 6 and 7). The former transition between

covariance structures is at the same scale as the transition between levels of organization

detected by variance-scale analysis at approximately 1000 g soil.

The attempt to integrate the extent- and grain-based approaches using the

correlation super-matrix analysis was not fruitful for the current dataset. This was

because the covariance matrices from different sampling grains were widely different

from one another and from the covariance matrices from the extent-based approach

(except for the 10 g samples). It may be that dynamics at the sampling grains used were

so diverse that the covariance structures were completely different, or that there was
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significantly greater noise in the covariance matrices from the grain-based approach,

being based on fewer samples.

Interpretation ofMolecular Community Fingerprint Data

Structure detected using MAD-t scores was somewhat different from what was

detected using HV, with a phase transition between 10 and 100 mg. MAD-t scores

analyze the T-RFLP profiles from a different perspective, weighting rare (i.e. less-

frequently occurring) T-RFs equally with common ones, unlike either HV or mean JD.

With each transition between sampling grains, higher MAD-t scores were obtained,

indicating more variability and more rare T-RFs being detected. The jump in MAD-t

scores between 10 and 100 mg was disproportionate, however, to the increases between

all other scales (see Figure 3). It could be hypothesized that the size of many micro-

habitats that support populations of specialized eubacteria are approximately 10 mg in

weight, or a mm in diameter. However, it must be noted that T-RFLP shares with all

other PCR-based techniques the potential problems of methodological artifacts such as

chimera formation and point mutations (Wintzingerode et al. 1997). Artifacts are known

to increase with PCR cycle number, although variability actually decreased with cycle

number in a preliminary experiment presented here.

Mean JD, based on presence of T—RFs only and containing no information from

the peak heights, portrayed the same trends as HV but generally evidence of structure

was weaker. Utilization of peak height data enhanced the detail with which the

community could be viewed using T-RFLP.

Molecular methods were used to avoid the severe biases in community

composition known to occur with culture-based methods. DNA extraction and PCR
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methods have their own biases, and so the structure detected in this study does not

include those organisms not amenable to DNA extraction and PCR amplification using

our methods. Great precaution was taken to ensure that biases would not occur due to the

scale or position of samples.

Conclusions

This study is a snapshot of the microbial community structure, which is dynamic

due to the seasonality of root growth, alfalfa harvests, and abiotic factors such as

temperature, moisture, etc. It is a holistic snapshot, both from the viewpoint that the

strength of many ecological phenomena were tested simultaneously, and that the structure

was detected from the distributions of all T-RFs and their interactions. While significant

random variability did exist (not associated with the spatial structure), the results

strengthen the theory that soil eubacterial communities are not simply random

assemblages formed by historical events. They display structure that suggests that at

least some species are regulated by mechanisms analogous to those for macroorganism

distributions.

The appropriate scale of sampling will depend on the goals of the analysis. Often

the goal is to assess the effects of some field treatment. If the hypothesized effect is on

variability or spatial structure, a multiple-scale approach such as the one here should be

taken. If, on the other hand, the goal is to test for changes in the average community

composition without regard to spatial structure, the sort of “null level” detected in this

study (between 10 and 1000 g) presents a unique opportunity. If treatments are blocked

within the scale domain of such a level, and samples are also taken at a grain within the

170



 

  

   



   

  

A

 

. . . a. u r o u nyu 124;?" .{‘L‘!k!.‘{':'.".5?!"5(1Li19515tl‘g't-‘tqf'fr

scale domain, then increased variability, decreased sensitivity, and non-independence of

replicates due to spatial structure is avoided. Otherwise, many samples must be taken in

order to characterize the spatial variability, or they can be composited in an attempt

(probably in vain) to overcome the spatial variability. Likewise, we do not feel there is a

unique “scale of a community”, in part because communities are affected in some way by

mechanisms operating at all scales from molecular to global. Community composition is

ultimately affected by which species the ecologist chooses to include, and the particular

 scales chosen for investigation. Therefore it is more useful to focus efforts on examining

how organization changes with scale than on finding “the scale” (Levin 1992).
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Figure 2: MAD-t scores derived from DNA extraction experiment. Bars with different

letters within a weight category are significantly different at the p=0.1 significance level,

=7 for 100 g samples and 8 for 10 g samples.
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Figure 3: Grain-based analysis using three variability statistics. Colors indicate the three

difl‘erent grid replicates (red=grid 1, blue=grid 2, green=grid 3). Circles are sets ofRsaI

digests, triangles are sets ofMspl digests. Lines represent the hierarchical models which

fit the data significantly better than linear regression models, with undefined regions

shown as dashed lines. 7771'sfigure is in color.
M
e
a
n
J
a
c
c
a
r
d
D
i
s
t
a
n
c
e

L
o
g

H
e
l
l
i
n
g
e
r
V
a
r
i
a
n
c
e

M
A
D
-
t
s
c
o
r
e
r
e
s
i
d
u
a
l
s

 

   

 

   

 

   

1.4

O

O

1.3 1

A . 0

O

1.2 7 .‘ i. a

1 1 d . ‘ :

. .

O

1.0 < o

O

0.9 . . . . .

-3 -2 -1 0 1 2

Log Mean Soil Weight

0.65

O

0.60 -

0.55 « ‘

. t
0.50 1

O A

0.45 1 A A

f z
0.40 - o

. O

0.35 . o

0.30 . . .

-3 -2 -1 0 1 2

Log Mean Soil Weight

0.20

0.15 . .

0.10 «

A I

0.05 1 . A

0.00. ' ° 0

N

0.05 ‘ C ' ‘

O

-0.10 . e 4 .

-3 -2 -1 0 1 2

Log Mean Soil Weight

184

 



   

 

 



 

Figure 4: Hellinger variance as a function of separation distance. Hollow triangles

indicate values significantly different from overall variance using the progressive

Bonforroni correction for spatial analysis (initial significance value p=0.05). Hollow

circle indicates a value significantly different from overall variance at the 0.05 level.

Horizontal dashed lines indicate overall variance. Vertical dashed lines indicate the

practical range of spatial structure found by weighted least squares modeling.
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Figure 4, continued:

C. Grid 3, RsaI
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Figure 5: Integration of extent-based and grain-based analyses ofHellinger variance.

Lines show estimates of log HV at larger grains based on application ofthe extent-based

models to the multiple-grain sampling locations. Colors indicate the three different grid

replicates (red=g1id l, blue=grid 2, green=grid 3). Solid lines and circles are sets ofRsaI

digests, dashed line and triangles are sets of Mspl digests. Thisfigure is in color.
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Figure 6: Principal coordinates analysis of correlation super-matrix of covariance

matrices constructed from different distance classes in grid 2, Rsal digest. Numbers in

the datapoint name represent the distance class from which each covariance matrix is

derived (i.e. d1 is derived from distance class 1, 0-20 cm).
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Figure 8: Normalized Mantel correlogram ofHellinger and Jaccard distances for all 10 g

samples. Colors indicate the three different grid replicates (red=g1id 1, blue=grid 2,

green=grid 3). Circles are sets ofRsaI digests, triangles are sets ofMspl digests. Circled

datapoints are Significantly different from zero using the progressive Bonferroni

correction and boxed datapoints are significant using uncorrected tests (p<0.05). This

figure is in color.
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Appendix A: Total number of T-RFs detected in sets of samples at multiple-grain

sampling locations. Note that this is not the average number of T-RFs per sample.

Colors indicate the three different grid replicates (red=grid 1, blue=grid 2, green=grid 3).

Circles are sets ofRsaI digests, triangles are sets ofMspl digests. Thisfigure is in color.
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